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We have determined the coefficients c,, j < 6, defining the potential-energy function V(z), the 
term coefficients Yk,, and other spectral parameters of AIF in the electronic ground state X ‘Z+ 
by a direct fit of the published frequencies and wavenumbers of pure rotational and vibration- 
rotational transitions. We compare the values of the derived coefficients Y, and their associated 
standard errors with those reported from a direct fit of the same spectral data, in relation to the 
significance of spectral parameters determined in the process of reduction of vibration-rotational 
spectra. The direct fit to the potential-energy coefficients is demonstrated to provide not only a 
more compact and more physically meaningful representation, but also to produce a (slightly) 
smaller standard deviation of the fit. The resulting potential-energy function is valid in the range 
of internuclear distance 1.48 < R/ IO-” m G 1.90. IQ 1992 Academic Press, Inc. 

The combined use of digital computers and interferometers having high spectral 
resolving power that enable effectively the simultaneous measurement of thousands 
of vibration-rotational spectral lines due to a particular chemical species produces 
commonly large sets of data, such that printing tables of the frequencies of the lines 
became impracticable for journals. Under these conditions it is imperative to be able 
to reduce the spectra so that the frequencies (or equivalently wavenumbers) of the 
lines are reproduced accurately by means of relatively few parameters according to 
some systematic model or procedure. Dunham enabled such a systematic reduction 
when he introduced ( I) the term coefficients Yk, in a relation for the vibration-rota- 
tional terms 

E,J = 2 2 yk/(u + &)“[J(J f 1 )I’> (1) 

k=O I=0 

which is formally applicable to molecules of a single isotopic specification and in an 
electronic state of type ‘Z. The practical advantage of this relation is that it is linear 
in the parameters Y,, that can thus be determined directly according to a well defined 
statistical procedure, for instance (and most commonly ), weighted linear regression; 
the subscripts k and 1 assume the values of sufficiently large integers that the measured 
frequencies are reproduced within the experimental error of the measurements. The 
disadvantages of this representation are that it is merely a fitting to a double power 
series, lacking any underlying physical model whatsoever (2), and that there may 
eventually arise problems of convergence of the truncated polynomials. 

Dunham also provided a physical model for the molecule as a rotating vibrator 
(1); the vibrational motion is governed by a function for the internuclear potential 
energy that he expressed in the flexible form of a truncated polynomial 

V(X) = &)X2( 1 + 2 ajX’), (2) 
J=I 
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in which the variable x = (R - &)/R, denotes reduced displacement of the internuclear 
distance R from the equilibrium distance R,; sufficient terms containing the coefficients 
Uj are taken in the sum to represent the potential energy according to the extent of 
the vibrational states between which spectral transitions are assigned. Within the ap- 
proximation that electronic and nuclear motions within a molecule are considered 
separable, the effective potential-energy function for the internuclear motion is a fun- 
damental molecular property, characteristic of a specific electronic state and indepen- 
dent of, or insensitive to, the particular nuclear masses (isotopic substitution). Dunham 
related the term coefficients Ykl to the coefficients aj in the potential energy; the coef- 
ficients Ykl are in general functions of not only the coefficients aj, j > 0, but also the 
harmonic vibrational parameter w, and the equilibrium rotational parameter Be, with 
a0 = oz/( 4&). Between the transition frequencies v and the parameters aj, w,, and 
Be there exist highly nonlinear relationships (I); indirect, or iterative, methods of the 
fitting of these parameters become accordingly necessary. Moreover the relationships 
between the term coefficients Yk, and the potential-energy coefficients Uj are internally 
consistent if only the potential-energy function suffices to govern the measured spectra; 
hence certain adiabatic and nonadiabatic effects must be either absent or negligible. 
We regard qualitatively the adiabatic effects to arise from the dependence of the po- 
tential energy on not only the internuclear distance but also the relative momenta of 
the nuclei, whereas the rotational and vibrational motions of the nuclei induce inter- 
actions with other electronic states that invoke the nonadiabatic effects. Because of 
the additional difficulty both to fit the spectra to the potential-energy coefficients and 
to regenerate the spectral lines from the latter parameters, and because the spectroscopist 
cannot be certain that the adiabatic and nonadiabatic effects are negligible, then to 
reduce the spectra merely to the term coefficients is practiced, thus to attain some 
desired compression of data (3) despite the lack of chemical or physical meaning of 
these term coefficients. Procedures of further reduction of these coefficients Ykl, or 
more generally the subsets Y,,. and Y,,, , to the potential-energy coefficients aj in a 
separate successive process have been developed, for instance, with full statistical anal- 
ysis based on analytic methods (4); by such means approximate functions for potential 
energy have been achieved but at the cost of either necessarily arbitrary selection of 
certain subsets of the term coefficients for the reduction or incorporation of all the 
term coefficients, even though there may exist possible inconsistencies within them 
due to a priori unknown adiabatic and nonadiabatic effects. 

In the spirit of Dunham’s analytic method, we have developed both a theory (5) 
and its implementation in an algorithm to enable the determination of all the feasible 
radial functions, potential energy and the composite adiabatic and nonadiabatic effects 
of each nucleus separately (in a heteronuclear diatomic molecule within an electronic 
state of type ‘Z), directly from the frequencies and wavenumbers of pure rotational 
and vibration-rotational transitions, of all applicable isotopic variants simultaneously. 
We have applied this procedure to relatively light molecular species such as the hydride 
LiH (6) and to more massive species such as the nonhydrides SiS ( 7)) LiCl and LiBr 
(8); in each case spectral transitions involving molecules containing at least two variants 
of atomic nuclei of each kind were available. The separate determination of collectively 
the adiabatic and vibrational nonadiabatic effects and of (largely) the rotational non- 
adiabatic effects requires both that such isotopic diversity exists and that rotational 
excitation to a relatively large extent be attained in the set of measured transitions. 
Our experience with SiS ( 7)) despite the diversity of its nuclidic variants, has indicated 
that, for relatively massive molecules and even for comparatively highly excited ro- 
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tational states, the latter rotational nonadiabatic effects may be indeterminate. If the 
compound under investigation is composed of elements that lack stable isotopes, apart 
from the single massive stable nuclide of each atomic type, then one might hence be 
able to determine only the adiabatic potential-energy function: in these conditions the 
fitting procedure is accordingly simplified, as has been practised for many years (4). 

The molecular species *‘Al 19F belongs to a compound for which nuclides of only 
one mass number for each atomic type are available. From accurate measurements 
of its abundant spectral lines ( 9-l 1)) a data set became available that permits tests of 
fitting procedures; the data set includes 30 pure rotational transitions (9, 10) and 5 19 
vibration-rotational transitions ( 1 I ) extending up to o = 5. A previous measurement 
(12) of only 52 vibration-rotational lines of AlF up to only u = 3 was the basis of a 
fit of the combined rotational and vibration-rotational transitions directly to the po- 
tential-energy function in Eq. (2)) although Niay et al. (2) achieved the first fit of 
vibration-rotational data to such an analytic function several years previously. Here 
we compare the reported results of the linear fit to the term coefficients Ykl( 11) with 
the results of the same parameters calculated from the potential-energy coefficients Cj 
that we determined from the same pure rotational and vibration-rotational transitions; 
for this reason we neglect the few lines of the earlier measurements ( 12) that were not 
duplicated in the larger set of data ( 11)) but the precisions of measurement of the two 
sets (II, 12) of data are comparable. The coefficients Cj are factors of the reduced 
displacement variable z = 2(R - R,)/(R + R,) according to the function (13, 14) 

V(z) = coz2( 1 + c C,Z’), (3) 
J=l 

which lacks the serious problems of convergence that afflict Dunham’s function of 
similar form because as R + 00, x + co but z + 2. 

By means of the same algorithm, in improved implementation, that we had used 
previously to determine the radial functions of several other diatomic molecular species 
(6-8 )‘, we have calculated the values of the potential-energy coefficients Cj, j < 6, and 
other spectral parameters of *‘Al19F that suffice to reproduce the frequencies and 
wavenumbers of the known 30 pure rotational transitions (9, 1 O), up to 2, = 4 and J 
= 11, and 5 19 vibration-rotational transitions ( 11 ), up to v = 5 and J = 9 1. The 
standard deviation of the fit of the infrared transitions is 0.0460 m-’ ; each (estimated) 
uncertainty associated with the parameters in Table I represents one standard error. 
The independent parameters number eight, the six potential-energy coefficients cj, 1 
< j < 6, the harmonic force coefficient k,, and the equilibrium internuclear separation 
R,; the other parameters are directly related to these; for instance U,.O = ( 1000 k,N,) ” 
‘/(2?rc), U,,, = 1000 hNJ(Sx*cRz), andcO = U&/(~UO,~) with N,, c, and h being 
the fundamental physical constants. Although we attempted to fit some coefficients 
gj in an auxiliary radial function (6) to represent (mostly) the rotational adiabatic 
effects, we found that no such coefficients were determined significantly. 

Having produced the values of these eight parameters, we readily calculated there- 
from the values of the term coefficients Y,, by direct substitution into the published 
analytic relations (15), specifically all those Ykl that involve the potential-energy coef- 
ficients up to c6 inclusive; the results appear in the first column ofTable II. In accordance 
with the general dictum in science that a numerical value which lacks an explicit 
estimate of its significance is worthless, we sought to associate with each such value 
of Ykl an uncertainty propagated ultimately from the measurements of frequency and 
wavenumber through the parameters in Table I. To take into account this propagation 
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TABLE I 

Coefficients of the Radial Function V(z) for Potential Energy 

and Other Molecular Parameters of 27A1’9F X ‘X+ 

j c. 
3 

other parameters 

0 29128865.15 
f9.2) m-1 

1 -2.18344050 
f0.0000156 

2 2.7909594 Wl,O = (267890.725+0.049) m-l + 
f0.000124 

3 -2.236162 u 
kO.0022 

o,l = (615.930625+0.000033) III-~ u 

4 1.01410 
f0.0191 

k, = (422.83009+0.00029) N ,-l 

5 -0.7038 Re = (1.6543690+O.OOOOOl39)xUJ-10 m 
kO.094 

6 1.538 
20.72 

of error, two methods are available, that we describe as analytic and numerical. Ac- 
cording to the former procedure (4), the variance-covariance matrix produced during 
the calculation of the uncertainties of the parameters in Table I is combined with the 
evaluation of analytic expressions of the partial derivatives of the coefficients Ykl with 
respect to the coefficients Cj, etc., to produce the corresponding variance-covariance 
matrix of the latter parameters; this calculation naturally yields directly the estimated 
standard errors. According to the latter procedure (16), a calculation of Monte-Carlo 
type is performed many times with each parameter in Table I being varied within one 
standard error having as factor a random number of magnitude less than unity and 
generated according to a rectangular distribution; hence the covariance relations, or 
correlations between the input parameters, are taken implicitly into account in the 
resulting estimated uncertainties of the coefficients Yk/ ( 16). The mean values of the 
resulting coefficients Ykl are presented with their standard errors in the second column 
of Table II. That agreement between the directly calculated values and the mean 
values of the coefficients in the first two columns is well within the stated uncertainties 
indicates both the numerical stability of the method and that 100 cycles suffice to 
produce statistically meaningful results. The values of potential-energy coefficients c, 
calculated from the term coefficients Yk$ and Yk,, according to the iterative method 
developed many years ago (4) are essentially identical to those appearing in Table I; 
this agreement is further proof that nonadiabatic rotational effects are negligible within 
the range of the available spectral data and the measurement uncertainties, because 
this procedure (4) takes into account no centrifugal-distortion coefficients correspond- 
ing to the term coefficients corresponding to the term coefficients Ykl, I > 1, which 

these nonadiabatic effects affect most perceptibly. The ratios of the estimated standard 
errors of the parameters Y,, propagated from the potential-energy coefficients c, in 
Table I according to the Monte-Carlo calculation to the corresponding estimated stan- 
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TABLE II 

Comparison ofTerm Coefficients Ykr from Different Methods ofSpectral Reduction 
of Vibration-Rotational Data of AIF X ‘Z+ 

Coefficient Exect/m-1 Average Value/m-' Value"@-1 

Yo,o 18.7384 18.7383+0.0034 

YO,l 55.2480051 55.2480049+0.0000030 55.2480296+0.0000049 

Y0,2/10-4 -1.0478740 -1.0478740~4.9x10-7 -1.048280+0.000068 

Yo,3/10-11 -3.646156 -3.646139+0.00052 -3.050+0.093 

Yo,4/10-16 -1.26332 -1.26335+0.00052 

Yo,5/10-23 -9.844 -9.820+0.20 

Yo,6/10-28 6.97 7.00+0.19 

Yo,7/10-33 5.68 5.6620.25 

Yo,8/10-38 2.73 2.69k0.24 

Yl,O 80232.3804 80232.3807+0.0047 80232.385+0.015 

Yl,l -0.4984000 -0.4983997+0.0000031 -0.4984214+0.0000060 

y1,pJ-7 1.75558 

Yl,3/10-12 1.0367 

Y1,4/10-18 6.843 

Yl,5/10-23 2.37 

Yl,6/10-2g 3.64 

Y2,o -484.9497 

Y2,pO-3 1.70967 

Y2,2/10-g 6.952 

Y2,3/lo-14 1.68 

Y,,,/lo-20 -7.41 

Y3,o 1.9491 

Y3,1/10-6 5.56 

Y3,2/lo-ll -5.4 

Y4,0/10-3 -2.94 

1.75552+0.00124 

1.0376+0.0077 

6.857kO.129 

2.35kO.21 

3.26k3.1 

-484.9500+0.0123 

1.70992+0.00167 

6.961kO.068 

1.65kO.20 

-7.95k4.7 

1.9497+0.0045 

5.54+0.50 

-5.6k1.01 

-2.99kO.68 

1.8548+0.0080 

-484.9536+0.0098 

1.7153+0.0022 

6.01+0.19 

1.9497+0.0024 

5.0320.24 

-2.95t0.20 

areference 11. 

dard errors propagated from the uncertainties of the subset of the coefficients Ykl fitted 
from the transition frequencies and wavenumbers according to an analytic method 
vary within a range 0.5-2.0. Although some systematic trends in this ratio are dis- 
cernible, such a range of variation is of no concern; the reason is that the analytic 
method takes explicitly into account the covariances (or correlation coefficients of the 
parameters) whereas the Monte-Carlo procedure makes no explicit use of the covari- 
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antes of the coefficients cj. There were reported (II) no covariances of the term 
coefficients Y,, that are required to produce more accurate values of the variances of, 
and covariances among, the potential-energy coefficients cj and correspondingly the 
correlation coefficients between the generated values of other term coefficients Yk,. 

In the final column of Table II appears the set of parameters that Hedderich and 
Bernath ( 11) fitted directly to the same set of 549 transitions (with the same statistical 
weights); we calculated the standard deviation of their fit to the infrared lines to be 
0.0477 m”‘. The former authors fitted the data to twelve nominally independent 
coefficients Y,,; that of highest order, Y 4,0, implies the coefficient c6 of maximum 
degree in the potential-energy function that we determined. The latter degree of the 
potential-energy function implies however 12 further coefficients Y,, that could not 
be determined directly during the fit of the spectral transitions, in addition to YO,O 
which cannot be determined directly. As the magnitude of the smallest determined 
coefficient ( 1 I ), Yo,3 - 4 X lo-” m-‘, is however comparable with the magnitude 
of the largest further coefficient, Y,,z - 5 X 10-l’ m-‘, of which the magnitude of 
the associated standard error is also comparable, and as all further coefficients had 
significantly smaller magnitudes even if (in most cases) relatively small errors, no 
advantage would have been derived from the inclusion of these coefficients in the 
fitting model. The standard errors of most coefficients Ykj determined from the direct 
fit exceed greatly the errors propagated from the potential-energy parameters; in the 
cases of Y3,0, Y3,, , and Y4,0, the propagated standard errors exceed significantly those 
from the direct fit. The former effect we attribute to the implicit truncation of the 
fitting model, for instance, of the series Y,,, at YO,, and Y,,z at Y,,, . The agreement of 
the coefficients Yk, between the direct fit and our indirect calculation is generally 
within two standard errors, except in those cases sensitive to the truncation just de- 
scribed. That the discrepancies are generally negligible is consistent with our failure 
to determine any coefficients of the radial function for the rotational adiabatic effects 
which had previously been found to cause such discrepancies. The absence of these 
effects in AlF is consistent with our findings for SiS ( 7)) for which rotational excitation 
to a much greater extent was measured ( 17-19). 

In conclusion we have confirmed that for AlF the careful fit ( 11) of the term coef- 
ficients directly to pure rotational (9, 10) and vibration-rotational transitions ( 11) 
produces values of Yk, almost indistinguishable from those generated indirectly from 
the potential-energy coefficients, although both the standard deviation of the fit and 
the standard errors of most coefficients Ykl are larger in the former procedure ( I1 ) 
than those produced in the direct fit to the potential-energy function. As the latter 
procedure not only required fewer parameters, eight compared with 12, but also pro- 
duced a physically meaningful function, namely, the radial dependence of the potential 
energy which is a fundamental molecular property of the particular electronic state 
X ‘Z + of AlF, instead of a set of mere fitting parameters (2), our contention (3) that 
the latter procedure is generally preferable is confirmed. The reproduction of the tran- 
sition frequencies and wavenumbers directly from the potential-energy coefficients cj, 
Be, and w, poses no complicated computations (such as the numerical solution of 
differential equations) because the expressions ( 15) relating these parameters (up to 
at least cg) to the term coefficients Y,, are sufficiently simple to be evaluated on a 
suitable programmable pocket calculator. The potential-energy function that we gen- 
erated for AlF X ’ 2 + is valid in the approximate range of internuclear distance 1.48 

< R/ lo-” m -C 1.91, and the uncertainties of k, and R, in Table I take into account 
the standard errors of the fundamental physical constants h and N,. 
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