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We have investigated the validity of the harmonic-oscillator approximation for the calculation of the Franck-Condon factors 
(FCF) of diatomic molecules. Our results show that, although m general the FCF obtained with this approximation exhibit the 
correct order of magnitude, they fail to predict the relative magnitudes of off-diagonal elements of the FCF-array obtained by 
more accurate methods. We show that this deficiency of the harmonic-oscillator approximation is overcome if the cubic term in 
the expansion of the potential-energy function about equilibrium is taken properly into account. Second-order perturbation the- 
ory, i.e. incorporating the cubic and qua& terms of the Dunham expansion, corrects this transposition of the FCF array caused 
by the harmonic-oscillator approximation. We also show that the FCF array obtamed through the harmonic approximation is 
almost the transpose of the array obtained by more accurate means. For this reason the relative FCF calculated by means of the 
harmonic approximation agree remarkably well with the relative intensities obtained from electron impact experiments. 

1. Introduction 

Franck-Condon factors (FCF) are of the utmost 
importance in the study of vibronic transitions [ 11. 
Within the Born-Oppenheimer approximation, the 
intensities of the absorption or emission bands are 
proportional to the FCF [ I]. For this reason several 
methods have been proposed to calculate them. Ac- 
cording to current practice, the most accurate FCF 
are based on the Rydberg-Klein-Rees (RKR) po- 
tential energy [ 21. As RKR potentials consist of pairs 
of classical turning points, one has to resort to ap- 
propriate algorithms for numerical integration in or- 

der to obtain the wavefunctions [ 31 of which the FCF 

are the squares of the overlap integrals. 
An alternative way to calculate FCF is based on 

model potentials for which the Schr6dinger equation 
may be exactly solved. Of such simple models the 
most realistic is the Morse function [4]. However, 
although the Schriidinger equation thereof is exactly 

soluble, the FCF are obtained in closed form only 
under certain simplifying assumptions [ 5 1. Further- 
more, as the expressions for the overlap integrals ap- 
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pear complicated, it seems preferable to carry out the 
integration numerically. 

The Kratzer function [6] has been recently pro- 
posed for the calculation of FCF [ 71. Not only is this 
potential less realistic than that due to Morse but also 
it leads to overlap integrals that can be solved only 
approximately [ 7 1. 

The only exactly soluble model for which one ob- 

tains the overlap integrals in closed form is the ca- 
nonical harmonic oscillator. Many methods to cal- 
culate two-centre integrals and matrix elements 
between harmonic-oscillator eigenfunctions have 
been p&posed, some of them being equivalent [ 81. 
Because of the simplicity of the boson algebra, one 

can readily derive generating functions and recur- 
rence relations in closed form for various two-centre 
integrals and matrix elements [ 91. The use of non- 
normalized coherent states facilitates the calculation 
[lo]. In our opinion, recurrence relations [9-l I] 
are the most practicable for computational purposes 
if one is interested either in numerical calculation or 
in analytic expressions produced by means of com- 
puter algebra. Generating functions are commonly 
suitable to derive useful analytic expressions involv- 

ing sums of integrals [ 121. 
Although the harmonic approximation is less re- 

alistic than the Morse function, its simplicity, which 
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enables one to calculate both analytic approximate 
FCF for polyatomic molecules and matrix elements 
between harmonic-oscillator wavefunctions in many 
dimensions [ 12,131, makes it attractive. The sim- 
plest harmonic-oscillator approach to diatomic mol- 
ecules consists of using an average frequency for both 
electronic states involved in the transition [ 141. That 
the FCF depend on only one parameter facilitates a 
comparative analysis of their behaviour [ 151. The 
disadvantage of this simplification is that the array 
of FCF obtained in this way is symmetric whereas 
the actual array is non-symmetric. This symmetry 
disappears when the distinct values of the vibra- 
tional frequencies of both states are taken into ac- 
count [ 161. 

As our interest lies in accurate analytic expressions 
for FCF we investigate here whether the harmonic 
approximation is a reliable tool for the interpreta- 
tion of molecular vibronic spectra. We restrict our- 
selves firstly to diatomic molecules for which there 
are many data and secondly to low vibrational states 
for which the harmonic oscillator may lead to a use- 
ful approximation. We compare the FCF calculated 
for the harmonic oscillator with those from more re- 
alistic approximations in section 2 and with exper- 
imental data in section 3. We discuss the scope and 
limitations of the harmonic approximation in sec- 
tion 4. 

2. Franck-Condon factors for the Dunham 
potential-energy function 

According to the Born-Oppenheimer approxi- 
mation and the assumption that the electronic tran- 
sition moment varies slowly with internuclear sep- 
aration R, the intensity of a vibronic band in 

absorption or emission is proportional to the FCF 

[II> 

q(v’,u”)= IS,“,, (2, (1) 

where S,.,,’ is the overlap integral between the vi- 
brational states U” and u’ for which the wavefunc- 
tions are y$ and w:, , respectively. Thus, 

according to conventional notation to denote elec- 

tronic states of lesser ( ” ) and greater ( ’ ) energy. As 
stated above, one can use several approaches to es- 
timate the FCF. The Dunham expansion [ 17 ] is most 
suitable for our present purpose as shown below. 

For small enough displacements from the equilib- 
rium distance R,, the interatomic potential V(R) for 
a diatomic molecule can be expanded in a power se- 
ries ofx=(R-R,)/R, [17]: 

V(R)=a~x*(l+a,x+a,?c*+...). (3) 

The coefficients a, are determined from the vibra- 
tion-rotational spectrum of the molecule. We ne- 
glect terms of order larger than those shown in eq. 
(3) because they are unnecessary for the present dis- 
cussion. The coefficients ao, a,, and a2 are related to 
the standard spectroscopic parameters as follows: 

a,=-l-a,~,/(6B,)~, 

a2 = 5af/4-2w,xJ3B,. (4) 

The expansion (3 ) leads to reasonably accurate FCF 
for small vibrational quantum numbers (typically, 
U< 4) provided that the terms of larger order are not 
too great. We calculate the FCF by means of an it- 
erative procedure described in detail elsewhere [ IS]. 
To this end we expand the vibrational wavefunction 
wv of each electronic state as a linear combination of 
the eigenfunctions $,; of the harmonic-oscillator 
Hamiltonian operator 

H,=p2/2~ta0x2, p=-iRd/dx. (5) 

It is convenient to write I+Y” for each electronic state 

as 

u+N 

in which it is assumed that c,,= 0 ifj< 0. In this way, 
when N=O we have the harmonic-oscillator approx- 
imation because the Ansatz (6) is reduced to one 
term. If the vibrational wavefunction of each elec- 
tronic state calculated in this way is normalized to 
unity then the overlap integrals become 

These harmonic-oscilhor two-center overlap inte- 
grals are readily obtained recursively [9-l I 1. 
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Using standard spectral data [ 191, we have cal- of the cubic and quartic terms in the expansion of 

culated the FCF for the following transitions: the potential-energy function around equilibrium. 

CN(X’C+)+CN(A211;,B2C+), 

CO (X ‘Z’)+CO (a jII,. , a’ ‘I+ , A ‘II, b 3C+) , 

H2 (X’E;)cHz (B’C:), 

HCI (X ‘C+)+HCI (V ‘I’), 

N2 (X’C,+)+N, (A3C: ,B3Fl,,a’Ll,,C3rl,), 

O2 (X3C,)+02 (A3C:). 

In each case we have calculated the FCF with in- 
creasing size of the basis sets until convergence was 
attained. The results show a striking behaviour, an 
example of which is shown in fig. 1 for the CN “red 
bands”: i.e. the system X %++-A 211. It is clear that 

the harmonic-oscillator approximation (N=O) pre- 
dicts the relative values of q(k, j) and qcj, k), j# k, 
in the reversed order even for the smallest vibra- 
tional quantum numbers. We found this behaviour 
to apply to all cases studied. In order to be certain 
that it is not an artifact of our numerical method, we 
have checked the converged results by means of an 
independent calculation based on the numerical in- 
tegration of the vibrational eigenfunctions for the 
Morse potential energy. Moreover, the FCF calcu- 
lated for the Dunham oscillator agree with the most 
accurate ones reported in the literature. We thus con- 
clude that the transposition caused by the harmonic- 
oscillator approximation is mainly due to the neglect 

We tried to improve the harmonic-oscillator ap- 
proximation in two different ways while retaining the 

simplicity of its analytic equations: First we substi- 
tuted&=&-a,(z~+i) andw,-w,x,(u+i) for& 
and o,, respectively, to take into account the an- 
harmonicity of the potential energy. However, the 
transposition was not removed and the results were 
even less accurate than those for the harmonic os- 
cillator. Then we resorted to the variational method 
and used the eigenfunctions of p2/2~ts22(x-xo)2 
as trial functions. The variational parameters D and 
x0 were set so that the matrix elements (0 (HI 1) and 
(0 [ H[ 2) of the Hamiltonian operator H with the 
Dunham function (3) vanish. This procedure, which 
is equivalent to minimizing the energy of the ground 
vibrational state, yields more accurate results (ne- 
glecting the continued transposition effect) than the 
previous approach using the same spectroscopic 
information. 

Furthermore, numerical investigation with the 
Dunham function using various values of a, and a2 
indicated both that it is more important to take into 
account properly the former coefficient, and that the 
harmonic-oscillator approximation will yield an in- 
correct FCF array for all molecules. Therefore, one 
should consider this prospective behaviour of the 
FCF in the harmonic approximation when using this 

model in diverse spectroscopic applications. This fact 
is illustrated in section 3. 

+ 76 

Fig. I. Values of the Franck-Condon factors FCF for the CN red 

bands (v’, ZJ” ) calculated by means of the basis-set expansion in- 
dicated in eqs. (6) and (7) as a function of rhe number Nofbasis 

functions. 

In a further attempt to derive accurate analytic 
expressions for FCF of diatomic molecules we re- 
sorted tb perturbation theory. The smallest order of 
perturbation appropriate for the anharmonic oscil- 
lator (3) is two; the perturbation parameter is 
I= (2&/w,) . Ii2 We obtained the perturbation cor- 
rections of first and second order to the wavefunc- 
tion for the case J=O using standard Rayleigh- 
Schriidinger perturbation theory. The addition of the 
contributions coming from J# 0 offers no difficulty. 
Hutchisson [ 201 long ago performed such a calcu- 
lation, but we discovered that he failed to take into 
account the terms arising from x3 which contribute 
to the second-order correction to the wavefunction. 

By means of computer algebra, we have derived 
some analytic FCF obtained from perturbation the- 
ory to second order, but the results appear too com- 

294 



Volume 169, number 4 CHEMICAL PHYSICS LETTERS 8 June 1990 

plicated to be useful. For instance, the expression for 
q(0, O)“* contains more than 300 terms as coeffi- 
cient of an exponential factor when a, and a2 are in- 
cluded in the potential-energy function of each elec- 
tronic state; in the harmonic limit only one term 
remains. However, numerical calculation using this 
approximation proved useful because it shows that 

perturbation theory eliminates in most cases the 
transposition caused by the harmonic approxima- 
tion. For instance, fig. 1 demonstrates that when six 
basis functions in the Rayleigh-Ritz calculation, cor- 
responding approximately to second-order pertur- 
bation in the Rayleigh-Schrddinger procedure, are 
included in the basis set, the calculation is essentially 
converged to its limiting value. Of course, neither the 
harmonic approximation nor second-order pertur- 
bation theory is expected to yield generally reason- 
able results when either the FCF are too small (as in 
the case of HCl), i.e. q( u’, c”’ ) +C 1, or ;1 is large (as 
in the case of HZ). 

3. Comparison with experimental data 

A striking feature of the harmonic approximation 
is that it leads to a FCF array the values of which 
closely resemble those in the transpose of the actual 
array. (Exceptions are HI, HCl, and O2 for which 
either2 is too large or the FCF are too small; in these 
cases the harmonic approximation fails to provide 
acceptable accurate FCF.) For this reason in most 
cases a simple transposition of the harmonic-oscil- 
lator FCF array leads to unexpectedly accurate re- 
sults. This statement is verified in table 1 in which 

Table I 
Franck-Condon factors q( v’, v”) for the CN red system 
(X sZ+-AzIT). The three entries correspond, respectively, to 
harmonic-oscillator (with transposed array), Kratzer [ 71, and 
RKR [ 71 potential energies 

u’ II” 

0 I 2 3 

0 4.96 ( - 1) 3.70 ( - 1) 1.15 (-1) 1.85 (-2) 
4.99 ( - 1) 3.71 (-1) 1.11 (-1) 1.74 (-2) 
4.94 ( - 1) 3.60 ( - 1) 1.19 (-1) 2.34 (-2) 

1 3.24 (-1) 4.44 (-2) 3.41 (-1) 2.26 (- 1) 
3.20 (-1) 4.56 (-1) 3.50 (-1) 2.23 (- 1) 
3.35 (-1) 4.26 ( - 2) 3.18 (-I) 2.22 ( - I ) 

2 1.28 (-I) 2.44 ( - 1) 1.16 (-2) 2.01 (-I) 
1.26(-l) 2.40 ( - 1) 1.22 (-2) 2.10 (-1) 
1.26 (-1) 2.64 ( - I ) 1.37 (-2) 1.74 (-I) 

3 3.92 (-2) 2.01 (-I) 1.03 (-1) 8.50 (-2) 
3.99 (-2) 1.95 (-1) 9.89 (-2) 9.05 (-2) 
3.49 (-2) 2.07 ( - I ) 1.20 (-1) 9.25 (-2) 

the transposed harmonic-oscillator FCF are com- 
pared with those obtained by means of the Kratzer 
and RKR potentials [7]. Assuming the latter to be 
the most accurate, one can conclude from this table 
that the transposed harmonic-oscillator results are 
more accurate than those based on the Kratzer func- 
tion. A similar conclusion applies to the other in- 
stances for which FCF obtained by means of the 
Kratzer potential energy are available [ 71. 

Table 2 presents results for the experimental dis- 
tribution of relative vibrational intensity in the A ‘II 
system of CO excited by means of electron impact 
for several incident energies [ 211. The relative 

Table 2 
Vibrational intensity distribution [2 I ] in the A ‘H system of CO, relative to the intensity of the transition X ‘Z+ (v” =0)-A ‘TI( v’ = 2 ). 
HO and THO denote harmonic-oscillator and transposed harmonic-oscillator FCF arrays, respectively 

1” Incident energy (eV) ‘) 

400 200 

HO THO 

98 50 48 3s 2s 

0 0.44&0.02 0.45 f 0.02 0.48 0.55 0.50 0.48 2 0.02 0.5 l&O.02 0.390 0.563 
I 0.87f0.02 0.89 f 0.02 0.91 0.94 0.92 0.95kO.03 0.94iO.02 0.952 0.96 I 
2 1 .oo I .oo 1.00 1.00 I .oo 1.00 I .oo 1.000 1.000 
3 0.83f0.03 0.88 t 0.02 0.80 0.80 0.8 1 0.81+0.04 0.78+0.03 0.580 0.803 
4 0.56+0.03 0.62 f 0.02 0.54 0.52 0.55 0.54kO.03 0.52+0.03 0.195 0.546 
5 0.34*0.01 0.39 + 0.02 0.32 0.32 0.33 0.34+0.04 0.3 l&O.02 0.036 0.329 
6 0.20f0.01 0.24?0.02 0.16 0.17 0.17 - 0.16+0.02 0.002 0.181 

a) Ref. [21]. 
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transposed harmonic-oscillator FCF q( v' = 0, v" )/ 
q(O.2) are in better agreement with the ex- 
perimental relative intensities of the transition 
X ‘C+ (d' ~0) -tA ‘l7(v’ ) than the appropriate rel- 
ative FCF for this transition, q(v', v"=O)/q(2, 0). 
The measured relative intensities depend on the en- 
ergy of the incident beam showing that other effects, 
in addition to the FCF, are present. For this reason 
one cannot use these experimental results as a cri- 
terion to decide whether one theoretical approach is 
better than another. However, this fact does not af- 
fect our previous conclusions because for all the in- 
cident energies considered in table 2 the relative FCF 
obtained from the transposed harmonic-oscillator 
array agree better with the experimental relative in- 
tensities than the relative FCF obtained from the non- 
transposed array. 

4. Conclusions 

We have shown that the harmonic approximation 
predicts misleading relative magnitudes of the off- 
diagonal elements of the FCF array. This behaviour, 
which is mainly due to the neglect of the cubic term 
in the expansion of the potential-energy function 
about its minimum, is expected to occur for most di- 
atomic molecules. The transposition of the FCF ar- 
ray may lead to unexpected errors when the exper- 
imental intensities of the vibronic transitions and the 
geometry of the lower electronic state are used to 
predict the geometry of the upper electronic state. 
Furthermore, in most cases studied the harmonic-os- 
cillator FCF array fortuitously by corresponds closely 
to the transpose of the FCF array obtained by means 
of more accurate and reliable approaches. For this 
reason the transposed array of harmonic-oscillator 
FCF is in remarkable agreement with experimental 
vibrational intensity distributions. 11 is of utmost 
importance to ascertain whether this transposition 
also occurs for polyatomic molecules to which the 
harmonic-oscillator approximation is commonly ap- 
plied [ 12,221 because either there is insufficient in- 
formation to use more accurate approaches or their 
implementation is difficult. 
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