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Application of perturbation theory to the vibration-rotational 
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10764, Taiwan 
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Abstract. To determine the vibration-rotational energies of diatomic molecules, the hyper- 
virial perturbation theory is proved to be simpler and more convenient than other 
approaches. The expansion of these energies in terms of a small parameter related to the 
spectral parameters is independent of the unperturbed model chosen. We illustrate this 
point by the selection of the harmonic oscillator and the Morse oscillator as two passible 
unperturbed models. We apply the hypervirial perturbative method to a modified Morse 
oscillator, recently proposed to analyse the spectra of diatomic molecules, for which we 
obtain the energy coefficients in terms of the parameters of the potential-energy function. 

1. Introduction 

Since Morse (1929) introduced his function for the potential energy of a diatomic 
vibrator, which was the first potential energy for which the consequence was bound 
states of finite number, much attention has been devoted to not only the valuable 
properties of the simple Morse function but also modifications of the function to make 
it more closely commensurate with the spectral properties of actual diatomic molecules 
(within the Born-Oppenheimer separation of electronic and nuclear motions). The 
vibration-rotational terms (or energies of the discrete vibration-rotational states) that 
are the eigenvalues of two such modified functions with the associated centrifugal 
terms are our concern in this work. Dunham (1932) originated one form that became 
known as the perturbed Morse oscillator (PMO). The latter became a useful model for 
the accurate analysis of rotational-vibrational spectra of diatomic molecules when 
Huffaker and Dwivedi (1975) showed how to calculate exact perturbation corrections 
to the energies and eigenfunctions. This feature of PMO facilitated the study of the 
expansion of the vibration-rotational energies in powers of the corresponding quantum 
numbers (Huffaker 1976a, b, 1978,1980) and the calculation of Franck-Condon factors 
(Dwivedi and Huffaker 1977, Huffaker and Dwivedi 1978). Huffaker and Dwivedi 
(1975) showed how to treat the quantum-mechanical perturbation of PMO by means 
of factorization of the differential equation (Infeld and Hull 1951); Huffaker (1976a, b, 
1978) later extended the calculation of perturbation corrections to the coefficients Ykl 
by means of the BKW method. The other form that we consider is a modification 
complementary to that made by Rydberg (1931), later extended by Sorbie and Murrell 
(i475j, in which the exponentiai term is given as iactor a iruncaicd power series. 
Coxon and Hajigeorgiou (1990) have instead placed the truncated power series in the 
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exponent. Each such modification bestows significant advantages over the original 
prototypical function, necessarily at the expense of some complication, although for 
many purposes even the simple Morse oscillator leads to intractably complicated 
analytic expressions for such quantities as matrix elements, Franck-Condon factors, etc. 

Although factorization is a powerful method by which to apply perturbation theory 
to PMO, the resulting equations are sufficiently intricate to hinder the calculation of 
corrections of the large order required by the extent and precision of modern spectra, 
This reason justifies the development of alternative methods. Requena et al (1980) 
proposed the use of hypervirial relations and the Hellmann-Feynman theorem to 
obtain recurrence relations for the perturbation corrections to the energy and expecta- 
tion values of properly chosen exponential functions. As these recurrence relations 
proved insufficient to obtain all the perturbation corrections, they resorted to the 
expansion of the exponential functions in power series of the coordinate. Femindez 
and Castro (1982a, b) showed that this approximation was unnecessary and obtained 
the unknown term by means of an additional relation based on the Hellmann-Feynman 
theorem. Although in both cases the authors developed equations for the calculation 
of all the perturbation corrections, they did not demonstrate the efficiency of their 
methods by means of calculations of large order for a realistic PMO. In particular, the 
algorithm of Fernandez and Castro (1982a, b) for the calculation of exact perturbation 
corrections seemed unsuitable for such purposes because of the presence of the 
derivative of the energy with respect to one parameter. 

Makarewicz (1991) used standard Rayleigh-Schrodinger perturbation theory to 
treat the PMO. He determined the necessary matrix elements by means of recurrence 
relations originating in the hypervirial theorems and expressed the results as double 
power series of an appropriate parameter and the vibrational quantum number. To 
overcome the problem of the incompleteness of the set of bound-state eigenfunctions 
of the Morse oscillator Makarewicz truncated the series in a convenient way. Although 
he did not justify this truncation rigorously, his results showed that it was successful; 
the equations appear so complicated, however, that even numerical calculation must 
be laborious. 

Our purpose is to present two alternative calculations, with perturbations of large 
order, of the eigenvalues of PMO which are much simpler than the approach of 
Makarewicz (1991). Both are based on the combination of the hypervirial relations, 
the Hellmann-Feynman theorem and Rayleigh-Schrodinger perturbation theory pro- 
posed by Swenson and Danforth (1972) and subsequently used extensively (for reviews 
see Fernindez and Castro 1987, Arteca et al 1990). We choose the unperturbed model 
to be the harmonic oscillator in section 2 and the Morse oscillator in section 3 so as 
to obtain perturbation expansions in terms of the parameter proposed by Makarewicz 
(1991). We compare both series and draw conclusions about the application of perturba- 
tion theory to the vibration-rotational spectroscopy of diatomic molecules. We apply 
the method analogously to another modification of the Morse oscillator as a further 
example of its utility. 

F M Fernhndez and J F Ogiluie 

2. Harmonic oscillator as unperturbed model 

According to the Born-Oppenheimer approximation one obtains the vibration-rota- 
tional energies of a diatomic molecule from the eigenvalues of the rotating oscillator 

- h 2 / ( 2 ~ ) d 2 / d R 2 +  U(R)  (1) 
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in which R is the internuclear distance, p is the reduced mass and U ( r )  is the effective 
potential energy 

U ( R )  = V ( R ) + h 2 J ( J + 1 ) / ( 2 f i R 2 ) .  ( 2 )  

Throughout this paper we consider ‘Z electronic states. In the latter equation V ( R )  
is the potential-energy function and J is the rotational quantum number. For the sake 
of simplicity and purposes of comparison, we expand U ( R )  about its minimum at RO. 
This point reduces to R, ,  the equilibrium distance and minimum of V ( R ) ,  when J = 0. 
We define a dimensionless coordinate x = o ( R  - RO)/A in which a is a conveniently 
chosen reciprocal distance (Huffaker and Dwivedi 1978, Makarewicz 1991) and A is 
the perturbation parameter explicitly defined below. 

We expand U ( R )  in a power series of x 

m 

U ( R )  = U,+ q(A/a ) ’x ’  U.=(j!)-’d’U/dR’I.=R, J (3) 
;=2 

and define D = U2/a2 and q2 = h2a2 / (8pD) .  Here q is the expansion variable used by 
Makarewicz (1991) which is related to  Huffaker’s (1976a, b) parameter U according 
to q = 1/(2u). The unperturbed Hamiltonian takes a conveniently simple form when 
A‘= 2q and the resulting dimensionless perturbed Hamiltonian is useful for the applica- 
tion of perturbation theory: 

m 

X=(A’D)-’(H- U,)=-d2/dx’+x2+ U,A’X’+~ (4) 
,-I 

in which U, = (a’UJ’  V,,,. The eigenvalues 8 of %! are related to the energies E by 
E = 2qDL 

When A = 0, the Hamiltonian X reduces to that of a harmonic oscillator having 
unit mass and force coefficient. We apply perturbation theory to obtain the vibration- 
rotational energies as a series of A to non-negative powers. Let % be the coefficients 
of such an expansion for 8. As X( -A, -x) = %’(A, x) and as the eigenvalues are invariant 
to a change of variables, then % ( - A )  = % ( A ) .  All coefficients of odd order in the 
expansion for the energy consequently vanish and 

m 

E / D =  z 2pf’82,qpt’ .  ( 5 )  
I ‘ O  

This result is in a sense a semiclassical expansion because q is proportional to f i ;  this 
f x t  exp!zins thzt q~~tnm-mechanics! perturbation theory and the  RKW method give 
the same expression for the vibration-rotational energies. Another conclusion that we 
draw from the equations above is that any analytic representation of the potential-energy 
function V ( R )  (to which we have yet to give a particular form) yields essentially the 
same q power series. For instance, Huffaker (1976) pointed out that by means of the 
appropriate transformation of potential-energy parameters his expressions for the PMO 

reduced to those derived by Dunham (1932) by application of the BKW method to an 
anharmonic oscillator obtained by expansion of the potential-energy function in powers 

To obtain the energy coefficients 8,, we use the hypervirial perturbative method 
(Fernhdez and Ogilvie 1990). One can thereby obtain all perturbation corrections to 

of R - R e .  
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both X and the expectation values X"'= (1") from the following recurrence relations 

F M Fernindez and J F Ogilvie 

with the starting point XF' = a,,, which arises from the normalization condition. 
Equation (6) is obtained from hypervirial relations and equation (7) from a particular 
form of the Hellmann-Feynman theorem. The calculation proceeds hierarchically and 
the nested loops p = 0, 1, . . . , P, N = 0,1,. . . , P - p  + Z  are sufficient to obtain gD upto 
p = P. As the eigenfunctions 9 of the rotating oscillator are non-degenerate, the 
argument used previously forthe energies leads us to the conclusion that 1912(-A, -x) = 
I\YI*(A, x) from which X"'(-A) = ( - I ) N X ( N '  follows. Therefore X$"' vanishes when 
N + p  is odd. We indicated this result previously (Fernindez and Ogilvie 1990) but 
did not prove it. 

The recurrence relations (6) and (7) are much easier to use than the numerous 
equations and successive expansions proposed by  Makarewicz (1991). Furthermore, 
the present calculation is straightforward and yields the correct expansion in powers 
of q without questionable truncations. If one is interested in the calculation of only 
the energies, the present method is preferable to that used by Huffaker and Dwivedi 
(1975) which requires the expansion of matrix elements and energy denominators as 
series in U to negative powers (Huffaker and Dwivedi 1975, Huffaker 1976a, b). The 
recurrence relations (6) and (7) are more convenient than the BKW method (Dunham 
1932) and are suitable for both analytic and numerical computation, the former 
facilitated by available processors for symbolic computation (Fernindez and Ogilvie 
1990, Ogilvie 1991a, b). As an instance of a numerical calculation, and to show the 
rate of convergence of the perturbation series, we show in table 1 results for two cases 
studied by Makarewicz (1991). We deliberately chose the examples with the largest 

Table 1. Vibration-rotational energy of the state with J = 0 and v = 10 calculated by means 
of the truncated PMO reponed by Huffaker (1976b); P denotes the largest penurbalion 
order included in the series ( 5 ) .  

P E (CO)/cm-' P E (HC1)Icm-l 

0 22 783.093 61 0 31 406.083 33 
1 21 317.98681 2 25 842.441 08 
2 21 330.69072 4 25 726.780 26 
3 21 330.965 62 6 25 722.426 23 
4 21 330.591 97 8 25 723.293 22 
5 21 330.630 07 10 25 723.346 84 
6 21 330.629 67 12 25 723.32405 
7 21 330.629 47 14 25 723.321 69 
8 21 330.629 46 
9 21 330.629 46 

10 21 330.629 46 

16 25 723.323 46 
18 25 723.323 50 
20 25 723.323 47 
22 25 723.323 47 
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vibrational quantum numbers for which the convergence of the perturbation series is 
least rapid. The Convergence can be accelerated in many ways (Arteca ei al 1990) but 
our purpose here is not primarily to achieve highly accurate numerical results. We 
present in table 2 the coefficients, obtained by means of the symbolic processor Maple, 
of q, q2. q3 and q4 for the PMO 

In order to obtain simpler expressions we set b, = 0 as this term can be eliminated by 
an appropriate choice of the unperturbed Morse oscillator (Dunham 1932, Huffaker 
1976a, b, 1978, 1980, Huffaker and Dwivedi 1978, Dwivedi and Huffaker 1977). 

- .. ~ a ~ i e  i. Coeiiicients o i  the iint iour powers of q obtained b y  means or the method in 
section 2 for the case b,= 0. 

Coefficient of q 
2DX0 

Coefficient of qz 
D[fb,+ ($6,- 1)8zl 

Coefficient of q3 
(D/2)[(25 b,-3b4 - !$-  15 b,)go+ ( 5 4  - b,-yb:+ 56,) XA] 

Coefficient of q4 
(D/4)[(-165b,b,/4-15b,/2-165b,b,/4- t S b , / Z + 3 5 b ~ / 2 + 6 5 b : / 8 - 3 1 S b ~ / 8  

l l i L  I l l  r , L * 3 i . ' , ~ l I , ~ , , r l , r L . . c L  L , * L , I . L  .CA L s . l n 7 L l , o  
T-',",, L 1, I ,"U ' " I  oo 7 ,L,, u4/ *1 I 1,V4YI, i 7 L * I U 8  - ,,"6T 1 / " ,  Ya/ 0 

~ 1085b:/4-885b,b6/2- l75b,+45b5)X;- 276,/2+2456,/2- l ia7b:/8-875b:/8 
- 945 b, b,/4 - 525 b d  2 + 3 15 b d  2 + I743 b4 b,/4 + l539b:/ I61 

3. Morse oscillator as unperturbed model 

The expansion of the energies in q (Makarewicz 1991) or l / u  (Huffaker 1976a, b) to 
various powers is generally used to keep track of the orders of magnitude of the 
contributions to the coefficients Ykr (Dunham 1932). Neither factorization (Huffaker 
and Dwivedi 1975) nor standard Rayleigh-Schrodinger perturbation theory 
(Makarewicz 1991) gives such series directly; for this reason further expansion of some 
quantities in either approach is required. The method described in the preceding section 
yields the desired expansion straightforwardly. Whether one can obtain directly the 
corresponding expansion when the Morse oscillator is the unperturbed model is 
addressed in what follows. 

~~ Again we consider the rotating oscillator ( 1 )  with the effective potential-energy 
function (8) but here we introduce a perturbation parameter A in order to collect the 
perturbation terms in a particular way 

m 
y2+ I: b,,,A'y'+' 

j - 3  
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This parameter is set equal to unity at the end of the calculation. We can also place 
A in front of the sum and treat it in its entirety as a single perturbation to the Morse 
oscillator; this strategy was followed by Fernandez and Castro (1982a, b). To show 
the flexibility of the hypervirial perturbative method we consider the order of each 
term in the sum to be arbitrarily larger than that of the preceding one; this approach 
is useful when the coefficients decrease as the order increases. Different rearrangements 
of the perturbation may lead to different rates of convergence; we do  not here amplify 
this point as our primary concern is to demonstrate the equivalence of different 
representations of the potential-energy function when the energies are expanded in 
powers of the same parameter. 

F M Ferndndez and J F Ogiluie 

In  this case we define the dimensionless Hamiltonian operator 

X= HID= -4q2(d2/dx2)+ % (10) 

in which x = n(R  - R,) and % = U / D .  The eigenvalues 8 of X are related to the 
vibration-rotational energies E by 8‘ = E / D .  As previously reported (Fernandez and 
Castro 1982a, b), the hypervirial relations and the Hellmann-Feynman theorem, 

m 

a8’1a.i = 1 jbj+2AJ-’ Y (jt2’ (11) 

in which Y ” )  denotes the expectation value of y’, are insufficient for a complete 
calculation according to perturbation theory. To overcome this difficulty one makes 
further use of the Hellmann-Feynman theorem: 

j = 1  

d 8 1 d q  = -8q(d2/dx2) = Z ( % - ( % ) ) / q .  (12)  
Straightforward use of the hypervirial relations and perturbation theory (Fernindez 

and Castro 1982a, b) leads to the following recurrence relation for the perturbation 
corrections to the eigenvalues 8 and to the expectation values Y: 

P 

Y!’ = gD - ( q / 2 ) ( d % p / J q ) +  (1/2) bk+dkYF-Y’- ( k + 2 )  yb*_t,l’] (130) 
h = l  

( 2q2[ N3YybN’- N ( 3  N 2 - 3 N +  1) YbN-” 
1 

2 N + 2  ybN+21 =- 

We derived the first equation here from the second with N = 0 and the expansion of 
equation (12) in a series of A to non-negative powers. The calculation ofthe perturbation 
corrections is straightforward and proceeds hierarchically as in the previous case 
starting from the normalization condition Y r’ = cSpo. The equations in this set are also 
much simpler than those proposed by Huffaker and Dwivedi (1975) and Makarewicz 
(1991). The presence of the derivative d 8 J d q  offers no serious difficulty as it is easily 
handled by means of any symbolic processor. However, if one requires accurate and 
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Table 3. Vibration-rotational energy for the state with J = 0 and Y = 10 calculated by means 
of the truncated PMO reported by Huffaker (1976b): P denotes the largest order Of 

perturbation included in the series given by the method in section 3. 

P E (CO)/cm-' E (HCl)/cm-' 

0 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
I5 
16 
17 
!B 
19 
20 

21 233.989 47 
21 314.162 07 
21 322.415 82 
21 329.064 54 
21 330.033 57 
21 330.726 04 
21 330.684 66 
21 330.636 16 
21 330.631 76 
21 330.629 29 
21 330.629 17 
21 330.629 39 
21 330.62943 
21 330.629 47 
21 330.629 47 
31 330.629 47 

24 877.631 07 
25 485.59004 
25 667.848 97 
25 742.772 92 
25 732.609 92 
25 725.241 04 
25 722.833 87 
25 722.760 39 
25 723.041 44 
25 723.330 65 
25 723.380 24 
25 723.339 04 
25 723.329 50 
25 723.321 28 
25723.31999 
25 723.323 40 
25 723.323 62 
25 723.?23 5! 
25 723.323 65 
25 723.323 45 

rapid numerical calculations of large order one can expand all the quantities in 
equations (13)  in series of q to non-negative powers so as to obtain the coefficients 
from the resulting recurrence relations. This further development is unnecessary for 
the present purposes. In table 3 we demonstrate the rate of convergence of the series 
E = D( go+ 8, + . . . + %,,, +, . , ) for the same PMO examples considered before. The 
calculation was done by means of a simple program in Maple. We used the same 
processor to perform analytically the calculation to verify that the coefficients of q to 
the first three powers in the expression of the energy agree with the results in table 2 
as expected from the reasoning of the previous section. The choice of the unperturbed 
model is clearly immaterial if one is interested in merely the expansion of the energies 
in polynomials in q or U-' .  

4. Modified Morse oscillator 

Cnxnn 2nd mjigeorgiou (!son) proposed a modifica!lon of !hP Morse osci!!atar 
equivalent to 

V ( R ) = D , { l  -exp[-u(x)]}* (140)  
in which x = ( R  - R , ) / R ,  and 

m 

u ( x ) =  up' (146)  

as a starting point for the inverse perturbative approach. In their analysis of the 
vibration-rotational spectra of isotopic variants of HCI, these authors used the poten- 
tial-energy function determined in this way to predict the wavenumbers of spectral 

, = I  
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5. Discussion and conclusion 

We have presented two different applications of perturbation theory to the model of 
the rotating oscillator for diatomic molecules which are simpler than both the factoriz- 
ation method proposed by Huffaker and Dwivedi (1975) and the standard Rayleigh- 
Schrodinger perturbation theory that Makarewicz (1991) employed. The approach 
developed by Fernindez and Ogilvie (1990) outlined in section 2 is certainly simpler 
and more rapid than the one in section 3; the convergence velocities of both series 
appear to be comparable. The main disadvantage of these perturbation theories without 
wavefunction is that they allow the calculation of no physical observable other than 
the energies and expectation values of chosen operators. In contrast, the factorization 
method (Huffaker and Dwivedi 1975) is suitable for the calculation of matrix elements 
and Franck-Condon factors (Dwivedi and Huffaker 1977, Huffaker and Dwivedi 1978). 

The second point made plain here is that one obtains the same power series in the 
argument q (or U-') regardless of the unperturbed model. Such expansions have 
become a standard way to analyse spectral data; increasingly further terms are required 
as the precision of experimental data increases. For this reason there is much interest 
in the improvement of the pertinent algorithms. Our method (Fernindez and Ogilvie 
1990) is suitable for the introduction of adiabatic and non-adiabatic effects (Ogilvie 
1991a, b) because of the simplicity of the recurrence relations. Although all the analytic 
representations of the potential-energy function yield essentially the same q-power 
series for the energies, their ranges of validity as functions of R - Re differ. A commonly 
used strategy is the substitution of the desired representation of the potential-energy 
function (Simons et a /  1973, Thakkar 1975, Ogilvie 1974, 1981) for the series in R - Re 
(Dunham 1932) that one produces easily by means of the approach in section 2. 

The defect of the simple Morse oscillator and any modifications so far proposed 
is that all these functions applied to the potential energy of real molecules possess an 
incorrect asymptotic behaviour as R becomes large, or as the potential energy 
approaches the dissociation limit at large R. The correct behaviour is that of an inverse 
power of R, i.e. R-"; the applicable power n depends on the nature of the dissociation 
products (Le Roy 1973). For this reason any use of these Morse functions prototypical 
or modified must be limited, if one is to reproduce accurately the observed frequencies 
of the spectral transitions, to the region of energy much less than that at the dissociation 
limit. 
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