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By means of a quantitative analytic treatment, we have calculated the adiabatic and
nonadiabatic effects on the vibration-rotational energies of diatomic molecules. We have proved

that one can in principle determine independently one coefficient of each radial function
representing the rotational nonadiabatic and adiabatic effects whereas because the remaining
coefficients of the three radial functions representing the adiabatic, rotational and vibrational
nonadiabatic effects appear in inextricable linear combinations they cannot be individually
determined from experimental measurements of transition frequencies in the absence of external
-electric and magnetic fields.

I .  I N T R O D U C T I O N

In his innovative algebraic treatment of the vibration-rotational motions of diatomic

molecules,* Dunham derived analytic relationships between the parameters in his flexible func-

tion for the internuclear potential energy and the molecular eigenenergies for the discrete states

denoted by the vibrational and rotational quantum numbers v and J (in the absence of other con-

tributions to the total molecular angular momentum) respectively. Using this mechanical theory

during succeeding decades spectroscopists have determined these potential-energy functions for

particular diatomic molecules; by this method they sought to achieve a reduction of many fre-

quency and wavenumber data to relatively few molecular parameters in the form of coefficients

in the potential-energy function that serve to reproduce the observed data. These data have

during the course of time become more precise, primarily because of the relentlessly improving

spectral resolution. The spectra of isotopic variants of a particular diatomic species have been

routinely subjected to simultaneous analysis. In these circumstances Dunhamís theory was

found to become inadequate to describe quantitatively data of the available quality and quantity.

Effects beyond those associated with the potential-energy function appeared not only to cause

deviations from the expected mass-scaling factors relating the energies of isotopic variants but

even to lead to systematic discrepancies in the energies of highly rotationally excited states of a
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single isotopic species.2 The attribution of an internuclear potential-energy function implies the

separate treatment of electronic and nuclear motions equivalent to the classical notion 3 of the

atomic model of a molecule that Born and Oppenheimer introduced into quantum mechanics4

The deviations from the mechanical behaviour are attributed to adiabatic and nonadiabatic ef-

fects: adiabatic effects result from the dependence of internuclear potential energy of a par-

ticular isotopicvariant on not only the internuclear distance but also the relative nuclear momen-

ta, thus within a particular electronic state, whereas nonadiabatic effects are attributed to the

induction by vibrational and rotational motions of the nuclei of interactions with other electronic

states.

During the several decades since the work of Born, Oppenheimer and Dunham, many re-

searchers have considered, in progressively greater detail, these effects and have endeavoured

to envisage their explicit consequences in relation to the energies of diatomic molecules. Van

Vleck carried out a systematic analysis of the deviations from the Born-Oppenheimer behaviour

of the vibration-rotational energies of a diatomic molecule related to isotopic effects,í whereas

Townes and coworkers were primarily interested in the effects observable by means of pure rota-
. tional spectra.6. In their more nearly complete treatment of this problem, Herman and As-

gharian produced an effective hamiltonian that takes into account the adiabatic and non-

adiabatic effects up to second order in the ratio of electronic to nuclear masses.7  Treating in

detail the adiabatic potential energy, Bunker proposed the theoretical framework for the cal-

culation of electronic isotope shifts and corrections to the Dunham coefficients YO,J and Y,,o.*-ë~

By means of a more rigorous method” based on the Van Vleck transformation, Bunker and

Moss obtained essentially the same results as Herman and Asgharian. Besides rewriting the

results of Bunker and Moss in terms of isotopically invariant functions, Watson concluded that

the adiabatic and nonadiabatic effects are not separable.12 Despite these and other investiga-

tions, there is still lacking a quantitative analytic treatment of the relation of identifiable theoreti-

cal effects to the parameters that one can experimentally determine in the process of a com-

prehensive analysis of abundant spectral lines due to pure rotational and vibration-rotational

transitions of multiple isotopic variants of a particular diatomic molecular species within one

electronic state; our present analysis arises from this objective. The empirical determination of

adiabatic and nonadiabatic corrections is important because they can be accurately evaluated

by means of quantum-mechanical calculations for only the simplest diatomic molecules. For this

reason we have derived analytic expressions for the vibration-rotational energies in terms of the

parameters in radial functions to represent the adiabatic effects and both the rotational and

vibrational nonadiabatic effects as the basis of a quantitative decision whether these effects are

entirely inseparable. The determination of these effects in the form of radial functions from

vibration-rotational spectra not only generates the most compact and physically meaningful re-

presentation of the observable data13 but also provides information about fundamental

molecular properties that is difficult otherwise to acquire, even by means of ab initio quantum

. . .
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computations for instance. Although to express adiabatic and-especially- nonadiabatic ef-

fects as functions of an internuclear distance may appear paradoxical, we assume that the

electronic state of interest, commonly the electronic ground state, is sufficiently remote from

other electronic states; because under these conditions these effects contribute only a small

proportion of the energy of an eigenstate sufficiently far below the dissociation limit, to treat

them as perturbations in the form of radial functions is appropriate.

We seek to account for adiabatic and nonadiabatic effects by means of an empirical effec-

tive hamiltonian. To this end we first outline the derivation of one commonly used hamiltonian.”

Then we consider the separability of the adiabatic and nonadiabatic effects. To calculate the

concurrent consequences of such effects we apply perturbation theory in a quantitative analytic

treatment invoking three further radial functions in the spirit of Dunham.l Finally we discuss

the significance of these results in relation to the analysis of experimental spectra.

I I .  THE EFFECTIVE VIBRATION-ROTATIONAL HAMILTONIAN

According to the analysis by Born and Opbenheimer,4 the adiabatic and nonadiabatic cor-

rections to the vibration-rotational energies of a molecule have as factor the ratio of the
. electronic mass to a selected nuclear mass to various powers. In terms of their expansion

parameter K this ratio is K4; that the numerical value of this ratio is much less than unity, ~~ < 1,

bestows important properties on the ultimate results in our treatment of the adiabatic and non-

adiabatic effects which requires the introduction of this ratio into the molecular hamiltonian.

Of various ways to do this consistently, here we proceed by working in atomic units. Taking

e2/(4Jreeae) and ae = 4.zr$i2/(m,e2)  to be the units of energy and length respectively, we write

the nonrelativistic hamiltonian operator for a diatomic molecule as

in which the first two terms represent the kinetic energies of the electrons and of the nuclei

respectively; the remaining terms signify the coulombic potential energies successively of attrac-

tion between the two nuclei (having atomic numbers 2, and Zh) and electrons and of repulsion

between the electrons and between the nuclei; rh and rij are the distances between a nucleus c

and an electron i and between two electrons respectively whereas R denotes the internuclear

distance. Separating the motion of the molecule as a whole and placing the coordinate origin

at the centre of nuclear mass we obtain the hamiltonian’

H=-~Cv~-CC~+~C~+~_~(Cvi)2-~v~,
N i

(2)
I e i i j>i

in which MN = M, + Mb is the total nuclear mass, ,U = M,Mh/(M,  + Mb) is the reduced nuclear



mass and VR is the gradient operator with respect to the components of R = Rt, - R,. If on the

other hand we place the coordinate origin at the geometrical centre of mass the resulting hamil-

tonian is*

(3)

To explain the idea underlying the construction of effective hamiltonians we express the

Schriidinger equation for a diatomic molecule in the form HYpk  = EPkYPk.  Hereafter greek

letters denote electronic quantum numbers whereas roman ones denote vibration-rotational

quantum numbers; hence 1 Epk-Evj  I> > 1 Eprr, -Ep,, I. By means of a unitary operator T we

transform the Schrijdinger equation into E@,,k = EpkGPkr in which fi = THT+  and e = TY. We

expand %JPk as a linear combination of a complete basis set in the conventional way:14

(4)

Here {Qa} is an orthonormal set of eigenfunctions of the Born-Oppenheimer electronic hamil-

tonian I-IO; we write H--Hu+1H’  in which Hí contains all the terms proportional to the ratio

of the electronic mass to the selected nuclear mass. Application of < QP 1 from the left to the

transformed S&r&linger equation (with integration over only the electronic coordinates) leads

to

c < ëppb+@o  > Xot = EpkXpb (5)
4

If we choose the unitary operator T such that < aP I fi IfiIQP>,wefindthat

the functions x are eigenfunctions of the effective hamiltonian H,rfwl= < QP I E Imp > with

eigenvalues Epk:

,#$Xpk = EpkXpk* (6)
When 1= 0 this condition is satisfied by T = i, the identity operator. In most problems of physi-

cal interest it is impracticable or even impossible to achieve the condition just mentioned. In

that case one resorts to an approximation based on the expansion of G as a series in 1 with

powers of positive integers:

E; = H,+eXPlj,;
p=l

(7)

here the first term is a consequence of T(A = 0) = ì1.  Making the simplest possible approximation

._  I_
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we choose T=e-” and determine the l-independent operator S so that < QP Ifi, [ @,> =

+a< aP 1 fi, 1 QP > . The result is an approximate effective hamiltonian of the form

H${ r< cp,I(H, + AH1 + A2ii2)1@,,  >, (8)

in which

ii, = H'S i[H,,S], (94

fi2 = i[H',S]+ $S,[H,,S]]= ;[H'+hS]. (9b)

I f inaddi t ionwechoose c~~ISI@~> = 0, then -~@~lfi,I@~> = cQ,lH’  IQP>.

Bunker and Moss used this method to obtain an effective hamiltonian for a diatomic

molecule in a ëZ  electronic state; *’  they chose

and
.

2
"ev;_

-2/4

(10)

01)

Because Hí fails to commute with the eigenvalues of HO, the diagonalization of H1 requires an

iterative procedure that eventually produces the operator S; the latter is necessary to construct

fiz. The effective hamiltonian for the vibration-rotational energies of a diatomic molecule in a
ëZ  state becomes

HeJJ = -$&[I + P(R)]& + ríeJJ  + s[l+  a(R)lJ(J  + 1)~ (12)

in which a(R) and p(R), which are intrinsically of order m,& by the nature of the electronic

matrix elements that they represent, give rise to the rotational and vibrational nonadiabatic cor-

rections; Ven contains the Born-Oppenheimer potential energy plus adiabatic and further non-

adiabatic corrections:

V,JJ(R)  = VBo(R)  + VAD(R) + VNA(R). (13)

Here, VBo _ < 0 (Ho IO > and is of order (m&)ë,  VAD  = c 0 I Hí IO z= with order m J,u, and

VNA,  of order (m Jp)2,  comes from < 0 I Hl IO > which also leads to the remaining nonadiabatic

contributions; devoting our attention to the electronic ground state, we have set p = 0 and

Icpu> = 10x According to custom, we express the effective hamiltonian (12) in SI or other

macroscopic units; it is thus written
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h2
He/J = -GdRh2 d[l + P(R)]& + &JJ + =[I + a(R)IJ(J  ï I  1). (14)

III. THE ADIABATIC AND NONADIABATIC VIBRATION-ROTATIONAL
ENERGY CORRECIíIONS

Because the electronic coordinates are referred to the centre of nuclear mass which chan-

ges with isotopic substitution, the functions VAD (R), VNA(R),  a(R) and /I(R) in the effective

hamiltonian (14) are not isotopically invariant. To resolve this problem Watson replaced the

electronic linear and angular momenta by appropriate linear combinations thereof.12  The

resulting expression is equivalent to that obtained by the use of the hamiltonian (3) instead of

(2) in the construction of the effective hamiltonian. According to empirical precedent,î the

functions a(R) and p(R) thus take the forms

a(R)  = m,c@)/K + m&b(R)/Mb,P(R)  = mePa(R)/K i- m&,(R)/i&,; (15)

. the reduced nuclear massp becomes replaced by the reduced atomic massp,  =

M,Mh/(M,  + Mb-Cm,),  in which C is the net molecular charge Z, + Zt,-N in units of the protonic

charge with N being the number of electrons in the molecule. The form of equation I.5 is con-

sistent with the perturbation in the hamiltonian (3) that can be separated into contributions of

each nucleus.
Watson also argued that the adiabatic and nonadiabatic contributions are not experimen-

tally separable.12 To test this we introduce a mock perturbation parameter !j into the effective

hamiltonian (14)

Heff = -$&[l+U(R)I-&+VBo+~h2 p+ @(R)IJ(J + 1)

S((VAD  + VNA);

w e  u s e  e q u a t i o n  A 8  in  appendix  A wi th  x  =  R,  P(R)  =  -ii2[1+&3(R)]/@),

Q = VBo +t(VAD  + VNA) +h2[1 +&z(R)]J(J  + l)l@Rí),  W = 1 and E the vibration-rotational

energies &J, to obtain the energy shift

~E,J dVBo h2
AE,J = - --<<>-<VAD$VNA>

a< E=o=< F dR ’ 4,~

-$J(J + 1) < ; + 2; >,

in which

(17)

L-
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in which JB =BJ(J + l)/~+. Then we use equation B4 in appendix B to obtain a recurrence rela-

tion for the moments QCN)= < qN S= and derive an additional relation between the energy and

the moments from the Hellmann-Feynman theorem (B5).16  At this stage we use perturbation

theory and expand both the energy and the moments in series of 1 to various non-negative

powers,

f = -&pxP, Q(N) = gQpXP. (22)
p=o p=o

The dimensionless energy & is related to the vibration-rotational energy E according to

E = hew, &+ hcB,J(J  + 1) and Cc = (v + l/2). The Hellmann-Feynman theorem (B5) provides an

expression for the energy coefficients,

(23)

and equation B6 becomes a recurrence relation for the perturbation corrections to the moments,

Q(N+~) =
P & { ;hr(N - l)(N - 2)Q;N-3’  + 21v&,Q$,N-ë)

-(-l)ë(i  + 1)(2N + i).7BQi!fiw1)
11

.

The starting point of the hierarchical procedure is the normalization condition Q,(*)=c$.

Known generally by the name perturbation theory without wavefunctions or the hypervirial per-

turbative method, this procedure is practicable for both numerical and analytic calculation;16

the latter is facilitated by symbolic manipulation on computers by means of processors such as

Maple or Reduce. A direct consequence of the invariance of the operator 7f with respect to

the replacement of (A, q) by (-A, -4) is that &+ + I= 0 and Q,(N) = 0 if N + p is odd; the actual

expansion parameter is hence A2 instead of 1; note that <p > =ANQCN).

Because of the form of the recurrence relations 23 and 24 the perturbation coefficients &xt,

and Q,(N) are polynomials in (v+ l/2) and Jg. The vibration-rotational energies are thus ex-

pressed as

EVJ = hc c c Yk,(V + ;)yJ(J + l)]ë,
k=O I=0

(25)

in which the Dunham coefficients Ykt (conventionally in wavenumber units) depend on the

potential-energy coefficients ai. Furthermore, the term coefficients Ykt are also series in A2 to
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various powers,

Yk, = c Y$X2P.
p=o

(26)

When we attempted the calculation of the coefficients Ykt (p) directly from equations 23 and 24,
by expansion of the perturbation corrections &zp and QpCN) in series of (v + l/2)  and [J(J + l)]
to various powers, we found the symbolic computation of this procedure to execute much less
rapidly than that outlined above.

In order to add the adiabatic and nonadiabatic corrections to the perturbation calculation
just described we expand them in series in q to non-negative powers:

vAD + vNA = hc c +I’ qi ,

ff= cc iXíqíp
i=O

i=o
(27)

(W

(29)
i=O

.

Direct expansion of p in the effective hamiltonian operator gives rise to unbound contributions
of the form DqiD, D being d/dq.  To circumvent this difficulty we assume that B is a sufficiently
well behaved function; for instance we take p(x) to be the local representation near x = 0 or
R = R, of a function that possesses the correct asymptotic properties at R = 0 and as R+ 00 .
Thus we proceed to apply the generalized Hellmann-Feynman theorem (A7) for an arbitrary ad-
justable parameter l. We use equation 29 and substitute c for every Ek to obtain the contribution
of each such term to the energy according to first-order perturbation theory. The treatment of
the other contributions offers no difficulty; we estimate, to sufficient accuracy, the energy shifts
that they produce by means of the Hellmann-Feynman theorem. Up to order P in 1 we have

a& P - k P - k - i

z&= JB C(-l)ë(i  + l)Aí+” CQ(i+k)Am,m (30)
i=O m=O

(31)

(k+2)Am+k +
m

~~~i+2)oil\i+* P~iQ~+*+Z)~~
r=l m=O (32)

+JE ë&_l)ëi(i  + lpi+k ëfíJ‘  Q$+k)x, _ k(k[ ë) P - k
c &($-2)Am+k.

i=l m=O m=O

In all these equations the coefficients of 1 to odd powers vanish. The energy shift to first order
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is

AE = hcu, (33)

The combined effects of these three terms are presented in Table I. The expressions there for

the quantities Zkt (correspondingly also in wavenumber units) contain contributions to the vibra-

tion-rotational terms ELI further to the coefficients YH of the functionals  of v and J in equation

25. We have previously determined the form of the coefficients Zkt based on only the radial func-

tions equivalent to those above containing the coefficients cj and VI; the present results derived

according to a different algorithm and generated by means of a different computer processor

confirm quantitatively the previous results.17

V. DISCUSSION

Equations 12 and 13 are analogous to those derived by Bunker and Mossî except that they

indicate, explicitly or implicitly, the order of each term in terms of the Born-Oppenheimer

parameter x4; the explanation by Bunker and Moss who expressed the dependence in terms of

the reduced nuclear mass ,u to various non-positive powers is less clear, although equivalent be-

cause they assumed masses in units of the electronic mass. l1 All the nonadiabatic functions

a(R),&R)  and VNA(R) are of the same absolute order with respect to K~, namely (mJp)2;  how-

ever the latter function VNA(R) contains intrinsically all this dependence. The other two func-

tions which represent the rotational and vibrational inertia of the electrons in relation to the mo-

tions of the nuclei are intrinsically of order only m& because the other like factor appears ex-

ternally in equation 12. Therefore, relative to their addends unity (as they appear as 1 +a(R)

and 1 +p(R)  respectively), they are intrinsically of order only m&; VNA(R) is of order (m,/~)~

relative to VBo(R), and VAD(R)  is correspondingly of order rn,/p relative to VBo(R). Our sub-

sequent treatment according to perturbation theory, which is hence approximate, is valid for

only the terms that are relatively of first order in rn& or K~; for this reason of consistency we

henceforth neglect the existence of VNA(R).  Our treatment in section III is analogous to that

previously described by Watson, I2 but we have maintained a common notation with section II.

Furthermore, because the form of Watsonís function R(ì)(R)  is in general unknown, one cannot

be certain that any particular choice of Ro makes R(ì)(Ro)  vanish; therefore our criterion is more

general than that of Watson.12

Hence we express the radial Schrodinger equation in the form

{$(1+~CBjJ)$+~[E,l/(he)-aorí(i+Cy,í)
’ J-0

e j=l

me- - C~j.j]-J(J+1)(1+~CG~j)/(l+~)2}~"~=o~

pc j=O ' J-0

(34)
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TABLE I. Adiabatic and nonadiabatic contributions to the vibration-rotational terms in some ex-

pressions Zkl.

zo,o = 70 + B,[Zo(7af/32 - 3a2/8) - Zla1/16  - 9%/8]

+y2[q1(-21aT/32 + 23ala2/16 - 15a3/16)  + r]2(7af/16 - 3a2/8)

-7qa~J16  + 3q4/8]  + y3[Zj *. .I+ 7î[qj  . * .I+ . . .

ZO,l = B&I + y2ql + &72[(C~ - Zo)(21af/16  - 23ala2/8  + 15a3/8  + 210;/16

-9a2/8  + 7a1/4 + 15/8) + C1(-21ay/32  + 23qa2/16  - 15a3/16

-7af/8 + 3a2/4 - 21a1/16  - 3/2) + C2(7u7/16  - 3a2/8 + 7a1/8

+9/8) - <3(7a1/16  + 3/4)  + 3(ë4/8  + Zl( 13af/32  - 5a2/8 + 3a1/16

+1/4) - Z~CZ~ /8 - 2723/8] + 7î[qj  . . .I+ . . .

20,2 = B,72[-2(ë~  + Cl] + y4[-3v1(a1/2  + 1) + Q] + 7î[<j  9 Sj * * *] + * *.

20,3 = &74[3Co(al + 3) - (ë1(3a1/2  + 5) + (ë2]+  rî[m(9a%!  - 2~2 + 2h/2

i-15) - Q2(a1 + 2) $7731 + r6[<j  1 Zj . . .] $ * . *

zo,4 =  B,76[Co(-9aq  +  4a2 - 36~~ - 52) + c1(9af/2  - 2a2 + 39q/2  + 30)

-ë$(3al+  8) + <3]+ yî[q1(-135a~/8  + 15ala2  - 5aa/2 - 135af/2

+24a2 - 117~1 - 91) + r/2(45a:/4 - 4a2 + 36~~ + 39)

-9773(a1  /2 + 1) + 7]4]+ rd[<j 7 Zj ’ ’ ëI+  * ’ ’

a,0 = -B,%J/~  + 7(-3alql/2  + 72) + B,y[Zo(3465~~/1024  - 1377afa2/128

+2Ola;/64  + 285~~~~132 - 75a4/16) + Z1(-lllaf/128  + 61ala2/32

-15~3/16)  + E2(37~:/64  - lla2/l6) + 77=3~1/16  - 5324/8]

+y3[q1(-31185af/2048  + 14259aTa2/256  - 5145a;a3/128

-4677alaq/128  + 795ala4/32  + 715a2a3/32  - 175as/16)

 - 3213afa2/128  + 335a:/64 + 475ala3/32

-75a4/16)  + qa(-1155af/128  + 459ala2/32 - 95a3/16)

+74(459a:/64  - 67~2/16)  - 95alqs/16  + 25~6/8] + r3[Bj *. .I+ . .

i--.b _.,. ._..
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Zl,l = &y[3((ë0  - so/2)(a1  + 1) - Cr(3a1/2  + 2) + Cz - Z,]

SY3[3rlr  (9a?/4  - 2Q2  + gal/4 + 2) - 3r)2(3a1/2  + l/2)  + 3731

+B,Y3[cj 1 Zj ’ ’ *] + Yî[qj  ” *] + ” ’

&,2 = &y3[3(Co  - zo/4)(-9af/2 i- 3a2 - 9ar - 19/2) + 3<1(9a:/4  - 2a2

+2la1/4  + 6) - 3C2(3ar/2  + 5/2) + 3Ca + 32r/2  - S2]

+y5[3qr(-189af/16  + 33ara2/2 - 5aa - 189a:/8  + 15a2

-423ar/16  - 19) + 37)2(63a:/8  - 5a2 + 45a1/4 + 57/8)

-27r/a(ar + 1)/2 + 6~43 + y5[<j ,zj . . .] + yí[qj  . . a]+ . * *

22,o = Be[3S:o(5af/8  - a2/2) + 3E:la1/4  - S:,/2] + y2[3r,rr(-15aT/8  + 13ara2/4

-5aJ4)  + 3q2(5a:/4  - a2/2) - 15q3a1/4 + 3r/4/2]  + y2[Ej . . .] + . . .

. 22,l =  &Y2[3(Co - Zo)( 15af/4 - 13ala2/2  + 5a3/2  + 15af/4 - 3a2/2  + 5ar

+5/2)  + 3&(-15af/8  + 13ara2/4  - 5a3/4 - 5aT/2 + a2

-15a1/4 - 2) + 3&(5af/4  - a2/2 + 5a1/2  + 3/2) - 3&(5ar/4  + 1)

+3&r/2 + 391(-a:/8  + a2/2 - 3a1/4  - 1) + 3::2ar/2

-3%/2]  + y4[3ql (45a:/2  - 207afa2/4  + 13az + 95ala3/4  - 15a4/2

+45af/2  - 117ala2/4  + 15a3/2 + 45aT/2 - 13a2  + 65al/4 + 15/2)

+3r/2(-15af  -I- 397ala2/2  - 5a3 - 45af/4  + 3a2 - 1Oar - 5/2)

+3%(45af/4  - 13Q/2 + 15ar/2  + 5) - 3774(13ar/2  + 3/2) + 15q5/2]

+Y"[<j,zj  .. *I+ Y"[qj *..I+ ..'

This equation applies specifically to a homonuclear diatomic  molecule (i.e. both atomic nuclei

have the same atomic number or number of protons, but not necessarily the same number of

neutrons); this simplification permits us to replace the separate contributions of each atomic

type, for instance a,(R) and ah(R).according  to equation 15, by a common function a(R) for

purposes of illustration of the relative contributions to the eigenvalues. Moreover we have also

included explicitly the mass dependence of the adiabatic and nonadiabatic functions; by this

means the coefficients <j, Ej and qj, pertaining to the rotational nonadiabatic, vibrational non-

i--_-
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adiabatic and adiabatic effects respectively, are supposed to become formally independent of

mass. Although the vibrational nonadiabatic function appears explicitly in equation 34 as a poly-

nomial in x, in practice we carried the function through all the calculations in the symbolic form

/?(R)  until the final stage so as to avoid the problems with the asymptotic behaviour of the poly-

nomial form described above. This equation includes all effects up to first order in the ratio

m&, which suffice at present to reproduce the most accurate and precise measurements of the

frequencies and wavenumbers of pure rotational and vibration-rotational transitions, within the

experimental uncertainties of those measurements. The corresponding eigenvalues or energy

terms are expressed

&J = hcxC( Ykl
kE=O  I=0

+ y;, + z;,)) (v + ;y[J(J + l)]’ (35)

in which we have suppressed the explicit isotopic dependence of&J, Ykt,  Zkt” and Zur. Of the

term coefficients in the latter three sets, Ykt are supposed to take into account only the mechani-

cal effects (those effects that depend on only the internuclear potential energy V(x) or,

equivalently, the coefficients aj); the term coefficients Zu” encompass the additional adiabatic

and nonadiabatic effects that would result from purely the rotationless effective potential energy
.

with the associated centrifugal term, whereas the coefficients Zklr incorporate all effects that

result from the additional centrifugal contributions to the energy terms. According to equation

31 the adiabatic effects through the coefficients qj thus contribute to only Zk:; the vibrational

nonadiabatic effects through the coefficients Ej naturally contribute to Zuî,  whereas both the

rotational and the vibrational nonadiabatic effects through the coefficients [j and Sj respectively

contribute to Zktr because of the presence of the factor JB = B,J(J  + 1)/w, in both equations 30

and 32. According to equation 34 we expect the magnitudes of the coefficients qj to be com-

parable with that of ac, hence of order BJr2; both au and all qj have dimensions, specifically of

the quantity wavenumber according to this equation. In contrast we expect the magnitudes of

all the dimensionless coefficients, specifically aj with j > 0, cj and zj:j, to be of order unity.

The topic of particular interest is what quantities can be determined individually from ex-

periment, explicitly from the frequencies and wavenumbers of pure rotational and vibration-

rotational transitions of isotopic variants of a particular homonuclear diatomic molecular

species (neutral molecule or ion) in a ë2  electronic state to which equations 34 and 35 specifi-

cally pertain. (The generalisation of these equations to heteronuclear diatomic molecules in a
ëZ  state presents no additional problems.) To proceed, we recall that for all known stable

diatomic molecules in their electronic ground states y2 is of the same order of magnitude as K~.~’

If we have data of two or more isotopic variants then we can distinguish the effects of the poten-

tial-energy coefficients aj from other effects because, in the process of fitting simultaneously the

term differences &ëj’  - &J of the experimental data to both the quantum numbers v and J and

the reduced mass ,u~, we can separate the contributions of Ykt(ë)  from those of ZM” and Zur;
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the quantities Ykt (ë) determine the coefficients aj (according to the relations derived by Dun-

hamí) which in turn enable the calculation of the related coefficients Y,@) of higher order, p

> 0, as many as are required. The additional dependence of the coefficients Zklr on J(J + 1)

relative to Zkl” permits the independent determination of both these sets of coefficients. To

decide which coefficients of the fundamental radial functions the determination of the quantities

Zklr and Zu” might yield we examine the expressions in table I. The coefficient 70 appears in

only the expression for &,o; as the latter is essentially a contribution to the zero-point energy

neither it nor correspondingly its leading term ~0 can be directly determined according to ex-

perimental fits of frequency data. Within the expression for Ze1 the first two terms are Be_1

and y2q1 which are actually of the same order of magnitude according to the preceding argu-

ment. Consistent with our neglect of effects that are second order in rnJp, (or K~) relative to

the appropriate leading contributions in the hamiltonian, we must neglect in any applications to

spectral analysis all further sets of terms in the expression for Zul and correspondingly in other

expressions; some sets of terms of higher order are presented explicitly in the expressions for

&,e, &,I and Zl,a, and formally in other expressions, only to illustrate the relative orders of mag-
. nitudes of the sundry contributions in terms of y to diverse powers. Because the contribution

y$rl  in Ze1 belongs to &,I’  whereas Be& belongs to Ze,rr, we can separate them and hence

determine independently 50 and ~1. Although from the corresponding contributions of &,I’

with 1 > 1 it appears that we can determine separately the values of further coefficients cj, j >

1, in fact when we separate these term coefficients into the components Zelr and &,Iî,  we find

that there arise additional terms involving the coefficients Sj which cancel exactly when &,I’  and

&,I’  are combined to form the expressions shown for Zel in the table. To illustrate this

phenomenon we show the cases &,zr = B,y*(Sa - 2& + 51) and 20,~” = -B,y*&  + r4[-3ql(al/2

+ 1) + 721,  indicating only the leading contributions. Thereby the numbers of the coefficients
5. :.

Jí -J and qj of the three radial functions increase too rapidly with 1 in Zel for one to solve for

them separately. Although other coefficients Zkt with k > 0 provide further relations involving

the same sets of variables, the same linear combinations of the coefficients appear. For instance

in z,,,” = -y-ëB,Ea  + y(-3alv1/2  + 72) there exists a linear combination of the coefficients Eo

and 712  equivalent to that which appears in &,2î.  Because examination of the related sets of term

coefficients Zkt proves this condition to be general, then except 50 and 71 only linear combina-

tions of the coefficients either Ej and fj or Sj and qj may be determined as a result of fitting the

frequency and wavenumber data of spectral transitions. Consistent with their relationship to

purely centrifugal effects, according to equation 30, the coefficients cj appear in no expressions

for Zk,e; in fact all the latter expressions belong purely to the class Zktî.

This discovery that one can in principle determine individually, by means of only ex-

perimental measurements of transition frequencies in the absence of external electric magnetic

fields, the coefficients r]l and 50 is contrary to the conclusion drawn by Watson following his less

detailed analysis,ë* although his conclusion about the general inseparability of these coefficients,

--- ,.
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apart from these two exceptions, remains valid. Actual application of these results in the

analysis of the spectra of diatomic molecules will be discussed in forthcoming publications.
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APPENDIX A

Here we develop a general formula for the rate of change of the eigenvalues of a general

Sturm-Liouville operator with respect to a parameter. The Sturm-Liouville equation is of the

form

,5$(z) = [DP(z)D  + Q(z) + EW(+,@) = 0, D = d/dz, (Al)

in whichíE  is an eigenvalue of the problem and P(x) satisfies appropriate boundary conditions

so that L is self-adjoint. We seek to obtain an expression for the rate of change of E with respect
.

to an arbitrary parameter t in P(x). Hence we differentiate the expectation value of L,

< L >=< $JILI1cI  >, < $111, >= 1 , (AZ)

with respect to E and obtain a version of the well known Hellmann-Feynman theorem:

d < L > /a< =< aL/ae >=< D(aP/a<)D  > +(aE/a<) < W >= 0. 643)

In order to obtain a more convenient expression for aE/@ which lacks the differential

operator D, we consider the commutator [L,F(x)D + G(x)] in which

F(Z) = p(#i2 /z[ap(t)-1~2/a.gdt+  F(Q), W)20
and

G(x) = Fí(z) - /’  F(t)Pî(t)/P(t)dt  - Fí(q)  + G(zo). (fw
x0

In the latter equation the prime denotes a derivative with respect to the argument of the cor-

responding function. With this choice the commutator reads

[L, FD + G] = -D(aP/a<)D - FQí - EFWí + (FîP - FPí72)ë. (Aa

Because < [L,FD + G] > = 0 we rewrite Eq. (A3) as
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t3E
- < W >=< FQí > +E < FWí > + < (;FP”
at

- Fî,)’  > . (A7)

This expression proves useful to introduce nonadiabatic effects by means of parameters into the

effective hamiltonian for the vibration-rotational energies of diatomic  molecules. We consider

also the case in which both P(x) and Q(x) depend on t. According to the reasoning above we

find

E<W,,-< 8Q
a< x > + < FQí > SE < FWí > + < (;FPî-  FîP)’ > . 648)

APPENDIX B

Here we derive the main equations necessary for the application of perturbation theory

without wavefunction. They are customarily obtained from the hypervirial theorems but in what

follows we use a different argument.

We write the dimensionless eigenvalue equation in the form

qî(z)  = 2[U(+)  - E]%ë(z), w

in which E is the energy, U(x) is an effective potential-energy function and each prime denotes

differentiation with respect to x. It follows from this equation that the square of the wavefunc-

tionp(x)  = Ye satisfies the third-order differential equation

pîí  + 8(E - U)p’ - 4iJíp  = 0. (B2)

WC multiply it by a differentiable function f(x) and integrate by parts. Because in the present

case Y(x) vanishes at 2 03 no additional condition is required. If the physical problem imposes

finite boundary conditions one may choose f(x) to satisfy them. Assuming Y normalized to unity

we find the result

< fîí  > $8E < fí > -8 < fíU  > -4 < fU’  >= 0, (B3)

in which c . . . > denotes the quantum-mechanical expectation value.

For the application of Eq. (B2) to perturbation theory one selects the function f(x) in ac-

cordance with the form of U(x). When this function is a polynomial or can be expanded in series

of x to non-negative powers, the natural choice is f(x) = p; thus Eq. (B3) becomes

N(N - l)(N - 2) < tN-3 > +8NE < IN-* > -8N < IN-ëu >

-4 < xNU’ >= 0.
(B4)

In the latter two cases this equation provides a useful recurrence relation for the expectation
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values of the coordinate to various non-negative powers; these values are commonly described

as moments of the density function.

If, as in the present case, the perturbation parameter 1 appears explicitly in U(x), the

Hehmann-Feynman  theorem

aE au- =< dX >,aX
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Argentina.
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