Symbolic Computation in Molecular Spectroscopy

J. E. Ogilvie* and M. B. Monagan '

Abstract: We demonstrate how to employ Maple for symbolic computations related to the analysis of pure
rotational and vibration-rotational spectra of a simple diatomic molecular compound. We derive empirical
relations that reproduce the main features of such band spectra and some combination relations employed to
deduce values of band parameters from fitting frequencies of assigned lines. In a second section we generate
expressions for vibration-rotational energies in terms of parameters in Dunham’s function for potential energy.
In both cases we indicate how these calculations are readily extensible as required for analysis of molecular

spectra at the frontier of current research.

Introduction

In courses of physical chemistry and molecular physics within
an undergraduate curriculum, the spectra of diatomic
molecules serve a purpose to introduce students both to ba-
sic principles of molecular spectroscopy and to methods of
treating physical problems. A diatomic molecule is a suffi-
ciently simple system that a model can be examined analyt-
ically; the results therefrom are directly applicable to spec-
tra that students record and analyze in a teaching labora-
tory. An instructor commonly presents on a blackboard a
method with an approximation of low order, even though
the results obtained are inadequate for quantitative analysis
of the spectra produced on instruments currently available in
typical laboratories. Algebraic complications of calculations
to requisite greater orders preclude their being presented in
class; it might be considered even unreasonable for students
to be obliged to solve correctly by only manual means out-
side class these essentially algebraic problems. Software for
symbolic computation, such as Maple, can naturally assist
both instructors and students to develop a treatment to an or-
der sufficiently high without tedious labour prone to error.

Here we consider a treatment of molecular spectra of di-
atomic molecules in two stages. First we develop a system-
atic approach, based on only empirical observations, to yield
relations that a student employs in the course of analysis of
laboratory spectra to derive spectral parameters of gaseous
samples. In the second stage we demonstrate how a model
is incorporated into the analysis to relate the spectral param-
eters to structural information that is chemically and phys-
ically meaningful. In both cases, the treatment is based on
truncated power series; these are approximations to functions
that cannot be determined analytically. They can be made as
accurate as desired within some defined range; the fact that
they diverge outside that range is irrelevant for the primary
applications.

Processors for symbolic computing are especially suit-
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able to handle truncated power series. The principal oper-
ations involved are series arithmetic, series reversion, dif-
ferentiation and numerous substitutions. Although the se-
ries are computed to a low order (e.g. typically up to the
sixth power), the coefficients typically involve several param-
eters; hence arithmetic with formulae is essential. Simplifi-
cation and rearrangement of formulae is important in order to
present results in the most meaningful way. Moreover, one
seeks to use the formulae computed with a symbolic proces-
sor in other software such as Fortran; thus another operation
for which Maple is useful is to convert formulae without er-
ror into Fortran code.

In the following two major sections of this paper we
present Maple code, with a running commentary, that gen-
erates formulae that a student can employ to analyze labo-
ratory spectra. In order to follow steps in the calculations,
students will have seen the method worked by hand to low
order, and will have been led through the code correspond-
ing to those steps. Most current textbooks of physical chem-
istry and molecular physics contain, with expanded discus-
sion, material for which the development in the first sec-
tion is directly pertinent. Because of algebraic complications
of Dunham’s treatment of rotational and vibrational spectra
of a diatomic molecule [1], to which the second section is
devoted, few textbooks even on molecular spectroscopy de-
scribe it in detail, although in various extensions it remains
the common basis for analysis of diatomic molecular spec-
tra in current research [2, 3], and although analytic results
from that treatment are more commonly presented. When
tedious operations of the requisite algebra and calculus are
undertaken symbolically with a computer, a student is freed
to gain insight into the underlying physical concepts, beyond
crudely simplified or inapplicable models, without the pain
of manual work.

Development of Empirical Relations

We consider first a pure rotational spectrum of a simple di-
atomic molecular species that might be recorded in absorp-
tion in the far infrared or microwave spectral region. The
most obvious feature of what one observes in such a spec-
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trum is a sequence of nearly equally spaced lines. For later
convenience we denote by 2B the interval between adjacent
lines. We here assume (although experiments readily prove)
that the line at least frequency takes the molecule from the
rotational state of least energy to the next state, and that suc-
cessive lines in the sequence involve transitions only between
adjacent states. With such an interval 2B between adjacent
lines, the difference of energy between states is therefore
2B,4B,6B, etc. The energies of the states are accordingly
0,2B,6B,12B, etc. We label each rotational state with a
quantum number J that takes a value of only a non-negative
integer; the state of least energy is thus identified with J = 0.
We seek a relation between J and the energy of state J. For
this purpose we fit a quadratic form to the first three states,
and afterwards test this approach for all states.

We define f(J) to be a quadratic form with coefficients
a, b, c. In the Maple code below f is a function of .J.

> £ = J -> B*(a*J 2+b*J+c);
f=J—=B(aJ?+bJ+c¢)

We set f(J) equal to the known values 2B, 6B and 12B
for J = 1,2,3, and solve the resulting linear equations for
a; b,

> el := 2*B = f(1);
el :=2B=B(a+b+c)

> e2 := 6*%B = £(2);
e2 :=6B=B(4a+2b+c)

> e3 := 12*%*B = £ (3);
ed :=12B=B(%9a+3b+c)

> sols := solve( {el,e2,e3}, {a,b,c} );
sols :={a=1,b=1,ec=0}
> £ := subs( sols, £(J) );

Fi= BGI2 4l
For convenience we convert the above formula into a func-
tion of J.
> F := unapply(f,J);
F=J—=B(J*+J)
We test J = 4; we should obtain 208

> F(4);
20B

To prove that the quadratic form is correct for all ener-
gies, we use induction on J. Thus we assume that the poly-
nomial is correct for J = n, thatis, F(n) = B(n® 4+ n), and
try to show that it is true for J = n + 1. We should have that

> F(n+l) = F(n) + 2*B*(n+l);
B((n+1)*+n+1)=B(n*+n)+2B(n+1)

> simplify (") ;
B(n*+3n+2)=Bn?’+3Bn+2B

In fact, the value c=0 deduced above is not unique: any
finite value of ¢ satisfies the conditions; indeed in the early
days of molecular spectroscopy the value c=1/4 was assumed,
making F(J) = B(J + 1)2. At present the form deduced
above, with ¢=0, is almost invariably used.

On closer examination of the spectrum we discern that
the interval between adjacent lines is not quite equal but de-
creases slowly as J increases. To take into account this be-
haviour we introduce corrections in the form of a polynomial
of argument J(J + 1), using as many terms as are required to
fit the available data. For historical reasons the coefficients
of successive terms are denoted D, H; L, M..., with rapidly
decreasing magnitudes. The Maple function F below takes
as input a list of coefficients starting with B.

> F := (J,C) -> sum({ C[i]*(J*(J+1)) i,
> i=1..nops{C) ):
nops( C')
F:=(J,C)= Y Ci(J(J+1))
i=1
Here is the third-order approximation.

> F( J, [BJ-DfH] );
BJ(J+1)-DJ*(J+1)2+HJI3(J+1)°

We assumed above that transitions occur between adja-
cent states; the appropriate short designation of that phe-
nomenon is AJ = +1. Then we consider our sequence of
lines to constitute a branch, called in this case the R branch.
The definition of R(J) follows.

> R:=(J,C) -> collect(F(J+1,C)
> R{J, [B,-DI]);
—4DJ?—-12DJ? + (2B—-12D)J+2B—4D

-~ BP{J,C) s J):

From experience we find that the most elegant represen-
tation of R(J) is a series in J + 1 to only odd powers. To
write R(J) in this form in Maple we expand R(J) as a Taylor
series about J = —1.

> taylor(",J=-1,10);
ZB(J+1)74D(J+1)3

It is known that the interval between adjacent lines de-
creases, and that the lines converge to a finite limit called the
band head. At that point the energy change from one state to
the next becomes a maximum: thus djggl = 0. Continuing
with Maple we obtain

> Rhead := diff (convert (",polynom),J);
Rhead :=2B —~12D (J+1)?
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> sols := [solve(Rhead,J}];
eolsese | 124D+4V6VDB
il Y D :
_124D-4V6VDB
24 D
> expand (") ;
_,_1V6vDE | 1V6VDB
6 D ’ 6 D

Because the second solution is positive, we select it, and test
that it is indeed a maximum

> subs( J="[2], diff (Rhead, J)) ;.

—4v6VDB

The last line in the spectrum is actually characterised with
an integer, to which the above solution is an approximation.
One can obtain an analytic solution for the value of J at the
band head even when one takes an additional term in the ex-
pansion R(.J), as follows.

> R(J, [B,-D,H]);

6HJ +30HJ*+(-4D+62H)J®
+(66H—12D)J*+(2B+36H -12D)J
+2B-4D+8H

> solve(diff (Rhead,J),J);

1 —3H+6D+ %1
o et
+30‘/‘%\/ 7] )

1 -3H+6D+%1
o [
30\/%\/ H !

1 _90H—180D+30%1

-1+

30 H ’
Y 90 H — 180 D +30%!1
30 H

%1:=+/36D2 —36HD+9H?-60HB

By inspection the meaningful solution is the first one here.

When one obtains numerical values for B, D and H, one dis-
covers that similar values of J at the band head result from the
two approximations.

We proceed to expand the treatment to include two vibra-
tional states, each of which has an associated manifold of ro-
tational states. We neglect for the moment the vibrational en-
ergy and focus on the two branches of lines normally present
in the absorption spectrum of our simple diatomic species.
The R branch, as before, denotes transitions in a series with
AJ = +1, but we have also a P branch corresponding to
AJ = —1. The Maple procedures below generate the series
of transitions for these branches.

> R := (J,CU,CL) -> F(J+1,CU) - F(J,CL):

> p := (J,CU,CL) -> F(J-1,CU) - F(J,CL):

The parameters CU and CL specify the coefficients of
J(J + 1) in the upper and lower combining states respec-
tively. Alternatively we can describe each vibrational state
with the appropriate value of its vibrational quantum num-
ber v. In the example below we label the coefficients for the
lower state with subscript 0 and for the upper state with sub-
script 1, appropriate to the fundamental band for which the
transition in absorption is from a vibrational state with v = 0
to another vibrational state with v = 1. Thus to third order

R(J) is
> N := [B[1],-D[1],H[1]], [B([O1l,-D[O],H[O]]:
> R(J, N); -

Bi(J+1)(J+2)=Di(J+1)°(J+2)
+Hi (J+1)3(J+2)P=-BoJ(J+1)
+ Dy P(J+12—Ha B (J+1)?
To evaluate the parameters of each vibrational state sep-
arately we take what are called combination differences be-

tween R(J) and P(J). For the parameters of the upper state
the appropriate combination is

>R(J, N) - P(J, N );
Bi(J+1)(J+2)-Di(J+1)*(J+2)?
+H (J+1)3¥(J+2)P =B (J-1)J
+ D (J=12T-H (J-1)*J°

This result is elegantly expressed as a power series in J+1/2.

> taylor( ", J=-1/2, 10 };

27 1
(431 + —ZHl —6D1> (J+ -i) +(34H1 —8D1)

1 3 1 5

Similarly for the combination difference to evaluate the pa-
rameters for the lower state,

> R( J-1, N ) - P( J+1, N );

—Bo(J-1)J+Do(J—-1)2J2 —Ho(J-1)*J°
+Bo(J+1)(J+2)=Do(J+1)*(J+2)°
+ Ho(J+1)23(J+2)°

> taylor(",J=-1/2, 10);

2
(4Bo+ ITHO —GDU) (J+ %) + (34 Hy — 8 Do)

1\° 1\°
(J+§) + 12 Hy (J+§)
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The other principal characteristic of a vibration-rotational
band is the band origin. To evaluate this we must explicitly
include the vibrational energy G(v). (Previously, when our
interest was primarily a combination difference, the vibra-
tional energy must clearly cancel.) The vibration-rotational
energy EvJ(J,v) is the sum of the vibrational energy G(v)
and the rotational energy F'(J). We show an example be-
low to second order, and then redefine the R and P branches
accordingly.

> EvJd := (J,v,C) -> G(v) + F(J,C):

> BEvd( J, v, [BI[v],-DIv]] );
G(v)+ By J(J+1)— Dy, J?(J+1)?

> R := {(J,CU,CL) ->

> EvJ( J+1, 1, cUu ) - EvJd( J, 0, CL ):

> P o= (F,CU,CL} =&
> EvJ(J-1, 1, ¢cU0 ) - EvJ( J, 0, CL ):

The appropriate relation to evaluate the band origin is the
following combination sum, which is most meaningfully ex-
pressed as a series in J; it contains J to only even powers.

> N := [B[1],-D[1]1], [B[0],-D[0]]:
> R(J-1,N) + P(J,N);
2G(1)+ B, J(J+1)—-Dy J2(J+1)?
—2G(0)=Bo(J=1)J+Do(J—1)2J?
+Bi(J-1)J-D;(J-1)2J%
—BoJ(J+1)+ Do J*(J+1)?

> collect(",J);

(-2D; +2Dy) J*
+(-2Bo+2B; —2D1+2Dyg) J?
+2G(1)-2G(0)
Here G(1)—G(0) as the difference of the vibrational energies
specifies the band origin (or band centre).
Just as for the pure rotational band, the vibration-rotational
band has a head to which the lines converge. We test first

whether the R branch has a head.
For this purpose we need only the first term in R(J)

> R( g, [B[1]], [BIOI] );

G(1)+ B (J+1)(J+2) - G(0)
— By T (T4 1)

> diff(",J);
By (J+2)+Bi(J+1)=Bo(J+1)=ByJ

> Rhead := simplify(solve(", J));
1 By—3B;
Qom0 T8
fihea 2 B, - By

Note that this value is an approximation to the particular
value of J at the band head because for any actual line .J is
an integer. )

Likewise we can test for a band head in the P branch.

> p(J,[B[11], [B[0]]);
G(1)+B1(J-1)J-G(0)—BoJ(J+1)

> diff(",J);
BiJ+By(J—-1)—Bo(J+1)—ByJ

> Phead := simplify(solve(",J));
1 B+ By

Phead := — = —————

“ 2 By - B

The value of J at the head of the R branch is a positive
number because By > B; and By < 3B, whereas the result
for the P branch is negative and therefore carries no physical
meaning.

The Rotating Vibrator According to

Dunham

In 1932 Dunham [1] published an important paper in which
he presented a systematic treatment of vibration-rotational
energies and related the spectral parameters to structural pa-
rameters. The latter describe how the internuclear potential
energy varies with the distance between the nuclei; the dis-
tance at the minimum energy is called the equilibrium inter-
nuclear separation R,.

Instead of such unsystematic parameters as B, D, H etc.,
Dunham used an expansion in the form of a double power
series in v + 1/2 for the vibrational energies and in J(J + 1)
for the rotational energies in which v and J denote the vibra-
tional and rotational quantum numbers respectively, and Yy,
denote the coefficients. The Maple procedure below com-
putes a truncated power series for this purpose. We show the
formal sum and a particular example.

> Evd := proc(Y,m,n) local k,1;
> sum( sum( Y[k,1l]*(v+1/2) "k*(J*(J+1)) "1,
> 1=0..n ), k=0..m ) end:

> EvJ(Y,m,n);
m n 1 k
Z (ZYk,j (’U+§) (J(J”Fl))t)
k=0 =0

> Ev0 := EvJ(Y, 1, 1 );

1
Euvo :=Yo’0+Y(-],1J(J+1)+Y]_,0 ('U+§)

+Yi, (v+%) J(J+1)
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The function V () for potential energy employs the re-
duced separation variable z defined in terms of instantaneous
R and equilibrium R, internuclear distances

R-R,

= z.

Dunham used V (z) in the following form:

> V := proc(x,a,n) local j;
> al0]*x"2* (1+sum(alj]l*x"j,j=1..n)) end:
> Vix,a,4);

ap T2 (1+a1m+a2x2+agm3+a4z4)

The method according to which Dunham found the re-
quired relations is known as the JBKW procedure [4] after its
authors Jeffreys, Brillouin, Kramers and Wentzel. To obtain
discrete energies for bound vibrational and rotational states
we apply a condition for quantisation, based on the action
integral of Bohr and Sommerfeld, that takes the form

j{\/Ev—V(a:) dz + .. = 2rBY?(v+1/2) (1)

in which ... indicates integrals of higher order. We solve
first the pure vibrational case; hence J is taken as zero. We
evaluate the above integral for purposes of illustration [5]:
further integrals follow the same pattern. The differential dx
is expressed as dV (z)/V; in which V; is the derivative of
V(z). We set the Maple global variable Order to 5 so that
series operations are truncated at O(z°).

> Order := 5:
> Vs := series( V(x,a,4), x );

Vs :=apz® +agar z° +agaz z* + O(z°)

We solve! for x as a function of V' (z) by reverting the above
series.

> sol := x = solve(V=Vs,x);
—4 5 1/73/2
sol = = 1 _la1V+1( as + 5a1?)
agp 2 ag 8 5 T
ag —
g
+0(V?)

We generate V; and then substitute the above result for z in
V1. Because Maple does not know that aq is positive the
square roots in the result need to be simplified.
>Vl := diff( Vs, x )i
V1 :=2aoz + 3aga; z° + dagaz z® + O(z*)

IThe solve command in Release 3 returns one solution in the follow-
ing. In Release 4 it correctly returns two solutions. Users should select the
positive solution if using Release 4 or later versions of Maple.

> V1ofV := series( subs( sol, V1 ), V };

1
ViofV ::2(101,1‘@—\/V+2£11V+
0

1 - L1 fl
Z +da’1 —3a 1 +4t‘12 V3/2
aoﬂ

+0(V?)
> V1ofV := map( simplify,V1ofV, symbolic );

ViefV := 2 /@ VV +2a, V
1 (—12as +7a,?) V3/2
_1(Ra+Tal) VIR o)
4 Vao
We see that the coefficients of V' in this series are simply the
potential-energy coefficients a,. Because we have dV (z)/V1
we calculate the reciprocal of V; and simplify.

> V1toMl := series( 1/V1ofV, V ):
> VltoMl := map (simplify,V1toMl,symbolic);
1 la
VitoMi =2 ——= — .21

+0(V)

The integrand in the action integral is rewritten in the fol-
lowing form.
E
\/ E,—V(z L

'Y

= V=V(@)

We expand the right side as a series in E, /V using a dummy
variable X, and we discard the order term.

> series( sgqrt( 1- X), X );

1
__X__XQ__ 3 4 5
8 16X 28X +0(X?)
> Epart := subs(X=Ev/V, convert(",polynom));
Epart l—lgg_lﬂ_lf"i 5 BEv'
PATt =279V T8 V2 T 16 VB 128 VA

Finally we evaluate the integral, relying on the fact that
only terms containing V (z) ™! have a residue: each pole con-
tributes 473 to the integral.

> eval (subs (0=0,Epart * V1itoMl * sgrt(-V)));

(1_1931E_“_LEL_ d E”4)

2V 8 Vi 16 V3 128 V4
i 1 lay 3 (—4az +5a:%) VV
2 \/a_o\/‘? 2a0 | 16 ag3/?
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> coeff (series(",Vv,2),V,-1);
1( 3 Bv’ (—4as+5a%)
1

1 Ev
28 ag3/? 4 o8
The above coef £ command does not work in Release 4.
Users should select the coefficient of V1 in a different way.

> integral := 4*Pi*I*";

integral 1=
A 3 Ev? (—4az+5a:?) 1 Ev
T\ 128 /2 4 \Jao

We equate the integral with the right side of equation (1) and
prepare to obtain E, as a function of v + 1/2 to various pow-
ers.

> eqgn := integral = 2*Pi*sqgrt (B)*(v+1/2);

3 Ev® (~4a3+5a,) 1 Eu
eqn = —4mw | —-— s =
128 a03/2 4 4/ Qg

27 VB (v+%)

Solving for v first we have

> egn := v = golve( egn, v );

n-—v—l
eqn = =

_ﬁwEvzaz 4 22
8 a03/2 32

/(v VB)

We proceed by reverting the equation to find E,, as a series
inv

15 m Ev? ;2 3 7 Fv
a03/2 \@

_,,\@)

> geries (rhs(egn)+0(Ev"3) ,Ev);

3 mas 15 mar?
i 8 & 1 8agd? ' 32ag3? . 5
S R - SO Ev’+
2 2./aVB 2 VB
O( Bv?)
> Ev := solve(v=", Ev

4a2 +5G.12) B

E’U—Q\/—\/_(v-i- )—

(+3) +0((o+ 5"’)

B =

To simplify the coefficients we define w = 2v/ao B

> BEv := subs( a[0]l=omega"2/4/B, Ev ):
> BEv := simplify( Ev, symbolic );

Evi=w fu-l—l —ﬁ(-—-ia +5a:%) B ”U+1 ’
'_ 2) 8 2 L 2

+o((v+g)3)

By comparison of this result with E, ; below

> BEvd( Y, 2, 1 );

1
Y0,0+Y(),1J(J+1}+Y1,0 (U+§)
1 i
+ Y1 'U+§ J(J+1)+Y2,o ‘U+§

1 2
+Y5 (v+§) J(J+1)

we identify Y7 o with w and Y3 o with
> coeff( Ev, v+1/2, 2 );

—g (—4(12 +5a12) B

This calculation can be extended to higher orders by sim-
ply increasing the order to which the computations are com-
puted. Note that one must increase the order of V' (z) by two
units for each extra ¥} . Computationally, the calculations
to revert the series are the most expensive.

We proceed to obtain the rotational dependence of the
vibrational energies. For this purpose we denote J{J + 1) by
3, introduce v = \/B/ag = 2B/w, and add the centrifugal
term I%- Thereby we form the effective potential energy
V(z, 3) that is defined with the following Maple procedure.

> V := proc{x,a,n,beta) local j;
> B*( (x/gamma) " 2*

> {(1+sum(a[jl*x"3J,j=1..
> end:

We expand V (z, 3)/B as a truncated power series in z.

n) ) +beta/ (1+x) "2)

> geries( V(x,a,2,beta)/B, x, 4 );
1
ﬁ—2ﬁx+(3ﬂ+?) $2+(—4ﬁ+$—§) 23 4+ 0(z?)

Because Dunham’s function for potential energy begins
at the quadratic term we eliminate the linear term above with
a coordinate transformation. We let

xg =z — ()

and expand as a series about —e(f3).
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> series( V(x+epsilon(beta),a,3,beta)/B,
> x=-epsilon(beta), 5 );

B-28(z+e(B))+ (3[”'7%) (z+¢e(B))*+

(—4[3’+ %) (z+e(B))°+ (% +5,6)
(z+e(8))* +0((z+e(8)))
We determine €(3) according to the requirement that

M‘/d:;ﬁl = 0 atx = ¢(8). The following steps eliminate

the linear term and restore the effective potential energy to
the rotationless Dunham form plus a constant term.

> aiff(",x)a
> solve("=0,epsilon(beta)) ;

3
_m+72’8+ (—3’}’4—50174) ,82+
27 9
(—20276+7a176+1576+§a1276) B8+
0 (8%)

> Subs := convert(",polynom) :
> series(V(x,a,3,beta)/B,x,5);

1
B8—-28z+ (36+ 3) z? + (—4ﬁ+ a_;) 2+
v i
(%Mﬁ) z* +0(°)
Y
> subs( x=Subs, convert(",polynom) ):

> Temp := series(",x,3):

The series Temp should lack a linear term. We examine its
coefficients one at a time expanding them as series in 4.

> C0 :=
> simplify(series(coeff (Temp,x,0),beta,5));

Co:=p-0+ (37 +a7?) #°-
é’yﬁ (3601 + 9a1® + 52 — 4a;) 8* + O (8°)

Substituting for - and simplifying the coefficients we obtain

> Y01 := simplify( series({
> B*subs( gamma=2*B/omega, CO ), beta ) );

B3 5
Yol ::Bﬁ—4—2ﬁ2+lﬁwﬁ3—
W w

B (3641 +9a,% + 52 — 4ay)
wb

16 B*+0(8°)

The linear coefficient should be zero to a certain order.

The coefficient of the quadratic term is

> C2 :=
> simplify(series{coeff (Temp,x,2) , beta,3));

(0] :=—15+(3+3a1),6~
¥

gfyz (6ay +3a,® +8—4az) B°+0(5°)

Comparison of this with Dunham’s original function for the
potential energy shows that this quantity, which we call gb
for short, implies the dependence of v~2 on 3.

> gb := convert(C2,polynom) ;
1
gb = > +(3+3a1) B

3
- 572 (6a; +3a:> +8—4az) B°

As Y] g = 2B/, we generate Y7 ; by substituting for «y the
square root of the above.

> simplify(series (2*B*sgrt (rhs(gb)) ,beta,3));

B
2;4—337 (1+a1) B—

3

1 B7° (1841 +9a:° +19 - 8as) §7+ 0 (5°)

> Y11 := subs( gamma=2*B/omega," );

Yil:=w+6 8-

" B* (184a; +9a;% + 19 — 8as)
P

BZ (1 +CL1)
w

8%+ 0 (8%

To obtain the dependence of a; and ay on 3 we redo these
calculations to greater order. We omit the output of most
steps below.

> series( V(x+epsilon(beta),a,5,beta)/B,
> x=-epsilon(beta), 7 ):

> diff(",x):
> solve("=0,epsilon(beta)):

> Subs := convert (",polynom) :
> series(V(x,a,5,beta)/B,x,7):

> subs( x=Subs, convert(",polynom) ):
> Temp := series(",x,7):

We proceed to obtain the coefficient of z* that corresponds
to a; (3)/~(8)? and the coefficient of z* that corresponds to

az(8)/v(8)*.

> C3 :=
> normal (series (coeff (Temp,x,3) ,beta,3));

C9:= — % + (—daz +4) B+
Y

29% (~5a3 + 6az + 3aza; — 10) 8% + O (5°)

> Cl :=

> simplify(series (coeff (Temp,x,1),beta,3));
Cl:=0 (ﬁs)
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> alofbeta :=
> normal (series( C3/gb, beta, 3 };

1
alofbeta := —a; + (—4ag +4+3a1 +3a:?) v* B — 5
4 (2oa3 —48ay — 48 aza; + 64 + 54 a;>

+27a” +66a1) 82+ O (6°)

> C4d :=
> normal (series (coeff (Temp,x,4) ,beta,3));

az

04 = 7—2+(5+503) JB—

15
?72 (2az +aga; +4— 2ay4) ﬁ2+0(ﬁs)

> aZ2ofbeta :=
> factor( series (C4/gb, beta, 3) );

aZofbeta ;= as — (=5 — 5az +3az + 3aza;) 72ﬂ+g
vt (— 20asz —15aza; — 30+ 10a4 + 18 aq a;
+9a2a12 +140,2 —4&22 = 10&1) ,62 +O(;83)

Finally we substitute these 3-dependent a; into Y5 g, from
the previous stage of the calculations, to obtain Y5 ;.

> Y20 := 3/8*(4*a[2]-5%a[l] "2)*B;
¥aq ;= g (40,2 —5&12) B

> subs({a[l]l=alofbeta, al[2]=aZofbetal, Y20):

> Y21 := subs({ gamma=2*B/omega,
> simplify(series(",beta,2)) );

Ve —g (501 —4ay) B+3B° (15a13 +15a,°
s Fay a0y ~Bay L 100xE 10) /w2ﬁ
+0 (8%)

To obtain Y} ; for k > 2, we substitute simultaneously
v(8) and a;(3) into Y} o. For this purpose we compute to
still greater order the series that we have called Temp. We
have done it without difficulty up to Yy ;. The result obtained
for Y3 ; up to ag follows.

Y31 :=
series((-1/64*B"2/omega* (-320%*
al4l+1120*a[3] *a[1]+272*a[2] "2-
1800*a[2] *a[1l] "2+705*a[1] "4) )+
(5/32*B"4/omega"3* (3600*a[l] "2+
2688*a[l] -1088*a[2]+1792*a[3] -
576*%a[4]+4512*a 1] "3+896*a (5] +
8l6*a[2] "2+3807*a[1l] "4+3807*a[l] "5+
896-3264*a[d4] *a[l]l+6576*al] *a[2] "2-
7560*a[2]*a[l] "2-12072*a[2] *a[1l] "3+

VVVVVYVVYVYVY

> 6960*a[3]*a[l] "2-2880*a[3]*a[2]+
> 3360*a[3]*a[l]-5760*a[l]*a[2]))*
> beta+0(1) *beta‘z,beta,z_);

Y3l .= —éBz (705 a1® — 1800 a;% as + 1120 a4 as

5
+2720,> — 320a4) w + > B* (3807a,°

+ 3807 a:* — 12072 a,% ay + 4512 4a,°

— 7560 a1% ag + 6960 a1° az + 6576 a; az?

+ 3600 4,2 — 5760 a; a; + 3360 a; a3

— 3264 a1 a4 + 816 az? — 2880 a4 as + 2688 a,

— 1088 as + 1792a3 — 576 a4 + 896 a5 + 896)
[w*8+0 (87)

The application of these coefficients Y} ; in fitting fre-
quencies of spectral lines in order to derive values of R,
(from B = h/(8w%cuR?), with u the reduced mass of the
diatomic molecule; h is Planck’s constant and ¢ is the veloc-
ity of light) involves coding of these expressions and their
derivatives with respect to the parameters a;,w and B.
Maple’s generation of Fortran code facilitates the translation
of these results inte a form suitable for use with other soft-

ware. Below we show how easily one may generate code
fragments for Y7 » and its derivatives.

> ¥Y[1,2] := coeff( Y11, beta, 2 };
B* (184a; +9a:? + 19— 8ay)
Yip2:=-6 B

> fortran(y[1,2]);

t0 = -6*B**4/omega**3* (18*a(l)+9*a (1) **2+
19-8*a(2))

We compute symbolically the gradient of ¥; 5 with re-
spect to the four parameters B, w, a1, as.

> G =
> linalglgrad] (Y[1,2], [B,omega,all],al2]]);
B? (18a; +9a:12 +19 — 8ay)
3
w

G:i=|—24

Bt (18&1 +9a,% + 19—8a2)
o

4 4
B (18+18a) 483_3
w

18

w3

The facility for optimization provided by Maple’s com-
mand fortran recognises automatically the common subex-
pressions present in the gradient GG, for example the powers
of B; Maple uses temporary variables t1, t2, t3 etc. for this

purpose.

MapleTech Vol. 4, No. 2, 1997

107



Symbolic Computation in Molecular Spectroscopy

> fortran(G,optimized) ;

tl = B**2

£t3 = omega**2

t5 = 1/t3/omega

t7 = a(l)**2

t8 = 18*a(l)+9*t7+19-8*a(2)

t10 = tl1**2

tll = t3%%*2

tl5 = t10*t5hH

G(l) = -24*t1*B*t5*t8

G(2) = 18*t10/tl11*t8

G(3) = -6*tl5*(18+18*a (1))

G(4) = 48*tl5
Conclusion

What we have shown in the first section is that calculations
necessary to analyze frequency data from molecular spectra
can be, to high order, made easily, quickly and without error,
after one has assessed the steps needed to make the calcula-
tions to low order. An extension to treat Raman spectra, with
its selection rules AJ = 0, +2, is obvious; such a calculation
is a commended exercise for a student.

In the second section, we have for the first time enabled
students to undertake Dunham’s procedure, or something
closely related to it, without tedious and protracted manual
labour, and concurrently to achieve results that are useful at
the present frontier of research in molecular spectroscopy.

The steps of computations presented here were not the
original steps that we made: as multiple ways exist to imple-
ment these calculations in Maple, we devoted some time to
try to find the best form to present the results. What is shown
here is a censored version of calculations for which we have
minimized the number of steps by using the best Maple com-
mand for each step.

Once we understand how to implement these calcula-
tions, it is conceivable that we should write a program to
execute them for approximations of greater order. Although
we could do this, we contend that it is far more instructive to
a student (and also to ourselves) to see the steps undertaken
interactively.

The reader may obtain a Maple worksheet corresponding
to the Maple commands in this paper from the authors.
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