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appears,
v = v+ ({0, gl d) — (0. lgrlo, My = (0, T g, 0, TN LB (2.4)

When (v, J|g,|v,J) varies little with J, 7 components show no Zeeman effect
and o components are all superimposed into two lines with frequencies

v=up+ (v,J’|g,IfU,J’)%B (2.5)
or
(v —1g)/10°Hz = +7.6(v, I |g,|v, J')B/T (2.6)

By this means a magnitude of g, is readily obtained, provided the
displacement of these components much exceeds the width of spectral lines.
To determine a sign of g, requires use of circularly polarized microwave
radiation; when a magnetic field is parallel to the direction of propagation of
a circularly polarized microwave, only one component is excited, having all
the intensity of the unsplit line [19]. The enhanced experimental
complication of the latter method results in it seldom being applied; in
many cases a sign of g, is tacitly assumed. If a molecule contains nuclei
having a quantum number for nuclear spin | [ | > % and thus having electric
quadrupolar moments, at small densities of magnetic flux mixing occurs
between substates of M; and Mj; in this case a sign of g, might be deduced if
the nuclear g value is known [1]. In other cases in which molecular
magnetizability is measured from quadratic dependence of energy on
density of magnetic flux [see Eq. (1.31)], the molecular electric quadrupolar
moment @ derived from g, and the anisotropy of magnetizability
[Eq. (1.52)], can serve as a criterion to select the sign of g,: if Q has an
expected magnitude with one possible sign of g,, but not the other, the
former sign is accepted.

For a transition from a state with rotational quantum number J to a state
with J + 1, neglecting the dependence on J of {v,J'|g,|v,J'), the quantity
measured in these experiments is essentially g, of the latter state, but is
rigorously so0 in the common case of the transition from a state with J = 0 to
another with J = 1 [1] because a molecule with J = 0 has no rotational
angular momentum. Thus, for this experiment a measurement produces a
value of g, = (v, J + 1|g,|v,J + 1), or more generally a magnitude of this
quantity.

After 1955, for several decades this spectral method was the one most
commonly applied to yield accurate magnitudes of rotational g factors, even
though the Zeeman effect was invoked less widely than the Stark effect. One
reason for this application is that sensitivity of detection in the microwave
spectral region relative to a dc signal is much enhanced by means of Stark
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modulation of rotational absorption lines [44], generally about 100 kHz with
the concomitant minimum width of spectral line. A displacement of a
il spectral line when an electric field is applied is proportional to the squared
‘ strength of the field, and the factor of proportionality involves the square of
the electric dipolar moment (or its expectation value) [1]; as the electric field
between parallel plates in a wave guide is readily altered on varying the
‘ electric potential between them, almost any conventional microwave
: spectrometer operated during that period yielded magnitudes of electric
il dipolar moments practically as readily as frequencies of rotational
‘ transitions. In the millimeter-wave region, modulation of the source
frequency is generally preferable because much power at those frequencies
is lost in conventional cells designed to accommodate measurement of the
Stark effect; for this reason, measurements of electric dipolar moments in
this region are few unless recourse is made to a short cell of waveguide type
‘ [45]. When the Zeeman effect was applied to the same molecular species in
E an electronic state of class 'YX or 0T, the primary objective was
" measurement of the rotational g factor whether or not that information for
I‘ isotopic species was combined with knowledge of the magnitude of the |
electric dipolar moment to yield the sense of that moment. As microwave
spectrometers constructed since 1985 have tended to be used with gaseous ,
! jets in a large and almost spherical cavity [46], both Stark and Zeeman |
i effects are applicable only with difficulty because dimensions of resonators
| forming the cavity are so large that accessible electric potential differences E
| applied between Stark electrodes distant from one another yield only small
electric fields, although the small widths of spectral lines provide greatly
! enhanced sensitivity; with spectrometers of traditional form consisting of
|
\

samples enclosed in waveguides, one can still use the desired Fourier-
transform method [47], but the sensitivity is greatly inferior to that obtained
with samples prepared in pulsed jets. The rates of newly reported values of |
both electric moments and rotational g factors have hence decreased, and
other methods to measure these quantities have been devised partly to
compensate for this deficiency in the case of microwave spectrometry. )

C. Magnetic Resonance in the Far Infrared Region

| In a conventional experiment employing magnetic resonance in the far '
b infrared region [48], a laser at a fixed frequency dependent on the difference

'I between energies of particular eigenstates of a molecular emitter such as

vapors of H,O or CH:OH subjected to electric discharge provides a [
| beam of monochromatic radiation in the far infrared spectral region, 1

7 <5 x 10° m~!. That light passes through a gaseous sample contained in a
’ suitable vessel located between poles of a magnet that provides a ’
‘ homogeneous magnetic field variable continuously within a given range. :
| In general, no frequency of a pure rotational transition of molecules in the ‘
|
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gaseous sample coincides with a frequency emitted from the laser source.
On application of a variable magnetic field, energies of molecules are
altered such that the frequency of a transition can approach a resonance
condition with that of the source. If possible frequencies of molecules in the
sample are known accurately in the absence of magnetic field, measurement
of that field at the condition of resonance indicates the magnitude of g,
according to Eq. (2.5). No such measurement of rotational g factor is yet
reported for a molecular species in an electronic state of class !X+ or 0, but
analyses of spectra of free radicals in other electronic states have produced
their values of g,; for instance, for OH™ in electronic state a' A with v = 0,
gr = —0.001815 + 0.000018 [49].

This technique is expected to be applicable particularly to a diatomic
molecular species having a small moment of inertia, for which pure
rotational transitions lie beyond the microwave spectral region in which a
conventional procedure for the Zeeman effect is readily implemented.
Compared with application of magnetic resonance on transitions of
molecules with net electronic angular momentum, this method applied to
molecules in electronic state 'S+ or 0" would generally require a larger
range of tuning of a magnetic field to achieve a condition of resonance, thus
effectively requiring a larger maximum field for this experiment. Combina-
tion of this required condition of magnetic resonance with use of a
molecular beam in order to diminish the width of spectral lines due to
distribution of a parallel component of molecular velocities is expected to
enhance the sensitivity and precision of this approach, but the range of
transitions might then be limited to those involving small values of J:
information on a slight variation of g, with J might still be obtained.

D. Infrared Spectrometry and Magnetic
Circular Dichroism

Circular dichroism, which signifies differential absorption of circularly
polarized radiation, is induced in all matter that is subjected to a uniform
longitudinal magnetic field. The ratio of this difference AA = A_ — Ay of
absorbance between left and right circularly polarized light, called magnetic
circular dichroism, to the total absorbance A =] (A +A_) in the absence
of a magnetic field is linearly proportional to the density of magnetic flux. In
application to a vibration-rotational spectrum of a diatomic molecule [50,51]
in an electronic state of class 'S* or 0%, a transition from a state |0, 1) to
another state with |¢/, 0), i.e., the first line in a P branch of a particular band,
we consider for purposes of explanation. On application of a longitudinal
magnetic field, substates of various M; for J = 1 lose their degeneracy, such
that a transition from a substate J/ =1, M; =1 to a state /' =0, M; = 0
occurs with right circularly polarized light at a frequency greater than that of
the undisplaced line (in the absence of magnetic field), whereas a transition
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from J = 1, M; = —1 occurs at a smaller frequency; the two lines from the
Zeeman effect have opposite phases. With By about 10 T and optical
resolution 50 m~! near 2 x 10° m~!, the order of magnitude of a ratio
AA/A is 107*; under these conditions, splitting between two lines is much
less than the resolution, and also possibly less than the width of the line due
to the distribution of molecular velocities in a static sample. With moment
analysis [52] of rotationally resolved bands, the sign and magnitude of the
rotational g factor can nevertheless be determined. The parameter A;/Dy

[50,53,54],
Ay 1 (AA)1
e NI 2.9
Dy BMB <A>0 ( )

is thus obtained from the zeroth moment of absorbance (A), and the first
moment {AA),, defined as [52]

A
(Ao = | Sav 28)
AA
(AA), = jT(V — vp)dv (2.9)
for which the frequency w4y is chosen to be
jAdI/

which implies that the first moment of the absorbance (A}, is zero. For a
dilute gaseous sample consisting of molecules in an electronic state of class
I3+, an external flux density B interacts with a rotationally induced
magnetic dipolar moment of a molecule according to the effective rotational
Zeeman Hamiltonian in Eq. (2.1). Generalization [50,54] of the rigid shift
expression for electronic magnetic circular dichroism [52] to the vibration—
rotational case gives the following expressions for parameters A; and Dy:

1
A== P 37 (0,0, My | d- 0,0 M) =0, d, My |d |, T, M) )
THB 313,
oS ((U":J’ lgr | 'UI'I‘II}(U’:JI:MJ’ | J; | Ulv']"aMf'>
(v, | g |0, 7Y (0,0, My | T | 0,0, Mp)) (211)
1
By= z_dj Z (Hvr J>MJ ‘ d_ | UI%'IIaMJ’HZ il KU:‘LMJ | d+ I va']f:MJ’Hz)

My My

(2.12)
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in which dy =1/v2(d, +d_) is the operator for electronic dipolar
moment for right (+) and left (—) circularly polarized light and d; is the
degeneracy of state | v, J, M;). Application of the selection rule AM = +1
for left and right circularly polarized light yields a simple expression for the
ratio Ay /Dy for the transition R(0) from J =0 to J' = 1,

A
2l —2%(’0’, 1]g |v,1) (2.13)
Dy B

and for the transition P(1) fromJ =1to J' =0,

A
Lo 2By 1g v, 1) (2.14)
Dy B

whereas, for example, for the transition R(1) from J = 1to J' =2, A, and
Dy are obtained as

1
A== I L1 4 9,2, 2002 |8 0.2) — W1 g | ¥, 1)

+1v, 1,1 dy [,2,0)*(/,1 | g | o/, 1)
+ {0, 1,0 | d_ | v, 2, ) (0,2 | g | v,2)
+ [0, 1,0 | dy |V, 2, D)0, 2 | g | v,2)
+ (v, 1,=1|d_ |, 2,00/, 1] g | ¥/, 1)
+ 1, 1,1 dy [V,2,-2) 2,2 | & | v,2) = (W, 1] g | ¥, 1))}
(2.15)
Do =21dl{J(v, L1 d |, 2,2+, 1,1 | dy | ©,2, 05

+ (0, 1,0 | d_ |, 2, 1)+ [(,1,0 | dy. |/, 2, 1))
+ (v, 1, =1 |d- | v,2,00]* + (v, 1, -1 | dy | ¥/, 2, =2} (2.16)

The rotational g factor in rotational state J = 1 of the lower v and upper o/
vibrational states can therefore be obtained from transitions R(0) and P(1),
respectively. The ratio A, /Dy of the transition R(1) allows no extraction of
the rotational g factor without an approximation that rotational g factors
in lower and upper vibrational states are the same and that they are
independent of rotational quantum number. In practice, because experiments
on magnetic vibrational circular dichroism have large error resulting from
measurement of intensity rather than frequency, ratios A, / Dy of all lines in a
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branch are commonly averaged and a rotational g factor (g,) averaged in
some way is obtained:

Al
(gr) = —2'@19—0 (2.17)

The accuracy of g, is moderate at best; for instance, for '2C!°0 in a
transition v = 1 « v = 0, measurements of 14 lines in the P branch and 25
lines in the R branch yielded a value g, = —0.262 £ 0.026 [50], compared
with a value g, = —0.26890 + 0.00010 from a sample in a molecular beam
with magnetic resonance for detection [55], hence a frequency measure-
ment. The sign of g, is nevertheless readily determined. Improved optical
resolution is expected to enhance the sensitivity and precision of these
experiments.

E. Frequency Data From Samples Without
Applied Fields

Whereas eigenvalues of vibration—rotational energy E,, or spectral terms, in
Eq. (1.59) (or equivalent), are expressed in a form [56]

k
Ba= 3 ta(v+3) U0+ I, 2.18)
k=0 =0

the corresponding eigenvalues E,; in Eq. (1.66) have the form [57]

. » ) 1\ K
Ey=) )Y W+ +7 + 27+ Z) (“W) U+ (2.19)
k=0 =0

Hence, the primary term coefficients ¥y pertain to mechanical effects, i.e.,
rotational and vibrational motions of nuclei about the center of molecular
mass, whereas auxiliary term coefficients Z; of several kinds represent
extramechanical effects, i.e., ones resulting from the fact that electrons fail
to follow perfectly the mechanical motions of nuclei. Coefficients Z;; for
atomic center A or B incorporate additional vibration-rotational effects that
depend on the mass of each separate atomic center rather than on atomic
reduced mass g, as do ¥y; coefficients Zj, take into account further
rotational effects, also for each atomic center. To represent these effects, in
radial functions we employ a reduced variable z [58,59] for displacement
from equilibrium internuclear separation R,

R—R,
z7=2
R+ R,

(2.20)
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in which a factor 2 appears for convenience elsewhere. As this variable is
well behaved at both limits of molecular existence, a united atom at R = 0 or
z= —2 and separate atoms as R — oo or z — 2, boundary conditions are
applicable [60]. With such an argument, we postulate radial functions as
follows. For the part of internuclear potential energy independent of nuclear
mass [57], we have

Upo(R) — V(z) = cpZ (1 + Zc,zj) (2.21)

For other required radial functions that depend on the inverse mass of each
separate nucleus A and B (in a diatomic molecule with Z, # Z;), we have
for adiabatic effects [57]

Uaa(R) — V'(z) = m, (ﬂ;'a Z ' +—Zu zf) (2.22)

for nonadiabatic rotational effects [57],

: 1 S _
e g (R) = e g,(2) = m, ( B e er’) ) (2.23)
m e o

ny p

and for nonadiabatic vibrational effects [57],

M, M, o L i i
L &u(R) H;pgv(Zng(Ma;ajf st 2) (2.24)

P

Coefficients c;, uf’b, t;-"‘b, and sj‘.l‘b serve as fitting parameters [57] in reduction

of pure rotational and vibration-rotational spectra of a particular diatomic
molecular species in multiple isotopic variants, measured in the absence of
externally applied electric or magnetic field.

Comparison of Egs. (2.23) and (1.45) shows that

22) =223 " (2.25)
H=

AL %Z tfzj (2.26)
)u J=O
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and thus
a Ko p
= ; 2.27
r0 mpgr{R) ( }
I
=_g%(R, 2
§=,, 8 (2:28)

Using these relations in Eqs. (1.35), (1.45), and (1.46) we obtain the
following useful relations applicable to neutral molecules [22,32]:

4 P
2 (R.) =my, (—Oa & ﬁi) (2.29)
g7 (R,) = ;"‘—;og ) (2.30)
di(R) = 52 (B ) (231)

From the second coefficients #¢ and £, in the expansion of the nonadiabatic
rotational effects, Eq. (2.23), information about the derivatives of these
properties can be obtained:

(agéiz))& - (Mi i i;_i) (2.32)
(acgiz))& = %!g (2 — ) (2.34)

Analogous results connect properties of functions g"(z) and g,(z) at R, to

fitting parameters sf‘b [57]. Functions g""(z) and g"(z) represent irreducible
nonadiabatic effects, attributed to interactions between an electronic ground
state of interest and electronically excited states, of classes 'TI or 1 for g
and 'T* or 0% for g [61], as shown in Eq. (1.35). The quantities d,(R,) and
2-(R,) become the most meaningful values of the z-component of the
permanent electric dipolar moment and of the rotational g factor at the
equilibrium bond length, respectively. By means of these relations one can
derive information about not only the rotational g factor at the equilibrium
bond length but also of the electric dipolar moment of a molecule from
spectral data—specifically, measurements of only transition frequencies of

multiple isotopic variants—of gaseous samples without applied electric or
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magnetic field. This method has an additional advantage that it directly

yields the signs (relative to a defined internuclear axis) of both g,(R,) and [

(2.27) d,(R.). The principal disadvantage of this method is that for an atom of each
type A or B there exist three radial functions, involving u;, #;, and s; of that

(2.28) type, to be evaluated essentially from term coefficients of only two types, ZI,
and Zj); the precision of deduced parameters, reflecting uncertainty

propagated ultimately from frequency data, is at present poorer than that

sbtain the resulting directly from application of Stark and Zeeman effects. An
|: empirical observation that adiabatic effects seem much smaller than
nonadiabatic effects for atomic centers with atomic numbers Z greater than
about 10 [62] might enable a practical resolution of this indeterminacy, even

(2.29) though no theoretical justification of this observation is available [32].
With increasing atomic number, the effects of finite nuclear volume [63,64]
(2.30) might interfere with this approach unless they are taken into account
separately.
(2.31)
L III. THEORETICAL METHODS
nadiabatic
;. of these A. General Considerations

Electronic structure calculations of rotational g factors have much in
common with calculations of many other electric and magnetic properties of
(2.32) so-called second order such as NMR chemical shieldings [65], spin-
rotational parameters [65], and electric dipolar polarizabilities [66]. All
these properties are determined with relations similar to the one for g¢ in il
(2.33) Eq. (1.25). '
They may be considered to be second-order terms, expressed in a
(2.34) classical way as a sum over unperturbed states, like the electronic i
contribution to the g factor in Eq. (1.25). A direct way to evaluate this i
expression would be to use a sum-over-states method according to which

) at R, to one somehow generates, to a good approximation, excited states in a

rreducible complete set for the unperturbed system. This method has been applied to il
lic ground molecules having only two electrons [67,68]. For all but the simplest ,
1 for g:'rf molecules, this approach is unfeasible; one must hence resort to other
L.(R.) and methods. The latter methods are classified in broad terms as either second-
nt of the derivative methods or response methods. In the former, one exploits the fact i
tor at the that the electronic part of the g factor [see Eq. (1.31)] is the second it
s one can derivative of total electronic energy with respect to rotational angular .;
Juilibrium momentum and to density of magnetic flux: |
cule from 0

h O*E(B,J) o) i

1encies of g = —
:lectric or Hod uy 0B,0Jg
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Although this approach is impractical for magnetic properties, derivatives of
this type in principle may be determined with numerical (i.e., finite-field)
methods; such methods are used mainly to calculate electric polarizabilities.
Techniques involving analytic derivatives have been formulated instead, as
described in Section III.C.

The discussion in this section centers on how methods of the other, or
second-derivative, class can be applied to calculate gf and related molecular
properties. These methods one refers to as polarization—propagator [69] or
response [70] methods; their characteristic feature is that one computes the
linear response of a system, i.e., a molecule, to an external perturbation. If
the perturbation is an interaction of electronic and rotational motions, the
one-electron property that we monitor becomes the magnetic dipolar
moment; the linear response of the system is then the rotational g tensor.
Hence in polarization—propagator theory one obtains the g tensor as a first-
derivative, or linear response, of a property that is formally a first derivative
of total energy; the one-electron property in question is magnetic dipolar
moment. In an exact limit, this approach is thus equivalent to taking directly
the second derivative of energy, i.e., it is identical to techniques involving
analytic second derivatives discussed above. However, in approximate
calculations, this equivalence might not hold, as the first derivative of total
energy with respect to B is equal to magnetic dipolar moment only if the
Hellmann—Feynman theorem [71,72] holds for the method in question.
Variational methods such as the self-consistent field (SCF) method and its
multiconfigurational extension, the multiconfigurational SCF (MCSCF)
method, fulfill this criterion, unlike perturbative methods. Thus, numerical
results, e.g., for rotational g tensors, using identical levels of electronic
structure theory might vary depending on whether the properties are
evaluated as linear response functions or as second derivatives of electronic
energy. For instance, methods in both formulations based on second-order
perturbation theory are called MP2 methods [73] in derivative techniques or
SOPPA methods in propagator theory. These methods fail to yield the same
numerical results; in some cases the sécond-order properties are quite
disparate [74,75]. We proceed to describe these two approaches in detail.

B. Calculations of Polarization Propagators

A polarization propagator may formally be defined in either a time or an
energy representation, which one can readily show to be the same [76]. In
the temporal domain the propagator describes how a density disturbance
develops or propagates from time ¢ to time #; this interpretation led to the
name polarization propagator [77]. To relate the propagator more directly to
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second-order properties such as the rotational g tensor, it is instructive to
define it directly in energy space using a language of response theory.

We consider the response of an average value of some one-electron
operator A in a state [0), commonly called a reference state, to an external
perturbation described with an operator B, C, etc. At time ¢ the average value is

0 0 o —i{wtie
), = (004 v + / (A3 BY) e~ 9
-0

Jrj f ({A, B, C>>w]+:‘e|,w2-ﬁ-i52€_i(m +!el+w2+£ez)rdw1dw2 I
—o0 J —00
(3.2)

In this equation, one defines response functions that are linear, e.g.,
((A.;E))ﬁie_, or quadratic, e.g., ({(A;B,C))y, 1ic, wriiers etc. Here ¢ are
positive infinitesimals that ensure the effect of a perturbation to be zero at

t = —oo. Expressed in terms of unperturbed states, the real part of the linear
response function has a form [70]

(B, =)

A

(U | B | ¥ON O |4 | \vé">>}

(5" | 4 | TONWO | B | Tl
Ffiw — (E{) == E,.,)

fiw + (Eo — Ey) (#3)

Comparison of this spectral representation with those of a tensor g7 in
Eq. (1.25) based on a sum over states shows its relationship to the linear
response function at w =0 for A=B =Y, l;(ﬁCM). Calculations of a g
tensor based on a polarization propagator thus involve finding a way to
evaluate the response function without knowing all states in Eq. (3.3); the
latter procedure implies a calculation of a sum over states that we seek to
avoid.

The method of calculation that is applied involves finding another
equation that determines the polarization propagator. Although the algebra
underlying this derivation is beyond the scope of this article, the principles
involved may be summarized. Using a temporally dependent equation of
Heisenberg’s type for operators that enter a definition of a temporally
dependent polarization propagator [76], or, alternatively, corresponding
fundamental equations in other representations [70,78], one can derive an
equation different from Eq. (3.3) so as to determine the polarization
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propagator. The basic structure of this equation is

((A; BY)SPP = 10D (A, w) PO () O (B, w) + 51 (4)QO ()5 (B)
(3.4)

This equation shows that matrices #°?(4,w), 12 (B,w), s{(A), and
s((B) for the transition moment all depend on a property that we seek to
compute, unlike the so-called principal propagator, P(w) [79]. The
superscripts indicate order of perturbation theory, for which the perturbation
is a fluctuation potential, i.e., the electronic Hamiltonian minus the sum of
Fock operators for the molecule in its ground state. The polarization
propagator in Eq. (3.4) represents the second-order polarization propagator
approximation (SOPPA) to ({A;B)), [80], signifying an approximation in
perturbation theory correct through second order. The first-order polariza-
tion propagator approximation, normally called a random-phase approxima-
tion (RPA) or coupled Hartree—Fock (CHF) method, is the self-consistent
field approximation to ({A;B)), in which

((4; )" =10, w)POD (W) (B, w) (3-5)

To obtain a SOPPA method consistent through second order in the
fluctuation potential, a correction to first order in the wave function for the
reference state is needed, in order to evaluate both matrices ¢ and P and the
second-order correction from single substitutions for matrix #{?) [80]. Hence
both first-order Rayleigh—Schrodinger coefficients and part of the second-
order coefficients that originate from single substitution appear in SOPPA
matrices [78]. We found [81,82] that, in many cases, results for computed
properties are improved when the corresponding coupled-cluster amplitudes
are substituted for the Rayleigh-Schrédinger coefficients. In essence, the
coupled-cluster [83] solution for the ground state

|0) = " |HF) (3.6)
with T being
T=T1+T, (3.7)
in which
T = Zrﬁa;aa (3.8)
ma
T, = 3—1 Z t;”Ea;;a:aaag (3.9)

mncf?
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Here, greek indices denote orbitals that are occupied in the Hartree—Fock
ground state |HF) whereas roman indices label unoccupied orbitals; a; and
aq are creation and annihilation operators, respectively.

In an extension of SOPPA with coupled-cluster singles and
doubles amplitudes (CCSDPPA), the latest version of which is denoted
SOPPA(CCSD) [84], we replace first-order Rayleigh-Schrodinger doubles
coefficients with amplitudes 1y and second-order Rayleigh-Schrodinger
singles coefficients with amplitudes 7. A justification of this practice is
that first-order Rayleigh-Schrodinger coefficients are an approximation
of least order to amplitudes i3, ie., amplitudes obtained in the first
iteration of the iterative solution required to solve the coupled-cluster
equation [83]. By using converged values of these amplitudes, we
include effects of double excitation to infinite order in perturbation
theory. The method SOPPA(CCSD) remains basically a second-order
theory in the sense that contributions to ((4;B))  in third order are
lacking [82], but it accounts for electronic correlation that is important
especially in a system with near-degeneracy; in our experience, in
many cases it improves performance relative to the SOPPA method. The
SOPPA(CCSD) method has been applied to the calculation of g factors
[26].

As we achieve matrices 7, s, P, and Q are calculated from one- and two-
electron integrals, a method to evaluate molecular properties that
circumvents a sum over states; a computational implementation of this
method is described elsewhere [78,84,85].

The response function in Eq. (3.3) might also be evaluated with a MCSCF
reference function rather than with a perturbative approach according to
SOPPA-like approximations. The former approach is denoted with acronyms
CASSCF (SCF with complete active space) and RASSCF (SCF with
restricted active space), depending on the choice made for configurations
included in the reference function in addition to the SCF configuration,
Le., in addition to the one included in the RPA or CHF method. In the
limit in which all possible configurations in a given basis set are included,
both methods become the full configuration, interaction (CI) method.
The CASSCFE, RASSCF, and full CI methods have all been applied to
calculation of g factors; results are reported in the Appendix to the present
article.

C. Second-Derivative Methods

To calculate gf using Eq. (3.1), it is necessary to compute the energy
contribution to second order in B and J in both the wave function and the
Hamiltonian, expressed formally as
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According to Eq. (1.5),

(9H e -
(55) .= 5 el (.11)
and to Egs. (1.4) and (1.19),
BH - M, ) = |
((TIQ) j’:oi 2 Z: lx,a(RCM)I (3'12)

Replacing £X gJ in Eq. (1.31) with the induced magnetic moment
[Eq (1.15)], and making use of Eq. (1.22), we reduce the second derivative
in Eq. (3.10) to

( 7 )Ei - 12((;‘30 ~Fe)

OBOT 2
(% — Rom)bog— (riw — Rema)(Rog — Remyg)

(3.13)

i

First and second derivatives of a wave function can be computed using
standard first- and second-derivative techniques [86,87]; these techniques
are available for both correlated and uncorrelated wave functions and
have been applied to calculations of rotational g tensors at both uncorrelated
[88] and multiconfigurational self-consistent field levels of approximation
[89].

Although these calculations might be performed using standard atomic
basis sets, calculations of magnetizabilities [90] indicate that operator
expressions involving operators for electronic angular momentum such as
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Egs. (3.11) and (3.12) show slow convergence with standard basis sets and [:

that convergence can be accelerated considerably with perturbation-
dependent basis sets. In the case of the rotational & factor the natural |
pert urbation-dependent basis set consists of functions called [88] rotational
London orbitals; these functions depend on both magnetic and rotational
perturbations. By analogy with ordinary London orbitals [91] or gauge-
including atomic orbitals [92,93],

.UER

A0, _ ) = e~ T, (i — R (3.14)
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Egs. (3.11) and (3.12) show slow convergence with standard basis sets and
that convergence can be accelerated considerably with perturbation-
dependent basis sets. In the case of the rotational g factor the natural
perturbation-dependent basis set consists of functions called [88] rotational
London orbitals; these functions depend on both magnetic and rotational
perturbations. By analogy with ordinary London orbitals [91] or gauge-
including atomic orbitals [92,93],

= B —iABF . (= B
SR — R,) = e T, (7 — R,) (3.14)
rotational London orbitals are defined as
- = —i(ABL AT, g -
GRHAO(7 — R,) = e At )T (7 — R,) (3.15)

in which [see Egs. (1.2) and (1.19)]

Af;—EB x (R, — R.) (3.16)
Al = f%f x R~ (3.17)

K’# is the position of a Gaussian function y,, centered on an atom. Besides
improved convergence of the basis set, use of rotational London orbitals
eliminates dependence of computed rotational g tensors on the gauge origin:
g» becomes independent of ﬁa [see Eq. (1.22)].

With the derivative technique, the simple relationship between g¢ and &
[Eq. (1.26)] is inapplicable because the paramagnetic contribution to
magnetizability, calculated with London. orbitals [94], is poorly defined. The
earliest attempt to establish such a relation made use of a so-called natural
connection between the standard (unperturbed) basis set and perturbed
London orbitals [95]. A disadvantage of this approach is that only in the
limit of a complete basis set is the conventional relationship between a
rotational g tensor and the paramagnetic contribution to magnetizability
obtained. Using rotational London orbitals one finds, however, from
comparison of expressions for g¢ [88] and the total magnetizability
computed using London orbitals [94] that

eRLAO _ g (€A0 _ (R )] (3.18)

r
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in which & (R'CM) denotes a conventional expression [see Eq. (1.9)] for the
diamagnetic contribution to magnetizability. This expression has the same
structure as Eq. (1.26) and coincides with the relationship obtained from a
sum over states in the limit of a complete basis set.

IV. APPLICATIONS

A. Sign of Permanent Electric Dipolar Moment

Apart from intrinsic importance of the rotational g factor as a characteristic
molecular property, perhaps the first application of this parameter was its
use in determining not only an approximate magnitude but more especially
the sign of a permanent molecular electric dipolar moment [24] with respect
to a molecular axis. As the Stark effect in microwave spectra of linear
molecules, being quadratic in both electric field and dipolar moment, yields
only a magnitude of electric moment with an accuracy acceptable for many
purposes, this application of the Zeeman effect provided information of
chemical interest. Magnetic susceptibility is independent of an origin of
coordinates. For an isotopic substitution that displaces the center of
molecular mass a distance (R¢-y; — Rcm) along the internuclear (or z-) axis,
the moment of inertia I and rotational g factor g, of a linear molecule
become altered to /' and g/, respectively. Then the z-component of the
electric moment d, at R, of a net electrically neutral molecule is estimated
from a relation

— i (Ig" _I’g;") (4 l)
© 2mp (Row — Rew) '
This relation is equivalent to that in Eq. (1.48). The numerator of Eq. (4.1) is
typically a small quantity; the resulting magnitude, and even the sign, of d,
is thus susceptible to uncertainty propagated from error of measurement of
gr- Great care must be taken in application of this equation to experimental g
factors because it refers to a particular internuclear distance [see Eq. (1.48)].
Apart from the method described in Section ILE, experimentally determined
g factors are for a vibration—rotational state | v, J}. Therefore, the g factors
of both isotopic variants must be extrapolated to the same internuclear
distance before this equation can become applicable. Inaccuracies in such
extrapolation can produce large errors in electric dipolar moments deduced
from Eqgs. (1.48) and (4.1), as in the case of ArH' [25].

The first application of this method was made to carbon oxide, in which
the authors purportedly deduced a polarity ~CO™ [96]; because the sign of
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g was not determined but deduced to be negative on the basis of supposed
ratios of atomic masses, the proof was incomplete. Subsequent analysis of
those ratios indicated that experimental values were equally compatible with
gr of either sign [97]. The correct sign was eventually confirmed to be
negative in a direct experiment with a molecular beam and magnetic
resonance [55].

For chlorine fluoride, the result of such application of a Zeeman effect in
microwave spectra to determine the rotational g factor yielded a polarity
“CIF" [98] that was not only contrary to chemical intuition but also in
disagreement with results of quantum-chemical computations [99]. After an
incredulous reception and further calculations [100], repeated experiments
in the same laboratory seemed to confirm the result [101], but subsequent
experiments elsewhere provided first indirect [102] (by means of experi-
ments on a molecular beam with electric resonance in the microwave
spectrum of the complex HF-CIF) and then direct (with the same method on
CIF [103]) evidence of error in the original deduction [98,101]. A reason
suggested for the error was that a value of g, was too small because
unresolved hyperfine structure distorted the shape of the spectral lines.
Likewise, for molecules with many rotational states and for strong coupling
between a nuclear spin and rotational angular momentum, the method
combining magnetic resonance and a molecular beam fails to yield reliable
results for g, [40,42].

For hydride ions of noble-gas atoms, the sign of g- appears unsettled at
present. For HeH™, g, is calculated to be positive [68,104,105]. For NeH™,
only a calculation is reported [104,105], one which predicts a positive sign.
For ArH*, both experiment [106] and calculations [25,104,105] yield a
positive sign, but aspects of analysis of experimental data to deduce a value
of electric dipolar moment with respect to the center of mass are
questionable. For XeH™, a positive value is reported [104,105,107], but
consideration of the experiment indicates that only a magnitude can be
estimated from broadening of spectral lines. For KrH*, g, is assigned a
negative value [108] on the basis that this sign is required to yield a
calculated sign of electric dipolar moment [109], but subsequent calcula-
tions [104,105] predict the opposite sign while reproducing the numerical
value. Further calculations and experiments on molecules in this family are
clearly in order; comparisons with nominally isoelectronic halogen hydrides
are likely to yield insight into aspects of interpretation of both calculations
and experiments.

The method to determine g, from measurement of frequencies of pure
rotational and vibration-rotational spectral transitions [110] can concur-
rently yield a sign and rough magnitude of d,. For GaH, although
15[ = —3.17042 £ 0.00062 is satisfactorily evaluated [defined in Eq. (2.23)],
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the precision of 7§ = —3.73 £ 0.34 is such that the difference between
and 1§ is less than twice the standard error of the latter quantity. On
reference to Egs. (2.29) through (2.31), it is evident that, under a condition
that Mg, > My, g""(R.) and g.(R,) are accurately deduced but d, is
essentially undefined. This value, g, = —3.22 +0.10 for ®“Ga'H [110],
conforms acceptably with values in the range from —3.444 to —2.942,
calculated with polarization—propagator approximations at various levels
[26].

Analysis of only frequency data, including both pure rotational and
vibration—rotational transitions of multiple isotopic variants, yielded
polarities TGeS™ [111], TGeSe™ (Ogilvie, unpublished results) and *BrCl~
[112] of these species. The associated values of g.(R,) agree roughly with
those of g, of the former two species measured with the Zeeman effect in
microwave spectra and with magnitudes of d, with the Stark effect of all
three species; no value of g, from experiment on BrCl is reported. In all
cases precisions of values of g, and d, according to this approach are much
poorer than those of values derived with the use of magnetic and electric
fields, but their signs arise directly, rather than indirectly from a Zeeman
effect and not at all from a quadratic Stark effect.

B. Experimental Magnetizability

According to earlier discussion in Section 1.C.2, the electronic contribution
to the rotational g factor is seen to be related to the paramagnetic
contribution of the magnetizability [Eq. (1.26)]. The total perpendicular
component of the magnetizability of a diatomic molecule can thus be
obtained from measured rotational g factors and a calculated diamagnetic
contribution [Egs. (1.28) and (1.29)]. This relation is applied [113] to deduce
experimental evidence for the paramagnetism of AIH and BH. The value
g-(R.) = —2.7+0.5 for ?’Al'H was poorly determined from available
vibration—rotational spectra [113], mainly because lack of data for an
isotope of Al produces large correlations between parameters in a fit of
spectral data. The calculated value is —3.2 [113]. A previous estimate
gr(R.) = —2.25 £0.25, the first derivation of a value of g, from spectral
data of only vibration-rotational wavenumbers [114], resulted from analysis
of spectral data [115] obtained under conditions of resolution and precision
both of which were poorer than those present in subsequent experiments
[116]. Calculation of magnetizability of AIH from the later experimental
result of g,, with a calculated value of £, yielded a conclusion [113] that the
perpendicular component of total magnetizability was marginally positive,
indicating the paramagnetic character of that component, even though total
magnetizability has diamagnetic character. This evidence, even if indirect,
is the first from experiment to support the prediction [117-127], from
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quantum-—chemical computations, that BH, nominally isoelectronic with
AlH (with both Al and B in group 13 of the periodic chart of chemical
elements), has a paramagnetic ground electronic state despite its symmetry
class being !X+,

C. Evaluation of Adiabatic and Nonadiabatic Effects

Adiabatic and nonadiabatic effects have no true physical origin; they arise
because treatment of a molecule with formal separation of nuclear and
electronic motions is approximate. Because these motions are coupled and
because electrons follow imperfectly one or other nucleus, ratios of spectral
parameters deviate from ratios of atomic masses or reduced atomic masses
to simple powers [96]. Adiabatic effects reflect a condition that internuclear
potential energy depends not only on static coulombic interactions but also,
through reactions of nuclear motions, on electronic motions that occur in an
attempt to conserve momentum; thus these effects depend on inverse nuclear
masses [32]. Nonadiabatic effects become introduced empirically into an
effective Hamiltonian for nuclear motion as dependences of reduced atomic
masses on internuclear distance, in kinetic energy of nuclei along or
perpendicular to the line between their centers. During analysis of spectral
data comprising transition frequencies of great precision, one has perforce to
employ atomic masses, known to comparable precision [128], instead of
nuclear masses because the latter are almost invariably much less well
characterized.

A practical way to investigate these adiabatic and nonadiabatic effects
involves term coefficients Zy; and Z7) of each atomic type, introduced in
Eq. (2.19). As mentioned above, experimental evidence represented
symbolically in these quantities is in general inadequate to yield three
radial functions involving coefficients u;, #;, and 5; of each atomic type. Even
when the functions number only five in total by means of representation in
terms of g”(R) and g""(R) of each atomic type plus a function for electric
dipolar moment, insufficiency remains. Although algorithms generally
applicable to calculate adiabatic effects, especially their dependence on
internuclear distance, are either lacking or little utilized and although those
to calculate nonadiabatic vibrational effects are scarcely contemplated at
present, methods intended to calculate nonadiabatic rotational effects
through the rotational g factor are well established. With a combination of
radial dependences in g,(R) and d,(R) thereby known from calculation, an
analysis of experimental data from spectral frequencies can hence, in
principle, yield unambiguously the separate adiabatic and nonadiabatic
vibrational effects. Such quantum-chemical calculations are most readily
undertaken for molecules having few electrons, for reasons of duration of
computation at each particular internuclear distance and of avoiding
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inaccuracy due to partial neglect of electronic correlation and to relativistic
effects.

As an instance of this approach, computations of g,(R) and d,(R) of LiH
provided constraints for values of #* and #7 during fits of spectral data of
LiH [129]. Because available spectral data possessed only moderate quality
and quantity, values only of 1", j = 1 and 2, and of ul, 1 <j <3, were well
defined pertaining to adiabatic effects, as were those of s5 and s pertaining
to nonadiabatic vibrational effects. That the latter two values reproduced
approximately the pertinent value of dd,/0z according to relations [32]
analogous to Eq. (2.34) indicates that analysis to be self-consistent. A novel
result of this analysis is that for LiH adiabatic, nonadiabatic rotational and
nonadiabatic vibrational effects have comparable magnitudes, signifying
comparable contributions to vibration—rotational energies. Further analysis
(Ogilvie, unpublished results) based on improved spectral data [130]
confirms this conclusion.

D. Accurate Equilibrium Lengths of Chemical Bonds

As a molecule in an eigenstate with respect to electronic and nuclear motion
has, rigorously, extension in neither space nor time [131], and as the
effective bond length for a molecule in a particular vibrational state depends
not only on the vibrational quantum number but also on the experimental
method (which produces expectation values (v|R™2[v), (v[R73|v), etc.) a
meaningful bond length arises only through a theoretical procedure with a
separate treatment of electronic and nuclear motions. The appropriate
length, designated R,, is thus an equilibrium value for a hypothetical state
that lacks residual (or zero-point) energy and that is formally independent of
nuclear (or isotopic) mass. Well developed methods to approach this value
from experiment rely essentially on extrapolation from vibrational states
with v > 0 for a particular isotopic variant, but the value R, formally
obtained in a conventional calculation of molecular electronic structure can
be reproduced from experimental data in principle only on taking into
account both adiabatic effects, represented specifically in uj"‘b in Eq. (2.22)
and nonadiabatic rotational effects, represented specifically in tg’b in
Eq. (2.23); these specific members of sets of coefficients u; and #; are
discerned according to particular parameters in analytic expressions for Zj
and Z/ ; in Eq. (2.19) [6,57]. In practice the discrepancy between a value of
R, from a quantum—chemical calculation of molecular electronic structure
and the corresponding value from global analysis of infrared spectra of
compounds having multiple isotopic variants is typically about 1000 times
the uncertainty of R, arising from propagation of error of frequency measure-
ments in contemporary analyses of precise vibration—rotational spectra when
these adiabatic and nonadiabatic rotational effects are included.
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Conversely, for molecules having few electrons, for which quantum-—
chemical computations might seek to attain the ultimate precision of the
underlying theory, adiabatic and nonadiabatic corrections must be
incorporated before comparison with precise experimental values of R,
becomes meaningful. Accuracies ~ 2.5 x 107!* m are currently claimed for
conventional calculations [132], with no material improvement from almost
a decade earlier [133]; for a bond length R, about 10~ m, typical of C—H or
O-H, adiabatic effects are of the order R,m,./M,, hence at most 5 x 10~ 4 m
for a molecule containing 'H. Furthermore, adiabatic and nonadiabatic
effects show comparable orders of magnitudes for light molecules [129],
although adiabatic effects appear relatively to decrease for more massive
molecules [134]. Significant improvement of accuracy of conventional
calculations must thus be generally attained before corrections for adiabatic
and nonadiabatic effects require attention [135].

V. DISCUSSION AND CONCLUSION

A. Physical Interpretation of Rotational g Factor

Espe estimated an electronic contribution to the rotational g factor of H,
with a relation of a form [136]

2
(0 0)
I3 e ]

o Xy N
g = (8| 26T +50) w%l“’ Z”Rz = (5.1)

havmg a structure s1m1lar to that of Eq. (1.49). Here the first factor
( ] S+ |, )) arises because the effectiveness of each electron
in creatmg a magnetic d1polar moment depends on the square of its distance
from the internuclear axis; the amount of rotation imparted to electrons by
nuclei depends on asymmetry of the eléctronic cloud, measured according to
this approx1mat1on w1th the normahzed molecular elcctrlc quadrupolar
moment [(@g” | 57,0 — y2) | €)@ | 5,02 + 32) | U], and the
rotatlonal Veloc1ty of the nuclel depends on the1r moment of inertia, pR?.
This estimate agrees reasonably well with the experimental value of g, for
H, when the nuclear contribution is taken into account, by means of
Eq..(1:27):;

Although properties of an electronic distribution depend on all electrons,
the portion of electromc charge near a nucleus might thus contribute little to
gr because a factor ( \ 3o+ | \IJE) 'Y appears in the numerator of
the above relation. For dlalkdh molecules Li; to Csy, Brooks et al. [137,138]




