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Abstract-The program GWLREG has been designed for the convenient and efficient treatment of general 
iproblems in linear regression, including both multiple linear and univariate polynomial forms. There is 
brovision for transformation and weighting of input data, and output of indicators of goodness of fit. 
Two versions of the program GWLREG are presented, each based on a different computational algorithm 
and having slightly differing capabilities and performance. The program is applied to a new determination 
of the electric dipole-moment function of the diatomic molecule HCl from a critical assessment of the 
published experimental data. 

1. INTRODUCTION 

The mihimum attributes of a satisfactory computer 
program for linear regression applications are the 
followiag: 

adequate accuracy; 
indicators of goodness of fit; 
simplicity of use and adaptation for particular 
problems; 
capability of weighting the input data; 
automatic transformation of input data; 
applicability of simple constraints, such as 
passage through the origin. 

The author has been unable to discover a single 
program for microcomputers that has all these essen- 
tial attributes and is applicable to both univariate 
polynomial and multiple uninomial linear regression. 
For this reason I have undertaken to develop the 
program GWLREG. For reasons of convenience, 
this paogram has been prepared in BASIC, a 
language commonly available on microcomputers, in 
order bo generate in the most convenient analytic 
form a representation of these data. In this paper we 
discuss the algorithms and their new implementation 
in the two versions of the program GWLREG, and 
then apply it in order to determine the polynomial 
funvtion to represent the radial dependence of the 
electric dipole moment of a diatomic molecule. 

2. MATHEMATICAL BASIS OF 
THE ALGORITHM 

If we suppose that we have a set of n observations 
involving the independent variables x,, 1 ci 6 k, and 

*All eoarespondence should be addressed to the author at 
the Academia Sinica address above; electronic mail to 
ogiluie@twniams.bitnet. 

the dependent variable y, then as long as k c n, the 
coefficients /$ of nj are overdetermined. In these 
circumstances the statistical fitting of the data, sub- 
ject to some experimental error e assumed to be 
entirely associated with the dependent variable y and 
to be independent of the particular value of y, 
becomes the appropriate procedure according to the 
standard theory of regression analysis_ If, further- 
more, the values of y depend upon the parameters 
8, in a linear manner, then the approach of linear 
regression may be used, much simpler and more 
direct than nonlinear parameter estimation. The 
values of the parameters bi are the best, i.e. most 
precise and unbiased, estimates of the unknown 
quantities p, if the criterion to determine them is the 
minimum value of the sum of the squares of the 
residuals 

over the R items in the data set; if b, is present (x0 = 1) 
and has a value significantly different from zero, 
then the function does not pass the origin of the 
coordinate system having k dimensions. 

The algorithms, to be discussed in the following 
paragraphs, were programmed in BASIC for the 
following reasons: this computing language is widely 
used on l&bit microcomputers of the type called 
personal computer; the program is easily written 
in this language: unlike FORTRAN, in compiled 
BASIC a program is prepared into an efficiently 
executing form in only one brief stage, without 
several passes for compilation and linking. Also, 
despite the fact that interpreted BASIC executes less 
rapidly than compiled BASIC, program preparation 
and testing is more conveniently conducted in the 
former way; moreover, no changes may be necessary 
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if one later resorts to compilation in order to improve 
speed of execution. 

As a strategy for the construction of the new 
program GWLREG, it was decided to use as a basis 
the program MULNRG (Ogilvie & Abu-Eigheit, 
1981) that was designed for only unweighted multiple 
linear regression. Thus, we first describe the math- 
ematical basis of the algorithms of GWLREG con- 
taining the enhancements and extensions beyond 
MULNRG for the present objectives. We state the 
basic problem in matrix form, for each data set: 

((~1) = ((x)) ((4 

in which ((x)) is a row matrix (or vector) of length 
k + 1 representing the values of the independent 
variables, ((b)) is a column matrix also of length k + 1 
representing the values of the parameters to be 
determined according to the principle of least squares 
and ((y)) is thus a matrix of order 1 (equivalent to a 
scalar). The addend 1 in k + 1 results from the fact 
that, in the first instance, the function is not con- 
strained to pass the origin; in that case the numbering 
of the elements of ((x)) and (@)) starts at zero and 
x,, = 1. The data to be analyzed consist of II sets, the 
ith set containing the k values of the independent 
variables +, 1 <j < k, the value of the corresponding 
dependent variable yi, and the weight wi which may 
simply be the reciprocal of the variance (the square 
of the standard deviation) of the value of y; deter- 
mined as the result of replicated trials under the same 
conditions (i.e. the same vaIues of x5)_ In order to 
determine the ((b)) matrix, we must form two other 
matrices, the symmetric square matrix ((a)) of order 
k + 1 and the column matrix ((g)) of order k + 1 
having elements as follows: 

aa,0 = c wi, 

a,, = z xjixli wi, 0 <j, I < k, j 6 I, 

g0 = CYiwi3 

gj = C xjiyi w,, 1 <j < k. 

In each case it is to be understood, here and else- 
where unless otherwise specified, that the summation 
Z is over the values of i, 1 6 i d n, in the data set. 
The ((a)) matrix is then the product of the inverse, 
((d)) of the ((n)) matrix with the (Cg)) matrix: 

((4) = ((a))-’ 

and 

((b)) = (V)) ((s>). 

We need also to calculate the sum of the squared 
errors (SSE), which can be formed from the ((d)) and 
((g)) matrices and the transpose ((g))’ of the ((g)) 
matrix: 

SSE = ((g))‘((g)) - ((4)((g)), 

although computationally it is better to calculate SSE 
directly from the definitions (expressed in both the 

matrix form and the non-matrix form actually used 
in the program): 

SSR - ((Y))‘((Y)) - 2(@))(x))‘((~)) 

+ 0)) ((x))‘((x)) ((3)) 

We define another column matrix ((s)) of order k + 1 
of which each element sI is the standard error, the 
square root of the variance, of the corresponding 
elements of the parameter matrix ((a)): 

s, = @!!SSE/~)“*, 

in which f is the number of degrees of freedom of the 
regression process, equal to the number n of data sets 
minus the number of parameters k + 1. The other 
essential indicators of the goodness of fit are: 

the standard deviation Q of the fit, 

the absolute value Irt of the sample correlation 
coeiiicient r, 

and .the F statistic or F-value (Ogilvie & Abu- 
Elgheit, 1981), 

The square dispersion matrix ((v)), the product of the 
inverse of the ((a)) matrix with the error variance oz 
of regresion, 

((0 )) = a’(V))* 

contains as its elements vu- along the principal diag- 
onal the variances of the b parameters, 

vjj = sj, 

whereas the off-diagonal elements are the covariances 
that contain information about the correlation of the 
nominally independent parameters, the regressor 
matrix ((h)) that is formally the primary objective of 
the regression analysis. The elements c,, of the par- 
ameter correlation matrix, a more useful visual indl- 
cator of the independence of the 4 parameters, are 
formed simply by dividing the covariances by the 
square root of the product of the corresponding 
product of variances, 

9, = ~,,l(~,,~,,Y, 
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but in the prediction of new values of the dependent 
variable yprod from the specified values of the indepen- 
dent vagiables ((x)) and the determined parameter 
matrix, 

&cd = ((x)) (@)) 

the variance, or square of the standard error, of the 
predicted value is most directly calcuiated from the 
variances and the covariances 

In the case that the function y(x) is to be con- 
strained to pass the origin, i.e. when all xki= 0, 
k >O, then yi= 0, some equations above must be 
modified as follows, essentially to remove the zeroth 
row and the zeroth column from the ((a)) matrix and 
the zeroth element correspondingly from the ((g)) 
column matrix: 

and 

gj = c xJiYl “‘I 7 lGj<k. 

Then the product of the ((d)) and ((g)) matrices 
is the @b)) matrix containing k elements starting 
with b, r leading to the variance of predicted values 
y- of the independent variable y according to the 
equation 

The above description has been based upon 
the supposition that the independent variables x1, 
each unrelated to the other, are related to the 
dependent variable y ia a simply linear manner. For 
analysis according to the model of a polynomial 
in one independent variable, there is a trivial 
conversion, 

xj=x{, j>l, 

that has no other effect on the computational 
method, However, in practice, the magnitudes of the 
paramet.er correlation coefficients are then found 
generally to approach unity; this deficiency of a 
power sries is well known, but the practical utility of 
this form of model nevertheless makes it widely used. 
Other transformations of the independent variables 
can jusm as easily be effected, with no great effect on 
the nature of the computations. If the dependent 
variable y is however transformed from Y, then there 
must be an appropriate global weighting factor 
W = (d Y/dy)’ applied (de Levie, 1986) further to any 
specific weight w, arising from the standard deviation 
of any particular value Yi. 

The aoding of the above equations into a computer 
program in two versions, each with adequate accu- 
racy, suffices to achieve the objectives of the present 
work. 

3. IMPLEMENTATIONS OF THE ALGORITHM 
AND TFSTING 

In the Cd version, the program GWLREG in 
BASIC consists of ten sections: initiation; variable 
transformation; control; data input; data correction; 
computation of results; output of basic results; out- 
put of table of residuals; output of parameter corre- 
lation coefficients; and termination. The initiation 
section declares the variables to be either double 
precision in floating point or integers and prints a 
heading. The variable transformation section consists 
of three function statements that convert all the 
independent and dependent variables and the weights 
into the appropriate form according to the particular 
application. The function to form the weight can 
incorporate any global weighting factor that may be 
required. In the control section, the user is prompted 
to ascertain whether either multiple linear or poly- 
nomial regression is required, the number of indepen- 
dent variables if the former or the maximum degree 
of the polynomial and whether results for lesser 
degrees are required if the latter, and finally whether 
the constraint of passage through the origin is to be 
applied. In the data input section, the number n of 
data sets is demanded, followed by a prompt for each 
value of xJi, y, and the particular weighting factor wj 
(further to the global weighting factor automatically 
applied according to the appropriate function state- 
ment). These values are displayed compactly on the 
monitor screen so that visual inspection of their 
correctness is easily achieved. If no input data are to 
be corrected, according to the prompt at the end of 
the data input, then the computation begins, and the 
output of the basic results automatically proceeds. 
Next the user is prompted for output of first the table 
of residuals then the table of parameter correlation 
coefficients cj,, The user is then prompted to delete 
any data cases, and to add further data cases; if 
there are any such deletions or additions then the 
computation of results is repeated. If there are 
no such alterations to the input data, either the 
program terminates for the case of the multiple linear 
regression and the polynomial regression at the maxi- 
mum degree, or the program continues with the next 
higher order of polynomial regression according to 
the control parameters input at the beginning of the 
run. 

The testing of GWLREG has been conducted in 
several ways. First of all, because the entire accuracy 
of the analysis depends vitally on the inversion of the 
((a)) matrix, this subroutine was separately tested. 
Three different methods of matrix inversion were 
tried; one employed the Gauss-Jordan elimination 
method and a second, using an alternative elimin- 
ation approach, was the MINV subroutine translated 
from FORTRAN. As Crout’s method of decompo- 
sition with partial pivoting (Golub & van Loan, 
1983), followed by iterative improvement, gave 
superior results, although requiring a somewhat 
greater storage space for arrays (Press et al., 1985), 
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this procedure was incorporated into the Cd version 
of GWLREG. The test was the Hilbert matrix in 
which the value of each element is the reciprocal of 
the sum of the subscripts, i.e. 

this matrix is notoriously ill-conditioned and is there- 
fore an exemplary, critical and pertinent test of the 
inversion process. 

At this point it becomes necessary to specify the 
varieties of BASIC used for the calculations. Three 
varieties have been tested, BASICA, Turbo-BASIC 
and Professional BASIC. The latter is most con- 
venient when one types in the program because it 
prompts as soon as most common typing errors are 
made, but because it, like BASICA, is interpreted 
BASIC it executes relatively slowly. Turbo-BASIC is 
compiled and consequently executes rapidly. Because 
these regression calculations require only a few 
seconds, the execution time, in any case commonly 
less than the time to print the results, residuals and 
correlation coefficients, is much less a matter of 
concern than the numerical accuracy. There is in 
principle a significant difference between BASICA 
which carries 17 decimal digits and the other two 
which carry only 16 decimal digits of precision_ For 
instance, in the inversion of the Hilbert matrix of 
order 6 by the Gauss-Jordan method, BASICA yields 
10.1 correct digits on average, whereas the other 
processors yield 9.3 correct digits on average; for the 
Hilbert matrix of order 8, BASICA yields 7.2 correct 
digits, compared with 6.3 digits for the other specified 
processors. By Crout’s method, the average number 
of correct digits is 11.3, 10.2 or 11 .O for the matrix of 
order 6 and 9.0, 7.7 or 8.0 for order 8 by BASICA, 
Professional BASIC or Turbo-BASIC, respectively. 
However, it should be noted that the greater precision 
in BASICA is accompanied by the small range of 
exponent (- lo*‘*) and the evaluation of numerical 
functions in only single precision even if the argument 
is double precision, whereas both Professional 
BASIC and Turbo-BASIC provide a much greater 
range of exponent (- 10i308) and the evaluation of 
numerical functions of double-precision arguments 
(and in Turbo-BASIC even single-precision argu- 
ments) in double precision. For the range of values in 
the matrices under test, the difference in precision 
between these processors is significant, and obviously 
the requirement of matrjx inversion may prove the 
factor ultimately limiting the accuracy in permitting 
any program incorporating such a subroutine to 
produce significant results for high orders of the 
matrix to be inverted. Furthermore, although the 
gain in precision in the matrix inversion from Crout’s 
decomposition over the Gauss-Jordan method is 
substantial, in the subsequent solution of the normal 
equations the iterative approach provides even fur- 
ther improvement. An alternative algorithm involv- 
ing the direct factorization of the matrix of the 
coefficients of the normal equation according to 

Doolittle’s approach produced essentially identical 
results to those from Crout!s decomposition. 

The second version (svd) of the program 
GWLREG resembles the first (Cd) except that, 
instead of an algorithm intended to solve the normal 
equations, the method of singular-value decompo- 
sition used (Golub & van Loan, 1983). Thus, the 
substitution subroutine and the main ,section of the 
Cd version in which the matrix of the coefficients 
of the normal equations is effectively inverted are 
replaced by several loops which serve to solve directly 
the design matrix (the set of linear equations, one for 
each data set, in which the regression coefficients 
appear as the unknown parameters) by decompo- 
sition of its singular values. 

The second kind of test of the accuracy and 
efficiency of both versions of GWLREG involved the 
test problems used by Wampler (1969) in this evalu- 
ation of the then available computers and programs 
for linear least squares. These are the two poly- 
nomials of order 5, identified as Yl and Y2: 

Yl: Y&j 
j-0 

and 

Y2: y = i (x/io)j, 
j-0 

with values of x, being the integers between 0 and 
20; for the test of the cases constrained to pass 
the origin, the constant term (1) was omitted from 
both Yl and Y2. For these four cases, i.e. Y l(l), 
Y2(1), Yl(0) and Y2(0) with 1 and 0 values of the 

y-intercept, respectively, the results are given in 
Table 1 for the cases of the three processors and the 
two algorithms. The indicators of the goodness of fit 
that are shown in the table are the F-value, for which 
a greater value is desirable, the standard .deliation 
of the fit, for which a smaller value is desirable, and 
the average number of correct digits in the derived 
parameters 4, 0 <j < 5 or 1 <j < 5, for the two 
values, 0 or 1 respectively, of the y-intercept. The 
results appear to demonstrate that for the implemen- 
tation of the Crout decomposition BASICA is the 
best of the three processors, based on the average 
number of correct digits being greatest in most test 
cases, although it should be noted that for Y l(1) 
and Y2(0) the standard errors of the regression 
parameters were in some cases significantly smaller 
for Turbo-BASIC than for BASICA. In contrast, 
the results (not shown) for BASICA for the svd 
algorithm are relatively poor. Due to the latter 
qualifications, to the generally useful more extensive 
range of exponents in Turbo-BASIC and to the 
greater speed of execution of Turbo-BASIC, this 
processor may be preferred for use with either version 
of GWLREG. 

Comparison of the results for Y l(1) and Y2( 1) in 
Table 1 should also be made with the results in 
Wampler’s (1969) report. In that case the average 
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Table 1. Comparison of results for the test regression problems by means of the algorithms using 
Grout decomposition (Cd) or singular-value &composition (svd) with the interpreters BASICA (BA) 
and Professional BASIC (PB) and the compiler Turbo-BASIC (TB); the criteria arc the F-value Q, 

the standard deviation of the fit (a) and the average number of correct digits (No.) 

Cd svd 

BA PB TB PE TB 

YW) 
F 1.1 x ion 6.0 x IO” 2.0 x 1p 1.7 x I@’ 7.3 x 103’ 

:o. 
1.8 x IO-’ 7.9 x 10-S 4.3 x 10-q 4.7 x lo-‘0 2.3 x IO-‘0 

8.0 7.5 9.3 11.3 11.3 

YW) 
F 3.2 x Ion 4.3 x w 7.8 x 1026 2.5 x lo= 8.0 x 1oU 

FJo. 
6.4 x lo-” 9.4 x 10-a 1.3 x lo-” 7.2 x lo-” 1.2 x 10-I’ 

10.0 8.8 9.6 9.7 9.7 
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WO) 
F 1.8 Y ldn 1.9 x 10’6 2.0 x 10% 2.1 x lo-” 4.1 x lo-” 
k*. 4.5 x 8.4 10-a 2.7 x 9.6 IO-” 1.3 x 7.4 10-l 4.3 10.2 x 10-10 

y--w 
F 6.9 x Id’ 3.7 x IO” 1.6 x lp6 2.6 x It?’ 8.0 x 10” 
zkl. 1.4 x 10.4 10-I’ 1.9 x 9.4 lo-‘2 2.9 x 9.4 lo-” 7.2 x 9.5 lo-” 1.3 x 9.7 lo-” 

numbeti of correct digits for double-precision runs 
with 16 digits were 6.9 and 7.9 for Yl and 6.2 and 
10.0 for Y2, although for double-precision runs with 
18 digits the average numbers of correct digits were 
at least 9.3 for Yl and Il.8 for Y2 when elimination 
methods were used and generally more for other 
methods. Thus, because. the present results producing 
up to lg.3 correct digits for Yl(1) and 10.0 for Y2(1), 
respectively, are at least of the same order of magni- 
tude as for the programs that Wampler (1969) tested, 
one may conclude that GWLREG is thus likely to 
be acceptable as a general routine for applications 
in lineai regression, within the limitations mentioned 
above. 

4, AF’PLXATION TO THE ELECl-RIC 
DtPOLEMOMENT FUNCTION OF HCI 

In this application of the program GWLREG, 
we use not only the features discussed above but 
also thesprovision for weighting the input data. The 
latter pnavisian is crucial in this case because both 
the valqes of the dependent variables, the matrix 
elements <vJ/ M(x) Io’J’) of the dipole-moment 
function1 between vibration-rotational states specified 
by the quantum numbers D for vibration and J for 
rotation, and their nominal standard deviations vary 
over comparatively large ranges. The independent 
variable8 in this problem are the matrix elements 
(vJI_dla’J’> of the displacement x to various powers 

j, which are roughly proportional to 10-i. Therefore, 
the test problem YZ(0) with k = 8 and using the 
Grout decomposition method is the most suitable to 
simulate the actual problem; running this problem 
with 0 $x < 32 produced an F-value 5.7 x 10” 
and a standard deviation of the fit 2.6 x lo-* with at 
least 5 accurate digits for each regressor. As the 
conditions of this test are much more severe than in 
the actual problem, this performance is considered 
acceptable. 

The electric dipole-moment function M(x) of HCl 
may be expressed (Ogilvie & Tipping, 1983) in the 
form of a polynomial in the reduced internuclear 
displacement variable x in terms of the instantaneous 
R and equilibrium 4 internuclear separations. The 
power series which is truncated as required to fit the 
finite data, in this case at the seventh order, 

has been determined anew from the available 
experimental data, namely the expectation values 
<vJ 1 M(x)1 vJ) of the dipole moment in particular 
vibration-rotational states, measured by means of 
experiments on the electric resonance spectra at radio 
frequencies on molecular beams using the Stark 
effect, and the matrix elements <$4(x)(0’> related to 
the intensities of vibration-rotational bands in the IR 
and VIS spectral regions. The data of Kaiser (1970) 
for the expectation values of the dipole moments of 
H”C1 and D”Cl were corrected for the deviation 
from the standard for such measurements [ground 
state of OCS (de Leeuw & Dymanus, 1970); corrected 
value for 1986 values (Cohen & Taylor, 1987) of the 
physical constants is (2.385558 k 0.00010) x 10e3’ 
C m] and for the change in the fundamental physical 
constants since 1970; these corrections are not much 
greater than the experimental uncertainties (taken 
as 3.5 SE) quoted by Kaiser. The analogous datum 
of de Leeuw & Dymanus (1973) for H3’Cl was 
also corrected, but only for the change in the phys- 
ical constants. The data for the intensities of the 
vibration-rotational bands were used without correc- 
tions, and in most cases with the acceptance of their 
nominal standard deviations. Measurements of these 
intensities have been carried out for several decades, 
during which period both spectral resolving power 
and the precision of measurement have increased 
greatly. For the fundamental and first-overtone 
bands, many data are available, listed by Pugh & Rao 
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(1976) and by Smith et al. (1985). Among these data 
for either band, the values range widely, far beyond 
the nominal uncertainties of the measurements. In 
particular, the data of Benedict et al. (1957), part 
of an extensive collection, have been found to be too 
small by comparison with more recent measurements; 
for this reason, all the data reported by these authors 
were arbitrarily assigned a further weighting that 
caused these values to have practically no e&t on 
the final results. Other data listed in the specified 
compilations have been omitted because the values 
are obviously inconsistent with more recent and 
presumably more accurate values. Specifically, the 
value by Smith (1973) for (O(M(x))2), a weighted 
mean of data that he then considered useful, has been 
omitted here because it is significantly smaller than 
real experimental values obtained both before and 
since that time. Similarly, the value of Benedict et al. 
for (1957) for <OIM(x))3) is confirmed to be too 
small (Stanton & Silver, 1988). For Kaiser’s (1970) 
data of DCl, it proved impossible to fit simul- 
taneously these data and all the data of HCl within 
reasonable bounds of uncertainties in relation to the 
nominal experimental errors; for this reason, these 
data of DC1 were also arbitrarily assigned the same 
standard further weighting that removed the sensi- 

tivity of the results to these values. Kaiser attributed 
the inconsistency of these values of the expectation 
values of HCl and DC1 to a possible breakdown 
of the Bornappenheimer approximation, but an 
alternative explanation based on the inadequacy of 
the treatment of the rotational dependence of the 
expectation values has also been proposed (Ogilvie, 
1988). 

Thus, weighted by the reciprocal of the square of 
the nominal standard deviations and then multiplied 
by a further factor (100) in the special cases specified 
above, the data, listed in Table 2, were thus fitted 
according to the program GWLREG in the mode 
for multiple linear weighted regression. The method 
involved the solution (Ogilvie & Tipping, 1983) of the 
overdetermined system of 33 simultaneous linear 
equations, 

to find the best values of the eight coefficients Mj, 
0 <j $7, from the selected 33 experimental data, 
namely the expectation values <u ) M(x)(v > and 
matrix elements <v 1 M(x)lu’), v # v’, and the calcu- 
lated values of the matrix elements (v Ix/l o’> of 
xj according to the accurate analytic expressions 

Table 2. List of the experimental expectation values and the matrix elements used in the present work 

Value/lo-“Cm 

&Y$&,> 
Reference 

Observed Calculated for observtd 

H”Cl 

(0 M(x) 4>/10-4 
<o M(x) 5>/10-’ 
(0 M(x) 6}/10-’ 
(0 M(x) 7>/10-’ 
<o M(x) s>/lom 
(0 M(x) 6)/10-’ 

H”CI 
<OlwG(l> 

D”CI 
(0, 1 M(x) 0, 
(0.2 M(x) 032) 

I I 

1> 

<I, 1 M(x) 1, I> 
<o Jwx1 I> 

I I <o M(x) 2> 

3.6973 I5 f 0.00047 
3.697349 f 0.00053 
3.798748 *0.00053 
3.897046 4o.ooo73 
3.698434 f 0.0010 
0.243372 f O.OOtX53 

il.2268 f 0.0043 
-0.02669 f omOs3 

0.2235 f O.Oll* 
-0.02345 f 0.0012” 

0.00172 f 0.000087* 
0.3039 f 0.0 153’ 
0.3959 f 0.0197* 
0.2442 f 0.0063 

-0.02515 f 0.00077 
0.002182 f 0.000087* 
0.001875 f O.ooO24 

-0.02712 f O.OtM30 
0.2480 f 0.0223 

-0.0270 f 0.00108 
-0.02652 f 0.00267 

-1.0217 f 0.00333 
-2.8086 f 0.0120 

2.2048 f OXi 
- 1.0907 f 0.00367 

-2.65 f 0.265 
2.002 f 0.200 

3.697419 
3.697419 
3.798766 
3.897164 
3.6974 I9 
0.243427 
0.243427 

-0.026876 
0.243427 

-0.026876 
0.001876 
0.33991 
0.4086S 
0.243427 

-0.026876 
0.001876 
0.001876 

-0.026876 
0.243427 

-0.026876 
-0.026876 
-1.0217 
- 2.8083 

2.204s 
-1.G907 
- 2.8083 

2.2045 

Kaiser (1970) 
Kaiser (1970) 
Kaiser (1970) 
Kaiser (1970) 
de Lceuw & Dymanus (1973) 
Pine er rrl. (1985) 
Totb et nl. (1970) 
Totb et uL (1970) 
Benedict et al. (1957) 
Benedict et 01. (1957) 
Benedict et al. (1957) 
Benedict et al. (1957) 
Benedict et al. (1957) 
Atwood el al. (1972) 
Atwood et oi. (1972) 
Atwood er al. (1972) 
Ogilvie & Lee (1989) 
Boulet et ol. (1975) 
Penner & Wcber (1953) 
Penner & Webet (1953) 
Iaffe et al. (1962) 
Gelfand e& al. (1981) 
Gelfand er al. (1981) 
Gelfand ef al. (1981) 
Gelfand et al. (1981) 
Reddy ( 1980) 
Reddy (1980) 

0.243665 f 0.0001 I 0.24343 

3.679470 f 0.000267* 3.682987 
3.679670 f 0.00117* 3.682987 
3.752952 f 0.00083* 3.756166 

0. I88 + 0.00093* 0.2067 
-0.0166 f 0.00083* -0.01879 

Pine et al. (1985) 

Kaiser (1970) 
Kaiser (1970) 
Kaiser (1970) 
Benedict t-r al. (1957) 
Benedict er crl. (1957) 

<olMw)l3> 0.00103 f 0.wOo50’ 0.001225 

* Statistical weighting factor modified as described in the text. 

Ekncdict et 4. (1957) 
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(Bouanich et al., 1986) including terms containing 
(consistently) the potential-energy coefficients a, 
(Coxon & Ogilvie, 1982) in the Dunham (1932) 
function, 

up to ,. 
“t 

The distinction between <uJ 1 M(x) 1 u’J’> 
and (v lM(x)(v’> or between <uJ lx’1 v’J’> and 
{u Ix-‘lo!> may be ignored because the higher-order 
rotationial effects, quite small for small values of 
J, have been ignored in the analysis of the exper- 
imental data to produce the experimental values 
(uJ~MQx)~o’J’). The results of the fit, Mj and their 
standard1 errors, are listed in Table 3, whereas the 
calculated values of the expectation values and matrix 
elements are compared with the experimental values 
in Table 2. The P-value of the fit is 5.1 x lo7 and the 
standard deviation is 1.4 x lo-’ (almost an order of 
magnitude greater than the apparent limit of the 
numetiaal precision); the sample correlation co- 
efficient is 0.99999997, whereas in the parameter 
correlat/on matrix only I value of the 28 elements cir 
below the principal diagonal has a magnitude BO.9, 
and only, 4 further have magnitudes >0.8. Moreover, 
the same results, well within the experimental errors, 
were given by all three BASIC processors. All these 
indicatars are consistent with a successful fit of an 
adequate model. From the values of the dipole-mo- 
ment coefficients Mj, together with both the calcu- 
lated vallues of the expectation value <O 1 M(x) IO> and 
the matrix elements (0 1 M(x) I u’), 0 < tr’ < 8, and the 
potential-energy coefficients nj and including the stan- 
dard errors of all these quantities, the values of the 
co&icients Ct;’ and Dt;’ in the Herman-Wallis factor 
F(J, J’,Iu, u’) were calculated from the analytic rc- 
lations (Tipping & Ogilvie, 1982; Ogilvie & Tipping, 
1985); the standard errors of these values of the 
Herman-Wallis coefficients were also calculated by 
means of a Monte-Carlo procedure (Ogilvie, 1984). 
The calculated values are compared with the exper- 
imentall results in Table 4. 

In general, the values of the dipole-moment coeffl- 
ccints M, calculated here are similar to those calcu- 
lated by Kobayashi & Suzuki (1986). In particular, 
althouefh the signs of the experimental matrix el- 
ements (o I M(x) I u’> in the present work agree with 
those determined by Kobayashi & Suzuki (1986) in 
the course of the generation of their septic function, 

Table 3. Derived values of the .meStcients 
M, of the cl&riic dipole-momant function 

of HCl 

i M,/lO-aCm 
0 3.645867 * 0.000253 
1 4.123336 & 0.00147 
2 0.006882 + 0.0 177 
3 -5.10960 * 0.0438 
4 -3.0648 k 0.0876 
5 -1.174 & 0.142 
6 - 1.457 + 0.242 
7 1.172 k 0.687 

the value of M, has the opposite sign but a similar 
magnitude. One reason for the differences may be in 
inclusion by the latter authors of superseded, too 
small values of the matrix elements (0 ( M(x) (2> and 
<O)M(x)l3>, b t . u m any case their value of M, 
is much Iess statistically significant than the value 
here. Despite the fact that they also tried to incorpor- 
ate the experimental values of the Herman-Wallis 
coefficients into their fit, there remain large discrepan- 
cies between their calculated and observed values of 
these coefficients (for which they failed to provide any 
indication of the uncertainty); for this reason also, 
some values of the matrix elements, for instance 
(01 M&)15> and <OIM(x)17>, fit poorly. [Com- 
monly the experimental matrix elements from recent 
experiments have much smaller relative errors than 
the small corrections in the Herman-Wallis factor 
(that are especially prone to model errors) and thus 
the former constitute a much more reliable basis 
of production of dipole-moment functions.] The 
deviations of the present calculated values of the 
Herman-Wallis coefficients from the experimental 
values are generally as good as those in their work, 
although only the signs, not the magnitudes, of the 
experimental values entered the present calculations 
directly, in order to resolve the ambiguity of sign 
of the matrix elements (because the IR intensities 
are proportional to the squares of such quantities). 
Because the values of the potential-energy coefficients 
a, generated by Kobayashi & Suzuki (1986) differ 
greatly from those accurately de&mined by means 
of the analysis of all the spectra of all the iso- 
topic variants of HCl (Coxon & Ogilvie, 1982) and 
found to reproduce the spectral frequencies and 
wavenumbers within 1.37 SD, the basis of their 
determination of the dipole-moment function is in 
any case suspect. Their claim also to take account of 
the data of Clayton et al. (1983) is irrelevant because 

Table 4. Comparison of observed and calculated values of the coefiicients Cg and Di in the Henna~WaHis factor 

C$/lW LI:/10-’ 
Refereme 

Observed Calculated Observed Calculated for observed 
0 I.1 19 f 0.0004 - 

-2.560 + 0.008 - 2.60 f 0.Ocm8 3.20fo.23 2.63 i 0.008 Pine er al. (1985) 

-0.86*0.15 1.7*0.3 -0.498 1.27 f f 0.0056 O.OM) 4.1 - f 2.0 4.22 3.04 * + 0.043 0.23 Toth Benedict er al. et (1970) 41. (1957) 
2.77 +O.ll 2.87+0.11 14.2 f I.7 8.3 * 0.69 Gelfand tv a/. (1981) 
1.74+0.13 1.67kO.19 4.61 f 2.4 8.1 * 1.2 Gclfand LI nl. (1981) 
3.35 f 0. I I 2.62fO.lZ 7.99 it 1.8 10.5 * 0.73 Gclfand ef a/. (1981) 
4.37 f0.13 3.24kO.13 - 13.6 f 0.86 Gelfand et al. (1981) 
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the latter spectral data were also included in the 
analysis made by Coxon & Ogilvie (1982). It should 
be noted that the analysis of Clayton et al. (1983) is 
also suspect; because, for instance, the range of values 
of a, determined by Clayton et al. (1983) for IPCl 
and H3’C1 separately is 10 times the stated standard 
error, it is difficult to have confidence in the math- 
ematical significance of at least these error estimates, 
In a recent determination of the dipole-moment 
function of HCl, because Bouanich (1987) used terms 
up to only a, in the potential-energy function and in 
other quantities, his results are not as accurate as 
those presented here; moreover, his use of the super- 
seded values of <OIM(x)12> and <OlM(x)j3> means 
that, even within the Sited accuracy of the terms he 
retains, the results are obsolescent. 

5. CONCLUSIONS 

We have presented the mathematical basis for two 
versions of a new program for the general analysis of 
linear regression incorporating weights for the input 
data that may be based on both the standard devi- 
ations of these data and a global weighting factor 
that is required if the dependent variable has been 
transformed in a nontrivial manner in order to permit 
the linear regression. The implementation of this 
basis in both versions, Cd and svd, of the program 
GWLREG, listed in the appendices, has been tested 
both in its critical subroutine for matrix inversion and 
by means of standard functions (Wampler, 1969). 
For data sets with strongly correlated regressor vari- 
ables, the svd version is preferable. The program 
GWLREG has then been applied to the new 
determination of the electric dipole-moment function 
of the diatomic molecule HCl from the experimental 
data for the expectation values from the Stark effect 
and the matrix elements from IR intensities. The 
results will be used in a separate determination of 
the vibration-rotational Einstein coefficeints of HCI 
(to be published). 

It should be noted that the new program 
GWLREG, based on previously developed algor- 
ithms and programs (Ogilvie & Abu-Elgheit, 1981), 
has many advantages because of both its flexibility 
(within the confines of linear regression models) 
and the range of indicators of goodness of fit. Even 
though one version may, on occasion, prove limited 
by the numerical presision involved in the procedure 
of matrix inversion, such cases will require extreme 
precision. Used in this version, the Crout method has 
been demonstrated to be very efficient in this appli- 
cation (F’ress el al., 1985). Although producing even 
greater precision, the other algorithm based on singu- 
lar-value decomposition requires about 60% greater 
storage area for arrays, has 30% more statements, 
and thus executes correspondingly less rapidly than 
the version based on the Crout decomposition. More- 
over, the application of the constraint of passage 
of the fitted function through the origin is more 

difficult to accomplish in the svd version than in the 
Cd version, although in fact better results (i.e. much 
smaller residuals and correspondingly a smaller 
standard deviation of the fit) are obtained in the 
test programs Y 1 and Y2 if this constraint is not 
enforced. The comparative tests of the two versions 
to the solution of the normal equations or of the 
equivalent design matrix indicate that under these 
conditions the svd algorithm does not produce results 
greatly superior to the other; certainly in the actual 
application to the dipole-moment data the exper- 
imental error of the latter is much more important to 
the overall accuracy than the numerical limitations 
of either algorithm. Also, the implementation of the 
svd algorithm operates poorly with the BASICA 
interpreter, presumably because of the limitations 
of the exponent range thereof. For these reasons 
we present here both versions, Cd and svd, of the 
program GWLREG. 

For comparison, another general routine for 
unconstrained parameter estimation (in FORTRAN 
and therefore much less easy to use on personal 
computers) in use in this laboratory can provide 
at least 14 significant digits of accuracy in the 
same regression problems Yl and Y2; this program 
utilizes the algorithm developed by Levenberg et al. 
(Osborne, 1972) and avoids the explicit inversion 
of a matrix by applying Gauss-Newton procedure 
starting from supplied initial estimates and (hope- 
fully) converging to the correct results. However, in 
this indirect approach, unlike the direct approach 
in GWLREG, the final results are dependent in 
principle on the choice of the initial estimates; such 
a disadvantage may be tolerable when for nonlinear 
regression models no direct approach is possible, 
but one would in general prefer to avoid any poss- 
ible arbitrariness of ‘the solutions to a physical prob- 
lem. The limitations due to numerical precision in 
GWLREG can essentially be ignored if and when a 
further variety of BASIC for personal microcom- 
puters becomes available that carries at least 20- 
and preferably 30---significant digits; the time is now 
ripe for such a development. Further extensions 
to GWLREG that one might contemplate are the 
provision of an automatic plotting routine (Ogilvie, 
1986), which would however make the program less 
portable between different BASIC processors, and a 
subroutine for prediction (interpolation) of further 
values of the dependent variable for a given set of 
values of the independent variables, with full measure 
of the standard deviation of such predictions through 
the use of the parameter correlation matrix. The 
latter extension is trivial to program, but would 
require a specific inverse transformation of the depen- 
dent variable relative to that used in the regression 
analysis. Other transformations of input variable can 
be easily accommodated by means of the insertion 
of the necessary statements in the input section. 
The flexibility of BASIC as the language of this 
program GWLREG makes such modifications easy 
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to carry out, with rapid subsequent recompilation if 
necessary. 
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APPENDIX A 

Listing of GWLREG Eased on Grout Decomposition 

DEFDBL A-H,O-Z : DEFINT I-N 
LPRINT "General Weighted Linear Regression (Cd) @ J.F. Ogilvie 1990 1 1" 
LPRINT : PRINT 'General Weighted Linear Regression w : PRINT 
’ VARIABLE TRANSFORMATION * * * * * 
DEF FNX(X,K,~)-x 0 cmL(I-1) 1 for test case 
DEF FNY(Y,I)-Y ’ 1.#+1.D-O*CDBL(I-1~+l.D-O*CDBL(~-l)-2+l.D-O*CDBL(I-l)-3 
+1-D-O*CDBL(I-l)-Q+l.D-O*CDBL(I-11-5 ’ for test oases 
DEF FNW(X,Y,W)-l#/W'2 
’ CONTROL SECTION 
DIM X(ll,lOO),Y(lOO),W(loO).A(11,11~,G~ll),B(ll),S(ll~,~~ll,ll~,IX~ll~ 
DIM AI(ll.11) 
INPUT "For polynomial regreaSlOn type 
type 'LIN"';A$ 

'POLY' or for linear regression 

IF A$="POLY" THEN 130 ELSE IF AS-"LIN" THEN 160 ELSE PRINT 
*Error in input" : GOT0 110 
INPUT "Maximum degree of polynomial (~11) - ":K4 
INPUT "Are results for lesser degrees wanted? Type 'YES' or 'NO'.":BS 
GOT0 180 
INPUT "Number of independent variables (~11) = ":K2 
B$= "No" 
INPUT "Is y-intercept to be zero? Type 'YES' or 'NO'. ":D$ 
IF DS="YES" THEN IY-0 ELSE IY-1 
’ DATA INPUT SECTION * * * * * 
INPUT "Number of data cases (~101) = ":N 
K5-1 
IF AS=" POLY" THEN K2=1 
FOR I-KS TO N 

FOR K=l TO K2 
PRINT II x(~':K:",":I;")I": : INPUT : X(K,I) 
X(K,I)-FNX(X(K.I),K,I) 

NEXT K 
IF A$<>"POLY" THEN 310 
FOR K-2 TO K4 : X(K,I)=X(l,I)-K : NEXT K 



68 J. F. OOILVIE 

PRINT u y(";I;")=": : INPUT ; Y(1) 
Y(I)-FNY(Y(I),I) 
PRINT n w(";I:")="; : INPUT W(I) 
IF ASS(W(I))<.~O~O~O~O~~O~~~# THEN W(I 
W(I)=FNW(X(l,I).Y(I).W(I)) 

310 
320 
330 
340 
350 
360 
370 

300 
390 
400 
410 
420 
430 
440 

NEXT I 
INPUT "Are mw data to be corrected befo Ire processing? 

)=l# 

&pe ‘YES’ or- 'NO'.";DS 
IF DS="YES" THEN WSUB I290 
' COMPOTATION OF RESULTS--PREPARATION OF NORMAL EQUATIONS * * * * * 
IF A$<>"POLY" THEN 440 
IF B$="YBS" THEN K7=1 ELSE K?=K4 
K6=K7 
K2=K6 
Kl-K2+IY 
FOR I=1 TO Kl 450 

460 G(I)=O# : S(I)-O# : B(I)=O# 
470 FOR J=l TO Kl : A(I,J)=O# : NEXT J 
480 NEXT I 
490 SW=O# : FOR 1~1 TO N : SW=SW+W(I) : NEXT I 
500 IF IY=0 THEN Gl=O# ELSE A(l,l)=SW 
510 Y5=0# 
520 FOR K-l TO Kl 
530 FOR J-1 TO Kl 
540 FOR I-1 TO N 
550 IF K>l THEN 630 
560 IF IY-1 THEN IF J=l THEN 600 
570 G(J)=G(J)+X(J-IY,I)*Y(I)*w(I) 
580 IF IY-0 THEN 610 ELSE A(l,J)-A(l,J)+X(J-l,r)*W(I) 
590 WTO 640 
600 G(l)=G(I)+Y(I)*W(I) 
610 IF IY=l THEN YS=YS+Y(I)-Z*W(I) ELSE IF J-1 THEN Y5.Y5+Y(I)-2*W(I) 
620 IF IY=l THEN 640 ELSE IF J=l THEN Gl-Gl+Y(I)*W(I) 
630 IF J>=K THEN A(K,J)-A(K,J)+X(K-IY,I)*X(J-IY,I)*W(I) 
640 NEXT I 
650 A( J,K)=A(K,J) 
660 NEXT J 
670 NEXT K : IF IY-l THEN Gl-G(1) 
680 ' SOLUTION OF NORMAL EQUATIONS BY THE CROUT METHOD * * * * * 
690 FOR I-1 TO Kl : FOR J=l TO K1 : AA(I,J)*A(I,J) : NEXT J 
700 NEXT I 
710 FOR 1-l TO Kl : R5=0# 
720 FOR J-1 TO Kl : IF ABS(AA(I,J))>R5 THEN RS=ABS(AA(I, 51) 
730 NEXT J : IF ABS(R5)<1D-38 THEN 1680 
740 S(I).=l#/RJ : NEXT I 
750 FOR J-1 TO Kl : IF J=l THEN 800 
760 FOR I=1 TO J-l : SS=AA(I,J) : IF I=1 THEN 790 
770 FOR K=l TO I-l : SS-SS-AA(I,K)*AA(K,J) 
780 NBXT K : AA(I,J)-SS 
790 NEXT I 
800 R5-O# : FOR I=J TO Kl : SS-AA(1.J) : IF J-1 THEN 830 
al0 FOR K=l TO J-l : SS-SS-AA(I,K)*AA(K,J) : NEXT K 
020 AA(1, J)-SS 
a30 R6*S(I)*ABS(SS) 
a40 IF R6cR5 THEN 860 
a50 K3-I : R5-R6 
860 NEXT I : IF J-K3 THEN 900 
am FOR K-1 TO Kl : R6=AA(K3,K) : AA(K3,K)-AA(J,K) 
a80 AA( J,K)-R6 : NEXT K 
890 S(KB)d(J) 
900 IX(J)-K3 : IF J-K1 THEN 930 
910 IF ABS(AA(J,J))<ID-38 THEN AA(J,J)=lD-32 
920 R6*1#/AA(J,J) : FOR T-J+1 TO Kl : AA(I,J)-AA(I,J)*R6 : NEXT I 
930 NEXT J : IF ABS(AA(Kl,Kl))<lD-38 THEN AA(Kl,Kl)=lD-32 
940 FOR I-l TO Kl : FOR J-l TO Kl : AI(I,J)-O# : NEXT J 
950 AI(I,I)-l# : NEXT I 
960 FOR K-1 TO Kl : FOR I-1 TO Kl : S(I)=AI(I,K) : NEXT I 
970 GOSUB 1580 : FOR I-l TO K1 : AI(I,K)-S(1) : NEXT I : NEXT K 
980 FOR I=1 TO Kl : $(1)-G(I) : NEXT I : GOSUB 1560 
990 FOR I=1 TO Kl : B(l)-S(I) : NEXT I 
1000 FOR I-l TO Kl : S(I)--G(I) 
1010 FOR J=l TO Kl : S(I)-S(I)+A(I,J)*B( J) : NEXT J 
1020 NEXT I : GOSUB 1580 
1030 FOR I-l TO Kl : B(I)=B(I)-S(1) : NEXT I 
1040 ss-O# : FOR I-l TO N 
1050 IF IY-0 THEN YY-O# ELSE YY=B(l) 
1060 FOR K=l TO K2 : YY=YY+B(K+IY)*X(K,I) : NEXT K 
1070 ss-ss+W(I)*(YY-Y(I))"2 
1080 NEXT I 
1090 FOR K-1 TO Kl : S(K)=SOR(AI(K,K)*SS/CDBL(N-Kl)) : NEXT K 
1100 R5-SS/(Y5-Gl-2/SW) 
1110 R6=1#-R5 : F=CDBL(N-Kl)*Rs/(Rs+CDBL(K2)) : R6=SOR(R6) 
1120 ’ OUTPUT OF RESULTS * * * * * 
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LPRINT : IF A$="POLY" THEN LPRINT "Degree of polynomial - ":K6 : LPRINT 
LPRINT “NO. Coefficient Standard Error" 
FOR K-l TO Kl : LPRINT K-IY,B(K),S(K) : NEXT K 
LPKTm 8 LPRINT “IF’-value I II, t LPRINW UEIN! "ww.##w#'- - - n IF8 
LPRINT " Standard deviation of fit = * 
LPRINT USING "##.####-"--": SQR(SS*CDBL(N)/(kDBL(N-Kl)*SW)) 
LPRINT "Absolute value of sample Correlation Coefficient = ": R6 
INPUT "Is table Of residuals wanted? Type 'YES ’ or ‘NO’.“:C$ 
IF C$-"YES" THEN GOSUB 1450 
INPUT "Is table of correlation coefficients wanted? 
Type 'YES' or 'NO'.";CS 
IF CS-"YES" THEN GOSUB 1530 
GOSUB 1290 
IF A$<>"POLY" THEN 1700 
K6-K6+1 
IF K6<-K4 THEN 430 ELSE 1700 
’ DATA CORRECTION SECTION * * * * * 
PRINT : INPUT "Number of data oases to be deleted = ":K7 
IF K7<1 THEN 1400 ELSE IF K7=1 THEN 1320 
PRINT "Enter case numbers in descending Order." 
FOR J-l TO K7 

N=N-1 
INPUT "Case number to be deleted = ";K3 
FOR I-K3 TO N 

FOR K-1 TO X2 : X(K,I)=X(K,I+l) : NEXT K 
Y(I)=Y(I+l) : W(I)-w(I+l) 

NEXT I 
NEXT J 
INPUT "Number of data cases to be added = “:K3 
K5-N+l : N=N+K3 
IF K7>0 OR K3>0 THEN 230 
RETURN 
v OUTPUT OF TABLE OF RESIDUALS * * * * * 
LPRINT : LPRINT m Table of Residuals " : LPRINT 
LPRINT "Case No. X Y talc Y ohs Ycalc-Yobs 
FOR I=1 TO N 

IF IY-0 THEN vV=O# ELSE YY=B(l) 
FOR K=l TO K2 : YY=YY+B(K+IY)*X(K,I) : NEXT K 
LPRINT " 1. ; I ; II ";X(l,I);" ";Yy; II ";Y(I):" ";YY-Y(1) 

NEXT I 
LPRINT : RETURN 
' OUTPUT OF COVARIANCE (CORRELATION) COEFFICIENTS * * * * * 
LPRINT n Parameter Correlation Matrix " : LPRINT 
FOR I=1 TO Kl : FOR Y=l TO I 

LPRINT USING "###.####":AI(I.J)/SQR(AI(I,I)*AI(J,J)): 
11550 
Ii560 
2570 NEXT J : LPRINT : NEXT I : RETURN 
1560 ’ SUBSTITUTION SUBROUTINE * * * * * 
I590 K5-0 : FOR I=1 TO Kl : KB=IX(I) : SS-S(K3) 
I600 S(K3)=S(I) : IF K5=0 THEN 1620 
1610 FOR J=K5 TO I-l : SS=SS-AA(I,J)*S(J) : NEXT J : GOT0 1630 
1262; IF ABS(SS)>~D-36 THEN K5=1 

S(I)=SS : NEXT I 
4640 FOR I-K1 TO 1 STEP -1 : SS=S(I) 
1650 
1660 
1670 
4680 

j% 
1710 
1720 

IF I=Kl THEN 1670 
FOR J=I+l TO Kl : SS-SS-AA(I,J)*S(J) : NEXT J 
S(I)-SS/AA(I,I) : NEXT I : RETURN 

PRINT “Siingular matrix -- inversion aborted" 
’ TERMINATION * * * * * 
LPRINT : PRINT : PRINT "Analysis completed" 
DS-INKEYS : IF DS-"" THEN 1710 
END 

:oo 
30 
LO 

:: 

70 

APPENDIX B 

Listing of G WLREG Bclced on Singular-value Decomposition 

DBFDBL A-H,O-Z : DEFINT I-N 
LPRINT “General Weighted Linear Regrsssion (svd) @ t.F. OgiIvie 1990 
LPRINT : PRINT "General weighted Linear Regression : PRINT 
’ VARIABLE TRANSFORMATION * * * * * 
DEF FNX(X,K,I)=X ' CDBL(I-1) ' for test Case 
DEF FNY(Y,I)-Y ' l.#+l.D-O*CDBL(I-l)+l.D-O*CDBL(I-1)-2+1.D-O*CDBL(I- 
+l.D-O*CDBL(I-l)-4+1.D-O*CDBL(I-l)-5 ' for teat Case8 
DEF FNw(X,Y.W)-l#/W 

1 1" 

1)_3 

80 ' CONTROL. SBCTION 
90 DIM x(ll,lOO),~(lOO),w(lOO),~(lOO,ll),G(lOO),B(ll),CV(ll,ll)~T(l~) 
100 DIM V(11,11).0(11) 
110 INPUT “For polynomial regression type 'POLY' or for linear regression 

type 'LIN"';A$ 
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120 IF AS-"POLY" THEN 130 ELSE IF AS="LIN" THEN 160 ELSE PRINT "Error in 
input" : GOT0 110 

I.30 INPUT "Maximum degree of polynomial (tll) = ";K4 
140 INPUT "Are results for lesser degrees wanted? Type 'YES' or 'NO'.":B$ 
150 GOT0 180 
160 INPUT "Number of independent variables (<ll) = ";K2 
170 BS= "NO" 
180 ' DATA INPUT SECTION * * * * * 
190 INPUT "Number of data cases (~101) = ":N 
200 K5=1 
210 IF AS-"POLY" THEN K2=1 
220 FOR I-K5 TO N 
230 FOR K-l TO K2 
240 PRINT ' x(":K;",";I;")="; : INPUT ; X(K,I) 
250 X(K,I)-FNX(X(K,I),K,I) 
260 NEXT K 
270 IF A$<r"POLY" THEN 290 
280 FOR K-2 TO K4 : X(K,I)=X(l,I)'K : NEXT K 
290 PRINT 11 y(":I:")-": : INPUT : Y(1) 
300 Y(I)=FNY(Y(I),I) 
310 PRINT II w(";I;")=.'; : INPUT W(I) 
320 IF ABS(W(1))<.00000000000001# THEN W(I)=l# 
330 W(I)-FNW(X(1,I).Y(I),W(I)) 
340 NEXT I 
350 INPUT “Are any data to be corrected before processing? TYPO 'YES' or 

'NO'.";D$ 
360 IF DS=*YES" THEN GOSUB 1540 
370 ' COMPUTATION OF RESULTS--PREPARATION OF DESIGN MATRIX * * * * * 
380 IF A$<?"POLY' THEN 420 
390 IF B$="YES" THEN K7=1 ELSE K7=Kd 
400 K6=K7 
410 KZ=K6 
420 Kl=K2+1 
430 FOR I=1 TO N 
440 FOR J-1 TO K2 : U(I,J+l)-X(J,I)*W(I) : NEXT J 
450 U(I.l)=W(I) : G(I)=Y(I)*W(I) : NEXT I 
460 ' COMPUTATION OF RESULTS--SOLUTION BY SINGULAR-VALUE DECOMPOSITION * * 
470 D=O# : P5=0# : P4.0# 
480 FOR I-l TO Kl : L-I+1 : Q(I)=P5*D : D=O# : S=O# : P5-O# 
490 IF I>N THEN 590 
500 FOR K-I TO N : PS-PS+ABS(U(K,I)) : NEXT K 
510 IF ABS(P5)<0# THEN 590 
520 FOR K=I TO N : U(K,I)=U(K,I)/P5 : S.S+U(K,I)*U(K,I) : NEXT K 
530 F-U(I,I) : D--SOR(S)*SGN(F) : H-Fell-S : U(I,I)=F-D 
540 IF I-K1 THEN 580 
550 FOR J.=L TO Kl : S=O# 
560 FOR K-1 TO N : S.S+U(K,I)*U(K,J) t NEXT K 4 F-S/H 
570 FOR K-I TO N : U(K,J)-U(K,J)+F*U(K,I) : NEXT K : NEXT J 
580 FOR K=I TO N : U(K,X).P5*U(K,I) : NEXT K 
590 T(I)=PS*D : D-0# : S=O# : P5-0# 
600 IF I>N THEN 720 
610 IF I-K1 THEN 720 
620 FOR K=L TO Kl : PS=PS+ABS(U(I,K)) : NEXT K 
630 IF ABS(P5)<0# THEN 720 
640 FOR K-L TO Kl : U(I,K).U(I,K)/PS : S=S+U(I,K)*U(I,K) : NEXT K 
650 F=V(I,L) : D=-SQR(S)*SGN(F) : H-F*D-S : U(I,L)=F-D 
660 FOR K-L TO Kl : Q(K)-U(I,K)/H : NEXT K 
670 IF I-N THEN 710 
680 FOR J-L TO N : S=O# 
690 FOR K-L TO Kl : S-S+U(J,K)*U(I,K) : NEXT K 
700 FOR K=L TO Kl : U(J,K)=U(J,K)+S*Q(K) : NEXT K : NEXT J 
710 FOR K-L TO Kl : U(I,K)-PS"U(1.K) : NEXT K 
720 SEABS(T(I))+ABS(Q(I)) : IF Pd<S THEN P4-S 
730 NEXT I 
740 FOR I-K1 TO I STEP -1 : IF I>=Kl THEN 810 
750 IF ABS(D)<O# THEN 800 
760 FOR J=L TO Kl : V(J,I)-(U(I,J)/U(I,L))/D : NEXT 3 
770 FOR J=L TO Kl : S-O# 
780 FOR K-L TO Kl : S-S+U(I,K)*V(K,J) i NEXT K 
790 FOR K-L TO Kl : V(K,J)-V(K,J)+S*V(K,I) : NEXT K : NEXT 2' 
800 FOR Y-L TO Kl : V( I,J)=O# : V( J,I)-O# : NEXT J 
810 V(I,I)-l# : D-Q(I) : L=I : NEXT I 
820 FOR IrKl TO 1 STEP -1 : L-I+1 : D-T(I) 
830 IF I<Kl THEN FOR J-L TO Kl : U(I,J)-O# : NEXT J 
840 IF ABS(D)<O# THEN 910 
050 D-l/%/D : IF I=Kl THEN 900 
860 FOR J-L TO Kl : S=O# 
070 FOR K=L TO N : S-S+U(K,I)*U(K,J) : NEXT K 
080 F=(S/U(I,I))*D 
090 FOR K-I TO N : tJ(K,J)=LJ(K,J)+F*U(K,I) : NEXT K : NEXT J 
900 FOR J-1 TO N : U(J,I)PU(J,I)*D : NEXT J : GOT0 920 
910 FOR J-I TO N : U(J,I).O# : NEXT J 
920 U(I,I)-U(I,I)+l# : NEXT I 
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930 FOR K-K1 TO 1 STEP -1 : FOR K3.1 TO 50 : FOR L=K TO 1 STEP -1 
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940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 

1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 

K5=L-1 : IF ((ABS(Q(L))+PS)-P4)<0# THEN 1030 
IF ((ABS(T(KS))+P4)-P4)<0# THEN 970 

NEXT L 
C=O# : S=l# : FOR 1-L TO K : F=S*Q(I) 

IF ((ABS(F)+P4)-P4)<0# THEN 1020 
D-T(I) : H=SQR(F*F+D*D) : T(I)-H : H=l#/H 
C=D*H : SW-(F*H) : FOR J-l TO N : P2=U(J,K5) : P3=U(J,I) 

U(J,K5)=P2*C+q3*S : U(J,I)--P2*S+P3*C : NEXT J 
NEXT I 

PB=T(K) : IF L<>K THEN 1060 
IF P3>=0# THEN 1210 
T(K)--P3 : FOR J-l TO Kl : V(J,K)=-V(J,K) : NEXT J : GOT0 1210 
IF X3-50 THEN PRINT "No convergence in 50 iterations" : STOP 
Pl=T(L) : K5-K-1 : P2-T(K5) : D-P(K5) : H-0(K) 
F=((P2-P3)*(P2+P3)+(D-H))/(2#fH*P2) : D=SQR(F*F+l#) 
F=((Pl-P3)*(Pl+P3)+H*((P2/(F+ABS(D)*SGN(F)))-H))/Pl 
C=l# : S=l# : FOR J=L TO K5 : I=J+l : D=Q(I) : P2=T(I) 

H=S*D : D=C*D : P3=SQR(F*F+H*H) : Q(J)=PB : C-F/P3 
S=H/P3 : F=Pl*C+D*S : D=-Pl*S+D*C : R=P2*S 
Pz=P2*c : FOR K5=1 TO Kl : Pl=V(KJ,J) : P3=V(K5,1) 

V(K5,J)-Pl*C+P3*S : V(KS,I)=-Pl*S+P3*C : NEXT K5 
P3=SQR(F*F+H*H) : T(J)=P3 : IF ABS(P3)<0# TREN 1170 
P3=1#/P3 : C=F*P3 : S=H*P3 
F-C*D+S*P2 : Pl--S*D+C*PZ : FOR K5-1 TO N 

P2-U(K5.J) : P3=U(K5,1) : U(KS,J)-P2*C+P3*S 
U(K5,1)=-PZ*S+P3*C : NEXT K5 : NEXT J 

Q(L)=O# : Q(K)=F : T(K)=Pl : NEXT K3 
NEXT K : P5=0# : FOR J=l TO Kl : IF T(J)>P5 THEN P5=T(J) 
NEXT J : FOR J-1 TO Kl : IF T(J)<.00000000000OO0Ol#*P5 THEN T(J)=O# 
NEXT J : FOR J-l TO Kl : S=O# : IF ABS(T(J))<O# THEN 1250 
FOR I=1 TO N : S=S+U(I,J)*G(I) : NEXT 1 : S-S/T(J) 
Q(J)& : NEXT J : FOR J=l TO Kl : S=O# 

FOR K=l TO Kl : S=S+V(J,K)*Q(K) : NEXT K : B(J)=S : NEXT J 
SS=O# : FOR I=1 TO N : S-B(l) 

FOR J=l TO K2 : S=SrB(J+l)*X(J,I) : NEXT J 
SS-SS+((Y(I)-S)*W(I))-2 : NEXT I : Gl=O# 

FOR I-1 TO K1 : Q(I)=O# : IF T(I)<>O# THEN Q(I)=l#/(T(I)*T(I)) 
NEXT I : FOR I-1 TO Kl : FOR J=l TO I : S=O# 

FOR K=l TO Kl : S=S+V(I,K)*V(J,K)*Q(K) : NEXT K 
CV(I,J)=S : NEXT J : NEXT I : Y5=0# : SW=O# 

FOR I=1 TO N : SW=SW+W(I)_2 : Y5-Y5+(Y(I)*W(I))-2 : Gl=Gl+Y(I)*W(I) 
NEXT I : R5=SS/(Y5-Gl-Z/SW) 

R6-l#-R5 : F=CDBL(N_Kl)*R6/(R5*CDBL(K2)) : R6=SQR(R6) 
’ OUTPUT OF RESULTS * * * * * 
LPRINT : IF A$="POLY" THEN LPRINT "Degree of polynomial = ":K6 : LPRINT 
LPRINT "No. Coefficient Standard Error" 
FOR K=l TO Kl : LPRINT K-l,B(K),SQR(CV(K,K)*SS/CDBL(N-Kl)) : NEXT K 
LPRINT : LPRINT "F-value = ". : LPRINT USING "##.####----":F: 
LPRINT " Standard davktion of fit = ": 
LPRINT USING "##.####"""""; SQR(SS*CDBL(N),'(CDBL(N-Kl)*SW)) 
LPRINT "Absolute value of sample Correlation Coefficient = ": R6 
INPUT "Is table of residuals wanted? Type 'YES ’ or ‘NO’.“;C$ 
IF CS-"YES" THEN GOSUB 1700 
INPUT "Is table of correlation coefficients wanted? Type 'YES' or 
'NO'.";CS 
IF C$="YES" THEN GOSUB 1760 
GOSUB 1540 
IF A$<>"POLY" THEN 1830 
K6=K6+1 
IF K6c=K4 THEN 410 ELSE 1830 
’ DATA CORRECTION SECTION * * * * * 
PRINT : INPUT "Number of data cases to be deleted = ":K7 
IF K711 THEN 1650 ELSE IF K7=1 THEN 1570 
PRINT "Enter case numbers in descending order." 
FOR J=l TO K7 

N=N-1 
INPUT "Case number to be deleted = ":K3 
FOR I=K3 TO N 

FOR K-l TO K2 : X(K,I)-X(K,I+l) : NEXT K 
Y(I)=Y(I+l) : W(I)=W(I+l) 

NEXT I 
NEXT J 
INPUT "Number of date cases to be added = ";K3 
K5-N+l : N=N+K3 
IF K7>0 OR K3>0 THEN 210 
RETURN 
1 OUTPUT OF TABLE OF RESIDUALS * * * * * 
LPRINT : LPRINT 'I Table Of Residuals ' : LPRINT 
LPRINT "Case No. X Y talc Y obs 
FOR I=1 TO N : S=B(l) 

FOR J=l TO K2 : S=S+B(J+l)*X(J,I) : NEXT J 
LPRINT " 0, ; I ; 1. ":X(1,1);" .I ; S ; II ":Y(I);" ":S-Y(1) 

Ycalc-Yobs 
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1750 NEXT I : LPRINT : RETURN 
1760 * OUTPUT 0~ COVARIANCE (CORRELATION) COEFFICIENTS * * * * * 
1770 LPRINT * Parameter Correlation Matrix ' : LPRINT 
1780 FOR I-l TO Kl : FOR J-l TO I 
1790 LPRINT WPfNO “##U.#YI#“;CVLI. J)/SOR(CV(I,I)*CV(J,J))r 
1800 NEXT J : LPRINT : NEXT I : RETURN 
1810 PRINT “Singular matrix -- inversion aborted" 
1820 ' TERMINATION * * * * * 
1630 LPRINT : PRINT : PRINT "Analysis completed" 
1840 DS-INKEYS : IF D$="" THEN 1840 
1850 END 


