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The physical significance of energy coefficients of diatomic molecules 
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Abstract--The importance of the nature of the reduction process for spectral data of diatomic molecules is 
discussed in relation to the physical significance of the resulting parameters. Spectral data for LiH and CO 
are examined to illustrate the determination of the applicable radial functions. It is recommended that 
appropriate constraints be routinely applied during the general fitting of pertinent spectral data of diatomic 
molecules. 

After one has successfully contended with the metro- 
logical aspects of a new spectrum, the problem re- 
mains how to represent the data in the most compact 
and meaningful form. In the case of diatomic mole- 
cules, the relative simplicity of the carrier of the 
spectrum makes possible various approaches that 
have been practised over the years. 

For the reduction of frequency or wavenumber 
data, NIAY et al. [ l l  have discussed that the term series 
for Evj, the energies of the vibration-rotational states 
within a particular 1E electronic state according to 
DUNHAM'S [2-1 systematic representation, 

convergence of the infinite series. Although each 
successive contribution Y[~) decreases proportionally 
to a factor y2, the sub-expression also contains four 
additional coefficients aft for this reason it is impos- 
sible in principle to determine uniquely a set of values 
of these coefficients a t applicable to a single electronic 
state from a finite set of spectral data. 

If data for isotopic variants of a given molecular 
species are available, then one can fit simultaneously 
the wavenumbers of the vibration-rotational tran- 
sitions of all variants to a more general form [6-1 of 
Eqn (1) for each variant i, 

Ev.t = ~ ~ Yk,(v+ l/2)k(j2 + j )  t (1) 
k = O  I = 0  

may be regarded as purely empirical, with the Yu 
coefficients serving merely as phenomenological fit- 
ting parameters [3]. DUNHAM [2] showed how the 
Yu coefficients could be related, assuming the 
Born-Oppenheimer separation of electronic and nu- 
clear motions, to the coefficients aj in his potential 
energy function 

V(x)=ao x2 (1 + ~ ajxJ), x - ( R - R e ) / R  e (2) 
j = l  

in which R and R e denote respectively the instantan- 
eous and equilibrium internuclear separations. Each 
coefficient Yu consists of a series of contributions 

Y k l  = V ( ° )  _t_ V ( 2 )  ..L V ( 4 )  _ t _ . .  • J k l  - -  - - k l  - -  - - k l  - -  (3) 

of which the superscript indicates either the order of 
the integral according to the BKW theory that 
DUNHAM [4] used to derive the relations to the 
coefficients aj or a different order of 
Rayleigh-Schr6dinger perturbation theory that may 
also be applied [5] to produce identical analytic 
relations. In the DUNHAM theory [2], the parameter 
7 - 2  Be~we, commonly taking values in the range 
[10 -2, 10-4], plays an important role as the ex- 
pansion parameter that determines the rapidity of 
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k = O  1 = 0  

( j2 + j)t  [1 +me(A~,/Mo + Ak~t/Mb)] (4) 

in which me is the rest mass of the electron and #i is the 
reduced mass of the molecule that dissociates into 
atoms of mass M a and M b. Of the new sets of 
coefficients in the latter equation, the parameters AT, i b 
take into account not only the second-order energy 
coeffÉcients e(2) but also adiabatic and nonadiabatic J k l  

effects and in addition any other effects having the 
same dependence on atomic mass [7]. In contrast, the 
coefficients U k, correspond exactly to the leading 
contributions -uv(°) of the term coefficients Ykl of each 
isotopic variant, viz. 

U - v(o),,tk+2Z)/2 (5) 
kl - a kl l'*i 

Because of the exact relationship of these leading 
contributions to each other, through the potential 
energy coefficients aj of DUNHAM'S function [2] (or 
equivalent), a finite set of spectral data of sufficient 
isotopic variants can in principle determine uniquely a 
corresponding potential energy function that is valid 
within a particular range of internuclear distance. 
Furthermore the latter has a sound theoretical signifi- 
cance in that it is in principle the Born-Oppenheimer 
potential energy that may be determined from con- 
ventional quantum computations of electronic prop- 
erties or molecular structure in which the nuclear 
masses play no role. 

In the determination of the potential energy func- 
tion that embodies most of the significance of the 
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wavenumber data from vibration-rotational spectra 
or energies, three principal approaches have been 
practised. The oldest method is through the band 
parameters (G~, B~, D~, Ho etc.) to the Ykz coefficients 
and thence to the coefficients aj by means of 
DUNHAM'S relations [2], such as is described in Ref. 
[8]. A second approach is essentially to bypass the 
band parameters by fitting the spectral lines directly to 
the parameters Uk~ (and A~i b), from which the coeffic- 
ients a; may be generated in a succeeding series of 
merge procedures; in the case of HCI, the resulting 
values of the Ukt coefficients are internally consistent 
within two standard errors [9]. A third approach is to 
fit the wavenumbers of the spectral lines directly to the 
coefficients aj [1], eliminating the determination of 
any intermediate parameters. The latter procedure, 
although somewhat more complicated computation- 
ally than the others, guarantees in principle the utmost 
physical significance of the results, because the poten- 
tial energy function is then least arbitrarily related to 
the primary spectral data. 

In their recent analysis of the spectra of four isotopic 
variants of lithium hydride, YAMADA and HIROTA 
[10] simply used the Ykl, Uk! and A~,i b coefficients as 
empirical fitting parameters. Here we test the physical 
significance and consistency of their results through 
the analytic functions V(z) for potential energy [11] 
that has a greater range of validity than DUNHAM'S 
function in Eqn (2) but is of the same form: 

V(z)=co z2 (1 + ~ c~z j) 
j=l 

z = 2 ( R -  R,)/(R + R~) (6) 

and K(z) that is the corresponding radial function to 
describe collectively the adiabatic and nonadiabatic 
effects [7]: 

K~, b = ~ h~ 'b z j. (7) 
j = l  

Thus the physical significance becomes evident 
through the values of the coefficients c) and ..jhL~'a 
respectively. The coefficients U1.1, U2. o, U2.1 and 
U3. o lead [12] to the most accurate values Cl = 
- 0.896675 ___ 0.000041, c2 = 0.350637 ___ 0.0000 I0, c a = 
-0.116789+0.00154 and c ,=-0 .055094+0.00359 
respectively. The values of Uo. 3, and Ut. 2 or Uo, ,  
yield c I = -0.8543-1-0.021 and c 2 =0.33365 +0.0016 
or 0.222 + 0.056 respectively, in moderate consistency 
with the corresponding values above. A further rela- 
tion, entirely independent of the nature of the poten- 
tial energy function, 

Uo. 2 = --4 U 3, 1/U 2, o (8) 

yields Uo, 2 =( -0 .06682416+ 3.3 x 10- 7) m -  1 differ- 
ing from the freely fitted value [10] (-0.066706+2.5 
x 10 -s )  m - t  by 4.7 experimental standard errors, 

thus very significantly. (Each indicated uncertainty 
corresponds to one standard error ultimately pro- 

pagated from experimental error in wavenumber 
measurements.) 

The coefficients h. Li" x ..~ are directly related to the 
ALi, N parameters [7]. Thus the reported values [10] of 
Ao a, 1, AHI.o, An1,1 and A n2,o lead to hl/Be=-7.3863 
+0.0091, hl/Be= 10.7216+0.011, h~/Be= - 18.503 
+0.41 and h~/Be=45.665+0.22 for tH respectively, 
and of ALi and ALi to hLi/Be=-O.079649 0,1 1,0 
+0.000025 and h~i/Be=O.0295+O.048 for 7Li, with 
Be for 7LiIH. These values have the same signs and 
roughly the same magnitudes as those estimated [7] 
earlier from less precise but more extensive spectral 
data [13]. A further value - 13.65 +4.5 ofh~/B e of 1H 
in 7LilH results from the reported value [10] of Ao H. 2; 
this value disagrees markedly with the value + 10.72 
given above. Correspondingly, with the known rela- 
tion [7] between ^H. ri and the coefficients hi" rl and ~0,  2 

h~ 'L~ through Zo, 2, one can estimate values Ao" 2 = 
-3 .72+0.01 and ALl 2 = --0.13+0.08; the former dis- 
agrees with the empirical value + 1.85 by 5.4 experi- 
mental errors, but no value of the latter was deter- 
mined [10]. These deviations are consistent with, and 
related to, the discrepancy described for Uo. 2. As 
demonstrated for HCI [9], which like LiH has abund- 
ant and precise spectral data for isotopic sets of both 
nuclei, if the value of Uo. 2 is constrained to that 
required by its relation to Uo, 1 and U1. o, then values 

a,b  of Ao, 2 may be determined with good numerical 
significance. If values of Uo, 2 and Ao, 2 are both freely 
fitted, then their covariance coefficient (from the dis- 
persion matrix in the statistical fitting process) has a 
relatively large magnitude, strongly indicating the lack 
of numerical significance; the application of at least 
one appropriate constraint serves to break this corre- 
lation. 

Similar inconsistencies are found in the older, but 
not yet superseded, analysis of the spectra of CO [ 14] 
in which the Ukt coefficients were also used merely as 
independent fitting parameters. Thus for instance, the 
value ofcl calculated from Uo, a deviates by more than 
10 standard errors from that calculated from Uo, t, 
and the value of Uo, 2 calculated by means of Eqn (8) 
differs by more than 20 standard errors from the freely 
fitted value. The omission of the imposition of the 
constraint represented by Eqn (8) apparently pre- 
cluded the significant determination of values of Ao:C o2, 
as well as introducing model errors into the numerical 
values of other parameters. One can predict a value 
Ao °. 2 = -  5.98 +0.05, the accuracy of which is really 
limited by the model deficiencies in the wavenumber 
analysis [14]. Because the transition wavenumbers 
have never been published [14], a reanalysis of the CO 
data is not practicable; the vibration-rotational wave- 
numbers of LiH [10] will be combined with new 
measurements of the electronic spectrum for higher 
vibrational states, now in process, in order to obtain a 
global fit over a great range of the potential energy 
well. 

Clearly, in order to ensure the physical significance 
of the values of spectral parameters, the applicable 
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constraints must be brought into the fitting process. If 
the wavenumber data are fitted directly to the poten- 
tial energy coefficients, as in the third approach de- 
scribed above, then the constraints are automatically 
applied. Alternatively, one can employ relations be- 
tween the various Uu parameters of which Eqn (8) is 
but one instance. Although the derivation of the 
published list [15] was based on the DUNHAM func- 
tion for potential energy [V(x) in Eqn (1)], these 
relations are equally consistent with the superior 
function V(z) in Eqn (6), and could therefore be readily 
derived from the extensive collection of expressions for 
YRt o r  Ukl previously published [12]. By either 
method, the resulting values of parameters are much 
more useful for comparison with either theoretical or 
other experimental results. The application of con- 
straints in the analyses of the spectra of LiH [10] and 
CO [14] should have produced not only better 
fits, according to the F-statistic [16], but also more 
physically consistent and meaningful values of the 
parameters. 

As further proof of the validity of these constraints, 
consider three cases. The wavenumbers of > 105 trans- 
itions in the visible spectrum of 12 were reproduced 
[17-] satisfactorily by means of the values of only 46 
parameters. Of these, seven are Yk. 0 and six Yk. 1 for 
the ground electronic state X up to vibrational state 
v"=  19 and rotational states therein up to J~200,  
whereas for the excited electronic state B sixteen 
values of each of Yk. o and Yk. 1 were required to fit 
vibration-rotational states up to v ' =  80, the latter 
only 160 m-  1 below the dissociation limit of the B 
state. Throughout this range, all other values of Irk,, 
2~<l~<6, were fixed completely through their de- 
pendence on Yk. o and Yk. t and were thus not floating 
in the sense of empirical fitting parameters. The other 
parameter was considered [17] to reflect the neglect of 
even higher-order coefficients Yk,, 1 > 5; however a 
more likely explanation is that the Yu parameters, in 
contradistinction to the U u parameters, are not quite 
independent because of slight interference from adia- 
batic and other effects taken into account through the 
A~i b coefficients in Eqn (4). Analogously, the analysis 
of the visible spectrum of Br 2 is equally impressive 
because the wavenumbers of 80 000 lines were well 
reproduced by means of only 38 parameters [18]. In 
this case for the ground electronic state X, five values 
of YR. 0 and six of Yk. x were used for vibrational states 
up to v"=14,  with J up to ~130; for the excited 
electronic state B, thirteen values of Yk. o and fourteen 
of Yk. 1 sufficed to represent states up to v '= 52, only 
530 m-  ~ below the dissociation limit of the B state. As 
for I2, the values of the other coefficients Yu,  2 ~ l <~ 6 
were fixed relative to Yk. o and Yk. X and a further 
parameter was empirically employed to absorb other 
minor effects [18]. In both these cases, a fully numeri- 
cal procedure was used to calculate [19] the cen- 
trifugal distortion coefficients based on the RKR 
potential energy rather than an analytic function. 
Undoubtedly the great success of these fits results at 

least in part from the relatively small values of the 
expansion parameter y for these electronic states, 
approximately 0.00035 and 0.00046 for the X and B 
states of I2 respectively and 0.00050 and 0.00071 for 
the X and B states of Br2; such values ensure, at least 
for small values of I a rapid convergence of the series 
for Ykt in Eqn (3). However, even in the case of the 
ground electronic state of H 2, for which the value 
y=0.0277 is exceptionally large, apparently the cen- 
trifugal distortion coefficients D v and Hv can still be 
accurately calculated [20] on the basis of an accurate 
potential energy function. 

The method of these determinations [17, 18] for 12 
and Br 2 is equivalent to the third approach listed 
above, the RKR potential energy being implicit in the 
calculation of the values of the centrifugal distortion 
coefficients that are then imposed in the following 
iteration towards convergence of the Ykl coefficients. 
The parameter additional to these Yu that was in- 
cluded in the method essentially took into account 
empirically the effects encompassed in the higher 
orders of the RKR procedure that were excluded from 
the first-order method used. The neglect of these 
higher orders may be alternatively avoided in the so- 
called inverted-perturbation approach [21], which is 
merely a fitting by least squares to experimental 
energies or energy differences to parameters of some 
function to correct some analytic or numerical (com- 
monly first-order RKR) trial starting potential energy; 
this method is quantal insofar as the calculated ener- 
gies are based on numerical solution of the 
Schr6dinger equation, and the term "perturbation" 
implies that the partial derivatives used in the fitting 
were obtained by the Hellmann-Feynman theorem. 
It should be emphasized that this inverted-perturba- 
tion approach is neither more "exact" nor more 
"quantum-mechanical" than the DUNHAM or RKR 
procedures if the latter include the higher orders; the 
reason is that it has been proven analytically [51 that 
the Yu expressions are identically derived by either 
semi-classical or quantum-mechanical approaches, 
and the equivalence of RKR and DUNHAM methods 
has been equally demonstrated [22, 23]. Therefore, the 
V(z) potential energy function is proved to be the best 
representation available for diatomic molecules, and 
the tests of consistency implicit in its proper determi- 
nation from experimental data are a necessary test of 
the completeness of a spectral analysis. 

In conclusion, we recommend that for the 
vibration-rotational energies or transition wavenum- 
bers of diatomic molecules the full physical basis of the 
vibration-rotational model, represented by the appli- 
cable constraints whether or not based on an explicit 
(analytic or numerical) potential energy function, 
should be incorporated during the fitting of the transi- 
tion wavenumbers in the process of data reduction, in 
order that the resulting spectral parameters embody 
the maximum numerical and physical significance. By 
so doing, not only would the results render in a 
consistent manner the fundamental properties of the 
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molecular system as radial functions (within the 
Born-Oppenheimer  framework), but also the maxi- 
mum data compression may be obtained. 
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