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L. INTRODUCTION

A. Description of Phenomena

According to a Zeeman effect described as normal, when an appropriate
gaseous sample is subjected to an external magnetic field, a spectral line
attributed to a pure rotational transition of a typical diatomic molecule
appears to split into three components [1-4]. The central component remains
at the frequency of a single line observed in the absence of field, and an
approximately symmetric displacement of two other lines is linearly
proportional to the strength of the externally applied field. The factor of
proportionality involves the magnetogyric ratio ¥ = gritv/H, which is the
quotient of magnetic dipolar moment and angular momentum; the rotational
g factor g, (also called the rotational Landé factor) is a signed but
dimensionless quantity that depends on nuclear masses and on molecular
properties such as the electronic structure, whereas the nuclear magneton
pn = ehi/2m, carries units; here the symbols are the charge ¢ and mass my,
of a proton, and %, which is Planck’s constant A divided by 2. A typical
diatomic molecule has no net angular momentum due to electronic spin or
orbital motion which would warrant that it be classified in an electronic state
I$* or 0%, but there may exist net intrinsic nuclear angular momentum of
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one nucleus or both nuclei that the authors generally ignore in this article.
Under these conditions, the total molecular angular momentum is simply
that due to rotation of nuclei and their associated electrons about the center
of molecular mass. The magnetizability measures the extent of magnetic
dipolar moment induced in a rotating molecule by unit density of magnetic
flux. As the value of g, varies only slightly with total angular momentum J
(other than nuclear spin) and with vibrational energy, the rotational g factor
is an almost characteristic property of a molecule in a particular isotopic
variant.

The rotational g factor is of interest, apart from splitting of spectral lines
according to the Zeeman effect and molecular magnetizability or the related
macroscopic magnetic susceptibility, because this quantity provides
information about molecular electric dipolar moments. A free molecule
can possess a magnetic dipolar moment; a rotating molecule in general has
such a moment apart from any magnetic properties of constituent atomic
nuclei. The rotational g factor, which governs the magnitude of magnetic
dipolar moment induced with an external magnetic field, provides
information through its isotopic dependence about an electric dipolar
moment defined with respect to a coordinate system fixed in the molecule.
As a result, the sense of the electric moment with respect to the internuclear
axis, a property difficult to determine directly using any other traditional
experimental method, can thereby be specifically defined. In relation to
molecular structure, only on taking into account the rotational g factor can a
precise value of the equilibrium rotational parameter B, that accurately
reflects the equilibrium internuclear separation R, of a diatomic molecular
species in a particular isotopic variant be derived from spectral data. An
equilibrium internuclear separation REC results from a conventional
quantum—chemical calculation in which the electronic problem is solved
with clamped nuclei, according to the treatment by Born and Oppenheimer;
the latter distance is equivalent to that hypothetically derivable from
experimental data pertaining to unattainable conditions of infinitely massive
nuclei and temperature 0 K. The difference between distances R, and RE© is
attributed to adiabatic effects, which are not truly physical but represent a
correction needed to remedy the deficiency of an approximate calculation.
Another correction, to take into account that electrons follow imperfectly
one or other nucleus in its oscillation and rotation about the center of
molecular mass, is attributed to nonadiabatic effects, to which there are
rotational and vibrational contributions: the rotational g factor is partly a
measure of the rotational contribution. All these aspects of the topic are
treated in the present article.

In the absence of a magnetic monopole, the simplest origin of a magnetic
dipolar moment, or of a magnetic field associated with such a dipolar
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moment, is rotating charge, or an electric current in a loop. Hence, a model
for a molecular magnetic dipole arising on rotation is either an electric
charge located apart from a center of mass about which rotation occurs, or
an electric dipole the two poles of which are not equidistant from the center
of mass; the latter condition applies if the masses of two atomic nuclei at
which the poles are supposed to be located are unequal. As diatomic
molecules of most species possess a finite electric dipolar moment with
respect to a nuclear frame, this condition makes possible a common
mechanism according to which one can envisage a molecular magnetic
dipole to arise; thus, the splitting of spectral lines on application of an
external magnetic field to a gaseous sample is consistent with generation of
molecular magnetic dipoles that interact with that applied field. That also
molecules such as 'H, lacking a permanent electric dipole exhibit a
rotational magnetic moment indicates that this property originates not
only from such a rotating electric dipole, but that this physical behavior
is associated conventionally with nonadiabatic effects [5], as mentioned
above.

Both experiments and calculations designed to evaluate a rotational g
factor involve significant difficulty. Spectral measurements of the Stark
effect on subjecting a sample to an electric field have been commonly
undertaken much more frequently than measurements of the Zeeman
effect conventionally applied to provide accurate magnitudes of g,, and
developments in microwave spectrometry with samples in gaseous jets that
greatly enhance sensitivity appear to preclude measurement of both such
effects. Unlike a calculation of electric dipolar moment that is a simple
expectation value of the electronic ground state, calculation of an electronic
contribution to a rotational g factor of the same state in principle requires
a knowledge of all excited states; hence this property is described as
being of second order, because it depends on corrections of first order to
the wave function of the ground state. A calculation of a g factor using
these expressions that involve sums over states is impracticable for all but
the simplest molecules; thus, other methods are devised to serve that
purpose.

In this article we present a critical assessment of the current state of
knowledge concerning the rotational g factor, including a survey of
experimental [6] and theoretical or computational [7] methods for its
evaluation for particular diatomic molecular species and consideration of its
association with other chemical and physical properties of gaseous chemical
samples. Known values of the rotational g factor for diatomic molecular
species in an electronic state of symmetry 13" or 0 are compiled in an
appendix. Comment on rotational g factors of molecules in other electronic
states is provided.
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10del B. Chronicle of Origins of Rotational g Factor

sctric ; ; i ; |
The first report of a diatomic rotational g factor resulted from measurements |

i on para-'H, in a molecular beam undergoing deflection in a magnetic field i
enter ’ 1 . . .

el st [8.9]; a rough value 0.8 < |g,| < 0.9 for 'H, [?] was inconsistent w1t1_1 a 18
e prediction g, = —2.72 [10] or g, = —3 [8,11] of a simple theory according |
with to Which electrons rotate with nuclei as a Figid distribution of cha;ge. A 1-

1mon revised .treatment [11-14] which takes into account perturbation of [ :
il electronic motion by rotation successfully accounts for the observed

5 ¥ i magn.itude and shows the relation of the rotational g factor to magnetizability. .

- A refined exPenment with la_molecular bpam and ma.gnetlc resonance [11] .
Sl %flelded_ both lmproved precision of magr_ntude and a sign, g, = +0.8787 fqr

B 4 H;; this value is near the maximum positive value, By = 1, that would occur if

. not electrons made no contribution to molecular magnetic moment [15].

: The first observation of a Zeeman effect on a pure rotational transition \
avior was made on samples of gaseous ammonia (‘*N'H3 and 'N'H;) in its \
oned

inversion spectrum [16], and later for the diatomic molecule ?C'°0 [17].
aal g After these phenomena pertaining to microwave spectra were discovered,

Stiik theories of the rotational g factor of symmetric—rotor [18] or general |
molecules [19] soon ensued.

10nly :
sman C. Definition of Magnetic Quantities !
¢ ?ﬁl;: 1. Magnetizability ‘
such We relate the rotational g factor to other magnetic properties, all relevant |
mple quantities consistent with SI convention [20]. As magnetizability and the i
ronic e rotational g factor are closely connected, begin by considering the former | !
uires quantity. |
«d as When a dilute gaseous sample consisting of freely rotating molecules is il
er o ' subjected to an external magnetic field, each molecule acquires an induced j'
asing magnetic dipolar moment 7;, proportional to the density B of magnetic flux i
1 but inside the sample: 1)
that ' : i
iin = EB (1.1)
te of |”
¥ _Of the factor of proportionality is a tensorial quantity called molecular Il
s magnetizability & The magnetic-flux density enters the electronic i
of its - Hamiltonian in the form of its vector potential A, which for a static and i
m(l:al spatially uniform magnetic field H is given as "‘
cular ‘

in an

i — -+ 1 = = ‘I-
ronic A:ZAI-:EZBX (7, — R,) (1.2) i
i al
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in which R, is an arbitrary origin of gauge and the summation runs over all
electrons i with position vector 7. The electronic Hamiltonian is obtained on
substituting, for the operator p; for linear momentum of electron i, the
gauge-invariant operator 7; for momentum,

=P+ eA; (1.3)
whereby
1

1
H=— R P
. 2m,

2m, ;

Z(ﬁf—#%ﬂf 'ﬁj+€2Ei'E5)+V (14)

We employ a fact that f_ii fulfil the Coulomb gauge (6’ -ﬁi =(). Vis an
operator for potential energy for interactions between electron and nucleus
and between electron and electron, and is possibly due to an external electric
field. Insertion of Eq. (1.2) gives

1 2 e - ~
p; — > B-(fi—R,) X P
2mezi:p, +V+2meZ (7 ) xp

32

=

+ o (B x (i~ ) (B x (7 — R,)

8m,

1 5 e O
p; —N"B IR,
ZmEZi:p* +V+2meZ (Ro)

+ Z ZBa{(?i - 1_3'0)26043 - (rf,a - RO,Q)(ri,ﬁ - RO,B)}B{J' (1-5)
af

g
8w, :
The indices a,f denote, both here and in the following, Cartesian
components x, y, z; [;(R,) is an operator for electronic angular momentum
of electron i defined with respect to the gauge origin K,.

Using Rayleigh—Schrodinger perturbation theory, one obtains a correc-
tion to unperturbed wave functions \IJ((]G) from the applied field to first order:

e B J/(D (0
=Y () | 55,528 L(R,) | 9"
PR E0 _ED

S (1.6)

The induced magnetic dipolar moment 77, is then obtained from the density
Jjin of induced current as

1 - -
iy = 2J(F R,) % ju(F)dr (1.7)
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which to first order is

2
Jn(7) = Nj{—eklféo)*ﬁ‘l’ém

me

g (Zﬁf) wi) + o (Zﬁf) g

i i

0 = * 1 — 0)*
_\pg)(zpl) (V) #xpgl(zp,.)\pg)

i

€

}dSld)?g s di (18)

Here X; = Fis; denotes a combined spatial and spin variable for electron i.
Insertion of the first-order wave function lI!él), Eq. (1.6), into Eq. (1.8),
performing the integration in Eq. (1.7) and comparing the result with
Eq. (1.1) yields an expression [21] according to second-order perturbation
theory for magnetizability with its diamagnetic and paramagnetic contribu-
tions:

€ap(Ro) = E45(Ro) + €05(Ro)

62 0 1g =
=g <ng J\ > (7~ Ro)8ap = (i ~ Ro)

2
0 e
X (rig— Ro,,@))"l’(g )> @Z

€ n#0
o (| i laRo) | WO | 5 lip(Ro) | 25)
£ _ £
0 n
] = = 0
(T | 2 0p(R,) | $OWTO | 7,00 (R,) | 98
+ 0 O (1.9)
Ey’ — E;

The effect of magnetic field on a sample of molecules is described
macroscopically in terms of magnetization M of the sample. This quantity is
proportional to strength H of magnetic field

M = yH (1.10)

in which a factor of proportionality is another tensorial quantity called
magnetic susceptibility. For molecules lacking angular momentum due both
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to net electronic orbital motion and to spin, the magnetization of a bulk
sample of concentration A independent molecules per unit volume depends
only on induced magnetic moments:

M = Ny, (1.11)
From a relation
B =By + poM = po(H + M) = po(1 + )H (1.12)

and Egs. (1.1), (1.10), and (1.11), macroscopic magnetic susceptibility
becomes related to molecular magnetizability,

1(1+1)7" = Nué (1.13)

in which po and By are respectively magnetic permeability and density of
magnetic flux, both of free space. For isotropic samples such as molecules in
dilute gaseous and nonviscous liquid states of aggregation, only traces y and
¢ of tensorial quantities y and & are of interest. Under these conditions
applicable to a gaseous sample and under a (standard) restriction that
magnetization is small (x| < 1),

x = Npo€ (1.14)

which thus establishes a relationship between macroscopic magnetic
susceptibility and microscopic magnetizability.

2. Rortational g Factor
We proceed to examine the definition of the rotational g factor; when a
molecule in an electronic state 'ST or 07 is not rotating, it has no net
magnetic dipolar moment, apart from nuclear properties. When a molecule

rotates with angular momentum J (carrying units Js), it acquires a net
rotational magnetic moment

iy =tNg J (1.15)

in which g, is the rotational g tensor, the trace of which is the rotational g
factor, g,. To the latter there are nuclear and electronic contributions. Nuclei
k with position vectors R; and atomic numbers Z; are generally treated
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classically; their contribution to rotational magnetic moment is ascertained
on considering the motion of charged particles:

m’f)a = M;.?p Z Z Zr
i %

- . o
X ((Ry — RBom) 60p — (R — Roma) (Rep — RCMﬁ))[_Z

(1.16)

Here I denotes a tensor for moment of inertia that contains nuclear masses;
ﬁcm is the position vector of the center of nuclear mass. The nuclear masses
in I are generally approximated with atomic masses and Roy is
approximated with the center of atomic masses. The contribution of
electrons to magnetic moment is treated according to wave mechanics on
taking expectation values of appropriate electronic wave functions. A rigid
distribution of electrons rotating with nuclei produces a contribution
analogous to Eq. (1.16), i.e.,

e rigi m - D
mr:ac I=- 'u’Nh = <¢’1(20) Z((ﬁ - RCM)zéa‘ﬁ = (ri,a = RCM,Q)
a i
J
X (rip — Rem,p)) ‘1',(10)>£ (1.17)

Coupling between electronic motion and molecular rotation, signifying
failure of the Born—Oppenheimer approximation (see Section 1.D), intro-
duces a term Zif,-(}_éCM) . J into the electronic Hamiltonian. Treating it as a
perturbation generates additional contributions to m{ ,. Within an alternative
approach [12,13] consistent with our exposition of magnetizability, rotation
according to Larmor’s theorem produces a density of magnetic flux

2n, =

; A (1.18)

e 3
for which one defines a vectorial potential

A’r:ZA;:J’%ZEX(;«;ﬁﬁCM)rl (1.19)

4

Analogous to external magnetic-flux density in Eq. (1.6), a correction to the
wave function

(0) _‘, = ) iy (0)
| Z v Ai(Rem) - T T [8y7)
n#0 Eo - En
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arises in first order; an induced current density arises analogously. The
induced electronic contribution to rotational magnetic moment is thus

eind _ KNy x—Jp
e ho Sl
{iZ (WEP | 32 ialRo) | $ONTO | 5, 1 s(Ren) | T
Me 20 ES — ED
197 | 5l Rew) | WONEO | 57,1, (Ry) | qfé%)

E(SO) . Er.:(})

+ <1p30)' Z((;‘»‘i —R,) - (% — Rom)bag

— (ria — Roma) (rig — Rop)) ’\D((]DJ>} (1.21)

Combining this with a contribution from the rigid density of electrons,
Eq. (1.17), yields

e _ HNT = Jg
mr,a— 7 %E

x { 3P (Wém | s ia(Ro) [ UONEO | 5 1p(Ren) | 1)
n#Q

i, E[()O) _ E,»(;O)
(0| B bhpRow) [ TO) (U0 | 3, 4a(R,) | 0
E(()O) _ Er(l())

- <‘I'g()0)| Z By~ ECM) (i — ﬁCM)dxﬁ

— (Fia — Rewto) (Rog — RCMﬁ))‘\Iré”)>} (1.22)

This equation is the final expression for magnetic moment in a classical 1
form comprising two terms, one paramagnetic term—a sum over excited

states, and the other diamagnetic—an average over the ground state. Noting

that

(0 |32~ Rews) - (B —Rewdas — (e — Rere) (o — Rewa)[9§)

- % <‘l’((JO) rZ[((ko — Row) X 7y, li 5(Rem) | \I’g))>, (1.23)
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inserting the resolution of the identity 1=, [U©V(T¥| and using
the  hypervirial  relation (U | 3,5 | W) = 2 (B — EO)
(TO) | 3.7 | \IJ((]O)), one expresses the diamagnetic contribution alterna-
tively as a sum over excited states,

(2|32~ o) o — Rewop = (i — Rewe) (Ros ~ Rene )[40

. LZ(@S’) | S ((Bo—Rem) % 5o | TN (W0 | 57, bigp(Rewn)| 95"
€ n#£0

Eéo) B E’EO)
o (7 | i (Rew) | TONTD | Ry — Rew) x )y | 94
Ef)()) B E}(@o)
(1.24)

Combination of two terms for sums over excited states in Egs. (1.22) and
(1.24) with a nuclear contribution in Eg. (1.16) and comparison with
Eq. (1.15) yields an expression for components of the rotational g tensor
[19]:

m — - ) —
Brap = 1—: > " Zx((Rx — Rem)?6a5 — (Rra — Roma) (Ris — Romg))
K

0 D 33 0
L N (0] i haRen) | TN | 3, bg(Ren) | )
melg = E((}O) B E,(,G)
0 -+ —
(2 | 5l (Rew) | WONEYD | 52, bo(Ren) | 24
£ _ g0
Q 1

(1.25)

The electronic contribution g, is related to the paramagnetic contribution
fﬁ,ﬁ to magnetizability [Eq. (1.9)], evaluated with the center of mass as
gauge origin:

5 dm,m, -
Bonll = *Tgp[ﬁ ? s(Rem) (1.26)

For a linear molecule with nuclei along the z-axis, J, = 0 and g, ,, = 0; from
SYmmetry g,.x = gr,,, and the g tensor becomes reduced to a single
parameter g = g, = gry,, which would not vary with J for a molecule
rotating rigidly. For a diatomic molecule AB containing nucleus A of

m
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protonic number Z, and nuclear mass m, along the z-axis at z, = |R, — Rem|
and nucleus B with protonic number Z, and nuclear mass m; at
2 = |Rp — RLM\ the nuclear contribution becomes

Zam} + Zym?

m
a Z, e
(@ Z & bzz) pmamb(ma + my)

= (1.27)

1
&r

in which the moment of inertia is I = p,R? = i (R, — Ry)*. As already
mentioned, the nuclear reduced mass p, is commonly approximated with the
atomic reduced mass p, =~ y = MM;/(M, 4+ M,). The second form of g"

shows that the nuclear contribution is independent of internuclear distance

and is thus constant for a particular molecular species in all its electronic
states. For a molecule with two identical nuclei (Z, = Z;, m, = m;), the sum
of Eq. (1.27) and the appropriate component of Eq. (1.26) simplifies to

1 i e’R?
P (EZ" - %gr) e (1.28)
P

4m,

The total perpendicular component of magnetizability is thus evaluable from
the rotational g factor and a computed diamagnetic contribution £7 (Rem),

2

£1(Rem) = € (Rem) — (1.29)

g
4mgmp

of which so called direct experimental observation is impracticable. Many
magnetizabilities experimental have been obtained with this relation even
though, rigorously, only g, is measured experimentally.

So far the magnetizability and rotational g factor are discussed only in a
context of induced magnetic dipolar moments. To establish their relation to
the electronic energy E(B ) of a rotating molecule in a magnetic field of flux
density B, one integrates an expression for interaction of a magnetic dipolar
moment with a differential density of magnetic flux:

E(B) ~ Eo+ |G+ i) - dB (1.30)

As the induced magnetic moment is given by Egs. (1.1) and (1.15), one thus
obtains

E(E"):Eo~rﬁ-§f%§gf BeB (1.31)
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3. Relation Between Rotational g Factor
and Electric Dipolar Moment

We derive a relation between the rotational g factor of a diatomic molecule
and its electric dipolar moment [22]. Choosing the position vector of a
nucleus, e.g., R instead of RCM, as an origin in the expression, Eq. (1.25),
for the rotational g factor, one finds

m 2m
gR)=-LZ+——=
( Fn b me.u'nR2 ;

= = 0
U |30 ix (Ra) [TV (WO | 32, 1, () | )
Ey —E,

(1.32)

This result is essentially the rotational g factor for a molecule AB that
rotates hypothetically around nucleus A. Correspondingly, with nucleus B as
origin one obtains

m, 7 2my,
.u'n‘ me ,u’HR2 )‘?#0

0 s —
o S0 32 i (Ro) OO | 5, (R | 25
Ey —

8i(R) =
(133)

The arithmetical average of g?(R) and g’(R), called g for reasons to be
discussed, is then

87 (R) =3 (62(R) + & (R)) | (1.34)

mp Z,+ 7y 1
U 2 m.R

o 38 FbalBe) | WOV | 52 a(Re) | B))

n#0 Eo — Ex
b5 O ) | SN | 1) | )
meR2 P E(]

(1.35)
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This equation is rewritten as

- My Zs + Z, m
g (R) =224 —F
Hn 2 meﬂlnR
(0 3 =3 0
o (230 08 St R | NP | 3, eRene) | 9457)
n#0 EO — Ey

= {(RCM,Z - Ra,z) F (RCM@ - Rb,z)}
(T | iy | TONTO | 34 (Rew) | T

Ey— E,

X
n#0

— {(Romg — Raz) + (Remz — Roo) }
o 3 A0 Sl Ren) | PN | 31y | 00")
o Ey — E,
+ {(Remz = Rag) + (Rome — Ro2)’}
XD (U5 | Xoipiy | TN | 3y | wé“”) (136)

n£0 E() —E,

The second term is the electronic contribution to the rotational g factor, and
the latter three terms can be reformulated, again using hypervirial relations
and resolution of an identity, to produce

rrr (R) - gr(R} R2 {Za (Ra,z - RCM,Z)2 + Zb(Rb,z - RCM,z)Z)

%Za + Zy, m, 1
e 2 1 R2 10

1
(| S oo ) -2
x {(Rem: — Raz)” + (Remz — Rb;z)2}<q’g))‘ Z["i,y,Pi,y] "1’(()0)>

+

{(RCMZ = Ra,z) F (RCM,Z = Rb,z)}

(1.37)
Evaluating the commutators
0 0
(5" | D Iriaspig] | ) = N6 (1.38)
0 e
4 Z[ri,a,li,ﬁ(RCM)] | O = thieas, (T | Z(rm — Romy) | 9
(1.39)
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in which N is the total number of electrons, identifying the z-component of
the electric dipolar moment in a system of coordinates fixed in the molecule,
calculated with the origin of the coordinate system at the centre of mass, as

dz(R') ECM) - e{Za(Ra.z - RCM,Z) + Zb(Rb,z - RCM,z)}
— (T | S (i, — Rew) | T (1.40)

and assuming a neutral molecule, for which Q = Z, + Z, — N = 0 and the
dipolar moment is independent of the coordinate system, one obtains

R,,— R Ry,.— R
m, 4.(R) { Rz cM,z) Jrz( bz — Romyz)
efly R

g (R) = g,(R) - (1.41)

Choosing arbitrarily the coordinate system in such a way that
Raz — Rcm = —R iy /m,, which implies for a molecule of polarity TAB~
that d; < 0, one expresses the rotational g factor in terms of the electric
dipolar moment and an irreducible nonadiabatic contribution g’

r

1 1

8 (8) = 7 (R) ~ 22 (R (-~ ) (142)

According to the same arguments, g? and g% of a neutral molecule can be
related to the electric dipolar moment [22,23],

£(R) = g (R) + e R) (143)
L (R) = g, (R) — 2o %R) (1.44)
eR My

The reverse relations for rotational g'factor and electric dipolar moment
expressed in terms of g7 and g? are

a b
&(R) = pn (%Ebﬂ + %%)) (1.45)
4(R) = 2 (g2(k) ~ 82(R)) (1.46)

The latter four equations become important in the context of analysis of
vibration-rotational spectra discussed in Section ILE.
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Radial functions g,(R) and g/ (R) for the rotational g factor of a diatomic
molecule in two isotopic variants are related to a radial function for electric
dipolar moment [24-26]. For a fixed internuclear separation R, the rotational
g factors g, and g/ of two variants differ because of disparate reduced
masses in the moments of inertia / and I’ and because of displacement of the
center of mass Riy; — Rom. The expression for the rotational factor g/ of a
variant,

g:’(R} R [Z (R az REM) + Zb(Rb,z - RfCM)]
2m, 3 (O | T xRy | WOV | 32,0 (Rpgy) | T
me,unfi’2 Ey,—E,

nz£0
(1.47)

can then be rewritten in terms of the rotational factor g, of a reference

molecule and the electric dipolar moment following a derivation corres-

ponding to Egs. (1.35) through (1.42),

HAREL(R) = 1nRg,(R) — "2 4 (R; Rewm) (Reyg — Rem) + mpQ(Riy — Rew)
(1.48)

in which Q = Z, 4+ Z,, — N denotes the total charge number of the molecule.

4. Relation Between Rotational g Factor and
Electric Quadrupolar Moment

The rotational g factor and magnetizability are related to a tensor for
molecular electric quadrupolar moment; its only finite component Q,, for a
diatomic molecule with its nuclei along the z-axis is given as

| 1 0 0
Q - sz = Ee ;Zk(SRJ%,z 7R%) - 2€<ID((}1)} Z(3ri2,z - r?’)’\];r((] )>
1
- eszsz - e<wg°)y Z(n?;z =l b, )|¢50>> (1.49)
i

Comparison of the first term with Eq. (1.27) and the second with Eq. (1.9)
shows that O, is expressible as

[ dm,
Q= e_(gr _g,(i) = ﬂ 6” gfjj_ (150)

My
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Insertion of Eq. (1.26) gives

! dmy,me c ‘
0 _:T(gr mpm gl) “ fH f )

v
el 4me 4m5,
— —gr —|—
my

(g” (1.51)

Noting that 5‘]7 = 0 for diatomic molecules, one obtains a relation between
molecular electric quadrupolar moment, rotational g factor and anisotropy of
magnetizability:

el 4me

Op=—g —
mip

(& —€1) (1.52)

D. Relation of Rotational g Factor to an
Effective Hamiltonian

The time-independent Schrodinger equation for a diatomic molecule in an
electronic state n of class 'S or 07 is written as

H'G)H,UJM (Fa R)> == En,w’ Ien,vJM (F: R)> (153)

in which J and M are conventional rotational quantum numbers and H is the
molecular Hamiltonian [27-29] without spin and without translation of the
molecule:

1 5 n o 1
_.ZTWEZP:- +V 2;,1, 8R2+2,UB Rz( +2(ma+mb (ZPI)

(1.54)

The total angular momentum J is about the molecular center of mass; the
electronic angular momentum L = 3, 1;(Rncum) is defined with respect to
the centre of nuclear masses m, and m,; 1, is the nuclear reduced mass
defined in relation to Eq. (1.27), and V is the complete interparticle
coulombic potential. The molecular wave function 0, .z (7, R) is a function
of both electronic coordinates 7 and internuclear distance R. Approximate
solutions to this equation are normally obtained by an approximate
separation of nuclear and electronic coordinates. To do so one first solves
the electronic Schridinger equation,

1
2m,

S 4V )00 = a9 R (15
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yielding a complete set of electronic wave functions {IIJ,(P)} to be used in an
ansatz for molecular wave functions,

O pimt (7, R) = Z\Iﬂ” O (R) (1.56)

With this ansatz, an effective Hamiltonian for rotational and vibrational
motion of nuclei in an electronic state is obtained by projecting the
Schrodinger equation [Eg. (1.53)] on electronic state (\IJ(()O) (7;R)|. Before
doing so, one transforms unitarily the molecular Hamiltonian [30],

H=e"He™ = HO + AAY + 2A% 4 ... (1.57)

in which the Hermitian operator S is determined so that the transformed
Hamiltonian H does not couple different electronic wave functions through
first order, i.e.,

(@ | HY | 2Py =0 (1.58)

In order zero, the Born—Oppenheimer approximation is recovered,

{ R 82 1

et VBO(R)}@;,M(R) — B0, (R)  (159)

With terms kept through second order the effective vibration—rotational
Hamiltonian becomes [23,30-32]

0) | ¢ ; (0
o B[ 2 () L | D | ) &
2t Hn g Ey — E, OR? " 2, R?
( Z OS2 1 (Rvew) TN O | T, 4o (Rrveom) | 25 >)J2
n: 2 n70 Eq — Ey
+ VBO(R) + Vad(R) .‘ (160}

The term V,4(R) to describe adiabatic effects, according to which potential
energy of the nuclei, of masses m, and m,, depends on not only internuclear
separation R but also relative nuclear momenta [23,30-33], i.e,,

R g
Vaa(R) = — 2 <‘1’¢()0) R

L m <‘I’<()O) | ( Zﬁi)z

\pgﬂ)>+2 o (U1 + 131 95)

mg°J>, (1.61)
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supplements the ordinary function Vgo(R) for the Born—Oppenheimer
potential energy governing nuclear motions. Contributions to V,4(R) in
this equation involve only expectation values of pertinent operators
within the electronic state of interest, in the present case the electronic
ground state.

The nonadiabatic terms, which involve matrix elements between the
electronic state of interest, lIf(()D), and other, excited, electronic states, 11',(10),
are divided according to the symmetry of the molecule into one involving
&% /OR? and two orthogonal terms, exhibited in J? [23,30-33]:

0 0

BT — h“zwé) | & | PO OO | & | u”) 82

na 2 0 0) 7]

My o5 EQ _ g OR

0 = —
1 <‘I’(() ; |5=: b x(Rom) | T0) (TO) |2 lix(Rnewm) | ‘1’(()0)) 72
’%R4 n#0 Eé)O) Er(lm

(1.62)

Comparison with Eq. (1.25) shows that the rotational inertial correction is
related to the electronic contribution to the rotational g factor and the
rotational term in the effective Hamiltonian becomes

1 bis) - 1 m i -
HY = L Cgtipy | 9 — 1 () — 2 R | F*
T Gt ) L g, (R) - 22 2 (R)
(1.63)

As the nuclear reduced mass u, is approximately related [32,33] to the
atomic reduced mass g,

1 1 Za 2 Z 2] v T 3
! (1 kmeMa_) __(1 _ﬁgf;) (1.64)
Hn H mamb(ma +mb) H mMp

The rotational term in the effective Hamiltonian becomes

1 m, -
HY =~ (1 —f-—egr(R))Jz (1.65)
2uR? my,

A similar derivation applies to the electronic contribution to the vibrational
inertial correction [32,33], thereby defining a vibrational g factor, gv(R).
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An effective equation of Schrodinger’s type for nuclear motion is then

[32]
n? m 5 1 m -
e bWt = = [ ] e 2
{ o (1)) et g 1+ s (®))T

H@®+mwhmm:%ﬁwm (1.66)

The point of interest in this article concerns gr(R), that is, a radial function
postulated to express the dependence of the rotational g factor on inter-
nuclear distance according to separate treatment of electronic and nuclear
motions. We discuss both experimental and theoretical means of determin-
ing this quantity, The vibrational g factor receives much less attention; we
are aware of no calculation of it with the full sum-over-states expression in
Eq. (1.62).

II. EXPERIMENTAL METHODS

The various experimental methods of determining the quantity g,(R) include
spectral methods, with measurement of a frequency or intensity that varies
with strength of external magnetic field, or use of molecular beams in
magnetic fields with or without spectral transitions, and even spectral
methods with no applied field. These methods yield information of distinct
kinds about the rotational g factor. From molecular beams with spectral
transitions (Section ILA), and from application of the Zeeman effect on
microwave spectra (Section II.B), one obtains an expectation value of the
rotational g factor for a particular vibration-rotational state. For a molecular
beam without spectral transition (Section II.A), the observable quantity is
only a statistical average over vibration-rotational states populated at the
temperature of the experiment. From analysis of magnetic circular
dichroism of rotationally resolved vibrational transitions (Section 1L.D),
one obtains a poorly defined average of expectation values. Frequency data
from spectra of samples without fields (Section ILE) yield a rough value of
the radial function for rotational g factor at the equilibrium bond length.

A. Molecular Beams

When molecules lacking net electronic orbital and spin angular momentum
in a beam pass a region in which they are subjected to an inhomogeneous
magnetic field, deflection of the beam occurs because of an intrinsic nuclear
magnetic moment, a magnetic moment that may be induced diamagnetically
in the molecules by the applied field, or a rotational magnetic moment that
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the molecule acquires by virtue of its rotational angular momentum [15]. All
these moments are of order a nuclear magneton (5 x 1007 Am2or JT™!)
or less. This technique was first applied to measure the rotational magnetic
moment of 'H,'°0 [34]. Measurements on 'H,, 'H?H, and ?H; in the same
laboratory [8,9] yielded values of magnetic moments of the proton and
deuteron and of the rotational magnetic moment; for para-'H, for which the
resultant angular momentum due to nuclear spin is [ = 0, deflection is due
entirely to rotational angular momentum, whereas in the case of ortho-'H,
deflection is due to the combined moments from nuclear spin and molecular
rotation. Values of g, for 'H, obtained in these early experiments are
mentioned above.

Precision of such measurements is greatly enhanced on introduction of
another electric or magnetic field oscillating at frequency v; if this frequency
matches the differences between energies of two orientation states of the
molecule divided by Planck’s constant, a resonance condition exists such
that energy is transferred from the field to the molecule. Under these
conditions the perceived intensity of the beam, otherwise directed with
adjacent fields to reach the detector, decreases, indicating occurrence of a
spectral transition; hence the sensitivity and precision of the experiment are
greatly enhanced. By this means, with magnetic resonance for 'H, in the
ground vibrational state v= 0 and rotational state J =1 (expressed as
|0, 1)), the rotational magnetic moment g, = 0.88291 + 0.00007 [35] was
measured, distinct from g, = 0.882265 + 0.000035 for |0,2} [36]. The
quantity measured in this experiment is an expectation value of a radial
function g,(R) in a particular vibration—rotational state, i.e., (vJ|g,(R)[v/J}
according to Eq. (5.3); without an additional magnetic field and spectral
transition in an experiment to distinguish a specific vibration-rotational
state, the quantity obtained is some average of expectation values over states
populated at the effective temperature of the experiment. The sign of g,
might be determined by comparison with that of a known nuclear spin using
rotating magnetic fields [37] or from the asymmetry introduced by second-
order effects [11], but in some cases, such as >N, [38], the sign is not yet
determined.

For electrically nonpolar molecular species, a molecular beam with
magnetic resonance generally serves to determine g,; for compounds with a
finite molecular electric dipolar moment, either a molecular beam with
electric resonance or the Zeeman effect on pure rotational transitions in the
microwave region is typically employed. With multiple fields acting on a
beam causing many successive transitions, each |AM,| =1, the net
alteration of magnetic dipolar moment is large; by this means small
magnitudes of g, might still be measured [37,39]. When results from
molecular beams and magnetic resonance (MB-MR) with multiple quanta
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are compared with those from electric resonance (MB-ER), however,
large disparities occur, when molecules have large nuclear quadrupolar
interaction. For instance, values for 'Li*Cl g, = 0.0848 + 0.0032 [40]
(MB-MR) and 0.100419 4 0.000031 [41] (MB-ER) and for Li"Br
g =0.0911 £ 0.0039 [40] (MB-MR) and 0.112056 £ 0.000064 [42]
(MB-ER) are reported from these respective techniques, practised in the
same laboratory. Because there are many excited rotational states and strong
coupling between a nuclear spin and rotational angular momentum, the
method employing magnetic resonance and multiple quanta was deemed
unreliable, and the corresponding results were repudiated [42]. In the
compilation in the Appendix to this article, these corresponding results are
included with a question mark in parentheses to indicate their questionable
accuracy; in some cases subsequent values have not superseded them.

B. Microwave Spectrometry With Zeeman Effect

As mention in the Introduction to this article, application of an external
magnetic field to a gaseous sample contained in a conventional waveguide
can produce a splitting of spectral lines measured in the microwave spectral
region 10-100GHz [1-4]. For a rotational state labeled with quantum
number J for total angular momentum, there exist 2J + 1 values of magnetic
quantum number M;. According to Eq. (1.31), an effective rotational
Zeeman Hamiltonian [43] for interaction between a rotating molecule and
an external magnetic field of flux density B is, including only the term linear
in B,

H=-""RBgJ (2.1)

The energy of interaction AE for a diatomic molecule is therefore
AEp, = =52 (0,0, M, Bg,Tv, 0, My) = —piw (v, Jlg, [0, IM,B (2.2)

When the electric vector of radiation is parallel to the direction of the
magnetic field (w components), the selection rules are AJ =J —J = +1
and AM; = 0; the single observed line with frequency 1y, when the
magnetic field is lacking, is split into 2J 4+ 1 components,

v =y + [(0,J|g: v, J) — (v, ||, J’)]Mjﬁgs (2.3)

When the electric vector of radiation is perpendicular to the applied
magnetic field (o components), the selection rules are AJ =J —J = +1
and AM; = +1; and a pattern of 2(2J+ 1) Zeeman components




