Computer algebra in modern physics

J.F. Ogilvie”

Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan

(Received 10 May 1988; accepted 2 September 1988)

After an illustrative definition of computer algebra, the common capabilities of modern
processors are outlined. The systems that have been used for applications in physics are briefly
described. A summary of the uses of algebraic processors in several branches of physics is
presented. The different approaches to algebraic and numerical processing are discussed and
sources of further information are surveyed.

INTRODUCTION

What is computer algebra? In Fig. 1(a) we see a short list of
statements in no particular language that might form part
of some program. These instructions are a coding of the
recurrence relation for the generation of one form of the
Chebyshev orthogonal polynomials. The first two lines
give the values of the initial elements, then in two succes-
sive loops the polynomials are formed and printed. The
coding resembles BASIC, a popular language for numeric
processing; if we insert a previous statement to set x equal
to 7, then the output of the print statement would be that
given in Fig. 1(b). In numeric processing, if the value of a
variable is not set, then either the default value (commonly
zero) is assumed by the processor or the value left in the
storage location assigned to that variable in the previous
program is used (a practice common to old models of IBM
computers). In computer algebra, if no value is assigned to
a variable, its value is itself; in this case the output might
look like what appears in part in Fig. 1(c). Notice the raised
exponents in the two-dimensional form of the output giv-
en (optionally) by the processor. The appearance of the
output thus follows the natural form to some extent, al-
though to my knowledge subscripts still disdain to adopt a
lowered position. This is computer algebra which, for an
increasing number of practitioners of physical science
and engineering, is as much a component of their arsenal
of methods to solve problems as mere numeric comput-
ing.

Computer algebra, or symbolic and algebraic compu-
tation, has been applied to physics almost since its emer-
gence as a viable computing activity. The publication of a
well-known review' can be taken to mark the end of the
first era of computer algebra. About that time (1972) the
first primitive versions of processors for this task were
being succeeded by more refined and versatile processors.
Correspondingly, the mid 1980s mark another turning
point, this time to the personal algebra machine that has
greater capability than the mainframe computers of a few
years earlier for two reasons, namely the maturing of the
processors (like languages—the distinction is explained in
a subsequent section) and of course the large CPU cores

* Present address: Institute of Atomic and Molecular Sciences, Aca-
demia Sinica, P. O. Box 23-166, Taipei 10764, Taiwan.

66 COMPUTERS IN PHYSICS, JAN. FEB 1989

and rapid execution of these small and relatively inexpen-
sive machines. Thus it is timely both to review the prog-
ress and capabilities of the available systems and to out-
line some recent applications that may lead the physicist
reader to foresee the ways in which computer algebra can
assist in the tasks of his vocation, in both research and
teaching.

Computer algebra should be intrinsic to the practice
of physics in any environment, as the great range of appli-
cations to be outlined is intended to demonstrate. It
should be as natural to use the digital computer for alge-
bra as to use the four-function hand-held calculator for
arithmetic, and at least one pocket calculator having ex-
plicit algebraic capabilities (though necessarily limited in
scope and size of problem) has already been marketed. In
a context much more general than physics, Fitch® stated
“At present [1985] it is unfortunately still the case that
much algebra is being done by hand.” There is no need for
this situation to persist as far as physics is concerned, for
the facilities are available and are in general more easily
used than the “languages’” for mere numeric computing.

I. GENERAL CAPABILITIES OF COMPUTER
ALGEBRA

Although there is naturally some variation among the
available implementations, processors commonly incor-
porate the following capabilities.

A. Arbitrary precision integer and (if desired) real
arithmetic

For instance, the instruction 1000! (typically followed by a
semicolon or dollar sign as a terminator of input, plus a
carriage return) generates a number having about 2800
digits, expressed as an integer requiring some 40 or 50
lines on the monitor or printer (depending how the line
length is set). Similarly, provided that the user has chosen
floating point (i.e., inexact) arithmetic, the setting of some
switch called PRECISION or POINT to have the value 50 (or
other value, also at the user’s option) results in numerical

FORJ=2TO S8
TW) = 2+X*T(F — 1) — TJ — 2)

NEXTJ

FORJ=0TO S8

PRINT T()

NEXTJ
1 T(0) =
7 T(1) =
97 T(2) =
1351 T(3) =
18817 T4) =
262087 T(5) =
365040%
50843530 L
708159000 L

(b) (a)

1

X
2X2 —1
4 X3 —3X

8X4 — 8X2 + 1
16X5 — 20X3 + 5X

(c)

FIG. 1. (a) Putative segment of text to form Chebyshev orthogonal polynomials; (b) additional preliminary text statement and output through
numerical evaluation; (c) part of the output through symbolic evaluation.

values containing about 50 decimal digits; with such a set-
ting, the instruction

10/3
would result in an answer like
3.333.

If the floating point arithmetic is not deliberately chosen,
then the natural form of numerical values other than inte-
gers is arational fraction, just 10/3. Ordinarily this is print-
ed in the natural form of two integers separated vertically
by a line, but if the denominator or numerator is inconve-
niently small or large, then two numbers might be printed
with a horizontal separation by a slash as printed here.

B. Expansion and ordering of polynomials and
rational functions

In some systems, the normal representation is the com-
pact form, such as (x + 1)*, whereas in others, the expand-
ed form 14 2x + x*, or perhaps in the reverse order
X* + 2x + 1, is the default form. To change from compact
to expanded form is always at the user’s option, but obvi-
ously the reverse operation implies some factorization ca-
pability that is not so trivial. Similarly, the simplification
of expressions, such as having a common denominator or
not, is at the user's control.

C. Factorization of polynomials

During recent years much research in mathematics has
been devoted to this and related topics, and consequently
new algorithms have been developed that are already in-
corporated in various algebra processors. Further appli-
cations of factorization are required for the integration
Operation.

D. Substitutions and pattern matching in many and
various forms

Ejther local substitutions or global replacements are pos-
sible, and such procedures, among the most tedious to do
Mmanually, are among the most valuable operations in
Computer algebra.

E. Analytic differentiation and integration

The processors incorporate the standard rules of differen-
tial calculus, specifically to find the first-order partial de-
rivative of a specified expression with respect to a speci-
fied variable; that variable must commonly be an atom or
a kernel, i.e., not have any value assigned to it (other than
itself). Extended use of this operator permits differenti-
ation with respect to more than one variable or more than
once with respect to a given variable or to both, i.e., gen-
eral nth-order partial differentiation. The procedures of
differentiation and integration are invoked through oper-
ators, and these particular operators are but two of many
supplied with a given processor.

Following the discovery by Risch® of an algorithm for
symbolic integration of certain types of integrands, Nor-
man and Moore® succeeded in implementing this for ma-
chine execution. Not only the resulting package has been
incorporated into several processors, but also pattern
matching is used for this purpose. The indefinite integral
is commonly formed directly, but a substitution into the
result of the upper and lower limits followed by the ap-
propriate subtraction naturally generates the definite in-
tegral. In some cases, pattern matching can be applied to
specific definite integrals for which no indefinite integral
is known in explicit analytic form, e.g., functions contain-
ing e ~**, and even positive and negative infinities can be
handled as limits in such cases. A digression about printed
tables of integrals may be worthwhile at this point; the
older tables contain many cases of actual errors or inad-
equately specified results (i.e., the given result is correct
when some parameter a has a positive value but not when
it is negative, but possibly no such cautionary advice ap-
pears). In some well-known tables, between 7% and 20% of
the listed integrals are so affected. The integration func-
tions or operators in the computer algebra processors are
generally more reliable, producing a null result if the inte-
gration cannot be performed and querying the user if the
possible answers depend on the sign of some parameter;
also, to check the result by an immediate differentiation is
readily effected and is indeed a recommended procedure
for uncommon types of integrands. (It is notable that the
latest edition of an extensive table® of integrals and series

COMPUTERS IN PHYSICS, JAN FEB 1989 67

contains far less than the indicated proportion of errors,
primarily because many answers were tested by means of
computer algebra.)

F. Facilities to define additional functions and to
extend the syntax

Typically the functions defined within the processor in-
clude the common trigonometric functions (sine, cosine,
tangent, and cotangent), their inverses (arcsine, arccosine,
arctangent, and arccotangent), the hyperbolic (sinh, cosh,
and tanh) and their inverse (asinh, acosh, and atanh) trigo-
nometric functions, the natural logarithmic (log or In)
functions, and exponential (exp) functions. Their proper-
ties (derivatives and integrals) are also known to the pro-
cessor. If the user wishes to define a further function of
particular interest, such as secant, then the appropriate
definition and the rules for differentiation and integration
may be added in a global context; thereafter reference to
any such function no matter what the operand invokes a
correct algebraic manipulation.

G. Calculation with symbolic matrices

Beside the standard operations, addition, subtraction, and
multiplication, of confirming matrices, the processors
commonly include transposition, determinant, and inver-
sion operations.

Other than the above categories of capabilities, most
available processors designed for general purposes in-
clude further specific capabilities that depend on the ex-
perience or objectives of the designers. In particular, some
processors designed by scientists with a strong back-
ground in physics incorporate further functions or opera-
tors with specific applications in certain branches of
physics and cognate disciplines. Allusion to some such
capabilities is made in Sec. I1.

II. COMMONLY USED PROCESSORS

The endeavor in the following paragraphs is to provide a
critical summary and appraisal of each processor or lan-
guage for symbolic computation that has been, or is likely
to be, applied for the purposes of research and education
in the physical sciences. Naturally, for some processors,
different versions exist, either for different types of ma-
chines or from different sources; here such distinctions
between versions are ignored.

Among the earliest processors for computer algebra
was FORMAC, developed by IBM Corporation to be a su-
perset of the PL-1 language for numerical processing that
was itself designed to contain the best features of struc-
tured programming, a broad range of mathematical func-
tions for scientific and technological applications and the
handling of files and characters. IBM terminated the de-
velopment of FORMAC before 1968, but some further de-
velopment embodied in FORMAC-73 occurred in Eu-
rope.’ In particular, FORMAC lacks factorization and
integration facilities, but is nevertheless useful for many
applications involving expansion and substitution. Dis-
tributed in the form of macros that restrict its implemen-
tation to IBM (or compatible) computers having an archi-
tecture of the 360 type, currently this processor is still in
use mainly in countries lacking access to the more mod-
€ern processors.

68 COMPUTERS IN PHYSICS, JANTER 1989

T

The list processor LISP was designed not only as a
language for programming computers but also as a formal
mathematical language’ primarily for symbolic data. As
such, it has seen little application directly for computer
algebra, partly because of lack of many capabilities listed
above but more because typical expressions are character-
ized by a proliferation of parentheses that prove an impe-
diment to use by casual users, although it remains the
most popular language for research in artificial or ma-
chine intelligence. However, some calculations® of inter-
est in physics have been done directly in LISP in the early
years of computer algebra. Furthermore, many proces-
sors with higher levels of capabilities for computer alge-
bra are themselves programmed in LISP, so that its impor-
tance in this field far transcends its visible applications.

Another early processor developed (like LISP) at the
Massachusetts Institute of Technology and based on LISP
is MATHLAB.® Beside most standard features listed above,
it included direct and inverse Laplace transforms and the
solution of linear differential equations and of simulta-
neous linear equations. Now quite obsolescent, MATHLAB
has been succeeded by MACSYMA, which, beside all the
specified capabilities (general and those of MATHLAB),
currently includes, among other capabilities, manipula-
tion of vectors and tensors, plotting of functions in two or
three dimensions, the standard numerical capabilities, so-
lution of partial differential equations, and the generation
of FORTRAN output of MACSYMA expressions. For many
years users had access to MACSYMA at only a few comput-
ing sites, but now this well-developed and tested proces-
sor, already having many applications in physics, is com-
mercially marketed for a few models of computers and
operating systems. MACSYMA is probably the largest and
most comprehensive processor in current use, but has run
on relatively few types of machine both because of its size
and because it was not originally designed to be portable.

A highly developed processor especially designed for
engineering applications at Bell Laboratories is ALTRAN,
denoting algebra translator. This processor has the capa-
bility to perform rational operations on rational expres-
sions in one or more indeterminates (algebraic quantities
or variables), with integer coefficients, and is designed to
handle relatively large problems involving such objects
with considerable efficiency. The syntax of ALTRAN is
similar to that of FORTRAN; in fact ALTRAN is based on
FORTRAN (rather than LISP), so that in principle it can be
run on any machine having a FORTRAN compiler and suf-
ficient core memory. Although ALTRAN contains neither
factorization nor integration facilities, reflecting its matu-
rity achieved about 1973, for certain types of problems it
nevertheless remains an efficient and reliable processor.
However, the execution of ALTRAN must be in batch
mode, not interactively, because of the compiled nature of
the FORTRAN preprocessor.

The processor probably most widely used for com-
puter algebra around the world is REDUCE. Based on LISP,
this language was developed (later) as a result of a felt need
(about 1960) to execute by machine some calculations in
high-energy physics by A. C. Hearn (then in the Cavendish
laboratory at Cambridge University), so the inclusion of a
set of commands for such applications should not aston-
ish one. Some such commands are a dot operator to de-
note the scalar product of two Lorentz four-vectors, gam-
ma matrices associated with fermion lines in a Feynman
diagram, the EPS completely antisymmetric tensor of or-
der four, the use of vector and Dirac expressions, trace

calculations, and the extension from the normal four di-
mensions of calculation in quantum electrodynamics to
an arbitrary number of dimensions. Although REDUCE-3
already constitutes a flexible and mature processor with
broad and extensive capabilities, REDUCE is under con-
tinual development at several centers. However, since it is
already widely used on many different machines and for
applications of a great range and variety, REDUCE is a
well-tested and proven system. Furthermore, a useful set
of extensions'® for matrix and other operations (including
more than 100 additional operators) has been produced
for REDUCE to enhance its capabilities for certain applica-
tions. REDUCE is available not only for most types of
mainframe computers, including the Cray 1 and X-MP su-
percomputers, but also for some minicomputers and
workstations and even (for smaller problems) on common
types of microcomputers (Apple Macintosh, and IBM-PC/
XT and AT or compatible using a DOS operating system).
The processor is designed to run interactively if the oper-
ating system permits it, or in batch mode otherwise. The
speed of execution varies considerably, depending both
on the efficiency of the underlying LISP interpreter and on
the intrinsic CPU speed, but, especially in environments
such as workstations or microcomputers, this property is
not of great concern. Recent versions contain both a ma-
chine-readable manual and tutorial aids to the under-
standing of the system. Beside the features listed above of
interest in connection with high-energy physics, noncom-
mutative algebra and the possible definition of symmetric
and antisymmetric operators are of direct application in
physical problems.

A more recently initiated system, also developed by a
physicist (S. Wolfram while at California Institute of Tech-
nology}, is SMP, denoting symbolic manipulation pro-
gram. Beside some features of interest to physicists, this
processor writen in C contains the now standard mathe-
matic capabilities in algebra, calculus, and matrices, as
well as having extended capabilities in graphics and per-
mitting generation of code in FORTRAN and C languages
for numeric processing. SMP is regarded as being contro-
versial in that inexact arithmetic is performed by default
in order to achieve computational efficiency. Hence this
processor is claimed to execute particularly rapidly, but
this claim and another of reliability has been challenged
by Fateman'' who states "It appears that the versions of
SMP examined will be less satisfactory than almost any
other system in fulfilling any of these expectations;” the
expectations were specified to be exact and correct re-
sults, that if advanced systems cannot solve a problem
then it must be quite difficult, and that symbolic systems
should work regardless of singularities or near singulari-
ties as computation is done exactly. It is possible that ver-
sions later than those examined by Fateman may have
been improved.

A processor, the development of which commenced
in 1965 although it was released for general use only about
1985, is SCRATCHPAD II (work on version I ceased in 1975
and this version seems to have never been released). This
processor, which may be considered the successor to
FORMAC but of a quite different design, has been written
in LISP for IBM computers, although at present work is in
progress ta rewrite all the code in a special language SPAD.
SCRATCHPAD II is viewed as a general-purpose program-
ming language rather than as merely a language for com-
puter algebra, and is designed to be used both by a naive
user as a sophisticated calculator and by an expert to per-

form sophisticated mathematical computations. As an in-
teractive system for manipulating formulas, it has an ex-
tremely broad range of intrinsic capabilities including
calculus, modern algebra, number theory, and the solu-
tion of equations. As a compiled language for the formal
description of algorithms, it provides a strongly typed
programming language for the description of algorithms
in their most general context. Possibly SCRATCHPAD 11
will have its greatest applications in pure mathematics,
but in principle any physical problems of a strongly math-
ematical kind could take better advantage of this proces-
sor than of other processors listed here. Of the initial fifty
users of this processor outside IBM, most were associated
with mathematics and computer science departments in
universities; the list included only two groups associated
with engineering and none directly with physics. At pres-
ent SCRATCHPAD II runs only on mainframe IBM comput-
ers under the VM/CMS operating system, but release for
execution on IBM RT PC workstations having at least S8MB
of real memory is expected; it is viewed not as a commer-
cial product (and therefore receives no official marketing
support) but as a research project.

Differing in purpose from the above processors,
MAPLE is an interactive system for algebraic computation
designed initially for educational applications. It has been
developed at the University of Waterloo, Canada, well
known for its WATFOR and WATFIV processors for testing
FORTRAN programs, by the symbolic computation group.
The capabilities of MAPLE include, beside all the standard
features, powerful procedures for simplification, summa-
tion, and limits; solution of equations (one or more linear
equations, some systems of nonlinear equations, and even
first- and second-order ordinary differential equations);
Taylor or asymptotic series; linear algebra (intrinsically
providing many kinds of orthogonal polynomials); a “‘re-
member”’ option to avoid unnecessary recomputation;
and an online “help” facility. MAPLE is distinctively de-
signed to be compact and modular; thus literally dozens of
students can simultaneously use MAPLE from terminals of
the same central processor for applications of greater or
(probably mostly) lesser complexity without excessive
degradation of system response, in marked contrast with
the situation that but one user of MACSYMA or REDUCE
for a significant calculation on a shared system may suf-
fice to produce degraded response. MAPLE is an interpret-
ed language written in C, but most library functions are
written in the MAPLE programming language designed to
facilitate the expression of, and the efficient execution of,
mathematical operations; thus the procedures that the
user programs for specific applications are equal in status
to these library functions. MAPLE requires no type decla-
rations, but the available data structures include se-
quences, lists, sets, tables, arrays, matrices, and tensors.
Generation of code in C or FORTRAN is possible, but there
seem to be no facilities especially applicable to physical
problems. MAPLE runs on several types of mini- and main-
frame computers and workstations but apparently not yet
on microcomputers.

On the other hand, designed especially for micro-
computers is MUMATH. The first version was developed
for 8 bit processors, and an even smaller version,
PICOMATH, had primitive facilities for such machines
with only 8K of main memory. All these versions are of
essentially no interest for applications in physics, but the
version MUMATH-83 for 16 bit microcomputers with 8086
or 8088 processor chips running a DOS operating system

COMPUTERS IN PHYSICS, JAN/FEB 1989 69

]

has some limited applications. At present the main limita-
tion to serious algebraic computations is the fact that
MUMATH-83, although it can run in as little as 128K, can
take advantage of at most 320K of core memory with at
most 256K of user workspace. Within this restriction, the
processor has several attractive features such as solution
of linear simultaneous equations, limits of functions,
closed-form summation and products, vector algebra and
calculus, and solution of some ordinary differential equa-
tions. The integration facility suffers from the limited
memory space to rather simpler types of indefinite inte-
grals than the above processors, but some definite inte-
grals are evaluated even at infinity limits. For a similar
reason, the extent of factorization provided is almosl neg-
ligible. Noncommutative algebra does not seem possible.
However, because the underlying language MUSIMP is
more natural than LISP, programming of additional pro-
cedures and functions is not difficult. Development of
MUMATH appears to have been terminated, apart from
the correction of minor flaws. To succeed it, a new proces-
sor for computer algebra on microcomputers that in-
cludes use of two-dimensional display, access to greater
core memory, automatic graphic presentation, provision
of factorization, and more flexible simplification rules is
in course of production.

Many other processors or languages for computer al-
gebra have been devised, but generally they are either lim-
ited to specific types of computers or designed for particu-
lar types of problems. Some of these are SCHOONSCHIP
(developed at C. E. R. N. originally for CDC computers and
based on COMPASS, but later adapted'* to IBM comput-
ers), which was originally designed primarily for calcula-
tions in quantum electrodynamics and high-energy phys-
ics; ASHMEDAI (based on FORTRAN), CAMAL (developed
at Cambridge University for the Titan computer and later
adapted to an IBM system, but running only as a batch
processor), and LAM (also ALAM and CLAM) for general
relativity; CAMAL again and TRIGMAN (based on
FORTRAN) for celestial mechanics; and SAC, for symbolic
and algebraic calculations, mostly of a formal mathemat-
ical kind, which operates by calling a series of FORTRAN
subroutines. SAC has now been succeeded by SAC-2 which
is commonly used in association with the programming
language ALDES, denoting algorithm description, which
translates the user statements to FORTRAN code for com-
pilation and execution. As a language for artificial intelli-
gence applications such as automated theorem proving,
PROLOG, denoting programming in logic, is planned to
serve, instead of LISP, as a basis of a new symbolic formula
manipulation system for ‘fifth-generation” machines.
CAYLEY has been developed at the University of Sydney
for group theory. Even APL has been adapted for computa-
tional algebra." Of course other processors have been
brought into existence for either various special purposes
or particular machines, and some of these, as well as some
mentioned above, have also passed from practicality with
their host computers. However, the preceding list pro-
vides at least a summary of typical approaches to proces-
sor design and capabilities; it also demonstrates the ex-
tremely broad range of interest and diversity of
applications in pure and applied mathematics, science,
and engineering.

Which processor should a physicist use? Of course
the selection must depend on the machine available on
which a particular processor can run, and on the nature of
the applications. REDUCE has the advantage of being a

70 COMPUTERS IN PHYSICS, JAN,VEB 1989

well-established but still evolving and technically well-
supported system that is available, at modest cost, for
many types of machines from micro- to supercomputers,
MACSYMA has required much larger resources on com-
puters of only a few types and is more expensive to ac-
quire, but probably provides the most extensive capabili-
ties. Having excellent documentation and “‘help" facilities,
MAPLE has been developed later than the other two sys-
tems just named, is made available for many types of ma-
chines at modest subscription costs (like WATFIV), and
operates relatively efficiently. MUMATH-83 operates on
microcomputers of the IBM type at a purchase price not
much less than that of REDUCE. These four processors
represent the systems likely at present to be worth initial
consideration for either general purposes or most appli-
cations in the physical sciences.

III. APPLICATIONS IN MODERN PHYSICS

In their extensive review,' Barton and Fitch described in
detail the application of algebraic processors to problems
in celestial mechanics, general relativity, and quantum
electrodynamics, later reviewed again by Brown and
Hearn.' In general relativity, the field equations express
the relationship between the geometrical structure of
four-dimensional space-time and the distribution of mass
and energy within it, using tensor notation and exponen-
tial and circular functions. In celestial mechanics, accord-
ing to the analytic perturbation theory the coefficients of
the perturbation series are first obtained as symbolic func-
tions of the parameters, giving rise to thousands of terms.
Thus it is natural that computer algebra should find early
application in these fields because the field equations play
a role in general relativity similar to that of the Hamilto-
nian equations in celestial mechanics. Barton and Fitch
illustrated’ their discussion with sample programs in the
then available languages applied to these problems. Fitch
also discussed® in detail the problem of Keplerian motion
solved in terms of the fand g series with REDUCE; this
problem has frequently been used as a demonstration of
algebra processors. In another demonstration of the pow-
er of computer algebra, the calculations on the lunar mo-
tion that required 20 years of Delaunay’s manual labor in
the mid-nineteenth century were duplicated' about 1970
on a computer in about 9 h of processor time, and might
take appreciably less time on a currently available micro-
computer. Just as the motion of the moon can be comput-
ed by an analytic approach, so the motion of a particle
inside an accelerator can be solved'® through the use of
REDUCE. The Compton scattering cross section of an elec-
tron interacting with a photon is an example in quantum
electrodynamics also illustrated”® by Fitch by means of a
program in REDUCE. In the past, SCHOONSCHIP,
REDUCE, and, to a lesser extent, ASHMEDAI were ap-
plied'® to problems in quantum electrodynamics in gen-
eral and Feynman diagrams'” '’ in particular; FORMAC,
CAMAL, and LLAM to problems in general relativity; and
TRIGMAN, CAMAL, and REDUCE for celestial mechanics,
but now all such problems can probably be tackled suc-
cessfully through the use of MACSYMA or MAPLE in addi-
tion to REDUCE or other general-purpose processors.
Further in relation to high-energy physics and general rel-
ativity, the use of SCHOONSCHIP for multiquark calcula-
tions,” FORMAC for computation of the Einstein ten-

21

sor,”' and REDUCE for problems®* of supersymmetry and

:‘

supergravity, the geometrical characteristips of compacti-
fied multidimensional Riemannian space, Einstein met-
rics,** and the computation of the group-theoretic weight
of Feynman diagrams in nonabelian gauge theory* are
also worthy of reference for the approaches to program-
ming.

The application of computer algebra to problems in
atomic and molecular physics is less well documented
than to problems in the above fields. There are, however,
many such examples, some of which are mentioned here
before a more extensive description of one particular mo-
lecular problem. The exact integration of Slater integrals
in calculations of atomic energies and properties provides
two examples before the development of automatic inte-
gration packages: ALTRAN was used in one case®® and
FORMAC in the other,”” whereas now the same results
could probably be obtained with much less explicit pro-
gramming by means of the integration packages within
MACSYMA, REDUCE, or even MUMATH, for instance. A
recursive procedure®® to yield analytic expressions of
Dirac-Coulomb r' integrals is particularly readily adapted
to symbolic computation such as by REDUCE or
MACSYMA. Exchange integrals in the impact-parameter
formulation of atomic charge-transfer collisions have
been evaluated®® by means of REDUCE. Explicit formulas
for Clebsch-Gordan coefficients have been derived® by
means of FORMAC. A general package®' for exact Coulom-
bic interaction matrix elements has been developed in
REDUCE, and even SCHOONSCHIP has been used®: for
algebraic computations in molecular physics and quan-
tum chemistry. When the hypervirial perturbative meth-
od cannot be used to derive recurrence relations because
of nonseparable problems in multiple dimensions,* then
moment perturbation theory may be applicable; for in-
stance, for the problem of a hydrogen atom in a magnetic
field, the first five energy perturbation corrections were
determined™ by means of REDUCE.

An analytic theory of the vibration-rotational spec-
troscopy of diatomic molecules is obviously a potential
application of computer algebra. In this case, the power-
ful substitution or replacement capabilities of computer
algebra, which seem to have been less widely appreciated
than other capabilities, have been of immense value. In
order to illustrate this capability, we examine cursorily
this application, including a brief summary of the requi-
site physical theory.

In 1932 Dunham developed an analytic theory,*
based on his function for the internuclear potential ener-
gy VIx) in terms of a reduced displacement coordinate
X=(R — R,)/R,, involving the equilibrium R, and instanta-
neous A internuclear distances. The form of the potential-
energy function is a power series, starting at the quadratic
term

Vix) =aoxz(1 + > a_,-x’);
Ji=h
the leading coefficient is related to the harmonic force
constant through the harmonic vibrational parameter o,.

and to AR, through the rotational parameter B,
a, = w,/(4B,) = B,/y 2. The terms in all the important ex-
pressions resulting from the Dunham theory have as a
coefficient y = 2B, /w, to various powers; since for known
molecules 0.026 2 ¥X 104, a rapid convergence of these
expressions is ordinarily achieved. Then the energies of
the vibration-rotational states were expressed® as a dou-
ble sum involving the vibrational v and angular momen-
tum J quantum numbers to various powers:

Bvdi= 3 ¥ Y lv+ 12100 + 1));
k=o0/l=0
the energy coefficients ¥,, become functions of the poten-
tial-energy coefficients a, multiplied by B, and ¥ to var-
ious powers. The set® of explicit analytic results ¥, that
Dunham obtained manually essentially by substitution
methods contains no errors, and the extended collection®®
due to Sandeman contains only one obvious misprint. To
compute a much larger collection® of these Y,, expres-
sions required®® only 20 min of processor time with
REDUCE. (A more recent manual recalculation,* accord-
ing to a more complicated procedure, of expressions
equivalent mostly to Dunham'’s ¥,,, however, produced
several mistakes,* whereas later calculations of related
quantities by the same workers*' using REDUCE seem ac-
curate.) These Y,, quantities take into account only the
mechanical effects (related to the vibration and rotation of
the nuclei with respect to the center of molecular mass).
Other effects arise from two possible sources: for all mole-
cules there are adiabatic effects (that depend on the finite
mass of the nuclei) and nonadiabatic effects (attributed to
the interaction with other electronic states) that produce
deviations from the mass-scaling ratios for isotopic mole-
cules; for those molecules with net orbital or spin angular
momenta due to either the nuclei or the electrons, extra
branches of lines (beyond the simplest case of only two
branches P and R), or, equivalently, lines split into multi-
plets, are found in the spectra. To take into account each
such effect, we add to each Y, a further coefficient*? Z,, of
the functionals of the quantum numbers vandJ to various
powers. Then the problem arises to express these addi-
tional coefficients in terms of the potential-energy param-
eters a; and the parameters of some other radial func-

S,
tion.).l

Klx)= 3 kx'.

=

35

In the Dunham procedure,™ the effect of the centrifugal
term B,JlJ 4+ 1)/(1 + x)? is taken into account in a formal
way through the binomial expansion of the denominator

m Jj—1

A+x"=1+ 3 x' [[(n—ki/kl

Jj=1 K=o

by means of, for instance, the following simple procedure
in REDUCE:

PROCEDURE BN(x,n,m)$ 1 + FOR J: = 1:m SUM x"J«(FOR K: = 0: (] — 1)

PRODUCT (n — K)) / { FOR K: = 1:J PRODUCT K) $

After the linear term is eliminated by a coordinate transla-
tion, the resulting coefficients of the J-dependent variable

[
X; in the potential-energy function in the Dunham form

are also J-dependent; for instance,

COMPUTERS IN PHYSICS, JAN FEB 1989 71

a,, =a, +y3J+ 10— 3a; —3a, +4a, —4)

+yUu+ 03)+ e

Then the energy coefficients Y, to take account of the
vibration-rotational effects, may be generated from those
Yo, for purely vibrational effects and previously derived
through the JBKW procedure, by the substitution into the
Y, expressions of a,, for a,, a,, for a,, etc. Analogously,
the additional function K(x) may be taken into account by
incorporating the coefficients ; into the potential-energy
coefficients that accordingly become dependent on both

JJ + 1) and the coefficients k; in K{(x); for instance,
a,, =a; + v iU+ 1 —3a% —3a, +4a, — 4)
+ 1/2y 23a%k, — 2a,k, — 4ak; + 2ks)
F YU 4 agk,) e

Then, after the substitution into ¥, , of a, « for a;, and so
on, the terms that appear as coefficient of a given (v + 1/
2)¥[JU + 1)} additional to those in ¥, become the quanti-
ties Z,,. Thus the expressions for the ¥, and Z,, coeffi-
cients are readily generated by a sequence of operations
involving substitution and evaluation, with simplification
wherever practicable, and are most physically meaningful
in the form exhibiting factor JIJ + 1) and ¥ to different
powers. However, the use of the resulting expressions
is hindered by a defect of the Dunham theory, namely
the property of the reduced displacement variable that
asB—»>w, SO Xx—o. An alternative variable
z=2(R — R,)/(R + R,) has equivalent finite limits (specifi-
cally + 2) at the limits corresponding to the united (R = 0)
and separate (B— o) atoms. The potential-energy func-
tion*® incorporating this variable has precisely the Dun-
ham form,

Vz) = ¢, zl<1 | Z qlz.’),
J=
and the function corresponding to K(x) is

Kiz)= Y h;z’
Jj=0
Then the problem arises to transform the Y, and Z,, from
explicit dependences on the a; and k; parameters to the
desired ¢; and h; sets. When substituted into these energy
coefficients Y,, and Z,,, the relations a, =c, —1,
a, =c¢, —3¢,/2—3/4,..k, =h,, k, =h, —h,/2, etc,, ef-
fect the desired transformation. Although the transforma-
tion of early members in a given sequence, such as a, or
k,, appears simple, the complexity increases almost ex-
ponentially with j, rapidly testing the patience of the hu-
man worker. This use of substitution operations is intend-
ed to illustrate how computers can effect operations of an
algebraic type that are tedious to perform manually. In
fact a complete and quantitative description of the vibra-
tion-rotational spectra of diatomic molecules has been
formulated** by means of computer algebra as analytic
expressions for energy coefficients, expectation values,
and matrix elements of displacement variables to various
powers, vibration-rotational interaction parameters, etc.
Accordingly, the analysis of not only wavenumber or fre-
quency data but also intensity data (from the absorption,
emission, or Raman scattering experiments) may be affect-
ed in a quantitative manner, and the expressions show
their physical meaning just as well as the ultimate nu-
meric results for any particular molecular species. Boua-

72 COMPUTERS IN PHYSICS, JAN/FEB 1989

nich has used REDUCE extensively in order to generate
vibration-rotational matrix elements.***® In the Soviet
Union, extensive analytic calculations in molecular spec-
troscopy have also been made by means of special proces-
sors.*” The extension of these methods to polyatomic mol-
ecules remains a future challenge in molecular physics.

There are many applications in other branches of
physics research, some examples of which may be cited
here. In connection with optical aberrations, the phase-
space transformation due to the refracting interface be-
tween two media has been obtained* by means of
REDUCE. In fluid dynamics, matrix elements of linearized
cross-collision operators for gaseous mixtures have been
computed* in FORMAC. Many applications that require
vector calculus in orthogonal curvilinear coordinates and
vector integration, differentiation, and series expansion
and that occur in plasma physics, hydrodynamics, and
electromagnetics can benefit from the collection® Ortho-
vec of REDUCE procedures for the manipulation of scalars
and vectors. A program®’ to handle calculus with vectors
and dyadics for applications such as plasma and fluid dy-
namics has been implemented in MACSYMA. In a com-
parison® of the three processors CAMAL, MAPLE, and
MUMATH-83 for the solution of a problem in hydrody-
namic lubrication, MUMATH was found to be ineffective
for the solution of such problems; CAMAL proved effec-
tive, but MAPLE more so because of its greater generality
and flexibility. Perturbation calculations™ for the spin-up
problem in thermodynamics and statistical physics have
been made using REDUCE. Both the determinations of Lie
symmetries of ordinary and partial differential equa-
tions™ and of point and contact Lie symmetries™ have
been achieved by means of REDUCE, whereas FORMAC
was used”™” to determine the Lie-Backlund symmetries
of differential equations. A REDUCE program® for evalu-
ating a Lax pair form has been devised, applicable to the
inverse scatlering problem in fluid dynamics. The use of
computer algebra methods such as MAPLE and MACSYMA
for the treatment of hereditary operators of higher-order
solitons has been discussed™ ; in this case, of programs for
similar purposes in Pascal, MACSYMA, and MAPLE, the
latter provided the most rapid execution. The method of
power sums has been used® to derive a complete set of
explicit algebraic Galois resolvents, applicable to the theo-
ry of crystal elasticity; this calculation is notable for re-
quiring only 11 days for completion on a personal com-
puter by means of MUMATH, but without extensive
modifications (as well as the provision to store intermedi-
ate results on disk) 11 years of machine time were estimat-
ed to have been required.

Computer algebra systems should be an integral part
of the education of a modern physicist. First of all, the
physics student might have encountered MUMATH or
some similar processor for microcomputers during the
years of secondary school. Then, in university education,
the mathematical laboratory should equip the student
with the ability to compose algorithms in various lan-
guages or processors for numeric, algebraic, or logical ap-
plications. Descriptions®’ have been reported how some
universities in Europe and North America are installing
such mathematical laboratories, having such processors
as CAYLEY, MAPLE, MACSYMA, and REDUCE to serve stu-
dents (and professors) of not only mathematics but also
the physical sciences and engineering. There is a con-
comitant need for physics courses to be modified to take
account of the availability of algebraic computing so that

E—

the student may be successfully prepared to tackle realis-
tic problems in a practicable manner. Some merits of us-
ing computer algebra in teaching physics have been dis-

cussed” recently, including some applications of
REDUCE. There is also the need for physicists outside aca-
demic environments to recognize the value of the differ-
ent approaches 1o the solution of real problems offered by
processors for computer algebra.

1V. GENERAL CONSIDERATIONS

In the preceding sections the term processor has been fre-
quently employed to specify a particular system for com-
puter algebra. The reason is that such a system not only is
alanguage but also in many cases produces almost instant
response to instructions; i.e., the system responds directly
to simple commands of the form of an algebraic or nu-
meric operation as well as to sets of statements in the tra-
ditional form of a program. This interactive mode of oper-
ation is particularly important for computer algebra
because a set of instructions therein is typically run suc-
cessfully once to produce exact symbolic expressions
probably checked easily (to some extent) by inspection,
although the resulting expressions might later be incorpo-
rated into numeric programs for multiple production
runs with different sets of input data, as required. Thus, in
the algebraic mode, the user engages in transformations
or substitutions on the basis of intermediate results in or-
der to produce the final output in the most readable, or
physically meaningful, form. For this reason interactive
processing is greatly preferable to the batch mode. Al-
though some early processors, such as FORMAC and
CAMAL, as well as ALTRAN and any others based on a
FORTRAN compiler, operated only in a batch mode, and
thus in the form of a traditional programming language,
practically all more recent processors can operate interac-
tively, but not without certain disadvantages.*

Another distinction between numeric and algebraic
computing arises in the size of the core memory, or the
partition thereof, required for a particular task. For a typi-
cal numeric program, at the time of compilation and link-
ing, the amount of core memory required to run the pro-
gram is exactly known, equal to the sum of the areas,
precisely specified in a memory map, for the program
fand libraries called) and for the variables, arrays, etc.
Characteristically in computer algebra, one starts with a
set of simple relations and hopes ultimately to generate a
relatively simple result, but the intermediate expressions
may be voluminous and, moreover, of a size difficult to
predict. During the processing of large intermediate ex-
pressions within a finite amount of core memory, space
vacated by discarded data structures must be reclaimed in
a procedure called (inelegantly) “‘garbage collection.”
When the system is required to devote an inordinate pro-
portion of execution time to such consolidation and real-
location of limited space, a phenomenon known as
"i‘hl‘ashing” occurs, resulting in a relatively large amount
of processor time to produce relatively little result. For
t!lis reason, computer algebra requires relatively large ini-
tial allocations of core memory, and the processor time for
agiven calculation may depend sensitively on the amount
0f available core memory. For large problems, as much
Virtual memory as 53MB has been used in a calculation
with MACSYMA and 60MB for REDUCE, although for

smaller problems of course much less memory may be
required; one may estimate that about 1MB of data space,
in addition to the intrinsic size of core required by the
processor, would be a reasonable minimum size for a cal-
culation of only moderate complexity. It should thus be
obvious why the applicability of MUMATH to typical
physical problems is likely to prove limited. In MAPLE,
although the compactly designed basic system requires
only a few hundred kilobytes, the data space may grow to
megabytes if required and available. In some computers
with operating systems that have fixed partitions, such
as DEC System 10 or 20 and CDC Cyber under NOS and
NOS/BE, even REDUCE sufters from cramped conditions.
Therefore operation of algebra processors on computers
with virtual memory capabilities is definitely advanta-
geous.

A characteristic of many of these processors for com-
puter algebra is that they are relatively inefficient in ex-
ecution time for standard numeric calculations, although
the preparation of the program may consume much less
time. One reason is that, in the interactive systems, the
instructions are generally interpreted rather than com-
piled, although procedures in REDUCE are compiled and
functions in MACSYMA may be translated into LISP and
subsequently compiled. In order to execute most efficient-
ly the expressions generated by computer algebra for pro-
duction runs of numeric data input, one is commonly ad-
vised to convert the expressions into code that can be
compiled efficiently in FORTRAN, C, or a similar language.
MACSYMA, MAPLE, and REDUCE, but not MUMATH, have
such facilities for output in standard numeric languages.
Furthermore, the combination of algebraic and numeric
processors can be a powerful method of attacking phys-
ical problems. Brown and Hearn have described' a prob-
lem in magnetohydrodynamics in which integrations of
three-dimensional Galerkin functions were done in two
dimensions analytically by REDUCE and the third (intrac-
table analytically) numerically. They also discussed the
application" of symbolic computation to numerical anal-
ysis, such as reduction of a system of relations in order to
analyze inherent error and roundoff error of a given
expression, error analysis of a known numeric algorithm,
and discretization and roundoff errors of various numeri-
cal methods in order both to eliminate inaccurate or un-
stable methods prior to coding and testing and to develop
methods in which the lowest-order errors cancel each
other. Perhaps one such application® is that of REDUCE
to calibration problems of picture-processing devices for
track chambers.

Of course computer algebra is not without its limita-
tions. Despite the delusion by novices to this type of com-
putation, algebraic operations that are not feasible in
principle by manual methods are equally infeasible by
computer. A more basic problem is the technical limita-
tion that, in general, to determine whether two expres-
sions are equal or even equivalent is difticult. Although
Gonnet has provided some examples® of prototypical
mathematical problems solved by means of MAPLE in
which this equivalence is proved, in general, expressions
may tend to be become excessively large and unnecessari-
ly complicated because such equivalences are not exploit-
ed for the purpose of simplification. Either the setting of
switches or human interaction may lead to simplification,
but care and experiments are generally necessary to en-
sure that the presentation of a given algebraic result is in
its most meaningtul form.

COMPUTERS IN PHYSICS, JAN FEB 1989 73

V. SOURCES OF INFORMATION ABOUT
COMPUTER ALGEBRA

There now exist two pertinent scholarly journals, The
Journal of Symbolic Computation, published by Academic
Press (London), and LISP and Symbolic Computation, pub-
lished by Kluwer. Both journals seem mostly directed to
computer science aspects rather than to applications in
physics, but the Journal of Symbolic Computation also
contains systems descriptions and applications letters.
For instance, the systems MACSYMA,® REDUCE,* and
MAPLE® have already been described therein, and an ap-
plications letter” on an algebraic treatment of quantum
vibrations in REDUCE demonstrates how noncommuta-
tive algebra may be performed with that processor. The
SIGSAM Bulletin of the special interest group on symbolic
and algebraic manipulation of the (USA) Association for
Computing Machinery is a quarterly magazine that con-
tains both archival material as well as news and com-
ments about new processors or versions. The journal
Computer Physics Computations, although certainly de-
voted to physics but not especially to computer algebra,
occasionally contains papers discussing such applica-
tions in physics and presenting short programs that dem-
onstrate programming techniques. Of course proceedings
of users’ conferences provide descriptions of applications
of particular processors, and occasionally comparisons of
different processors, and the distributors or marketers of
these processors may supply a bibliography or newslet-
ters of their applications.

Generally the printed manuals of most processors are
written succinctly and lack extensive examples of pro-
gram design, although tutorial or demonstration pro-
grams accompany some processors. However, some mon-
ographs have been published that present explicit
programs that one may use not only directly for the partic-
ular application but also indirectly to demonstrate the
general techniques of algorithm development. Perhaps
the first book was that by Howard,* who presented pro-
grams for aeronautical applications, particle dynamics,
fluid mechanics, cosmological models, and trajectory cal-
culations, mostly in FORMAC and MACSYMA. A recent
book by Rayna provides® examples of REDUCE pro-
grams, whilst for MUMATH, two books have been recently
published, one™ in English and the other”' in Japanese.

ACKNOWLEDGMENT

1 thank the National Science Council of the Republic of
China for the support of a visiting research professorship
at National Tsing Hua University.

REFERENCES

1. D. Barton and J. P. Fitch, Rep. Prog. Phys. 35, 235 (1972).

2. J. Fitch, J. Symb. Comput. 1, 211 (1985).

3. R. H. Risch, Trans. Am. Math. Soc. 139, 167 (1969).

4. A. C. Norman and P. M. A. Moore, in Fourth International Colloquium on
Advanced Computing Methods in Theoretical Physics, Marseilles (1977).

5. T.S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series and Products
(Academic, Orlando, FL, 1980), 4th ed. (corrected and enlarged).

6. K. Bahr, SIGSAM Bull. ACM 9(1), 21 (1975).

74 COMPUTERS IN PHYSICS, JAN.FEB 1989

1
1
1
1
1
1
1
1
1
1

~
&

[\
=

&

3
3
3
3

3
4

[SR ST
o=

ISR]

7. E. C. Berkeley and D. G. Dobrow, The Programming Language LISP IM.LT,

Cambridge, MA, 1966).

8. J. A. Campbell, Comp. Phys. Commun. 1, 251 (1970).

9. C. Engleman, in Information Processing 68, edited by A. 1. H. Morrell (North.

Holland, Amsterdam, 1969), pp. 462-467.

0. H. Caprasse, SIGSAM Bull. ACM 20(4), 7 (1986).

1. R.J. Fateman, SIGSAM Bull. ACM 19(3), 5 (1985).

2. H. Strubbe, Comp. Phys. Commun. 18, 1(1979).

3. A. Hohti, SIGSAM Bull. ACM 22(1), 12 (1988).

4. W.S. Brown and A. C. Hearn, Comp. Phys. Commun. 17, 207 (1979).

5. B. Autin and J. Bengtsson, Comp. Phys. Commun. 48, 181 (1988).

6. V. P. Gerdt, Comp. Phys. Commun. 20, 85 (1980).

7. 1. Calmet, Comp. Phys. Commun. 4, 199 (1972).

8. J. Paldus and H. C. Wong, Comp. Phys. Commun. 6, 1 (1973).

9. R. Gastmans, A. van Proeyen, and P. Verbaeten, Comp. Phys. Commun. 18,
201 (1979).

. 1. Wroldsen, Comp. Phys. Commun. 27, 39 (1982).

A. D. Payne, Comp. Phys. Commun. 4, 100 (1972); 12, 145 (1976).

R. Grimm and H. Kuhnelt, Comp. Phys. Commun. 20, 77 {19801

A. P. Demichev and A. Y. Rodiovov, Comp. Phys. Commun. 38, 441 (1986).

B. Nielsen and H. Pedersen, SIGSAM Bull. ACM 22(1), 7 (1988).

A. P. Krvukov and A. Y. Rodiovoy, Comp. Phys. Commun. 58, 327 (1988,

C. F. Froese and D. W. B. Prentice, Comp. Phys. Commun. 6, 157 (1973),

L.. B. Golden, Comp. Phys. Commun. 14, 255 (1978).

N. Bessis, G. Bessis, and 1). Roux, Phys. Rev. A 32, 2044 (1985).

9. C.J. Noble, Comp. Phys. Commun. 19, 327 (1980).

. G. Rudnicki-Bujnowski, Comp. Phys. Commun. 10, 245 (1975).

oA

*

31. N. Bogdanova and 1. Hogreve, Comp. Phys. Commun. 48, 319 (1988).
32. P. 0. Nerbrandt, Comp. Phys. Commun. 14, 315 (1978).

3. ¥, M. Fernandez and E. A. Castro, Hypervirial Theorems (Springer, Berlin,
19871,

4. F. M. Fernandez, J. 1. Ogilvie, and R. H. Tipping, I. Phvs. A 20, 3777 (19871,

5. J. L. Dunham, Phys. Rev. 41, 721 (1932).

6. 1. Sandeman, Proc. R. Soc. Edinburgh 60, 210 (19401,

7. J. 1. Ogilvie, Comp. Phys. Commun. 30, 101 (1983).

38, J. . Ogilvie and R. H. Tipping, J. Svmb. Comput. 3, 277 (1987).

9. N. Bessis, G. Hadinger, and Y. S. Tergiman, J. Mol. Spectrosc. 107, 343 (1984).
0. J. F. Ogilvie, Spectrosc. Lett. 20, 725 (1987).

41. G. Hadinger and Y. S. Tergiman, J. Chem. Phys. 87, 2143 (19871,

42, R. M. Herman and $.Short, J. Chem. Phys. 48, 1266 (1968); 50, 572 [1969).

43. 1. 1. Ogilvie, Proc. R. Soc. London Ser. A 378, 287 (1981); 381, 479 (1982).

44,). F. Ogilvie, Int. Rev. Phys. Chem. 5, 197 (1986).

45. 1. P. Bouanich, J. Quant. Spectrose. Radiat. Transfer, 37, 17 (1987); 38, 89
(1987).

46. J. P. Bouanich, Comp. Phys. Commun. 47, 259 (19871,

47. V. N. Brvukhanov, V. Y. Galin, V. K Zuey, Y. 8. Makushkin, and VoG Tvu
terev, Sov. Phys. Dokl 26, 821 (1980).

48. M. Navarro-Saad and K. B. Woll, I. svmb. Comput. 1, 235 (19851,

49. L. M. Toft, Comp. Phys. Commun. 9, 271 {1985).

50. J. W. Fastwood, Comp. Phys. Commun. 47, 139 (1987).

51. M. C. Wirth, SIAM 1. Comput. 8, 306 (1979).

52. R. M. Corless and 1. 1. Jelfrey, SIGSAM Bull. ACM 22(2), 50 {1988).

53. 1. Cohen and I. Bark, Comput. Phys. Commun. 14, 319 (19781,

54. F. Schwarz, Comput. Phys. Commun. 27, 179 (1985).

55. V. P. Eliscev, B. N. Federova, and V. V. Kornyvak, Comp. Phys. Commun. 36,
383 11985).

56. R. N. Federova and V. V. Rorsyvak, Comp. Phys. Commun. 39, 93 (1986).

57. V. P. Gerdt, A, B. Shvachka, and A. Y. Zharkov, J. Svmbolic Comput. 1, 101

(19851,

58. M. lto, Comp. Phys. Commun. 34, 325 (1985).
59. B. Fuchssteiner, W. Qevel, and W. Wiwianka, Comp. Phys. Commun. 44, 47

(1987).

60. A. C. Hurley and AL K. Head, Int.). Quantum Chem. 31, 345 (19871
61. Almost the entire issue No. 81 of the SIGSAM Bull. 21, (31(1987) is devoted to

6

description of mathematical laboratories and the software therein pro-
vided.
2. C. Woolf and D). Hodgkinson, Fur. J. Phvs. 9, 145 (19881,

63. 1. Bajla and G. A. Ososkov, Comp. Phys. Commun. 20, 81 (19801,

6.

4. G. H. Gonnet, SIGSAM Bull. ACM 22(2), 8 (19881

65. R. Pavelle and P.S.Wang, J. Svimb. Comput. 1, 69 (1985).
66. B.W.Char, G.J. Fee, K. O. Geddes, G. . Gonnet, and M. B. Monagan, I S}frlll).

Compult. 2, 179 11986).

67. M. L. Sage, 1. svmb. Comput. 5, 377 {1988).
68.). C. Howard, Practical Applications of Symbolic Computation (Mathematical

Modeling of Diverse Phenomena){1PC. Science and Technology, Guilford, { IK,
1980).

69. G. Ravna, BEDUCE Software for Algebraic Computation (Springer, New

7

7

York, 1987

70. C. Wooft and 1). Hodgkinson, MUMATH: A Microcomputer Algebra System

tAcademic, Orlando, FFL, 1987).
1. A. Furukawa, AMUMATIH Primer (Gendai Suugaku Sha, Tokvo, 1987).

