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Quantitative analysis of adiabatic and non-adiabatic effects in 
the vibration-rotational spectra of diatomic molecules 

J F Ogilvie 
Academia Sinica, Institute of Atomic and Molecular Sciences, PO Box 23-166, Taipei 
10764, Taiwan 

Recieved 23 March 1993, in final form 29 September 1993 

Abstract Expressions of,  the vibration-rotational, Z,, and additional rotational, &, 
coefficients in the vibration-rotational energies of a diatomic molecule to take quantitatively 
into account the separate vibrational adiabatic and non-adiabatic vibrational and rotational 
terms in the Hamiltonian for nuclear motion have been generated by methods of symbolic 
computation. All the radial functions have as argument z = Z ( R - R . ) / ( R + R ) .  An algo- 
rithm to evaluate these coefficients from available spectral data was tesled on simulated 
data and applied to HCI. The relative contributions of adiabatic and non-adiabatic effects 
to selected term coefficients and the need for experimental measurements of the Zeman 
effect on rotational and vibration-rotational transitions are discussed. 

1. Introduction 

Since van Vleck’s (1936) initial treatment of adiabatic and non-adiabatic effects that was 
strongly influenced by Dunham’s (1932) analytic approach to the analysis of molecular 
spectra, there has been much progress in the understanding of the nature and extent 
of these effects. Adiabatic effects signify that the energy of a molecule within a particular 
electronic state depends not only on the internuclear distance but also on the relative 
nuclear momenta, hence on the nuclear masses. The non-adiabatic effects arise from 
the failure of the electrons to follow perfectly the nuclei during their vibrational and 
rotational motions, and are attributed formally to interactions between the electronic 
state of interest-typically the electronic ground state for purposes of vibration- 
rotational spectroscopy--and other electronic states. Non-adiabatic vibrational effects 
are associated with vibrational motion of the nuclei that is supposed to induce inter- 
actions between electronic states of the same electronic angular momentum, whereas 
rotational motion analogously gives rise to non-adiabatic rotational effects associated 
with interactions between electronic states of net electronic angular momenta differing 
by one unit (van Vleck 1936). AI1 these effects arise from the approximate separation 
of electronic and nuclear motions according to which Born and Oppenheimer (1927) 
introduced the idea of molecular structure into quantum mechanics. If the energies of 
the rotational and vibrational states in the electronic state of interest are sufficiently 
distant from those in other electronic states, the interactions are sufficiently small to 
be considered weak and homogeneous perturbations; the dependence on internuclear 
distance of these effects may then be formally defined analogously to the potential 
energy that is the dominant factor governing the vibrational and rotational energies of 
the eigenstates belonging to the particular isolated electronic state. According to an 
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analytic approach, we present a formalism by means of which one can for the first time 
separate purely from experimental data the various effects, and provide an instance of 
application to the particular molecular species HCI. Because of relentlessly increasing 
spectral resolution, the corresponding precise measurement of spectral lines reaches 
8v:v- in the best cases (for instance -2 x IO-'for DCI; Klee and Ogilvie (1993)); 
available spectra of a particular molecular species may consist of thousands of assigned 
lines of isotopic variants that exhibit these mass effects. For these reasons spectral data 
of the present quality and quantity far surpass theoretical description within the confines 
of Dunham's theory. In the sense that we have during the course of the present work 
produced a quantitative description of these effects in terms of the applicable radial 
functions, we have been able to complete the task that van Vleck initiated. The radial 
functions on which we base our results provide simultaneously the most compact and 
most physically meaningful representation of the frequencies and wavenumbers of the 
corresponding spectral lines (Ogilvie 1990). In 1923 Randall recognised the importance 
both of the theoretical description of vibrational and rotational motions and of experi- 
mental information about HCI in particular that could serve as a test of any pertinent 
theory. 

2. Analytic treatment 

From the non-relativistic Hamiltonian of a dinuclear molecule in the electronic state 
of 'E for which there is accordingly neither net orbital nor spin angular momentum of 
the set of N electrons and for which intrinsic nuclear angular momenta are neglected, 
we derived the following effective Hamiltonian for the motion of the nuclei (Fernandez 
and Ogilvie 1992 and references therein), 

Therein V,n(R) comprises the effective internuclear potential energy of the non-rotating 
molecule, 

V.,(R)= VBo(R)+ Vad(R)t  P ( R )  (2) 

containing the contributions the potential energy VBo(R) that is formally independent 
of nuclear mass, Vad(R) that takes into account adiabatic effects and V"'(R) that takes 
partially into account vibrational non-adiabatic effects (Bunker and Moss 1977). In 
equation ( I )  the last term containing the quantum number J for the total angular 
momentum of the molecule represents the centrifugal erects; the function a ( R )  takes 
into account the rotational non-adiabatic effects, that the electrons fail to follow per- 
fectly the nuclei as  the latter rotate about the centre of molecular mass. In the term for 
nuclear kinetic energy P(R) is an analogous function for vibrational inertia of the 
electrons. 

Dunham's (1932) radial function for the internuclear potential energy, independent 
of nuclear mass, has the form of a series in the argument x to various powers, 
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in which the formally infinite series becomes truncated as governed by the finite quantity 
of experimental data. The reduced displacement x depends on the instantaneous inter- 
nuclear distance R from its equilibrium length R, ; x = ( R  - &)/Re .  Because this variable 
is poorly behaved as R - m ,  we have introduced (Ogilvie 1981) the alternative variable 
z = 2 ( R - R e ) / ( R t R J  that places on an equivalent basis, z=&2, the two limits of 
molecular existence, namely the separate atoms as R-co and the united atom at R =  
0. The function for potential energy 

that remains formally independent of mass has the form of that due to Dunham; 
because of the everywhere well behaved nature of- one can in this case apply boundary 
conditions to make the energy approach properly the asymptotic limit VBo(z)+Dc,  the 
equilibrium binding energy (relative to YBo=O at z=O or R=&) as 2 4 2  (Ogilvie 
1988); hence the number of coefficients cj can be kept finite. 

For a molecule that consists of two nuclei of distinct atomic numbers plus the 
associated electrons, there are in general two radial functions for each physical effect 
beyond the potential energy because the masses of nuclides of each atomic number 
influence separately the molecular energies. The effects that we must include are the 
adiabatic and rotational and vibrational non-adiabatic effects, corresponding to Vad(R), 
a ( R )  and P ( R )  respectively: the other function Y”‘(R) in equation ( 3 )  we ignore because 
its order in the expansion variable K = ( F ~ M ~ , ) ’ ’ ~  (Born and Oppenheimer 1927) makes 
it negligible relative to the retained terms (Fernandez and Ogilvie 1992); m. is the 
electronic rest mass and M,, is the average atomic mass. To take into account these 
effects we introduce the following correspondences, 

Vad(R) - (mJMo)  u;i’+ (mJMb) $d ( 5 )  
j =  I j -  I 

that define the coefficients of the pertinent radial functions. The summations begin at 
j = O  for the latter two functions, but at j =  I for the adiabatic effects because any 
constant term therein contributes simply to the zero-point energy taken into account 
elsewhere. For a molecule containing ‘two nuclei each having the same number of 
protons but not necessarily the same number of neutrons, each pair of related 
coefficients merges into a single coefficient having as quotient the reduced mass of the 
molecule instead of the individual atomic masses. We use in general atomic masses 
rather than nuclear masses because the latter are relatively inaccurately known and 
because the consequent error is much smaller than error propagated from currently 
available measurements of frequencies of transitions. According to these definitions the 
magnitudes of the coefficients c, , j>O, and of all tyb and syh are expected to be of 
order unity whereas the magnitudes of co and of all coefficients @‘ are expected to be 
of order B,/y2; y is the ratio of the limiting separation 28, between adjacent rotational 
lines to the limiting separation w, between the centres of adjacent vibrational bands in 
a progression of an absorption spectrum; the range of values of y’2B,/w, is 
0.0261 for known diatomic molecules i n  their electronic ground states. The expansion 
coefficient y governs the rate of convergence of expressions consisting of a sequence of 
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terms having as factor y to successively increasing powers; magnitudes of y within the 
stated range ensure that at most a few contributions suffice to define molecular energies 
with accuracy beyond that of the measurement of spectral lines. 

Following Dunham (1932) and the subsequent extension (Herman and Short 19-58), 
we express the vibration-rotational terms in the systematic form of a double summation, 

(8) Ed= C 1 ( Y ~ t Z l f t Z ; i b + Z ~ ~ + Z $ ) ( ~ t ~ ) k [ J ( J t  I)]' 
k-0 I-0 

in which we take enough term coefficients to reproduce accurately the experimental 
data; we suppress the explicit isotopic dependence of EDJ and the term coefficients Ykr 
and ZX. In this equation and elsewhere hereafter we assume that the units of all 
quantities Yk,, Zi,, Zit, the potential energy V(z)  and the coefficients co and all 

are dimen- 
sionless. The term coefficients YkI depend on the molecular parameters the harmonic 
force coefficient k., the equilibrium separation R,, the potential-energy coefficients cj, 
j>O, and the atomic masses through the molecular reduced mass p = M J 4 b /  
(Mo+Mb-z.m.) in which z. is the net electric charge of the molecular species in units 
of the protonic charge; B,=h/(S$cpRZ), o . ~ ( k c / p ) " 2 / ( 2 n c )  and CO= k R f / ( h c ) .  Of 
these term coefficients Yw we have derived expressions containing c, up to j=24, 
including all Y k /  such that 2kf lg12  and some important further terms up to Y13.0, 
Y , , ,  etc. A few expressions appear in table 1 as examples; a collection containing c,, 
j< IO, was published, with their derivatives with respect to the parameters, in machine- 
readable form (Ogilvie 1983) and further expressions will be similarly made available. 
These expressions Yk, have the form 

are those of wavenumber; the remaining coefficients c,, j > O ,  t?b and 

in which each successive contribution Y#"" contains a further factor y z ;  in practice for 
most combinations of the subscripts k and 1 only the leading term Y: provides sufficient 
accuracy, whereas even for the most important coefficients Yl,o and YO., only the first 
three contributions are required at most by comparison with experimental error of 
frequency measurements. These leading terms Y: are expressed also as the product 
, y k l p - ( k t O  of the reduced mass p to the indicated power and the further term 
coefficients U k /  that in this way become formally independent of nuclear mass. The 
latter coefficients appear in an expression of vibration-rotational energies (Ross et a1 
1974), 

Ed= 1 1 uk/p  - ( ' k + ' ) [ l  +mnc(A&/M. + A i J M b ) ] ( v  t $)k [J (J+  I)]' (10) 
k-0 1-0 

in which the additional empirical coefficients ASb are supposed to take into account the 
deviations from the mass-scaling properties of the coefficients U,,! arising from the 
various adiabatic and non-adiabatic effects in inextricable combination. Although the 
expressions in table 1 are equivalent to those that Dunham (1932) reported in terms 
of his coefficients aj, our expressions involving the coefficients c, of zi are more extensive 
and more practical for the reasons already stated. 

The additional term coefficients of types Z;, and Z;, we assume to be experimentally 
distinguishable; this assumption we justify subsequently. According to our theoretical 
derivation, the total expressions ZkI are directly partitioned on the basis of the terms 
in the Hamiltonian that lead to their various contributions (Fernandez and Ogilvie 
1992). For instance, the coefficients uZb occur only in the corresponding Zlf and Z$ 
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Table 1. Expressions of term coefficients Y,, in terms of potential-energy coefficients c,. 

51 

Yo,o=O+ f1.(-7d/32- c ~ / 8  + 3c2/8 + 1/16) + . . . 
Yo,, = &+g/m:(214/4 +21c:/4- 23clc>/Z+ 35cr/8 - 8&+ 15c3/2+2) + , . . 
Yo2 - -4B:/m:+ &/U:(- 126cf - 495c:/2 + 333c:cr - 9 3 3 ~ ~ / 4 + 4 3 4 c ~ c ~ - 2 0 5 ~ 1 r ~  - 147q -92d 

+ 194c~-200c,+90c~- 535/8) 

Y~,t=16~/m:(c,+2)+ ... 

Y ~ , ~ = 1 6 B : / m ~ ( - 9 ~ : + 4 e , - 2 4 0 - U ) +  . . . 
Y,,o=m, i B:/m.(- I155c:/256 - I1 Ic?/32 +459&/32 - 33:/64+ 61ctc~/8 - 95cic3/8 + 3 r d -  67c:/l6 

-c2/16- 15c3/4+25~/4- 3/32) + . . . 
Y,,,=6B:eL/m,+. .. 
Yj2 =6B:/m:( - 9 2  - 1Zer + 8rz - 4) + . . . 
Y ~ , ~ = B . ( - 1 S e : / 8 + 3 ~ ~ / 2 + 3 ~ ~ / 2 - 3 / 4 ) + .  , . 

Y2., = e/mU:(4Sc: +27&-78c~c~+3ct /2+30~3 +. . . 
Y,, = B:/m:( - 1080~: + 2484c:c2-624c:- I 140cncx + 360ca- 1566d + 199Ze1c~-480c~ 

-981c:+264c2- 3 9 6 ~ ~  -87/2) + . . . 
Y 9 , 0 = ~ / m c [  -705c?/ffl+ I5c:/8+22S&/S t5lc:/16- 17cic2/2-35~1~3/2-2c, 

- 17d/4- 3 4 4  + 5c,+ 5c.+ 1/2) 

-780c:cr+300c,c3+345e:/4+45c~c*-20c,+ IS&+.  . . 
Y,,, =E:,":( 19035c:/32 - 7545c:c1/4 t 2L7Sc:c~/2+2055el~/2- 510cte, - 450~2~3 + 140~5 + 450cf 

Y4,0=&/m$(- IlS755~~/1024+ I16325ef~~/2S6-9165c~c~/32-24945~~~~/64+2715c~c~/ l6  

+ 241 5elczes/8 - 31Sc,cr/4 + 375cz/16- 16Se2c4/4- 3 I56/8 + 35ca/2 - SSSd/256 - 1215dcJ32 

+ 61 5c:c3j16 - 165clcd/4 + 1 l25clc:/16 - 1 6 5 ~ 4 4  + 35~3/2 + l8855cf/512 - 5565c:c2/64 + 70Sctcd16 

+ 195c:/32-4Sca/8-45c:/8+45e,h/2- I O h -  135c:/32-5~~/8 + 1Se1/8- 5/16) + . . . 

and analogously the coefficients t$' only in 22; and 22;. but the coefficients s$ occur 
in almost all Z;?, 2$, 2Y and Zh6, as tables 2 and 3 illustrate. These coefficients 
22; depend on the molecular parameters the harmonic force coefficient k,, the equili- 
brium separation R., the potential-energy coefficients c,, j>O, and the atomic masses 
through the reduced mass, in addition to the coefficients uTb, I/"'& and sTb, all the latter 
in a linear manner. To produce these expressions, we used hypervirial perturbation 
theory (Femandez and Ogilvie 1990) and suppressed terms of order beyond (inc,'MaJ 
relative to their context (Fernandez and Ogilvie 1992). Because direct expansion of the 
vibrational non-adiabatic function P ( R )  in the effective Hamiltonian, equation (l) ,  
gives rise to unbound contributions of the form (d/dx)d(d/dx), we assumed that P ( R )  
is a sufficiently well behaved function; we took P ( R )  to be the local representation near 
R=R, of a function that possesses the correct asymptotic properties at R=O and R-rco, 
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Table 2. Expressions of coefficients 2;; for non-adiabatic vibrational and rotational efecls, 

Z;:M./m.= B& 

Z6:M./mc= Boy2[ -s i -  21;+tfl 

G5M./m.= B.y4[sM3c,/2 t 9/2-:s:+ f#3c1 t 6) + f?(-3c1/2-4) t fa  
G:&</m.= B.r6[s;(-9d/2 t 2 c -  33c1/2-39/2ts~(3c,/2t  19/6) - b;+r;( -9d t 4c2- 24c, - 22) 

+ f7(9d/2-2cr+ 15clt65/4) t f ; (  -30  - 6) t f:] 

Z;$M./m.= B.ya[s;(135d/8 - 15elcat 5c,/2 + 585c?/S - 26crt  993cl /8+ 699/8) + s X  -45d18 t 2c2 

- 69~114 - 267/16) +s;(3c1/2 + 1114) -is; t I;( 135c:/4 - 3 0 ~ 2  t 5cj + 225d/2 

-400 t 615c~/4+90) + f T( - 135c:/8+ 15cle- 5 q 2 -  135d/2 t 24c*-213ct/2- 70) 

t f;(45d/4 -b+ 33eL t 61/2) t I;( -9c,/2 - 8) t fa 
z ; j M . / , n , = B . r [ ~ ( 3 c 1 / 2 t 3 / 2 ) - : ~ t 3 ~ ,  tC(-3cI/2- t )+ f : ]  

Z;;M./m.- BC7’[s:( - 27e?/4 t 6c2 - 63c1/4- 21/2) isf(9c1/4 t 7/2) -s; 

+ f E (  - 27e?/2t 12~2- 18~1-6 )  +1?(27d/4- 6cr+27cj/2t 2714) t t i (  - 9cJ2 - 6) t 3 f D  

Z;;M./m.= B,y5[s;(567c?/l 6-  99c,cr/2 t 15c3+ 1755d/ 16- 141c2/2 +261c1/2 t 69) 

+s;( - 189c:/16 + 15c2/2-27cr - 17118) t s;(9ct/2+ 1512) -3s;/2 t ft(567c:/8-99clc2 t 3Oca 

t297c:/2 - 96crt  126q + 48) + f 7 ( -  567c?/16+ 99c~cJ2 - 15c3 - 783c:/8 t 63c~ 

- 8 1 9 ~ ~  /8 - 18314) +IK189c?/8- l5c2 t 99c~/2 t 69/2) t fX-27c~/2- 21) +61:1 

Z;?M,/m,- B,yZ[sX4Sc:/8 - 39c,c2/4t 15c,/4t9c? -9c2/4 t 11  l e , /  1 6 t  3/16) 

ts?(- 1 5 d / 8 t 3 ~ ~ / 4 - 2 9 e ~ / X -  13/32)+~$(5~,/4f5/8)-3s;/8 t f~(4(45~:/4-39~1~~/2 

t 1 5 ~ ~ / 2 + 2 7 ~ ? / 4 t 3 ~ , / 8 )  tt?(-45c:/8+39cjcr/4- 15cl/4-57d/8 t3cz/2-27c1/8 t3/8)  

+ f;(15c?/4- 3czl2t 6cl) t f;( - I5c1/4- 312) t 3fi/2] 

and carried the function P(R) through all the calculations until the final stage so as to 
avoid problems with the asymptotic behaviour of the polynomial form p ( x )  or p ( z ) .  
Because the ratios K ~ = I H , / M ~ ,  and y2=(4B2/05) have comparable magnitudes, to 
include in Z;; further contributions that contain successive factors yz  would be incon- 
sistent without including terms proportional to (ttrJMaJ2; therefore only the leading 
contributions to 2;; appear in tables 2 and 3. A much larger collection of these expres- 
sions of Z>y and their derivatives with respect to the parameters will be published 
subsequently in machine-readable form. 

All these expressions Y,, and Z;? we have produced by methods of symbolic comput- 
ation (Ogilvie 1989), first in the form containing the appropriate coefficients of x’ 
(Fernandez and Ogilvie 1992); we then converted the coefficients a,, q:h, T;’’ and 
E;’ of x‘ into the present coefficients cj,  uFb, ‘7’. and s;”’ of zi respectively. For these 
analytic computations, we employed two separate processors Maple and Reduce to 
verify independently the accuracy of the results; the expressions and their partial deriva- 
tives with respect to the parameters were similarly converted into efficiently executable 
Fortran code for subsequent numeric application. 
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Table 3. Expressions of coefficients Z;p for adiabatic and non-adiabatic vibrational effects. 

z;;:M./m.= 7% 

Zg:M./m.= B,&+ ya[[u?( - 30/2- 2) + u 3  

Z~;M,/m.=B.y4[sG( - 3cr/2-9/2) +is?] t y6[G(9c:/2- 2cz + 9cl t 2514) t U;( - 3cr - 4) t uE] 

Z;;Mo/m,= Eey6[s;(9d/2 - 2c2 t 33c1/2+ 39/2) +S?( - 3cd2 - 1916) + is3 
+ y'[u?(- 1 3 5 ~ ~ / 8 + 1 5 c ~ c ~ - 5 ~ ~ / 2 - 4 5 e ~ t  16c2-99cx/2-47/2) 

+ u:(45e;'/4-4c>+ 24cg + 33/2) + u l  - %/2 - 6 )  t u 3  

Zw,,/m.= y-'E&+ y[u?(- 3c1/2+ I ) +  U;] 

Z;TMa/m,=Bey[- 3s;/2t 3s:/2] t y3[u7(27c?/4- 6c2 + 9 ~ 1 1 2  t 3/4) - 9uk1/2 t 3U!] 

Z;ZM./m.= B,yf[s;(27&S - 3c2 +45c1/4+9) +sP(-9c,/4 - I I /2) + 2s;l 

t y'[u?( - 567e~/16+99ctc2/2- 15cs-405c?/8 t 33c2-243c1/8- 3914) t uXl89c:/8 

- 15c2+45c,/2+9/2) +U?( - 21c1/2-9) + 6113 
P2:M./m,= !I&;( - 156/8 + 3c$+ 3cd2 - 3/4) + s X  - 3 4 4 +  4) +%I 

+ y2[u~(-45c:/8t39c~c~/4- 15c>/4t 3c?/8-3cJ2+9~1/8-3/8)tu;(l5c?/4 

- 3c2/2- 3e1/2) +U:( - 15Cd4 +3/2) t 3uYZl 

Z;?M,lm,= B.y2[s~(45c:/8- 3¶eLez/4+ 1%/4 - 9c?/4 + 9cd4 - I I le, f 16 - 3/16) 

+s~(9~:/4-9h/4+65=,/8 + 1 /32)+sg(- I Ic1/4-5/8) + ISsl/S] t y4[u?(135c?/2- 621c?cd4 

+285ele,/4t39e:-45e~/2t423e:/8 -66qczt 15c,t63d/4- 15ca/8 t33ct/8+3/32) 

+U;( - 45c: t I 17clci/2- 15~,-81d/4 - 3c1/4) 

tu;(  135e;'/4- 39c~/2+21c~/Z+ 3/8) -39uZC1/2+ lSu;/2] 

3. Numerical treatment 

The objective of this work is to enable in one stage the evaluation of parameters of the 
pertinent radial functions from the frequencies of the pure rotational and vibration- 
rotational spectral transitions. As spectral lines of a particular molecular species are in 
general much more numerous than the parameters of the radial functions of which one 
seeks to represent the frequencies of the lines in the most compact and physically 
meaningful form, we apply a statistically based process of reduction o f  the frequencies 
and wavenumbers of measured transitions. The wavenumbers of pure rotational or 
vibration-rotational transitions to which are assigned pairs of quantum numbers to 
specify the initial and final states of a particular isotopic variant are differences of 
spectral terms. 
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Because of the non-linear dependence on some ultimate parameters k., R., and cj (even 
though sTb, 1;" and uyh appear linearly), of these wavenumbers through the intermediate 
quantities-the vibration-rotational terms E,, the coefficients Y ,  and various Zk,- 
only indirect (iterative) methods of solution are possible. 

For this purpose we use an algorithm that Newton originated and that Choleski, 
Hammarling, Levenberg, Marquardt, Morrison and others developed further (Osborne 
1976, Bates and Watts 1988). To ensure the least biased and most precise values of 
resulting parameters (Albritton et al 1976), the criterion of best fit is the least sum of 
the squares of the residuals; the latter are the difference between the observables (the 
measured wavenumbers or frequencies converted to wavenumbers) and the values of the 
transition wavenumbers calculated by means of equations (8) and (1 I ) .  Our calculation 
employs analytic expressions of the partial derivatives of the residuals with respect to 
the parameters. The process is therefore a fit of wavenumbers of transitions as the 
dependent variable; the atomic masses and the initial and final, vibrational and rota- 
tional quantum numbers are the independent regressors within simple but extensive 
functions. implicit in equation (8). The algorithm can be extended to apply to electronic 
states other than 'Z; we made provision to include further appropriate indices as 
independent variables. The uncertainty assigned to each datum (the measured wave- 
number) that reflects the absolute accuracy of its measurement, is converted into a 
weight as the inverse of its square; correlations between measurements are generally 
neglected. The criterion ofconvergence of the calculation is that in consecutive iterations 
the square root of the sum of the squares of the weighted residuals alters less than 
U. 1%; the actual tolerance in a particular fitting operation depends on both the precision 
of the data and the consistency of the various sets of data that are included in the 
collection of wavenumbers to be fitted. The analysis of data is conducted according to 
standard statistical methods; the results of the fit are values of parameters, selected 
according to the criterion of the F-statistic (Ogilvie 1982), in sets consisting of k,, R, 
and coefficients c,, uTb, 17" and sT6, accompanied by their estimated standard errors 
and the matrix of correlation coefficients of the parameters. The auxiliary quafitities 
Y, and verious Z , ,  ukr+Ak, are evaluated directly from the primary parameters if 
required. 

4. Tests of the algorithm and application to HCI 

In order to demonstrate that this approach to the analysis of the frequencies and 
wavenumbers of spectral lines is practicable, we generated test data with assumed values 
of the parameters in finite sets. First only the parameters U,,,' and c,, 1 <j<8,  of 
a single diatomic species specified by one mass of each nucleus were assigned finite 
values; thus only the quantities Y ,  were required. We selected 238 transitions in R and 
P branches within the range of states 0 < 1 ~ < 7  and O<J<40.  The input wavenumbers 
were specified to a precision 0.000lm-' in the range,"-' [ZOOO, 20270UO]; the initial 
values of all parameters were zero except for Ul,,,, and c , - q  which were given 
rounded values within about 30% of the set values used to generate the data. During 
the fit, the sum of the squares of the residuals decreased from 4.56 x 10" m-2 to 
1.0 x m-*, at which point the standard deviation of the residuals was 2.1 x IO-' rn-' 
(or double the precision of the input data). The final estimates of the parameters agreed 
with the set values generally within two (small) estimated standards errors of the former; 
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in the correlation matrix, only four elements of the 45 independent values had magni- 
tudes exceeding 0.95. The results of this test prove that to reproduce in one stage the 
potential-energy coefficients from the transition wavenumbers is practicable. 

In the second test, also of a single isotopic species, the set of assumed parameters 
of the first test was augmented to include four coefficients fy, I q < 4 ;  the value of t ;  
was constained to zero during the fitting process. The same 238 transitions as in the 
first test but with correspondingly adjusted wavenumbers were selected. At convergence 
the standard deviation of the residuals was 2.2 x IO-' m-'; the generated values of the 
parameters again agreed with the set values within about two estimated standard errors 
of the former, but only two elements of the enlarged correlation matrix had magnitudes 
exceeding 0.95. These results indicate that to reproduce both the potential-energy 
coefficients cr and one set of coefficients reflecting the additional rotational effects is 
practicable. 

In the third test, data were analogously simulated for a diatomic molecule like HCI 
having three supposed isotopic variants corresponding to 'A3'B, 'A3?B and 'ArsB, with 
187 transitions of each species within the ranges O<u<8 and 0</<41 in P and R 
branches. The parameters used to generate the transition wavenumbers numbered 24, 
comprising Ul.0,  &.,, cj, Iq<S,u; ,  1 <j<4. U,", 1 <j<2,  {,OG<4,andt,b,Oe<2. 
Duiing the fit to the same 24 parameters, the sum of the squares of the residuals 
decreased from I .2 x 10" m-z to 2.1 x m-', at which point the standard deviation 
of the residuals was 1.9 x IO4 m-'. As in the previous tests most deduced values of the 
parameters lay within about two standard errors of the set values; although several 
elements of the parameter correlation matrix had magnitudes near unity, especially 
those connecting with U,,', rTb and a few other parameters, the quality of the fit 
indicated that the programme was capable of proper operation to reproduce the realist- 
ically set values of the parameters. Hence the results of this test demonstrate that to 
reproduce not only the potential-energy coefficients, namely tg ,4 ,  U; and U," (in the 
neglect of s; and s,") related to the adiabatic and non-adiabatic effects apportioned to 
particular atomic ceutres, is practicable by means of this algorithm and its present 
implementation. 

Following these tests of our programme we undertook the analysis of spectral data 
from pure rotational and vibration-rotational transitions of isotopic variants of several 
diatomic species. We present here results for HCI that not only provide a practical test 
of the programme but also are OF intrinsic interest. The data set comprised 1329 lines 
of the variants 'H"C1 (619 lines), 'H3%1 (440 lines), 'H3'CI (136 lines), ZH37CI (132 
lines) and one pure rotational transition of each of 'H35CI and 'H'7C1. This set included 
the best or not superseded data from our previous global fit (Coxon and Ogilvie 1982), 
complemented by the following more recent data: pure rotational lines of 'H"C1 and 
'H37Cl (Nolt er af 1987, Le Blanc et nl 1993) and of 2H35C1 and 'HJ7CI (Fusina el a1 
1992), the newly measured rotational and vibration-rotational bands of 'H'%I and 
'H"C1 (Rinsland et al 1993, Le Blanc e /  a1 1993) and of ZH"CI and 'H"7cI (Klee and 
Ogilvie 1993), and the emission lines in the sequence h = l  of 'H3'CI and 'H37C1 
(Clayton et a1 1983). During the fit the values of t y  and t f '  were constrained to what 
were deduced from the known value (de Leeuw and Dymanus 1973) of the rotational 
g factor according to the partitioning formulae (Tiemann et a1 1975); all other para- 
meters were constrained to nul! values. The results appear in table 4, in which the 
maximum range of validity of the radial functions is also specified. All 19 independent 
parameters were significantly evaluated; of only six of 171 correlation coefficients of 
the parameters the magnitudes exceeded 0.95, the largest being 0.9845, but there was 
neither systematic feature nor trend in the values. 
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Table 4. Coefficients of radial functions and other molecular properties of HCI X 'E', a11 
independent of nuclear mass'. 

j e, 1:' 1;' u:'/106m-' u,H/Io' m-' 

0 (21 114007.9l 0.099 66' 0.456 73' 
10.57) m-' 

I -1.3634344 -0.844 -0.5596 -4.173 -6. I233 
iO.000 0067 i0.221 i0.0098 i0.30 i0.0026 

2 0.865 804 - 1.639 21.296 18.3836 
iO.000 035 10.034 i0.94 i0.0097 

3 -0.47356 - 14.147 
iO.000 42 i0.31 

4 0.086 71 15.995 
10.0023 i1.37 

5 0.207 01 
i0.0066 

6 -0.9506 U,.0=(296031.780~0.037) m-' U'" 
*0.039 U0., =(1037.63832i0.00023) m-' U 

7 -0.1190 
i0.138 

8 8.857 

k=(5l6.32982i0.00033) N m-' 
Q=( I .27460-tWi 0.0woO108) Y IO-"m 
range 0.98<R/10-'0m<1.92 

i0.31 

"Each stated uncertainty represents one estimated standard error; the F-value ofthe fit of 
1329 data with 19 independent unconstrained and two constrained' parameters (apart from 
those set to zero value) is 1 . 6 2 ~  IO", and the normalized standard deviation 8 is 1.427. 

5. Discussion 

Examination of the expressions in tables 2 and 3 enables one to conclude that the 
parameters within a particular set of functions Z;; and Z;P (and similarly for the 
nucleus of other atomic number) number more than one can evaluate from available 
data. For instance, application of equation (10) to fit a similar set of 1066 data yielded 
the significant estimation of uk.0 with 1 <k<5,  Uk.1 with O < k < 4 , A ~ 0 , A 2 0 , A 2 1 ,  
A;], A&, &H3, Atb and A$. The values of these U1.0, U0,] and derived coefficients c, 
are similar to the corresponding values given in table 4. The values of the parameters 
A; and A$ are proportional to the sums Z;= ZhH + Z;j" and Z:: = Z;?," + ZF', respec- 
tively, that result from the combination of the expressions in tables 2 and 3 or from 
expressions in a separate table that contain the corresponding coefficients of  fernan- an- 
dez and Ogilvie 1992). In either case only six values of the coefficients Ak", are available 
to evaluate ten parameters comprising K? with I <j<4, f with O < j < 2  and $7 with 
O < j < 2 ;  seven values of ZE are effectively available because we provided the value of 
ty (and I:') from supplementary experimental measurements. In these circumstances 
we constrained to zero all parameters s: in order to derive the effective values of r j "  
and U: presented in table 4. Hence only ur and U?' represent purely the adiabatic effects 
(as the expression for Z;? in table 3 makes clear), whereas the remaining values of UY and I?" with k > O  absorb to an unknown extent the values of the indeterminate 
parameters sy" with O < j < 2  that pertain to the non-adiabatic vibrational effects. In 
order to estimate the latter parameters, one requires knowledge of the rotational and 
vibrational dependence of the rotational g factor; the rotational dependence ofgJ would 
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yield at least t y  (and &I) and the vibrational dependence would in addition enable an 
estimate of t r  (and IF ) .  Experimental measurements of the rotational dependence of 
gJ (which is precisely the expectation value (uJ lg (R) luJ) )  are rare, and only a few 
instances are known of molecular species for which even the vibrational dependence of 
g, has been determined. If these data were known for HCI (for any specific isotopic 
variant), then to estimate sj with O G < 2  would still require a value of A:., acording to 
the use of equation (10); the latter value cannot be determined significantly from the 
present set of spectral transitions, but measurements of wavenumbers with increased 
accuracy might yield this value. 

Can the term coefficients Z;, be evaluated independently of Z;,? The results of the 
second test with simulated spectral data appear to indicate an affirmative answer. To 
enable a definitive decision, we applied the fitting programme to only 482 spectral 
transitions of 'H%, for which isotopic variant the available data are most abundant. 
The set of fitting parameters included only the potential-energy coefficients cj, 1 <j<& 
Uo,l, I ,  and t2  with fy and r:' constrained and all others zero. Under these condi- 
tions in relation to equation (7), the proper mass coefficient of the composite quantities 
t l  and t ,  is the reduced molecular mass p ,  not MH; we have accordingly adjusted the 
results of t r  and t r  produced by our programme. The values of Uo,l, Ul,o and c, with 
1 <j<8 derived from this fit are similar to those in table 4, differing in each instance 
by several standard errors, as expected because in this fitting operation the potential- 
energy coefficients absorb the vibrational adiabatic and (to some extent) non-adiabatic 
effects. The remarkable results are that t l  = -0.5582&0.0090 and tz= -1.844*0.093, 
to be compared with the values t r  = -0.5596*0.0098 and r? = - I  ,639 *0.034 in table 
4. This satisfactory agreement demonstrates that one can distinguish experimentally the 
vibration-rotational Zil and the extra rotational ZLl contributions to the vibration- 
rotational energies. As the contributions of the individual atomic nuclei cannot be 
derived from data of only one isotopic variant, this discovery fails to assist the evalua- 
tion of the parameters sy" related to the non-adiabatic vibrational effects. 

By making use of the numerical values in table 4 and the expressions in tables 
1-3, we identify the mechanical and extra-mechanical effects in the term coefficients 
Y, and Zk, for a few principal values of k and I for the dominant isotopic species 
'H"C1; for all values the units are m-'. For k = O  and I=1, V$'=B,= 
1059.255 02&0.000 23, Y$'= -0.021,16, YJ,:'= -0.000 047. As expected, the magni- 
tudes of the successive Dunham corrections l'ir) decrease rapidly as the order I A  

increases, such that, although Yd.? is larger than the experimental error, Yd.? is much 
smaller and hence negligible. According to table 2 the expression of the coefficient 
Ed,: contains only the non-adiabatic rotational contributions through the radial 
coefficient tg, whereas in table 3 Ziy consists entirely of an adiabatic contribution 
through the coefficient U;. The term coefficients are then Z$=0.263 34&0.00005, 
Z$~f'=O.OOl 66&0.00005, Z$=-O.l65 550&0.00008 and Z;::=-0.003 26* 
0,000 22. Hence the magnitudes of the adiabatic and non-adiabatic rotational effects 
for each nucleus are comparable, and the actual values tend to cancel; the relative 
magnitudes of the adiabatic and non-adiabatic rotational effects are in the reverse 
order for the two nuclei, the adiabatic contribution having a larger magnitude for 
H but a smaller one for CI. The magnitudes of these adiabatic and non-adiabatic 
contributions to the total coefficient of [J(Jt  I ) ]  of H are much larger than that 
of Yd.:), although the corresponding contributions of CI are much smaller. Although 
for the sums Z;,7+Z;r or Z$+Zl;:: there exists no net contribution due to the 
non-adiabatic vibrational effects through the coefficients s; or $ for any value of 1, 
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in actual expressions of the separate rotational Zi.7 and vibrational Z$’ term coefficients 
these radial coefficients appear explicitly, except in the cases Z;,: and ZgT. 

For the principal coefficient associated with centrifugal distortion, YJ,$’= -Do= 
-0.053 131 08~0.000000S, Yd,;)=-2.661 SI x and I’d,;)= 1.2x IO-’; Zi,:= 
(-4.261f0.08)x IO-’and Z~:,”=(2.8693f0.0013) x IO-’ havemagnitudes larger than 
that of Y&) and the latter values tend to cancel, whereas Z;.y= -9.0 x IO-’ and z$= 
8.3 x IO-’ are much smaller. According to the expressions in tables 2 and 3, r Y - $  = 
-0.5596k0.0098andu~+s~/y2=(18.3841 k0.0097) x IO6;  thevaluesoffranduy that 
appear in table 4 result from sk’ being neglected in the lack of sufficient information to 
evaluate it. Similar conditions apply to the corresponding coefficients for CI except that 
in this case both Z2,5’=(-9.0i0.41)~ IO-’ and Z;2=(8.350.33) x IO-’ are much 
smaller than Y@; again the values tend to cancel in their effects on the molecular 
energies. 

For the principal vibrational coefficient, Y/,t)= -0.=299 099.4407i0.037, Y/,:)= 
-10.4727 and Y$=0.133; Z>~=Z>~ : ’=O for all k with’ /=O, but Z>,”= 
-0.7680~0.0004 nearly cancels with Z~~=0 .9 lOkO0.036  in the sum for the total 
coefficient of ( v + i ) .  Although according to table 3 the expressions of both Zy$ and 
Z;,; contain the radial coefficients &and U; in addition to U? and cI that are separately 
defined, the former two parameters occur, apart from a factor y to various powers, in 
the same linear combination B&+ y2u; that prevents their separate evaluation, and no 
other combination of the coefficients Z;; or Z;)“ allows their extrication, as described 
previously (Fernandez and Ogilvie 1992). For this reason, even if suficient spectral 
data were available (such as sufficient values of A;, according to the discussion above), 
the separate evaluation of the radial functions pertaining to the adiabatic and 
non-adiabatic rotational and vibrational effects from only data of wavenumbers of 
vibration-rotational transitions would still be impracticable; hence additional infor- 
mation from experiments on the Zeeman effect is essential for this purpose. 

Comparison of the values in table 4 with published results is appropriate. The 
agreement with our previous results (Coxon and Ogilvie 1982) or their equivalent is 
reasonable when one takes into account the greatly increased precision of the pure 
rotational transitions and vibration-rotational bands used in the present work, which 
also employs more accurate values of the atomic masses (Wapstra and Audi 1985) and 
fundamental physical constants (Cohen and Taylor 1987). Comparison with the results 
of Coxon and Hajigeorgiou (1990) is problematic because, although they did not include 
the recent rotational and vibration-rotational data, their electronic spectra included 
extensive (although only moderately precise) data up to U =  17 for ‘H”’CI and u=24 for 
2HSsCI; for VBo(R)  they employed exponential functions instead of our representation 
VBo(z). Coxon’s (1992) comparison of z 2nd exponential representations for the same 
data set of LiH demonstrated that the former was both more economical, 17 versus 19 
unconstrained parameters, and more reliable, in that even with the extra parameters in 
the exponential case some were poorly defined; furthermore the fitting process appears 
unreliable because 6:‘ rather than c6 of LiH was evaluated (Coxon 1992) whereas the 
reverse case provides a realistic description of the data (Ogilvie 1992b). Thus our 
representations in terms of the variable z are demonstrated to be superior to those in 
terms of the exponential functions (Coxon I992), apart from the fact that these exponen- 
tial functions possess quantitatively incorrect asymptotic behaviour in the approach to 
the dissociation limit. The radial functions (Coxon and Hajigeorgiou 1990, Coxon 1992) 
other than that for potential energy derived for both HCI and LiH have no particular 
physical significance, whereas in the present work we demonstrate that the use of the 
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values of I: and t? deduced from the rotational g factor permits at least the values of 
U?" to be associated specifically with adiabatic (vibrational) effects. In a further analysis 
(Tiemann and Ogilvie 1994) of spectra of LiH according to two distinct numeric 
approaches based on analytic expressions for Yw, we derived a significant value of 
s,"; for LiH this achievenent was practicable because of both the strongly electrically 
dipolar nature of this molecular species and the set of spectral data more internally 
consistent than those available for HCI analysed here. The two values (Coxon and 
Hajigeorgiou 1990) of R. of HCI, of which the more precisely specified value differs by 
43 standard errors from the other, suffer from systematic error because no account was 
taken of the non-zero value of g, or 17"; their associated standard errors take no 
account of the uncertainties of the physical constants h and NA. 

For spectra of another hydridic species AIH (Ogilvie 1992a), the application of our 
programme yielded a large magnitude for the coefficient t," and hence the rotational g 
factor (not yet directly measured); because of the relationship between terms in the 
expressions for g, and the molecular magnetic susceptibility (Gordy and Cook 1984), 
this result indicates that AIH in its electronic ground state X IC* may be either net 
paramagnetic or much less diamagnetic than expected on the basis of an electronic 
configuration corresponding to a formally closed shell. In either case this experimental 
evidence is the first, although indirect, of a paramagnetic electronic ground state X 'E' 
predicted for the isovalent molecule BH (Stevens et a1 1963). 

The use of the analytic expressions ia tables 1-3 enables one for the first time to 
distinguish pcrely from experimental data the effects attributed to adiabatic and non- 
adiabatic rotational and vibrational effects. These effects are not truly physical in origin 
because they arise from the approximations inherent in the separate treatment of elec- 
tronic and nuclear molicns (Born ar.d Oppenheimer 1927). Knowledge of the operation 
of these effects is important so that one can ensure thereby the correct treatment of the 
effects of nuclear mass in the process of spectral reduction, even according to an essen- 
tially empirical relation such as equation (IO). Althocgh the expressions in tables 1-3 
were produced by means of a wave-mechanical approach, i.e. through the explicit use 
of the Schrodinger equation, they are independent of that particular me!hod of genera- 
tion; we have produced some of them in identical form by means of both the JBKW 
method and perturbation theory in matrix mechanics, and expect also to apply Dirac's 
method of operators. The use of these expressions is simpler and computationally more 
efficient than fully numerical approaches, such as repeated solution of the Schr6dinger 
equation at finite intervals (Coxon and Hajigeorgiou 1990), because mainly substitu- 
tions into these expressions and their analytic derivatives with respect to the parameters 
are involved in the fitting process. For these reasons the results derived according to 
this approach based on an analytic formalism may prove more reliable than those 
obtained by merely nmerical methods. 

6. Conclusions 

The evaluation of separate radial functions for the potential energy, adiabatic and non- 
adiabatic vibrational and rotational effects by direct reduction of experimental spectral 
data is practicable provided that supplementary spectral data of the rotational g factor, 
and preferably also the rotational and vibrational dependence of g,, are included in 
the analysis. Because the variation of the isotopic mass and the extra rotational depen- 
dence of the frequencies of vibration-rotational transitions provides for nuclei of each 
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distinct atomic number information of only two kinds beyond the potential energy that 
is the dominant effect, whereas parameters pertaining to effects of three kinds-adia- 
batic, non-adiabatic vibrational and rotational-remain to be evaluated, these supple- 
mentary data from the vibrational and rotational dependence of the rotational g factor 
are essential to complete the analysis. As such data are sparse, measurements of the 
Zeeman effect on lines in radio-frequency transitions or in pure rotational and funda- 
mental vibration-rotational bands of appropriate molecular species are warranted. 
lntensity measurements from the application of magnetic circular dichroism to 
vibration-rotational transitions are too inaccurate to provide useful data (Tam and 
Keiderling 1993). The large Dopplerian widths of vibration-rotational lines (for 
instance, -0.6 m-’ for the full width at half the maximum absorbance of lines in the 
fundamental vibration-rotational band of ‘H”’CI at 300 K )  demand correspondingly 
large magnetic flux densities (B0-51 T for this band of HCI) to effect a splitting of 
magnitude similar to this Dopplerian width, unless one either employs a molecular 
beam or devises another method to avoid this width. Measurenients of the Zeeman 
effect in radio-frequency or microwave spectra of molecules in rotationally and vibra- 
tionally excited states may thus enable one to derive these dependences more readily 
than from vibration-rotational spectra. 

In the spirit of the work of Dunham (1932) and van Vleck (1936), the analytic 
expressions presented in tables 1-3 enable one to distinguish the pertinent phenomena 
from pure rotational and vibration-rotational transitions consisting of sufficiently 
numerous lines of multiple isotopic variants. in combination with essential supplemen- 
tary data. Thereby one is able for the first time to derive accurately for diatomic 
molecular species these significant properties that are independent of nuclear mass. 
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