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To evaluate individual expansion coefficients composing fitting parameters of the Born—Oppenheimer corrections to Dunham’s
coefficientsY;; that have been given analytically with thes and A, formalism, we examined the consistency of analytic
expressions for those corrections with Watson's assertion of the experimental inseparability of nonadiabatic ca@iggtipns
for a moleculeAB. Derived analytic expressions in terms of optimal fitting parameters for the corrections are essential to evaluate
individual expansion coefficients. These expressions also reveal redundancies between empirical correction pararAeters
method of evaluating nonadiabatic vibrational correcti@ag,(r) and adiabatic correctiornS, ,(r) separately consistent with
Watson’s assertion of inseparability is presented and is applied to an analysis of spectral data of LiH. F@gtiansl
S.p for LiH are thus successfully evaluateSi; ; (r) values agree well with those predicted simply by wobble-stretch theory.
Experimental values for optimal fitting parameteﬁ‘@andr{‘q are nearly equal to those qu anerLg, respectively, in agreement
with a theoretical relation?, = ri‘a. © 2001 Academic Press

Key Words:Born—Oppenheimer correction; adiabatic; nonadiabatic correction; optimal parameter; expansion coefficient;
redundancya;.

INTRODUCTION tributions from the correction terms in the Hamiltonian to the
Dunhamy;; coefficients (18-20).

Contemporary infrared and microwave spectrometers enablélhese results were applied to Lilg, 19) and CaH molecules
measurements of many spectral lines for diatomic molecul@9). Under the restriction of Watson’s inseparability@f ()
for many vibrational states and various isotopomers. To arestimated values of fitting parameters for the corrections wer:
lyze such spectral lines considerations of adiabatic and naonsidered to be effective, and we could not procesd-20)
adiabatic corrections to the Born—Oppenheimer approximatitmrelate values of fitting parameters to any physical quantities
(1-8) are indispensable. A conventional method to take those., moleculag; values, electric dipole moments, and matrix
corrections into account was to fit spectral lines to thel) elements of operators. Evaluation of individual expansion coeffi
levels of a molecul@B expressed with a set of parameters thafents forQa n(r), Ran(r), andS, u(r) from fitting parameters is
includes correction parametaﬁﬁ}’b by Rosset al. (9), Bunker necessary to relate values of fitting parameters to those physic
(4), and Watsond). Watson discussed experimental inseparabiuantities which can be expressed with expansion coefficients
ity of nonadiabatic vibrational effect3, p(r) from nonadiabatic ~ Analytic expressions of modified Dunhang in terms of the
rotational Ry p(r) and adiabaticS, (r) effects. The correction Born—-Oppenheimer correction parameters indicate that func
parametersAf’?’b have since been treated merely as empiricibns Qa (1), Ran(r), andS, p(r) are experimentally separable
parameters for spectral fits (10). if Rqp(r) are estimated with experiments under the externa

Fernandez and Ogilvie provided, with hypervirial perturfields or by theoretical calculation (21, 22). Ogihgeal. (21)
bation theory (11), analytic expressions for those correctionalculated functions oR, (r) for LiH and, imposing those as
on the Dunham coefficient®) expressing adiabatic and nonconstraints in a fit of spectral data of LiH, evaluated individ-
adiabatic effects in the Hamiltonian with a series expansial expansion coefficients for nonadiabatic vibrational functions
of &[=(r —re)/rel (6) or Z[=2(r —re)/(r +1e)] (5). Follow- Qa(r) and adiabatic functionS, (r) separately.
ing their analytic approach for the Born—Oppenheimer cor- The purpose of this paper is to discuss evaluation of the indi
rections, we modified the&\, and Ag scheme of a potential vidual expansion coefficients in detail from optimal fitting pa-
model by Thompsoeet al. (12), with which we analyzed spec-rameters that are clusters of expansion coefficients and can |
tra of molecules 13-15), extending Dunham’s treatmef6( estimated experimentally. Briefly, a consideration has resulte
17) for the Schrodinger equation based on Watson'’s effectiiean experimental method to evaluddg (r) and S, u(r) sep-
Hamiltonian (2), and obtained a compact expression for the carately from optimal fitting parameters that are consistent witt
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144 UEHARA AND OGILVIE

the assertion of inseparability, with an aid Bf ,(r) evaluated radial functionsQ(£), R(¢), and S(¢) serve as local represen-
by Herman and Ogilvie’s metho@Z2) by the use of a rotational tations (6); none is superfluous or subsidiary. Termq§‘8fare

g factorg;(r) and an electric dipole moment functitv(r). removed from Eq. [5] because they yield no effect on Eq. [1] in
the electronic ground state.
REVIEW OF AN ANALYTIC TREATMENT OF THE A treatment in Ref.18) deriving Eqg. [5] from the effective
BORN-OPPENHEIMER BREAKDOWN FOR THE Hamiltonian [2] is incorrect. A wave functiow, ;(£) of Eq. [4]
A, AND Ag FORMALISMS should beAyr, ;(£)(1+ §Q)~Y/? (23), in whichA is a constant.

A term —(h?/872ur2)(8Q’)?/[4(1 + 5 Q)] should be added to

In previous papersl@—20) we modified a model based on &q. [5] in brackes [ ] on theleft side. The corrections do not
scheme involvingA,, and Ag developed by Thompsoet al.  affect any other part of Ref18) or descriptions of Refs19)
(12) including adiabatic and nonadiabatic correction terms fapd (20).
Born—Oppenheimer breakdown analytically in Dunham’s coe- Mass-independent functio@a p(€), Ran(€), andS, u(&), are
fficientsYj;. We outline first the treatment of RelL&) to clarify  correction terms for nonadiabatic vibrational, nonadiabatic rota
definitions and notation. tional, and adiabatic effects, respectively.(The Hamiltonian

With the Original effective Hamiltonian of ReflS) after [2] of Ref. (18) is written with a Variab|§ = (r — re)/re; in
Watson (2) for diatomic molecules in electronic stéfe the that sense, treatments of Ref8] are applicable to local rep-
Schrodinger equation can be written in terms of a variabjgsentations neat in a region with|&| < 1. We assume that

&= —re)/reas functions Q, n(&) are sufficiently well behaved functions (6).
he & Our treatments do not include molecular ions; the reduced ma:
. 14+ (Mo/M + (M/M u uc in Ref. (18) is replaced with.
[ 8712/”3{ (Me/Ma)Qaf5) + (Me/ b)Qb(é)}déz According to Herman and AsghariaB)(we divide Eq. [1],
h2 ignoring terms of orders higher than Q{iv, p), by

+ g g (e MIRE) + (Me/ Mo)Ro)

1 R Ma ia i e M ib
% 33+ 1)+ V(E) + (Me/ MISKE) +(me/Ma) %! +(me/ M) )¢

+ (me/Mb)S)(E):| Vu3(8) = Eva(§)¥ua(8), [1] to obtain
. . . h2 d? h2
in which . is the reduced mass of a molecule avig My, and [ — e (146800)—= + —————— (14 5r0)
me are the masses of atomsandB and the electron, respec- 8r2ur2 dg2 = 8r?ur2(1+¢)?
tively. Correction terms-(h?/872ur2){(§Q")?/[4(1 + §Q)] —
8Q"/2}, after Bunker and Moss28), in which§Q denotes X (1+ Z(Sr{gi)J(J + 1)+ (1/2)kr2g?
i=1

(mg/Ma) Qa(&) + (Me/Mp)Qp(£), have been left out. They are

smaller than(me/ Ma,b)Sa,b(g) terms and generate corrections , )

only for energy of orders higher than OfiM, v) (8). x {1 +) (& —8g) ¢ } +> 55{5'}%3(&)
Similarly to Dunham’s original function for potential energy i=1 i=1

(1D! = EUJ I/IUJ(S)’ [6]
V() = (/2K E2(L+ &g & + a2 +--2), [2] inwhich
functions Qap(§), Rap(§), and S.p(§) are expressed, after 86 = (Me/Ma) G + (Me/ Mp) 0, [7]
Fernandez and Ogilvie (6), as series expansio§sasf b
8ro = (Me/Ma) 15 + (Me/Mp) rg, (8]
Qanl€) = Yo%, 3] 51! = (Me/Ma) (17— 07) + (Me/M) (P — ), [9]
i=0
Ran€) = Y r%", [4] and
i=0
and 85 = (Me/Ma)(s* + OFEy3) + (Me/Mp)(s” + AP Evy). [10]
_ abi The following notatiordx; is used hereafter for a pair of arbitrary
Sup(§) = ;% g, [5] quantitiesx? andx?:
formally confining our attention to a region with| < 1. Three 8% = (Me/Mg) X + (Me/Mp) xib. [11]
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EXPANSION COEFFICIENTS AND OPTIMAL FITTING PARAMETERS 145

A quantity E, ; that appears ias’ on the left side of Eq. [6] can  Dunham obtained;; in a power series with a ratid{/we)?,
be expressed as a known power-series expansion4nl(/2)
andJ(J + 1) (3); E,; in 85 is treated as a known constah8].
Similar expressions are utilized by Molsi#4) and Coxon and
Hajigeorgiou (25) after Herman and Ogilvi2?), denotinge, ;
on the left side a&PP. Using Eq. [6] has the advantage that ifn which Y means the lowest order term ¥y in the series

yields clusters of expansion coefficiemtg andA,, for Beand  with the ratio Be/we)? i.e., Yi(o) is the leading contri-

we, respectively 8). E,; terms on the left sideg5) are minute pution of Y, that corresponds tdJ;; (22 (26). Since

Vi = YO+ Y@ vy [17]

corrections but accomparyf®, which prevents other clustersy® v® " include corrections AZP Arab AZP (i =
of expansion coefficients from being optimal fitting parameters. > ") ri’ab (i=0,12 ... and qia'b(i =1,2,..) we use
Equation [6] is rewritten in terms of a variable= (r — the notationé(ijf”(o), YiTUJ(Z)’ ... The symbok means thaYi(j”)
re)/Te, includes correction parameters. The supersariptsignifies
thatYiE”) includes small correction terms Bf ; which originate
h*(1+ g1) d? h2(1+ g2) from the left side of Eq. [6].
[_ 8rm2ur2 d_,72 8r2ur2(1+ n)? To discuss the consis}ency of Eq. [6] with Watson's effec-

tive Hamiltonian with Ry, and S, we should extract

% <1 + Z(Sri’ni)J(J +1)+ (1/2)kr§(1 + ga)n? small F,; terms inYij-‘_“J by expandingF,; as a known power

i=1 series inYjj (v + 1/2)'[J(J + 1)]! of the Born—Oppenheimer

_ expansion. The rearranged series expansion has term coefficiel
x <1 +Y k n')}m(n) = Eyvua(n), [12] Yi(=Y;@+ Y@ +..). Eight relevantY;® (ij = 01, 02,
i=1 03, 04, 10, 11, 12, and 20) have been given in Refs. (18) and
(19). Now, a set of 8 modified Dunham coefficier§” in-

in which cludes 105 correction parametersAg, SA!, §AS,, A3,
) 8rq, 8rp, 8rs, 8ry, 8a1, andsqy, in which A3, SA3, are de-
1 = 8o + (2/kr)ss), [13] fined by the equations
02 = 8ro + (2/kr2)ss;, [14]

ay = ay(1+843)
= af = a1 - (2Be/w))
s = —(1/krd){(2+ 3ay)ss] — 25s)}, [15] x {(1— 3ay + 4az/a1)ésy + 26, — 28s3/a1}], [18]

and

in which the vibrational energyBe in the rotational energy, gnq
and Dunham'shcay(=kr2/2) within the Born—-Oppenheimer
approximation are corrected with small quantitigs, g», and

S _ s\ _ A0
g3, respectively. The internuclear distam¢espresents the mini- a5 = ax(1+0A%,) = & +adm

mum of the function for the effective potential energy composed = ay[1 — (2Bo/w?){(2 — 3ay + 5as/a,)5s;
of Dunham’sV (&) plus an adiabatic correction and small terms ¢
including E, ;. Further details of notation in Egs. [1] and [12] + 285, — 2854/3}]. (19]

are given in Ref. (18).
Details of Dunham's WKB treatment applied to Eq. [12] thagyantitiesa? andad’ have been defined in Ref. (19).

are not presented explicity in Retg) are giveninthe Appendix. — oyr treatment of Eq. [6] is an extension of Dunham’s WKB
The application of Dunham’s treatment yields vibrationalapproach_ However, a perturbation treatmé) of Eq. [6] re-

rotational energyF, ;(=E,y/hc) as sults in exactly the same expression ¥§t°© as was referred
| _ _ to in Ref. (19). When we apply Kilpatrick’s perturbation treat-
Foo=Y Y +1/2)[I0 + 1)) [16] ment (27 of a vibrator to our case, we obtain exactly the same
ij

equation as Eq. [A.64]. In order to proceed the solution to tha
of a rotating—vibrating molecule, he has introduced a variable
Modified Dunham coefficientsYi*j‘”J(O) given in Refs. {8) toremove alinear term if of the centrifugal energy. The treat-
and (19) forij =01, 02, 03, 04, 10, 11, 12, 20, and 2Iment of the change of variable is also identical to our treatmen
are analytic expressions that include correction parametgigen in Eq. [A.61].
AZPATAP AP =1,2,..),r/*"(=0,1,2...), and  The agreement of results in Refs. (18) and (19) with those
qf"b(i =1,2,..), in which qia’b(i =1,2,..) are those producedwithahypervirial perturbation treatmentby Fernande:

accompanied witle, ; terms on the left side of Eq. [6]. and Ogilvie (6) is described in Ref. (19).
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CORRESPONDENCE OF Y;® TO a;; practical purposes. If further;*® at higher levels need to be
taken into account, othérparameters must be correspondingly
Modified Dunham coeﬁicient‘s{i’j‘(o) can be written as included. As the number of experimentally determinam’]éo)
is 8 for this level of the parameter set of each isotopomer, &
Y{j“(o) _ Yi(jO){lJr 5(correction terms;)} most 835 parameters can be evaluated from experiment. Only
7 parameters, rather than 8, can actually be evaluated indepe
_ Yi(jO)[l + (me/Ma){ (A8 )ad_,_ (Al )”O“a“} dently because of redundancy betwéex?9"d as is described
below.
d . . . .
+ (Me/Mp){ (A )™+ (A2)™"] As a first step, a criterion is to select 8 independent cluster:

made from 1@, that can be solved analytically to be expressec
in terms of 8 experimental values, i.e., values oi(|$f°). The

[20] clusters ofs parameters can then be experimentally evaluatec

Calculations are made with a symbolic processor, REDUCE. Ii

under the assumption that we can neglect the Bordl discussion we assume that correction terms of orders high
Oppenheimer correction terms of orders higher thdRan O(m/M..p) are negligible. o
O(Me/Mayp). A term §(correction termg) means the por- Clusters ofé parameters are selected most readily with ref-
tion of thes correction terms ifv;; . According to Watson1) ~€rence to Watson'®a, and S, p (2). AS Rap and S, are ex-
and Tiemanret al. (10), Ao; includes the Dunham correctionPreéssed in terms of a variable denoting internuclear distance,
in addition to the adiabatic,AG)?, and the nonadiabatic, We rewrite them with a reduced varialgieas

_ Yi(jO){l + (me/Ma)Aiajdnada+ (me/Mb)Aﬁdnadb},

(Agf’)nonaq parts. We can naturally extend those quantities of 1 £ .
I, j =0.1to otheri, j. As the magnitude of(?) is smaller Rap(&) = Rap(£) — m/ Qan(8)de = > FAPel,  [24]
thanYi(j )Oby azfactor(Be/a)e)Z, the Dunham correction ta; is £0 i=0
(t/meY{O)Y P, e, . 1dV(e) [¢ o
Sub6) =Sle) + 5 g [ Quu®de= Y § (28]
£ iz
(Me/Ma) A + (Me/ Mp) A =0
= (me/Ma{ A% (10/meY?)¥;) nwien
+ (Me/ Mo){ A0+ (12/meY{) Y2} {Fo" P2 P30 5}
= 5(correction terms) + (1/meY 7)Y, [21] = {r3P— P(E™). 1+ P(&5°) — ad® 13"~ P(£8°) +3°

| _ ) —a®/2. 13"+ P(&") — 65" + a2 — a3 °/3).  [26]
Equation [21] gives the correspondence(@ﬁ‘O to Ajj. Expres-
sions forg(correction terms) can be obtained with Eq. [20]; gnd

e.g.,
— (50 520+ (02/4B) P65,

EVALUATION OF EXPANSION COEFFICIENTS FROM SS*b
EXPERIMENTAL FREQUENCY DATA

3(correction termg) = §Ag = 1o + (4Be/wd)dst.  [22]

+(
3P+ (02/2Be) (2P (£3°) + 32403 /4 + q3°/4),
Consistency of our result of an analytic approach with ab,
A

b 2 a,b a,b
Watson's assertion of inseparability should be discussed with S (“’e/ ZBe) (5a3P(§0 )/ 4+ a0,
explicit expressions fov;©. . 4 3a,0°/8 + ¢2/6) ). 27]
We confine our attention to a level of a set of Y§©,
. 0 0 (0) 0 0 0 0 0 . . .
e, Yo, Yoz Ygg((()), You ) Yo Yii2, Y35, and ;57 In i which & corresponds to Watson's arbitrary value for a lower
these 8 quantitie¥;;™, 10 correction parameters appeks,  |imit of integration andP(£2°) is a definite integral of, v(£)

8A,, 8AZy, 8AZ,, 011, 12, 813, 81, 80, andsdy, in which from £2°to 0. Physical significance & is not clear (6) but we
. 5 use this as a formal parameter. These equations indicate eig
8A, = 8ro/2 — (Be/wg)(3a1 851 — 285p) [23]  clusters of expansion coefficiendgo, 871, 572, 873, 851, 6%, 8%,
andés.

and expressions fatA3, andsA3, are given in Egs. [18] and  Watson (2) eliminatedf, setting P(62) = r&®. It is clear
[19], respectively. These § J-(O) coefficients suffice for most from Egs. [26] and [27] that one cannot eIimina@b from
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A © by such a treatment, as has been remarked also by Coxon 8rig = 8ry + 8ry, [32]
and Hajigeorgiou (25). 8raq = 82 — 81} — 8Gu/2, [33]

Watson'sR, p andS, p imply that a replacement ¢8qo, 50,
802, 870, 871, 812, 873, 851, 8%, 83, 84} in expressiony; @ with
{0,0, 0, 051, 5F2, 53, 831, 8%, 5%, 6%) settingP(£2°) = ra®
reproduces exactly the same expressionS(iifé?). We confirm 8r3q = 8ra + 8rj + 8ch/2 — 80p/3. [34]
this for our analytical expressions ‘qij* © as follows.

RetainingP (¢2) as an arbitrary quantity in the 8 clusters ofVe call these seven clusters of the expansion coefficients optim

and

coefficients, a replacement of fitting parameters hereafter. The optimal fitting parameters ca
be solved analytically to be expressed with seven appropriat
1800, 801, 82, 8ro, 871, T2, T3, 8S1, 8Sp, 8S3, 5S4} experimental values of; . Quantitiessriq (i = 1,2, and 3)

are identical witht; (i = 1,2, and 3) under the condition that

- {07 05 07 8F07 8F17 (SFZ, 8F35 3515 8’“&5 (SN%’ 8§4} P(%.gb) — r(i)i,b

applied to a set of 10 parameter$s Ag, A, §A3;, AS,, 81, . , ab ab
8ra, 812, 813, 80, 80} yields 8 clusters of parameters, Sriq=0f, [i =1,2.3andP(&") =rg7].  [35]

{BAB, SA! —8P(&)/2+ 8q0/2, Optimal parameter$Ag, §A,, § Aarq ands A,pqare correc-
s tions of the type oBp; in pi(1+ épi) in which p; represents
84z — 8P(50)/2 + 800/2 + 60u/(22). one of Be, we, &, OF a, respectively, andrig, 8rzq, andérag
SAS, — 8P(&0) + 800 + 3audan/(4az) + 802/ (3a2), are those of successi (i = 1,2, and 3) terms of a series
expansion of the rotational parametg(¢); i.e., optimal fit-
8r0 — 8P(§0). 8r1 + 8P (6o) — 6o, ting parameters comprise corrections B we, a1, @, as, . . .,

3ro — 8P (&) + 800 — 801/2, and those for successive terms of a power series expansic
[€"(i =1,2,3,..)terms] forB(&).
813 + 8P (£0) — 800 + 801/2 — 802/3, 0. 0} Modified Dunham coefficients ] © \ritten by those param-
= {8 clusters, 00}. [28] eters are given as
Then a replacement Y = BY = Be(1 + 8A5), [36]
(5A8. BAT SAS, 8AS,, 61}, 811, 812, 613, 80, 80 Yor?) = —(4BE/wd) (1 — 25A, — 119)
— {8 clusters, 0, 0} = —[4{Be(1 + 8Ag)}3/{we(14+8A,)}I(L — 8r1g), [37]
x(0) _ d5, 4 .
applied toY;; © given in Refs. {8) and (19), reproduces Vo3 = (16B¢°/w){3+ 81— 4(3+ a1)d A, + a8 Aag
identical expressions oniT © The arbitrary quantitys P(&o) — (5+ 3a1/2)dr1q + 8r g}
vanishes. Therefore, it is confirmed that a replacement of 5 4
{800, 8. ... 810, 8r1, ..., 851, 8%, ...} inexpressions of; © = [16{Be(1 + § AB)}°/{we(1 + 8A,)}7
with {0,0, ..., 8fo, 8f1,..., 85, 8%, ...} yields exactly the x{3+a1(1+ 8 Aa1q) — (5+ 3a1/2)8r1q+ 8r2g), [38]
same energy expressions; Watson's effective Hamiltonian with* 0 47 e )
Rapand$,  yields the same analytic expression§§§o). Yo, ' = (16B¢"/wg){ —52— 36a1 + 4, — 9a7

Proceeding to the next step, the system determinant to solve _ 2
those eight equations for eight unknowns, i.e., the eight clus- + 6(52+ 362 — 4, + 9a1)5Aw
ters of parameters withoutP (&), is calculated symbolically — 36315 Aaiq + 4828 Aapg — 18af§Aa1q
to be zero with REDUCE; these eight equations have one or 2
more redundancies. Sinéé®(&p) vanishes it is left out. When + (120+ 783 — 8ap + 18a1)8r1q

a component§fy, among{eight clusters, 0, 0is absorbed into — (324 12a1)8rq + 45r3q}
other clusters, the expressions of the eig © can eventually ; 6
be rewritten by the use of a set of seven combihipdrameters, = [16{Be(1 + A8)}"/{we(1 4 §A,)}]
i.e., correction parameters & g and six parameters given by x [ — 52— 36a1(1 + 8Aa1q)
§A, = 8AL —8rp/2, [29] +435(1 + 8 Aazq) — au(1 + 8 Aa1g)y’
8Aa1q = 8AS, — 8r(/2+ 801 /2ay, [30] + (120+ 78a; — 8ap + 18a%)sr1q
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148 UEHARA AND OGILVIE

on(o) — we(1+8A,), [40] 8roq(= 6f2), anddraq(=6i3) has simpler physical significance
. 0) 4o than that oBfy, §F2, §F3, 651, 6%, 8%, andss,.
Y11 = (Bg“/we){6(1+ay) — 6(1+ay)sA,

+ 681 8 Aasq — (4+ 381)8r1q + 267 2q) REDUNDANCIES BETWEEN Y ? OR s Agdnad

— 2
= [{Be(1 +848)}"/{we(1 +8A0)1] Asthe eightw(i’jk © coefficients of Egs. [36]-[43] are expressed

x {6+6a1(1+8Aa1q) — (4 + 3a1)8r1q+28raq}, [41] Withonly sevenindependent parameters for Born—-Oppenheim
corrections, one redundancy exists among these é{@‘ﬂ)t or

Vi? = (B¢*/wg){ —114— 108a; + 488, — 548 s34 More redundancies exist with sets§f or equiva-
lently § A29"adat higher levels. A redundancy that exists in five
+3(114+ 108, — 48a, + 54a%)sA,, i _ .
( ! ? 1) Y; @ at the level of eighty;; @, i.e. Y52, Y52, ;{9 v;°,
+ (1444 126a, — 48, + 5482)8r14
24(6+ a1)Cosz + 6Cos — 6(1 — @1)C11 — Cr2 + 2Cx0
— (60+ 3681)5|’2q + 246r3q}
. . = 6(13+ 18 + 5a7)Cyo — 120Cqp, [44]
= [{Be(1+5A8)}"/{we(1+54,)}7]
x [~114— 108 (1 + 8 Aaq) in which
o 2
+48a(1 + 8Aa2q) 54{ay(1 ‘: 8Aalq)} Coz = (w:/lGBS)Ygg(O) — (3+a), [45]
+ (1444 126a; — 48a, + 54a7)dr
( 1~ 488, + 5481)0rsq Cos = (08/16B])Y¥ + (52+ 3681 — 4ap + 982),  [46]
— (60+ 366\1)8|’2q + 246r3q], [42] 2 (0)
Ci1 = (we/BZ) Y1 — 6(1+au), [47]
and Ciz = (03/B)Y;? + (114+ 1088, — 48a, + 548%), [48]

Y;0? = —(BZ/8){3(5a2 — 4az) + 30825 Aa1q — 12828 Anzq)  and
= —{Be(1+5A5)/8}[15{a1(1 + §Aasg))?
— 1285(1 + 8 Aazg)]- [43]

Coo = (8/Be)Ys" — (122, — 15a3). [49]

) As the lowest level of a set of thre€ @, i.e., Y5{?, Y52%, and
Watson’s treatment in whicR, n(§ = 0) is made to vanish y:0) includes just three parametess\g, 5 A, andsr g, those

. . ‘e 10
by settingP(55 = rng signifies that only seven clusters arg (o) coefficients have no redundancy. Theref@g; andCip
e right side of Eq. [44] should be fixed to

independent. Equations [36]-[43] can also be obtained by sigﬁ th
ply replacing{sqo, (Sq(lo,)qu, 8ro, 8rq, 8rp, 8r3, 851, 8Sp, 8S3, 64}

in expressions o¥ ;" in Refs. (L8) and (9) with clusters of 2 (0
{0,0,0,0, 5Fy, 875, 875, 651, 6%, 6%, 8, in which conditions Cor = (@5/4B2) Vg2 + 1, [50]
P(2") = r&" are applied. Cio = §A,. [51]
_ Therefore, one can use a set of expansion coefficients of

Rap and Sy, .., 81, 8F2, &F3, 851, 6%, 8%, andss, as op-  with explicit expressions of Eq. [20] fér 939 Eq. [44] pro-
timal fitting parameters, instead 6\g, §A,, §Aa1q, Aa2q,  vides redundancy betweeinadnad 5 zadnad’s yadnad 5 A adnad
dr1q, Oraq, and draq, replacing {5do, 801, 802, dro, &r1, dr2, andsAjdd Three parameter§Ag, $A,, andérig, can be di-
8ra, 881, 8, 8S3, 84} in Yi’}‘(o) in Refs. 8) and (9) with rectly estimated from the lowest level of a set of thvﬁéo).
{0,0,0,0, 81, 8F2, 83, 851, 8%, 65, 8%}, which are related  Redundancy between;; should be considered when one
to expansion coefficients foQa n(€), Ran(é), and S x(€) by analyzes spectra with empirical;; parameters. If analytical
Egs. [26] and [27]. However, if analytical expressions‘f§ expressions foh(i’jk(o) are utilized, fits with optimal correction
are not utilized when one usé& ands§; as fitting parameters, parameters eliminate any problem of redundancy betwggn
one must take redundancies betweéfﬁo) explicitly into ac-

count so as not to estimate incorrectly some parameters on intro- APPLICATION

duction of correction terms of order @f/M2 ) unexpectedly.

Redundancies exist only within the approximation that correc-In order to test the present expressions to evaluate indivic
tion terms of the orders higher than®{/ M, p) are ignored. A ual expansion coefficients, we have analyzed data of lithiun
set of fitting parameter$Ag, §A,, 8 Aaiq, § Aazg, 8T1q(=6F1), hydride utilized in a previous workl@) plus that of additional
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rotational transitions (28): 151 rotational and 354 vibrational- In Table 2, expressions of the optimal fitting parameters in
rotational FTS measurements (29), 27 vibrational-rotatiortarms of expansion coefficients are reproduced. Those clusters
diode laser measuremen29j, 22 (30) plus 1928) rotational the coefficients can be resolved through functions for rotationa
measurements with tunable far-infrared spectrometers, apfactor g;(¢) and an electric dipole moment functidvi(¢).
10 millimeter-wave measurement81( 32). We have se- Herman and Ogilvie42) provided relations between nonadia-
lected spectral data of 19 transitions from Ref8) which batic expansion coefficienlté'bandgj(g) andM (&) to estimate
are not reported in Ref.30). In total 583 spectral lines ria’butilized in the spectral analysis,
for four isotopomers of lithium hydride are analyzed us-
ing Egs. [36]-[43]. OtheiY;; and higher order contributions g;(£) =" " {(mp/Ma)r 2+ (mp/Mp)rP}&' = (mp/me) Y " srié'
Yi(l-z) are taken from Bouanich38), Woolley (34), Ogilvie i=1 i=1
and Bouanich (35), Ogilvie and Tipping (36), and Uehara [52]
(19); explicitly, 21 Y\”, i.e., ij = 05, 06, 07, 08, 13, 14,
15, 16, 21, 22, 23, 24, 30, 31, 32, 33, 40, and 41, angnhg
9Y? ie., 01,02, 03, 10, 11, 12, 20, 21, and 30, are added ,
in the analysis. Other terms of greater order Mﬁl‘?“) are ex- 2M(E)/{ere(l+ &)} = ) (rP —rd)&". (53]
cluded. i=1

Transitions of four isotopomers are fitted simultane- , ) i ) ,
ously to a model retaining 20 adjustable paramete,l_gguajrtlon [53] is defined for a molecukeB of relative polarity
U, (= u/%we), U(=11Be), &1, 8, a3, &, as, 8, a7, All, AL, C _ _
AE,AEJEJ%&JE'W rzL(lq rg'q’ Aglm andAg'zq, in which 11 late If functions of g;(¢) and M(§) for LiH are L.a\_/aul-
ones are the optimai fitting parameters for corrections. Ottle by another means2X), we can estimate; " (i =
parameters are set to zero. These parameters are connecteddith2, and 3) with which values of the fitting parameters

3 A A H,Li H,Li H,Li H,Li H,Li H,Li H,Li
the vibrational—rotational energylevelsthrougﬁo), YO and Ay AT Mg s T2q sT3q > Daiq.andAgs, canberesolved

ij . . 39 d 9= i
Yi(jz), described above. Weights of measured frequerjlcies aretggyield expansion cqeffm@ntf?b andﬁa’b- Coefficientss}""',
sumed to be proportional to {des)? except 19 transitions of Gp - a5 Gy, S, s, and ;"' are obtained succes-
Ref. (28) for which we used their obs-calc values for valuesively fromAG", rlHq’L', rZHq’L', ryq'“, ARL Agi:',andAg'z’:',re-
of 8ops. Atomic masses are taken from Audi and Waps83)( spectively. In Table 2 each expansion coefficient is listed on th
With 20 parameters the normalized standard deviation of therigght side of the corresponding optimal fitting parameter.
is 1.12, substantially equal to that obtained previous8)(The  The rotational factorg;(£) and the electric dipole-moment
molecular parameters determined in the present fit are showiftinction M (&) can be determined from experiments under ex-
Table 1. ternal fields. Therefore, the above procedure means that non
diabatic vibrational,Qa x(¢), nonadiabatic rotationaR, n(§),
and adiabatic, (&), effects are completely separable by ex-

periments if one accepts Herman and Ogilvie's relation [52]

TABLE 1 (0) - .
Dunham Potential Constants and Optimal Fitting Parameters and [5_3]' A?’YOl includes only one dgtermmgﬁ)le parameter
for Corrections for Lithium Hydride §Ag given in Eq. [20] and does not includg"”, accepted
physical significance of the rotational constd (1, 38) is
Born-Oppenheimer Parameters Optimal Fitting Parameters J ustified.

for Corrections . . . .
Only in this way can one resolve clusters of expansion coeffi-

-1.557 85(21) cients in the present absence of reliable estimatqé’%ﬁr s,a’b

U, fem™! 6.627099 7(17) " Al
U  1319.946 8(11) AL -0.109 9(29) by _an_other appropriate means. In a_fit of spectral data of LiH
“ 1,897 225(13) AX 0.6751(16) Ogilvieet al.(21) cons_tramed a functioRy | (g) tg values cal-
o 2,443 85(12) A 0.106 9(66) culated from thg r(_)tgtlona_tj factor and electnc d|pole_ moment
u and evaluated individual values of expansion coefficients. The

“ 263019(43) A“; 0.48760) present approach of an evaluation of expansion coefficients |
% 24834(24) By 0.89(19) substantially the same as that of Ogihgeal. (21), although
as 2.115(15) rg=f 0739(13) they choses} (in the present notatiorgt), instead ofs}', as
a5 1.631(41) g = 0.807(70) a fitting parameter. The essence of the present approach is
a -0.890(81) ra =iy -2.03(29) an optimal selection of fitting parameters that are clusters o

roi=FH -1.82(38) expansion coefficients.

Rl 435(64) Therefore, one cannot estimate the rotatignfalctor and the

electric dipole moment from pure rotational and vibrational—
rotational spectra unless relevant value:sq@ib or ga*b are
aThe uncertainty (one standard error) in the last digits is given in parenthe@sfimated by other sources or neglectdd, (40). To evaluate

reduced standard deviation = 1.12
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TABLE 2
Expansion Coefficients for Lithium Hydride
Expressions for Optimal Fitting Parameters Expansion Coefficients ‘Wobble-Stretch
Theory*
A ;[ =ry + (4B,/ 0 H)s sH/10° emt -0.527 93(14) -0.527
A ;‘i =rd+ 4B,/ w2t sH/10° em! -0.581 1(19) -0.527
A fj =-(B,/w)(Ba;s- 25 + g2 s7/10° em™ 0.769 2(87) 0.790
Ay =B,/ wD)(3ays ki - 251 + g2 sHA0Sem?  1.142(47) 0.790
Aalq =-(2B,/w){(1 - 3a, + 4a,fa)s/ + 25 - 2sYa, } 5:910° cm™ -1.04(20) -1.053
-(rs' - 902 + q1"/2a,
azq =-(2B,/ wz){(z 3a, + Sajay)s + 25 - 25 Ya, } s810° cm 1.62(77) 1.32
-(rg' - q¢") + 3a.q,/4a, + q,'/3a,
’1;[ EF =rf'+ (4" -9 qs -0.235(13)
rlc{“i EFD=rt+ (@ -q0) 40" 0.564(70)
rzc],-[ (=)= rZH (roH 4 - a2 q 0.21(58)
Ty ST 2L') =rt- (gt -9 - g2 q" 0.24(76)
r3q EFRY=ri+ (' -q0) + 42 - 4373 4! -2.0(21)
Fixed Parameters®:
rdt = -0.754 601 3(17) ri =1.259 149(23) ril=-2.443 91(27) ri = 4.097 18(96)
re = 0.774 280 9(20) rii=0.597 152(27) rH=-1.486 70(32)

3(0|LZ + L2 |0) = 218(h/27)? is assumed and a relatigfl = s is applied after Ref. (41).
b The uncertainty estimated by the error propagation.
¢ See text.

all three coefficientsg;, ri, ands, usingg;(re) and a dipole  Adiabatic functionssa,b(s)(aa’b,i =1,2,3, and 4) for LiH
moment function 25) is similarly impracticable because conagree well simply with those given by wobble—stretch theory
straints obtained from only the dipole moment function do n¢t, 10, 41). If we assume, in the wobble—stretch theory, tha
affectthe inner structure of optimalfitting parameters, or in othed | L2+ L2 | 0) is independent of and of isotopic substitution
words, Watson sRa bande - An additional relation for electric (1), Watson s expression f&, y(r) (1) yields

dipolar moment (22),

SiE) = + sl + P2+ S

d
EMeE = (ere/2>2 a9’ — g7)8", [54] ~ Si(8)
provides constraints between optimal fitting parametgys= ~ {015+ L3 10)/(2merd)}
F?) andrf fori=1,2,. x(1—2t4382 - 4834 ... [56]
_¢b .
rq = fg: 551 |n Table 2, values o8, $#1 s, ands} calculated with

Table 1 shows that experimental valuess}fgtandr2 are nearly Eq. [56] and

equal to those ofy; andrj;, respectively, within experimental

errors. (0| L+ Ly | O{=L(L + 1)(h/27)*} = 2.18(/2x)*, [57]
Adiabatic and nonadiabatic expansion coefficients evaluated

from parameters in Table 1 are listed in Table 2. This is the firate listed. The value of the matrix element is near thal.fer 1.

estimate of adiabatic and non-adiabatic expansion coefficieAithough the wobble—stretch theory provides a rough estimat

made on the basis of detailed consideration of the experimentdth an assumption o = L the sign and magnitude of ex-

determinacy of coefficients based on WatsoRasb and Sé1 b- perimental values of the expansion coefficientSgf; (£) are

Fixed parametens™', r'*Y 51 "andr!, listed in Table 2 are reproduced WeII with this theory.

obtained from accurate functions fog(¢) and dipolar moment  We ignores,” ML from Eq. [5] because these terms do not partic-

given by Ogilvieet al. (8, 21) with Egs. [52] and [53]. ipate in spectral transitions within one electronic state. Howeve
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if the wobble—stretch theory is assumed to be applicable, avalug is expressed as a power seriespirof the same form as
of s = s5' is estimated to be-0.264 from Eq. [56]. Extended Eq. [2],
determinations ofS, ,(¢), using the present method for other

molecules will provide useful understanding of the adiabatic

functionsS, u(§).
An estimate of the vibrationg factor
9u(6 = 0) = (Mp/Mu)ag' + (Mp/Mu)ag'  [58]

is —0.154(16) for' LiH (22). Values 0B, re, we, andk from the
present fitare 7.520 214 0(20) ch 1.594 911 3(11) x10'°m,
1 406. 079 2(12) cmt, and 102.651 05(11) N, respectively,
for LiH.

APPENDIX

Equation [12] is written as

d>y 1
d—nz + Eé(FuJ -Uy)y =0 [A.59]
and
Us = (0f/4Be)(1 + gs)n2<1 +) Kk n‘) +Be(1+ @)
i=1

< (14 o Ja 2+ 1)
i=1

= kon’(1+ kan + kan® + -+ ) + B3 I(I + 1){1-2
x (1—8r1/2)n+ 3(1—268r1/3+8r5/3)>—---}, [A.60]

in which B = Be(1+ 02), B, = Be(1+ 01) = BZ(1— dry)
and all quantities involving the energy are in ©m E,; of
Eq. [12] is replaced byicF,; and Be[= h/(8n%cur2)], we[=
(1/27c)(k/p)Y?], andss are in cnrl.

A variable p such thaty = p + ¢ is introduced, where is
so chosen that the minimum &f; falls to the pointp = 0.

According to Dunham (1)/and Kilpatrick (27 the displacement

¢ can be expressed as

e=Y &{(Bi/wb) I+ D)),

i=1

[A.61]

in which the magnitude of each term on the right side ofl.
Eq.[A.61],& {(B:/w})?3(J + 1)}, decreases successively with 2.

i(=1,2,3,...)toaproportional factor./we)?. Coefficients;
are determined with the condition that

dus\
(E)po—" (A.62]

and the fact that the quantum numbBeran take arbitrary num- g

bers. Then, as has been shown by Dunham), (the potential

Uy = &g p?(L+k{p +kIp?+---) +Ug. [A.63]

Quantities with a superscripin Eq. [A.63] are those expressed
in polynomials ofJ(J + 1).

By use of Dunham'’s resultlg, 17), which has also been de-
rived with perturbation theory, the eigenvalbg; in Eq. [A.59]
can be obtained through

F' = BLA Ay/16+ AL BLY (v +1/2)+ (BF/?AT/32)
x (5A5 — ByAy)(v + 1/2) — (BLB,AY/4)(v + 1/2F
+ (BZA?/128)(35A] — 15B, A + 3A;BY — 3A;B})
x (v+1/2F + (BZ2AZ/8)(BF — By)(v + 1/2)°
+ (BZA}/64)(10B,B, — 5B5 — 5By)

x(+1/2f + - [A.64]
in which
F'=Fu— g, [A.65]
A/ _ 2 J1/2, ’ J. .
L=2Q"% A =2k ete, [A.66]
B, = (1/260)(15K2/4— 3K));...; etc. [A.67]

Equation [A.64] is the same as that given by Dunham excep
that a symbol is here attached to all quantities. A misprint
in Dunham'’s original equation was corrected in RaB); B,

is defined in Eqg. [A.59], and a symbolfor other quantities
means that those given by Dunham were slightly corrected ac
cording to Egs. [A.66] and [A.67]. The above calculation yields
vibrational-rotational energk, ;.
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