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Abstract

[he Riccati equation is shown to be su1table for obtaining implicit approximate analytw expressions for
eigenvalues of quantum-mechanical systems. The Hamiltonian operator H = (1 /2p? — (Z/n) + Art
1sed as a test example, and the resulting formulae are modified to deal with the Zeeman effect in hydrogen.

The Riccati equation proves to be useful in large-order perturbation calculations
cause it leads to closed quadrature expressions for the coefficients of the perturba-
n series (Ref. 1 and references therein). A nonperturbative approach based on the
nilarity transformation proposed by Hall [2] was shown to improve the perturbation
pansion considerably [3,4] (an interesting alternative method was discussed by
llingbeck [5]). A similar procedure, although with an ansatz properly adapted to
und systems, was tried by Ferndndez and Castro [6].

In this letter we investigate some properties of the approximate eigenvalues ob-
ned from Hall’s method [2—-4]. To this end the Hamiltonian operator

1 z ‘
H=-—A+V, V=-=+\" (1
2 r
most suitable because its eigenvalues E(Z, \) and eigenfunctions are exactly known
1en either Z = 0 or A = 0. ’
The perturbation series

E@Z,N) = 2 EN, (2)
=0
known to be asymptotic divergent [7], and the coefficients E; are easily calculated
m the Riccati equation [1] or through the hypervirial perturbative method [8]. It
llows from the scaling law E(Z, \) = A'?E(ZX\™"", 1) that E(Z, \) has the covergent
pansion [7]

E@Z,\) = A2 e A (3)

j=0
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Therefore, an acceptable approximation to E(Z, A) has to obey (2) and (3) as accurate]y
as possible, : ]
The radial part of the Schrédinger equation (for the sake of simplicity we only cop.

sider the ground state)

I ., 1 _ _d
( BD rD+V E)(I)‘O, D—-dr, (4)
can be rewritten as a Riccati equation for f=-®/¢:
2
f’-—f2+?f+2(V-—E)=0. e

This last equation can easily be shown to be equivalent to that obtained through Hajy’s
method [4] by introducing f(D= 7 = S(r). Because f(r)is a regular function, we
seek a solution of Eq. (5) of the form

i) =3 fre. (6)
n=0

The coefficients 1, are found to obey

.f;,=

n—1]
iy L;ijﬁﬁj_l + 226, + 2w, - 2)\3,,3J, (7

in which W stands for the approximate eigenvalue

We first consider the trivial case 7 = 0. A straightforward calculation shows that
fe=0(k=0,1,... ) for all W values and tha Fi = 20" and Jaers = 0 provided
W=23/2 (2A\)". The €xact ground-state wave function and energy are thus obtained.

When Z)\ % ¢ the exact solution cannot e found, but the result above suggests that
there may be 4 rootof f, = 0 (n > 1) which js an acceptable approximation to E.
Without loss of generality we consider 7 = L. The coefficients J» prove to be polyno-
mial functions of W and A, and we have analytically calculated them for all n < 14

5, and 6 we obtain

w? 4 3w — 18\ = 0, (8a)
6 36
2 s Do T2 e
w 7 w 7 A=0, . (8b)
W g B I8wA — 18\ = (8¢c)
411 18 423 108
3 2 - —\ = 8d
w’ + e T o WA 7 A ; (8d)

respectively, where y = 2W + 1. It can easily be shown that W can be expanded
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w=2A23 %)\"ﬂz’ (9b)
J=0

\ = 0and 1/A = 0, respectively. These equations do not exactly agree with the
ones, Eqgs. (2), (3). For instance, the proper roots of fy,; = 0 and f5., = 0
I1,...) will satisfy W, = E; only for j = k. This result is due to the fact that
rturbation corrections to f(r) are polynomials where the highest power of r
ies with the perturbation order. Since the Taylor series for W' approaches the
pcrturbation series (2) as k increases, one may believe that W will tend to E.
sever, large-order numerical calculation” shows that the procedure is divergent,
gh quite accurate results are obtained for moderately large k values. This be-
is reminiscent of the perturbation series, although results from the present pro-
are by far more accurate. For every finite k value the asymptotic behavior of
\E, (i — ) will be quite different, as shown by the fact that the Taylor series
has a finite convergence radius determined by a branch point A, = A(W,),
IN[OW (W = W) = 0.
then calculate the limit
L= 1i_r’2w2/)\. (10)
te1 = 0 (k= 1,2,...) we obtain the exact answer L = E(0, 1)* = 18. On the
\and, the values of W for f;,,, = 0 yield the sequence in Table I which appears
verge quickly from below toward the same value of L. We cannot at present
it for this surprising behavior.
worth noting that the large A expansions for E and W do not exactly agree,
he odd powers of A~ do not appear in the latter. This result may be due to
:t that the method does not distinguish between the actual potential (1) and
: =Z/x + Ax? (=% < x < o) for which the odd corrections vanish.*
formulae for the preceding simple model can be applied, with appropriate
', to the much more interesting problem of the Zeeman effect in hydrogen
1 1 o 2? 2
V=——+ —Fx*+ y9. (1D
r 2
- way we avoid working with a Riccati equation in two dimensions. We can
d in two different ways. First we use the spherical model with the perturbation

TasrLel. Limit (10) for a root of for, = 0.

k L k L

1 5.1429 S 16.4671
2 10.3171 6 17.1143
3 13.4895 7 17.4917
4 15.3638
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TaBLEIL  Ground-state energy for the hydrogen atom in a uniform magnetic field from
Egs. (8c) (\ = £%/3) and (12) (A = g%/2).

B E [Eq. (80)] E [Eq. (12)] Eeru (Ref. 11)
0.1 —0.4903 —0.4902 —0.49038
0.5 —0.3240 —0.3132 —0.33117
1.0 -0.0070 0.0491 —-0.02221
10.0 8.94 8.80 7.78462
20.0 20.85 18.79 17.199
50.0 57.39 48.78 46.211
100.0 118.6 98.77 N 95.273

1/3 B%r?* which approximately mimics the quadratic term in (11) for moderate values |
of A [4,8,9]. Second, we rewrite Eg. (8¢) as

w3+Aw2+B)\w+Cw+D)\=O, (12)

and set A, B, C, and D so that W, =2, W, =53/3, W, = 5581/9 (the actual Zeeman
perturbation corrections for the ground-state energy [10]), and (A~ "?w) A= ®) =2
We have A = 3.68592, B = —8, C = 1.52687, and D = ~6.10750.

Table II shows that both procedures yield upper bounds to the energy (4, 8, 9] and
that the former is more accurate for small values of A, whereas the latter is preferable
for large ones. This behavior is a consequence of the fact that we have fixed B, so0
that the exact strong-field limit is obtained.

The main advantage of the latter method is that we can in principle take into ac-
count as many perturbation corrections as desired by simply considering a large
enough value of n. This effect cannot be so easily achieved through a simple change
in the perturbation term [4,8,9]. Our method, however, becomes very tedious for
larger perturbation orders, and a systematic treatment of the polynomials is at present
being examined.
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