On the Ricatti Equation for Eigenvalue Problems

FRANCISCO M. FERNÁNDEZ* AND EDUARDO A. CASTRO

stituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), División Química Teórica, Facultad de Ciencias Exactas, UNLP, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina

JOHN F. OGILVIE[†]

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043

Abstract

The Riccati equation is shown to be suitable for obtaining implicit approximate analytic expressions for eigenvalues of quantum-mechanical systems. The Hamiltonian operator $H = (1/2)p^2 - (Z/r) + \lambda r^2$ ised as a test example, and the resulting formulae are modified to deal with the Zeeman effect in hydrogen.

The Riccati equation proves to be useful in large-order perturbation calculations cause it leads to closed quadrature expressions for the coefficients of the perturban series (Ref. 1 and references therein). A nonperturbative approach based on the nilarity transformation proposed by Hall [2] was shown to improve the perturbation pansion considerably [3, 4] (an interesting alternative method was discussed by llingbeck [5]). A similar procedure, although with an ansatz properly adapted to und systems, was tried by Fernández and Castro [6].

In this letter we investigate some properties of the approximate eigenvalues obned from Hall's method [2-4]. To this end the Hamiltonian operator

$$H = -\frac{1}{2}\Delta + V, \qquad V = -\frac{Z}{r} + \lambda r^2 \tag{1}$$

most suitable because its eigenvalues $E(Z, \lambda)$ and eigenfunctions are exactly known nen either Z = 0 or $\lambda = 0$.

The perturbation series

$$E(Z,\lambda) = \sum_{j=0}^{\infty} E_j \lambda^j, \tag{2}$$

known to be asymptotic divergent [7], and the coefficients E_i are easily calculated on the Riccati equation [1] or through the hypervirial perturbative method [8]. It llows from the scaling law $E(Z, \lambda) = \lambda^{1/2} E(Z \lambda^{-1/4}, 1)$ that $E(Z, \lambda)$ has the covergent pansion [7]

$$E(Z,\lambda) = \lambda^{1/2} \sum_{j=0}^{\infty} e_j \lambda^{-j/4}.$$
 (3)

^{*}To whom correspondence should be addressed.

Present address: Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166,

Therefore, an acceptable approximation to $E(Z, \lambda)$ has to obey (2) and (3) as accurately as possible.

The radial part of the Schrödinger equation (for the sake of simplicity we only consider the ground state)

$$\left(-\frac{1}{2}D^2 - \frac{1}{r}D + V - E\right)\Phi = 0, \qquad D = \frac{d}{dr},$$
as a Riccati equation for C

can be rewritten as a Riccati equation for $f = -\Phi'/\Phi$:

$$f' - f^2 + \frac{2}{r}f + 2(V - E) = 0.$$
(5)

This last equation can easily be shown to be equivalent to that obtained through Hall's method [4] by introducing f(r) = Z - S(r). Because f(r) is a regular function, we seek a solution of Eq. (5) of the form

$$f(r) = \sum_{n=0}^{\infty} f_n r^n.$$
 (6)

The coefficients f_n are found to obey

$$f_n = \frac{1}{n+2} \left[\sum_{j=0}^{n-1} f_j f_{n-j-1} + 2Z \delta_{n0} + 2W \delta_{n1} - 2\lambda \delta_{n3} \right],$$
ands for the approximate $f(x)$

in which W stands for the approximate eigenvalue.

We first consider the trivial case Z=0. A straightforward calculation shows that $f_{2k}=0$ $(k=0,1,\ldots)$ for all W values and that $F_1=(2\lambda)^{1/2}$ and $f_{2k+3}=0$ provided W=3/2 $(2\lambda)^{1/2}$. The exact ground-state wave function and energy are thus obtained.

When $Z\lambda \neq 0$ the exact solution cannot be found, but the result above suggests that there may be a root of $f_n = 0$ (n > 1) which is an acceptable approximation to E. Without loss of generality we consider Z = 1. The coefficients f_n prove to be polynomial functions of W and λ , and we have analytically calculated them for all $n \leq 16$ by means of the algebraic processor REDUCE. For example, from $f_n = 0$, n = 3, 4, 5, and 6 we obtain

$$w^2 + 3w - 18\lambda = 0, (8a)$$

$$w^2 + \frac{6}{7}w - \frac{36}{7}\lambda = 0, (8a)$$

$$w^{3} + \frac{67}{8}w^{2} + 3w - 18w\lambda - 18\lambda = 0,$$
 (8c)

$$w^{3} + \frac{411}{164}w^{2} + \frac{18}{41}w - \frac{423}{41}w\lambda - \frac{108}{41}\lambda = 0,$$
(8d)

respectively, where w = 2W + 1. It can easily be shown that W can be expanded

$$W = \lambda^{1/2} \sum_{j=0}^{\infty} w_j \lambda^{-j/2}, \tag{9b}$$

 $\lambda=0$ and $1/\lambda=0$, respectively. These equations do not exactly agree with the ones, Eqs. (2), (3). For instance, the proper roots of $f_{2k+1}=0$ and $f_{2k+2}=0$, $1,\ldots$) will satisfy $W_j=E_j$ only for $j\leq k$. This result is due to the fact that rurbation corrections to f(r) are polynomials where the highest power of r ses with the perturbation order. Since the Taylor series for W approaches the perturbation series (2) as k increases, one may believe that W will tend to E. vever, large-order numerical calculation shows that the procedure is divergent, gh quite accurate results are obtained for moderately large k values. This being reminiscent of the perturbation series, although results from the present proare by far more accurate. For every finite k value the asymptotic behavior of E_i ($i \to \infty$) will be quite different, as shown by the fact that the Taylor series has a finite convergence radius determined by a branch point $\lambda_b = \lambda(W_b)$, $\partial \lambda/\partial W$ ($W=W_b$) = 0.

then calculate the limit

$$L = \lim_{\lambda \to \infty} w^2 / \lambda . \tag{10}$$

 $f_{2k+1} = 0$ (k = 1, 2, ...) we obtain the exact answer $L = E(0, 1)^2 = 18$. On the land, the values of W for $f_{2k+2} = 0$ yield the sequence in Table I which appears verge quickly from below toward the same value of L. We cannot at present it for this surprising behavior.

worth noting that the large λ expansions for E and W do not exactly agree, he odd powers of $\lambda^{-1/4}$ do not appear in the latter. This result may be due to at that the method does not distinguish between the actual potential (1) and $E = \frac{1}{2} (-\infty < x < \infty)$ for which the odd corrections vanish.*

formulae for the preceding simple model can be applied, with appropriate s, to the much more interesting problem of the Zeeman effect in hydrogen

$$V = -\frac{1}{r} + \frac{1}{2}\beta^2(x^2 + y^2). \tag{11}$$

way we avoid working with a Riccati equation in two dimensions. We can d in two different ways. First we use the spherical model with the perturbation

Table I. Limit (10) for a root of $f_{2k+2} = 0$.

k	L	k	L
1	5.1429	5	16.4671
2	10.3171	6	17.1143
3	13.4895	7	17.4917
4	15.3638		

TABLE II.	Ground-state energy for the hydrogen atom in a uniform magnetic field from Eqs. (8c) ($\lambda = \beta^2/3$) and (12) ($\lambda = \beta^2/2$).
	(-2) (it p / 2).

β	E [Eq. (8c)]	E [Eq. (12)]	$E_{\rm exact}$ (Ref. 11)
0.1	-0.4903	-0.4902	0.40020
0.5	-0.3240	-0.3132	-0.49038
1.0	-0.0070	0.0491	-0.33117
10.0	8.94	8.80	-0.02221
20.0	20.85		7.78462
50.0	57.39	18.79	17.199
100.0		48.78	46.211
100.0	118.6	98.77	95.273

 $1/3 \ \beta^2 r^2$ which approximately mimics the quadratic term in (11) for moderate values of λ [4, 8, 9]. Second, we rewrite Eq. (8c) as

$$w^3 + Aw^2 + B\lambda w + Cw + D\lambda = 0, \qquad (12)$$

and set A, B, C, and D so that $W_1 = 2$, $W_2 = 53/3$, $W_3 = 5581/9$ (the actual Zeeman perturbation corrections for the ground-state energy [10]), and $(\lambda^{-1/2}W)(\lambda \to \infty) = 2$. We have A = 3.68592, B = -8, C = 1.52687, and D = -6.10750.

Table II shows that both procedures yield upper bounds to the energy [4, 8, 9] and that the former is more accurate for small values of λ , whereas the latter is preferable for large ones. This behavior is a consequence of the fact that we have fixed B, so that the exact strong-field limit is obtained.

The main advantage of the latter method is that we can in principle take into account as many perturbation corrections as desired by simply considering a large enough value of n. This effect cannot be so easily achieved through a simple change in the perturbation term [4, 8, 9]. Our method, however, becomes very tedious for larger perturbation orders, and a systematic treatment of the polynomials is at present being examined.

Acknowledgment

J. F. O. thanks the National Science Council of the Republic of China for support of a visiting professorship at National Tsing Hua University.

Bibliography

- [1] Y. Aharonov and C. K. Au, Phys. Rev. Lett. 42, 1582 (1979); V. L. Eletsky and V. S. Popov, Phys. Lett. B94, 65 (1980); V. Privman, Phys. Lett. A81, 326 (1981).
- [2] G. G. Hall, Chem. Phys. Lett. 52, 26 (1977).
- [3] J. R. Silva and S. Canuto, Phys. Lett. A88, 282 (1982); Ibid. 106, 1 (1984).
- [4] J. R. Silva and S. Canuto, Phys. Lett. A101, 326 (1984).
- [5] J. Killingbeck, Chem. Phys. Lett. 55, 303 (1878).
- [6] F. M. Fernández and E. A. Castro, J. Phys. A14, L485 (1981). [7] J. E. Avron, Ann. Phys. (NY) 131, 73 (1981).
- [8] J. Killingbeck, Phys. Lett. A65, 87 (1978).

llingbeck, J. Phys. B12, 25 (1979); Ibid. 14, L461 (1981).

zek and E. Vrscay, Int. J. Quantum Chem. 21, 27 (1982); F. M. Fernández and E. A. Castro, 26, 497 (1984).

ösner, G. Wunner, H. Herold, and H. Ruder, J. Phys. **B17**, 29 (1984).

d January 13, 1988

d for publication October 17, 1988