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To evaluate individual expansion coefficients composing fitting parameters of the Born–Oppenheimer corrections to Dunham’s
coefficientsYi j that have been given analytically with the1B and1ω formalism, we examined the consistency of analytic
expressions for those corrections with Watson’s assertion of the experimental inseparability of nonadiabatic correctionsQa,b(r )
for a moleculeAB. Derived analytic expressions in terms of optimal fitting parameters for the corrections are essential to evaluate
individual expansion coefficients. These expressions also reveal redundancies between empirical correction parameters1i j . A
method of evaluating nonadiabatic vibrational correctionsQa,b(r ) and adiabatic correctionsSa,b(r ) separately consistent with
Watson’s assertion of inseparability is presented and is applied to an analysis of spectral data of LiH. FunctionsQa,b and
Sa,b for LiH are thus successfully evaluated;SH,Li (r ) values agree well with those predicted simply by wobble-stretch theory.
Experimental values for optimal fitting parametersr H

1q andr H
2q are nearly equal to those ofr Li

1q andr Li
2q, respectively, in agreement

with a theoretical relationr a
i q = r b

i q. C© 2001 Academic Press

Key Words:Born–Oppenheimer correction; adiabatic; nonadiabatic correction; optimal parameter; expansion coefficient;
redundancy;1i j .
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INTRODUCTION

Contemporary infrared and microwave spectrometers en
measurements of many spectral lines for diatomic molecu
for many vibrational states and various isotopomers. To a
lyze such spectral lines considerations of adiabatic and n
adiabatic corrections to the Born–Oppenheimer approxima
(1–8) are indispensable. A conventional method to take th
corrections into account was to fit spectral lines to the (v, J )
levels of a moleculeAB expressed with a set of parameters th
includes correction parameters1a,b

i j by Rosset al. (9), Bunker
(4), and Watson (2). Watson discussed experimental insepara
ity of nonadiabatic vibrational effectsQa,b(r) from nonadiabatic
rotational Ra,b(r) and adiabaticSa,b(r) effects. The correction
parameters1a,b

i j have since been treated merely as empiri
parameters for spectral fits (10).

Fernandez and Ogilvie provided, with hypervirial pertu
bation theory (11), analytic expressions for those correcti
on the Dunham coefficients (5) expressing adiabatic and non
adiabatic effects in the Hamiltonian with a series expans
of ξ [= (r − re)/re] (6) or z[=2(r − re)/(r + re)] (5). Follow-
ing their analytic approach for the Born–Oppenheimer c
rections, we modified the1ω and1B scheme of a potentia
model by Thompsonet al. (12), with which we analyzed spec
tra of molecules (13–15), extending Dunham’s treatment (16,
17) for the Schrödinger equation based on Watson’s effec
Hamiltonian (2), and obtained a compact expression for the c
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tributions from the correction terms in the Hamiltonian to t
DunhamYi j coefficients (18–20).

These results were applied to LiH (18, 19) and CaH molecule
(20). Under the restriction of Watson’s inseparability ofQa,b(r )
estimated values of fitting parameters for the corrections w
considered to be effective, and we could not proceed (18–20)
to relate values of fitting parameters to any physical quanti
e.g., moleculargJ values, electric dipole moments, and mat
elements of operators. Evaluation of individual expansion co
cients forQa,b(r ), Ra,b(r ), andSa,b(r ) from fitting parameters is
necessary to relate values of fitting parameters to those phy
quantities which can be expressed with expansion coefficie

Analytic expressions of modified Dunham’sYi j in terms of the
Born–Oppenheimer correction parameters indicate that fu
tions Qa,b(r ), Ra,b(r ), andSa,b(r ) are experimentally separab
if Ra,b(r ) are estimated with experiments under the exter
fields or by theoretical calculation (21, 22). Ogilvieet al. (21)
calculated functions ofRa,b(r ) for LiH and, imposing those a
constraints in a fit of spectral data of LiH, evaluated indiv
ual expansion coefficients for nonadiabatic vibrational functi
Qa,b(r ) and adiabatic functionsSa,b(r ) separately.

The purpose of this paper is to discuss evaluation of the i
vidual expansion coefficients in detail from optimal fitting p
rameters that are clusters of expansion coefficients and ca
estimated experimentally. Briefly, a consideration has resu
in an experimental method to evaluateQa,b(r ) andSa,b(r ) sep-
arately from optimal fitting parameters that are consistent w
0022-2852/01 $35.00
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the assertion of inseparability, with an aid ofRa,b(r ) evaluated
by Herman and Ogilvie’s method (22) by the use of a rotationa
g factorgJ(r ) and an electric dipole moment functionM(r).

REVIEW OF AN ANALYTIC TREATMENT OF THE
BORN–OPPENHEIMER BREAKDOWN FOR THE

1ω AND 1B FORMALISMS

In previous papers (18–20) we modified a model based on
scheme involving1ω and1B developed by Thompsonet al.
(12) including adiabatic and nonadiabatic correction terms
Born–Oppenheimer breakdown analytically in Dunham’s c
fficientsYi j . We outline first the treatment of Ref. (18) to clarify
definitions and notation.

With the original effective Hamiltonian of Ref. (18) after
Watson (2) for diatomic molecules in electronic state16, the
Schrödinger equation can be written in terms of a varia
ξ = (r − re)/re as[
− h2

8π2µr 2
e

{1+ (me/Ma)Qa(ξ )+ (me/Mb)Qb(ξ )} d2

dξ2

+ h2

8π2µr 2
e(1+ ξ )2

{1+ (me/Ma)Ra(ξ )+ (me/Mb)Rb(ξ )}

× J(J + 1)+ V(ξ )+ (me/Ma)Sa(ξ )

+ (me/Mb)Sb(ξ )

]
ψvJ(ξ )= EvJ(ξ )ψvJ(ξ ), [1]

in whichµ is the reduced mass of a molecule andMa, Mb, and
me are the masses of atomsA andB and the electron, respec
tively. Correction terms−(h2/8π2µr 2

e){(δQ′)2/[4(1+ δQ)] −
δQ′′/2}, after Bunker and Moss (23), in which δQ denotes
(me/Ma)Qa(ξ )+ (me/Mb)Qb(ξ ), have been left out. They ar
smaller than

(
me/Ma,b

)
Sa,b(ξ ) terms and generate correctio

only for energy of orders higher than O(me/Ma,b) (8).
Similarly to Dunham’s original function for potential energ

(17),

V(ξ ) = (1/2)kr2
e ξ

2(1+ a1 ξ + a2 ξ
2+ · · ·), [2]

functions Qa,b(ξ ), Ra,b(ξ ), and Sa,b(ξ ) are expressed, afte
Fernandez and Ogilvie (6), as series expansions ofξ as

Qa,b(ξ ) =
∑
i=0

qa,b
i ξ i , [3]

Ra,b(ξ ) =
∑
i=0

r a,b
i ξ i , [4]

and

Sa,b(ξ ) =
∑
i=1

sa,b
i ξ i , [5]

formally confining our attention to a region with|ξ | < 1. Three
Copyright C© 2001 b
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radial functionsQ(ξ ), R(ξ ), andS(ξ ) serve as local represen
tations (6); none is superfluous or subsidiary. Terms ofsa,b

0 are
removed from Eq. [5] because they yield no effect on Eq. [1
the electronic ground state.

A treatment in Ref. (18) deriving Eq. [5] from the effective
Hamiltonian [2] is incorrect. A wave function9vJ(ξ ) of Eq. [4]
should beAψvJ(ξ )(1+ δQ)−1/2 (23), in whichA is a constant.
A term−(h2/8π2µr 2

e)(δQ′)2/[4(1+ δQ)] should be added to
Eq. [5] in brackets [ ] on theleft side. The corrections do no
affect any other part of Ref. (18) or descriptions of Refs. (19)
and (20).

Mass-independent functionsQa,b(ξ ), Ra,b(ξ ), andSa,b(ξ ), are
correction terms for nonadiabatic vibrational, nonadiabatic ro
tional, and adiabatic effects, respectively (2). The Hamiltonian
[2] of Ref. (18) is written with a variableξ = (r − re) /re; in
that sense, treatments of Ref. (18) are applicable to local rep
resentations nearre in a region with|ξ | < 1. We assume tha
functions Qa,b(ξ ) are sufficiently well behaved functions (6
Our treatments do not include molecular ions; the reduced m
µC in Ref. (18) is replaced withµ.

According to Herman and Asgharian (3) we divide Eq. [1],
ignoring terms of orders higher than O(me/Ma,b), by

1+ (me/Ma)
∑
i=1

qa
i ξ

i + (me/Mb)
∑
i=1

qb
i ξ

i

to obtain[
− h2

8π2µr 2
e

(1+ δq0)
d2

dξ2
+ h2

8π2µr 2
e(1+ ξ )2

(1+ δr0)

×
(

1+
∑
i=1

δr ′i ξ
i

)
J(J + 1)+ (1/2)kr2

eξ
2

×
{

1+
∑
i=1

(ai − δqi ) ξ
i

}
+
∑
i=1

δs′i ξ
i

]
ψvJ(ξ )

= EvJψvJ(ξ ), [6]

in which

δqi = (me/Ma) qa
i + (me/Mb) qb

i , [7]

δr0 = (me/Ma) r a
0 + (me/Mb) r b

0, [8]

δr ′i = (me/Ma)
(
r a

i − qa
i

)+ (me/Mb)
(
r b

i − qb
i

)
, [9]

and

δs′i = (me/Ma)
(
sa
i + qa

i EvJ
)+ (me/Mb)

(
sb
i + qb

i EvJ
)
. [10]

The following notationδxi is used hereafter for a pair of arbitrar
quantitiesxa

i andxb
i :

δxi = (me/Ma) xa
i + (me/Mb) xb

i . [11]
y Academic Press
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A quantityEvJ that appears inδs′i on the left side of Eq. [6] can
be expressed as a known power-series expansion in (v + 1/2)
andJ(J + 1) (3); EvJ in δs′i is treated as a known constant (18).
Similar expressions are utilized by Molski (24) and Coxon and
Hajigeorgiou (25) after Herman and Ogilvie (22), denotingEvJ

on the left side asEBO
vJ . Using Eq. [6] has the advantage that

yields clusters of expansion coefficients1B and1ω for Be and
ωe, respectively (3). EvJ terms on the left side (EBO

vJ ) are minute
corrections but accompanyqa,b

i , which prevents other cluster
of expansion coefficients from being optimal fitting paramete

Equation [6] is rewritten in terms of a variableη = (r −
r ′e)/r

′
e,[
− h2(1+ g1)

8π2µr 2
e

d2

dη2
+ h2(1+ g2)

8π2µr 2
e(1+ η)2

×
(

1+
∑
i=1

δr ′i η
i

)
J(J + 1)+ (1/2)kr2

e(1+ g3)η2

×
(

1+
∑
i=1

ki η
i

)]
ψvJ(η) = EvJψvJ(η), [12]

in which

g1 = δq0+
(
2/kr2

e

)
δs′1, [13]

g2 = δr0+
(
2/kr2

e

)
δs′1, [14]

and

g3 = −
(
1/kr2

e

){(2+ 3a1)δs′1− 2δs′2}, [15]

in which the vibrational energy,Be in the rotational energy
and Dunham’shca0(=kr2

e/2) within the Born–Oppenheime
approximation are corrected with small quantities,g1, g2, and
g3, respectively. The internuclear distancer ′e represents the mini
mum of the function for the effective potential energy compo
of Dunham’sV(ξ ) plus an adiabatic correction and small term
including EvJ . Further details of notation in Eqs. [1] and [1
are given in Ref. (18).

Details of Dunham’s WKB treatment applied to Eq. [12] th
are not presented explicity in Ref. (18) are given in the Appendix

The application of Dunham’s treatment yields vibrationa
rotational energyFvJ(=EvJ/hc) as

FvJ =
∑

i j

Y∗vJ
i j (v + 1/2)i [ J(J + 1)] j . [16]

Modified Dunham coefficientsY∗vJ(0)
i j given in Refs. (18)

and (19) for i j = 01, 02, 03, 04, 10, 11, 12, 20, and 2
are analytic expressions that include correction parame
1

a,b
B , 1r a,b

ω , 1
a,b
ai (i = 1, 2, . . .), r ′ a,bi (i = 0, 1, 2, . . .), and

qa,b
i (i = 1,2, . . .), in which qa,b

i (i = 1,2, . . .) are those
accompanied withEvJ terms on the left side of Eq. [6].
Copyright C© 2001 b
it

rs.

ed
s
]

at

l–

1
ters

Dunham obtainedYi j in a power series with a ratio (Be/ωe)2,

Yi j = Y(0)
i j + Y(2)

i j + Y(4)
i j + · · · , [17]

in which Y(0)
i j means the lowest order term inYi j in the series

with the ratio (Be/ωe)2, i.e., Y(0)
i j is the leading contri-

bution of Yi j that corresponds toUi jµ
−(i+2 j )/2 (26). Since

Y(0)
i j ,Y

(2)
i j , . . . include corrections 1

a,b
B ,1

r a,b
ω ,1

a,b
ai (i =

1, 2, . . .), r ′ a,bi (i = 0, 1, 2, . . .), andqa,b
i (i = 1,2, . . .) we use

the notationsY∗i j
vJ(0),Y∗i j

vJ(2), . . .. The symbol∗means thatY(n)
i j

includes correction parameters. The superscriptvJ signifies
thatY(n)

i t includes small correction terms ofFvJ which originate
from the left side of Eq. [6].

To discuss the consistency of Eq. [6] with Watson’s effe
tive Hamiltonian with R̃a,b and S̃a,b, we should extract
small FvJ terms inY∗vJ

i j by expandingFvJ as a known power
series inYi j (v + 1/2)i [ J(J + 1)] j of the Born–Oppenheime
expansion. The rearranged series expansion has term coeffic
Y∗i j (=Y∗(0)

i j + Y∗(2)
i j + · · ·). Eight relevantY∗(0)

i j (i j = 01, 02,
03, 04, 10, 11, 12, and 20) have been given in Refs. (18) a
(19). Now, a set of 8 modified Dunham coefficientsY∗(0)

i j in-
cludes 10δ correction parameters,δ1B, δ1r

ω, δ1
s
a1, δ1

s
a2,

δr1, δr2, δr3, δr ′0, δq1, andδq2, in which δ1s
a1, δ1

s
a2 are de-

fined by the equations

as
1 = a1

(
1+ δ1s

a1

)
= ad′

1 = a1
[
1− (2Be/ω

2
e

)
×{(1− 3a1+ 4a2/a1)δs1+ 2δs2− 2δs3/a1}

]
, [18]

and

as
2 = a2

(
1+ δ1s

a2

) = ad′
2 + a1δq1

= a2
[
1− (2Be/ω

2
e

){(2− 3a1+ 5a3/a2)δs1

+ 2δs2− 2δs4/a2}
]
. [19]

Quantitiesad′
1 andad′

2 have been defined in Ref. (19).
Our treatment of Eq. [6] is an extension of Dunham’s WK

approach. However, a perturbation treatment (27) of Eq. [6] re-
sults in exactly the same expression forY∗vJ(0)

i j as was referred
to in Ref. (19). When we apply Kilpatrick’s perturbation trea
ment (27) of a vibrator to our case, we obtain exactly the sa
equation as Eq. [A.64]. In order to proceed the solution to t
of a rotating–vibrating molecule, he has introduced a varia
to remove a linear term inξ of the centrifugal energy. The trea
ment of the change of variable is also identical to our treatm
given in Eq. [A.61].

The agreement of results in Refs. (18) and (19) with th
produced with a hypervirial perturbation treatment by Fernan
and Ogilvie (6) is described in Ref. (19).
y Academic Press
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CORRESPONDENCE OF Y∗(0)
i j TO 1i j

Modified Dunham coefficientsY∗(0)
i j can be written as

Y∗(0)
i j = Y(0)

i j {1+ δ(correction terms)i j }
= Y(0)

i j

[
1+ (me/Ma

){(
1a

i j

)ad+ (1a
i j

)nonad}
+ (me/Mb)

{(
1b

i j

)ad+ (1b
i j

)nonad}]
= Y(0)

i j

{
1+ (me/Ma)1

adnad,a
i j + (me/Mb)1adnad,b

i j

}
,

[20]

under the assumption that we can neglect the Bo
Oppenheimer correction terms of orders higher th
O(me/Ma,b). A term δ(correction terms)i j means the por-
tion of theδ correction terms inY∗(0)

i j . According to Watson (1)
and Tiemannet al. (10),101 includes the Dunham correctio
in addition to the adiabatic, (1a,b

01 )ad, and the nonadiabatic
(1a,b

01 )nonad, parts. We can naturally extend those quantities
i, j = 0,1 to otheri, j . As the magnitude ofY(2)

i j is smaller
thanY(0)

i j by a factor(Be/ωe)2, the Dunham correction to1i j is
(µ/meY

(0)
i j )Y(2)

i j ; i.e.,

(me/Ma)1
a

i j + (me/Mb)1 b
i j

= (me/Ma)
{
1

adnad,a
i j + (µ/meY

(0)
i j

)
Y(2)

i j

}
+ (me/Mb)

{
1

adnad,b
i j + (µ/meY

(0)
i j

)
Y(2)

i j

}
= δ(correction terms)i j +

(
1/meY

(0)
i j

)
Y(2)

i j . [21]

Equation [21] gives the correspondence ofY∗(0)
i j to1i j . Expres-

sions forδ(correction terms)i j can be obtained with Eq. [20]
e.g.,

δ(correction terms)01 = δ1B = δr0+
(
4Be/ω

2
e

)
δs1. [22]

EVALUATION OF EXPANSION COEFFICIENTS FROM
EXPERIMENTAL FREQUENCY DATA

Consistency of our result of an analytic approach w
Watson’s assertion of inseparability should be discussed w
explicit expressions forY∗(0)

i j .
We confine our attention to a level of a set of 8Y∗(0)

i j ,
i.e., Y∗(0)

01 , Y∗(0)
02 , Y∗(0)

03 , Y∗(0)
04 , Y∗(0)

10 , Y∗(0)
11 , Y∗(0)

12 , andY∗(0)
20 . In

these 8 quantitiesY∗(0)
i j , 10 correction parameters appear,δ1B,

δ1r
ω, δ1

s
a1, δ1s

a2, δr1, δr2, δr3, δr ′0, δq1, andδq2, in which

δ1r
ω = δr0/2−

(
Be/ω

2
e

)
(3a1 δs1− 2δs2) [23]

and expressions forδ1s
a1 andδ1s

a2 are given in Eqs. [18] and
[19], respectively. These 8Y∗(0)

i j coefficients suffice for mos
Copyright C© 2001 b
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practical purposes. If furtherY∗i j
(0) at higher levels need to b

taken into account, otherδ parameters must be corresponding
included. As the number of experimentally determinableY∗i j

(0)

is 8 for this level of the parameter set of each isotopomer
most 8δ parameters can be evaluated from experiment. O
7 parameters, rather than 8, can actually be evaluated inde
dently because of redundancy betweenδ1adnad, as is described
below.

As a first step, a criterion is to select 8 independent clust
made from 10δ, that can be solved analytically to be express
in terms of 8 experimental values, i.e., values of 8,Y∗i j

(0). The
clusters ofδ parameters can then be experimentally evalua
Calculations are made with a symbolic processor, REDUCE
all discussion we assume that correction terms of orders hig
than O(me/Ma,b) are negligible.

Clusters ofδ parameters are selected most readily with r
erence to Watson’s̃Ra,b and S̃a,b (2). As R̃a,b and S̃a,b are ex-
pressed in terms of a variable denoting internuclear distancr ,
we rewrite them with a reduced variableξ , as

R̃a,b(ξ )= Ra,b(ξ )− 1

1+ ξ
∫ ξ

ξ0
Qa,b(ξ ) dξ =

∑
i=0

r̃ a,b
i ξ i , [24]

S̃a,b(ξ )= Sa,b(ξ )+ 1

2

dV(ξ )

dξ

∫ ξ

ξ0
Qa,b(ξ ) dξ =

∑
i=0

S̃a,b
i ξ i , [25]

in which{
r̃ a,b

0 , r̃ a,b
1 , r̃ a,b

2 , r̃ a,b
3

}
= {r a,b

0 − P
(
ξ

a,b
0

)
, r a,b

1 + P
(
ξ

a,b
0

)−qa,b
0 , r a,b

2 −P
(
ξ

a,b
0

)+qa,b
0

−qa,b
1 /2,r a,b

3 + P
(
ξ

a,b
0

)− qa,b
0 + qa,b

1 /2− qa,b
2 /3

}
, [26]

and{
s̃a,b

0 , s̃a,b
1 , s̃a,b

2 , s̃a,b
3 , s̃a,b

4

}
={sa,b

0 , sa,b
1 +

(
ω2

e/4Be
)
P
(
ξ

a,b
0

)
,

sa,b
2 +

(
ω2

e/4Be
)(

3a1P
(
ξ

a,b
0

)
/2+ qa,b

0

)
,

sa,b
3 +

(
ω2

e/2Be
)(

a2P
(
ξ

a,b
0

)+ 3a1q
a,b
0 /4+ qa,b

1 /4
)
,

sa,b
4 +

(
ω2

e/2Be
)(

5a3P
(
ξ

a,b
0

)
/4+ a2q

a,b
0

+ 3a1q
a,b
1 /8+ qa,b

2 /6
)}
, [27]

in which ξ0 corresponds to Watson’s arbitrary value for a low
limit of integration andP(ξa,b

0 ) is a definite integral ofQa,b(ξ )
from ξ

a,b
0 to 0. Physical significance ofξ0 is not clear (6) but we

use this as a formal parameter. These equations indicate
clusters of expansion coefficients,δr̃0, δr̃1, δr̃2, δr̃3, δs̃1, δs̃2, δs̃3,
andδs̃4.

Watson (2) eliminatedδr̃0 setting P(ξa,b
0 ) = r a,b

0 . It is clear
from Eqs. [26] and [27] that one cannot eliminater a,b

0 from
y Academic Press
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Y∗ (0)
i j by such a treatment, as has been remarked also by C

and Hajigeorgiou (25).
Watson’sR̃a,b andS̃a,b imply that a replacement of{δq0, δq1,

δq2, δr0, δr1, δr2, δr3, δs1, δs2, δs3, δs4} in expressionsY∗ (0)
i j with

{0, 0, 0, 0,δr̃1, δr̃2, δr̃3, δs̃1, δs̃2, δs̃3, δs̃4} settingP(ξa,b
0 ) = r a,b

0

reproduces exactly the same expressions forY∗ (0)
i j . We confirm

this for our analytical expressions ofY∗ (0)
i j as follows.

RetainingP(ξa,b
0 ) as an arbitrary quantity in the 8 clusters

coefficients, a replacement of{
δq0, δq1, δq2, δr0, δr1, δr2, δr3, δs1, δs2, δs3, δs4

}
→ {

0, 0, 0, δr̃0, δr̃1, δr̃2, δr̃3, δs̃1, δs̃2, δs̃3, δs̃4
}

applied to a set of 10δ parameters{δ1B, δ1r
ω, δ1s

a1, δ1
s
a2, δr

′
0,

δr1, δr2, δr3, δq1, δq2} yields 8 clusters of parameters,{
δ1B, δ1

r
ω − δP(ξ0)/2+ δq0/2,

δ1s
a1− δP(ξ0)/2+ δq0/2+ δq1/(2a1),

δ1s
a2− δP(ξ0)+ δq0+ 3a1δq1/(4a2)+ δq2/(3a2),

δr0− δP(ξ0), δr1+ δP(ξ0)− δq0,

δr2− δP(ξ0)+ δq0− δq1/2,

δr3+ δP(ξ0)− δq0+ δq1/2− δq2/3, 0, 0
}

≡ {8 clusters, 0,0}. [28]

Then a replacement{
δ1B, δ1

r
ω, δ1

s
a1, δ1

s
a2, δr

′
0, δr1, δr2, δr3, δq1, δq2

}
→ {8 clusters, 0, 0}

applied to Y∗ (0)
i j , given in Refs. (18) and (19), reproduce

identical expressions forY∗ (0)
i j . The arbitrary quantityδP(ξ0)

vanishes. Therefore, it is confirmed that a replacemen
{δq0, δq1, . . . , δr0, δr1, . . . , δs1, δs2, . . .} in expressions ofY∗ (0)

i j
with {0,0, . . . , δr̃0, δr̃1, . . . , δs̃1, δs̃2, . . .} yields exactly the
same energy expressions; Watson’s effective Hamiltonian
R̃a,b andS̃a,b yields the same analytic expressions asY∗ (0)

i j .
Proceeding to the next step, the system determinant to s

those eight equations for eight unknowns, i.e., the eight c
ters of parameters withoutδP(ξ0), is calculated symbolically
to be zero with REDUCE; these eight equations have on
more redundancies. SinceδP(ξ0) vanishes it is left out. When
a component,δr̃0, among{eight clusters, 0, 0} is absorbed into
other clusters, the expressions of the eightY∗ (0)

i j can eventually
be rewritten by the use of a set of seven combinedδ parameters,
i.e., correction parameters ofδ1B and six parameters given b

δ1ω = δ1r
ω − δr ′0/2, [29]

δ1a1q = δ1s
a1− δr ′0/2+ δq1/2a1, [30]

δ1a2q = δ1s
a2− δr ′0+ 3a1δq1/4a2+ δq2/3a2, [31]
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δr1q = δr1+ δr ′0, [32]

δr2q = δr2− δr ′0− δq1/2, [33]

and

δr3q = δr3+ δr ′0+ δq1/2− δq2/3. [34]

We call these seven clusters of the expansion coefficients opt
fitting parameters hereafter. The optimal fitting parameters
be solved analytically to be expressed with seven appropr
experimental values ofY∗ (0)

i j . Quantitiesδri q (i = 1,2, and 3)
are identical withδr̃ i (i = 1,2, and 3) under the condition tha
P(ξa,b

0 ) = r a,b
0 :

δri q = δr̃ i ,
[
i = 1,2,3 andP

(
ξ

a,b
0

) = r a,b
0

]
. [35]

Optimal parametersδ1B, δ1ω, δ1a1q, andδ1a2q are correc-
tions of the type ofδpi in pi (1+ δpi ) in which pi represents
one of Be, ωe, a1, or a2, respectively, andδr1q, δr2q, andδr3q

are those of successiveξ i (i = 1,2, and 3) terms of a serie
expansion of the rotational parameterB(ξ ); i.e., optimal fit-
ting parameters comprise corrections forBe, ωe,a1,a2,a3, . . . ,

and those for successive terms of a power series expan
[ξ i (i = 1,2,3, . . .) terms] forB(ξ ).

Modified Dunham coefficientsY∗ (0)
i j written by those param-

eters are given as

Y∗ (0)
01 = Bd

e = Be(1+ δ1B), [36]

Y∗ (0)
02 = −

(
4Bd3

e /ω
2
e

)
(1− 2δ1ω − δr1q)

= −[4{Be(1+ δ1B)}3/{ωe(1+δ1ω)}2](1− δr1q), [37]

Y∗ (0)
03 =

(
16Bd5

e /ω
4
e

){3+ a1− 4(3+ a1)δ1ω + a1δ1a1q

− (5+ 3a1/2)δr1q+ δr2q}
= [16{Be(1+ δ1B)}5/{ωe(1+ δ1ω)}4]

×{3+a1(1+ δ1a1q)− (5+ 3a1/2)δr1q+ δr2q}, [38]

Y∗ (0)
04 =

(
16Bd 7

e /ω6
e

){−52− 36a1+ 4a2− 9a2
1

+ 6
(
52+ 36a1− 4a2+ 9a2

1

)
δ1ω

− 36a1δ1a1q+ 4a2δ1a2q− 18a2
1δ1a1q

+ (120+ 78a1− 8a2+ 18a2
1

)
δr1q

− (32+ 12a1)δr2q+ 4δr3q
}

= [16{Be(1+ δ1B)}7/{ωe(1+ δ1ω)}6]

× [− 52− 36a1(1+ δ1a1q)

+ 4a2(1+ δ1a2q)− 9{a1(1+ δ1a1q)}2

+ (120+ 78a1− 8a2+ 18a2
1

)
δr1q

− (32+ 12a1)δr2q+ 4δr3q
]
, [39]
y Academic Press
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Y∗ (0)
10 = ωe(1+ δ1ω), [40]

Y∗ (0)
11 = (Bd 2

e /ωe){6(1+ a1)− 6(1+ a1)δ1ω

+ 6a1 δ1a1q− (4+ 3a1)δr1q+ 2δr2q}
= [{Be(1+ δ1B)}2/{ωe(1+ δ1ω)}]
×{6+6a1(1+δ1a1q)− (4+ 3a1)δr1q+2δr2q}, [41]

Y∗ (0)
12 =

(
Bd4

e /ω
3
e

){−114− 108a1+ 48a2− 54a2
1

+ 3
(
114+ 108a1− 48a2+ 54a2

1

)
δ1ω

− 108
(
a1+ a2

1

)
δ1a1q+ 48a2δ1a2q

+ (144+ 126a1− 48a2+ 54a2
1

)
δr1q

− (60+ 36a1)δr2q+ 24δr3q
}

= [{Be(1+ δ1B)}4/{ωe(1+ δ1ω)}3]

× [−114− 108a1(1+ δ1a1q)

+ 48a2(1+ δ1a2q)− 54{a1(1+ δ1a1q)}2

+ (144+ 126a1− 48a2+ 54a2
1

)
δr1q

− (60+ 36a1)δr2q+ 24δr3q
]
, [42]

and

Y∗ (0)
20 = −

(
Bd

e/8
){

3
(
5a2

1 − 4a2
)+ 30a2

1δ1a1q− 12a2δ1a2q
}

= −{Be(1+ δ1B)/8}[15{a1(1+ δ1a1q)}2

− 12a2(1+ δ1a2q)]. [43]

Watson’s treatment in which̃Ra,b(ξ = 0) is made to vanish
by settingP(ξa,b

0 ) = r a,b
0 signifies that only seven clusters a

independent. Equations [36]–[43] can also be obtained by
ply replacing{δq0, δq1, δq2, δr0, δr1, δr2, δr3, δs1, δs2, δs3, δs4}
in expressions ofY∗ (0)

i j in Refs. (18) and (19) with clusters of
{0,0,0,0, δr̃1, δr̃2, δr̃3, δs̃1, δs̃2, δs̃3, δs̃4}, in which conditions
P(ξa,b

0 ) = r a,b
0 are applied.

Therefore, one can use a set of expansion coefficient
R̃a,b and S̃a,b, i.e., δr̃1, δr̃2, δr̃3, δs̃1, δs̃2, δs̃3, andδs̃4, as op-
timal fitting parameters, instead ofδ1B, δ1ω, δ1a1q, δ1a2q,
δr1q, δr2q, and δr3q, replacing{δq0, δq1, δq2, δr0, δr1, δr2,
δr3, δs1, δs2, δs3, δs4} in Y∗ (0)

i j in Refs. (18) and (19) with
{0,0,0,0, δr̃1, δr̃2, δr̃3, δs̃1, δs̃2, δs̃3, δs̃4}, which are related
to expansion coefficients forQa,b(ξ ), Ra,b(ξ ), and Sa,b(ξ ) by
Eqs. [26] and [27]. However, if analytical expressions forY∗ (0)

i j
are not utilized when one usesδr̃ i andδs̃i as fitting parameters
one must take redundancies betweenY∗ (0)

i j explicitly into ac-
count so as not to estimate incorrectly some parameters on i
duction of correction terms of order O(m2

e/M2
a,b) unexpectedly.

Redundancies exist only within the approximation that corr
tion terms of the orders higher than O(me/Ma,b) are ignored. A
set of fitting parametersδ1B, δ1ω, δ1a1q, δ1a2q, δr1q(= δr̃1),
Copyright C© 2001 b
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δr2q(= δr̃2), andδr3q(= δr̃3) has simpler physical significanc
than that ofδr̃1, δr̃2, δr̃3, δs̃1, δs̃2, δs̃3, andδs̃4.

REDUNDANCIES BETWEEN Y∗ (0)
i j OR δ1adnad

i j

As the eightY∗ (0)
i j coefficients of Eqs. [36]–[43] are expresse

with only seven independent parameters for Born–Oppenhe
corrections, one redundancy exists among these eightY∗ (0)

i j or
δ4adnad

i j . More redundancies exist with sets ofY∗ (0)
i j or equiva-

lently δ1adnad
i j at higher levels. A redundancy that exists in fi

Y∗ (0)
i j at the level of eightY∗ (0)

i j , i.e.,Y∗ (0)
03 ,Y∗ (0)

04 ,Y∗ (0)
11 ,Y∗ (0)

12 ,
andY∗ (0)

20 , is

24(6+ a1)C03+ 6C04− 6(1− a1)C11− C12+ 2C20

= 6
(
13+ 18a1+ 5a2

1

)
C10− 120C02, [44]

in which

C03 =
(
ω4

e/16B5
e

)
Y∗ (0)

03 − (3+ a1), [45]

C04 =
(
ω6

e/16B7
e

)
Y∗ (0)

04 +
(
52+ 36a1− 4a2+ 9a2

1

)
, [46]

C11 =
(
ωe/B2

e

)
Y∗ (0)

11 − 6(1+ a1), [47]

C12 =
(
ω3

e/B4
e

)
Y∗ (0)

12 +
(
114+ 108a1− 48a2+ 54a2

1

)
, [48]

and

C20 = (8/Be)Y
∗ (0)
20 −

(
12a2− 15a2

1

)
. [49]

As the lowest level of a set of threeY∗ (0)
i j , i.e.,Y∗ (0)

01 ,Y∗ (0)
02 , and

Y∗ (0)
10 , includes just three parameters,δ1B, δ1ω, andδr1q, those

Y∗ (0)
i j coefficients have no redundancy. Therefore,C02 andC10

on the right side of Eq. [44] should be fixed to

C02 =
(
ω2

e/4B3
e

)
Y∗ (0)

02 + 1, [50]

C10 = δ1ω. [51]

With explicit expressions of Eq. [20] forδ1adnad
i j , Eq. [44] pro-

vides redundancy betweenδ1adnad
03 , δ1adnad

04 , δ1adnad
11 , δ1adnad

12 ,
andδ1adnad

20 . Three parameters,δ1B, δ1ω andδr1q, can be di-
rectly estimated from the lowest level of a set of threeY∗ (0)

i j .
Redundancy between1i j should be considered when on

analyzes spectra with empirical1i j parameters. If analytica
expressions forY∗ (0)

i j are utilized, fits with optimal correction
parameters eliminate any problem of redundancy between1i j .

APPLICATION

In order to test the present expressions to evaluate indi
ual expansion coefficients, we have analyzed data of lith
hydride utilized in a previous work (19) plus that of additional
y Academic Press
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rotational transitions (28): 151 rotational and 354 vibrationa
rotational FTS measurements (29), 27 vibrational–rotatio
diode laser measurements (29), 22 (30) plus 19 (28) rotational
measurements with tunable far-infrared spectrometers,
10 millimeter-wave measurements (31, 32). We have se-
lected spectral data of 19 transitions from Ref. (28) which
are not reported in Ref. (30). In total 583 spectral lines
for four isotopomers of lithium hydride are analyzed u
ing Eqs. [36]–[43]. OtherYi j and higher order contributions
Y(2)

i j are taken from Bouanich (33), Woolley (34), Ogilvie
and Bouanich (35), Ogilvie and Tipping (36), and Ueha
(19); explicitly, 21 Y(0)

i j , i.e., ij = 05, 06, 07, 08, 13, 14,
15, 16, 21, 22, 23, 24, 30, 31, 32, 33, 40, and 41, a
9 Y(2)

i j , i.e., 01, 02, 03, 10, 11, 12, 20, 21, and 30, are add
in the analysis. Other terms of greater order withY(n≥4)

i j are ex-
cluded.

Transitions of four isotopomers are fitted simultan
ously to a model retaining 20 adjustable paramete
Uω(=µ1/2ωe),UB(=µBe),a1,a2,a3,a4,a5,a6,a7, 1H

ω , 1Li
ω ,

1H
B,1

Li
B , r

H
1q, r

Li
1q, r

H
2q, r

Li
2q, r

H
3q,1

H
a1q, and1H

a2q, in which 11 later
ones are the optimal fitting parameters for corrections. Ot
parameters are set to zero. These parameters are connecte
the vibrational–rotational energy levels throughY∗ (0)

i j ,Y(0)
i j , and

Y(2)
i j , described above. Weights of measured frequencies are

sumed to be proportional to (1/δobs)2 except 19 transitions of
Ref. (28) for which we used their obs-calc values for valu
of δobs. Atomic masses are taken from Audi and Wapstra (37).
With 20 parameters the normalized standard deviation of th
is 1.12, substantially equal to that obtained previously (19). The
molecular parameters determined in the present fit are show
Table 1.

TABLE 1
Dunham Potential Constants and Optimal Fitting Parameters

for Corrections for Lithium Hydride

aThe uncertainty (one standard error) in the last digits is given in parenth
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In Table 2, expressions of the optimal fitting parameters
terms of expansion coefficients are reproduced. Those cluste
the coefficients can be resolved through functions for rotatio
g factor gJ(ξ ) and an electric dipole moment functionM(ξ ).
Herman and Ogilvie (22) provided relations between nonadi
batic expansion coefficientsr a,b

i andgJ(ξ ) andM(ξ ) to estimate
r a,b

i utilized in the spectral analysis,

gJ(ξ )=
∑
i=1

{
(mp/Ma)r

a
i + (mp/Mb)r b

i

}
ξ i = (mp/me)

∑
i=1

δri ξ
i

[52]

and

2M(ξ )/{ere(1+ ξ )} =
∑
i=1

(
r b

i − r a
i

)
ξ i . [53]

Equation [53] is defined for a moleculeAB of relative polarity
−AB+.

If functions of gJ(ξ ) and M(ξ ) for LiH are avail-
able by another means (21), we can estimater H,Li

i (i =
0,1,2,and 3) with which values of the fitting paramete
1H,Li
ω ,1

H,Li
B , r H,Li

1q , r H,Li
2q , r H,Li

3q ,1
H,Li
a1q , and1H,Li

a2q can be resolved
to yield expansion coefficientsqa,b

i andsa,b
i . CoefficientssH,Li

1 ,
qH,Li

0 ,qH,Li
1 ,qH,Li

2 , sH,Li
2 , sH,Li

3 , and sH,Li
4 are obtained succes

sively from1H,Li
B , r H,Li

1q , r H,Li
2q , r H,Li

3q ,1H,Li
ω ,1

H,Li
a1q , and1H,Li

a2q , re-
spectively. In Table 2 each expansion coefficient is listed on
right side of the corresponding optimal fitting parameter.

The rotationalg factorgJ(ξ ) and the electric dipole-momen
function M(ξ ) can be determined from experiments under
ternal fields. Therefore, the above procedure means that n
diabatic vibrational,Qa,b(ξ ), nonadiabatic rotational,Ra,b(ξ ),
and adiabatic,Sa,b(ξ ), effects are completely separable by e
periments if one accepts Herman and Ogilvie’s relation [5
and [53]. AsY∗ (0)

01 includes only one determinable parame
δ1B given in Eq. [20] and does not includeqa,b

i , accepted
physical significance of the rotational constantBe (1, 38) is
justified.

Only in this way can one resolve clusters of expansion coe
cients in the present absence of reliable estimates ofqa,b

i or sa,b
i

by another appropriate means. In a fit of spectral data of L
Ogilvie et al.(21) constrained a functionRH,Li (ξ ) to values cal-
culated from the rotationalg factor and electric dipole momen
and evaluated individual values of expansion coefficients.
present approach of an evaluation of expansion coefficien
substantially the same as that of Ogilvieet al. (21), although
they chosesH

3 (in the present notation,qH
3 ), instead ofsH

2 , as
a fitting parameter. The essence of the present approach
an optimal selection of fitting parameters that are clusters
expansion coefficients.

Therefore, one cannot estimate the rotationalg factor and the
electric dipole moment from pure rotational and vibrationa
rotational spectra unless relevant values ofqa,b

i or sa,b
i are

estimated by other sources or neglected (39, 40). To evaluate
Academic Press
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TABLE 2
Expansion Coefficients for Lithium Hydride

a〈0 |L2
x + L2

y | 0〉 = 2.18(h/2π)2 is assumed and a relationsH
i = sLi

i is applied after Ref. (41).
b The uncertainty estimated by the error propagation.
c See text.
n
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ver,
all three coefficients,qi , ri , andsi , usinggJ(re) and a dipole
moment function (25) is similarly impracticable because co
straints obtained from only the dipole moment function do
affect the inner structure of optimal fitting parameters, or in ot
words, Watson’s̃Ra,bandS̃a,b. An additional relation for electric
dipolar moment (22),

d

dξ
M(ξ ) = (ere/2)

∑
i=1

(
qb

i − qa
i

)
ξ i , [54]

provides constraints between optimal fitting parametersr a
i q(=

r̃ a
i ) andr b

i q for i = 1, 2, ...:

r a
i q = r b

i q. [55]

Table 1 shows that experimental values ofr H
1q andr H

2q are nearly
equal to those ofr Li

1q andr Li
2q, respectively, within experimenta

errors.
Adiabatic and nonadiabatic expansion coefficients evalu

from parameters in Table 1 are listed in Table 2. This is the
estimate of adiabatic and non-adiabatic expansion coeffici
made on the basis of detailed consideration of the experime
determinacy of coefficients based on Watson’sR̃a,b and S̃a,b.
Fixed parametersr H,Li

0 , r H,Li
1 , r H,Li

2 , andr H
3 , listed in Table 2 are

obtained from accurate functions forgJ(ξ ) and dipolar momen
given by Ogilvieet al. (8, 21) with Eqs. [52] and [53].
Copyright C© 2001 by
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Adiabatic functionsSa,b(ξ )(sa,b
i , i = 1,2,3, and 4) for LiH

agree well simply with those given by wobble–stretch theo
(1, 10, 41). If we assume, in the wobble–stretch theory, t
〈0 | L2

x + L2
y | 0〉 is independent ofr and of isotopic substitution

(1), Watson’s expression forSa,b(r ) (1) yields

SH(ξ ) = sH
0 + sH

1 ξ + sH
2 ξ

2+ sH
3 ξ

3+ · · ·
∼ SLi (ξ )

∼ {〈0 | L2
x + L2

y | 0
〉
/
(
2mer

2
e

)}
× (1− 2ξ + 3ξ2− 4ξ3+ · · ·). [56]

In Table 2, values ofsH,Li
1 , sH,Li

2 , sH
3 , and sH

4 calculated with
Eq. [56] and

〈
0
∣∣ L2

x + L2
y

∣∣ 0〉{= L(L + 1)(h/2π)2} = 2.18(h/2π)2, [57]

are listed. The value of the matrix element is near that forL = 1.
Although the wobble–stretch theory provides a rough estim
with an assumption ofsH

i = sLi
i , the sign and magnitude of ex

perimental values of the expansion coefficients ofSH,Li (ξ ) are
reproduced well with this theory.

We ignoresH,Li
0 from Eq. [5] because these terms do not part

ipate in spectral transitions within one electronic state. Howe
Academic Press
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if the wobble–stretch theory is assumed to be applicable, a v
of sH

0 = sLi
0 is estimated to be∼0.264 from Eq. [56]. Extended

determinations ofSa,b(ξ ), using the present method for oth
molecules will provide useful understanding of the adiaba
functionsSa,b(ξ ).

An estimate of the vibrationalg factor

gv(ξ = 0)= (mp/MH)qH
0 + (mp/MLi )q

Li
0 [58]

is−0.154(16) for7LiH (22). Values ofBe, re, ωe, andk from the
present fit are 7.520 214 0(20) cm−1, 1.594 911 3(11)×10−10 m,
1 406. 079 2(12) cm−1, and 102.651 05(11) Nm−1, respectively,
for 7LiH.

APPENDIX

Equation [12] is written as

d2ψ

dη2
+ 1

B′e
(FvJ −UJ)ψ = 0 [A.59]

and

UJ =
(
ω2

e/4Be
)
(1+ g3)η2

(
1+

∑
i=1

ki η
i

)
+ Be(1+ g2)

×
(

1+
∑
i=1

r ′i η
i

)
(1+ η)−2J(J + 1)

= k0η
2(1+ k1η + k2η

2+ · · ·)+ B∗e J(J + 1){1− 2

× (1−δr ′1/2)η+ 3(1−2δr ′1/3+δr ′2/3)η2−· · ·}, [A.60]

in which B∗e = Be(1+ g2), B′e = Be(1+ g1) = B∗e(1− δr ′0)
and all quantities involving the energy are in cm−1 : EvJ of
Eq. [12] is replaced byhcFvJ and Be[= h/(8π2cµr 2

e)], ωe[=
(1/2πc)(k/µ)1/2], andδs′i are in cm−1.

A variableρ such thatη = ρ + ε is introduced, whereε is
so chosen that the minimum ofUJ falls to the pointρ = 0.
According to Dunham (17) and Kilpatrick (27) the displacemen
ε can be expressed as

ε =
∑
i=1

εi
{(

B∗e/ω
∗
e

)2
J(J + 1)

}i
, [A.61]

in which the magnitude of each term on the right side
Eq. [A.61],εi {(B∗e/ω∗e)2J(J + 1)}i , decreases successively wi
i (=1,2,3, . . .) to a proportional factor (Be/ωe)2. Coefficientsεi

are determined with the condition that(
dUJ

dρ

)
ρ=0

= 0 [A.62]

and the fact that the quantum numberJ can take arbitrary num
bers. Then, as has been shown by Dunham (17), the potential
Copyright C© 2001 b
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UJ is expressed as a power series inρ of the same form a
Eq. [2],

UJ = κ J
0 ρ

2
(
1+ kJ

1ρ + kJ
2ρ

2+ · · · )+U J
0 . [A.63]

Quantities with a superscriptJ in Eq. [A.63] are those expresse
in polynomials ofJ(J + 1).

By use of Dunham’s result (16, 17), which has also been de
rived with perturbation theory, the eigenvalueFvJ in Eq. [A.59]
can be obtained through

F ′ = B′eA′1A′3/16+ A′1B′1/2e (v + 1/2)+ (B′3/2e A′21 /32
)

× (5A′5− B′2A′3)(v + 1/2)− (B′eB′2A′21 /4)(v+ 1/2)2

+ (B′2e A′31 /128
)(

35A′7− 15B′2A′5+ 3A′3B′22 − 3A′3B′4
)

× (v + 1/2)2+ (B′3/2e A′31 /8)(B′22 − B′4)(v + 1/2)3

+ (B′2e A′41 /64
)(

10B′2B′4− 5B′32 − 5B′6
)

× (v + 1/2)4+ · · · , [A.64]

in which

F ′ = FvJ −U J
0 , [A.65]

A′1 = 2κJ1/2
0 ; A′2 = 2kJ

1 ; . . . ; etc., [A.66]

B′2 =
(
1/2κJ

0

)(
15kJ2

1 /4− 3kJ
2

)
; . . . ; etc. [A.67]

Equation [A.64] is the same as that given by Dunham exc
that a symbol′ is here attached to all quantities. A mispr
in Dunham’s original equation was corrected in Ref. (18). B′e
is defined in Eq. [A.59], and a symbol′ for other quantities
means that those given by Dunham were slightly corrected
cording to Eqs. [A.66] and [A.67]. The above calculation yie
vibrational–rotational energyFvJ .
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