Vibration–Rotational Interactions in the States $v_2 = 1$ and $v_5 = 1$ of $H_3^{12}CF$

D. PAPOUŠEK,¹ Z. PAPOUŠKOVÁ, AND J. F. OGILVIE,

Academia Sinica, Institute of Atomic and Molecular Sciences, P.O. Box 23-166, Taipei 10764, Taiwan

P. PRACNA

The J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czecho-Slovak Federal Republic

AND

S. CIVIŠ² AND M. WINNEWISSER

Physikalisch-Chemisches Institut, Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 58, W-6300 Giessen, Germany

The vibration-rotational bands ν_2 and ν_5 of gaseous fluoromethane H₃¹²CF have been measured in the region 1250-1600 cm⁻¹ with resolution 0.0034 cm⁻¹; the 2046 lines that have been assigned include 85 lines of the $\Delta k = \pm 2$ perturbation-allowed transitions to the doubly degenerate vibrational state $v_5 = 1$. A variational approach has been applied to the analysis of both bands which are strongly perturbed by x-y Coriolis interaction and by "2, -1" *l*-type coupling. Simultaneously with 96 previously reported frequencies of pure rotational transitions in the ground vibrational state and 202 frequencies in the excited vibrational states $v_2 = 1$ and $v_5 = 1$ [Pracna, Papoušek, Belov, Tretyakov, and Sarka, J. Mol. Spectrosc. 146, 120-126 (1991)], the wavenumbers of 2046 vibration-rotational transitions of the bands ν_2 and ν_5 have been fitted to determine 7 parameters of the v_2 band and 21 parameters of the v_5 band. The ground state parameters $A_0 = 5.1820107(12)$ cm⁻¹ and $D_K^0/10^{-6} = 70.39(15)$ cm⁻¹ are in excellent agreement with those determined previously [Graner, Mol. Phys. 31, 1833–1843 (1976)]. A standard deviation of 8.0×10^{-4} cm⁻¹ has been obtained in the simultaneous fit of the infrared data and 0.38 MHz of the rotational frequencies of the upper state, but in the ν_5 band inexplicable systematic differences up to 0.02 cm⁻¹ between the experimental and calculated wavenumbers remain for certain values of the rotational quantum number K at J > 25. From the analysis of the absolute intensities of lines of the v_2 and v_5 bands, we found that $(\partial \mu_x / \partial q_{5a})/(\partial \mu_z / \partial q_2) = +1.75$, which indicates a negative perturbation of intensity $(\zeta_{2.5a}^{\nu} < 0)$. © 1992 Academic Press, Inc.

INTRODUCTION

As fluoromethane is a stable molecule having a large, permanent dipole moment it is of particular interest for its use in molecular lasers. Because coincidences between frequencies are sought in different spectral regions for optically pumped lasers, accurate values of the vibration-rotational energies are required for these applications. Among the candidates for such applications are the vibration-rotational bands v_2 and v_5 , which are prototypical instances of parallel (v_2) and perpendicular (v_5) bands, the

¹ To whom correspondence should be addressed.

² Present address: The J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czecho-Slovak Federal Republic.

^{0022-2852/92 \$5.00} Copyright © 1992 by Academic Press, Inc. All rights of reproduction in any form reserved.

FIG. 1. Part of the spectrum of the bands ν_2 and ν_5 of H₃¹²CF.

wavenumbers and intensities of which are strongly perturbed by the vibration-rotational interactions between and within the states $v_2 = 1$ (vibrational symmetry A) and $v_5 = 1$ (E).

In their paper on the Coriolis interactions caused by rotations about x, y molecular axes in symmetric top molecules, di Lauro and Mills (1) discussed qualitatively the intensity perturbations in the bands v_2 and v_5 of H₃CF. Wavenumber perturbations in the Raman bands v_2 and v_5 of H₃CF measured with a resolution about 0.3 cm⁻¹ have been studied by Escribano, Mills, and Brodersen (2), and by Betrencourt, Morillon-Chapey, and Pinson (3) in the infrared bands v_2 and v_5 of H₃⁻¹²CF measured with a resolution of 0.015–0.02 cm⁻¹.

The purely rotational transitions within the states $v_2 = 1$ and $v_5 = 1$ have been studied by both microwave spectroscopy (4, 5) and submillimeter-wave spectroscopy up to J = 12 (6).

In the present work, we have remeasured the vibration-rotational bands v_2 and v_5 of H₃¹²CF with resolution 0.0034 cm⁻¹ and analyzed simultaneously the infrared data with the frequencies of pure rotational transitions in the excited vibrational states $v_2 = 1$ and $v_5 = 1$ (4-6) and in the ground vibrational state using the reduced Hamiltonian for the interacting vibrational states of C_{3v} molecules according to Lobodenko *et al.* (7). We assigned 85 lines to the $\Delta k = \pm 2$ perturbation-allowed transitions [cf., e.g., Ref. (8)] and determined the ground-state parameters A_0 and $D_0^{(K)}$, which agree well with those determined previously by Graner (9). Preliminary measurements of the absolute intensities of about 80 selected lines have confirmed the presence of a negative perturbation of intensity. Extension of this work to H₃¹³CF should aid the understanding of the recently observed difference in the rates of *ortho-para* conversions between H₃¹²CF and H₃¹³CF [cf. Ref. (10)].

EXPERIMENTAL PROCEDURE

The infrared spectra were measured in absorption in an optical path 2.84 m by means of an interferometric spectrometer (Bruker IFS 120 HR) at an unapodised resolution 0.0034 cm^{-1} . The spectrometer was calibrated as described previously (11). The sample pressure was 50 Pa at 298 K. A segment of the spectrum between 1474.6

TABLE I

Vibration-Rotational Parameters/cm⁻¹ of the Bands v_2 and v_5 of H₃¹²CF

Parameter	Ĩ	IIP	III ^c	IV ^d		
E,	1459.39161 ^e	1459.39126(15)	1459.39165(8)	1459.3922(11)		
в,	0.84964490(148)	0.84964887(130)	0.84964621(59)	0.8496306(77)		
А <u>,</u>	5.2044380(2575)	5.2049873(165)	5.2049698(110)	5.204882(63)		
$D_{T/10}^{2}$	2.01910(909)	2.00299(153)	1.99955(121)	1,9665(96)		
$D_{T_{v}}^{2}/10^{-6}$	12.513(344)	13,523(116)	13,302(42)	13,83(21)		
$D_{\nu}^{2}/10^{-6}$	74.556	74.322(300)	74.678(307)	70.33 ^e		
H ² /10 ⁻⁹	o. ^e	o.e	o. e	0. ^e		
H ² /10 ⁻⁹	1,293(164)	1.346/130)	1,182(61)	0.0441		
H ² /10 ⁻⁹	0. ^e	o. e	, e	0.810		
H ² /10 ⁻⁹	o. e	o e	ç e	, e		
F	1467 81321/351	1467 81396(7)	1467 01201/61	1467 8120(5)		
~5 R	0 85372758/1045)	0.85369607(160)	0 95360001(106)	1407.0129(3)		
25 x	5.03372738(1045) E.13666044(22042)	0.03303007(100) E 33343007(100)	0.83389991(106)	0.8536/10(34)		
<u>,</u> , , , , , , , , , , , ,	-1 2062268(2028)	-3.2050032(03)	5.13/41/58(3/0)	5.13/524(16)		
25, -6	-1.2902/08(2928)	-1.2956922(87)	-1.2328003(70)	-1.2956/6(42)		
.56	2.0/149(461)	2.07079(75)	2.07174(91)	2.0916(45)		
JK/10	13.1363(1411)	12.8447(302)	12.9408(180)	12.752(46)		
D /10	70.5871	70.646(50)	70.706(155)	70.33		
H-/10 -	0.*	-0.000691(307)	-0.000611(303)	0.0441		
HJK/10	0.~	-0.4625(184)	-0.4149(129)	0.810		
H _{KJ} /10	0.~	4.578(126)	4.763(109)	0.5		
H _K /10	0.~	0.5	0.5	٥.٩		
$\eta_{\rm J}/10^{-1}$	-0.6582(1077)	-0.3604(186)	-0.3756(119)	٥. ٩		
η _K /10 ⁻⁴	0,	-0.8720(189)	-0.8524(134)	-0.904(17)		
$\tau_{J}^{/10}$	0, 6	-0.003788(98)	-0.004173(63)	0. ^e		
τ _{JK} /10 ^{°°}	0.08601(1005)	0.10773(166)	0.10581(140)	٥. ٩		
τ _K /10 ⁻⁰	o. ^e	-0.04717(331)	-0.04351(295)	o. ^e		
$c_{11}^{(1)}$	0.5180705(384)	0.5181724(62)	0.5181645(43)	0.518374(26)		
C(JA)/10	5 -0.30866(396)	-0.28971(70)	-0.29034(44)	-0.2907(41)		
C(3b)/10	⁵ 18.441(2987)	10.364(516)	10.923(331)	o.e		
$c_{11}^{(2)}/10^{-3}$	1,83719(1324)	1.81082(321)	1.81424(185)	-1.7506(34)		
$q_{12}/10^{-3}$	2.40106(469)	2.41351(106)	2.41342(90)	2.4079(22)		
$f_{12}^{K^-}/10^{-6}$	o. ^e	0.7384(572)	0.7698(486)	o. ^e		
в	-	0.851794269 ^e	0.851795021(321)	0.85179425 ^e		
۸ ₀	-	5.182009 [€]	5.1820107(12)	5.182009 ^e		
$D_{T}^{0}/10^{-6}$	-	2.00877 ^e	2.00875(87)	2.0090 ^e		
$D_{TF}^{0}/10^{-6}$	-	14.67037 ^e	14.68468(403)	14.660 ^e		
$D_{y}^{0}/10^{-6}$	-	70.33 [€]	70.39(15)	70.33 ^e		
H ⁰ 7/10 ⁻⁹	-	-0.001072 ^e	-0.001072 ^e	o. ^e		
H ⁰ _{TV} /10 ⁻⁹	-	0.064946	0.064946 ^e	0.0441 ^e		
HVT/10-9	-	0.745882	0.745882 [€]	0.810		
н ⁰ 710-9	-	o.e	o. ^e	o. ^e		
Standard		· · · · · · · · · · · · · · · · · · ·				
deviation	1					
GS rot/MH	(z -	-	0.203			
US rot/MH	z 0.742	-	0.367			
VR/cm ⁻¹	-	7.94×10^{-4}	8.04×10^{-4}	3.7×10^{-3}		

^a Separate fit to the $v_2 = 1$ and $v_5 = 1$ pure rotational transition frequencies (6).

^b Separate fit to the infrared data. The ground state parameters were constrained to the values obtained previously by fitting the purely rotational transition frequencies in the ground state (11); A_0 and D_K^0 were constrained to values obtained by Graner (9) [$A_0 = 5.182009(12)$, $D_K^0 = 70.33(25)$ cm⁻¹].

^c Simultaneous fit of the wavenumbers of vibration-rotational transitions with the frequencies of rotational frequencies of the ground and upper states.

^d Parameters obtained by Betrencourt *et al.* (3).

e Constrained value.

FIG. 2. Scheme of the energy level crossings in the states kl = -2 and kl = +1 of the level $v_5 = 1$ (positions of levels differing in J are not drawn to scale); A_1 and A_2 are the overall symmetry species.

and 1476.2 cm⁻¹ is shown in Fig. 1. The bands ν_2 and ν_5 of H₃CF lie in the same region as the ν_2 band of water vapor. We have therefore recorded also the water spectrum at a pressure of 30 Pa using the same optical path 2.84 m, which made it possible to eliminate easily the H₂O lines from the H₃CF spectrum.

THEORY AND ANALYSIS

The difference of the energies of the vibrational states $v_2 = 1$ and $v_5 = 1$ is (in wavenumber units) only 8.42 cm⁻¹; hence one must use a variational approach to determine the molecular parameters in the excited states $v_2 = 1$ and $v_5 = 1$. According

			,.,,	-21-,-,-,-,
J'	E/cm ⁻¹	°1	°2	Assignment ^a
16	1714.266	0.659	0.703	qX(J",2)
16	1691.272	0.749	-0.647	$P_{X}(J^{*}, 2)$
17	1743.565	0.668	0.688	$^{\rm Q}_{\rm X}(J^{\rm u},2)$
17	1719.351	0.740	-0.656	${}^{p}_{X}(J'', 2)$
18	1774.551	0.677	0.674	$^{9}_{X}(J'',2)$
18	1749.115	0.731	-0.663	$P_{X}(J'', 2)$
19	1807.221	0.684	0.661	⁴ X(J",2)
19	1780.565	0.723	-0.670	$^{p}X(J'',2)$
20	1841.575	0.691	0.648	$^{q}_{pX}(J^{*},2)$
20	1813.701	0.715	-0.677	PX(J",2)
21	1877.613	0.697	0.635	$^{\rm Q}_{\rm X}(J'',2)$
21	1848.521	0.708	-0.682	PX(J",2)
22	1915.334	0.703	0.622	$P_{X}(J'', 2)$
22	1885.026	0.701	-0.687	$^{\rm Q}_{\rm X}(J^{\rm H},2)$
23	1954.738	0.708	0.610	PX(J",2)
23	1923.214	0.694	-0.692	$^{\rm Q}_{\rm X}(J'',2)$
24	1995.823	0.713	0.598	$P_{X}(J'', 2)$
24	1963.086	0.688	-0.697	$^{9}_{n}X(J'',2)$
25	2038.589	0.717	0.586	PX(J",2)
25	2004.641	0.682	-0.701	⁴ X(J",2)

TABLE II

Coefficients c_1 and c_2 in $c_1|0, 1^{\pm 1}; J, \mp 1 \rangle + c_2|1, 0^0; J, \mp 2 \rangle$

Note. ^aX stands for P, Q, R; J'' = J' + 1 for P, J'' = J' for Q, and J'' = J' - 1 for R.

to this method, a matrix representation of the expanded vibration-rotational Hamiltonian is formed; the corresponding vibration-rotational energies are obtained by the numerical diagonalization of this matrix during the least-squares fit to the parameters corresponding to the minimum of the sum of the weighted squares of the differences between the experimental and calculated transition frequencies and wavenumbers.

The order of approximation that we use in fitting the data is essentially a matter of experience combined with a method of trial and error. In contrast, the form of a reduced vibration-rotational Hamiltonian involving only determinable molecular parameters can be chosen in a less empirical manner (7). We used the following expression for the diagonal elements of the matrix representation of the reduced vibration-rotational Hamiltonian,

$$E_{\rm vr}(J, K, l)/hc = E_{\rm v}/hc + B_{\rm v}J(J+1) + (A_{\rm v} - B_{\rm v})K^2 - 2(A\zeta\xi)Kl + \eta_J^5J(J+1)Kl + \eta_K^5K^3l + \tau_J^5J^2(J+1)^2Kl + \tau_{JK}^5J(J+1)K^3l + \tau_K^5K^5l - D_J^{(v)}J^2(J+1)^2 - D_{JK}^{(v)}J(J+1)K^2 - D_K^{(v)}K^4 + H_J^{(v)}J^3(J+1)^3 + H_{JK}^{(v)}J^2(J+1)^2K^2 + H_{KJ}^{(v)}J(J+1)K^4 + H_K^{(v)}K^6 + \cdots,$$
(1)

in which l = 0 for the nondegenerate vibrational state $v_2 = 1$ and $l = \pm 1$ for the $\pm l$ sublevels of the doubly degenerate state $v_5 = 1$.

An extremely useful result of the theoretical considerations of Lobodenko *et al.* (7) is that one must constrain four parameters of the transformed effective third-order Hamiltonian for the Coriolis interaction between the vibrational states $v_2 = 1$ and $v_5 = 1$ so as to eliminate the ambiguity of this Hamiltonian. We chose the following constraints

$$q_{22}^5 = \eta_K^5 = C_{21}^{(2)} = \alpha^5 = 0.$$
 (2)

Thus we fitted the following parameters for the Coriolis interaction,

$$\langle 0, 1^{+1}; J, k+1 | (H_{21} + H_{23})/hc | 1, 0^{0}; J, k \rangle = -\langle 1, 0^{0}; J, k+1 | (H_{21} + H_{23})/hc | 0, 1^{-1}; J, k \rangle = 2^{1/2} \{ C_{11}^{(1)} + C_{11}^{(3a)} J(J+1) + C_{11}^{(3b)} [k^{2} + (k+1)^{2}] \} F(J, k),$$
(3)

in which

$$F(J,k) = [J(J+1) - k(k+1)]^{1/2}.$$
(4)

The "2, -1" *l*-type interaction has the determinable parameters,

$$\langle 0, 1^{-1}; J, k+1 | (H_{22} + H_{24}) / hc | 0, 1^{+1}; J, k \rangle$$

= 2 { $q_{12}^5 (2k+1) + f_{12}^{5,K} [k^3 + (k+1)^3]$ } F(J, k), (5)

as well as the interaction described by the matrix element

$$\langle 0, 1^{+1}; J, k+1 | H_{22}/hc | 1, 0^0; J, k \rangle$$

= $\langle 1, 0^0; J, k+1 | H_{22}/hc | 0, 1^{-1}; J, k \rangle = 2^{1/2} C_{11}^{(2)} (2k+1) F(J, k).$ (6)

We use the notation and phase conventions for the off-diagonal matrix elements described in Ref. (12).

TABLE III

Wavenumbers,	/cm ^{−1} of	f Lines in	the Bands	v_2 and v_5	of H ₃ ¹² CF

Transition	Wavenumber	Obs-Cal	lc Transition	Wavenumber	Obs-Ca	lc Transition	Wavenumber	Obs-Calc
qP(1, 0)	(1457.68806)		qP(26, 1)	1393.79405	(10) 25	qP(12, 4)	(1439.98412)	
qP(2,0)	1455.83992	(10) -21	qP(27, 1)	1391.11287	(20) 27	qP(13, 4)	(1438.39095)	
qP(3,0)	1453.85539	(50) -24	qP(28, 1)	1388.43013	(20) 24	qP(14, 4)	(1436.80519)	
qP(4,0)	1451.74793	(10) -21	q₽(29, 1)	1385.74600	(30) 6	qP(15, 4)	(1435.22651)	
op₽(5,0)	1449.53411	(20) -17	qP(30, 1)	1383.06098	(30) 1	qP(16, 4)	(1433.65459)	
qP(6,0)	1447.23077	(10) -29	a₽(31, 1)	1380.37492	(30) -30	qP(17, 4)	(1432.08912)	
qP(7,0)	1444.85395	(10) -26	qP(32, 1)	1377.68850	(30) -42	qP(6,5)	(1449.85918)	
qP(8,0)	1442.41712	(10) -22	qP(33, 1)	1375.00164	(30) -60	qP(7,5)	(1448.17477)	
qP(9,0)	1439.93149	(20) -25	qP(34, 1)	1372.31418	(50) -122	qP(8,5)	(1446.49368)	
qP(10, 0)	1437.40642	(10) -19	qP(35, 1)	(1369.62855)		qP(9,5)	(1444.81599)	
qP(11, 0)	1434.84919	(10) -12	qP(3,2)	(1454.64771)		qP(10, 5)	(1443.14180)	
qP(12, 0)	1432.26562	(10) -13	qP(4,2)	(1453.23395)		qP(11, 5)	(1441.47118)	
qP(13, 0)	1429.66049	(10) -12	qP(5,2)	(1451.87883)		qP(12, 5)	(1439.80424)	
qP(14, 0)	1427.03760	(10) -8	qP(6,2)	(1450.56434)		qP(13, 5)	(1438.14106)	
qP(15, 0)	1424.39997	(10) -1	qP(7,2)	(1449.27631)		qP(14, 5)	(1436.48174)	
qP(16, 0)	1421.75004	(10) 4	qP(8,2)	(1448.00417)		qP(15, 5)	(1434.82638)	
qP(17, 0)	1419.08981	(10) 8	qP(9,2)	(1446.74024)		qP(16, 5)	(1433.17507)	
q₽(18, 0)	1416.42096	(10) 12	qP(10, 2)	(1445.47900)		qP(17, 5)	(1431.52790)	
qP(19, 0)	1413.74489	(10) 19	qP(11, 2)	(1444.21647)		qP(7,6)	(1448.39991)	
qP(20, 0)	1411.06273	(10) 25	qP(12, 2)	(1442.94984)		qP(8, 6)	(1446.69469)	
qP(21, 0)	1408.37549	(50) 36	qP(13, 2)	(1441.67710)		qP(9,6)	1444.98950	(60) -8
q₽(22, 0)	1405.68391	(30) 42	oP(14, 2)	(1440.39687)		qP(10, 6)	1443.28487	(60) 10
q₽(23, 0)	1402.98876	(10) 49	qP(15, 2)	(1439.10821)		qP(11, 6)	1441.58111	(80) 70
qP(24, 0)	1400.29056	(10) 49	qP(16, 2)	(1437.81054)		qP(12, 6)	1439.87629	(100) -39
qP(25, 0)	1397.58992	(20) 49	qP(17, 2)	(1436.50354)		qP(13, 6)	1438.17292	(100) -89
qP(26, 0)	1394.88731	(10) 50	qP(18, 2)	(1435.18710)		aP(14, 6)	(1436,47199)	
qP(27, 0)	1392.18318	(20) 58	qP(19, 2)	(1433.86126)		aP(15, 6)	(1434.77143)	
qP(28, 0)	1389.47772	(40) 54	aP(20, 2)	(1432,52619)		aP(16, 6)	(1433.07235)	
aP(29, 0)	1386.77130	(20) 43	oP(21, 2)	(1431,18215)		dP(17 6)	(1431 37498)	
oP(30, 0)	1384.06436	(30) 40	oP(22, 2)	(1429.82950)		oP(8,7)	(1446 98961)	
oP(31, 0)	1381.35679	(20) 10	pP(23, 2)	(1428,46861)	A	oP(9,7)	(1445, 26838)	
aP(32, 0)	1378,64916	(30) -16	pP(24, 2)	(1427.09992)	A.	dP(10 7)	(1443.54541)	
qP(33, 0)	1375.94189	(40) -16	pP(25, 2)	(1425,72390)	A.	qP(11, 7)	(1441.82088)	
qP(34, 0)	1373.23475	(40) -35	pP(26, 2)	(1424.34103)	A	aP(12 7)	(1440,09499)	
qP(35, 0)	1370.52764	(70) -99	pP(27, 2)	(1422.95180)	A	oP(13, 7)	(1438.36797)	
qP(36, 0)	(1367.81822)		pP(28, 2)	(1421.55669)	A	oP(14, 7)	(1436.64004)	
aP(2,1)	1455.75830	(10) -23	pP(29, 2)	(1420, 15621)	A	oP(15, 7)	(1434.91143)	
qP(3,1)	1453.55027	(10) -12	pP(30, 2)	(1418,75081)	A	oP(16, 7)	(1433, 18240)	
oP(4, 1)	1451.21163	(10) -18	pP(31, 2)	(1417.34107)	A	oP(17, 7)	(1431,45319)	
oP(5,1)	1448.79306	(50) -15	aP(4,3)	(1452,94401)		dP(9 8)	(1445.62688)	
oP(6, 1)	1446.32210	(10) -14	aP(5,3)	(1451.34736)		oP(10_8)	(1443 89239)	
aP(7, 1)	1443.81432	(10) -9	σP(6,3)	(1449 77421)		aP(11 8)	(1442 15500)	
oP(8,1)	1441.27883	(10) -10	dP(7,3)	(1448,22268)		oP(12, 8)	(1440 41490)	
aP(9,1)	1438.72156	(10) -12	aP(8,3)	(1446,69077)		dP(13, 8)	(1438.67231)	
aP(10, 1)	1436.14657	(10) -7	aP(9,3)	(1445, 17642)		qP(14, 8)	(1436 92744)	
aP(11, 1)	1433.55666	(10) -7	aP(10, 3)	(1443.67756)		qP(15, 8)	(1435, 18054)	
qP(12, 1)	1430.95408	(10) -4	oP(11, 3)	(1442.19222)		oP(16, 8)	(1433.43184)	
aP(13, 1)	1428.34048	(50) -4	aP(12, 3)	(1440,71852)		aP(17, 8)	(1431.68160)	
aP(14, 1)	1425.71733	(100) -2	aP(13, 3)	(1439.25474)		dP(10 9)	(1444 31089)	
qP(15, 1)	1423.08578	(10) 3	aP(14, 3)	(1437,79928)		aP(11, 9)	(1442.56491)	
aP(16, 1)	1420.44678	(10) 6	aP(15, 3)	(1436.35074)		aP(12 9)	(1440.81527)	
aP(17, 1)	1417.80119	(10) 9	dP(16, 3)	(1434,90786)		aP(13 9)	(1439 06218)	
aP(18.1)	1415,14977	(10) 14	dP(17 3)	(1433 44054)			(1437 30585)	
aP(19 1)	1412 40341	(30) 43	ap (17, 3)	(1451 37052)		47 (14, 9) AD(15, 0)	(1435 5/452)	
aP(20 1)	1409 83107	(20) 27	97 (J, 4) 08 (K 4)	(1449 71477)		4r(13,9) apr14 01	(1433 78440)	
aP(21 1)	1407.16669	(10) 28	ap (7 / \	(1448 072/0)		dP(17 0)	(1/32 01074)	
aP(22, 1)	1404 49778	(10) 20	47 (1) 41 AP/8 (1)	(1446 43765)		qF(17, 9) aP(11, 10)	(1443 04101)	
aP(23, 1)	1401.82569	(10) 30	aP(0,4)	(1444 81130)		db(12,10)	(1441 28/75)	
aP(24, 1)	1399, 15081	(20) 31	4/10 /1	(1443 10402)		qr(12,10)	(1430 52/74)	
aP(25 1)	1396.47350	(10) 30	aP(11 4)	(1441 58503)		ap(16,10)	(1/37 76007)	
			41 (1) 47	(10000)		47(14,10)	(1-01.10003)	

Note. In case the experimental wavenumber is missing, a value calculated from parameters in Table I is given (enclosed in parentheses). The experimental uncertainties (in parentheses) and the difference between observed and calculated wavenumbers are given in units of the last wavenumber digit quoted. Wavenumbers denoted with (*) have not been taken in the fit, A—see Table II. If the A_1 - A_2 splitting is indicated for the J'', K'' = 3 lines, the first wavenumber in the doublet corresponds to a transition to the larger block in the symmetry factorized matrix of the Hamiltonian, i.e., for J' even it is the $A_1 \leftarrow A_2$, for J' odd the $A_2 \leftarrow A_1$ transition.

Transition	Wavenumber		Dbs-Calc	Transition	Wavenumber		Obs-Calc	Transition	Wavenumber		Obs-Calc
qP(15,10)	(1435.99199)			qQ(14, 2)	1464.63313	(20)) -4	qQ(29, 3)	1465.79463	*	423
op≥(16,10)	(1434.22046)			qQ(15, 2)	1465.03319	(30)	0	q9(30, 3)	1466.05140	*	-73
qP(17,10)	(1432.44568)			qQ(16, 2)	1465.42315	(30)) 6	qQ(30, 3)	1466.04653	*	207
q ₽(12,11)	(1441.81665)			qQ(17, 2)	1465.80280	(30)) 6	q9(31, 3)	1466.30638	*	- 76
qP(13,11)	(1440.05106)			qQ(18, 2)	1466.17219	(30)) 7	qQ(31, 3)	1466.29918	*	227
qP(14,11)	(1438.28102)			qQ(19, 2)	1466.53151	(20)) 16	qQ(32, 3)	1466.56115	*	-61
qP(15,11)	(1436.50674)			qQ(20, 2)	1466.88083	(60)) 18	qQ(32, 3)	1466.55021	*	249
qP(16,11)	(1434.72845)			qQ(21, 2)	1467.22051	(10)	20	qQ(33, 3)	1466.81670	*	-33
qP(17,11)	(1432.94638)			pQ(22, 2)	1467.55094	A (30)	25	qQ(33, 3)	1466.79989	*	293
qP(13,12)	(1440.63727)			pQ(23, 2)	1467.87245	A (20)	30	qQ(34,3)	1467.07551	*	10
qP(14,12)	(1438.86309)			pQ(24, 2)	1468.18544	A (20)	32	qQ(34, 3)	1467.04778	*	312
qP(15,12)	(1437.08428)			p@(25, 2)	1468.49038	A (30)	35	qQ(4,4)	1459.88519	(10)	6
qP(16,12)	(1435.30107)			pQ(26, 2)	1468.78751	A (100)	18	qQ(5,4)	1459.93371	(10)	-4
qP(17,12)	(1433.51368)			pQ(27, 2)	1469.07783	A (10)	38	qQ(6,4)	1459.99217	(80)	59
qP(14,13)	(1439.50228)			pQ(28, 2)	1469.36126	A (10)	43	qQ(7,4)	1460.05830	(10)	0
qP(15,13)	(1437.72016)			pQ(29, 2)	1469.63834	A (20)	44	qQ(8,4)	1460.13447	(500)	86
qP(16,13)	(1435.93333)			pQ(30, 2)	1469.90971	A (30)	53	qQ(9,4)	1460.21769	(500)	50
qP(17,15)	(1434.14204)			pQ(31, 2)	1470.17538	A (20)	49	qQ(10, 4)	1460.29939	(1000)	-927
qQ(1,1)	(1459.16559)			pQ(32, 2)	1470.43612	A (20)	57	qQ(11, 4)	1460.407 6 4	(10)	-5
qQ(2,1)	(1458.66086)			pQ(33, 2)	1470.69195	A (40)	45	qQ(12,4)	1460.51373	(500)	- 13
qe(3,1)	1458.02533	(50)	-22	pQ(34, 2)	1470.94367	A (30)	56	qQ(13, 4)	1460.62673	(20)	- 10
qQ(4,1)	1457.30989	(100)	- 12	pQ(35, 2)	1471.19122	A (60)	51	qQ(14, 4)	1460.74620	(100)	0
qQ(5,1)	1456.54174	(50)	- 14	qQ(3,3)	1459.75710	(100)	30	qQ(15, 4)	1460.87171	(100)	9
qQ(6,1)	1455.73646	(10)	- 12	qQ(4,3)	1459.86289	(10)	-9	qQ(16, 4)	1461.00275	(10)	4
qQ(7,1)	1454.90318	(10)	- 12	qQ(5,3)	1459.99217	(30)	- 26	qQ(17, 4)	1461.13953	(100)	41
qQ(8,1)	1454.04769	(10)	-17	qQ(6,3)	1460.14287	(10)	-33	qQ(18, 4)	1461.28067	(20)	14
qQ(9,1)	1453.17411	(10)	- 10	qQ(7,3)	1460.31289	(1000)	- 37	qQ(19, 4)	1461.42669	(10)	7
qQ(10, 1)	1452.28508	(10)	-12	qQ(8,3)	1460.50038	(100)	- 12	qQ(20, 4)	1461.57714	(10)	5
qQ(11, 1)	1451.38290	(10)	-6	qQ(9,3)	1460.70263	(10)	- 15	qQ(21, 4)	1461.73172	(50)	8
qQ(12, 1)	1450.46912	(10)	-3	qQ(10, 3)	1460.91897	(100)	85	qq(22, 4)	1461.89008	(20)	5
qQ(13, 1)	1449.54514	(20)	0	qQ(11, 3)	1461.14448	(100)	-7	qq(23, 4)	1462.05208	(50)	9
qQ(14, 1)	1448.61157	(40)	-45	qQ(12, 3)	1461.38025	(20)	-6	qQ(24, 4)	1462.21738	(20)	6
qQ(15, 1)	1447.67080	(10)	4	q9(13, 3)	1461.62388	(80)	8	qQ(25, 4)	1462.38648	(60)	68
qu(16, 1)	1446.72218	(10)	4	qa(14, 3)	1461.87340	(10)	-11	qQ(26, 4)	1462.55725	(20)	0
qQ(17, 1)	1445.76687	(10)	2	qQ(15, 3)	1462.12810	(20)	-6	qQ(27, 4)	1462.73137	(10)	-11
qu(18, 1)	1444.80565	(60)	14	qQ(16, 3)	1462.38648	(30)	- 13	qQ(28, 4)	1462.91090	(300)	256
qu(19, 1)	1443.83886	(20)	21	qQ(17, 3)	1462.64784	(10)	-4	qQ(29, 4)	1463.08736	(40)	-31
qu(20, 1)	1442.86678	(10)	3	qQ(18, 3)	1462.91090	(50)	- 19	qQ(30, 4)	1463.26890	(80)	-46
qu(21, 1)	1441.89065	(20)	42	qQ(18, 3)	1462.91090	(50)	13	qQ(31,4)	1463.45239	(30)	-88
qq(22, 1)	1440.90958	(30)	10	qQ(19, 3)	1463.17542	(30)	- 11	qQ(32, 4)	1463.63830	(40)	-101
qQ(23, 1)	(1439.92483)			qQ(19, 3)	1463.17542	(30)	32	q¤(33,4)	1463.82615	(50)	-123
00(24, 1)	(1458.95660)			qQ(20, 3)	1463.44044	(50)	- 15	qQ(34, 4)	1464.01597	(60)	- 142
qu(25, 1)	(1437.94507)			qQ(20, 3)	1463.44044	(50)	43	qQ(5,5)	1460.07446	(500)	-12
apa(20, 1)	(1430.95048)			qu(21, 3)	1465.70562		-11	qQ(6,5)	1460.09088	(100)	-112
qu(27, 1)	(1435.95309)			qe(21, 3)	1463.70562	-	65	qQ(7,5)	1460.11305	(1000)	62
qu(28, 1)	(1434.93309)			qu(22, 5)	1465.97041	-	-17	qa(8,5)	1460.13447	(1000)	-137
que(29, 1)	(1433.93008)			qu(22, 5)	1403.97041	2	82	QN(9,5)	1460.16254	(500)	20
que(30, 1)	(1432.94003)	(100)		qu(25, 3)	1464.23446		- 52	qQ(10, 5)	1460.19203	(10)	11
va(2,2)	1459 737 10	(100)	-01	qu(23, 3)	1404.23446	-	96	qQ(11, 5)	1460.22466	(500)	1
qu(3,2)	1400.04722	(100)	- 10	qu(24, 3)	1404.49760		-46	qQ(12, 5)	1460.26059	(10)	3
44(4,2)	1/60 79320	(500)	15	QU(24, 3)	1404.49/60	-	119	qQ(15, 5)	1460.29196	(500)	-774
γω(J, ζ) π0(δ ⁻ 3)	1400./0320	(50)	- 15	qu(25, 3)	1404./6029	2	5	qQ(14, 5)	1460.34189	(100)	-24
qqu(0,2) q0(7,2)	1461.19776	(200)	-70/	qu(25, 3)	1464.76029	-	215	qR(15, 5)	1460.38807	(100)	17
	1467 04550	(400)	- 374	qu(20,3)	1403.02032		- 89	QNU(16, 5)	1460.43697	(20)	-4
	1/47 50541	(30)	- 15	Qu(20,3)	1403.02032	-	182	qQ(17, 5)	1460.48954	(30)	-1
	1462 04387	(10)	-10	uμu(27,3) =0(27,7)	1/462.2/904	-	- 122	qu(18, 5)	1460.54558	(30)	2
mp(11 2)	1463 37751	(10)	-11		1/45 537/7	*	- 175	qu(19,5)	1460.60442	(100)	-63
ag(12 2)	1463.80457	(10)	-2	00(28 3)	1465 53743	*	27/	qu(20, 5)	1400.00009	(90)	201
ag(13 2)	1464.22338	(80)	-5	ng(20 3)	1465 70/43	*	- 140	- un (0, 0) 	1400.31209	(1000)	-201
		(00)	-	-pe(L/, J/			. 100	VAN (1, 0)	(1+00.31000)		

TABLE III—Continued

We tested the consistency of the submillimeter-wave and infrared data by fitting these data separately and simultaneously (cf. Table I). The data were weighted according to the inverse square, $(\Delta \nu)^{-2}$, of the experimental uncertainty $\Delta \nu$ of the lines. The estimated uncertainties of the pure rotational transitions were stated previously (6); the uncertainties of the infrared data are indicated in Table III below. Each uncertainty stated in this paper represents one standard error.

PAPOUŠEK ET AL.

TABLE III—Continued

Transition	Wavenumber	ı	Obs-Calc	Transition	Wavenumber		Obs-Calc	Transition	Wavenumber		0	bs-Calc
qQ(8,6)	(1460.30655)	•		qQ(18,10)	(1461,14510)			aR(10, 2)	1482.10502		(10)	-10
QQ(9,6)	(1460.30209)			aQ(19,10)	(1461.05360)			aR(11, 2)	1484.23232	(1003	-5
o9(10, 6)	(1460,29760)			aQ(20,10)	(1460,95892)			off(12, 2)	1486.35092	`	(20)	0
09(11, 6)	(1460.29323)			o9(11,11)	(1462,20353)			on (13, 2)	1488.45971		(20)	-3
aQ(12, 6)	(1460,28913)			09(12,11)	(1462,13424)			of (14, 2)	1490.55819		(10)	3
QQ(13, 6)	(1460.28545)			a9(13,11)	(1462.05988)			oR(15, 2)	1492.64576		(20)	1
09(14, 6)	(1460,28236)			09(14,11)	(1461.98061)			oR(16_2)	1494 77266		(40)	37
09(15, 6)	(1460.28003)			m0(15 11)	(1461 89660)			one (17 2)	1494 78786		(10)	10
d9(16, 6)	(1460.27863)			00(16 11)	(1461 80805)			dP(18 2)	1408 84220		(20)	8
mP(17 6)	(1460 27835)			00(17,11)	(1461 71514)			dP(10, 2)	1500 88404		/10)	26
d0(18_6)	(1460 27036)			m0/18 11)	(1461./1514)			-P(20 2)	1502.00004		100	24
on(19 6)	(1440 28185)				(1461.01808)				1502.91902		(20)	21
dQ(20_6)	(1460.28600)			00/20 11	(1461 41220)			-9/22 21	1504.05//8	2	(30)	24
nor 7 7)	1460 60442	(500)	168		1/62 70816	12001	-363	pR(22, 2)	1508 05745	2	/70)	20
a0(8,7)	1460.58192	(200)	0	40/13 12)	1462 62025	(200)	-337	pr(23, 2)	1510 05145	2	(50)	50 60
nor 9, 71	1460 55030	(200)	44	ap(16, 12)	(1462 54817)	(200)	331	pR(24, 2)	1512 07480	2	(30)	54
dQ(10, 7)	1460.53404	(200)	13	mp(15,12)	(1462 45850)			DP(26 2)	1516 01336	2	1401	36
ap(11, 7)	1460.50695	(1000)	-3	00(16 12)	(1462 36406)			nP(27 2)	1516 88220	2	(50)	61
-0(12 7)	1460 47845	(500)	ő	m0(17 12)	(1462 26677)			nP/78 2)	1518 8/317	? ,	100	44
op(13, 7)	1460.44838	(50)	19	og(18,12)	(1462 16093)			oR(3,3)	1466 67573	~ `	(20)	- 6
dQ(14, 7)	1460.41648	(50)	- 19	op(19,12)	(1462.05273)			OR(4, 3)	1468 50787		(10)	- 10
a9(15, 7)	1460.38807	(500)	405	a9(20,12)	(1461.94040)			oR(5,3)	1470.36137		(10)	-5
dP(16, 7)	1460.35408	(200)	368	aR(() ()	(1460 95083)			dP(63)	1472 23371		150	- 8
d0(17 7)	1460 31289	(200)	-316	aP(10)	(1462 37330)			QR(0, 3)	1476 13200		(10)	-0
dP(18 7)	1460.27992	(150)	-128	QR(1,0)	(1462.06792)				1474.12270		2103	-7
mQ(19, 7)	1460.24628	(150)	22	AP(2,1)	(1463 13602)			QR(0,3)	1477 04323		(10)	.0
00(20 7)	1460 21130	(100)	~~~	QR(2, 7)	(1403.3002)			-0(10 3)	14/7.94323		(10)	
de(8 8)	1460 93637	(200)	- 11	AP(/ 1)	(1464.723747				1479.01030		(10)	-0
dQ(9,8)	1460.90123	(200)	-31	oP(5 1)	1445 95405	(100)	- 17	ap(11, 3)	1/83 7/030		/10/	-0
09(10, 8)	1460.86321	(500)	0	nR(6 1)	1466 82566	(100)	17	op(12, 3)	1485 40704		(10)	-4
ag(11, 8)	1460-82151	(500)	- 14	OPP (7 1)	1467 67167	(100)	-56	QR(14, 3)	1487 45072		7301	-0
mp(12 8)	1460 77721	(500)	20		1468 50030	(100)	-11	dat(14, 37	1401 -03072		(10)	-21
oQ(13, 8)	1460-72957	(100)	0	on R (9, 1)	1469 31275	(50)	-3	GR(16 3)	1401 54400		(10)	-4
dQ(14, 8)	1460.67892	(100)	-30	aP(10 1)	1470 11141	(10)	-2	op(17 3)	1403 52404		(10)	
d0(15 8)	1460 62673	(100)	27	aP(11 1)	1/70 80770	/801	. 21	-R(17, 3)	1/07 52/0/		(10)	24
qu(16, 6)	1460 57138	(100)	2,	an(12 1)	1471 47797	(200)			1493.32404		()0)	20
dQ(17, 8)	(1460.51421)	(100)	•	oP(13 1)	1477 43085	(200)	2	QR(10, 3)	1405 49350		/201	77
dQ(18_8)	(1460,45516)			0P(14 1)	1673 19702	(30)		AP/10 3)	1407 44277		(30)	-5
d0(19 8)	(1460.39446)			aP(15 1)	1673 06626	(40)	5		1477.44277		(30)	53
mp(20, 8)	(1460.33234)			nP(16 1)	1476 40288	/5001	408	ap/20 3)	1400 40105	•	(30)	-10
ap(9,9)	1461.31490	(500)	- 19	aR(17 1)	1475 42285	(20)	12	QR(20, 3)	1499 40105	*		- 10
og(10, 9)	1461.26717	(500)	-50	OR(18 1)	1476 15171	(100)	54	GR(21 3)	1501 35708	*		- 20
dQ(11, 9)	1461.21557	(500)	-49	aR(19, 1)	1476-87391	(20)	25	mP(21 3)	1501 35798	*		70
09(12, 9)	1461.15986	(500)	-58	aR(20, 1)	1477.59080	(30)	23	aR(22, 3)	1503.31321	*		-27
a9(13, 9)	1461,10053	(100)	-42	oR(21, 1)	1478.30259	(30)	36	aR(22, 3)	1503 31321	*		101
mQ(14, 9)	1461.03707	(100)	-71	mR(22 1)	1479 01004	(150)	112	dP(23 3)	1505 26638	*		-40
	1460.97099	(100)	-12	dP(23 1)	1670 71131	(30)	18	dR(23, 3)	1505 24438	*		125
00(16.9)	1460,00123	(200)	R.	aR(24 1)	1480.40844	(20)	17		1507 21710	*		- 63
d0(17 9)	1460 82836	(150)	27	OP(25 1)	1/81 10184	7407	10	qR(24, 3)	1507 21710	•		1/0
00(18 0)	1440 75782	(100)	68		1/81 70123	(40)	26	- un(24, 3)	1500 14510			- 02
00(10 0)	(1460 4725/)	(100)	00	- upr(20, 1) 	1401.17122	(00)	24	QR(23, 3)	1509,10249	*		170
0(20 2)	(1400.07334)			QR(27, 1)	1/07 15701	(100)	21	qR(25, 3)	1009.10049	÷.		1/9
mQ(10, 10)	1461 73172	(700)	- 508	vpr(∠0,1) ∧p(7 3\	1403.13/01	(100)	-2	- upri(20, 3) - m2(26 7)	1511.11125	÷		220
ag(11 10)	1461 67767	(500)	- 144	AP(2, 2)	1/47 20852	(100)	- 10	- up(20,3)	15112 06/04	*		- 19/
d0(12 10)	1461 61430	(500)	-112	vpr(-2,2) vpl/(-2)	1660 20072	(10)	.7	- units, 31	1513.03401	*		- 104
	1461 54504	(200)	-1/6	471 4, 2)	1/71 / 1400	(10)	- 9	-pr(29 7)	1212.02401	•		203
00(14 10)	(1461.47408)	(200)	140		1473 55075	(100)	-0-	opr(co, 3)	1514.90(81	*		- 202
ap(15 10)	(1461.30834)			op(7 2)	1675 69027	(100)	4	- un (20, 3)	1514.90/01	-		-670
dQ(16 10)	(1461.31768)			mR(R 2)	1477 83004	(10)	-12		(1516.73400)			
de(17,10)	(1461.23320)			- unic 0, 2)	1470 07041	(10)	- 16	- upr.(27,3) - pP(30 21	(1310.74/19)			
4-(17,10)	()-01123320)			41.(7,6)	1417.97001	(10)	· 2	44(30,3)	(1310:07075)			

We tested our computer program and the phase conventions by reproducing the calculated transition frequencies listed by Betrencourt *et al.* (3), using their parameters. In the entire range of their calculated transition frequencies, the differences between the corresponding calculated wavenumbers did not exceed 1×10^{-4} cm⁻¹, but to achieve this agreement we were obliged to change the sign given (3) for the parameter $C_{11}^{(2)}$.

We determined the absolute intensities of selected lines in the bands ν_2 and ν_5 by

Transition	Wavenumber	C	bs-Calc	Transition	Wavenumber		Obs-Calc	Transition	Wavenumber	0	bs-Calc
qR(30, 3)	(1518.86050)			qR(22, 6)	1499.37048	(40)	-32	qR(17,11)	(1492.17243)		
qR(4,4)	(1468.44836)			qR(23, 6)	1501.07179	(40)	-80	qR(18,11)	(1493.76325)		
opR(5,4)	1470.20845	(10)	-11	qR(24, 6)	1502.77490	(40)	-85	qR(19,11)	(1495.34941)		
qR(6,4)	1471.97740	(10)	1	qR(25, 6)	1504.47897	(40)	- 144	qR(20,11)	(1496.93111)		
qR(7,4)	1473.75469	(100)	22	qR(7,7)	(1474.19506)			qR(12,12)	(1484.70716)		
qR(8,4)	1475.54370	(500)	428	qR(8,7)	(1475.87248)			qR(13,12)	(1486.31772)		
qR(9,4)	1477.33187	(10)	2	qR(9,7)	(1477.54742)			qR(14,12)	(1487.92248)		
or (10, 4)	1479.13136	(10)	4	qR(10,7)	(1479.22001)			qR(15,12)	(1489.52157)		
oR(11, 4)	1480.93738	(10)	-5	qR(11, 7)	(1480.89035)			qR(16,12)	(1491.11514)		
qR(12, 4)	1482.74982	(10)	6	qR(12, 7)	(1482.55857)			qR(17,12)	(1492.70334)		
qR(13, 4)	1484.56784	(10)	-1	qR(13, 7)	1484.22530	(90)	48	qR(18,12)	(1494.28632)		
aR(14, 4)	1486.39139	(10)	7	qR(14,7)	1485.89434	(500)	508	qR(19,12)	(1495.86425)		
qR(15,4)	1488.21970	(60)	-2	qR(15,7)	1487.54852	(500)	- 349	qR(20,12)	(1497.43731)		
qR(16, 4)	1490.05268	(20)	-1	qR(16,7)	1489.21328	(100)	1	pP(1,1)	1461.78019	(500)	8
qR(17, 4)	1491.88997	(20)	12	qR(17, 7)	1490.87810	(200)	490	pP(2,1)	1460.32733	(10)	5
qR(18, 4)	1493.73085	(10)	4	qR(18, 7)	(1492.53196)			pP(3,1)	1459.04431	(30)	17
qR(19, 4)	1495.57530	(10)	8	qR(19, 7)	1494.19028	(50)	53	p₽(4,1)	1457.85144	(10)	-2
qR(20,4)	1497.42009	(250)	-267	qR(20,7)	(1495.84674)			pP(5,1)	1456.69426	(10)	0
qR(21,4)	1499.27335	(20)	22	qR(8,8)	1476.21541	*	425	p₽(6,1)	1455.54930	(10)	2
qR(22,4)	1501.12600	(30)	0	qR(9,8)	(1477.87236)			pP(7,1)	1454.40039	(10)	5
qR(23, 4)	1502.98119	(30)	4	qR(10,8)	(1479.52986)			pP(8,1)	1453.23875	(10)	-2
qR(24, 4)	1504.83803	(150)	-23	qR(11,8)	(1481.18375)			pP(9,1)	1452.05941	(10)	-5
qR(25,4)	1506.69709	(70)	-6	qR(12, 8)	(1482.83417)			pP(10, 1)	1450.85947	(10)	9
qR(5,5)	(1470.30742)			qR(13, 8)	(1484.48125)			pP(11, 1)	1449.63689	(10)	4
qR(6,5)	1472.02484	(500)	-482	qR(14,8)	(1486.12514)			pP(12, 1)	1448.39112	(10)	1
qR(7,5)	1473.75469	(50)	10	qR(15,8)	(1487.76600)			pP(13, 1)	1447.12206	(10)	-2
qR(8,5)	1475.48151	(500)	-68	qR(16, 8)	(1489.40399)			pP(14, 1)	1445.83029	(20)	7
qR(9,5)	1477.21259	(30)	12	qR(17, 8)	(1491.03928)			pP(15, 1)	1444.51647	(60)	16
qR(10, 5)	1478.94532	(20)	-5	qR(18,8)	(1492.67206)			pP(16, 1)	1443.18141	(40)	-4
qR(11, 5)	1480.68106	(20)	9	oR(19, 8)	(1494.30251)			pP(17, 1)	1441.82702	(60)	7
qR(12, 5)	1482.41947	(20)	26	qR(20,8)	(1495.93082)			pP(18, 1)	(1440.45422)		
qR(13, 5)	1484.16071	(50)	61	qR(9,9)	(1478.27187)			pP(19, 1)	1439.06444	(100)	-30
qR(14, 5)	1485.90366	(30)	z	qR(10, 9)	(1479.91884)			pP(20, 1)	1437.66036	(60)	32
qR(15, 5)	1487.65072	(100)	89	oR(11, 9)	(1481.56125)			pP(21, 1)	(1436.24159)		
qR(16, 5)	1489.39871	(40)	3	oR(12, 9)	(1483.19923)			pP(22, 1)	(1434.81085)		
qR(17, 5)	1491.14991	(40)	-22	oR(13, 9)	(1484.83289)			pP(23, 1)	(1433.36920)		
qR(18, 5)	1492.90428	(10)	2	qR(14, 9)	1486.46199	(200)	-39	pP(24, 1)	(1431.91793)		
qR(19, 5)	1494.66098	(20)	0	qR(15, 9)	(1488.08785)			p₽(25, 1)	(1430.45827)		
qR(20, 5)	1496.42012	(30)	- 19	qR(16, 9)	(1489.70946)			pP(26, 1)	(1428.99132)		
qR(21, 5)	1498.18210	(80)	- 14	qR(17, 9)	(1491.32737)			pP(27, 1)	(1427.51811)		
qR(22, 5)	1499.94652	(50)	- 22	qR(18, 9)	(1492.94176)			pP(28, 1)	(1426.03956)		
qR(23, 5)	1501.71358	(50)	-20	qR(19, 9)	(1494.55280)			pP(29, 1)	(1424.55648)		
qR(24, 5)	1503.48310	(60)	-23	qR(20,9)	(1496.16069)			pP(30, 1)	(1423.06962)		
qR(25, 5)	1505.25470	(40)	-66	qR(10,10)	(1480.37563)			pP(2,2)	1448.78327	(10)	7
qR(6,6)	1472.21872	*	-712	qR(11,10)	(1482.00963)			pP(3,2)	1446.80935	(10)	15
qR(7,6)	1473.92272	(10)	0	qR(12,10)	(1483.63850)			pP(4,2)	1444.72425	(10)	8
qR(8,6)	1475.62118	(200)	212	qR(13,10)	(1485.26236)			pP(5,2)	1442.55407	(10)	12
qR(9,6)	1477.31511	(100)	19	qR(14,10)	(1486.88134)			pP(6,2)	1440.31286	(10)	9
qR(10, 6)	1479.01004	(50)	-38	qR(15,10)	(1488.49557)			pP(7, 2)	1438.01646	(10)	8
qR(11, 6)	1480.70581	(10)	12	qR(16,10)	(1490.10521)			p₽(8,2)	1435.67596	(10)	7
qR(12, 6)	1482.40092	(20)	15	qR(17,10)	(1491.71041)			p₽(9,2)	1433.29970	(10)	12
qR(13, 6)	1484.09593	(40)	10	qR(18,10)	(1493.31135)			pP(10, 2)	1430.89371	(10)	9
qR(14, 6)	1485.79110	(10)	14	qR(19,10)	(1494.90820)			pP(11, 2)	1428.46276	(10)	7
qR(15, 6)	1487.48643	(10)	1.1	qR(20,10)	(1496.50113)			pP(12, 2)	1426.01048	(10)	10
qR(16, 6)	1489.18217	(20)	16	qR(11,11)	(1482.52111)			pP(13, 2)	1423.53957	(10)	8
qR(17, 6)	1490.87810	(80)	-7	qR(12,11)	(1484.14306)			pP(14, 2)	1421.05240	(10)	12
qR(18, 6)	1492.57491	(20)	-4	qR(13,11)	(1485.75947)			pP(15, 2)	1418.55073	(10)	14
qR(19, 6)	1494.27255	(20)	8	qR(14,11)	(1487.37047)			pP(16, 2)	1416.03610	(10)	16
qR(20, 6)	1495.97063	(20)	-22	qR(15,11)	(1488.97620)			pP(17, 2)	1413.50974	(10)	13
qR(21, 6)	1497.66991	(50)	-35	qR(16,11)	(1490.57681)			pP(18, 2)	1410.97283	(10)	10

TABLE III—Continued

means of the DECOMP program written by J. W. Brault. To the negative Napierian logarithm of the transmittance spectrum we fitted a Voigt profile within a small region about an isolated line, with the line amplitude, width, and a form parameter as fitting parameters. The line form is represented as a convolution of Dopplerian and Lorentzian profile functions with the corresponding parameter describing the relative contributions of these two functions. The intensity was estimated both as the product of height and width from the fit and as the area under the curve; the consistency of the two values was a criterion of the acceptability of the estimates. From these absolute intensities of

TABLE III—Continued

Transition	Wavenumber		Obs-Calc	Transition	Wavenumber		Obs-Calc	Transition	Wavenumber	0	bs-Calc
pP(19, 2)	1408.42637	(10)	13	pP(24, 3)	1389.48866	(100)	132	p₽(12, 5)	1396.29821	(10)	-7
pP(20, 2)	1405.87109	(10)	9	pP(25, 3)	1387.06196	(200)	-208	p₽(13, 5)	1394.36946	(10)	-4
pP(21, 2)	1403.30782	(10)	6	pP(25, 3)	1387.05557	(200)	145	pP(14, 5)	1392.42376	(30)	-8
pP(22, 2)	1400.73719	(20)	-1	pP(26, 3)	1384.61661	(200)	-248	pP(15, 5)	1390.46183	(10)	-10
qP(23, 2)	1398.15993	A (20)	-1	pP(26, 3)	1384.61106	(200)	145	pP(16, 5)	1388.48457	(10)	-9
qP(24, 2)	1395.57649	A (20)	-6	pP(27, 3)	1382.16086	(200)	-289	pP(17, 5)	1386.49313	(10)	- 19
qP(25, 2)	1392.98738	A (20)	-14	pP(27, 3)	1382.15622	(200)	161	pP(18, 5)	1384 48985	(20)	-21
aP(26, 2)	1390.39316	A (20)	-20	pP(28, 3)	1379.69512	*	-360	pP(19, 5)	1382.47879	(10)	-20
qP(27, 2)	1387.79417	A (30)	-31	pP(28, 3)	1379.69169	*	182	p₽(20, 5)	1380.46917	(40)	-26
qP(28, 2)	1385.19089	A (30)	-41	pP(29, 3)	1377.21909	*	-562	pP(21, 5)	1378.48750	(20)	-27
qP(29, 2)	1382.58165	A (200)	-256	pP(29, 3)	1377.21909	*	300	pP(22, 5)	1376.62462	(20)	- 33
qP(30, 2)	1379.97273	A (30)	-83	pP(30, 3)	1374.73681	*	-551	pP(23, 5)	1373.66564	(30)	-25
qP(31, 2)	1377.35863	A (30)	- 107	pP(30, 3)	1374.73681	(200)	292	pP(24, 5)	1371.73916	(100)	-17
qP(32, 2)	1374.73681	A (300)	-612	pP(31, 3)	1372.24592		-625	pP(25, 5)	1369.68790	(20)	-48
$q_{P}(33, 2)$	13/2.121//	A (40)	-1/9	pP(31, 3)	13/2.24592		202	pP(26, 5)	1367.58601	(30)	-58
qP(34, 2)	1369.49951	A (70)	-236	pP(32, 3)	1369.74859		-621	pP(27, 5)	1365.45530	(20)	-64
φ ² (35, 2)	1300.8/324	A (100)	- 289	pP(32, 3)	1369.74859		193	pP(28, 5)	1363.30372	(20)	-85
pP(3, 3)	1435.70140	(10)	10	pP(35, 5)	1367.24415		-658	pP(29, 5)	1361.13527	(20)	-92
pP(3,3)	1435.70140	(10)	11	pP(33, 3)	1367.24415		145	pP(30, 5)	1358.95130	(100)	- 154
pP(4, 5)	1433.84383	(50)	12	pP(34, 3)	1364./3338	-	-707	pP(6,6)	1395.97444	(10)	-6
pP(4,3)	1433.04303	(50)	12	pP(34, 3)	1264.73330		-75/	p⊮(7, 6) =D(9, 4)	1394.10001	(10)	- 10
pr(3,3)	1431.94214	(50)	24	pP(35, 3)	1302.21007	-	*/34	pr(0,0) ∞0(0,4)	1392.30900	(10)	-9
P(3, 3)	1420 00224	(50)	- 26	pP(35, 3)	1/22 57772		52	pP(9,0)	1390.37702	(10)	- 17
pP(6,3)	1429.00224	(50)	48	pP(4,4)	1422.33732	(10)	4	pP(10, 6)	1386 91176	(10)	-14
pP(7,3)	1427.99891	(150)	-114	pP(6,4)	1418 86818	(10)	11	pP(12 6)	1385 05943	(10)	- 14
nP(7 3)	1427 99891	(150)	136	pP(0,4)	1416 00126	(10)	5	pr(12, 0)	1383 10/12	(10)	- 10
nP(8 3)	1425 07500	(10)	11	pP(8,4)	1415 08701	(10)	8		1381 31617	(20)	- 13
pP(8,3)	1425.96184	(10)	12	pP(0,4)	1413 15601	(10)	å	pP(15, 6)	1379 42556	(20)	- 19
pP(9,3)	1423 86586	(10)	10	pP(10_4)	1411 19908	(10)	7	pP(16 6)	1377 52272	(20)	- 20
nP(9,3)	1423 88700	(10)	16	pP(11_4)	1409 21728	(10)	7	pP(17, 6)	1375 60791	(30)	- 22
nP(10 3)	1421 76290	(20)	.0	nP(12_4)	1407 21197	(10)	, 8	DP(18 6)	1373 68150	(30)	-17
pP(10, 3)	1421.77576	(20)	15	oP(13, 4)	1405.18531	(10)	3	pP(19, 6)	1371.74413	(40)	-21
pP(11, 3)	1419.61777	(10)	3	pP(14, 4)	1403.14250	(20)	4	pP(20, 6)	1369.79637	(10)	-17
pP(11, 3)	1419.63096	(10)	12	pP(15, 4)	1401,10260	(10)	Ö	pP(21, 6)	1367.83920	(10)	-13
pP(12, 3)	1417.43946	(20)	1	pP(16, 4)	1399.22484	(30)	-5	pP(22, 6)	1365.87398	(10)	-12
pP(12, 3)	1417.45544	(20)	-25	pP(17, 4)	1396.69921	(70)	-6	pP(23, 6)	1363.90301	(10)	-5
pP(13, 3)	1415.23100	(10)	-6	pP(18, 4)	1394.59746	(20)	-9	pP(24, 6)	1361.92989	(10)	-2
pP(13, 3)	1415.25455	(10)	0	pP(19, 4)	1392.44916	(10)	- 14	pP(25, 6)	1359.96134	(30)	5
pP(14, 3)	1412.99491	(20)	-5	pP(20, 4)	1390.27449	(20)	- 25	p₽(26, 6)	1358.01041	(30)	12
pP(14, 3)	1413.03766	(20)	- 17	pP(21, 4)	1388.07880	(20)	-30	pP(27, 6)	1356.10508	(10)	22
pP(15, 3)	1410.73359	(20)	30	pP(22, 4)	1385.86424	(10)	-43	pP(28, 6)	1354.30434	(30)	11
pP(15, 3)	1410.87140	(30)	-101	pP(23, 4)	1383.63233	(10)	-56	pP(29, 6)	1350.55350	(20)	33
pP(16, 3)	1408.44773	(20)	- 19	pP(24, 4)	1381.38418	(10)	-67	pP(30, 6)	(1348.81115)		
pP(16, 3)	1408.38482	(80)	133	pP(25, 4)	1379.12061	(20)	-84	pP(7,7)	1382.58165	(30)	3
pP(17, 3)	1406.14034	(50)	- 33	pP(26, 4)	1376.84251	(20)	- 101	pP(8,7)	1380.80838	(10)	-18
pP(17, 3)	1406.10827	(100)	97	pP(27, 4)	1374.55052	(20)	- 131	pP(9,7)	1379.02542	(10)	- 19
pP(18, 3)	1403.81273	(30)	-41	pP(28, 4)	1372.24592	(20)	-119	pP(10, 7)	1377.23261	(10)	-19
pP(18, 3)	1403.79097	(100)	96	pP(29, 4)	1369.92818	(30)	-189	pP(11, 7)	1375.43002	(10)	-21
pP(19, 3)	1401.46650	(60)	-55	pP(30, 4)	1367.59923	(30)	-220	pP(12, 7)	1373.61777	(10)	-18
pP(19, 3)	1401.44968	(60)	103	pP(31, 4)	1365.25896	(30)	-284	pP(13, 7)	1371.79581	(10)	-24
pP(20, 3)	1599.10237	(50)	-73	pP(32, 4)	1362.90877	(60)	-330	pP(14, 7)	1569.96434	(10)	- 29
pr(20, 3)	1399.08880	(80)	- 02	pP(33,4)	1360.54900	(60)	- 391	pP(15, 7)	1368.12355	(10)	-23
μr(21, 3)	1390.72230	(00)	- 92	pr(0,5)	1407.29403	(10)	U ,	pP(16, 7)	1300.2/341	(10)	- 22
μr(21, 3)	1300./1081	(80)	102	PP(6,5)	1407.49362	(10)	-4	PP(17, 7)	1304.41410	(10)	-20
pr(22, 3)	1394.32/20	(100)	- 1 14	pP(7,5)	1405.67420	(10)	U	pP(18, 7)	1362.34385	(10)	-11
pr(22, 3)	1394.31/33	(100)	-130	pe(8,5)	1403.835/9	(10)	-3	μν(19, 7) μρ(30 - 7)	1300.008/4	(10)	-0
μη (23, 3) ο D(23, 3)	1301 00051	(100)	115	μτ(7,5) 	1401.97071	(10)	-0	pP(20, 7)	1354 99017	(20)	3
pP(24 3)	1380 40411	(100)	- 169	μετιν, 5) m2/11 51	1308 20042	(10)	-5	μτ(c1, /) nD(20 7)	1356.00717	(10)	37
P. ((100)	107	(C, (1))94	1370.20703	(10)	- J	PF(66, /)	1334.70131	(30)	31

vibration-rotational lines, we deduced the appropriate molecular parameters in the same manner that we described for $PH_3(13)$.

Separate Fit to the Frequencies of the Pure Rotational Transitions in the Vibrational States $v_2 = 1$ and $v_5 = 1$

We reported previously (6) the measurement of the submillimeter-wave spectra of pure rotational transitions in the vibrational states $v_2 = 1$ and $v_5 = 1$ of $H_3^{12}CF$ and

1	5	5	

TABLE III—Continued

Transition	Wavenumber	Obs	Calc	Transition	Wavenumber	C	bs-Caic	Transition	Wavenumber	o	bs-Calc
pP(23, 7)	1353.07815	(30)	65	pP(14,10)	1335.01170	(10)	-14	pP(18,13)	1292.31663	(20)	-57
pP(24, 7)	1351.16202	(20)	93	pP(15,10)	1333.25748	(10)	-9	pP(19,13)	1290.60850	(30)	-60
pP(25, 7)	1349.23979	(20)	123	pP(16,10)	1331.49963	(10)	-11	pP(20,13)	1288.90006	(30)	-66
pP(26, 7)	1347.31272	(30)	173	pP(17,10)	1329.73819	(10)	~ 19	pP(21,13)	1287.19149	(30)	-63
pP(27, 7)	1345.38207	(30)	219	pP(18,10)	1327.97343	(20)	- 12	pP(22,13)	(1285.48331)		
pP(28, 7)	1343.45037	(40)	293	pP(19,10)	1326.20530	(10)	0	pP(23,13)	(1283,77430)		
pP(29, 7)	1341.52069	(40)	368	pP(20,10)	1324.43365	(10)	1	pP(24,13)	(1282.06514)		
pP(30, 7)	1459.59811	(100)	434	pP(21,10)	1322.65886	(20)	22	pP(25,13)	(1280.35585)		
p∾(8,8) ⊷n(0,9)	1309.11022	(10)	- 10	pP(22,10)	1320.88063	(30)	28	pP(26,13)	(12/8.04040)		
pr(9,0)	1367.33000	(10)	- 10	pP(23,10)	1317 21/0/	(20)	44	pe(27,13)	(12/0.93/01)		
	1363 81167	(10)	- 18	pP(24,10)	1315 52762	(30)	04	pr(20,13)	(1273 51807)		
nP(12, 8)	1362.02839	(10)	-23	oP(26,10)	1313 73656	(40)	75	nP(30,13)	(1271 80867)		
mP(13 8)	1360 23800	(10)	- 24	nP(27,10)	1311 94320	(40)	03	nP(14 14)	1287 03221	(20)	- 77
pP(14, 8)	1358.44058	(20)	-21	oP(28,10)	(1310,14598)			oP(15,14)	1285.33705	(20)	-61
pP(15, 8)	1356.63616	(20)	-17	pP(29,10)	(1308.34711)			pP(16,14)	1283.64228	(50)	-100
pP(16, 8)	1354.82487	(20)	-6	pP(30,10)	(1306.54582)			pP(17,14)	1281.94808	(50)	-127
pP(17, 8)	1353.00673	(10)	6	pP(11,11)	1328.33681	(10)	38	pP(18,14)	1280.25417	(50)	-173
pP(18, 8)	1351.18188	(20)	26	pP(12,11)	1326.60795	(10)	33	pP(19,14)	(1278.56295)		
pP(19, 8)	1349.35051	(20)	63	pP(13,11)	1324.87658	(10)	16	pP(20,14)	(1276.87052)		
pP(20, 8)	1347.51262	(20)	105	pP(14,11)	1323.14290	(10)	6	pP(21,14)	(1275.17862)		
pP(21, 8)	1345.66844	(20)	162	pP(15,11)	1321.40693	(20)	1	pP(22,14)	(1273.48729)		
pP(22, 8)	1343.81820	(30)	240	pP(16,11)	1319.66865	(10)	-3	pP(23,14)	(1271.79652)		
pP(23, 8)	1341,96207	(30)	340	pP(17,11)	1317.92810	(10)	-8	pP(24,14)	(1270.10635)		
pP(24, 8)	1340.10032	(20)	465	pP(18,11)	1316.18547	(20)	4	pP(25,14)	(1268.41681)		
pP(25, 8)	1338.23313	(30)	505	pP(19,11)	1314.44062	(10)	16	pP(26,14)	(1266.72790)		
pP(26, 8)	1556.56102	(30)	119	pP(20,11)	1312.69351	(20)	19	pP(27,14)	(1265.05966)		
pP(27, 8)	1334.45462	(40) 1	148	pP(21,11)	1310.94449	(30)	45	pP(28,14)	(1263.35211)		
pP(20, 0)	1332.00423	(50) 1	200	pP(22,11)	1207.19333	(30)	/10	pP(29,14)	(1201.00020)		
pP(29, 0)	1330.72071	(50) (3/3 318	pP(23,11)	1307.44019	(40)	4/7	pP(30,14)	(1209.9/921)	(50)	454
pP(30, 6)	1320.03403	(50) 1	-7	pr(24,11)	1303.00520	(30)	200	-D(16,15)	1273.10244	(50)	- 130
nP(16 9)	1353.83701	(10)	- 10	pP(26,11)	1302 16946	(30)	237	pP(10,15)	1269 79675	(50)	-281
pP(11, 9)	1352.08117	(10)	-11	pP(27,11)	(1300,40598)	(30)	231	pP(18,15)	1268 11568	(50)	-343
pP(12, 9)	1350.32004	(10)	-17	pP(28,11)	(1298,64314)			pP(19,15)	(1266,43985)	,	• ••
pP(13, 9)	1348.55371	(10)	-24	pP(29,11)	(1296.87865)			pP(20,15)	(1264.76179)		
pP(14, 9)	1346.78226	(40)	-27	pP(30,11)	(1295.11260)			pP(21,15)	(1263.08496)		
pP(15, 9)	1345.00572	(10)	-27	pP(12,12)	1314.62274	(10)	62	pP(22,15)	(1261.40937)		
pP(16, 9)	1343.22405	(20)	-32	pP(13,12)	1312.90479	(10)	42	pP(23,15)	(1259.73504)		
pP(17, 9)	1341.43739	(20)	-35	pP(14,12)	1311.18548	(10)	18	pP(24,15)	(1258.06197)		
pP(18, 9)	1339.64572	(20)	-42	pP(15,12)	1309.46497	(20)	2	pP(25,15)	(1256.39018)		
pP(19, 9)	1337.84911	(30)	-52	pP(16,12)	1307.74329	(10)	-4	pP(26,15)	(1254.71970)		
pP(20, 9)	1336.04772	(10)	-57	pP(17,12)	1306.02031	(10)	-17	pP(27,15)	(1253.05053)		
pP(21, 9)	1334.24141	(20)	-79	p₽(18,12)	1304.29628	(10)	- 15	pP(28,15)	(1251.38270)		
pP(22, 9)	1332,43039	(20) -	103	pP(19,12)	1302.57118	(20)	-2	pP(29,15)	(1249.71622)		
pP(23, 9)	1330.61479	(10) -	129	pP(20,12)	1300.84492	(40)	9	pP(30,15)	(1248.05111)		
pP(24, 9)	1328.79446	(20) -	181	pP(21,12)	1299.11758	(10)	24	pP(16,16)	(1259.25125)		
pP(25, 9)	1320.90905	(20) -7	251	pP(22,12)	1297.38934	(30)	58	pP(17,16)	(1257.58093)		
pP(20, 9)	1323.14002	(30)	20	pP(23,12)	1293.00034	(40)	141	pP(18,16)	(1255.91241)		
pP(27, 9)	1323.30734	(30)	430	pP(24,12)	1293.93009	(40)	102	-D(10,16)	(1234.243/2)		
pr(20, 9)	1321.40790	(30) -	7/8	pP(23,12)	1292.1990/	(30)	262	pP(20,10)	(1232.30007)		
0P(30 0)	1317,78300	(30) -	77	nP(27,12)	(1288.73082)	(30)	207	nP(22,10)	(1249. 35471)		
nP(31, 0)	1315.93604	(40) -1	731	nP(28,12)	(1286.99654)			nP(23,14)	(1747.5974%)		
nP(37 Q)	1314.08558	(100) -1	527	DP(20 12)	(1285,26148)			nP(24 14)	(1245.04003)		
pP(33, 9)	(1312.25170)			pP(30,12)	(1283,52572)			pP(25,16)	(1244.28450)		
DP(10.10)	1341,99278	(30)	12	pP(14,13)	1299, 14670	(10)	12	pP(26.16)	(1242,63087)		
pP(11,10)	1340.25304	(10)	7	pP(15,13)	1297.43951	(10)	-23	pP(27,16)	(1240.97915)		
pP(12,10)	1338.50962	(10)	4	pP(16,13)	1295.73224	(20)	- 30	pP(28,16)	(1239.32933)		
pP(13,10)	1336.76242	(10)	- 10	pP(17,13)	1294.02461	(20)	-42	pP(29,16)	(1237.68144)		
									-		

their analysis with the published microwave frequencies (4, 5). A simultaneous analysis of these data with the wavenumbers of the vibration-rotational transitions of the bands v_2 and v_5 revealed that the component of an A_1 , A_2 doublet at lower frequency, namely the transition $J = 8 \leftarrow J = 7$, kl = -2 ($A_1 \leftarrow A_2$), cannot be assigned to the line 396176.71 MHz according to our paper (6), although the calculated frequency of that line was in perfect agreement with the experimental value. The reason is the

PAPOUŠEK ET AL.

TABLE III—Continued

Transition	Wavenumber		Obs-Calc	Transition	Wavenumber		Obs-Calc	Transition	Wavenumber	(Dbs-Calc
pP(30,16)	(1236.03549))		qQ(26, 2)	1433.62961	A (20) -39	pQ(31, 3)	1423.99141	*	-638
pQ(1, 1)	1463.73442	(10)	9	qQ(27, 2)	1432.71164	A (30) -41	pQ(31, 3)	1423.99141	*	176
p9(2,1)	1464.15467	(10)) 6	qQ(28, 2)	1431.78828	A (30) -55	pQ(32, 3)	1423.16490	*	-665
pQ(3,1)	1464.66522	(10)	2	qQ(29, 2)	1430.85937	A (40) -128	pQ(32, 3)	1423.16490	*	138
pQ(4,1)	1465.21110	(10)	5	pQ(3,3)	1440.65867	(20)) 10	p9(33, 3)	1422.33027	*	-724
pQ(5,1)	1465.76895	(10)) 4	pQ(3,3)	1440.65867	(20)) 17	pQ(33, 3)	1422.33027	*	70
pQ(6,1)	1466.32255	(10)) 3	pQ(4,3)	1440.45769	(20)) -4	pQ(4,4)	1429.23162	(10)	9
pQ(7,1)	1466.86319	(10)	3	pQ(4,3)	1440.45769	(20)) 18	pQ(5,4)	1429.08513	(10)	7
pQ(8,1)	1467.38570	(10)	4	pQ(5,3)	1440.21046	(50) -25	pQ(6,4)	1428.91033	(10)	4
pQ(9,1)	1467.88699	(10)	4	pQ(5,3)	1440.21046	(50)) 49	pq(7,4)	1428.70785	(10)	7
pQ(10, 1)	1468.36537	(10)) 5	pQ(6,3)	1439.91946	(800)	> -111	pQ(8,4)	1428.47820	(10)	5
pQ(11, 1)	1468.81998	(10)	3	pQ(6,3)	1439.91946	(800)) 139	pQ(9,4)	1428.22227	(10)	9
pQ(12, 1)	1469.25077	(10)	5	pQ(7,3)	1439.59851	(10)) 13	pQ(10, 4)	1427.94094	(10)	9
pQ(13, 1)	1469.65807	(40)	5	pQ(7,3)	1439.58435	(10)) 14	pQ(11, 4)	1427.63551	(10)	6
pQ(14, 1)	1470.04270	(20)	10	pQ(8,3)	1439.18990	(10)) 7	pQ(12, 4)	1427.30822	(10)	2
pQ(15, 1)	1470.40558	(20)	7	pQ(8,3)	1439.21106	(10)) 14	pQ(13, 4)	1426.96411	(10)	1
pu(16, 1)	1470.74806	(80)		pu(9,3)	1438.78814	(10)	0 10	pQ(14, 4)	1426.62233	(20)	5
pu(17, 1)	14/1.0/156	(20)	12	pa(9,3)	1438.80100	(10)) 17	pQ(15, 4)	1426.44195	(10)	3
pu(18, 1)	14/1.3//40	(20)	1.5	pu(10, 5)	1438.3430/	(50)	, ,	pQ(16, 4)	1425.61284	(30)	-2
pu(19, 1)	1471.00710	(00)	19	pu(10, 3)	1430.33091	(40)		pu(17, 4)	1423.206//	(10)	-9
pa(20, 1)	1471.74211	(10)	10	pu(11, 3)	1437.00349	(10)	10	pu(18, 4)	1424.75333	(10)	- 17
pa(21, 1)	1472.20374	(30)	19	pa(11, 3)	1437.00102	(10)		pe(19, 4)	1424.27207	(10)	- 22
pu(22, 1)	1472.43347	(30)	10	pu(12, 3)	1437.33000	(10)		pu(20, 4)	1423.70980	(10)	- 36
pe(25, 1)	1472.07249	(20)	24	pu(12, 3)	1437.30020	(10)		pu(21, 4)	1423.24/33	(20)	-44
pa(24, 1)	1473 14288	(20)	20	pa(13, 3)	1436.81871	(10)	25	pa(22, 4)	1422.70033	(20)	- 30
pe(26 1)	1473 35430	(10)	30	pe(15, 3)	1436.30210	(30)	0	pe(25, 4)	1422.14793	(20)	-12
pa(20, 1)	1673 56300	(10)	2/	pe(14, 3)	1436.23398	(30)	-05	pe(24, 4)	1421.37307	(20)	105
pa(28, 1)	1473.76399	(30)	34	pq(14, 3)	1435 66802	(30)	-71	pq(25, 4)	1420.37666	(10)	- 126
p9(29, 1)	1473.95977	(100)	43	pQ(15, 3)	1435.60509	(10)	129	nQ(27 4)	1419.75657	(20)	- 150
p9(30, 1)	1474, 15098	(20)	55	pQ(16, 3)	1435.05748	(20)	-26	pa(28 4)	1419 12267	(30)	- 189
o9(31, 1)	1474.33807	(20)	73	pQ(16, 3)	1435.02539	(20)	104	p9(29, 4)	1418.47594	(30)	-211
p9(32, 1)	1474.52142	(30)	99	pq(17, 3)	1434.42572	(10)	-43	p9(30, 4)	1417.81619	(200)	-291
pQ(33, 1)	1474.70015	(600)	35	pQ(17, 3)	1434.40398	(20)	97	p9(31, 4)	1417, 14517	(40)	-338
p@(34, 1)	1474.87739	(200)	215	pQ(18, 3)	1433.77434	(20)	-57	p9(32, 4)	1416.46313	(100)	- 388
pQ(35, 1)	1475.04816	(30)	221	pQ(18, 3)	1433.75771	(20)	98	pQ(33, 4)	1415.77090	(300)	-446
pQ(2,2)	1451.91953	(10)	13	pQ(19, 3)	1433.10459	(20)	-75	pQ(5,5)	1417.70908	(10)	Ū
pQ(3,2)	1451.53760	(10)	6	pQ(19, 3)	1433.09101	(20)	97	p9(6,5)	1417.59151	(10)	6
pQ(4,2)	1451.07041	(10)	10	pQ(20, 3)	1432.41769	(30)	- 95	p9(7,5)	1417.45544	(100)	86
pQ(5,2)	1450.53199	(10)	12	pQ(20, 3)	1432.40637	(80)	116	pQ(8,5)	1417.29863	(10)	0
p9(6,2)	1449.93799	(10)	6	pQ(21, 3)	1431.71491	(60)	- 103	pQ(9,5)	1417.12381	(10)	-2
pQ(7,2)	1449.29968	(20)	12	pQ(21, 3)	1431.70496	(60)	115	pQ(10, 5)	1416.93037	(10)	-5
pQ(8,2)	1448.62501	(10)	4	pQ(22, 3)	1430.99681	(100)	- 144	pQ(11, 5)	1416.71860	(10)	-8
pQ(9,2)	1447.92046	(10)	15	pQ(22, 3)	1430.98824	(100)	116	pQ(12, 5)	1416.48890	(10)	-9
p9(10, 2)	1447.19027	(10)	7	p@(23, 3)	1430.26482	(100)	- 170	p9(13, 5)	1416.24175	(10)	-5
p@(11, 2)	1446.43825	(10)	9	pQ(23, 3)	1430.25734	(100)	128	pQ(14, 5)	1415.97761	(10)	-7
pQ(12, 2)	1445.66705	(10)	8	₽Q(24, 3)	1429.51956	(200)	-205	pQ(15, 5)	1415.69736	(10)	-11
p@(13, 2)	1444.87894	(20)	9	pQ(24, 3)	1429.51309	(200)	140	pQ(16, 5)	1415.40225	(10)	-18
pQ(14, 2)	1444.07569	(20)	14	p9(25, 3)	1428.76177	*	-253	pQ(17, 5)	1415.09442	(40)	-22
pQ(15, 2)	1443.25868	(10)	10	p9(25, 3)	1428.75610	*	128	pQ(18, 5)	1414.77803	(20)	- 15
pQ(16, 2)	1442.42927	(10)	10	pq(26, 3)	1427.99891	*	357	pQ(19, 5)	1414.46210	(10)	-21
pQ(17, 2)	1441.58848	(10)	11	p9(26, 3)	1427.98773	*	153	p@(20, 5)	1414.17304	(20)	-35
pQ(18, 2)	1440.73716	(10)	6	p9(27, 3)	1427.21185	*	~ 354	p@(21, 5)	1414.00191	(20)	-36
pQ(19, 2)	1439.87629	(20)	14	pQ(27, 3)	1427.20853	*	198	pQ(22, 5)	1412.73359	(30)	-28
pQ(20, 2)	1439.00635	(10)	10	p9(28, 3)	1426.41963	*	-547	pQ(23, 5)	1412.49341	(300)	- 344
p@(21, 2)	1438.12808	(20)	6	pQ(28, 3)	1426.41963	*	314	pq(24, 5)	1412.13392	(30)	-36
qQ(22, 2)	1437.24201	A (20)	0	pQ(29, 3)	1425.61899	*	-606	pQ(25, 5)	1411.71911	(20)	-55
qu(25, 2)	1436.54873	A (20)	-4	pQ(29, 3)	1425.61284		-378	pQ(26, 5)	1411.27424	(30)	-71
qu(24, 2)	1435.44855	A (50)	- 19	pQ(30, 3)	1424.80980	-	-597	pQ(27, 5)	1410.80739	(30)	-80
φα(25, 2)	1434.34209	N (30)	-20	pu(30, 3)	1424.80980	-	230	pe(28, 5)	1410.32213	(20)	-95

accidental coincidence of the energy level J = 7, kl = -2 (larger A block, A_2 symmetry) with the level J = 7, kl = +1 (A_2) ($\Delta E = 0.552$ cm⁻¹) and the "2, -1" *l*-type interaction between them. The frequency 396176.71 MHz of this line is too large by about 32 MHz, which was compensated by the slightly modified values of the parameters A_5 , $A\zeta_5^z$ and q_{12} , with respect to which the frequencies of the pure rotational transitions are less sensitive because of the selection rules $\Delta k = 0$, $\Delta l = 0$.

TABLE III—Continued

Transition	Wavenumber	C	bs-Calc	Transition	Wavenumber	(Obs-Calc	Transition	Wavenumber	0	bs-Calc
p9(29, 5)	1409.82066	(30)	-95	p9(9,8)	1382.59695	(10)	-13	p9(24,10)	1357.91880	(20)	80
p9(30, 5)	1409.30390	(80)	-114	pQ(10, 8)	1382.51988	(10)	-19	p@(25,10)	1357.81326	(20)	91
p9(31, 5)	1408.77273	(50)	- 153	p9(11, 8)	1382.43517	(10)	- 19	pQ(26,10)	1357.70347	(30)	89
pu(32, 5)	1408.22828	(80)	-165	p0(12, 8)	1382.34274	(10)	- 19	pQ(27,10)	1357.58996	(30)	119
pa(35, 5)	1407 .07033	(100)	47	par(13, 8)	1302.24204	(10)	- 10	per(20,10)	(1357.4/103)		
pa(0, 0)	1406.00583	(100)	-0		1382 01052	(10)	- 13		(1337.34947)		
pQ(8,6)	1405.89390	(10)	-0	pa(15, 0)	1381_80453	(10)	- 5	pe(30,10)	(1331.22424)		
09(9,6)	1405.76834	(10)	-11	nP(17, 8)	1381.76602	(10)	28	m0(12,11)	1346 05001	(10)	31
p9(10, 6)	1405.62898	(10)	-12	pq(18, 8)	1381,62817	(10)	69	09(13,11)	1346.92181	(10)	11
p9(11, 6)	1405.47602	(10)	-10	p9(19, 8)	1381,48282	(10)	108	DQ(14,11)	1346.88080	(10)	2
pQ(12, 6)	1405.30951	(10)	- 12	p9(20, 8)	1381.33027	(20)	168	pa(15,11)	1346.83675	(10)	-9
p9(13, 6)	1405 12958	(20)	- 18	p9(21, 8)	1381.17068	(10)	253	pQ(16,11)	1346.78968	(1000)	-16
p9(14, 6)	1404.93649	(10)	- 19	p9(22, 8)	1381.00399	(20)	344	p9(17,11)	1346,73996	(20)	15
pQ(15, 6)	1404.73039	(10)	-20	pQ(23, 8)	1380.83061	(20)	464	p9(18,11)	1346,68681	(20)	14
pQ(16, 6)	1404.51159	(30)	-19	p9(24, 8)	1380.65079	(20)	615	pQ(19,11)	1346.63059	(20)	14
pQ(17, 6)	1404.28044	(10)	-13	pQ(25, 8)	1380.46917	(300)	1231	p9(20,11)	1346.57156	(20)	44
pQ(18, 6)	1404.03728	(10)	-16	p9(26, 8)	1380.27322	(20)	1024	pQ(21,11)	1346.50958	(20)	89
pQ(19, 6)	1403.78287	(50)	- 14	pQ(27, 8)	1380.07627	(20)	1276	pQ(22,11)	1346.44409	(20)	95
p0(20, 6)	1405.51804	(10)	-17	pQ(28, 8)	1379.87492	(20)	1586	pQ(23,11)	1346.37594	(30)	146
pw(21, 0)	1403.24420	(10)	-11	pu(29, 8)	1379.00983	(40)	1930	pq(24,11)	1546.30455	(30)	181
pa(22, 0)	1402.90309	(20)	4	pu(30,6)	1370 9/179	(40)	2342	pu(25,11)	1346.23026	(30)	240
$p_{0}(23, 0)$	1402.0/9/9	(10)	4	pu(9,9)	1370 78306	(10)	-7	pu(20,11)	(1346.14994)		
pa(25 6)	1402 13517	(20)	11	pa(11 9)	1370 72001	(10)	. 12	per(27,11)	(1345.00070)		
p9(26, 6)	1401-91537	(20)	13	mQ(12, 9)	1370.65207	(10)	- 14	pa(20,11)	(1345.90501)		
p9(27, 6)	1401.79901	(20)	10	p9(13, 9)	1370.57743	(10)	-20	nP(30,11)	(1345.80833)		
p9(28, 6)	1399,73121	(30)	41	pQ(14, 9)	1370.49703	(10)	-22	pe(12, 12)	(1334,97890)		
pQ(29, 6)	1399.67114	(20)	81	p9(15, 9)	1370.41083	(10)	-25	p9(13,12)	1334.95507	(20)	22
pQ(30, 6)	1399.44611	(20)	123	p9(16, 9)	1370.31879	(10)	-33	p9(14,12)	1334.92883	(20)	0
pQ(31, 6)	1399.12972	(30)	152	p0(17, 9)	1370.22100	(10)	-37	p9(15,12)	1334.90068	(20)	- 17
pQ(32, 6)	1398.76163	(30)	175	p9(18, 9)	1370.11738	(20)	-48	p9(16,12)	1334.87070	(20)	- 16
pQ(33, 6)	1398.36059	(30)	217	pQ(19, 9)	1370.00801	(20)	-58	pQ(17,12)	1334.83876	(30)	-8
pQ(34, 6)	1397.93547	(50)	255	pQ(20, 9)	1369.89287	(20)	-73	pQ(18,12)	1334.80482	(20)	2
pQ(7,7)	1394.42161	(10)	-8	p9(21, 9)	1369.77198	(10)	-94	pQ(19,12)	1334.76883	(30)	15
pQ(8,7)	1394.33899	(10)	- 15	p9(22, 9)	1369.64530	(20)	- 132	p9(20,12)	1334.73095	(30)	46
pQ(9,7)	1394.24618	(10)	- 15	pQ(23, 9)	1369.51296	(20)	- 179	pQ(21,12)	1334.69084	(20)	63
pQ(10, 7)	1394.14306	(10)	-19	pQ(24, 9)	1369.37503	(20)	-237	pQ(22,12)	1334.64886	(20)	106
pe(11, 7)	1394.02974	(10)	-21	pq(25, 9)	1369.23144	(20)	- 326	p0(23,12)	1334.60499	(30)	171
pu(12, 7)	1393.90021	(10)	-23	pQ(20, 9)	1369.08245	(20)	-435	pQ(24,12)	1334.55888	(30)	225
pa(14, 7)	1393.62882	(10)	- 20	n0(28 9)	1368 76854	(20)	- 752	pu(25,12)	1334.31093	(30)	413
p0(15, 7)	1393.47504	(10)	-19	n0(29, 9)	1368 60402	(20)	-974	pe(20,12)	(1334 40103	(30)	412
p9(16. 7)	1393.31134	(10)	-16	p9(30, 9)	1368.43522	(20)	- 1208	pa(28,12)	(1334.34867)		
p9(17, 7)	1393.13783	(10)	-11	pQ(31, 9)	1368.26176	(30)	- 1534	pR(1, 1)	1467.56167	(100)	1
pQ(18, 7)	1392.95467	(10)	-2	p9(32, 9)	1368.08463	(50)	- 1910	pR(2,1)	1469.77576	(10)	10
p9(19, 7)	1392.76202	(10)	7	pQ(10,10)	1358.95130	(500)	164	pR(3, 1)	1472.02484	(50)	6
p9(20, 7)	1392.56015	(10)	21	pQ(11,10)	1358.90379	(10)	2	pR(4,1)	1474.28578	(10)	7
p9(21, 7)	1392.34940	(10)	45	p9(12,10)	1358.85351	(10)	-11	pR(5,1)	1476.54206	(100)	-7
pQ(22, 7)	1392.13011	(10)	71	p@(13,10)	1358.79919	(10)	-3	pR(6, 1)	1478.78540	(100)	7
pQ(23, 7)	1391.90293	(100)	108	p9(14,10)	1358.74046	(10)	-10	pR(7,1)	1481.01009	(10)	6
pQ(24, 7)	1391.66833	(20)	131	p@(15,10)	1358.67746	(20)	- 16	pR(8,1)	1483.21319	(10)	5
pQ(25, 7)	1391.42763	(20)	170	p9(16,10)	1358.61020	(20)	- 19	pR(9,1)	1485.39291	(10)	2
p0(26, 7)	1391.18223	(20)	218	p9(17,10)	1358.53876	(10)	-11	pR(10, 1)	1487.54852	(20)	10
pq(27, 7)	1590.93457	(20)	302	pQ(18,10)	1358.46308	(10)	3	pR(11, 1)	1489.67960	(10)	4
pe(28, 7)	1390.68728	(20)	359	p9(19,10)	1358.38296	(10)	5	pR(12, 1)	1491.78672	(20)	7
PH(27, /)	1200 21007	(40)	429	pe(20,10)	1558.29869	(10)	22	pR(13, 1)	1493.87046	(10)	7
pa(30, 7)	1390.2100/	(50)	54/	per(21,10)	1338.21000	(20)	20	pR(14, 1)	1495.95185	(20)	6
p=(J1, 7) p0(8 81	1382 66623	(10)	-13	pa(22,10)	1358 02011	(30)	40	pr(15, 1)	1497.97258	(50)	53
		(10)	و ،	har(co) (A)		(100)	04	μπ(10, 1)	1477.97200	(20)	H

The results of the new fit to the 202 pure rotational transition frequencies (J < 13) which did not involve the frequency of the $J = 8 \leftarrow 7$, kl = -2 $(A_1 \leftarrow A_2)$ line are given in Table I. The frequency of this line is predicted to be 396144.26 MHz.

Separate Fit to the Infrared Data

We have assigned 2046 lines in the region 1250–1600 cm⁻¹ in which the bands ν_2 and ν_5 of H₃¹²CF appear, including 85 lines of the $\Delta k = \pm 2$ forbidden transitions

TABLE III—Continued

Transition	Wavenumber	C	bs-Calc	Transition	Wavenumber		Obs-Calc	Transition	Wavenumber	c	bs-Calc
pR(17, 1)	1501.99470	(10)	21	pR(11, 3)	1457.80928	(300)	312	pR(29, 4)	(1469.00311)		
pR(18, 1)	1503.97960	(20)	12	pR(12, 3)	1458.94497	(30)	- 10	pR(5,5)	(1427.80685)		
pR(19, 1)	1505.94897	(10)	13	pR(12, 3)	1458.98772	(10)	-21	pR(6,5)	1429.37194	(20)	12
pR(20, 1)	1507.90429	(80)	36	pR(13, 3)	1460.08045	(50)	- 12	pR(7,5)	1430.91738	(20)	0
pR(21, 1)	1509.84620	(30)	16	pR(13, 3)	1460.21769	(90)	-200	pR(8,5)	1432.44370	(20)	0
pR(22, 1)	1511.77673	(20)	38	pR(14, 3)	1461.19090	(50)	-11	pR(9,5)	1433.95084	(10)	- 12
pR(23, 1)	1513.69621	(20)	21	pR(14, 3)	1461.12780	(60)	123	pR(10, 5)	1435.43931	(20)	-11
pR(24, 1)	1515.60632	(30)	32	pR(15, 3)	1462.27783	(20)	-21	pR(11, 5)	1436.90935	(10)	-5
pR(25, 1)	1517.50797	(100)	69	pR(15,3)	1462.24678	(200)	211	pR(12, 5)	1438.35691	(500)	-438
pR(26, 1)	1519.40094	(50)	29	pR(16, 3)	1463.34273	(20)	-48	pR(13, 5)	1439.79543	(20)	-21
pR(27, 1)	1521.28711	(80)	27	pR(16, 3)	1463.32101	(20)	94	pR(14, 5)	1441.21308	(10)	- 15
pR(28, 1)	(1523.16649)			pR(17, 3)	1464.38732	(40)	-59	pR(15, 5)	1442.61518	(10)	-7
pR(29, 1)	(1525.04013)			-PK(17, 3)	1404,3/0/0	(50)	105	PK(16, 5)	1444.00354	(20)	-21
pR(30, 1)	(1520.90616)	(50)	76	pR(18, 3)	1402.41272	(50)	-69	PK(17, 5)	1445.38262	(20)	- 14
pr(2,2)	1430.04799	(50)	20	-R(10, 3)	1402.37717	(50)	100	PR(16, 5)	1440./012/	(10)	-24
pR(3,2)	1457.00303	(50)	- 300	pR(19, 3)	1400.41993	(20)	-94	pR(19, 5)	1448.1039/	(20)	- 30
pR(+, 2)	1440 15733	(1000)	10	-PK(19, 3)	1/47 / 101/	(/0)	. 172	pR(20, 5)	1/50 11000	(20)	- 23
pr(3,2)	1460.13722	(1000)	/7	-PK(20, 3)	1407.41014	(40)	102	PR(21, 5)	1450.11066	(20)	- 52
pR(0,2)	1401.22133	(200)	-195	pR(20, 3)	1407.40020	(30)	1/5	pR(22, 5)	1421.20432	(20)	-31
pR(1,2)	1462.24078	(200)	- 105	pr(21,3)	1400.30440	(40)	109	pR(23, 5)	1432.09123	(30)	-37
pR(0,2)	1464 21724	(1000)	75		1/40 3/353	(40)	.171	pR(24, 5)	1454.10778	(300)	- 44
pr(7, 2)	1404.21724	(1000)	17	pr(22, 3)	1407.34333	(30)	170	pR(23, 5)	1455.40736	(30)	- 00
pR(10, 2)	1465. 10565	(10)	0	-PR(22, 3)	1407.33007	(30)	- 222	pR(20, 5)	1450.02045	(30)	-02
pR(12, 2)	1467-00649	(10)	15	pR(23, 3)	1470 28181	(30)	140	DP(28 5)	1459 00722	(30)	- 130
pR(13, 2)	1467.90216	(20)	4	DR(24, 3)	1471.21937	(40)	-249	DR(29 5)	(1460 17382)	(30)	(30
pR(14, 2)	1468.78751	(500)	396	DP(24 3)	1471 21388	(40)	150	pR(27, 37	1461 32122	(600)	- 222
pR(15, 2)	1469-65807	(500)	626	DR(25 3)	1472 13769	(40)	- 285	DR(56,5)	(1417 02002)	(400)	
DR(16, 2)	1470.50805	(10)	14	DR(25, 3)	1472, 13305	(50)	165	DR(7,6)	1419-50845	(200)	-180
pR(17, 2)	1471.35274	(10)	1	DR(26, 3)	1473.04323	(50)	-375	DR(8,6)	1421.08536	(10)	-6
pR(18, 2)	1472.18715	(20)	14	pR(26, 3)	1473.04018	(50)	204	pR(9,6)	1422.64632	(10)	- 10
pR(19, 2)	1473.01152	(20)	11	pR(27, 3)	1473.93666	*	-512	pR(10_6)	1424.19314	(10)	-18
pR(20, 2)	1473.82647	(20)	-3	pR(27, 3)	1473.93666	*	350	DR(11, 6)	1425.72591	(100)	-26
gR(21, 2)	1474.63279	A (30)	-4	pR(28, 3)	(1474.82545)			pR(12, 6)	1427.24491	(10)	-17
qR(22, 2)	1475.43067	A (60)	-17	pR(28, 3)	(1474.81702)			pR(13, 6)	1428.75002	(100)	-12
qR(23, 2)	1476.22061	A (100)	-36	pR(4,4)	(1437.59965)			pR(14, 6)	1430.24134	(10)	-18
qR(24, 2)	1477.00328	A (30)	-29	pR(5,4)	1439.12735	(20)	7	pR(15, 6)	1431.71901	(200)	-44
qR(25, 2)	1477.77872	A (30)	-28	pR(6,4)	1440.62699	(20)	12	pR(16, 6)	1433.18399	(20)	-23
qR(26, 2)	1478.54710	A (100)	-48	pR(7,4)	1442.09898	(10)	- 1	pR(17, 6)	1434.63608	(10)	-17
qR(27, 2)	1479.30881	A (30)	-77	pR(8,4)	1443.54456	(10)	15	pR(18, 6)	1436.07599	(10)	-12
qR(28, 2)	1480.06408	A (30)	-120	pR(9,4)	1444.96410	(10)	9	pR(19, 6)	1437.50463	(20)	-4
qR(29, 2)	(1480.81491)	A		pR(10, 4)	1446.35908	(10)	0	pR(20, 6)	1438.92321	(10)	-4
qR(30, 2)	(1481.55868)	A		pR(11, 4)	1447.73183	(10)	6	pR(21, 6)	1440.33390	(10)	-4
pR(3,3)	1447.27059	(20)	5	pR(12, 4)	1449.08702	(10)	0	pR(22,6)	1441.74038	(10)	2
pR(3,3)	1447.27059	(0)	29	pR(13, 4)	1450.44396	(10)	1	pR(23,6)	1443.14900	(50)	-1
pR(4,3)	1448.72611	(20)	-22	pR(14, 4)	1451.96217	(50)	55	pR(24,6)	1444.57313	(20)	16
pR(4,3)	1448.72611	(0)	52	pR(15,4)	1452.83046	(90)	57	pR(25,6)	1446.04010	(30)	10
pR(5,3)	1450.13772	(100)	- 107	pR(16, 4)	1454.12049	(80)	4	pR(26, 6)	1447.60932	(30)	4
pR(5,3)	1450.13772	(0)	143	pR(17, 4)	1455.36271	(40)	-10	pR(27, 6)	1447.23077	(500)	530
pR(6,3)	1451.51904	(10)	14	pR(18, 4)	1456.57693	(10)	-15	pR(28, 6)	1448.84906	(70)	109
pR(6,3)	1451.50482	(10)	8	pR(19, 4)	1457.76805	(20)	-32	pR(29, 6)	1450.30530	(70)	124
pR(7,3)	1452.81240	(10)	8	pR(20, 4)	1458.93848	(50)	-43	pR(30, 6)	1451.66884	(70)	135
рк(/, 5)	1452.83282	(500)	-58	pR(21, 4)	1460.09088	(100)	86	pR(7,7)	(1407.95228)		
μκ(0,3) με(2,3)	1454.11210	(50)	4	PK(22, 4)	1401.22155	(200)	- 115	рк(8,7) = Р(2,7)	(1409.5598/)		70
pr(0,3)	1434.12491	(300)	0	pr (23,4)	1402.33/00	(20)	-/3	рк(9,7)	1411.13039	(10)	- 39
μπ(7,3) μα(0 Σ	1/55 70304	(10)	10	pr(24,4)	1403.44044	(400)	433	pR(10, 7)	1412.14233	(300)	-44
PR(7, 3)	1455.50200	(10)	10	PR(23,4) m2(34 /∖	1404.21626	(30)	- 125	рк(11, 7) m0/13 7	1414.31821	(20)	- 22
μπ(10,3) mp(10 7)	1456 60774	(10)	14	pr(20,4)	1403.30237	(20)	- 170	prc(12, 7)	1417 43044	(20)	-23
	1/57 78247	(10)	.4	pr(27, 4)	1/67 67167	(30)	- 177	μα(12, 7)	1/18 09075	(200)	- 12
(c, ;; , a)		(10)	v	pr(20, 4)	1401.0/10/	(100)	-07	pr.(14, 7)	1410.90032	(20)	- 12

induced by the "2, -1" *l*-type interaction between the +*l*, *K* and -l, *K* + 1 levels in the $v_5 = 1$ vibrational state. As illustrated by Fig. 2, there are close coincidences and level crossings between the +*l*, *K* and -l, *K* + 1 levels that give rise to the $\Delta k = \pm 2$ forbidden transitions. As can be seen in Fig. 1, the "2, -1" *l*-type interaction in such cases strongly perturbs the otherwise regular subbranches of the v_5 band and leads to the transitions allowed by perturbations.

Obs-Caic	Transition	Wavenumber	Obs-Calc			
17	rP(11, 2)	1479.79218	(10)	5		
14	rP(12, 2)	1478.44114	(10)	6		
- 142	rP(13, 2)	1477.11879	(10)	13		
13	rP(14, 2)	1475.82397	(10)	10		
10	rP(15, 2)	1474.55562	(20)	6		
13	rP(16, 2)	1473.31243	(10)	12		
-25	rP(17, 2)	1472.09225	(10)	1		
21	rP(18, 2)	1470.89270	(20)	8		
8 (rP(19, 2)	1469.70880	(20)	5		
) 4	rP(20, 2)	1468.53074	(10)	3		
) 1	rP(21, 2)	1467.33154	(20)	1		
-1	rP(22, 2)	1466.01954	(20)	- 14		
-2	rP(23, 2)	1465.80913	(100)	-56		

TABLE III-Continu

Transition	Wavenumber	C	Obs-Calc	Transition	Wavenumber	c	bs-Caic	Transition	Wavenumber	c	lbs-Cali
pR(15, 7)	1420.51302	(20)	-9	rP(10, 0)	1462.59860	(10)	17	rP(11, 2)	1479.79218	(10)	5
pR(16, 7)	1422.03513	(10)	-2	rP(11, 0)	1461.74562	(100)	14	rP(12, 2)	1478.44114	(10)	6
pR(17, 7)	1423.54629	(40)	-39	rP(12, 0)	1460.91897	(200)	- 142	rP(13, 2)	1477.11879	(10)	13
pR(18, 7)	1425.04797	(10)	12	rP(13, 0)	1460.11791	(200)	13	rP(14, 2)	1475.82397	(10)	10
pR(19, 7)	1426.53917	(20)	34	rP(14, 0)	1459.33380	(20)	10	rP(15, 2)	1474.55562	(20)	6
pR(20, 7)	1428.02039	(30)	51	rP(15, 0)	1458.56523	(20)	13	rP(16, 2)	1473.31243	(10)	12
pR(21, 7)	1429.49193	(30)	58	rP(16, 0)	1457.80928	(50)	-25	rP(17, 2)	1472.09225	(10)	1
pR(22, 7)	1430.95408	(50)	32	rP(17, 0)	1457.06529	(200)	21	rP(18, 2)	1470.89270	(20)	8
pR(23, 7)	1432.40637	(200)	- 139	rP(18, 0)	1456.33019	(10)	8	rP(19, 2)	1469.70880	(20)	5
pR(24, 7)	1433.85612	(250)	174	rP(19, 0)	1455.60333	(20)	4	rP(20, 2)	1468.53074	(10)	3
pR(25, 7)	1435.29758	(70)	259	rP(20, 0)	1454.88357	(20)	1	rP(21, 2)	1467.33154	(20)	1
pR(26, 7)	1436.73469	(40)	296	rP(21, 0)	1454.16998	(200)	-1	rP(22, 2)	1466.01954	(20)	- 14
pR(27, 7)	1438.1/292	(200)	511	FP(22, 0)	1453.46182	(20)	-2	rP(23, 2)	1465.80913	(100)	-56
pR(28, 7)	(1439.60855)			rP(23, 0)	1452.75841	(10)	-2	rP(24, 2)	1464.57214	(20)	-10
pk(29, 7)	(1441.06168)			rP(24, 0)	1452.05941	(30)	17	rP(25, 2)	1463.46273	(100)	-99
pk(50, 7)	(1442.54192)			rP(25, 0)	1451.56566	(30)	-8	rP(26, 2)	1462.40985	(30)	-21
pac(0,0)	(1397,90009)			rP(26, U)	1420.0/140	(20)	-9	rP(27, 2)	1461.38859	(70)	-20
pr(9,0)	(1399.32923)			FP(27, U)	1449.98217	(20)	-15	rP(28, 2)	1460.38807	(400)	-327
pR(10, 6)	(1401.14337)	(10)	- 17	rP(28, 0)	1449.29906	(400)	400	FP(29, 2)	1459.41350	(40)	-5
mR(12 8)	1404.34737	(30)	- 14	rP(30 0)	1440.01137	(100)	-45	rP(30, 2)	1430.43299	(70)	.7
nR(13, 8)	1405.93700	(20)	-5	rP(31 0)	1447 24731	(70)	-43	(F(31, 2)	(1/54 57735)	(60)	47
nR(14 8)	1407 51809	(20)	- 15	rP(32 0)	1446 56762	(70)	- 66	(JZ, Z)	1400 34301	(20)	- 1
DR(15, 8)	1409.09112	(10)	4	rP(3 1)	1480.78382	(20)	-7	rP(6 3)	1497 77364	(100)	- 15
DR(16, 8)	1410.65606	(30)	53	rP(4, 1)	1479.21606	(10)	4	rP(7,3)	1496.23106	(10)	11
pR(17, 8)	1412.21240	(30)	79	rP(5, 1)	1477.69321	(10)	-3	rP(8, 3)	1494.71415	(100)	-4
pR(18, 8)	1413.76019	(20)	84	rP(6, 1)	1476.21541	(100)	0	rP(9,3)	1493.22317	(10)	-3
pR(19, 8)	1415.30055	(20)	179	rP(7, 1)	1474.78238	(100)	23	rP(10, 3)	1491.75763	(10)	0
pR(20, 8)	1416.83219	(50)	227	rP(8, 1)	1473.39299	(10)	4	rP(11, 3)	1490.31704	(10)	0
pR(21, 8)	1418.35634	(60)	344	rP(9, 1)	1472.05153	(500)	447	rP(12, 3)	1488.90096	(10)	0
pR(22, 8)	1419.87236	(80)	451	rP(10, 1)	1470.74806	(500)	463	rP(13, 3)	1487.50746	(200)	- 141
pR(23, 8)	1421.38092	(80)	597	rP(11, 1)	1469,48073	(10)	8	rP(14, 3)	1486.14026	(10)	2
pR(24, 8)	(1422.87442)			rP(12, 1)	1468.25683	(10)	11	rP(15, 3)	1484.79446	(10)	5
pR(25, 8)	(1424.36660)			rP(13, 1)	1467.06874	(10)	12	rP(16, 3)	1483.47069	(10)	- 1
pk(9,9)	(1387.78826)			rP(14, 1)	1465.91049	(20)	14	rP(17, 3)	1482.16840	(20)	0
pR(10, 9)	(1389.42380)			rP(15, 1)	1464.76029	(200)	- 136	rP(18, 3)	1480.88662	(10)	0
pR(11, 9)	(1391.05303)			rP(16, 1)	1463.46273	(70)	59	rP(19, 3)	1479.62436	(20)	-6
pR(12, 9)	1392.0/308	(20)	-22	rP(17, 1)	1462.82076	(10)	11	rP(20, 3)	1478.38061	(20)	- 5
pk(13, 9)	1394.29208	(20)	-28	rP(18, 1)	1461.76415	(10)	4	rP(21, 3)	1477.15387	(20)	- 3
pR(14, 9)	1393.90230	(20)	- 5	-P(19, 1)	1480.70172	(80)		rP(22, 3)	1475.94217	(20)	-10
pR(15, 7)	1397.30333	(20)	- 27	PP(20, 1)	1459.19195	(30)		FP(23, 3)	()474.74313)		
-R(10, 7)	1/00 40274	(00)	- 37	-0(22, 1)	1420.04040	(10)	,	FP(24, 3)	14/3.00020	(200)	-208
	1400.07270	(20)	-58	rp(28 1)	1437.92791	(20)	-3	-P(25, 5)	14/2.30232	(30)	- 25
ma(10 0)	1402.27025	(20)	- 45	rP(26 1)	1456 14648	(20)	- 7	(P(20, 3)	14/1.10063	(20)	- 10
pR(20, 9)	1405.42339	(30)	-94	rP(25 1)	1455.28193	(20)	-2	rP(6 4)	1508 47574	(50)	- 20
pR(21, 9)	1406.98689	(20)	-123	rP(26, 1)	1454.43269	(20)	-5	rP(7 4)	1506.90956	(20)	- 10
pR(22, 9)	1408.54344	(30)	- 185	rP(27, 1)	1453.59751	(20)	-2	rP(8 4)	1505.36562	(30)	- 14
pR(23, 9)	1410.09376	(50)	-212	rP(28, 1)	1452.77525	(50)	13	rP(9,4)	1503.84398	(10)	-5
pR(24, 9)	1411.63674	(30)	-321	rP(29, 1)	1451.96217	(200)	- 222	rP(10, 4)	1502.34416	(10)	-6
pR(25, 9)	1413.17342	(40)	-418	rP(30, 1)	1451.16445	(50)	8	rP(11, 4)	1500.86613	(10)	7
pR(26, 9)	(1414.70897)			rP(31, 1)	1450.37406	(50)	-5	rP(12, 4)	1499.40914	(50)	-5
rP(2, 0)	1471.42545	(50)	-34	rP(32, 1)	(1449.59285)			rP(13, 4)	1497.97258	(80)	-71
rP(3, 0)	1470.00209	(10)	3	rP(4, 2)	1490.11188	(20)	-7	rP(14, 4)	1496.55793	(10)	-5
rP(4, 0)	1468.70094	(100)	5	rP(5, 2)	1488.54138	(20)	-8	rP(15, 4)	1495.16273	(10)	-9
rP(5, 0)	1467.50566	(10)	3	rP(6, 2)	1487.00368	(50)	-7	rP(16, 4)	1493.78732	(20)	-5
rP(6, 0)	1466.39921	(50)	7	rP(7, 2)	1485.49843	(10)	-5	rP(17, 4)	1492.43116	(20)	0
rr(7, 0)	1465.56494	(10)	10	rP(8, 2)	1484.02523	(10)	0	rP(18, 4)	1491.09351	(20)	- 15
P(0, 0)	1404.38038	(100)	12	FP(9, 2)	1482.58348	(10)	0	rP(19, 4)	1489.77406	(20)	-24
re(9, 0)	1403.491/4	(10)	12	rP(10, 2)	1481.17273	(10)	5	rP(20, 4)	1488.47232	(40)	-17

Because of the strong mixing of the wavefunctions mainly by the x-y Coriolis interaction and in some cases also by the "2, -1" *l*-type interactions, one has to take care to assign to the spectral lines the standard labels ${}^{x}P$, ${}^{x}Q$, ${}^{x}R$ (x = p, q, r) for the conventional transitions $\Delta K = -1, 0, +1$ and the labels "P, "Q, "R (y = o, s) for the perturbation-allowed transitions $\Delta K = -2, +2$. We based our assignments on the comparison of the absolute values of the coefficients of mixing of the wavefunctions

TABLE III—Continued

Transition	Wavenumber		Obs-Calc	Transition	Wavenumber	(Obs-Calc	Transition	Wavenumber	c	Dbs-Calc
rP(21, 4)	1487.18732	(20)	-22	rP(12, 7)	1530.65979	(100)	69	rq(9, 1)	1487.77110	(10)	9
rP(22, 4)	1485.91861	(20)	-10	rP(13, 7)	1529.15463	(100)	-4	rq(10, 1)	1488.20919	(50)	8
rP(23, 4)	1484.66494	(20)	-21	rP(14, 7)	1527.66697	(90)	98	rq(11, 1)	1488.68570	(10)	15
rP(24, 4)	1483.42574	(20)	-16	rP(15, 7)	1526.19294	(30)	8	r9(12, 1)	1489.19741	(10)	15
rP(25, 4)	1482.19949	(30)	-27	rP(16, 7)	1524.73543	(50)	36	rq(13, 1)	1489.73826	(20)	11
rP(26, 4)	1480.98508	(30)	-20	rP(17, 7)	1523.29255	(50)	17	rQ(14, 1)	1490.28809	(20)	15
rP(27, 4)	1479.78043	(50)	-11	rP(18, 7)	1521.86456	(20)	0	rQ(15, 1)	1490.68630	(10)	10
rP(28, 4)	1478.58309	(30)	9	rP(19, 7)	1520.45113	(30)	- 23	rQ(16, 1)	1491.74182	(10)	12
rP(29, 4)	1477.38925	(80)	31	rP(20, 7)	1519.05196	(30)	-54	rQ(17, 1)	1492.38139	(10)	6
rP(30, 4)	(1476.19279)			rP(21, 7)	1517.66716	(40)	-53	rQ(18, 1)	1493.07428	(20)	9
rP(7, 5)	1517.50797	(100)	- 105	rP(22, 7)	1516,29375	(300)	-289	rQ(19, 1)	1493.79881	(20)	0
rP(8,5)	(1515.94664)			rP(23, 7)	1514.93847	(30)	-54	rQ(20, 1)	1494.54882	(30)	2
rP(9,5)	1514.40403	(50)	10	rP(24, 7)	(1513.59449)			rQ(21, 1)	1495.32069	(20)	0
rP(10, 5)	1512.88068	(20)	-2	rP(25, 7)	1512.26288	(30)	15	rQ(22, 1)	1496.11206	(10)	1
rP(11, 5)	1511.37684	(20)	7	rP(26, 7)	(1510.94333)			rQ(23, 1)	1496.92414	(500)	329
rP(12, 5)	1509.89189	(20)	2	rP(27, 7)	(1509.63593)			rQ(24, 1)	1497.74534	(20)	-1
rP(13, 5)	1508.42576	(20)	-1	rP(28, 7)	(1508.34012)			rQ(25, 1)	1498.58406	(20)	5
rP(14, 5)	1506.97824	(20)	4	rQ(1, 0)	1474.69288	(50)	6	r@(26, 1)	1499.43534	(20)	-8
rP(15, 5)	1505.54870	(20)	-12	rQ(2, 0)	1474.70015	(50)	8	r@(27, 1)	1500.29828	(20)	-4
rP(16, 5)	1504.13726	(20)	-5	rQ(3, 0)	1474.71095	(10)	3	r@(28, 1)	1501.17167	(50)	11
rP(17, 5)	1502.74316	(20)	-18	rQ(4, 0)	1474.72539	(20)	2	rQ(29, 1)	1502.05429	(60)	21
rP(18, 5)	1501.36639	(30)	-12	rQ(5, 0)	1474.74341	(10)	2	r@(30, 1)	1502.94516	(70)	21
rP(19, 5)	1500.00622	(20)	-21	rQ(6, 0)	1474.76496	(10)	4	rq(3, 2)	1496.92414	(150)	-119
rP(20, 5)	1498.66250	(20)	-17	rQ(7, 0)	1474.78994	(50)	5	r@(4, 2)	1497.05774	(10)	-8
rP(21, 5)	1497.33445	(50)	-31	r9(8,0)	1474.81827	(10)	7	r@(5,2)	1497.22278	(10)	-7
rP(22, 5)	1496.02193	(20)	-31	rq(9, 0)	1474.84974	(10)	9	rQ(6, 2)	1497.42009	(30)	5
rP(23, 5)	1494.72266	(200)	- 190	r Q(1 0, 0)	1474.88402	(100)	13	rQ(7, 2)	1497.64887	(10)	-2
rP(24, 5)	1493.44058	(20)	-59	rQ(11, 0)	1474.92033	(100)	17	r@(8, 2)	1497.90889	(10)	0
rP(25, 5)	1492.17073	(40)	-72	r@(12, 0)	1474.95655	(50)	24	r9(9, 2)	1498.19940	(10)	3
rP(26, 5)	1490.91326	(30)	- 145	rQ(13, 0)	1474.98466	(20)	55	rQ(10, 2)	1498.51968	(10)	5
rP(27, 5)	1489.66200	*	-818	rQ(14, 0)	1474.94012	(40)	144	r@(11, 2)	1498.86902	(100)	16
rP(28, 5)	1488.44011	(50)	310	rQ(15, 0)	1475.19587	(10)	- 79	r@(12, 2)	1499.24623	(10)	9
rP(29, 5)	(1487.21414)			r@(16, O)	1475.22305	(30)	-52	r@(13, 2)	1499.65048	(20)	5
rP(30, 5)	(1486.00037)			rQ(17, 0)	1475.27444	(10)	-35	rQ(14, 2)	1500.07914	(150)	- 138
rP(8, 6)	(1526.44048)			rQ(18, 0)	1475.33394	(100)	-83	r9(15, 2)	1500.53505	(10)	9
rP(9, 6)	1524.88294	(20)	26	r@(19, 0)	1475.39998	(10)	-29	r9(16, 2)	1501.01186	(10)	7
rP(10, 6)	1523.34263	(10)	7	r@(20, 0)	1475.46988	(20)	-30	r@(17, 2)	1501.50829	(10)	4
rP(11, 6)	1521.82019	(10)	18	rQ(21, 0)	1475.54370	(80)	-32	rQ(18, 2)	1502.01963	(10)	3
rP(12, 6)	1520.31491	(20)	9	rQ(22, 0)	1475.62118	(100)	-38	rQ(19, 2)	1502.53590	(20)	3
rP(13, 6)	1518.82839	(500)	158	r@(23, 0)	1475.70225	(30)	-38	rQ(20, 2)	1503.03000	(20)	-1
rP(14, 6)	1517.35577	(50)	2	r@(24, 0)	1475.78670	(50)	-41	rQ(21, 2)	1503.41043	(10)	-7
rP(15, 6)	1515.90150	(30)	10	rQ(25, 0)	1475.87445	(10)	-48	rQ(22, 2)	1504.89164	(10)	-12
rP(16, 6)	1514.46366	(20)	15	r@(26, 0)	1475.96548	(60)	-53	rQ(23, 2)	1505.34428	(10)	- 18
rP(17, 6)	1513.04172	(20)	-7	rQ(27, 0)	1476.05971	(20)	-60	rQ(24, 2)	1505.92482	(20)	-12
rP(18, 6)	1511.63584	(10)	- 13	rQ(28, 0)	1476.15707	(60)	-68	rQ(25, 2)	1506.55892	(10)	- 14
rP(19, 6)	1510.24565	(20)	-7	rQ(29, 0)	1476.25752	(30)	-76	r@(26, 2)	1507.22409	(70)	-23
rP(20, 6)	1508.87030	(50)	-41	rQ(30, 0)	1476.36099	(20)	-86	r@(27, 2)	1507.91225	(100)	16
rP(21, 6)	1507.51031	(30)	-28	rQ(31, 0)	1476.46750	(20)	-90	r@(28, 2)	1508.61808	(20)	-9
rP(22, 6)	1506.16464	(30)	-36	r9(32, 0)	1476.57691	(10)	-98	rQ(29, 2)	1509.33992	(70)	-17
rP(23, 6)	1504.83321	(50)	-33	rQ(33, 0)	1476.68927	(20)	- 98	rQ(30, 2)	1510.07609	(50)	-4
rP(24, 6)	1503.51529	(20)	-50	r@(34, 0)	1476.80447	(20)	-97	rQ(4, 3)	1507.85854	(40)	-10
rP(25, 6)	1502.21086	(20)	-46	r@(35, 0)	1476.92231	(20)	- 109	rQ(5,3)	1507.99194	(10)	-7
rP(26, 6)	1500.91917	(20)	-50	r@(36, 0)	1477.04304	(30)	91	rQ(6, 3)	1508.15137	(10)	- 10
rP(27, 6)	1499.63996	(50)	-37	rQ(2, 1)	1485.89434	(50)	-1	rQ(7, 3)	1508.33661	(20)	-7
rP(28, 6)	1498.37244	(40)	-31	rQ(3, 1)	1486.02972	(10)	-1	rQ(8,3)	1508.54730	(100)	1
rP(29, 6)	1497.11617	(30)	-20	rQ(4, 1)	1486.21004	(10)	0	rQ(9, 3)	1508.78283	(10)	-2
rP(30, 6)	(1495.87053)			rQ(5, 1)	1486.43503	(10)	Ð	r0(10, 3)	1509.04294	(10)	1
rP(9, 7)	(1535.26854)			r@(6, 1)	1486.70431	(10)	0	rQ(11, 3)	1509.32700	(10)	1
rP(10, 7)	1533.71486	(100)	-102	r@(7, 1)	1487.01736	(10)	4	r@(12, 3)	1509.63442	(200)	-3
rP(11, 7)	(1532.17945)			rQ(8, 1)	1487.37329	(20)	4	r9(13, 3)	1509.96475	(10)	0

for a given vibration-rotational level. This method leads to unambiguous assignments except for the lines ${}^{q}X(J'', K = 2)$ and ${}^{p}X(J'', K = 2)$ (X = P, Q, R) for which for J' = 18-23 the wavefunction $|0, 1^{\pm 1}; J, k = \mp 1 \rangle$ has the largest contribution simultaneously to two perturbed wavefunctions. In this case (cf. Table II) assignments obviously cannot be unambiguous; we have used a convention that is obvious from

Transition	Wavenumber	0	bs-Calc	Transition	Wavenumber	C	bs-Calc	Transition	Wavenumber	c	bs-Calc
rQ(14, 3)	1510.31718	(10)	1	rQ(17, 5)	1531.97096	(10)	-14	r@(25, 7)	1555.05769	(30)	-57
rQ(15, 3)	1510.69102	(10)	1	r9(18, 5)	1532.30543	(10)	-19	r@(26, 7)	1555.43551	(20)	-59
r9(16, 3)	1511.08544	(10)	-1	rQ(19, 5)	1532.65537	(20)	- 18	r9(27, 7)	1555.82365	(20)	-57
rQ(17, 3)	1511.49960	(10)	-2	r9(20, 5)	1533.02007	(10)	-31	r9(28, 7)	1556.22192	(20)	- 24
rQ(18, 3)	1511.93247	(10)	-3	r@(21, 5)	1533.39920	(10)	-37	r0(29, 7)	1556.62915	(20)	- 24
rg(19, 3)	1512.38284	(10)	-4	r@(22, 5)	1533.79210	(10)	-44	r@(30, 7)	1557.04554	(20)	13
r9(20, 3)	1512.84924	(10)	-8	r9(23, 5)	1534, 19823	(10)	-47	r9(31, 7)	1557.46953	(50)	-8
rg(21, 3)	1513.32977	(10)	-11	FQ(24, 5)	1534.61683	(30)	-52	rq(9, 8)	1561.00085	(50)	13
rQ(22, 3)	1513.82178	(10)	-6	r9(25, 5)	1535.04643	(10)	-136	rQ(10, 8)	1561.15298	(20)	14
r9(23, 3)	1514.32090	(10)	- 15	19(26, 5)	1535.48016	(800)	-904	r9(11, 8)	1561.31981	(20)	30
r0(24 3)	1514.82025	(10)	-9	r9(27, 5)	1535.94380	(20)	316	r9(12, 8)	1561.50087	(10)	33
r9(25 3)	1515.30609	(10)	-5	r@(28, 5)	1536.40334	(100)	230	rQ(13, 8)	1561.69603	(30)	28
r0(26 3)	1515 75012	(10)	6	r0(29 5)	1536 87149	(100)	235	r0(14 8)	1561.90515	(20)	25
r0(27 3)	1516 09270	(10)	31	r0(30 5)	1537 34621	(30)	281	r0(15_8)	1562, 12803	(10)	25
r0(28 3)	1518 38811	(40)	17	r0(7 6)	1540 05492	(10)	27	r0(16 8)	1562 36436	(20)	20
r0(29 3)	1518 67689	(40)	10	FP(8 6)	1540 19987	(10)	74	re(17 8)	1562.61399	(20)	22
r0(30 3)	1510 13137	(20)	20	r0(9,6)	1540 36006	(10)	18	rD(18 8)	1562 87630	(10)	-1
r0(31 3)	1519 67607	(200)	- 277	r0(10 6)	1540 53741	(10)	20	r0(19 8)	1563 15149	(20)	-6
-0(32 3)	1570 27628	(200)	44	r0(11 6)	1540.33141	(10)	15	-0/20 8)	1563 / 3016	(20)	-2
ru(32, 3)	1520.27420	(30)	87	ru(11, 0)	1540 94226	(10)	13	rg(21 8)	1563 73874	(20)	- 14
r0(34 3)	1521 55453	(20)	00	r0(13 6)	15/1 14035	(10)	16	=0(22 8)	1566 05014	(30)	. 10
-0(5 ()	1519 40394	(40)	-7	ne(15, 6)	15/1 /1381	(10)	6	-0(27 8)	154/ 37205	(30)	- 25
-0(()	1518.07200	(10)	76	-0(15, 6)	1541.41201	(30)	40	-0(2) 8)	154/ 70/77	(30)	20
FQ(0,4)	15 16.62039	(50)	- 35	FQ(15, 6)	1541.0/119	(20)	15	FW(24, 0)	1504.70077	(30)	- 39
ru(7,4)	1510.40000	(10)	-1	Fu(10, 0)	1541.94300	(40)	13	-0(26 8)	1565.05141	(30)	-43
FU(8, 4)	1519.10020	(10)	2	ru(17, 6)	1342.23400	(10)	-11	FQ(20, 0)	1505.40045	(00)	-41
ru(9,4)	1519.30/43	(10)	2	ru(18, 6)	1542.538/6	(20)	-0	ru(27, 8)	1365.77134	(30)	-49
ru(10, 4)	1519,58971	(10)	1	ru(19, 6)	1542.85692	(20)	-26	ru(28, 8)	1200-14280	(30)	-50
FQ(11, 4)	1519.63270	(10)	5	FW(20, 6)	1543.18922	(10)	-25	FQ(29, 8)	1500.52974	(20)	- 50
FU(12, 4)	1520.09020	(10)	•2	14(21, 6)	1293.33401	(20)	-4)	FW(50, 6)	1000.92200	(50)	- ;
ru(15, 4)	1520.37901	(20)	-1	F4(22, 6)	1543.893/1	(10)	-43	FU(10, 9)	1571.31046	(50)	- 30
ru(14, 4)	1520,68250	(20)	-2	ru(25, 6)	1544-26513	(20)	-49	r4(11, 9)	1571.46805	(20)	-21
ru(15, 4)	1521.00436	(20)	-4	ru(24, 6)	1544.048/3	(10)	-49	ru(12, 9)	1571.03913	(20)	- 10
ru(16, 4)	1521.34401	(10)	- 14	ru(25, 6)	1545.04392	(30)	-52	FW(15, 9)	15/1.82351	(10)	- 14
ra(17, 4)	1521.70285	(10)	-12	r@(26, 6)	1545.45020	(10)	-50	r@(14, 9)	1572.02126	(30)	- 3
rQ(18, 4)	1522.07836	(10)	- 14	r@(27, 6)	1545.86696	(20)	-47	r9(15, 9)	15/2.23208	(60)	12
rQ(19, 4)	1522,47046	(20)	- 16	rQ(28, 6)	1546.29354	(20)	-46	r@(16, 9)	15/2.45556	(20)	15
rQ(20, 4)	1522.87846	(20)	-20	rQ(29, 6)	1546.72955	(20)	-17	r@(17, 9)	1572.69163	(10)	19
rQ(21, 4)	1523.30163	(30)	- 18	rQ(30, 6)	1547.17381	(20)	-1	rQ(18, 9)	1572.94000	(20)	21
rQ(22, 4)	1523.73894	(10)	-23	rQ(31, 6)	1547.62567	(40)	20	rQ(19, 9)	1573.20039	(20)	19
rQ(23, 4)	1524.18946	(10)	-26	rQ(32, 6)	1548.08412	(50)	44	rQ(20, 9)	1573.47259	(20)	17
r9(24, 4)	1524.65199	(20)	- 23	rQ(33, 6)	1548.54839	(70)	101	rQ(21, 9)	1573.75640	(20)	25
r@(25, 4)	1525.12501	(20)	- 17	rQ(34, 6)	(1549.01524)			r¤(22, 9)	1574.05114	(20)	3
rQ(26, 4)	1525.60644	(20)	- 19	rQ(35, 6)	1549.48673	*	98	r@(23, 9)	1574.35724	(20)	24
rQ(27, 4)	1526.09392	(30)	-4	rQ(8, 7)	1550.58260	(40)	50	r@(24, 9)	1574.67365	(20)	15
r@(28, 4)	1526.58357	(30)	14	r@(9, 7)	1550.72966	(10)	25	r@(25, 9)	1575.00052	(20)	22
r@(29, 4)	1527.06990	(20)	48	rQ(10, 7)	1550.89278	(10)	31	rQ(26, 9)	1575.33726	(20)	21
rQ(30, 4)	1527.54395	(20)	89	rQ(11, 7)	1551.07141	(10)	31	rQ(27, 9)	1575.68348	(50)	7
rQ(31, 4)	1527.99138	(70)	156	r@(12, 7)	1551.26484	(200)	-21	r@(28, 9)	1576.03913	(30)	10
rQ(32, 4)	1528.38828	(70)	266	r@(13, 7)	1551.47440	(20)	26	r@(29, 9)	1576.40379	(30)	25
rQ(6, 5)	1529.42635	(10)	7	rQ(14, 7)	1551.69826	(10)	15	r@(30, 9)	1576.77725	(30)	69
rQ(7, 5)	1529.56542	(20)	3	rQ(15, 7)	1551.93675	(10)	7	r@(31, 9)	1577.15797	(70)	28
rQ(8, 5)	1529.72467	(80)	88	rQ(16, 7)	1552.18960	(10)	1	r0(11,10)	(1581.51095)	-	
rQ(9, 5)	1529.90134	(10)	10	rQ(17, 7)	1552.45658	(10)	2	ra(12,10)	1581.67288	(100)	- 130
rQ(10, 5)	1530.09758	(10)	8	rQ(18, 7)	1552.73716	(20)	-10	rQ(13,10)	1581.84899	(100)	- 124
rq(11, 5)	1530.31233	(10)	5	rQ(19, 7)	1553.03127	(20)	- 13	rQ(14,10)	1582.03802	(60)	-92
rQ(12, 5)	1530.54531	(10)	3	rQ(20, 7)	1553.33837	(10)	-25	rQ(15,10)	1582.23938	(60)	-73
rQ(13, 5)	1530.79618	(20)	2	rQ(21, 7)	1553.65823	(10)	-36	rQ(16.10)	1582.45317	(20)	- 36
rQ(14, 5)	1531.06457	(10)	0	rQ(22, 7)	1553.99053	(10)	- 39	r0(17.10)	1582,67871	(20)	-28
r0(15, 5)	1531.35010	(10)	-3	r0(23. 7)	1554.33488	(40)	-36	r0(18.10)	1582,91630	(20)	3
rQ(16, 5)	1531.65234	(20)	-11	rQ(24, 7)	1554.69057	(20)	-60	r0(19,10)	1583.16562	(20)	51

TABLE III—Continued

Table II. The results of the fit do not of course depend on the choice of labels that we attach to individual spectral lines.

Using a nonlinear least-squares procedure to minimize the sum of the weighted squares of the differences between the experimental and calculated transition wavenumbers, we obtained the values of 7 parameters of the ν_2 band and of 21 parameters

TABLE III—Continued

Transition	Wavenumber	C	bs-Calc	Transition	Wavenumber		Obs-Calc	Transition	Wavenumber	c	bs-Caic
r9(20,10)	1583.42604	(20)	77	rR(1, 1)	1489.30166	(20)	24	rR(27, 2)	1556.13890	(10)	- Z
r@(21,10)	1583.69721	(30)	73	rR(2, 1)	1491.14016	(100)	-4	rR(28, 2)	1558.54419	(40)	~ 52
r@(22,10)	1583.97927	(30)	79	rR(3, 1)	1493.02378	(10)	0	rR(29, 2)	1560.96339	(20)	15
r9(23,10)	1584.27177	(30)	77	rR(4, 1)	1494.95249	(60)	67	rR(30, 2)	1563,39337	(30)	26
rq(24,10)	1584.\$7549	(30)	175	rR(5, 1)	1496.92414	(100)	20	rR(31, 2)	1565.83362	(30)	40
r0(25,10)	1584.88755	(30)	116	rR(6, 1)	1498.93953	(10)	4	rR(32, 2)	1568.28319	(30)	60
rQ(26,10)	(1585.20864)			rR(7, 1)	1500.99770	(10)	8	rR(33, 2)	1570,74103	(30)	69
ra(27,10)	1585.54157	(30)	137	rR(8, 1)	1503.09728	(10)	9	rR(34, 2)	1573.20662	(50)	95
r9(28,10)	(1585.88070)			rR(9, 1)	1505.23681	(10)	12	rR(35, 2)	1575.68348	(300)	361
r0(29,10)	(1586.22983)			rR(10, 1)	1507.41415	(10)	12	rR(3, 3)	1514,67131	(40)	-12
r9(30,10)	(1586.58722)			rR(11, 1)	1509.62617	(200)	7	rR(4, 3)	1516.50761	(10)	-3
r0(12,11)	(1591.59977)			rR(12, 1)	1511.86692	(20)	13	rR(5, 3)	1518.36959	(10)	-10
r9(13,11)	(1591.76947)			rR(13, 1)	1514.11586	(10)	12	rR(6, 3)	1520.25710	(30)	- 10
rQ(14,11)	1591.94798	(60)	- 339	rR(14, 1)	1516.21259	(20)	11	rR(7, 3)	1522.16978	(10)	0
rQ(15,11)	1592.14277	(30)	- 253	rR(15, 1)	1518,96580	(20)	5	rR(8,3)	1524.10690	(10)	-3
r0(16,11)	1592.34912	(20)	- 193	rR(16, 1)	1521.30290	(100)	53	rR(9, 3)	1526.06814	(50)	-1
r9(17,11)	1592.56711	(30)	-132	rR(17, 1)	1523.69148	(10)	7	rR(10, 3)	1528.05285	(10)	-2
rQ(18,11)	1592.79663	(20)	-58	rR(18, 1)	1526.11137	(20)	2	rR(11, 3)	1530,06050	(10)	1
r0(19,11)	1593.03680	(20)	-37	rR(19, 1)	1528,55577	(50)	6	rR(12, 3)	1532.09031	(10)	-2
r0(20,11)	1593.28888	(20)	80	rR(20, 1)	1531.02104	(10)	1	rR(13, 3)	1534.14174	(20)	5
r9(21,11)	1593.55086	(40)	120	rR(21, 1)	1533,50474	(10)	-4	rR(14, 3)	1536.21379	(20)	1
r9(22,11)	(1593,82168)	• • • •		rR(22, 1)	1536.00475	(10)	-18	rR(15, 3)	1538 30575	(30)	-1
r9(23,11)	(1594, 10387)			rR(23, 1)	1538.51967	(10)	0	FR(16 3)	1540 41663	(20)	- Á
r0(24.11)	(1594,39594)			r8(24, 1)	1541.04739	(10)	- 2	rR(17, 3)	1542 54541	(800)	-0
rR(0, 0)	1476.53655	(100)	6	rR(25, 1)	1543.58665	(20)	-4	rR(18, 3)	1544 69094	(10)	.2
rR(1, 0)	1478.51983	(10)	õ	rR(26, 1)	1546.13620	(10)	-1	rR(19, 3)	1544.05054	(10)	-6
CR(2 0)	1480 62532	(10)	Ĺ	r9(27 1)	1548 69478	(10)	, T	rP(20 3)	1540 02518	(100)	-11
rR(3, 0)	1482_83649	(10)	7	r8(28, 1)	1551.26484	(400)	360	-R(21 3)	1551 20038	/103	-4
rR(4, 0)	1485, 13598	(10)	8	rR(29, 1)	1553.83482	(30)	16	rR(22, 3)	1553.39965	(50)	-11
rR(5, 0)	1487.50746	(50)	44	rR(30, 1)	1556.41449	(20)	38	rR(23, 3)	1555.58891	(10)	-15
rR(6, 0)	1489,92757	(10)	7	r8(31, 1)	1558.99899	(50)	27	CR(26 3)	1557 76366	(10)	-4
rR(7, 0)	1492.44281	(50)	13	r8(32, 1)	1561.58842	(20)	66	rR(25, 3)	1559.89533	(10)	7
rR(8, 0)	1494.95249	(60)	-25	rR(33 1)	1564 18120	(50)	78	rR(26 3)	1561 02632	(20)	34
rR(9. 0)	1497.50230	(10)	17	rR(34 1)	1566 77734	(30)	104	rR(27 3)	1565 00489	(30)	27
rR(10_0)	1500.07914	(150)	75	rP(35 1)	1560 37504	(300)	-40	-P/28 31	1567 87733	(10)	13
-P(11 D)	1502.67610	(10)	11	cR(2 2)	1502 03548	(10)	-5	~P/20 3)	1570 01411	(10)	24
rR(12 0)	1505 20105	(20)	17	rP(3 2)	1503 87113	(10)	-6	-P/30 31	1572 2/076	(30)	20
rR(12, 0)	1507 02014	(50)	11	+P(4 2)	1505 73012	(10)	.0	-8/31 21	1576 51775	(30)	50
rR(15, 0)	1510 56001	(20)	12	rP/ 5 2)	1507 43012	(10)	. 1	-9/37 3)	1576 92/77	(20)	70
rR(15, 0)	1513.21121	(20)	~	rR(6 2)	1509 57043	(10)	-1	rp(33 3)	1570 15385	(20)	117
rR(16 0)	1515 86942	(20)	ž	rP(7 2)	1511 53257	(10)	2	rP/34 3)	1581 40878	(20)	175
rR(17 0)	1518 53613	(500)	2	rP(8 2)	1513 52678	(10)	-	cP(35 3)	1583 95499	(20)	.37
r8/18 0)	1521 20/10	(200)	ž	-2(0,2)	1515 5/470	(10)	5	-94 6 63	1503.03000	(10)	-3/
	1523 97920	(20)	-/	-P(10 2)	1517 50430	/10)	2	18(4,4)	1520 0/570	(10)	, ,
r8(20 0)	1526 55616	(20)	0	r9(11 2)	1519 67607	(10)	14	-P(6 4)	1530 00540	(20)	-1
-8(21 0)	1520 334/5	(20)	- 12	rP(12 2)	1571 27800	(20)		- D(7 /)	1523 70715	(20)	- 1
-0(22 0)	1521 01990	(20)	- 12	IN(12, 2)	1521.77000	(20)	*0	(K(), 4)	1532.10113	(10)	-
-n(22, 0)	1551.91007	(10)	- 12	TR(13, 2)	1525.90/19	(20)	10	FR(0, 4)	1334.00902	(10)	-1
rR(23, 0)	1537 30764	(20)	- 14	IR(14, 2)	1528.00019	(30)	21	FR(9, 4)	1330.01209	(10)	4
PR(24, 0)	1537.20130	(10)	- 10	-0(10, 2)	1320.23432	(30)	2	FR(10, 4)	1336.33641	(10)	1
-0/34 D	15/3 45010	(10)	- 17	-B(17 3)	1530.42703	(10)	د •	IR(11, 4)	1340.31967	(10)	č,
cR(27 0)	1545.34200	(10)	. 22	-P(19 3)	1536 8/440	(30)	- 2	176(16, 4) cr/17 /·	1546.30230	(10)	-4
*D(28 D)	1548 02707	(10)	- 28	- P(10 2)	1537 03510	(20)	- 2	-D(16 /)	15/4 50/05	(10)	.5
-B(20 0)	1550 70072	(20)	- 40	-12/20 23	1530 10897	(20)	. 15	FR(14, 4)	1240.32403	(20)	.,
-D(30 0)	1330-10912	(20)	-42	IR(20, 2)	1237.10003	(10)	- 13	FR(13, 4)	1346.301/0	(20)	-1
IR(30, 0)	1554 04997	(30)	- 92	(C), C)	1242.20230	(10)	-21	rK(10, 4)	1330.01040	(10)	-10
- a(31, U)	1558 7/ 202	(20)	- 1/ 4	1 R(CZ, C)	15/4 40407	(50)	- 17	IR(15, 4)	11100.300112	(10)	-9
1R(32, U)	1220. (4292	(20)	- 140	(K(23, 2)	1040.0909/	(10)	- 19	TR(10, 4)	1224.7/409	(10)	- 12
(X(33, U)	1201.41020	(30)	-243	FR(24, 2)	1749.02518	(1000)	490	TR(19, 4)	1220.8/003	(500)	- 18
TR(34, U)	1004.00100	(40)	-505	FR(25, 2)	1001.3/320	(10)	- 11	FR(20, 4)	1338.992/9	(60)	-15
rx(33, 0)	(1300-00933)			rk(20, 2)	1555.74755	(10)	-0	rk(21, 4)	1201.12206	(20)	-21

of the ν_5 band that are listed in Table I. The parameters of the ground state were constrained in this separate fit to the previous values (11) except for A_0 and D_K^0 , which were taken from Ref. (9).

Simultaneous Fit of the Microwave, Submillimeter-Wave, and Infrared Data

Comparison of the parameters obtained from the separate fit of the pure rotational transition frequencies in the states $v_2 = 1$ and $v_5 = 1$ with those obtained from our

Transition	Wävenumber	C	bs-Calc	Transition	Wavenumber	0	bs-Calc	Transition	Wavenumber	0	bs-Calc
rR(22, 4)	1563.26361	(20)	-12	rR(24, 6)	1587.48183	(20)	-50	rR(15, 9)	1599.64225	(20)	13
rR(23, 4)	1565.41579	(50)	-25	rR(25, 6)	1589.57493	(20)	-53	rR(16, 9)	(1601.57282)		
rR(24, 4)	1567.57749	(20)	- 14	rR(26, 6)	1591.67718	(80)	-62	rR(17, 9)	(1603.51502)		
rR(25, 4)	1569.74647	(20)	-5	rR(27, 6)	1593.78834	(ZO)	- 33	rR(18, 9)	(1605.46842)		
rR(26, 4)	1571.92003	(30)	-1	rR(28, 6)	1595.90708	(20)	-27	rR(19, 9)	(1607.43270)		
rR(27, 4)	1574.09459	(30)	20	rR(29, 6)	1598.03302	(30)	1	rR(20, 9)	(1609.40755)		
rR(28, 4)	1576.26440	(30)	50	rR(30, 6)	(1600.16476)			oP(8, 3)	1425.42378	(20)	0
rR(29, 4)	1578.42055	(30)	86	rR(7, 7)	1564.19561	(20)	38	oP(14, 3)	1412.21799	(30)	61
rR(30, 4)	1580.54871	(50)	160	rR(8, 7)	1566.04334	(10)	39	oP(15, 3)	1410.47884	(100)	145
rR(31, 4)	1582.62466	(30)	258	rR(9, 7)	1567.90630	(10)	30	oP(15, 4)	1399.87918	(20)	6
rR(32, 4)	1584.61185	(40)	425	rR(10, 7)	1569.78840	(500)	428	oP(16, 3)	1409.04114	(20)	- 65
rR(33, 4)	(1586.45963)			rR(11, 7)	1571.67732	(10)	27	oP(16, 4)	1398.58673	(100)	9
rR(34, 4)	(1588.15230)			rR(12, 7)	1573.58480	(10)	27	oP(17, 4)	1397.95261	(30)	0
rR(35, 4)	(1589.70133)			rR(13, 7)	1575.50646	(20)	21	oP(18, 4)	(1396.90396)		
rR(5, 5)	1539.64179	(10)	10	rR(14, 7)	1577.44203	(20)	11	oP(20, 5)	1377.76788	(20)	- 22
rR(6, 5)	1541.48271	(10)	8	rR(15, 7)	1579.39127	(10)	7	oP(21, 5)	1376.58166	(20)	- 13
rR(7, 5)	1543.34264	(10)	11	rR(16, 7)	1581.35374	(20)	-2	oP(22, 5)	1375.28326	(10)	- 17
rR(8, 5)	1545.22117	(10)	7	rR(17, 7)	1583.32658	(300)	-267	oP(23, 5)	1375.08642	(300)	- 112
rR(9,5)	1547.11813	(10)	9	rR(18, 7)	1585.31711	(10)	- 18	oP(24, 5)	(1373.86480)		
rR(10, 5)	1549.03300	(500)	-1	rR(19, 7)	1587.31729	(10)	- 23	oP(25, 5)	(1372.77159)		
rR(11, 5)	1550.96574	(10)	6	rR(20, 7)	1589.32919	(30)	-33	oP(26, 5)	(1371.73384)		
r#(12, 5)	1552.91567	(10)	2	rR(21, 7)	1591.35250	(30)	-37	oP(26, 6)	1354.60711	(20)	- 27
rR(13, 5)	1554.88257	(10)	4	rR(22, 7)	1593.38656	(40)	-60	oP(27, 6)	1353.38592	(20)	- 20
rR(14, 5)	1556.86585	(500)	-3	rR(23, 7)	1595.43003	(200)	- 190	oP(28, 6)	1352.06541	(20)	4
rR(15, 5)	1558.86521	(10)	-5	rR(24, 7)	1597.48615	(30)	-57	oP(29, 6)	1352.69989	(20)	-6
rR(16, 5)	1560.88005	(10)	- 16	rR(25, 7)	1599.55039	(20)	-65	oQ(7,3)	1439.04645	(50)	17
rR(17, 5)	1562.91003	(20)	-18	rR(26, 7)	(1601.62441)			oQ(13, 3)	1436.04259	(20)	69
rR(18, 5)	1564.95449	(10)	-26	rR(27, 7)	(1603.70627)			oq(14, 3)	1436.00165	(100)	149
rR(19, 5)	1567.01300	(10)	-26	rR(28, 7)	(1605.79609)			oQ(15, 3)	1436.25596	(500)	-613
rR(20, 5)	1569.08481	(20)	- 36	rR(29, 7)	(1607.89328)			09(14, 4)	1425.39888	(20)	6
rR(21, 5)	1571.16943	(20)	-44	rR(30, 7)	(1609.99722)			oQ(15, 4)	1425.80374	(10)	7
rR(22, 5)	1573.26616	(30)	-51	rR(8,8)	1576.31058	(10)	25	oQ(16, 4)	1426.86621	(30)	2
rR(23, 5)	1575.37413	(20)	- 75	rR(9, 8)	1578.16219	(10)	20	oQ(17, 4)	(1427.51328)		
rR(24, 5)	1577.49233	(20)	- 137	rR(10, 8)	1580.02797	(10)	25	09(19, 5)	1411.76139	(30)	40
rR(25, 5)	1579.61403	*	- 824	rR(11, 8)	1581.90761	(10)	33	oQ(20, 5)	1412.26739	(20)	- 1
rR(26, 5)	1581.76291	(30)	326	rR(12, 8)	1583.80072	(10)	27	oQ(21, 5)	1412.66067	(10)	- 10
rR(27, 5)	1583.90691	(30)	223	rR(13, 8)	1585.70721	(20)	28	oQ(22, 5)	1414.15520	(20)	-31
rR(28, 5)	1586.05831	(20)	226	rR(14, 8)	1587.62666	(10)	19	oQ(23, 5)	(1414.62232)		
rR(29, 5)	1588.21512	(30)	296	rR(15, 8)	1589.55898	(10)	20	oQ(24, 5)	(1415.21750)		
rR(30, 5)	1590.37449	(40)	343	rR(16, 8)	1591.50359	(10)	5	oQ(25, 5)	(1415.86692)		
rR(31, 5)	1592.53479	(30)	461	rR(17, 8)	1593.46054	(10)	9	oQ(25, 6)	1398.73191	(20)	- 23
rR(32, 5)	1594.69250	*	633	rR(18, 8)	1595.43003	(50)	86	oQ(26, 6)	1399.20447	(1000)	797
rR(6, 6)	1551.97188	(10)	23	rR(19, 8)	1597.40923	(10)	-11	oQ(27, 6)	1399.56012	(10)	7
rR(7,6)	1553.81607	(20)	26	rR(20, 8)	1599.40056	(30)	-8	oQ(28, 6)	1401.87755	(20)	-3
rR(8, 6)	1555.67704	(10)	19	rR(21, 8)	(1601.40269)			oQ(29, 6)	1402.18904	(30)	-17
rR(9, 6)	1557.55474	(10)	21	rR(22, 8)	(1603.41510)			oQ(30, 6)	(1402.66713)		
rR(10, 6)	1559.44877	(10)	20	rR(23, 8)	(1605.43747)			oR(6,3)	(1450.96680)		
rR(11, 6)	1561.35888	(10)	21	rR(24, 8)	(1607.46941)			oR(12, 3)	(1458.16747)		
rR(12, 6)	1563.28469	(20)	16	rR(25, 8)	(1609.51048)			oR(13, 3)	1459.82623	(100)	156
rR(13, 6)	1565.22585	(10)	5	rR(26, 8)	(1611.56027)			oR(14, 3)	(1461.78486)		
rR(14, 6)	1567.18220	(20)	8	rR(27, 8)	(1613.61831)			oR(13, 4)	(1449.22046)		
rR(15, 6)	1569.15304	(10)	-8	FR(28, 8)	(1615.68414)			OR(14, 4)	1451.32347	(10)	11
rR(16, 6)	1571.13833	(10)	-9	rR(29, 8)	(1617.75728)			oR(15, 4)	(1454.08321)		
rR(17, 6)	1573.13742	(20)	-20	rR(30, 8)	(1619.83722)			oR(16, 4)	(1456.42686)		
rR(18, 6)	1575.15006	(20)	-21	rR(9, 9)	1588.31471	(10)	-32	oR(18, 5)	(1444.06018)		
rR(19, 6)	1577.17561	(20)	-33	rR(10, 9)	1590.17071	(10)	-29	oR(19, 5)	(1446.26029)		
rR(20, 6)	1579.21380	(20)	-35	rR(11, 9)	1592.03989	(10)	- 14	oR(20, 5)	1448.34617	(30)	-21
rR(21, 6)	1581.26393	(20)	-49	rR(12, 9)	1593.92187	(10)	-4	oR(21, 5)	1451.53194	(100)	-89
rR(22, 6)	1583.32658	(80)	34	rR(13, 9)	1595.81636	(20)	-4	oR(22, 5)	(1453.69030)		
rR(23, 6)	1585.39858	(10)	-48	rR(14, 9)	1597.72335	(20)	12	oR(23, 5)	(1455.97502)		

TABLE III—Continued

infrared measurements in Table I demonstrates that both sets of data are compatible. Some parameters obtained from the analysis of the pure rotational transitions in the excited states $v_2 = 1$ and $v_5 = 1$ (for instance A_2 , A_5 and $A\zeta_5^2$) have larger dispersions than those obtained from the separate analysis of the infrared data because of the selection rules $\Delta K = 0$ and $\Delta l = 0$ for the pure rotational transitions, but all parameters from the separate fits of the submillimeter and infrared data agree within three error intervals. A remarkable agreement for the parameter E_5 between both sets has been

Transition	Wavenumber	I	Obs-Calc	Transition	Wavenumber	c	bs-Calc	Transition	Wavenumber	c	Ibs-Calc
oR(24, 5)	(1458.31283)			sP(29, 3)	1467.04184	(80)	110	sQ(27, 3)	1518.33153	(20)	28
oR(24, 6)	(1441.17005)			sQ(6, 0)	(1478.87876)			sQ(28, 3)	1516.24171	(20)	57
oR(25, 6)	(1443.32126)			sQ(7, 0)	1478.54710	(400)	405	sQ(29, 3)	1516.15909	(30)	117
oR(26, 6)	1445.37038	(60)	-4	s9(11, 0)	1476.83077	(10)	24	sR(5, 0)	(1489.10108)		
oR(27, 6)	(1449.37227)			sQ(12, 0)	1476.32586	(20)	7	sR(6, 0)	1490.47978	(50)	19
sP(7, 0)	(1466.95890)			sQ(13, 0)	1475.80437	(10)	- 20	sR(7, 0)	1491.77116	(100)	0
sP(8, 0)	1464.93254	(10)	-6	sQ(14, 0)	1475.33394	(100)	23	sR(8, 0)	1493.07428	(600)	544
sP(9, 0)	1462.82076	(500)	66	sQ(15, 0)	1474.53971	(100)	134	sR(9,0)	(1494.32320)		
sP(10, 0)	1460.70263	(2000)	-1189	sQ(16, 0)	1473.95977	(500)	506	sR(10, 0)	(1495.54308)		
sP(11, 0)	1458.56523	(200)	-131	sQ(17, 0)	(1473.32888)			sR(13, 1)	1515.33922	(10)	0
sP(12, 0)	(1456.38509)			sQ(18, 0)	1472.67297	(500)	-488	sR(14, 1)	1516.85078	(500)	4
sP(15, 1)	1465.98491	(40)	-21	sQ(19, 0)	(1472.00616)			sR(15, 1)	1517.71246	(50)	4
sP(16, 1)	1464.10034	(10)	-5	sQ(14, 1)	1491.51144	(500)	2	sR(16, 1)	1518.99258	*	-337
sP(17, 1)	(1461.56732)			sq(15, 1)	1491.32450	(10)	5	sR(18, 2)	1537.54782	(20)	-23
sP(18, 1)	(1459.45770)			sq(16, 1)	(1490.48837)			sR(19, 2)	1538,94094	(10)	-21
sP(20, 2)	(1471.23204)			sQ(17, 1)	(1490.07491)			sR(20, 2)	1540.45018	(20)	-32
sP(21, 2)	1469.23698	(80)	-53	sQ(19, 2)	1505.23681	(100)	- 39	sR(21, 2)	1540.86073	(10)	- 19
sP(22, 2)	1467.36099	(20)	-20	sQ(20, 2)	1504.93592	(100)	-7	sR(22, 2)	1542.30053	(30)	- 55
sP(23, 2)	1464.38732	(100)	-72	sQ(21, 2)	1504.75175	(20)	- 25	sR(23, 2)	(1543.61396)		
sP(24, 2)	(1462.44679)			sQ(22, 2)	1503.46991	(20)	-21	sR(24, 2)	(1544.87303)		
sP(25, 2)	(1460.38052)			sQ(23, 2)	(1503.21901)			sR(24, 3)	1561.16698	(20)	35
sP(26, 2)	(1458.26282)			sQ(24, 2)	(1502.84173)			sR(25, 3)	1562.61399	(100)	-1
sP(26, 3)	1474.56430	(100)	45	sQ(25, 2)	(1502.41181)			sR(26, 3)	1564.16301	(10)	17
sP(27, 3)	1472.63813	(100)	92	sQ(25, 3)	1518.70936	(10)	29	sR(27, 3)	1563,75839	(10)	58
sP(28, 3)	1470.81489	(30)	31	sQ(26, 3)	1518.46917	(20)	37	sR(28, 3)	1565.35914	(20)	83

TABLE III—Continued

obtained, although there is only indirect information involved in the pure rotational transition frequencies on the energy E_5 of that vibrational state. A simultaneous fit of the frequencies of the rotational transitions in the ground state and the vibration-rotational wavenumbers to the states $v_2 = 1$ and $v_5 = 1$ confirmed also the compatibility of these data. The experimental wavenumbers of the vibration-rotational transitions are compared in Table III with the values calculated from the parameters of the simultaneous fit.

Intensity Perturbations

Already noticed by di Lauro and Mills (1) in their low-resolution spectra of H₃CF through the band contours, there are strong perturbations of intensity due to the xy Coriolis interactions in the ν_2 and ν_5 bands of H₃CF. These perturbations are certainly more pronounced in our high-resolution spectra of H₃CF. In an attempt to analyze them, we have extracted the intensity information from the absorbance spectrum of H₃CF. From the intensities of 72 lines of the ν_2 and ν_5 bands, using the fitting program described previously (13), we have determined the vibrational transition moments $\langle 0, 0^0 | \mu_x | 0, 1^{\pm 1} \rangle$, $\langle 0, 0^0 | \mu_z | 1, 0^0 \rangle$,

$$\langle 0, 0^0 | \mu_x | 0, 1^{\pm 1} \rangle = 0.0680(6) \times 10^{-30} \,\mathrm{Cm}$$
 (7)

$$\langle 0, 0^0 | \mu_z | 1, 0^0 \rangle = 0.0549(11) \times 10^{-30} \,\mathrm{Cm},$$
 (8)

which gives

$$\partial \mu_x / \partial q_{5a} = 0.1360(12) \times 10^{-30} \,\mathrm{Cm}$$
 (9)

$$\partial \mu_z / \partial q_2 = 0.0776(15) \times 10^{-30} \,\mathrm{Cm}$$
 (10)

STATES
$$v_2 = 1$$
 AND $v_5 = 1$ OF H_3^{12} CF 165

and

$$(\partial \mu_x / \partial q_{5a}) / (\partial \mu_z / \partial q_2) = 1.75(2). \tag{11}$$

Because $\zeta_{2,5a}^{\nu} < 0$ [cf. Ref. (1)], we have a negative perturbation of intensity corresponding to a classical model in which the vibrational angular momentum and the dipole moment rotate in the opposite sense in the plane perpendicular to the axis y. This result is in agreement with the conclusion of di Lauro and Mills (1) although they reached it by considering perturbations of the band contour. The ratio of the dipole moment derivatives [Eq. (11)] is comparable with the value estimated by di Lauro and Mills (1),

$$(\partial \mu_x / \partial q_{5a}) / (\partial \mu_z / \partial q_2) = 2.3 \pm 0.6.$$
⁽¹²⁾

The results of our intensity analysis should be considered preliminary because the sample temperature was not measured accurately during the measurements and the total pressure might also have increased due to a small leak of air into the sample cell. Both the ratio of the vibrational transition moments and their relative signs are of course determined here much more accurately than their absolute values.

DISCUSSION

Both the standard deviation 8.0×10^{-4} cm⁻¹ for the infrared data in the simultaneous fit of the wavenumbers of 2046 vibration-rotational transitions and 0.38 MHz for the frequencies of 202 purely rotational transitions in the $v_2 = 1$ and $v_5 = 1$ states and the relatively small dispersions of parameters indicated in Table I constitute a satisfactory result for experimental data in such a large set pertaining to a system of strongly perturbed vibration-rotational levels. However, on close inspection of the differences between experimental and calculated wavenumbers of vibration-rotational transitions in Table III one sees that for certain values of the rotational quantum number K there are systematic trends in these differences which reach +0.023 cm⁻¹ for J = 30 in the ${}^{p}Q(J, 8)$ lines, -0.020 cm^{-1} for ${}^{p}Q(32, 9)$ but only $+0.0020 \text{ cm}^{-1}$ for the line ${}^{p}Q(34, 9)$ 6). These differences, which are evident especially in the ν_5 band, are more pronounced in the $\Delta K = -1$ transitions. Although we endeavored to introduce several other terms of higher order both diagonal and off-diagonal in our model Hamiltonian, we have been unable to eliminate these differences. Their irregular dependence on K indicates that they are probably not caused by interactions within the system of the states $v_2 =$ 1 and $v_5 = 1$. Because interactions with other vibrational states have not been taken explicitly into account in our model Hamiltonian, we speculate that for the largest values of J these interactions are already so strong that they cannot be absorbed into the effective values of parameters which in our model Hamiltonian describe the interactions between and within the states $v_2 = 1$ and $v_5 = 1$. The nearby vibrational states have the term values $v_3(A_1) = 1048.611 \text{ cm}^{-1}(11)$, $v_6(E) = 1182.674 \text{ cm}^{-1}$ (14), $v_1(A_1) = 2916.643$ cm⁻¹ and $v_4(E) = 2998.438$ cm⁻¹ (15); the state of vibrational term value nearest the states $v_2 = 1$ and $v_5 = 1$ is therefore the state $v_6 = 1$. Although crossings of energy levels and coincidences occur for large values of J between the states $v_6 = 1$ and $v_2 = 1$, $v_5 = 1$ which have the same overall symmetry species, because they occur for $\Delta K > 3$ the effects should be extremely small.

ACKNOWLEDGMENTS

We thank Dr. J. Pola (Prague) and Dr. R. Fajgar (Prague) for preparing the sample of H₃CF and K. Lattner (Giessen) for his expert assistance in recording the infrared spectra. The laboratory work in Giessen

was supported in part by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. D.P. thanks the National Science Council of the Republic of China for appointment as Visiting Research Professor at the Academia Sinica Institute of Atomic and Molecular Sciences, and the research of J.F.O. is also supported by the National Science Council of the Republic of China.

RECEIVED: October 16, 1991

REFERENCES

- 1. C. DI LAURO AND I. M. MILLS, J. Mol. Spectrosc. 21, 386-413 (1966).
- 2. R. ESCRIBANO, I. M. MILLS, AND S. BRODERSEN, J. Mol. Spectrosc. 61, 249-264 (1976).
- 3. M. BETRENCOURT, M. MORILLON-CHAPEY, AND P. PINSON, Int. J. Infrared Millimeter Waves 2, 493– 524 (1981).
- 4. T. TANAKA AND E. HIROTA, J. Mol. Spectrosc. 54, 437-446 (1975).
- 5. E. HIROTA, T. TANAKA, AND S. SAITO, J. Mol. Spectrosc. 63, 478-484 (1976).
- 6. P. PRACNA, D. PAPOUŠEK, S. P. BELOV, M. YU. TRETYAKOV, AND K. SARKA, J. Mol. Spectrosc. 146, 120-126 (1991).
- 7. E. I. LOBODENKO, O. N. SULAKSHINA, V. I. PEREVALOV, AND V. G. TYUTEREV, J. Mol. Spectrosc. 126, 159–170 (1987).
- 8. D. PAPOUŠEK, Collect. Czech. Chem. Commun. 54, 2555-2630 (1989).
- 9. G. GRANER, Mol. Phys. 31, 1833-1843 (1976).
- 10. P. L. CHAPOVSKII, Sov. Phys. JETP Engl. Transl. 70, 895-901 (1990).
- 11. D. PAPOUŠEK, J. F. OGILVIE, S. CIVIŠ, AND M. WINNEWISSER, J. Mol. Spectrosc. 149, 109-124 (1991).
- 12. G. DI LONARDO, L. FUSINA, AND J. W. C. JOHNS, J. Mol. Spectrosc. 104, 282-301 (1984).
- R. J. KSHIRSAGAR, K. SINGH, R. D'CUNHA, V. A. JOB, D. PAPOUŠEK, J. F. OGILVIE, AND L. FUSINA, J. Mol. Spectrosc. 149, 152-159 (1991).
- 14. D. PAPOUŠEK, R. TESAŘ, P. PRACNA, S. CIVIŠ, M. WINNEWISSER, S. P. BELOV, AND M. YU. TRETYAKOV, J. Mol. Spectrosc. 147, 279–299 (1991).
- 15. J. P. CHAMPION, A. G. ROBIETTE, I. M. MILLS, AND G. GRANER, J. Mol. Spectrosc. 96, 422-441 (1982).