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Abstract

We examine the derivation of information about molecular structure and properties from analysis

of pure rotational and vibration-rotational spectral data of diatomic molecular species on the basis

of Dunham’s algebraic formalism, making comparison with results from alternative approaches.

According to an implementation of computational spectrometry, wave-mechanical calculations of

molecular electronic structure and properties have already played an important role in spectral

reduction through interaction of quantum chemistry and spectral analysis.
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1. INTRODUCTION

During the brief span 1904–1933 of his life, James Lawrence Dunham published
only five technical papers [1–5], but they continue to exert a significant impact on
approaches to analysis of spectra of diatomic molecules. For instance, in 1950
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Herzberg cited Dunham’s work at more than eight points in his monograph [6] on
spectra of diatomic molecules; of at least 1940 total citations of those five papers,
about 29 appeared during year 2003 [7], and in other papers of unknown number
published each year authors allude to Dunham’s work through his name without
citing his publications. Because Dunham’s work might in recent years be more
frequently cited than its significance be understood, the centennial anniversary of
his birth seems a fitting occasion to review why his work maintains a strong
influence on this narrow but both pedagogically and practically momentous sector
of optical spectroscopy: this field of spectra of diatomic molecules is important
pedagogically because their properties illustrate fundamental principles of
quantum effects typically explained in terms of an oscillator in one dimension,
and practically because many diatomic molecules that are crucial to a
comprehensive treatment of atmospheric chemical phenomena are detected
through their spectra in absorption, emission or Raman scattering; in either case
Dunham’s formalism is not merely applicable but prominent. After the discovery
of deuterium through observation of a visible spectral line [8] that intensified
investigation of isotopic effects, in 1936 van Vleck [9] extended Dunham’s
formalism to encompass deficiencies that Dunham partly recognised [5], and their
collective results and subsequent extension enable a quantitative description of
essentially all effects of nuclear mass in band spectra, requiring in addition only
effects of nuclear volume to complete treatment of frequency data and effects of
vibration-rotational interaction for intensity data. Over the ensuing decades other
workers have contributed to details of this treatment through their experimental
and theoretical analyses, making an approach to spectral analysis based on this
formalism comprehensive and thoroughly practicable. Our present task is to
assess this approach, from both experimental and theoretical points of view, in the
light of the current status of spectral measurements on diatomic molecules.

For the first time in application to details of spectral analysis, we recognise
also the role of wave-mechanical computations that herald the emergence of
computational spectrometry as a partner with experimental and theoretical
spectrometry in revealing information about molecular structure and properties:
in relating frequencies and strengths of spectral lines to molecular properties,
the work of Dunham and of van Vleck, for instance, constitutes theoretical
spectrometry, whereas the measurement of those frequencies and strengths, with
concomitant assignment to transitions between quantum states and fitting of
spectral data to theoretical quantities, is the practice of experimental spectrometry.
The concern of computational spectrometry is a quantum-chemical calculation,
through methods applicable to molecular electronic structure, of some or all
factors that affect the frequency and strength of a spectral line with an accuracy
comparable with that of typical contemporary research measurements. As a
consequence of subsequent evolution, the effective hamiltonian underpinning the
results of Dunham and van Vleck is directly appropriate for the practice of
computational spectrometry.

In an analysis of a molecular spectrum, the primary task is, for purpose of
characterisation, to assign each narrow spectral feature to a transition between two
molecular states specified with rotational, vibrational and electronic quantum
numbers or other indices. Nearly as important as the former, another task is to
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represent archetypal properties of each spectral line – the frequency at maximum
intensity and its total intensity – by means of formulae that reproduce those
features, within the accuracy of their measurement, with parameters fewer than
the number of features represented. The latter process constitutes data reduction;
apart from compactness in relation to storage and retrieval of data, an advantage
of such a reduced representation in an appropriately selected form is a possibility
of modest extrapolation of data so as to allow prediction of further features beyond
a range of measurements included in reduced data. Even though gross
extrapolation, in absence of both exact data and an exact theoretical model, be
a practice statistically unreliable and hence universally deprecated, a limited
extent serves as a legitimate basis for tentative further investigation and for
verification of the correctness of a theoretical formulation. For atomic spectra a
seminal instance of such data reduction was Balmer’s success in reproducing,
within the accuracy of their measurement, the wave lengths of four lines emitted
by atomic H by means of a formula containing only one parameter and one integer
variable [10]; subsequent discovery of lines in other series led to modification of
that formula so as to apply to all series with only two integer variables. In this
particular case, the parameter – actually, or proportional to, the Rydberg constant
– has direct physical significance in relation to the energy of ionisation of a
hydrogen atom. For molecular spectra an observation of Deslandres, almost
concurrent with Balmer’s discovery, that the separation of wave numbers of many
lines in a band system of CN in emission increases nearly linearly [11] enabled
fitting of a formula containing only three parameters [6, p. 42]. In this case, and
typically for subsequent analyses of infrared and Raman spectral data pertaining
to gaseous diatomic samples, parameters are merely artefacts of a particular
formulation or model, inaccessible to direct physical measurement. This
distinction concerning the observable nature of parameters is important in
subsequent discussion.
2. BASIS OF ANALYSIS TO THE EXTENT OF DUNHAM’S THEORY

Although Dunham’s first three papers [1, Intensities in the harmonic band of
hydrogen chloride; 2, Intensities of vibration-rotation bands with special
reference to those of HCl; 3, The isotope effect on band spectrum intensities]
treated spectral intensities, two most commonly cited papers [4, The Wentzel-
Brillouin-Kramers method of solving the wave equation; 5, The energy levels of a
rotating vibrator] pertain to energies of molecular states in relation to frequencies
of spectral lines observable such as through measurements of infrared absorption
and emission or Raman scattering by diatomic molecular substances in gaseous
samples at small total densities; band spectra involving also transitions between
electronic states might be another source of such data. As the inverse of wave
length, wave number ~n is proportional to frequency, but was measurable more
precisely than the knowledge of the speed c of light in vacuo, before the value of
that fundamental constant became eventually fixed. We work strictly with wave
number of a narrow spectral line of a particular isotopic species as a difference
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between values of spectral terms [6] of combining states according to Bohr’s
relation:

~nZEi
v0J 0 KEi

v00J 00 (1)

here a term value Ei
v0J0 , pertaining to a state of discrete energy characterised with

quantum numbers principally vibrational v 0 and rotational J 0 (and others), implies
greater energy than another term value Ei

v00J00 specified with quantum numbers v 00

and J 00 that take generally integer values, for these two states that combine in a
transition jv0; J 0i) jv00; J 00i in absorption, in accordance with standard practice [6].
Before Dunham’s last publication, these term values pertaining to the same
electronic state and to a particular isotopic species i were commonly represented
implicitly or explicitly through a double sum involving vibrational v and
rotational J quantum numbers in functionals to various powers in a form

Ei
vJ Z

X
kZ0

X
lZ0

Ai
klðvC1=2Þk½JðJC1Þ�l (2)

in which term coefficients Ai
kl are regarded as merely phenomenological fitting

parameters [12], freely adjustable, of arbitrarily selectable subscripts and of
minimal number, to obtain an optimal fit according to a selected criterion, such as a
minimum sum of squares of residuals; A0,0Z0 for the electronic ground state.
Earlier usages of just v as a simple integer variable pertaining to a vibrational
motion and of JC1⁄2 as a functional pertaining to rotational motion were
superseded when quantum mechanics became applied to spectra through analogies
to a simple linear harmonic oscillator and a rigid rotor [6]; as no real molecule is a
rigid rotor – nor an harmonic oscillator – in its nuclear motions within an electronic
framework, there is no logical basis to prefer J (JC1) to (JC1⁄2)

2, for which the
differences (1⁄4)l Ai

kl are readily accommodated, but the former convention is
tenaciously established. In such implicit usage for a particular isotopic variant,
term coefficients were generally denoted unsystematically such as in the following
correspondences, some of which involve compound symbols,

A1;0 Zue; A2;0 ZKuexe; A3;0 Zueye;

A0;1 ZBe; A1;1 ZKae; A2;1 Zge;

A0;2 ZKDe; A1;2 ZKbe; A0;3 ZHe;

(3)

in values of rotational terms for a particular vibrational state,

FvðJÞZBv½JðJC1Þ�KDv½JðJC1Þ�2 CHv½JðJC1Þ�3 C. (4)

and of vibrational terms,

GðvÞZueðvC1=2ÞKuexeðvC1=2Þ2 CueyeðvC1=2Þ3 C. (5)

with subsidiary relations,

Bv ZBe KaeðvC1=2ÞCgeðvC1=2Þ2 C. (6)

Dv ZDe CbeðvC1=2ÞC. (7)
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and so forth, with some variability, depending on researcher, of inclusion ad hoc
of minus signs to make selected parameters assume generally positive values. In
an absence of net orbital, electronic and nuclear spin momenta that might couple
with rotational angular momenta, a sum of these vibrational and rotational terms
is simply the value of a spectral term, Ei

vJZGðvÞCFvðJÞ, within a particular
electronic state. The objective of fitting wave numbers of spectral lines in
perceived sets to expressions involving quantum numbers v and J is to enable
reproduction of those wave numbers of many lines with fewer parameters within
formulae of simple form. Sufficient parameters of selected kind are employed to
reproduce data satisfactorily. By means of coefficients either Ai

kl or their
unsystematic equivalents, spectral reduction might be generally achieved such
that these parameters number only about one quarter of the number of wave
numbers of measured transitions.

In his last paper Dunham obtained a formula for values of spectral terms for a
particular isotopic species i in a particular electronic state, which we suppose
generally to be of symmetry class 1S or 0 implying neither net electronic orbital
nor net intrinsic electronic angular momentum;

Ei
vJ Z

XN
kZ0

XN
lZ0

Y i
klðvC1=2Þk½JðJC1Þ�l (8)

we likewise ignore intrinsic angular momenta of atomic nuclei. This expression
appears similar to formula 2, but here Y0,0s0, even for an electronic ground state.
Dunham actually wrote K instead of J with no explanation of that symbol, but
during that era such a symbol to denote rotational angular momentum was
common practice. Correspondences with unsystematic parameters are only
approximate:

Y1;0yue; Y2;0yKuexe; Y3;0yueye;

Y0;1yBe; Y1;1yKae; Y2;1yge;

Y0;2yKDe; Y1;2yKbe; Y0;3yHe;

(9)

An important distinction between term coefficients Ai
kl and Y i

kl is that, whereas the
former are regarded as freely adjustable, the latter are formally inter-related; for
instance, although a relation

Y0;2zK4Y3
0;1=Y

2
1;0 (10)

thus connecting De, Be and ue, might be derivable directly from perturbation
theory, other relations such as

Y0;3z8Y3
0;1ðY1;1Y1;0 C12Y2

0;1Þ=ð3Y
4
1;0Þ (11)

thus connecting He, ae, Be and ue, are less readily derived without an intermediate
model. It is essentially a truism to state that the essence of Dunham’s approach
to analysis of molecular spectra involves the primacy of Dunham coefficients Ykl,
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that differ from freely adjustable coefficients Akl in being explicitly related to each
other through algebraic formulae, such as that above, although many authors of
papers involving reduction of spectral data have ignored this distinction.

Two further comments about formula 8 and its parameters are noteworthy. The
number of terms with coefficients Y i

kl in the double sum is formally doubly infinite
so that formula 8 can represent spectral terms involving arbitrarily large values of
v and J; with data of finite extent the sums become truncated in a systematic and
consistent manner conforming to parameters of a minimum number required
according to that intermediate model. Instead of exact equalities in formulae 10
and 11, the approximations arise because each term coefficient Y i

kl constitutes a
sum of contributions [5],

Y i
kl Z

X
mZ0

Y2m
kl (12)

of which magnitudes of successive contributions Y ð0Þ
kl ; Y

ð2Þ
kl ;Y

ð4Þ
kl ::: for a particular

isotopic species generally decrease rapidly with increasing value of m, hence
assuring rapid convergence for not too large values of v and – particularly – J; a
superscript, 2m with m integer, denoting order of contribution takes only even
values by dint of their relation to a JBKW procedure [13], based on that developed
concurrently by Brillouin [14,15], Kramers [16] and Wentzel [17], itself
dependent on a mathematical method developed by Jeffreys [18], according to
which Dunham originally derived expressions for these term coefficients [4]. The
approximate relations 10 and 11 become exact equalities when only leading
contributions Y ð0Þ

kl are employed in those, and analogous, relations. The effect of
atomic mass varies for these contributions; denoting by Ukl a factor independent
of mass in Y ð0Þ

kl , we express this dependence on reduced mass m of a particular
isotopic species as

Y ð0Þ
kl fm�ðkC2lÞ=2; Y ð0Þ

kl ZUklm
�ðkC2lÞ=2 (13)

in which the molecular reduced mass is defined as mZMa Mb/(MaCMb), with Ma

and Mb being masses of separate neutral atoms into which a diatomic molecule
AB, whether net electrically neutral or a molecular ion, dissociates. For further

contributions Y ð2Þ
kl ;Y

ð4Þ
kl :::; the corresponding factors incorporating reduced mass

are respectively m�ðkC2lC2Þ=2;mKðkC2lC4Þ=2.
Dunham achieved inter-relations between term coefficients Y i

kl through use
of an intermediate radial function V(R) in an effective hamiltonian for motion
of atomic nuclei of this form,

H ðRÞZ p̂2=ð2mÞCZ2JðJC1Þ=ð2mR2ÞCVðRÞ (14)

that contains terms to represent kinetic energy parallel and perpendicular to an
internuclear vector with the centre of mass as origin of coordinates, and potential
energy V(R), respectively; the second term hence corresponds to rotational motion
about the centre of mass. Here p̂ is a linear momentum conjugate to a vector to
represent instantaneous internuclear separation R, and the next term involves
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the square of an angular momentum that takes discrete values Z½JðJC1Þ�1=2, with
J a non-negative integer or half integer. Instead of direct use of this variable R,
Dunham employed a reduced displacement x, thus dimensionless,

xZ ðRKReÞ=Re; RZReð1CxÞ (15)

in which Re denotes an equilibrium internuclear distance, for a particular
electronic state, at which the postulated internuclear potential energy V(R) or V(x)
associated with nuclear motion along the internuclear vector is a minimum; xZ0
at RZRe. To avoid working with coefficients of which the units vary with the
power of that variable, such a dimensionless variable is highly desirable.
According to a formal separation of electronic and nuclear motions, the total
electronic energy plus the coulombic repulsion between stationary nuclei
becomes a potential energy for motion of those nuclei. Dunham actually
employed, instead of x, a greek letter x, but in much subsequent work [13] the
former symbol is adopted, as here; apart from ease of typewriting, relation to
further symbols y and z for cognate variables is facilitated. Dunham adopted a
function of potential energy having the form of a polynomial or truncated power
series,

VðxÞZV0 Chca0x
2 1C

X
jZ1

ajx
j

 !
(16)

in which V0 is the potential energy at the minimum; for the electronic ground state
of a particular molecular species with a particular net electric charge V0h0, and
the polynomial is truncated as limited by an extent of available spectral data. The
leading term a0 x2 of this radial function, which remains if all ajZ0 for jO0,
corresponds to potential energy of the canonical linear harmonic oscillator, for
which classically the frequency is independent of vibrational amplitude and
quantally the frequency of transitions between adjacent terms is constant; further
terms aj x

j that make an oscillator anharmonic hence take into account how
transitions of a real molecule differ from a limiting harmonic behaviour near RZ
Re. In terms of these coefficients for potential energy, term coefficients such as

Y ð0Þ
1;1 Z 6B2

eð1Ca1Þ=ue (17)

and

Y ð0Þ
0;3 Z 16B5

eð3Ca1Þ=u
4
e (18)

thus become simply related to each other, as here through formula 11 for instance,
on elimination of coefficients aj for potential energy.

Dunham [5] derived these expressions Y i
klðue;Be; ajÞ, necessarily manually,

through a JBKW procedure, which he claimed to make more general [4] than what
had appeared in previous literature. Dunham reported expressions Y i

kl containing
coefficients aj up to a6, and Sandeman [19] and Woolley [20] extended manually
these results according to a roughly analogous procedure. Kilpatrick [21] applied
perturbation theory in successive orders to derive expressions for Y i

kl, and
Bouanich [22] applied Rayleigh-Ritz perturbation theory for solution of
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Schrodinger’s equation with a separate Fortran programme to calculate each
numerical coefficient of a term in Y i

kl comprising products of various aj;
Brukhanov and coworkers [23] also employed perturbation theory but produced
with computer algebra many expressions for Y i

kl. Bessis and coworkers conducted
calculations of Y i

kl of a complicated symbolic nature according to a method
involving differential operators [24], at first manually, but invoked computer
algebra to assist extension of this approach [25]. The JBKW method has been
programmed, with an algorithm [26] similar to Dunham’s, or more directly [27].
Uehara has reported explicit expressions for a few coefficients [28,29], also
derived with this JBKW method and with symbolic computation. The most
efficient algorithm to generate extensive expressions of Ykl is based on hypervirial
perturbation theory, or perturbation theory without wave functions [30].
Both matrix mechanics with perturbation theory [31] and classical mechanics
[32,33,13] have been applied to the effective hamiltonian in formula 13 to yield
expressions for term coefficients Y i

kl. With unequally spaced Fourier components
[33,13], according to even classical mechanics one would produce expressions
for these term coefficients identical with those from all other approaches
listed above.

Before 1977 many spectroscopists reduced their wave number data to
phenomenological term coefficients Ai

kl for a particular isotopic species; despite
imposing no inter-relations of types in expressions 10 and 11, they employed
notation Y i

kl, thus failing to recognise the profound significance of Dunham’s
work. This approach involves only linear regression, with readily obtainable
uncertainties associated with those parameters Ai

kl, but many coefficients of
correlation between those parameters inevitably assume magnitudes near unity. In
other cases some workers selected a subset of these term coefficients, typically
Yk,0 and Yk,1 taking as many values of k in each as required, from which to
evaluate a few coefficients aj for potential energy; non-linear fitting is required,
best performed iteratively until convergence to self consistency. In 1978 the
distinction between freely fitted coefficients Ai

kl and coefficients Y i
kl was formally

recognised [12]. Only in 1976 was undertaken [34] the first analysis of error
associated with these parameters aj. With spectral data comprising wave numbers
of only moderate precision, discrepancies between freely fitted coefficients Ai

kl

and coefficients Y i
kl calculated from parameters for potential energy are generally

not much greater than experimental error of evaluation of those quantities Ai
kl. In

1974 there had already been noticed significant discrepancies of this nature for CO
in precise spectral measurements of multiple isotopic variants [35]; further
empirical term coefficients Da;b

kl associated with separate atomic centres A or B in
diatomic molecular species AB were hence introduced and evaluated signifi-
cantly. According to this formula proposed empirically,

Ei
vJ Z

XN
kZ0

XN
lZ0

Uklm
KðkC2lÞ=2½1CmeðD

a
kl=Ma CD

b
kl=MbÞ�ðvC1=2Þk½JðJC1Þ�l (19)

parameters Da;b
kl , like Ukl defined in formula 13, are formally independent of

atomic mass within sets of isotopes of atoms A or B; for an electronic ground
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state there exist neither U0,0 nor Da;b
0;0. The latter parameters Da;b

kl tend to
accumulate a contribution from Y ð2Þ

kl in formula 12. For parameters Ukl not inter-
related through formulae similar to 11, thus lacking a defined relation to Dunham
coefficients Ykl according to formula 13 and becoming merely further
phenomenological fitting parameters, analogous to Akl but still independent of
isotopic mass, we propose a distinguishing symbol Bkl.

Notwithstanding these developments, some spectroscopists continued to
express their results in terms of only freely fitted coefficients Ai

kl, and obtained
from an arbitrarily selected subset thereof divergent values of coefficients aj for
the same molecular species in isotopic variants. For HCl [36], derived values of a6

in formula 16 for 1H35Cl and for 1H37Cl differed by ten times the stated standard
errors of these quantities, but these disparate results proved no cause for concern
because they reproduced successfully the wave numbers of transitions of each
isotopic species through their insertion into expressions for coefficients Y i

kl. For
1H81Br, fitting spectral data directly to term coefficients Ai

kl in a linear fit resulted
in a reduced standard deviation ŝZ0.76, indicating by its magnitude less than
unity that estimates of uncertainties of measurements of wave numbers of spectral
lines were somewhat conservative, whereas fitting the same spectral data directly
to coefficients aj through expressions for Y i

kl resulted in a reduced standard
deviation ŝZ1.3 [37]; that these values of ŝ appear to differ significantly might
reflect the effect of “l-uncoupling” phenomena to which Dunham alluded [5], or
other factors not taken into account [37].

Apart from the distance variable x that Dunham used in his function V(x) for
potential energy, other variables are amenable to production of term coefficients
Y i

kl in symbolic form as functions of the corresponding coefficients in a power
series of exactly the same form as in formula 16. Through any method to derive
algebraic expressions for Dunham coefficients Y i

kl, the hamiltonian might have x
as its distance variable, but after those expressions are produced they are
convertible to contain coefficients of other variables possessing more convenient
properties. To replace x, two defined variables are y [38],

yZ ðRKReÞ=R; RZRe=ð1KyÞ (20)

for which the leading term V(y)Zb0 y
2 in an expansion for potential energy was

the first function for interatomic potential energy, devised by Kratzer [39], and for
which Fues made a subsequent wave-mechanical treatment [40], and z [41]:

zZ 2ðRKReÞ=ðRCReÞ; RZReð2CzÞ=ð2KzÞ (21)

The latter variable eliminates a finite range [42] of convergence of series both of
x at 2 Re, because of a pole due to internuclear coulombic repulsion as R/0, and
of y at 1⁄2 Re, for a similar phenomenon as R/N. Expressions for Y i

kl in terms of
coefficients cj in the latter series are available in a large consistent collection in
Fortran coding [43] up to c10; such expressions, readily calculated, through
symbolic computation with efficient procedures [44], first in terms of coefficients
aj and thence converted to bj or cj as required, are further converted to Fortran or C
code for numerical applications.
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3. BASIS OF ANALYSIS BEYOND DUNHAM’S THEORY,
BY VAN VLECK AND OTHERS

Dunham recognised that his theory was adequate only when motions of electrons
are totally correlated to one or other nucleus during molecular vibration and
rotation about the centre of mass, to which motions Dunham referred as
mechanical effects [5]; especially with highly precise measurements of wave
numbers of transitions through a large spectral range or range of vibrational
quantum numbers, such an assumption is evidently untenable. The principal
reason that Dunham’s theory is inadequate is that the hamiltonian for nuclear
motion lacks terms to take into account the true nature of a diatomic molecule –
that it contains not two structureless atoms but two atomic nuclei, each of finite
mass and size, and their associated electrons, and that these electrons fail to follow
perfectly one or other nucleus in its rotational and vibrational motions with respect
to the centre of molecular mass; in the light of Dunham’s term, we describe these
effects as extra-mechanical [13]. Considering nuclear mass subsequently, we
devote attention first to effects of nuclear size.

A hamiltonian commonly applied to describe the electronic structure of a
molecule includes a coulombic or electrostatic term arising from a point-like
centre of charge for each nucleus. As is generally known by chemists but with
implications still largely ignored, an atomic nucleus has extension in space,
with a root-mean-square radius of order typically 2!10K15 m: the distribution of
electronic charge and the electronic energy are accordingly perturbed by this
extended distribution of nuclear charge, resulting in slight shifts of energy relative
to an hypothetical unperturbed coulombic potential [45]. These shifts of energy
lack direct spectral observation, but variations in shifts occur on isotopic
substitution because the spatial distribution of nuclear charge varies from one
nuclidic species of a particular chemical element to another. Discussing in 1922
an influence of nuclear volume on atomic spectra, Bohr [46] suggested that
spectral shifts reflected a variation of internal nuclear structure between isotopic
nuclei, producing a correspondingly varying field of force surrounding those
nuclei [47]. Not only variation of nuclear volume but also variation of nuclear
shape or of a distribution of nuclear charge produces a field shift [48]. Despite the
latter complication, discussion of a field shift in regard to molecular spectra is
couched conventionally in terms of mean squared nuclear radius hr2ia;b of atomic
centre A or B, by means of an extended relation

Y ð0Þ
kl CZf;a

kl CZf;b
kl ZUklm

Kð2kClÞ=2ð1CVa
klhr

2ia CVb
klhr

2ibÞ (22)

with term coefficients Ukl independent of mass and volume as defined in formula
13, and Zf

kl collecting additional terms containing mean squared nuclear radii
separately for both atomic centres A and B. Parameters Va;b

kl for the field shift are
functions of electronic density ra;b

el ðRÞ that varies with internuclear distance. Here
follow simple expressions [49] for the leading coefficients for rotational,

Va;b
0;1 ZZa;be

2dra;b
el ðRÞ=dRjReð330keReÞ (23)
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and vibrational energies,

Va;b
1;0 ZZa;be

2ðd2ra;b
el ðRÞ=dR

2jRe K3a1=Redra;b
el ðRÞ=dRjReÞ=ð1230keÞ (24)

together with an analogous expression for electronic energy,

Va;b
T ZZa;be

2=ð630hÞr
a;b
el ðReÞ (25)

in which appear protonic numbers Za,b of each atomic centre, harmonic force
coefficient ke, fundamental constants e, h and 30, and coefficient a1 in formula 16
for internuclear potential energy. According to empirical values of coefficients
Va;b

kl from precise spectral measurements, one would be able to evaluate, from
measurement of wave numbers of vibration-rotational spectra of a particular
diatomic molecular species in its isotopic variants, the electronic density at one
nucleus as a function of the separation of the other nucleus if absolute values of
mean squared radii were available. Such values of nuclear radii are difficult to
measure because an atomic nucleus contains mass and charge in a diffuse
distribution, even if that distribution be much less diffuse than for electronic
charge outside a particular nucleus; hence various experiments provide disparate
measures of such mean squared radii [50]. Because only differences in effective
mean squared radii of nuclear charge between isotopes of atomic nuclei with the
same atomic number are known with reasonable accuracy, formula 22 became
rewritten [49] as

Y ð0Þ
kl CZf;a

kl CZf;b
kl ZUklm

Kð2kClÞ=2ð1CVa
kldhr

2iaa0 CVb
kldhr

2ibb0 Þ (26)

in which dhr2iaa0 is a difference of mean squared radii between isotope A and a
selected standard isotope A 0 of that atomic type, and analogously for atomic type
B. Compiled values [50] of dhr2iaa0 are available from isotopic shifts of frequencies
of optical transitions in atomic spectra, for which effects of mass and volume
might be more readily disentangled than for molecular spectra into which an
additional dependence on internuclear distance R enters; absolute values of
nuclear radii are also available [51], subject to a qualification explained above. For
hydrogen, the difference between wave numbers of Lyman a lines of 1H and 2H or
D is 2237.955G0.020 mK1 [52], due mostly to a difference of reduced mass; the
field shift due to disparate nuclear volumes is only K0.020 mK1 for D relative
to H, despite a formally large difference between root-mean-squared nuclear radii/
10K15 m, 0.800G0.020 for H and 2.096G0.014 for D [53]. What matters for the
extent of the field shift is clearly the mean squared radius of nuclear charge, rather
than merely the cross section of nuclear volume. Evaluating the gradient of
electronic density with internuclear distance at equilibrium separations for a few
chalcogenide compounds of lead, and halide compounds of thallium, on the basis
of measured rotational energies, Tiemann et alii [45] discovered an approximately
linearly decreasing trend for this property. These authors mention [45] also that
for a field shift to be significant as a contribution to the total isotopic effect
requires a mass number of an atomic nucleus greater than 40, such as Ca with
atomic number ZZ20; the smallest mass numbers for which a field shift has been
detected in diatomic molecules pertain to tin, ZZ50, mass number Aw120 [49].
For compounds of Pb and Tl the largest contribution to isotopic effects arises from
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the variation of the volume or shape of nuclear centres on isotopic substitution,
such that for those elements the effects of volume variation are several times the
magnitude of expected effects of mass variation in the auxiliary coefficients Zkl

[49]. Because only relative shifts are observable, precise spectral data for at least
three isotopes of a given element in a particular diatomic molecular species are
required to yield information on these field shifts.

For molecules containing light atoms, we accordingly neglect this effect of
finite nuclear volume or field shift, but other effects prevent exact application of
isotopic ratios that one might expect on the basis of a proportionality with Y ð0Þ

kl
in formula 13 instead of total Ykl. For this reason we supplement term
coefficients Y i

kl in formula 8 for a particular isotopic species i with auxiliary
coefficients Z i

kl [54],

Ei
vJ Z

XN
kZ0

XN
lZ0

ðY i
kl CZi

klÞðvC1=2Þk½JðJC1Þ�l (27)

separate from Zf
kl above for the effect of finite nuclear volume. We moreover

distinguish two contributions to these further auxiliary coefficients – those, Zr
kl,

that are required to obtain accurate applications of inter-relations, such as those
in formulae 10 and 11, between term coefficients Ykl of a single isotopic variant
subject to restriction to leading terms Y ð0Þ

kl , and those, Zv
kl, that become

observable only on comparing parameters from spectra of isotopic species.
These auxiliary coefficients furthermore become partitioned into contributions
from each separate atomic type, A or B in diatomic molecule AB. With such an
expansion and apart from the field shift or effect of finite nuclear volume, we
rewrite the preceding formula as [55]

Ei
vJ Z

XN
kZ0

XN
lZ0

ðYkl CZv;a
kl CZv;b

kl CZr;a
kl CZr;b

kl ÞðvC1=2Þk½JðJC1Þ�l (28)

in which all term coefficients on the right side pertain implicitly to a particular
isotopic variant. As an effective hamiltonian for nuclear motion in formula 14
suffices to yield term values according to Dunham’s formula, 8, involving only
coefficients Y i

kl, we require further terms in another hamiltonian, which might be
in the form of corrections because each component of Z i

kl, and all components
in total, are typically much smaller than corresponding Y i

kl. We remedy this
deficiency by including at least one correction for each term in an effective
hamiltonian, formula 14,

H ðRÞZ p̂ð1CgvðRÞme=mpÞp̂=ð2mÞC ð1CgrðRÞme=mpÞZ
2JðJC1Þ=ð2mR2Þ

CVðRÞCV0ðRÞCV00ðRÞ (29)

in which gv and gr are called respectively vibrational and rotational g factors,
and me and mp are rest masses of electron and proton respectively; V 0(R) is an
analogous correction to the internuclear potential energy V(R). V 00(R) is a further
correction of which we allude merely to its dependence on atomic mass.
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The rotational g factor relates to the fact that a free molecule acquires a
magnetic dipolar moment as a result of molecular rotation [56]. Of seven terms in
this expanded effective hamiltonian, for only the rotational g factor can
experimental information be derived separately from other effects: for instance,
for a pure rotational transition of a diatomic molecule in electronic state 1S from
the rotationless state with JZ0 to a state with JZ1, one line in absence of a
magnetic field becomes a triplet, with the two additional lines displaced in
frequency symmetrically and proportional to the density B of magnetic flux; the
essential factor of proportionality is the rotational g factor, specifically an
expectation value, hJZ1jgrðRÞjJZ1i, of a radial function gr(R) for that rotational
state, which might have a positive or negative sign. From the influence of a
magnetic field on transport properties of a gaseous substance – specifically the
direction of transverse transport of thermal energy or momentum, the sign of gr is
derivable [57], which task is difficult through application of the Zeeman effect on
spectra unless circularly polarized radiation be applied; results of these signs
were reported for diatomic species N2, CO, HD, O2 and NO [58], for which
the sign pertains to a value of gr averaged over rotational states occupied at the
temperature of measurements. Apart from other experiments described previously
[56], even estimates of the magnitude of gr as well as sign are obtainable from
measurements of thermal conductivity and shear viscosity for a gaseous substance
in absence and presence of a magnetic field, plus other information; this method
has been implemented for N2 and CO [59]. For the vibrational g factor there
exists no magnetic effect of low order that might provide direct experimental
measurement [60].

Theoretical calculation of any atomic or molecular property through
application of computational methods based on quantum mechanics or other
sophisticated approach is typically practicable through approximate methods. The
internuclear potential energy V(R) independent of mass is conventionally derived
from the results of computations of molecular electronic structure according to a
scheme of wave mechanics,

K ðZ2=2meÞ
XN
jZ1

V2
j C ðe2=4p30Þ K

XN
jZ1

ðZa=ra;j CZb=rb;jÞC
XN
jZ1

XN
lOj

1=ri;j CZaZb=R

 !( )

!Jðrj;RÞZWðRÞJðrj;RÞ

(30)

in which ra,j denotes a distance between atomic nucleus A and electron j, and rb,j

analogously for nucleus B, ri,j is an interelectronic distance, and j(rj; R) is an
assumed total wave function for motion of N electrons with a parametric
dependence on fixed internuclear distance R; we neglect magnetic effects in this
formula. The total energy W(R) of a molecular system, including coulombic
repulsion between atomic nuclei, with these nuclei fixed at a separation R thereby
becomes a potential energy V(R) for the relative motion of these nuclei, according
to an effective hamiltonian approximately in formula 14 or accurately in
formula 29. Such an ansatz based on a formal crude separation of electronic and
nuclear motions was first described by Born and Oppenheimer [61] in1927, to
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justify expressing a molecular energy as an approximate sum of separate
contributions from rotational and vibrational motions of atomic nuclei and
electronic motions. Expressing energies in such a sum had been practised
implicitly for some years before this treatment appeared, and Born subsequently
sought an improved derivation [62]; since that time many attempts to improve the
analysis of molecular energies have been made, notably those by Longuet-Higgins
through a variational principle [63] and by Fernandez [64] through application of
perturbation theory, but a comprehensive analysis including both vibrational and
rotational nuclear motions with electronic motions is still lacking.

Including explicitly both electronic and nuclear motions, Schrodinger’s
equation has never been solved exactly, even for an isolated hydrogen atom;
approximate numerical solutions of an entire molecular system, involving
integration over both electronic and nuclear coordinates, would yield all feasible
energies of discrete and continuous states with no vestige of molecular structure in
a traditional sense [65]. An intermediate approach, as incorporated in formula 29
above, involves treating atomic nuclei first as having infinite mass, thus denied
kinetic energy, and solution of electronic energies on that basis. Relaxing that
criterion to finite mass requires various corrections that affect, to a greater or lesser
degree, energies accessible to a particular isotopic species, depending on those
masses. A function V 0(R) constitutes a correction called adiabatic because it
involves calculation with wave functions of only a particular electronic state of
interest, hence yielding wave-mechanical expectation values of operators for
nuclear momentum operating on electronic wave functions; after standard
manipulation to eliminate a dependence on the position of the centre of nuclear
mass [66], one expresses this correction in this general form as a radial function,

V0ðRÞZK1=2Z2h0jV2
a =Ma CV2

b=Mbj0i (31)

in which Va or Vb is a differential operator with respect to nuclear coordinates
that operates on the electronic wave function. This formula includes approxi-
mations: 0 denotes an electronic wave function j(rj; R) for the electronic ground
state that is a solution of equation 29 applicable to infinite masses, and atomic
masses Ma and Mb appear instead of respective nuclear masses. For that adiabatic
correction in V 0(R), the ratio of its magnitude to that of internuclear potential
energy V(R) is clearly of order a ratio me/M of electronic mass to mean atomic
mass M [30], hence 5.5!10K4 at most for a typical molecular species. Because
both rotational gr(R) and vibrational gv(R) factors that appear in formula 29 have
as coefficient a ratio of electronic and protonic masses, with these g factors having
magnitudes of order unity at most, these terms are likewise smaller than their
addend unity by a factorw5!10K4. The ratio of the magnitude of the most
important parts of contributions V 00(R), described as nonadiabatic because they
involve matrix elements of operators for linear and angular momentum between
an electronic ground state of interest and electronically excited states, to V(R) is
of order a squared ratio [67] of electronic mass and mean atomic mass, (me/M)2,
hence 3!10K7 at most for a stable molecular species and negligible except
in relation to spectral data having atypically great precision. These various
corrections present in formula 29 beyond terms in formula 14 affect rotational
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and vibrational contributions to molecular energies in disparate manners; within a
context of that effective hamiltonian, the recognition and disentangling of these
contributions during spectral analysis constitutes a major challenge.

Although Herzberg [6, page 230] illustrated pictorially how L uncoupling might
affect the energies of rotational states, it is unclear how such an explanation might
be directly applicable quantitatively to vibration-rotational spectra. The fact is
that, in absence of further coefficients Zkl, values, for lO1, of Ykl of a particular
isotopic species derived from precise measurements of spectra in which appear no
explicit multiplets implied in Herzberg’s diagram deviate significantly from those
expected on a basis of Yk,0 and Yk,1; these systematic deviations constitute a basis
for distinction of Zr

kl from Zv
kl, such that for diatomic molecules with like nuclear

charges, for which ZaZZb, and for hydrides, for which the atomic number of the
other atomic centre much exceeds unity, some values of Zr

kl for lO1 might be
derived or estimated from spectra of only one isotopic species [55]. By definition,
values of Zr

kl with lZ0 vanish. Values of Zv
kl are derivable experimentally through

analysis of spectra of isotopic variants; for a reasonably significant evaluation of
several values of both Zv

kl and Zr
kl, numerous spectral data for isotopic variants of

both atomic types over the same range of energy as for a principal isotopic species
are essential. A presence either of a ratio me/mp as factor of radial functions for
rotational and vibrational g factors or of a ratio of electronic to nuclear masses
implicitly within adiabatic corrections V 0(R), as explained above, implies that
auxiliary term coefficients Zkl that have their source in such effects have
magnitudes much smaller than those of dominant term coefficients Y ð0Þ

kl , and
nonadiabatic corrections V 00(R) even smaller; typically ZklwY ð2Þ

kl and effects of
V 00(R) would bewY ð4Þ

kl . A further contribution Zf
kl to total auxiliary term coefficient

Zkl that is due to an effect of nuclear volume or field shift, and proportional to
Va

kldhr
2iaa0 , from formula 26, might have a magnitude comparable with

contributions from mass effects for atoms of large atomic number, as mentioned
above.

For a particular isotopic variant of a diatomic molecule with like charges on
atomic centres, i.e. ZaZZb, and for which we assume no net molecular electric
dipolar moment at any internuclear distance, i.e. p(R)Z0 for all R, we hence
express the coefficient of (vC1⁄2)

k [J(JC1)]l in formula 27 as a sum,

Ykl CZv
kl CZr

kl CZf
kl (32)

The rotational and vibrational g factors have a dependence [66] on masses of
atomic centres of forms

grðRÞZmpg
irr
r ðRÞ½1=Ma C1=Mb�Z girr

r ðRÞmp=m (33)

gvðRÞZmpg
irr
v ðRÞ½1=Ma C1=Mb�Z girr

v ðRÞmp=m (34)

in which girr
r ðRÞ and girr

v ðRÞ contain electronic contributions regarded to pertain to
irreducible nonadiabatic functions pertaining to rotational and vibrational motions
[66], respectively. Simplified from formula 31, the adiabatic correction becomes
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analogously expressed compactly as

V 0ðRÞZK1=2Z2h0jV2
aj0i=m (35)

because V2
aZV2

b. Because field shifts between isotopic nuclei have their source in
significant differences between distributions of nuclear charges in space, or
nuclear volume, no comparable compacting of expression is practicable for this
effect; formulae 22 and 26 remain applicable to a species with ZaZZb just as for
ZasZb.

For a diatomic molecule with unlike charges on atomic centres, so ZasZb, we
express the coefficient of (vC1⁄2)k [J(JC1)]l in formula 27 as a sum of seven
addends,

Ykl CZv;a
kl CZv;b

kl CZr;a
kl CZr;b

kl CZf;a
kl CZf;b

kl (36)

The rotational and vibrational g factors of net electrically neutral molecule KABC

with an indicated electric polarity show a dependence [66] on masses of atomic
centres of forms

grðRÞZ ½girr
r ðRÞKpðRÞ=ðeRÞ�mp=Ma C ½girr

r ðRÞCpðRÞ=ðeRÞ�mp=Mb (37)

gvðRÞZ½girr
v ðRÞKð1=eÞdpðRÞ=dR�mp=MaC½girr

v ðRÞCð1=eÞdpðRÞ=dR�mp=Mb (38)

in which p(R) denotes a radial function for electric dipolar moment, and dp(R)/dR
its first derivative with respect to internuclear distance. Formulae 37 and 38
exhibit a partition of total nuclear and electronic contributions to rotational and
vibrational g factors into contributions of separate atomic centres [66] in a neutral
molecule that is consistent with their expression in this more compact form,

grðRÞZgirr
r ðRÞmp=mKmp½1=MaK1=Mb�pðRÞ=ðeRÞ (39)

gvðRÞZgirr
v ðRÞmp=mKðmp=eÞ½1=MaK1=Mb�dpðRÞ=dR (40)

Electronic contributions to gr(R) and gv(R) relate to nonadiabatic rotational and
vibrational effects, respectively, as electronic matrix elements [9], whereas a
nuclear contribution, the same in each case,

gnuc
r Zgnuc

v ZmpðZaMb=MaCZbMa=MbÞ=ðMaCMbÞ (41)

simply depends on atomic numbers and atomic masses, independent of
internuclear distance [66]. Scrutiny of the applicable quantities reveals that this
nuclear contribution can adopt only a positive value, whereas the total electronic
contributions to both gr(R) and gv(R) have invariably negative values; the sign of
the net value of gr(R) or gv(R) hence depends on the relative magnitudes of these
negative and positive contributions. The total adiabatic corrections can assume
both negative and positive values. For a diatomic molecule with ZasZb, the
corresponding adiabatic correction is given simply in its general form, formula 31,
and formula 26 is applicable to the relative field shift.
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4. BASIS OF APPLICATION OF DUNHAM’S AND VAN VLECK’S
THEORY TO ANALYSIS OF DIATOMIC SPECTRA

Bearing in mind that the primary objective of spectral analysis in its two stages
combined is to evaluate parameters of minimal number that serve to reproduce
archetypal characteristics of spectral lines in related sets, we consider how to apply
formulae presented above for analysis of data of type wave number or frequency of
spectral transitions. On a purely empirical basis for spectra of each separate
isotopic species, one might simply apply formulae 2 and 3 in combination,

~nZ
X
kZ0

X
lZ0

Aklfðv
0 C1=2Þk½J 0ðJ 0C1Þ�lK ðv00C1=2Þk½J 00ðJ 00 C1Þ�lg (42)

For many values of wave number ~n for diverse transitions within a particular range
of quantum numbers v and J to yield a few values of phenomenological parameters
Akl for each separate isotopic variant, a standard statistical treatment to evaluate
these over-determined parameters involves merely linear regression, best
performed according to a criterion of least sum c2 of squares of residuals; a
residual is a difference between a measured value of ~n and the corresponding value
calculated withAkl in a given set. This treatment, like all succeeding improvements
thereon, is naturally amenable to weighting of each measured wave number to take
into account a variable ratio of signal to noise among spectral lines in a set, partial
overlap of lines et cetera. For typical vibration-rotational data in a collection for a
particular species, the most important parameters Akl are those pertaining to
vibrational energies, Ak,0, and those pertaining to rotational energies, Ak,1;
additional parameters of type Ak,2, Ak,3 . related to centrifugal distortion are
typically added empirically to a set under test until further addition of parameters
yields no diminution of c2. As a rough guide to the extent of parameters of type
Ak,0, for data extending over a typical range from vZ0 to vmax the corresponding
maximum level of Ak,0 would have kZvmax; especially for diatomic species other
than hydrides, such an extent of Ak,0 is unlikely to be required, and the maximum
value of k might be only 1⁄2 vmax. The range of parameters of type Ak,1 is likely to
require a maximum value of k the same as, or one unit less than, is required for
parameters of type Ak,0, and several further Ak,2, Ak,3, Ak,4 . might be judiciously
included for smaller k.

In an analogous manner, this approach is extensible to treat simultaneously data
of multiple isotopic variants of a particular diatomic species; such a treatment
might be based on application of differences of spectral terms according to formula
19, with empirical parametersBkl andDa;b

kl therein as explained at that point. In such
a treatment there is convenience in distributing a factor reduced mass m between
vibrational and rotational quantum numbers, or rather their respective functionals,
in the following form, known as mass-reduced quantum numbers [68],

ðnC1=2Þ=m1=2; ½JðJC1Þ�=m (43)

Hence these functionals of quantum numbers v and J become compounded with
reduced mass m; differences of these quantities to various powers k and l that serve
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as regressors no longer retain integer values, respectively, for molecules in
electronic state of class 1S or 0.

As mentioned above, reduction of spectral data in terms of such empirical
parameters Akl, or Bkl and Da;b

kl , achieves an objective of this process, namely that
those parameters number appreciably fewer than the number of fitted wave
numbers ~n of separate transitions. One obtains further reduction on applying
constraints to freely adjustable parameters Akl, or Bkl, to convert them to Dunham
coefficients Ykl, or Ukl, respectively. One might even retain linear regression in this
process, implying that initial estimates of parameters are not required, according
to an iterative approach that Tiemann developed [69]: in the first iteration,
parameters Akl, or Bkl and Da;b

kl , are freely adjustable within a selected set defined
by subscripts k and l, and coefficients aj for potential energy according to
Dunham’s formula 16, or some equivalent such as bj or cj coefficient of y or z
respectively in formulae 20 and 21, are subsequently evaluated from Ak,0 and Ak,1.
In the next iteration these values of coefficients for potential energy are substituted
into expressions for Ykl with lO1, and the corresponding contributions Y i

klðvC
1=2Þk½JðJC1Þ�l with lO1 to spectral terms Ei

kl are subtracted from those terms;
the remaining parts of those terms are refitted to define further values of
coefficients aj for potential energy. This iterative process is continued until
convergence, or self consistency, of values of coefficients for potential energy
according to an appropriate criterion. One consequently obtains, with empirical
parameters Da;b

kl , Dunham coefficients Y i
kl, or their equivalent quantities Ukl

formally independent of nuclear mass, in a set from Y0,0 to Yk,0 and Y0,2k consistent
with coefficients aj, or convenient alternative such as cj, up to some maximum
level of j. Further coefficients Y i

kl are taken to be zero according to truncation of
infinite sums in formula 8 necessitated by spectral data having finite number,
whereas further coefficients aj, or alternative, have values entirely indeterminate,
but which are unlikely to be zero. By inserting published values of parameters aj

into known expressions of term coefficients Y i
kl, one can satisfy oneself that this

criterion of consistent truncation of sums in formula 8 has been practised such as
in work on HBr [37] and HCl [36] since the commencement of efforts to employ
Dunham’s formulae for Y i

kl in a consistent manner; although such a criterion is
only implicit within Dunham’s paper [5], it has nevertheless been essentially
universally applied; insinuation of further primary quantities Y i

kl with non-zero
values other than those supported directly by the data set into a treatment of data in
a particular set beyond that implied by subsidiary parameters such as aj or cj to a
specific level is recognised to be incongruous.

On the basis of this criterion one might attempt to estimate some further
subsidiary parameters, according to the following scheme [69]. If the fitted value
of aj of ultimate order j be even, with value m for instance, that condition implies a
non-zero value of some Dunham coefficient Yk,0 of largest value of k, such as n,
and thereby other coefficients YnK1,2, YnK2,4 . with even l, and other coefficients
YnK1,1, YnK2,3 . with odd l. One might then estimate amC1 from a formula for
Yn,1Z0, or alternatively from Yn-1,3Z0, or analogously for other Ykl with lesser k
but increasing odd values of l. This operation fails to yield consistent results
because that estimate of amC1 from Yn,1Z0 likely differs significantly from the
corresponding estimate from Yn-1,3Z0. One might argue that one should prefer
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the former value because it arises from an assumption that a principal Dunham
coefficient Yn,l with lZ0 or 1 has a zero value, but such an argument involves
an arbitrary selection. In any case, further such application of this scheme, to yield
an estimate of amC2 from YkC1,0 and so forth, rapidly leads to divergent and
unphysical magnitudes of these parameters aj, such that this scheme becomes
impracticable and unreliable [70], like any other contrivance to extrapolate in lack
of both an exact model and exact data. Whether the above argument involves Ykl

or their equivalents Ukl independent of mass, which would be actually employed
in reduction of spectral data of multiple isotopic variants, is immaterial: the same
conclusion follows.

Although a traditional approach without Tiemann’s extension [69] yields
parameters aj of minimum number, which hence imply primary coefficients Ykl of
minimum number in a consistent set, there remain empirical parameters Da;b

kl that
might have their number reducible through their expression to radial coefficients
in functions for extra-mechanical effects – such as gr(R), gv(R) and V 0(R)
introduced above. A few approximate relations such as [71]

D0;2z3D0;1 K2D1;0 (44)

have been derived, but a more systematic approach in terms of those radial
functions is clearly required. Although, on the basis of application of a JBKW
approach [26], formulae were derived to relate quantities equivalent to V 0(R) and
gr(R) in an effective hamiltonian, formula 29 apart from V 00, without gv, a full
solution including gv(R) beyond a constant term awaited development of
hypervirial perturbation theory and its application first to derivation of Dunham
coefficients Ykl [28], and subsequently to auxiliary term coefficients Zkl [72].
Employing an effective hamiltonian [66] in an alternative form in formula 29
above that is equivalent to that applied in that derivation [72], and observing that,
on a basis of formulae 34, 33 and 31, these extra-mechanical effects are
expressible in terms of sums of contributions involving reciprocal masses Ma and
Mb of separate neutral atoms [66], we postulate the following radial functions for
vibrational and rotational g factors and adiabatic corrections, respectively, in
terms of reduced displacement variable z defined in formula 21:

gvðRÞ/gvðzÞZmp

X
jZ0

sa
j z

j=Ma C
X
jZ0

sb
j z

j=Mb

 !
(45)

grðRÞ/grðzÞZmp

X
jZ0

taj z
j=Ma C

X
jZ0

tbj z
j=Mb

 !
(46)

V0ðRÞ/V0ðzÞZ hcme

X
jZ0

ua
j z

j=Ma C
X
jZ0

ub
j z

j=Mb

 !
(47)

This formulation [72] includes terms only linear in a ratio me/Ma of electronic and
atomic masses. Whereas coefficients cj pertaining to potential energy, or their
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counterparts aj in Dunham’s expressions [5], occur non-linearly in Dunham
coefficients Ykl, as exhibited in this instance,

Y2;1 Z ðB3
e =u

2
eÞð45c3

1 C27c2
1 K78c1c2 C30c3ÞC. (48)

in which Be and ue are primary rotational and vibrational parameters appearing in
formulae 6 and 5 respectively, coefficients sa;b

j , ta;bj and ua;b
j occur only linearly in

auxiliary coefficients Zv
kl or Zr

kl for either atomic type in formula 28, as this
instance demonstrates.

Zv;a
1;0 Z 1=2 ues

a
0mp=Ma C2ðBe=ueÞ½u

a
1ð1K3c1=2ÞCua

2�me=Ma (49)

Despite the linear occurrence of sa;b
j , ta;bj and ua;b

j among themselves, they occur
in products with other parameters cj, Be and ue; the latter two quantities each
separately contain, implicitly, reduced mass, as mK1 in Be and mK

1⁄2 in ue through
these explicit formulae,

Behh=ð8p2cmR2
eÞ (50)

uehðke=mÞ
1=2=ð2pcÞ (51)

consistent with formula 13. These two quantities constitute convenient forms to
represent parameters Re and c0, which belong to V(z) according to a definition of z
in formula 21 and the following explicit formula,

VðRÞ/VðzÞZV0 Chcc0z
2 1C

X
jZ1

cjz
j

 !
(52)

with

c0 Z a0hu2
e=ð4BeÞZ 1=2 keR

2
e =hc (53)

The right sides of both latter expressions evidently contain no dependence on
mass, and formula 52 is analogous to formula 16. Consistent with use of reduced
quantum numbers according to formulae 43, in practice U1,0 replaces ue and U0,1

replaces Be during fitting of spectral data with mass-reduced quantum numbers.
Inversion of spectral data to coefficients cj, s

a;b
j , ta;bj and ua;b

j and Re in pertinent
radial functions to represent in a compact form, according to an ultimate spectral
reduction, Dunham coefficients Ykl and auxiliary coefficients Zkl in sets consistent
with radial coefficients at particular levels clearly requires estimation of non-
linear parameters in the form of those radial coefficients. The first algorithm to
achieve this objective is embodied in a Fortran programme for weighted non-
linear regression called Radiatom [55], in which a main routine serves to specify
masses and to read data; its call also of a subroutine [73] initiates activity of an
efficient fitting algorithm according to a method that Newton originated and
that Levenberg, Marquardt, Choleski, Hammarling, Morrison, Osborne [73] and
others developed subsequently. That subroutine in turn calls another subroutine
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that calculates both the wave numbers of transitions, according to fixed values
of regressors – masses of atoms constituting a particular isotopic variant and
quantum numbers of lower and upper states of an assigned transition in a list in the
data set – and adjusted or constrained values of parameters – radial coefficients or
associated quantities as explained above, and the derivatives of residuals with
respect to those parameters. The wave number of each transition is calculated
directly through Dunham, Ykl, and auxiliary coefficients, collectively Zkl, as in

~nZ
X
kZ0

X
lZ0

ðYkl CZv;a
kl CZv;b

kl CZr;a
kl CZr;b

kl Þfðv
0C1=2Þk½J 0ðJ 0 C1Þ�l

K ðv00C1=2Þk½J 00ðJ 00 C1Þ�lg ð54Þ

These coefficients Ykl and collectively Zkl are employed precisely as the primary
quantities according to the theory of Dunham [5] and van Vleck [9], calculated
through their expressions in terms of radial parameters in other subroutines; those
many expressions have simply the forms shown in formulae 48 and 49 above.
Their radial coefficients serve to maintain a consistent level of Ykl and each
component of Zkl. Further subroutines of Radiatom contain expressions for
derivatives of these primary quantities with respect to radial coefficients.
Symbolic expressions for derivatives of residuals with respect to radial parameters
enable fitting more efficient than merely numerically calculated derivatives,
through first or second finite differences; such symbolic derivatives in a fitting
procedure facilitate convergence, and hence require initiate estimates of
parameters less near the ultimately fitted values than for numerical derivatives.
All these expressions in these subroutines were initially formed directly with
symbolic processors Reduce and Maple, through automatic generation of Fortran
code, and are evaluated with numerical precision of calculations set at 32 decimal
digits. With increasing speed of computer hardware and increasing sophistication
of software, generation of expressions for Ykl and various Zkl with Maple and
subsequent utilisation of these expressions in a separate fitting procedure entirely
within Maple that evaluates selected radial coefficients according to another
procedure also based on work of Levenberg and Marquardt has become feasible;
Radiatom II functions in this manner, with precision readily selectable but set
typically at 24 decimal digits. Taking full advantage of use of software for
computer algebra, a novel feature of the latter procedure is utilisation therein of
symbolic differentiation of an algebraic procedure (M. B. Monagan and J. F.
Ogilvie, in preparation) that builds a grand expression for Ei

vJ through a sum of Ykl

and all appropriate components of Zkl. Operation of Radiatom II is practical for
data in a set numbering less than 500; such a computation to converged
parameters involves typically a duration up to 2000s, relative to as little as 90s for
data and parameters in the same sets and the original Radiatom in Fortran with a
powerful processor; the difference reflects that Fortran programmes are fully
compiled, whereas Maple procedures employ compiled numerical subroutines but
operate at the top level in an interpreted manner, hence slowly. Although
estimated standard errors of parameters and coefficients of correlation between
parameters are practically identical for analyses of the same data with Radiatom in
these two versions, the converged values of parameters are not quite identical but
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agree within the stated errors. Extensive vibration-rotational data in appropriate
sets of which an analysis might involve effects of finite size of atomic nuclei are
lacking; for neither Radiatom nor Radiatom II has there been made an attempt to
encompass these effects. For both procedures typically 10–20 iterations are
required to reach convergence according to a specified criterion.

For Radiatom, upon approach to convergence, that criterion involves a test that
involves the sensitivity of parameters to adjustment; ample experience with
Radiatom has demonstrated that this test fails if initial estimates of adjusted
parameters, typically numbering 10–25, are near the finally converged values.
This peculiarity has led to use of deliberately rough values of U1,0 and U0,1 with
characteristic standard values of c1 and c2 as initial estimates [13, table 4.26];
initial estimates of all other values of adjustable parameters are entered as zero.
For this reason the initial value, for both Radiatom and Radiatom II, of a sum of
weighted residuals, c2, is typically of order 1015, eventually decreasing to a value
typically of order 104 at convergence; during this process values of parameters
sample a large area of the hypersurface of c2, and local minima seem to be
avoided in favour of an apparent global minimum, at least within a physically
reasonable domain of parameter space. For this reason also a deliberate attempt to
seek a local minimum of c2, or otherwise to influence the ultimate values of
parameters, is impracticable; the process of evaluating parameters, within a
particular set, thus becomes as objective as practicable within a limitation of
necessarily providing initial estimates of parameters as dictated by the nature of
non-linear regression. A further property of Radiatom is its inability to fit linearly
dependent parameters; an error message “Parameter . is linearly dependent upon
previous parameters” appears on initiating any attempt of this type, and execution
terminates at that point, generally at the first iteration. Experience with Radiatom
II is less extensive than with the original Radiatom, but similar behaviour seems to
apply; this manner of performance might be a general feature of regression
according to the algorithm of Levenberg and Marquardt when applied to many
parameters.
5. APPLICATIONS OF DUNHAM’S FORMALISM
TO SPECTRAL ANALYSIS

As an objective, spectral reduction involves evaluating parameters of minimal
number that serve to reproduce wave numbers of transitions within, on average,
their precision of measurement. According to an approach based on the formalism
of Dunham and its extension by van Vleck, one seeks hence to evaluate term
coefficients Ykl and various Zkl in sets that are both minimal and consistent,
achieving the latter property through secondary parameters of some appropriate
kind. Although Dunham’s original derivation involved a function V(x) and its
parameters aj, an alternative scheme has generated as its result exactly formula 2
above incorporating YGCA

kl ; instead of potential energy and kindred radial
functions this generator-coordinate approach [74,75] involves integral kernels
prospectively obtained from calculations of molecular electronic structure and
matrix elements of nuclear operators, hence directly transcending the crude
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approximation resulting from formula 30. One can not emphasise too strongly that
a radial function, such as V(R) for potential energy or p(R) for electric dipolar
moment that according to conventional treatments is taken to govern wave
numbers or strengths, respectively, of lines associated with typical transitions
measured in infrared spectra, is an artefact of a formal separate treatment, which is
approximate, of electronic and nuclear motions; notwithstanding this global truth,
one includes further radial functions that serve as corrections, such as those in
formula 29 beyond terms in formula 14, to improve reproduction of experimental
data by transcending somewhat that approximation when such corrections are
sufficiently small to be considered acceptable perturbations. There exists hence at
least one fully theoretically justified alternative to use of radial functions that
have as argument either directly internuclear distance R or a functional of R
in combination with Re. In sum, a radial function such as potential energy is an
artefact of a theoretical ansatz – an artificial distinction between motions of
subatomic particles unjustifiable according to rigorous quantum mechanics even
though quantum-mechanical methods might serve to calculate applicable
quantities in a semi-classical approach. A radial function is not an experimentally
observable quantity, and is not even essential to the practice of Dunham’s
formalism in analysis of molecular spectra. Furthermore, since Dunham’s time
proof has existed [76,77] that inversion of spectral data involving only bound
states fails to define uniquely a function for potential energy, with or without
auxiliary functions for adiabatic corrections, vibrational and rotational g factors et
cetera. A simple example of such lack of uniqueness exists for equal differences
between adjacent vibrational energies: the number of corresponding functions for
potential energy is uncountable [78,13]. To evaluate V(R) uniquely from data
pertaining to only a particular angular momentum, one requires also knowledge of
phase shifts of all continuum states [79], although scattering data at fixed energy
enable recovery of potential energy [80]. The essential raison d’etre of a radial
function is precisely to ensure that Dunham coefficients, Ykl extended with various
Zkl, comprise a consistent set of minimal number, in accordance with the principle
of parsimony or Occam’s razor, thus allowing one to achieve maximal spectral
reduction; the underlying evaluated radial parameters or prospective integral
kernels incidentally also number minimally within a consistent set. These
Dunham coefficients, independent of any model that inter-relates them such as a
function for potential energy or integral kernels based on a generator coordinate,
constitute a systematic representation, through formula 54 as extended to include
effects of nuclear volume if necessary, of actual or feasible measurements of wave
numbers of spectral lines within a range of quantum numbers v and J for which
values of these coefficients are valid.

Notwithstanding the preceding fundamental verity, one discerns qualitative
similarities between features of these radial functions and observable quantities
from other than spectral experiments. For instance, a value of the hypothetical
equilibrium internuclear distance Re deduced from spectra of gaseous CO in its
electronic ground state is similar to a value of interatomic distance derived from
crystallographic data obtained in experiments with diffraction of xrays, and
expected to be similar also for deductions from experiments with diffraction of
electrons or neutrons, even though the latter three experiments might yield



J. F. Ogilvie and J. Oddershede276
significant variation of that parameter even for samples measured at the same
temperature and state of aggregation. Moreover, one expects that radial functions
derived from disparate methods of spectral reduction of data in a common set
likely exhibit similar characteristics and trends, although there is no reason to
envisage exact agreement.

How does one proceed to evaluate Dunham coefficients Ykl and Zkl from
spectral data comprising transitions combining several vibrational and many
rotational states of a particular diatomic molecular species in multiple isotopic
variants? We here assume that assignments of all transitions in terms of v and J of
combining states are already made, although in practice it is entirely feasible to
undertake an analysis of spectra of a particular species involving making such
assignments for a selected subset of measured lines and using tentative values of
both Ykl consistent with underlying parameters such as aj or cj to extend
assignments. Such a procedure has been applied, for instance, in analysis of
spectra of vapours of RbCl [81] and GeO [82] in absorption. If parameters be
evaluated for individual bands of the most abundant isotopic species, one can
generally be guided to the maximum necessary value of k in Yk,0 by fitting the
origins or centres of vibration-rotational bands to a polynomial in vC1⁄2 in formula
5 or equivalent, and the corresponding maximum necessary value of k in Yk,1

through an analogous fit of Bv in formula 6; for a typical collection of spectral data
including vibration-rotational bands, the value of k derived from thus fitting Bv is
likely within one unit of the value of k derived from fitting band origins. Such fits
of individual bands are useful also to provide estimated standard deviations of
wave numbers that can serve as weights in the ensuing regression to evaluate
radial and Dunham coefficients. In lack of such guidance, a direct fit of an entire
set of spectral data, with weights estimated from other observations, can proceed
with trial selection of ranges of radial coefficients, eventually to achieve
convergence and monitored with values of statistical indicators of goodness of fit.
Because radial coefficients aj or cj for potential energy occur in algebraic formulae
of Ykl in a highly non-linear manner, as shown in formula 48 for instance, it is
mandatory to retain all those quantities as parameters up to a particular maximum
value, even though an estimated standard error of an intermediate coefficient
might indicate its nominal lack of significance. Moreover, successive radial
coefficients become introduced into expressions for energies of vibration-
rotational states through successive orders according to perturbation theory of
Rayleigh and Schrodinger in hypervirial form [30] or otherwise [21]. The JBKW
method with all quantum corrections yields the same series as standard quantal
perturbation theory for an anharmonic oscillator [72,83,84]; hence the
corresponding infinite series are identical, although each approach might generate
terms in distinct manners: to have the terms identical order by order one must
choose the same perturbation parameter and invert the BKW equation up to the
same order chosen in quantal perturbation theory. For this reason also, it is
illogical and improper to reject parameters such as aj or cj that occur first in a
particular order of perturbation theory but to accept analogous parameters that
become introduced according to this theory in a higher order. When this theory is
applied in a consistent and systematic manner, the practical generation thereby of
radial coefficients for potential energy in a minimal set from given frequency data,
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and hence of consistent parameters Ykl, generally suffers from no ambiguity of
extent of polynomial.

In contrast, selection of radial coefficients for extra-mechanical effects poses
significant difficulty: the reason is that, even ignoring the effect of nuclear volume
and of further nonadiabatic effects in V 00(R), these effects number three for an
atomic centre of each distinct atomic number, according to parameters in
formulae 45, 46 and 47, whereas auxiliary coefficients of types Zv

kl or Zr
kl number

only two. Moreover, although adiabatic effects contribute to only Zv
kl and the

rotational g factor to only Zr
kl, parameters pertaining to the vibrational g factor

appear in formulae for both Zv
kl and Zr

kl, but with no net contribution to Zv
0;lCZr

0;l.
Without either additional information from experiments with samples in applied
electric and magnetic fields or equivalent information obtained through a practice
of computational spectrometry, one must either make an – at least somewhat –
arbitrary selection of parameters of types sj, tj and uj, in formulae 45, 46 and 47
respectively, or construct modified parameters in various combinations for the
purpose of fitting spectra [28,85]; in either case a numerical value of such a
parameter might lose its nominal physical significance in regard to a particular
term in a hamiltonian, although the overall objective of deriving values of
coefficients Ykl and Zkl to reproduce spectral data is unaffected.

We examine a few particular radial coefficients in detail. Coefficients ua;b
0

pertaining to adiabatic corrections in V 0(R) appear in only an expression for
auxiliary coefficient Zv

0;0, explicitly in this form [55]:

Zv
0;0 Zmeðu

a
0=Ma Cub

0=MbÞ (55)

Being the coefficient of (vC1⁄2)
0 [J(JC1)]0, this term Zv

0;0 is merely a contribution to
residual energy and is indeterminate from measurements of wave numbers of spectral
transitions between bound vibration-rotational states within the same electronic
state. For radiative dissociation of diatomic molecule AB into atomic ions AK

and BC, one can measure the energy with considerable accuracy, equivalent to
w100 mK1 for such a diatomic molecular reactant [86]; application of this
experiment to HCl and to DCl enabled measurement of a difference (320G100) mK1

after other differences of dissociation energy and residual energy were taken into
account [86]. A possibility exists that this difference might be attributed to uH

0 ,
which implies a value (1.2G0.4)!106 mK1 of this quantity: such a magnitude is
comparable with values/106 mK1 for uH

1 ZK6:1233G0:0026 and uH
2 Z18:3836G

0:0097 deduced from analysis of infrared spectra of HCl [55], although the latter
value is susceptible to contamination from coefficient sH

0 related to the vibrational g
factor for reasons explained above; explicit calculation of adiabatic corrections for
HCl would verify this point. Such calculations of Zv

0;0 are reported for diatomic
molecules H2, HF, N2 and F2 [87], not HCl; a notable result of those calculations,
unmentioned by the authors, is a finding that a ratio of Zv

0;0 to total electronic energy
tends to decrease with increasing atomic number or mass. Handy and Lee
investigated the effects of adiabatic corrections on “bond length” and “vibrational
frequencies” of diatomic molecules [87]; these effects also decrease with increasing
atomic number or mass, but for some molecules nonadiabatic effects are more
important than adiabatic corrections in this context [88]. In any case, because
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coefficients ua;b
0 in V0(R) appear in only Zv

0;0 that imposes no tangible effect on wave
numbers of spectral transitions between bound states within a particular electronic
state, we ignore them in further deliberations here.

Of leading radial coefficients of two other types in relation to extra-mechanical
effects, sa;b

0 pertain to the vibrational g factor, and ta;b0 pertain to the rotational g
factor; in both cases these quantities also involve electric dipolar moment through
its radial function p(R), or equivalently in terms of reduced displacements x or z in
p(x) or p(z). We express the latter in an expansion,

pðRÞ/pðzÞZ
X
jZ0

pjz
j (56)

according to these relations [66] applicable to a molecule of relative polarity
KABC,

sa
0 Zm½gvðReÞ=mp K2p1=ðeReMbÞ� (57)

sb
0 Z m½gvðReÞ=mp C2p1=ðeReMaÞ� (58)

ta0 Zm½grðReÞ=mp K2p0=ðeReMbÞ� (59)

tb0 Z m½grðReÞ=mp C2p0=ðeReMaÞ� (60)

which involve values of rotational and vibrational g factors, electric dipolar
moment and its derivative all evaluated at Re. If one could evaluate significantly
these radial coefficients through reduction of pure rotational and vibration-
rotational spectra measured for samples of a diatomic compound in the absence of
applied electric or magnetic field, one might thus be able to estimate electric and
magnetic properties of this molecule in the same electronic state, specifically one
or other g factor and either the permanent electric dipolar moment p0 or its
gradient p1 at the equilibrium internuclear distance [89]. Doubt has been
expressed [90] about the feasibility of such a significant evaluation of ta0 and tb0
under those conditions, but this reservation arises from inadequate understanding
of expressions for auxiliary coefficients Zkl. If one consider only the total quantity
Z0,1 for an atomic centre of type A according to this relation,

Za
0;1 ZZv;a

0;1 CZr;a
0;1 Z ðBet

a
0 Cg2ua

1Þme=Ma (61)

in which gh2 Be/ue, and if one suppose that only the total quantity Za
0;1 be

deducible from spectral data for a sample without applied field, radial coefficients
ta0 and ua

1 are perfectly correlated – because factors Be and g2 have the same
dependence on reduced mass m – and can thus not be significantly evaluated, which
is the basis of the purported argument [90]. Other relations, however, such as

Za
0;2 ZZv;a

0;1 CZr;a
0;1 Z fBe½K2ta0 C ta1�Cg2½ua

1ðK3c1=2K2ÞCua
2�gg

2me=Ma (62)

break that perfect correlation because therein ta0 and ua
1 occur with other than

unit numerical factors. If one take total auxiliary coefficients Zkl up to Za
3;0, Za

2;2, Za
1;4
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and Za
0;6 – or equivalentlyDa

kl in formula 19 with subscripts in the same range – that
number 15 in total, excluding Za

0;0, these imply radial coefficients in subsets,
excluding ua

0, up to sa
4, ta5 and ua

6, hence numbering 17 variables. Unknown radial
parameters thus outnumber auxiliary coefficients Zkl through which the former
might be evaluated in principle. For this reason not all those radial coefficients can
be evaluated without supplementary information. In practice, a truncated subset
would require arbitrarily discarding two selected coefficients, most reasonably
two among the three, sa

4, ta5 and ua
6, that derive from greatest orders of perturbation

theory. Values of some remaining coefficients, at least those at the highest
remaining levels, would thereby adopt a mixed character, and would accordingly
lose their connection to a particular term in an effective hamiltonian and hence to a
particular source of effect such as rotational or vibrational g factor. One expects
reasonably, however, that values of radial coefficients at the least levels, such as sa

0,
ta0 and ua

1, would assume little or no mixed character and thus retain essentially their
pure relation, apart from error of these parameters propagated from measure-
ments of wave numbers of spectral lines, to particular terms in the effective
hamiltonian, formula 29 with neglect of V 00(R). An objective to take these various
parameters in combinations, optimal or otherwise, as fitting coefficients overcomes
this indeterminacy [29,85], but at a loss of all or most correspondence between
evaluated parameters and terms in that hamiltonian. To illustrate this problem
we consider in detail one instance of significant evaluation of a rotational g factor,
and two other instances in which this difficulty of evaluation is circumvented to
some extent through application of information additional to wave numbers of
spectral transitions, as a direct application of computational spectrometry.
6. GALLIUM HYDRIDE, GaH

Gallium hydride is an esoteric and obscure chemical compound, of no particular
technical significance; through infrared spectra, its vapour nevertheless proves
useful for elucidation of diatomic molecular properties in an exemplary manner.
Although vibration-rotational spectra but no pure rotational spectra of gallium
hydride have been measured, 1094 lines in this data set comprise an especially
useful collection because spectra, from experiments entailing absorption [91,92]
or emission [93] of radiation in the mid infrared region, of four isotopic variants –
69Ga1H, 71Ga1H, 69Ga2H and 71Ga2H – involve vibration-rotational energies
over almost the same range, corresponding to vZ5 maximum for GaH and vZ7
maximum for GaD. Reduction of all data from emission spectra [93] with
unduplicated data for GaH in absorption [91] according to the Dunham
approach with Radiatom yields evaluated parameters according to results
presented in Table 1.

Each stated uncertainty in this and other tables represents one estimated
standard error, propagated to parameters from uncertainties of measurements of
wave numbers; the uncertainties of the latter measurements were provided by
authors of papers [91,93] reporting those data, and the weight of each datum in the
non-linear regression was taken as the reciprocal square of those uncertainties. As
the reduced standard deviation of the fit was 0.92, so less than unity, the authors



Table 1. Coefficients of radial functions and other molecular parameters of GaH X 1SC

c0/mK1 10463962G22 sGa
0

0.696G0.066

c1 K1.3474749G0.0000078 tGa
0

K3.38G0.33

c2 1.038431G0.000030 tGa
1

5.33G0.65

c3 K0.521864G0.000111 tH0 K3.16990G0.00060

c4 0.04433G0.00054 tH1 7.3384G0.0167

c5 K0.1159G0.0026 tH2 K14.82G0.26

c6 0.2471G0.0067 tH3 16.19G0.42

c7 K0.0182G0.031 uH
1 /106 mK1 K10.80866G0.00105

c8 K1.688G0.106 uH
3 /106 mK1 29.71G0.86

uH
4 /106 mK1 K66.4G3.8

uH
5 /106 mK1 127.6G10.9

uH
6 /106 mK1 K223G27

U0,1/mK1 u 611.64646G0.00163
U1,0/mK1 u

1⁄2 159996.185G0.044
Re/10K10 m 1.6601526G0.0000022
ke/N mK1 150.823636G0.000084
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likely expressed those uncertainties slightly conservatively, but clearly an
application of Dunham’s formalism embedded in computer programme Radiatom
provides a satisfactory reduction of these data. Parameters in the left column
pertain to mechanical effects, according to Dunham’s term [5], and in the right
column to extra-mechanical effects. Only ten parameters in the left column are
independent: those explicitly fitted include cj with 1%j%8, U1,0 and U0,1;
parameters cj are coefficients in V(z) according to formulae 21 and 52, and two
others are defined in terms of the corresponding Dunham coefficients through
formulae 13. The leading coefficient c0 for potential energy is defined as

c0 ZU2
1;0=ð4U0;1Þ (63)

thus maintaining its rigorous independence of atomic mass; the equilibrium force
coefficient ke, pertaining to Hooke’s law in the limit of an harmonic oscillator, is
related to U1,0 through

ke Z ð2pcU1;0Þ
2=ð103NAÞ (64)

whereas the equilibrium internuclear separation Re is related to U0,1 through

Re½103NAh=ð8p
2cU0;1Þ�

1=2 (65)

A factor Avogadro’s constant multiplied by 103 enters these expressions on
condition that atomic and electronic masses be expressed, as is customary in
spectral analyses, in unified atomic mass unit; both U1,0 and U0,1 contain mass
in their units, despite their values being formally independent of atomic mass.
The standard errors associated with values of ke and Re in Table 1 include
contributions from errors of pertinent fundamental physical constants [94].

Of values in the right column of Table 1, the specified parameters are
coefficients of z in formulae 45, 46 and 47, pertaining to vibrational and rotational
g factors and adiabatic corrections respectively, with atomic centres BZGa and
AZH for this particular compound. Apart from the value of uH

2 that was
constrained to zero in the ultimate fit because preliminary fits indicated that its
standard error much exceeded its magnitude, values of other parameters beyond
c8, sGa

0 , tGa
1 , tH3 and uH

6 in their respective series, and also all uGa
j and sH

j , are not
assumed to be zero, but are simply indeterminate from available spectral data
within the chosen model, as explained above. Although it is absolutely
inappropriate to constrain to zero the value of a particular parameter within a
selected set of parameters cj, even though an estimated standard error of that
parameter considered for rejection be larger than its magnitude, it is appropriate, if
warranted on an objective basis of statistical criteria, to constrain to zero value a
particular parameter within a selected set sj, tj or uj, as is practised with uH

2 in this
case; a crucial distinction between these methods of handling parameters arises
because cj occur non-linearly in expressions both Ykl and Zkl – see formula 48 for
instance, whereas the latter parameters for extra-mechanical effects occur only
linearly in expressions for Zkl – compare formula 49. In our original report [89],
we employed parameters in not quite the same set; the set here takes account of
the fact that adiabatic corrections, reflected by coefficients of type uj, are expected
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to be more important for a light species such as H than the effect of the vibrational
g factor, reflected in coefficients of type sj, and vice versa for a massive species
such as Ga, on a basis of calculations of adiabatic corrections [87] discussed above
and our accumulated experience with rotational and vibrational g factors. The
latter supposition is subject to verification when calculations of adiabatic
corrections for GaH become practicable. Parameters in a set selected for this fit
thus reflect arbitrary selection to some extent; of parameters in all various sets that
were tested, this set in Table 1 produced the smallest reduced standard deviation
of fit. Although parameters in an alternative set might produce an even smaller
standard deviation, if such a set were to include parameters that arise in higher
orders of perturbation theory to the exclusion of parameters in lower orders, such
a set would be clearly illegitimate.

Before drawing deductions about molecular properties from results in Table 1,
we consider further statistical aspects. The program Radiatom produces not only
estimated standard errors of parameters, such as those presented in Table 1, that
derive from variances, but also their coefficients of correlation rjk from a
corresponding covariance matrix. For GaH and results appearing in Table 1, there
are 22 adjustable parameters: hence a symmetric matrix of these coefficients
contains 231 distinct entries; numerical magnitudes of only 19 exceed 0.9. Such a
proportion of magnitudes greater than 0.9 is a typical occurrence in fits of real
positive numbers to polynomials that are not orthogonal. Magnitudes of
correlation coefficients near unity derived from the covariance matrix pose no
problem for numerical stability in Radiatom because it operates with nominal
precision 32 decimal digits. For GaH, 14 values with jrjO0.9 occur between
coefficients uH

j , as expected because these coefficients have mostly no counter-
parts tHj that arise in the same orders of perturbation theory. Of other magnitudes
near unity, between tGa

0 and U0,1 the value of r is K0.997, which is still not the
largest magnitude off the diagonal of this correlation matrix; such a large
magnitude is reasonable because the difference of reduced mass between 69Ga1H
and 71Ga1H is minute. Likewise a value of r connecting sGa

0 and U1,0 is K0.95. In
contrast only one moderate magnitude of r connects tH0 with another parameter,
specifically tH1 ; the value is K0.82, whereas for uH

1 the largest magnitude of r
to another parameter is less that 0.28 – entirely innocent; these results reflect the
large difference of reduced mass between Ga1H and Ga2H, and hence a large
sensitivity of values of extra-mechanical parameters for H to moderately precise
spectral data. A claim [90] that coefficients ua

1 and ta0 are necessarily highly
correlated is hereby refuted; such correlation is broken as explained above.
To indicate a context for these values, the value of r between c1 and c2 is K0.87,
not for only GaH but typically also for other molecular species, again charac-
teristic of fits to non-orthogonal polynomials. On a basis of both standard
errors and correlation coefficients, coefficients tH0 ZK3.16990G0.00060 and uH

1 /
106 mK1ZK10.80866G0.00105 are hence clearly statistically well defined,
whereas tGa

0 ZK3.38G0.33 and sGa
0 Z0.696G0.066 are poorly defined despite

ratios of their magnitudes to respective standard errors exceeding 10.
Production of an acceptable value of reduced standard deviation of a fit required

multiple parameters uH
j , up to jZ6. Values of these parameters with jO2 likely

reflect not only adiabatic corrections; their association with a particular term in
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the effective hamiltonian is hence questionable. From both a point of view of
partition of effects among parameters sj, tj and uj in an incomplete subset for a
particular range of Zkl, as discussed above, and from particular statistical
considerations, however, parameters tH0 and uH

1 can be confidently attributed to
pertain practically exclusively to the rotational g factor and to adiabatic
corrections, respectively.

On this basis we proceed to deduce, from pertinent radial coefficients in table 1,
values of molecular properties, within a quasi-physical model consistent with an
effective hamiltonian of form in formula 29. The equilibrium internuclear distance
is purportedly a measure of the length of the chemical bond between atomic
centres Ga and H; for this highly precise value of Re in table 1 the relative error is
about one part per million, and the absolute error is about one tenth of a typical
nuclear radius. Evidently just as precisely evaluated, the equilibrium force
coefficient ke has a value about a quarter of that typical of hydrides such as CH and
NH with ‘single’ chemical bonds, consistent with GaH having a thermochemical
dissociation energy smaller than that of these other specified hydrides [95] and
with a general decrease of such force coefficients with atomic centres involving
chemical elements beyond the row in the periodic chart containing Li and Ne.
The radial function V(z) for potential energy has a maximum range of validity
1.3%R/10K10 m%2.4, consistent with the classical turning points for vibrational
state vZ5 of GaH. Coefficients cj up to jZ8 imply expressions Y i

kl up to Y5,0,
Y4,2,.,Y0,10, in total 36 applicable to each isotopic variant, hence 144 numerical
values of coefficients in formula 27 that, with corresponding numerical values for
Z i

kl derived from other radial coefficients in the right column of table 1, not only
reproduce the measured wave numbers of 1094 spectral lines within their
precision, on average, but also predict accurately the wave numbers of
unmeasured transitions within the same range of v and J; less accurate prediction
moderately beyond that range is likely also practicable. The radial functions
pertaining to extra-mechanical effects have smaller ranges of validity because
they are evaluated to lesser degrees of polynomials in z and because they likely
contain mixed effects of gv(z), gr(z) and V 0(z), apart from contamination from
V 00(z) that is unlikely to be significant.

Upon inverting formulae 59 and 60, we obtain these relations [89],

p0 Z 1=2 eReðt
Ga
0 K tH0 Þ (66)

grðReÞZmpðt
H
0 =MH C tGa

0 =MGaÞ (67)

by means of which we estimate values of electric dipolar moment and rotational g
factor of 69Ga1H at Re. From formula 66, the value (2.8G4.4)!10K30 C m is
clearly insignificant, indicating neither magnitude nor sign of p0 relative to the
molecular axis, because, according to table 1, even the nominal error of tGa

0 is
larger than the difference between tGa

0 and tH0 . In contrast, through formula 67 the
rotational g factor of 69Ga1H at Re is highly significantly evaluated, K3.1188G
0.0049, because tGa

0 and its error are divided by a large atomic mass. Apart from a
negative sign, the latter value has a large magnitude, relative to those of HI, HBr
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HCl and HF [56] with increasing values in a range [0.10, 0.45] respectively;
a negative sign and large magnitudes are common to other hydrides of group 13,
for which calculations yield values K8.207 for 11B1H [96] and K3.370 for
27Al1H [97]. Calculations [98] of gr(Re) for 69Ga1H yield values in a range
[K2.9457, K3.4440] depending on a level of sophistication of computations of
molecular electronic structure. Upon inverting formulae 58 and 59, we obtain
relations [66] analogous to those above,

p1 Z 1=2 eReðs
Ga
0 KsH

0 Þ (68)

gvðReÞZmpðs
H
0 =MH CsGa

0 =MGaÞ (69)

but these are inapplicable in the present circumstances to deduce a value of the
vibrational g factor for GaH because we lack an estimate of sH

0 . By means of
further relations [66],

p1 Kp0 Z 1=2 eReðt
Ga
1 K tH1 Þ (70)

dgrðzÞ=dzjRe
Zmpðt

H
1 =MH C tGa

1 =MGaÞ (71)

we might apply the latter to estimate the derivative of rotational g factor of 69Ga1H
at Re to be 7.412G0.019, but the former relation can yield only a rough estimate
(K2.67G0.86)!10K29 C m of a difference between coefficients p1 and p0 in a
radial function, formula 56, for electric dipolar moment because p0 is indeter-
minate from present spectral data of GaH. We might nevertheless infer that the
permanent electric dipolar moment of GaH is likely to be small, but its derivative
at Re likely large; these conditions are reminiscent of similar characteristics of CO
[99] and NO [100], for which a small permanent electric dipolar moment occurs
and for which the polarity of the radial function alters near the equilibrium
distance. Because these differences between radial coefficients sj and tj occur in
formulae such as 66, 68 and 70, we concur with a suggestion [90] that electric
dipolar moments obtained from spectra of samples in absence of electric or
magnetic field might be difficult to evaluate or unreliable from only moderately
precise spectral data, but the situation is clearly different for at least the rotational
g factor of GaH.

We compare results of the present treatment of GaH with those published
elsewhere. From measurements of absorption spectra of 69Ga1H and 71Ga1H [91],
parameters of type Akl were evaluated for separate isotopic variants. After further
measurements of also 69Ga2H and 71Ga2H, parameters of type Akl for the latter
species and of types Bkl and Dkl common to all four variants were reported [92].
Our first analysis [101] of spectra of GaH was based on only absorption spectra,
208 lines reported in two papers [91,92]; although it resulted in evaluation of
parameters of essentially empirical radial functions, similar to V(z), V 0(z) and
gr(z) in formula 29, the treatment was hampered by both paucity of data and
incompletely developed theory. After publication of data from emission spectra
[93], a subsequent reanalysis [89] demonstrated the possibility of evaluation of
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molecular electric and magnetic properties from analysis of vibration-rotational
spectral data of samples measured without applied fields, but again the treatment
suffered from lack of a theoretical basis that became available subsequently [66].
Comparison of our present results with those from only emission spectra [93]
sheds light on several aspects of the present discussion. From spectra that included
1045 lines (omitting previously reported lines [91,92]) in sequences with DvZ1
up to vZ4 for GaH and vZ7 for GaD, a fit of these data yielded freely adjustable
parameters Akl in formula 2 for each of four isotopic variants; these parameters
numbered 70 in total. Combining data for all four species yielded first 19
unconstrained parameters Bkl, defined above in relation to formula 19, with 11
further parameters DGa;H

kl ; in a further stage, ten constrained parameters Uk,0 and
Uk,1 were evaluated that imply a further 25 parameters Ukl with lO1, also with 11
further parameters DGa;H

kl . The final stage of data reduction involved numerical
solution of Schrodinger’s equation, 1045 times per iteration for several iterations,
in which a radial function for potential energy is based on that of Morse [102] but
with a polynomial in argument 1⁄2z in the exponent, accompanying expansions in
displacement (RKRe) corresponding roughly to V 0(R) and gr(R)me/mp in formula
29. (That numerical approach is incapable of handling directly another radial
function gv(R) in formula 29.) In contrast, according to Dunham’s symbolic
approach, to obtain the general exact algebraic expressions one solves
Schrodinger’s equation once [30], or equally well applies matrix mechanics
[31] or other methods [26], because those expressions are independent of a correct
method of their production; only simple substitution at arbitrarily selected
precision is required thereafter to evaluate Dunham coefficients Ykl during fits of
data, and therefrom the wave numbers of transitions according to formula 54. That
reduction [93] resulted in values of Re and 27 coefficients, each presented with 16
decimal digits, of radial functions – 10bj in the exponent, four coefficients for Ga
and eight for H in functions corresponding to those in formula 47 but with
displacement as argument, and five coefficients for only H in an expansion
resembling one of those in formula 46, also in terms of displacement; hence these
authors used disparate variables related to distance within the same fit. Although
their expansions of fourth and ninth orders similar to formula 47 clearly pertain
primarily to adiabatic corrections, Campbell et alii [93] attribute these to “Born-
Oppenheimer breakdown and homogeneous nonadiabatic mixing”; the latter,
actually associated with the vibrational g factor, enters also into values of their
parameters for their other radial functions with argument displacement, as
described above. Whereas to fit 1094 data in table 1 we evaluate five parameters of
type uH

j , that alternative approach [93] required a polynomial of ninth order to fit
1045 data over a smaller range of wave number ~n, or vibrational quantum number
v, for GaH.

Even for potential energy the other approach [93] required one parameter
additional to ours, apart from De; the latter quantity, equilibrium binding energy,
is stated to be based on “thermochemical” data, but the cited source [95]
indicates a value of dissociation energy D0 “!2.84 eV” to arise from spectral
analysis. Such an upper limit must be understood to provide an asymptotic limit
for V(R) at large R in a formula of Morse type because an attempted evaluation of
De from only infrared spectral data is unreliable. The stated reason for the choice
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of such a fitting form is to generate “a reliable internuclear potential-energy
function.to obtain information on the high-lying v, J levels” [93]. If “a
reliable.function” be supposed to imply accurately predictable wave numbers of
transitions involving such states, how reliable such information might be is
questionable at best because the value ofDe is specified [93] as “2.29!104 cmK1”,
without acknowledging that it is an upper limit, with precision implied to be
8100 mK1 at best; as the best precision of measured wave numbers of GaH is
w0.02 mK1 [93], the ratio of these values is w400000. In any case there exists an
atomic isotopic effect such that the energy of separate Ga and H atoms differs from
that of separate Ga and D atoms, reflected in distinct values of De, by w300 mK1,
likewise much greater than the precision of measured infrared spectral lines. The
known vibrational states occupy only the lowest third of that range of potential
energy below the maximum value of the supposed dissociation limit; the error
implied by an uncertainty in De would be comparable with the vibrational spacing
of GaD at a moderate value of quantum number v, much less than a value vDw40
expected just below the dissociation limit. That function for potential energy of
modified Morse form [93] might appear superficially to possess a qualitatively
appropriate shape, although it is obviously not correct because limiting behaviour at
large R must conform to an inverse power of R rather than an exponential approach
to an asymptotic limit; as a possibility of a maximum in that function or other effect
of significant interaction with electronically excited states can not be excluded, the
selected form is entirely speculative. Any justification of a radial function for
potential energy of that chosen form is clearly spurious. The polynomial of ninth
degree for extra-mechanical effects diverges rapidly on either side of the defined
range, further contributing to massive deterioration of accuracy of predictions of
wave numbers of transitions even modestly beyond the range of vibrational states
included in that analysis [93], even if the function for potential energy might be
reliable beyond that range. From a statistical point of view, in lack of an exact
theoretical model – which exists for neither potential energy nor auxiliary radial
functions, an objective of predicting accurately the wave numbers of transitions
involving vibration-rotational states with large values of quantum numbers v and J
is unattainable, because gross extrapolation, based on increasingly inaccurate data
as v increases to 4 for GaH or 7 for GaD, would be required, even with an exactly
defined asymptotic limiting value of V(R) at large R. Although the nature of
reduced displacement variable z allows limiting conditions [103] to be applied to
V(z) at both RZ0 for the united atom and R/N for the separate atoms, unlike
Dunham’s function V(x), these conditions have never been applied systematically
because consideration of the underlying physical implications signifies that such
application would not be sensible.

Parameter Re is no physical observable, merely a fitting parameter like any
other, even though it represents a special point on a curve of V(R) that is likewise
no physical observable. Jones and coworkers reported no value of Re; their value
(611.6337G0.0045) mK1 u [92] of “U0,1” (actually B0,1) implies Re/10K10 mZ
1.6601699G0.0000061, which differs inappreciably from a corresponding value
in table 1. Because we take into account practically all factors that influence the
value of Re, the latter value is highly accurate, within its stated uncertainty, not
merely precise and prone to systematic error. That tabulated value of Re is larger
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than that reported by Bernath and coworkers [93] by w47 of their standard errors,
which take no account of uncertainty of fundamental physical constants; the
reason for their value being smaller is clearly the failure to include in their fit any
parameter related to the rotational g factor, which consequently causes that
systematic deviation. The results present in table 1 differ little from those
published [89] after appearance of data from emission spectra [93], but for these
data of GaH even the latter results [89] demonstrate unequivocally the superiority
of the application of a method of reduction of diatomic molecular spectra of
GaH based systematically on Dunham’s algebraic approach over an approach
based on purely numerical procedures [93]: more numerous data are reproduced
accurately with fewer parameters, and at least one such parameter tH0 embodies
physical significance beyond an arbitrarily selected approximate model because it
predicts accurately the result [98] of a prospective experiment based on the
Zeeman effect [56].

The quality and consistency of 1094 data for GaH in a set of which reduction
with computer programme Radiatom yields parameters present in table 1 invite a
more general numerical test of Dunham’s theory. A question might arise about an
ability to represent rotational effects based on vibrational information. For
instance, coefficient a6 in V(x), formula 16, or c6 in V(z), formula 52, occurs first
in Dunham coefficients Y4,0 for pure vibrational effects and Y0,8 for pure rotational
effects, apart from Y3,2, Y2,4 and Y1,6 for vibration-rotational effects. As para-
meters cj, 1%j%6, in table 1 are well defined statistically, one clearly expects
both Y4,0 and Y0,8 to be correspondingly well defined, despite the disparity in
their magnitudes: for 69Ga1H, Y4,0ZK0.6111704 mK1 and Y0,8ZK8.447813!
10K28 mK1. Even when the latter quantity be multiplied by [J(JC1)]8 for
JZ29 – the largest value in measured spectra [91,93], the product is only K2.8!
10K4 mK1, much smaller than the precision, R0.06 mK1, of measurement of
wave numbers of transitions. A fit of spectral data to fitting coefficients Akl is thus
unlikely to yield directly a significant value of A0,8, but a value of Y0,8 derived
consistently, even though indirectly from the same spectral data through other
parameters such as aj or cj, is attained with great significance. We tested the
sensitivity of rotational contributions to vibrational data by greatly diminishing
the weight of the wave number of each transition in the data set with JO5;
although such transitions remain within the data set so that calculated and
measured wave numbers become directly compared in the output from a fit, that fit
becomes entirely insensitive to corresponding measured wave numbers of these
transitions. With parameters in the same set as in table 1, the results of this fit
demonstrate only a slightly degraded quality of fit, reflecting the effectively
decreased number of fitted data, and calculated wave numbers of transitions with
altered weights differ almost negligibly from those in other fits with standard
weights. Hence Dunham’s approach that involves taking into account rotational
effects through expansion of Be/(1Cx)2 in the effective potential energy [5] is
entirely justified. Provided that additional terms in an effective hamiltonian for
non-mechanical effects – those in formula 29, except V 00(R), beyond those in
formula 14 – are properly taken into account, Dunham’s theory provides a
sufficient and complete description of regular molecular spectra – those free of
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heterogeneous perturbations, as is typically the case for diatomic molecular
species within their electronic ground states.
7. DIHYDROGEN, H2

A diatomic molecule for which atomic numbers of both atomic centres are the
same – ZaZZb – but for which masses Ma and Mb of separate atoms A and B might
differ poses advantages for testing theories. For instance instead of parameters for
extra-mechanical effects in two sets when ZasZb – one for each of two atomic
types, there is only one set, and a molecular reduced mass is applicable instead
of individual atomic masses of separate atoms; compare formulae 33, 34 and 35
with their counterparts 37, 38 and 31, for instance. Precisely measured spectra of
such elemental molecular species are rare: of chemically stable and gaseous
diatomic species near 300 K, only H2, N2, O2 and three dihalogen species are
readily available; many other diatomic elemental species formed at elevated
temperatures above solid elements have electronic ground states for which spin
and orbital angular momentum complicate the spectra. Of those six, F2, which is
highly reactive in any case, lacks any practical isotopic variants, and O2 has an
electronic ground state X 3Sg

K with accompanying complications from net
electronic angular momentum and its coupling with rotational angular
momentum; some application of Dunham theory has nevertheless been made to
O2 [104]. Although for N2 there are fairly precise measurements of coherent
Raman spectra [105], the extra-mechanical effects are small and poorly defined.
For all six specified gaseous homonuclear species plus I2, electronic spectra have
been measured with attendant vibrational and rotational structures, but the
precision of those measurements is generally much smaller than for typical
contemporary vibration-rotational spectra of heteronuclear molecules in infrared
absorption or emission, and a direct involvement of excited electronic states
within a particular spectral analysis introduces correlations between parameters
for these combining states. The problem arises from the fact that infrared spectra
of homonuclear diatomic molecules in the gaseous phase corresponding to
vibration-rotational transitions in absorption or emission are extremely weak,
relying on magnetic dipolar or electric quadrupolar transition moments for their
observed intensity; an alternative technique, Raman scattering, applied to
transitions other than pure rotational and fundamental vibration-rotational bands
yields only exceedingly weak signals.

Hydrogen is the most abundant chemical element in the universe, and in its
various atomic and molecular forms furnishes a sensitive test of all of experi-
mental, theoretical and computational methods. Vibration-rotational spectra of
dihydrogen in six isotopic variants constituting all binary combinations of H, D
and T have nevertheless been recorded in Raman scattering, in either spontaneous
or coherent processes, and spectra of HD have been recorded in absorption.
Despite the widely variable precision of these measurements, the quality of some
data for small values of vibrational quantum number is still superior to that of data
from electronic spectra [106], almost necessarily measured in the ultraviolet
region with its concomitant large widths of spectral lines. After collecting 420
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measurements of wave numbers of lines reported in 32 papers originating in 16
laboratories, we analysed [107,108] these spectral data with Radiatom and
Radiatom II; we rejected 30 data that are severely discordant with remaining data,
reflecting poor calibration or blunder of measurement. To avoid arbitrary
exclusion of some data in favour of other, we retained among accepted data
duplicate measurements of some transitions from separate laboratories, but all
data were carefully weighted to reflect their varied precision. In view of data of
such questionable quality, one can clearly not contemplate attempting to evaluate
directly molecular parameters related to extra-mechanical effects without
additional information. As a dihydrogen molecule contains only two electrons,
calculations of molecular electronic structure and properties based on that
structure are eminently practicable. Kolos and Wolniewicz calculated adiabatic
corrections [110,111], and according to methods [56] developed for other
diatomic and triatomic molecular species such as those already cited [96,97,98]
we made new calculations of the rotational and vibrational g factors as a function
of internuclear distance over a large range.

Fitting calculated results of gr(R) to a polynomial in z, we imposed coefficients
tj thereof as constraints in a separate fit of 390 accepted spectral data to evaluate
Re and coefficients cj, sj and uj. Those values of coefficients tj appear within
brackets in a column headed ‘fit T’ in table 2 with standard errors of that fit to a
polynomial; standard errors of other parameters in that column reflect results of
the fit with Radiatom. On a basis of this fit we were able to predict a value
gv(Re)Z0.3136G0.0046 of the vibrational g factor for 1H2. Although this value
differs from a value gv(Re)Z0.2325 from subsequent calculations [107], the
experimental estimate is still much smaller than a similarly calculated rotational g
factor, gr(Re)Z0.8908 [56], that agrees almost exactly with direct experimental
measurement [112]. To confirm the stability of our approach to fitting spectra, we
undertook a separate fit, in this case employing adiabatic corrections as
constraints, to evaluate Re and radial coefficients cj, sj and tj. In the results in
table 2, column ‘fit U’, the values of uj fitted in a polynomial in z to computational
data for adiabatic corrections [110,111] appear within brackets, with other radial
coefficients and their standard errors from a fit of the same 390 spectral data.
We consequently derive another estimate of the vibrational g factor, gv(Re)Z
0.2800G0.0086 for 1H2, which is smaller than the other value deduced from
spectra but still larger than the calculated value. Fitted values of t0 and t1 in
column ‘fit U’ are near the corresponding calculated values in column ‘fit T’;
conversely, fitted values of u1 and u2 in column ‘fit U’ are near the corresponding
calculated values in column ‘fit T’. Further fitted parameters sj, tj and uj for extra-
mechanical effects reflect the rough data, indicated by the reduced standard
deviation of either fit being ŝZ1.46, significantly greater than unity; incon-
sistencies among 390 retained data from diverse sources, apart from gross
discordance that required 30 other data to be rejected, are responsible for this
condition, and emphasize the need for a thorough experimental remeasurement of
spectra for pure rotational and vibration-rotational transitions of H2 in its several
isotopic variants, preferably extending the range of vibrational and rotational
states sampled in transitions. Other parameters pertaining to potential energy
V(z) have comparable values between the two fits, as they are less sensitive to



Table 2. Coefficients of radial functions and other molecular parameters of H2 X 1SCg or
1SC

Fit T Fit U

c0/mK1 7970836.8G79 7970784.5G77
c1 K0.604167G0.000118 K0.603753G0.000135
c2 0.21030G0.00024 0.20973G0.00033
c3 K0.14441G0.00187 K0.14889G0.00186
c4 0.01276G0.0025 0.02164G0.0026
c5 K0.1404G0.0085 K0.1308G0.0086
c6 0.1973G0.0102 0.1737G0.0100
c7 K0.0524G0.0106 K0.0614G0.0109
c8 K0.0737G0.0178 K0.0459G0.0173
c9 0.0880G0.0092 0.0694G0.0082
c10 K0.1074G0.0172 K0.1055G0.0169
s0 0.1569G0.0023 0.1301G0.0043
s1 [0] K0.528G0.026
s2 [0] [0]
s3 6.69G0.69 9.59G0.83
t0 [0.44562G0.00044] 0.4523G0.0030
t1 [K0.09858G0.0025] K0.0836G0.0174
t2 [K0.09558G0.0066] K0.603G0.108
t3 [K0.09219G0.021] .
t4 [K0.1354G0.0140] .
t5 [K0.0468G0.043] .
t6 [0.4275G0.027] .
u0/106 mK1 . [10.52472G0.00072]
u1/106 mK1 K4.025G0.024 [K4.0384G0.0049]
u2/106 mK1 2.007G0.061 [2.1451G0.0197]
u3/106 mK1 [0] [1.728G0.033]
u4/106 mK1 2.75G0.23 [1.384G0.086]
u5/106 mK1 . [0.353G0.053]
u6/106 mK1 . [K0.727G0.109]
U0,1/mK1 u 3066.7339G0.0110 3066.7074G0.0124
U1,0/mK1 u

1⁄2 312694.3G2.1 312691.95G2.15
Re/10K10 m 0.74141301G0.00000133 0.74141620G0.00000150
ke/N mK1 576.0898G0.0078 576.0810G0.0079
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irregularities in the data. From table 2, the mean value of equilibrium internuclear
distance, Re/10K10 mZ0.7414146G0.0000020, from experiment agrees satis-
factorily with, but is likely more accurate than, the calculated value 0.74143!
10K10 m [110] (with a current value of Bohr radius [94]), if these quantities be
accorded their conventional meanings. Our experimental value formally takes into
account all extra-mechanical terms in formula 29, except those in V 00(z), that
might affect the value of Re at a level of order 10K16 m, which is comparable with
experimental error 2!10K16 m of this quantity propagated from measurements of
wave numbers of transitions; in contrast the effect of the rotational g factor on the
value of Re occurs at a level of order 5!10K14 m.
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Each radial function – V(z), gv(z), gr(z) and V 0(z) – of which coefficients of z are
evaluated from spectral data has a maximum range of validity, depending on the
quality and quantity of spectral data for isotopic variants, and expressible in terms
of a range of quantum numbers of vibration-rotational states, or spectral term EvJ,
or range of internuclear distance. For V 0(z) and gr(z) the latter range of R/10K10 m
is [0.53, 1.05], corresponding to classical turning points of V(R) for vw2 for 1H2;
although spectral data for isotopic species are available for greater energies, their
quality precludes reliability over a greater range. Because acceptable data for H2

are available up to vZ5 and for HD to vZ6, or Ew2.1!106 mK1 in either case,
for V(z) the corresponding range of R/10K10 m is larger, [0.47, 2.05]. For gv(z),
because of the disparity of results between fits T and U, from experiment a mean
value gvw0.3 would be applicable near Re; further coefficients s1 and s3 from
either fit lack other than nominal numerical significance for reasons mentioned
above. Plots of curves of any radial function derived from experiment are
impracticable without an assumption that further, and unevaluated, radial
coefficients have explicit numerical values, zero or otherwise, which is
unwarranted according to application of Dunham’s formalism to spectral analysis.
From computations of molecular electronic structure, values of gr and gv as a
function of internuclear distance over a broad range, and discussion of their
features, are presented elsewhere [107].

There exists no significant comprehensive fit of spectral data of H2 with which
we might here make comparison. Our discussion above demonstrates that, as for
GaH above, application of an algorithm based on Dunham’s algebraic approach
to analysis of vibration-rotational spectral data of H2, especially through
implementation of hypervirial perturbation theory [30,72] that allows the term
for the vibrational g factor in the hamiltonian in formula 29 to be treated directly
in that form, proves extremely powerful to derive values of fitting parameters that
not only have intrinsic value in reproducing experimental data of wave numbers of
transitions but also relate to other theoretical and experimental quantities.
8. LITHIUM HYDRIDE, LIH

The only other diatomic molecular species for which calculations of the radial
dependence of adiabatic corrections, rotational and vibrational g factors are
available is LiH. Although at 300 K this compound is a crystalline solid substance
with a structure of KCl type, at temperatures above its standard melting point
951 K the vapour contains polar diatomic molecules of stoichiometry according to
its formula, as well as dimers and molecular clusters in variable proportions;
spectral measurements on this vapour in absorption or emission have hence
yielded data on not only wave numbers of pure rotational and vibration-rotational
transitions, among others, of these diatomic molecules but also information on
their electric and magnetic properties through applications of Zeeman and Stark
effects respectively in appropriate experiments. Like H2, lithium hydride is
amenable to practice of calculations of molecular electronic structure for inter-
nuclear distance over a broad range because a molecule contains only two light
atomic nuclei and four electrons; relativistic effects, which accurate calculations
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must take into account but which do not directly enter analysis of experimental
data, on differences of molecular energies are therefore negligible, like radiative
effects [113], at a level pertinent to typical spectra at moderately great resolution,
although they both become important for calculations on LiH at a level of spectral
resolution at which effects of V 00(z) must be considered. Ignoring effects of nuclear
volume or field shifts, we require seven radial functions, with their corresponding
parameters, for direct fitting of spectra of LiH – potential energy, and contribu-
tions to adiabatic corrections, rotational and vibrational g factors for atomic
centres of each type, according to formulae 52, 47, 45 and 46 respectively. We
expect contributions to total YklCZkl from each of the latter three effects to have
comparable magnitudes, but smaller than a dominant contribution from potential
energy by a factor a ratio of electronic and protonic rest masses, me/mp, or less.

This species LiH was the first for which, by way of interactive computational
spectrometry, we combined experimental data and results of calculations of
molecular electronic structure to make a global fit [114] of wave numbers of
transitions from available infrared and microwave spectra. The basis of that
procedure was that, in principle, measurements of the rotational g factor for
vibration-rotational states with v and J over a large range would allow one to
calculate the radial function gr(R); as measurements of gr of 7Li1H and 7Li2H are
available for only vZ0 and JZ1 [115], with the rotational dependence of gr

roughly estimated [116], we simulated prospective results from further such
experiments through those computations. Repeating this strategy with improved
calculations [107,109], we fitted available spectra to obtain results presented in
table 3; as for H2 in table 2 and fit T, 17 values of tLi;H

j , reported within brackets
with their standard errors, result from fitting computed results for gr(R) and p(R) to
a polynomial in z for each value of internuclear distance, based on use of formulae
59 and 60 with R instead of Re. Although 14 values of tLi;H

j , 0%j%6, are imposed
as constraints in fitting experimental data, likely only eight of these have any
impact on the fit, in the sense that parameters beyond those eight – tLi

j , 0%j%2,
and tHj , 0%j%4 – define the rotational g factor in ranges of R to which available
spectral data are insensitive. Values of another 20 independently adjusted
parameters – U1,0, U0,1, cj with 1%j%9, sLi;H

0 , sH
1 , uLi;H

1 , uLi;H
2 , uH

3 and uH
4 – obtained

from fitting wave numbers of 1000 data selected from various sources [117–121]
are presented in table 3; as before, values of c0, Re and ke are derived from values
of U1,0 and U0,1, but values of uLi;H

0 are evaluated from published data for adiabatic
corrections [122].

According to application of Dunham’s formalism to analysis of molecular
spectra, as for GaH and H2, these radial coefficients of seven types represent many
Dunham coefficients Ykl and their auxiliary coefficients Zkl of various types that
collectively allow wave numbers of observed transitions to be reproduced almost
within their uncertainty of measurement through formula 54. Mostly because of
inconsistency between reported values of frequencies of pure rotational transitions
[118,119], the reduced standard deviation of the fit reported in table 3 is 1.25,
slightly greater than unity that would be applicable with consistent data for which
uncertainty of each measurement were carefully assigned.

In the present context of generation of consistent term coefficients Ykl and Zkl

through coefficients in selected radial functions, the major points of interest in



Table 3. Coefficients of radial functions and other molecular parameters of LiH X 1SC

c0/mK1 6572379.3G5.6 sLi
0

0.9126G0.0181

c1 K0.8970678G0.0000057
c2 0.348233G0.000040 sH

0
K0.2612G0.0029

c3 K0.093085G0.000196 sH
1

K0.3733G0.0195

c4 K0.044426G0.00087
c5 0.0765G0.0027 uLi

0 /106 mK1 [168.411G0.002]

c6 K0.1143G0.0078 uLi
1 /106 mK1 K5.53900G0.0082

c7 K0.2078G0.024 uLi
2 /106 mK1 6.357G0.134

c8 0.6024G0.049 uH
0 /106 mK1 [12.829G0.002]

c9 K0.7538G0.115 uH
1 /106 mK1 K5.15624G0.00096

U0,1/mK1 u 662.708918G0.000082 uH
2 /106 mK1 4.923G0.021

U1,0/mK1 u
1⁄2 131993.551G0.064 uH

3 /106 mK1 K3.340G0.051

Re/10K10 m 1.59491242G0.00000020 uH
4 /106 mK1 4.828G0.158

ke/N mK1 102.649202G0.000100

tLi
0

[0.749508G0.000142] tH0 [K0.772779G0.000051]

tLi
1

[0.60714G0.00115] tH1 [1.28086G0.00047]

tLi
2

[K1.2181G0.0022] tH2 [K1.7927G0.00191]

tLi
3

[1.077G0.022] tH3 [2.0040G0.0088]

tLi
4

[K1.710G0.106] tH4 [K1.6797G0.0198]

tLi
5

[3.546G0.160] tH5 [2.375G0.033]

tLi
6

[K2.586G0.34] tH6 [K0.5685G0.079]

tLi
7

[K6.825G0.65] tH7 [K0.8264G0.042]

tLi
8 t8

Li [6.37G0.31]
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these results are comparisons of experimental and calculated values of extra-
mechanical effects within the same context; alternative theoretical and
computational approaches to evaluation of molecular energies and properties of
7Li1H impose no such radial functions in that generation [123,124]. From values
of coefficients sLi;H

j we derive this formula for the vibrational g factor,

gv Z ðK0:1291G0:0039ÞC ðK0:3733G0:0195Þz (72)

valid within a range R/10K10 mZ[1.17, 2.25] for comparison with a formula from
fitted data from computations,

gv Z ðK0:136553G0:000056ÞC ðK0:69064G0:00073Þz

C ð0:6381G0:0038Þz2 C ð0:0435G0:027Þz3 K ð0:388G0:056Þz4

K ð0:155G0:29Þz5 C ð1:402G0:35Þz6 K ð6:285G0:93Þz7

K ð17:96G1:14Þz8
(73)

valid in a much larger range, R/10K10 mZ[1.05, 3.0]. Agreement of the
constant terms is satisfactory, but the single further coefficient from experiment
implies a slope only half that calculated theoretically, doubtless reflecting the
truncation at a linear term. For adiabatic corrections we can compare not only
the total function but also contributions of individual atomic centres. From fitted
values of uLi

1 and uLi
2 in table 2 plus uLi

0 derived from published calculations
[122], we produce the following formula to represent a radial function for
adiabatic corrections associated with the lithium atomic centre independent of
atomic mass,

V0LiðzÞ=ðhcÞ=u mK1 Z ½92385:19�C ðK3086:8G8:2ÞzC ð3597G73Þz2 (74)

compared with an exact polynomial representation of calculated points [122]
that yields this formula:

V0LiðzÞ=ðhcÞ=u mK1

Z 92385:19K3169:90zC4896:87z2 C1987:27z3 K11905:13z4

K37933:27z5 C71718:27z6 C74959:08z7 (75)

Coefficients of z to various powers in these formulae differ from values of uj in table
3 because the latter reflect a presence of a factor me in formula 47; all values of
constant terms are derived from calculation [122], not from fits to frequency data.
Coefficients of corresponding linear and quadratic terms in formulae 74 and
75 have comparable signs and magnitudes. From fitted values of uH

j , 1%j%4,
in table 3 we derive analogously a corresponding formula to represent a radial



Application of Dunham’s Formalism 295
function for adiabatic corrections associated with the hydrogen atomic centre,

V0HðzÞ=ðhcÞ=u mK1

Z ½7035:2�C ðK2828:48G0:52ÞzC ð2688:2G11:5Þz2

C ðK1405G59Þz3 C ð1331G187Þz4 ð76Þ

The corresponding exact fit to calculated points [122] is

V0HðzÞ=ðhcÞ=u mK1

Z 7035:2K3160:75zC5584:07z2 C13854:46z3 K100067:32z4

C13622:76z5 C502328:20z6 K523003:44z7 ð77Þ

The sign and magnitude of the linear term in formula 76 concur moderately
satisfactorily with those properties of a corresponding term in formula 77, but
agreement between other corresponding terms is lacking. We compare the total
adiabatic corrections for 6Li1H from a sum of corrections of separate atomic
centres in formulae 74 and 76 divided by their masses,

V0ðzÞZV0LiðzÞ=MLi CV0HðzÞ=MH (78)

which yields this formula,

V0ðzÞ=ðhcÞ=u mK1 Z ½22342:6�K3311:8zC3259:4z2 K1818:0z3

C2628:0z4 (79)

with a formula interpolated from points for the corresponding total calculated
adiabatic corrections [122] for 6Li1H,

V0ðzÞ=ðhcÞ=u mK1 Z 22342:6K3722:1zC6709:4z2 C16517z3 K115968z4

C7699:5z5 C585535z6 K587860z7 ð80Þ

Like formulae for contributions to total adiabatic corrections from individual
atomic centres above, the corresponding coefficients for the linear term have the
same sign and comparable magnitude, but for subsequent coefficients agreement
is lacking. The maximum region of validity of the experimental functions is the
same as for the vibrational g factor, specified above, whereas the region for which
the calculated points define the contributions and total adiabatic correction [122] is
R/10K10 mZ[1,3].

For comparison with our results in table 3, which presents values of 20
adjusted parameters with 15 parameters constrained to define the rotational g
factor, Dulick et alii [115] required also 20 adjusted parameters, with a constrained
parameter De for the equilibrium binding energy for a function of potential
energy having a modified Morse form. The latter parameter is specified as
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DeZ2028600 mK1 but this value varies w300 mK1 among various isotopic
molecular species composed of 6Li, 7Li, 1H and 2H because each has a distinct
value of De within that range. Although in this case the experimental curve of
potential energy [115] conforms superficially to points from computations of
molecular electronic structure [125] on the scale of that plot, with no discernible
maximum or other anomaly, extrapolation to predict vibration-rotational
transitions much beyond the range of vZ6 for 7Li1H, or w8.2!105 mK1, must
be subject to progressive propagation of error from measured transitions, apart
from the variability ofDe that affects such a prediction increasingly on approach to
the dissociation limit. The measured transitions define the lower two fifths of the
range of energy to the dissociation limit. As for GaH [93], representations of
empirical functions for LiH [115] to take into account extra-mechanical effects
have the form of truncated polynomials in displacement, RKRe; their claimed
maximum range of validity is R/10K10 mZ[1.16, 2.48]. Beyond that range such
polynomials, of degree sixth and cubic, tend to diverge rapidly, much more rapidly
than a polynomial in z, as published plots clearly demonstrate [115]. This
behaviour confirms the superiority of properties of variable z; for instance an
increment from R/10K10 m from 3 to 4 is four times as large as the corresponding
increment in z for LiH from 0.61 to 0.86. The accuracy of prediction of wave
numbers of transitions involving states with terms greater than w8.5!105 mK1

becomes thereby progressively and severely diminished. A ratio of error due to
uncertainty in De to the best claimed accuracy of actual measurements for LiH,
0.05 mK1 [115], is w6000, but the absolute and relative accuracy of predictions
for even moderate v due to invalidity of radial functions for extra-mechanical
effects expressed as polynomials in displacement is much worse. Despite the
apparent quality of the function for potential energy of modified Morse type [115],
which still possesses an incorrect limiting dependence onR toward the dissociation
limit, the quality of predictions beyond the range of measured transitions is hence
highly doubtful. Apparent agreement between this modified Morse curve and
computationally derived points [125], themselves subject to error, must be
regarded as fortuitous: over much of the illustrated range before an avoided
crossing at RxZ3.857!10K10 m with a curve for potential energy of state A 1SC

[126], there is a strong contribution to molecular binding from coulombic
attraction between essentially atomic ions, for which the potential energy varies
according to RK1 and for which an exponential representation is consequently
poor. For Re!R!Rx, the curve for potential energy thus has such an inverse
dependence on internuclear distance heading toward an asymptote corresponding
to a limit of dissociation into ions LiC and HK, whereas after that point the
adiabatic curve of potential energy for the electronic ground state proceeds toward
an asymptotic limit of dissociation at smaller energy into neutral atoms Li and H
[127]. A postulated advantage of accurate prediction of wave numbers of
transitions far above the measured range through representing potential energy in a
modified Morse form is plainly illusory.

For vibration-rotational data of LiH in a smaller set, an approach of optimal
fitting parameters for extra-mechanical effects has also been applied [85]; as for
other fits described above, 20 selected parameters were adjusted to reproduce
satisfactorily the data, numbering 583 rather than 1000 for which results appear
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in table 3. As these data sets differ markedly, comparison of parameters is
impracticable.
9. CARBON OXIDE, CO

Here we consider mainly intensities of vibration-rotational spectra in absorption;
as a function for potential energy is a prerequisite for calculations involving
intensities, we necessarily include this aspect. In contrast with measurements of
wave numbers of reasonably spectral lines in an infrared spectrum of a diatomic
molecule, for which relative precision w10K6 is routinely achievable, for
measurement of a strength of a particular spectral line to attain a relative precision
superior to one per cent is exceptional; through the smoothing effect of multiple
data contributing to this quantity, the corresponding strength of a band might thus
attain a relative precision 0.1 per cent at best. The relative precision of a strength
of a line in a Raman spectrum is generally worse. Expectation values of quantities
from Stark and Zeeman effects might be measured with precision of order 0.1 per
cent at best; in such cases few measurements are practicable, hence precluding
significant improvement in derived quantities through a smoothing effect. There
thus exists almost no need of refined treatment of intensities in the manner of van
Vleck’s extension of Dunham’s theory for data of frequency type. Dunham’s
approach in his first two publications indeed survives in an almost similar form for
analysis of intensities of infrared spectral lines of the best contemporary quality.

Dunham’s consideration of available spectra of HCl in 1930 [1,2] resulted in
production of a radial function for electric dipolar moment that we express in a
contemporary form, similar to that in formula 56 but in terms of variable x, defined
in formula 15, instead of z, defined in formula 21:

pðxÞ=10K30 C m Z p0 C3:54xC f0:177 or 7:61gx2 (81)

At that time the permanent electric dipolar moment p0 of HCl had already been
estimated to be w3.59!10K30 C m [128], but Dunham made no use of this value;
hence we leave p0 in symbolic form. One or other value of coefficient p2 depends
on a ratio h1=pðxÞj0i=h2jpðxÞj0i of pure vibrational matrix elements of electric
dipolar moment between the vibrational ground state and vibrationally excited
state vZ1 or 2. We compare these data with an extended radial function derived
from 33 expectation values and matrix elements in a comprehensive statistical
treatment [129],

pðxÞ=10K30 C m Z ð3:64587G0:00025ÞC ð4:12334G0:00147Þx

C ð0:00688G0:0177Þx2 C ðK5:110G0:044Þx3

C ðK3:065G0:088Þx4 C ðK1:174G0:142Þx5

C ðK1:46G0:24Þx6 C ð1:17G0:69Þx7 ð82Þ

Apart from the greatly increased precision of coefficients reflecting improved
spectral resolution over 70 years between generation of these functions, one
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discerns that early values of p0 and p1 are roughly correct and that one possible
value that Dunham [2] proposed for p2 has a magnitude comparable with the
current value.

The quandary that Dunham confronted in proposing an alternative value of
p2 was solved through the work of Herman and Wallis [130] in the spirit of
Dunham’s symbolic approach. A major problem affecting the derivation of radial
functions from data of intensity type is that the strength of a spectral line or
band is proportional to a square of a matrix element, making its sign directly
indeterminate. Explicitly, for a gaseous sample of a diatomic molecular species in
electronic state X 1SC in absorption at temperature T, the strength Sl of a line due
to a spectral transition from a state j0; J 00i to another state jv0; J 0i in a vibration-
rotational spectrum is expressed according to this formula [13],

Sl Z ð8p3=3hcÞ½expðKhcE0J=kBTÞ=4p30Q� ~nl½1KexpðKhc ~n1=kBTÞ�

!jijhv0J 0jpðxÞj0; J 00ij2
(83)

in which appear fundamental physical constants h, c, kB and 30, total partition
functionQ, value of spectral termE0,J of an initial state j0; J 0i of a transition relative
to the minimum term E0,0, and wave number ~nl of a spectral line representing that
transition; ih1⁄2[J 0(J 0C1)KJ 00(J 00C1)] is a running number of value J 00C1 for a
line in branch R orKJ 00 for a line in branch P. In jhv0J 0jpðxÞj0; J 00ij2 that is the square
of an experimental matrix element for a transition between specified vibration-
rotational states, p(x) is a radial function for electric dipolar moment of an
absorbing molecular species in terms of reduced displacement x, as in formula
82 and equivalent to formula 56 for p(z). The rotational dependence is supposed
factorable according to a formula [130,13]

jhv0J 0jpðxÞj0; J 00ij2 Z jhv0jpðxÞj0ij2ð1CCv0

0 iCDv0

0 i
2 C.Þ (84)

in which jhv0jpðxÞj0ij2 is the square of the pure vibrational matrix element of
electric dipolar moment; the latter quantity is coefficient to a Herman-Wallis factor
containing, in a representation as a truncated polynomial up to a quadratic term,
Herman-Wallis coefficients Cv0

0 and Dv0

0 . In the latter quantities that are composite
functions [13] containing parameters for potential energy in V(x) or V(z) and for
dipolar moment p(x) or p(z) in the numerator and with matrix element hv0jpðxÞj0i in
the denominator, Herman and Wallis demonstrated that vibration-rotational
interaction causes strengths of lines to vary linearly with coefficients pj. Fitting
squared vibration-rotational matrix elements jhv0J 0jpðxÞj0; J 00ij2 as a function of i,
according to formula 84, hence yields essentially the squared vibrational matrix
element jhv0jpðxÞj0ij2 as a constant term and parameters Cv0

0 and Dv0

0 as coefficients
of i and i2; comparison of calculated values of the latter quantities as functions of
coefficients pj and hv0jpðxÞj0i – a signed quantity – with the corresponding
experimental values then yields the latter quantities according to the best match
[13], as we illustrate below.

To complete the set of formulae required in analysis of intensities of spectral
lines in absorption, an experimental measure of a band strength Sb is a sum of
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measured strengths Sl of all lines in that band,

Sb Z
X

Sl (85)

whereas a theoretical measure relates to the pure vibrational matrix element of
electric dipolar moment,

Sb Z 8p3 ~nojhv
0jpðxÞj0ij2=ð3hc4p30Þ (86)

in which ~no is the wave number characterising the origin of the band. A line
strength is derived from integrated absorbance of a particular spectral line, a
known number density N of molecules per unit volume in a gaseous sample at
temperature T and the effective length [ of optical path:

Sl Z ð1=N[Þ
Ð

ln½I0ð ~nÞ=Ið ~nÞ�d ~n (87)

On the basis of these formulae one can convert measurements of area, which
equals the integral in the latter formula, under spectral lines into values of
coefficients in a selected radial function for electric dipolar moment for a polar
diatomic molecular species. Just such an exercise resulted in the formula for that
radial function [129] of HCl in formula 82, combining in this case other data for
expectation values h0; JjpðxÞj0; Ji from measurements of the Stark effect as
mentioned above. For applications involving these vibration-rotational matrix
elements in emission spectra, the Einstein coefficients for spontaneous emission
conform to this relation,

Anm Z 16p3 ~n3jhnjpðxÞjmij2jij=½3h30ð2J
0C1Þ� (88)

in which n and m denote collectively the vibrational and rotational quantum
numbers in sets specifying states combining in a transition from n to m.

A radial function for electric dipolar moment for a hydrogen halide appears to
have a single extremum, near the equilibrium internuclear distance Re, such that,
for 1H35Cl for instance in formula 82, p(x)Z0 for both the united atom 36Ar at RZ
0 or xZK1 and the separate atoms 1H and 35Cl as R or x/N, but not elsewhere.
The behaviour of this function on approaching these limits is known [13]: as R/0
for all neutral diatomic molecules, p(R)fR3, whereas as R/N, p(R)fRK7 if
states of both separate atoms have total electronic angular momentum !Z or
pðRÞfRK4 otherwise; for instance the former condition is applicable to LiH,
whereas the latter condition is applicable to hydrogen halides, CO, NO and many
other species. For HF, HCl and HBr, the extremum in p(x) occurs at RORe [13];
accordingly p1 or the slope of p(x) at Re is positive. In contrast, for HI the
extremum in p(x) occurs at R!Re, with a small negative slope near Re, confirmed
by both precise calculations of molecular electronic structure and experimental
data [131]; as in the calculations relativistic effects were included to obtain that
result, one might consider the qualitatively different slope to be a relativistic
effect.

Some data for spectral intensities of HCl for vO3 have questionable quality,
whereas recent measurements of intensities of CO are generally superior; for this
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reason we consider the latter molecule in some detail. Carbon oxide CO plays an
important role in combustion of carbonaceous fuels and terrestrial processes in
the atmosphere, and has been detected through its spectral lines for pure
rotational transitions in many extra-terrestrial environments. Accordingly, a
knowledge of radiative properties of CO is extremely important in relation to
both investigation of dynamics of combustion processes and modeling of
radiative properties of the terrestrial atmosphere. Like a commercially and
technologically important laser based on carbon dioxide CO2, a laser with
working substance CO oscillates on vibration-rotational transitions. Most known
vibration-rotational transitions [132] of diatomic molecules that exhibit
stimulated emission occur in the fundamental band, v0Z1/v00Z0, or in
sequences with DvZ1. Most transitions for which laser action is reported
involve lines in P branches because these lines are favoured both by non-
equilibrium conditions of extensive vibrational excitation but by small rotational
excitation and a less stringent condition on rotational degeneracies: gn as 2J 0C1
can be 2JK1 for a P branch rather than 2 JC3 for an R branch; laser emission in
a P branch serves simultaneously to decrease vibrational excitation and to
increase rotational energy, facilitating an approach to thermal equilibrium [13].
For 12C16O about 700 transitions have been measured in bands 1/0 up to 37/36,
covering discontinuously a range 1:2% ~n=105 mK1%2:0, and even some laser lines
with DvZ2 have been observed [133]; more than 100 laser transitions of CO in
other isotopic species are also reported [132]. A device that provided those
sequences with DvZ1 in laser action also produced emission of CO in seven
isotopic variants with sequences DvZ1, DvZ2 and DvZ3 up to v 0Z41 [134];
although parameters calculated from several thousand transitions were described
[134] as Dunham coefficients, implying Ykl according to formula 8, because
constraints between these parameters were not applied, they actually correspond to
coefficients Akl in formula 2.

The fundamental vibration-rotational band of CO in the mid infrared region
was the first spectral feature of a gaseous sample of a diatomic molecular
substance to be measured in this region [135]; subsequent measurements
exploited progressively increasing spectral resolution and accuracy of the wave
number scale. Overtone spectra of CO exhibit progressively decreasing strengths
of bands [99], such that, whereas the first overtone at a conventional boundary of
the mid infrared region is readily measurable, the second overtone in the near
infrared requires an extended optical path; the third overtone approaches the
limits of detectability with an optical path 100 m and a gaseous sample at
approximately atmospheric pressure, and with conventional methods for
absorption spectra. Attempting to detect the fourth overtone with product of
length of absorbing path and pressure equal to 3000 m bar, Herzberg and Rao
[136] searched unsuccessfully, like our subsequent attempt [99]: 1 barZ
105 N mK2. Eventual success [137] in detecting band v 0Z5Kv 00Z0 was attained
through adapting a cavity-ringdown spectral technique [138] to the near infrared
region; intensities of only lines in branch P of this band were measurable, but
estimates of the strength of each line in a series P3–P18 from fitting its profile to a
lorentzian shape enabled deduction of a pure vibrational matrix element h5jpðxÞj0i
consistent with Herman-Wallis coefficient C5

0 and a strength of the entire



Table 4. Band origin, pure vibrational matrix element and strength of vibration-rotational
bands of 12C16O

Band ~n0=m
K1 hv0jpðxÞj0i=C m Sb/m

0 – 0 3.6632!10K31

1 – 0 214327.11 K3.53!10K31 1.00!10K19

2 – 0 426006.22 2.22!10K32 7.83!10K22

3 – 0 635043.91 K1.36!10K33 4.42!10K24

4 – 0 841446.93 6.95!10K35 1.53!10K26

5 – 0 1045222.22 3.62!10K36 6.13!10K29
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vibration-rotational band. Results of such measurements for all vibration-
rotational bands originating in the vibrational ground state [99,137], with a
further expectation value for that ground state from experiments on a molecular
beam [139], are collected in table 4.

To convert these data into radial functions, one might apply algebraic
expressions for vibrational matrix elements of x to various powers, of form such as

h1jxj0iZg=O2CO2g3=2ð11a2
1=32K3a2=8ÞC. (89)

in which appear coefficients aj for potential energy according to Dunham’s
function in formula 16 and g as defined in relation to formula 61. We evaluated
values of corresponding coefficients cj up to c12 from a fit of 16947 data up to
vZ41 and Jw115, including some duplication of vibration-rotational and pure
rotational transitions, for CO in isotopic variants with 12,13,14C and 16,17,18O in
various combinations to parameters in radial functions for potential energy,
adiabatic corrections and vibrational g factors, constraining parameters
tC;Oj related to the rotational g factor to values consistent with computations of
molecular electronic structure [99]. Likely because procedure Radiatom lacks
full contributions to some Dunham coefficients Ykl that require calculation
according to hypervirial perturbation theory up to order 26 (and consequently
that severely tax available computational resources), slight systematic dis-
crepancies [99] exist between calculated and measured wave numbers of
transitions involving vO39, but remain within 3.5 times their nominal
uncertainties s; the overall reduced standard deviation of the fit to 20 adjustable
and 10 constrained parameters was still acceptable. This data set would benefit
from thorough reappraisal, but original data for many vibration-rotational
transitions are unavailable and secondary sources contain slightly disparate
values of both wave numbers and their uncertainties – hence the duplication.
Nevertheless for calculations involving vibrational states up to vZ5, the derived
values of parameters cj up to jZ8 are sufficient and reliable, and thus serve
for calculations involving matrix elements of electric dipolar moment with
expressions of the type in formula 89. These expressions are readily generated
to any desired extent of v or xl [44] to sufficient precision involving terms with g
to increasing exponents; as for all known stable neutral diatomic molecular
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species g has values less than 0.026 – for instance, gZ0.0070838 for 12C16O –
convergence within a desired precision is generally rapid. A theoretical
expression for a pure vibrational matrix element of electric dipolar moment
p(x) expressed as a polynomial in terms of these matrix elements of xl is simply

hv0jpðxÞj0iZ
X
jZ0

pjhv
0jxlj0i (90)

including as many terms in the sum as necessary, generally v 0C1 in total. On the
basis of these experimental numerical values of vibrational matrix elements and
algebraic expressions for hv0jxlj0i into which numerical values of coefficients aj

and g are inserted, one solves a system of simultaneous linear equations to
evaluate coefficients pj. As these parameters are not overdetermined, direct
statistical methods are inapplicable to yield required uncertainties of evaluated
parameters; in such a case a Monte-Carlo method [140] of analysis of error
propagated from values of pure vibrational matrix elements to coefficients pj is
suitable. In general, signs of hv0jpðxÞj0i are unknown because experiments yield
their magnitudes or squares, according to formula 84 for instance. One then
applies these derived values of coefficients pj in sets depending on a chosen sign
of each value of hv0jpðxÞj0i, relative to a particular sign chosen typically for p0 or
h0jpðxÞj0i, to calculate coefficients Cv0

0 and Dv0

0 according to algebraic expressions
[13,44] in terms of coefficients aj pertaining to potential energy and g,
coefficients pj for electric dipolar moment and values of hv0jpðxÞj0i with one or
other sign. Signs of hv0jpðxÞj0i in a particular set that yield best agreement
between thus calculated values of Cv0

0 and Dv0

0 and their experimental counterparts
from formula 84 are hence preferable, thereby evaluating elegantly the radial
function p(x) for electric dipolar moment. Instead of coefficients aj and pj of x to
various powers, one can naturally work with coefficients cj and pj (according to
formula 56) of z to various powers, as the corresponding algebraic expressions
for vibrational matrix elements and Herman-Wallis coefficients are just as readily
generated [44] in terms of these quantities.

As an illustration of this approach to solution of a radial function p(x) for
12C16O, we present in table 5 experimental [99] and calculated values of
Herman-Wallis coefficients Cv0

0 and Dv0

0 , calculated on the basis of this radial
Table 5. Experimental and calculated values of Herman-Wallis coefficients Cv0

0 and Dv0

0

for 12C16O

band
v 0 – 0

Cv0

0 /10K2 Dv0

0 /10K4

exp’1 calc’d exp’l calc’d

0 – 0 — K2.05
1 – 0 0.024G0.021 0.0196 — 0.067
2 – 0 0.533G0.014 0.496 0.44G0.10 0.35
3 – 0 1.153G0.025 1.210 1.03G0.18 0.99
4 – 0 3.370G0.033 3.284 4.27G0.34 4.3
5 – 0 w K10 K9.33 — 17.6
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function p(x) derived from experiment [135];

pðxÞ=10K30 C m Z 0:407871K11:8634xC1:3060x2 C13:378x3

K2:740x4 K0:17x5
(91)

this function has a range R/10K10 m of validity [0.99, 1.33]. A value of C5
0 was

indicated only roughly from preliminary experiment [137]; experimental values
of D0

0, D1
0 and D5

0 are unavailable.
Changing the sign of h5jpðxÞj0i from positive to negative correspondingly alters

the sign of p5, the value calculated for C5
0 from K0.093 to C0.093 and the value

calculated for D4
0 from 0.00043 to 0.00037, but affects other calculated values

negligibly. As the latter calculated value is almost inconsistent with an
experimental value of D4

0 specified in table 5, the negative value of C5
0 is clearly

preferable, even though indicated only roughly in the reported experiment
[137]. Chackerian and Tipping [141] predicted h5jpðxÞj0iZ6.588!10K36 C m,
C5

0ZK0.0529 and D5
0Z0.00040; because the former value is only about twice the

experimental value (3.62G0.3)!10K36 C m, we might expect their predictions
h6jpðxÞj0iZK3.66!10K36 C m, C6

0ZK0.014 and D5
0ZK0.00014 for band

6 – 0 to have comparable reliability. The ratios of strengths between successive
vibration-rotational bands from experiment are thus 128, 177, 289, 250. On a basis
of a predicted strength 6.25!10K29 m for band 6 – 0 [141], the fifth overtone is
remarkably predicted to have almost the same intensity as the fourth overtone. We
contrast these ratios of strengths of vibration-rotational bands of 12C16O with
those of 14N16O – 61.2, 48.5, 23.3, 13.4, 8.6 [142] – which thus decrease regularly
in the same order of increasing vibrational quantum number v. The radial
functions for electric dipolar moment of NO and CO share common features of
two extrema, with a reversal of polarity between these two extrema and small
magnitudes of permanent electric moment p(Re). In each case the polarities,
KNOC and KCOC, at that condition contradict expectations from crude consider-
ation of conventional electronegativities.

As an alternative procedure to predict coefficients of a radial function p(x) for
electric dipolar moment, one might attempt to convert the latter function from
polynomial form, as in formula 91, which has unreliable properties beyond its
range of validity from experimental data, into a rational function [13] that
conforms to properties of electric dipolar moment as a function of internuclear
distance R towards limits of united and separate atoms. When such a rational
function is constrained to yield the values of its derivatives the same as
coefficients pj in a polynomial representation, that rational function becomes a
Padé approximant. For CO an appropriate formula that conforms to properties
described above would be

pðxÞZ p0ð1CxÞ3= 1C
X
jZ1

qjx
j CCNx

7

 !
(92)

in which in the sum in the denominator as many terms are taken as necessary;
the numerator bestows a property p(x)/0 proportional to R3 as R/0, whereas



J. F. Ogilvie and J. Oddershede304
the last term in the denominator ensures that p(x)/0 as R becomes large, in
practice greater than w10Re. Coefficient CN might be accorded a value based on
some knowledge of the behaviour of this radial function at large R, such as a value
of p from calculations of molecular electronic structure; such a value has no effect
on recalculated values of pj or h jjpðxÞj0i for j!7. Application of this formula for
CO yields a function that suffers severely from a pole within a region of interest,
which makes it unusable. An alternative form that might be applicable to a radial
function for electric dipolar moment that possesses two extrema in a region
defined by experiment, with a reversal of polarity between distances of these
extrema at x0, is

pðxÞZ p0ð1CxÞ3ðxKx0Þ= Kx0 C
X
jZ1

qjx
j CCNx

8

 !
(93)

but this formula applied to CO also suffers from poles dictated by roots in the
denominator within the region of interest. Under these conditions one might be
forgiven for neglecting the behaviour of p(x) as x/K1 or R/0 because this
region lacks chemical interest; a rational function that still qualifies as a Padé
approximant and retains the correct limiting behaviour as x or R/N, which is of
chemical interest, has this form for CO that has a reversal of polarity at xZx0:

pðxÞZ p0ðxC1Þðx=x0 K1Þ= 1C
X
jZ1

qjx
j CCNx

6

 !
(94)

Although transformation of coefficients pj into coefficients qj is readily
practicable, the resulting values for CO adopt unwieldy magnitudes. Chackerian
and Tipping [141] fitted a function of the latter form from experimental and
theoretical (computations of molecular electronic structure) information in
judicious combination, according to which they calculated vibration-rotational
matrix elements for transitions in bands 5 – 0 and 6 – 0; fitting the latter values
with formula 84 yielded the values of quantities presented above. Rational
functions, such as those in formulae 92 – 94 or others, transcend the spirit of
Dunham’s approach because their construction incorporates physical knowledge
of a quantity that is superfluous for invocation of a mere truncated polynomial.
10. DISCUSSION

When Dunham [4,5] presented formula 8 for vibration-rotational terms, he
derived a functional vC1⁄2 explicitly because in his JBKW formulation the
addend 1⁄2 results from exact solution of an integral. In contrast, Dunham
assumed a functional K(KC1), equivalent to J(JC1) in contemporary notation, to
contain a quantum number K, now J, for rotational angular momentum. To
generate an effective potential energy comprising both internuclear potential
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energy V(R) and kinetic energy Z2JðJC1Þ=2mR2Þ, Dunham expressed R in the
latter denominator as Re(1Cx) and then expanded the resulting denominator about
xZ0 as follows:

RK2
e =ð1CxÞ2zRK2

e ð1K2xC3x2 K4x3 C.Þ (95)

Dunham then combined these terms with corresponding terms in V(x) through
rotationally dependent coefficients aj(J) for potential energy to produce his
general expressions for term coefficients Ykl. Each expression for a further such
coefficient Ykl in a sequence Yk,l, Yk,lC1, Yk,lC2. contains a factor g2 that, with
g/1, ensures rapid convergence; under these conditions inclusion of a set of
Ykl down to Y0,2k assures that any error due to the approximation in formula 95
is negligible in comparison with experimental error due to measurement of
frequency data; a particular test appears in discussion of spectral data of GaH
above. In an alternative procedure for analysis of vibration-rotational spectral data
called deformationally self-consistent, Molski employed algebraic expressions for
term coefficients Yk,0 but employed a numerical scheme to generate the rotational
dependence of spectral terms [143] that essentially circumvents the approxi-
mation implied in an expansion in formula 95. Comparison of results for NaCl
under controlled conditions [143] demonstrates no advantage for this approach;
a slight disadvantage arises from an algorithm for estimation of non-linear
parameters. Molski’s approach has produced questionable results in several cases
[144] and appears unreliable for its intended purpose.

Although authors [74,75] have claimed that a generator-coordinate theory
yields an expression for spectral terms exactly of Dunham’s form, as in formula 8,
in which however term coefficients YGCA

kl encompass intrinsically effects of at
least adiabatic corrections, it is unclear from those papers how the functionals of v
and J in their expression for Ei

vJ arise. As mentioned above, Dunham [4,5] derived
the addend 1⁄2 of v but assumed the form K(KC1) instead of deriving it; authors of
the generator-coordinate theory [74,75] appear to have assumed the forms of both
functionals (vC1⁄2) and J(JC1). In lack of explicit expressions for any coefficient
YGCA

kl that differs from results from application of classical mechanics one can not
identify justification for these details.

The effective hamiltonian in formula 29 incorporates approximations that we
here consider. Apart from a term V 00(R) that originates in nonadiabatic effects [67]
beyond those taken into account through the rotational and vibrational g factors,
other contributions arise that become amalgamated into that term. Replacement of
nuclear masses by atomic masses within factors in terms for kinetic energy for
motion both along and perpendicular to the internuclear axis yields a term of this
form for the atomic reduced mass,

mK1 Z ½ðma CZameÞC ðmb CZbmeÞ�=½ðma CZameÞC ðmb CZbmeÞ� (96)

in which ma and mb are nuclear masses of atomic centres A and B respectively.
The relation of this term to the nuclear reduced mass mn is [66]

m�1y½1KmeðZamb=ma CZbma=mbÞ=ðma CmbÞ�=mn (97)
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As the subtrahend in this numerator has clearly the form of a ratio of electronic
and nuclear masses, its effect can become absorbed within V 00(R) that contains
contributions of like ratio of electronic and nuclear mass. Use of atomic rather than
nuclear masses in the adiabatic correction V 0(R) in formula 31 yields an
analogous correction that becomes likewise absorbed within V 00(R), and
eventually neglected at present. Practical application of an effective hamiltonian
for atoms with atomic number over a large range requires that one employ atomic
rather than nuclear masses because atomic mass is accurately measured directly in
experiment and because derivation of nuclear mass from such a quantity would
involve not only subtracting electronic mass but also taking into account the
binding energy of each electron. The latter quantity might have an associated error
much larger than the imprecision of known atomic masses [145]; the relative
precision of an atomic mass, 1.0!10K11, is best for 16O, and has typically a value
w10K8 for other stable nuclides. For comparison the best measurements [146] of
frequencies associated with vibration-rotational transitions have a relative preci-
sion w2!10K10, although a relative precision for superior vibration-rotational
transitions is typically w10K7, and approaches w10K8 for superior measure-
ments of pure rotational [147] and vibration-rotational [148] transitions. As these
relative precisions of measurements of mass and of frequency or wave number
have clearly comparable ranges, the numerical significance of parameters
independent of isotopic mass that are intended to reproduce accurate experimental
measurements of wave number demonstrably depends critically on the values of
atomic and electronic masses employed in deriving those parameters. Incorpor-
ation of precise further data into a set previously subjected to analysis typically
requires for their reproduction parameters of increased number and of various
types. For instance, for 17 pure rotational and 1223 vibration-rotational
transitions of 23Na35Cl and 23Na37Cl within ranges v%8 and J%120, six in-
dependent fitted parameters, specifically Re, ke and c1 – c4, with two constrained
parameters – tNa;Cl

0 estimated from electric dipolar moment and a rotational g
factor nearly zero, suffice to reproduce the wave numbers for which the best
relative precision is 3!10K7 [81]. Addition of 189 pure rotational lines of these
isotopic species [149], within ranges v%4 and J%76 but with relative precision up
to 3!10K8, requires further parameters; not only c5 and c6 for potential energy,
reflecting enhanced sensitivity of the entire set of data to effects of centrifugal
distortion, but also a parameter tCl

1 related to the rotational g factor and a parameter
uCl

1 associated with adiabatic corrections, reflecting enhanced sensitivity of
additional data to isotopic effects associated with Cl, become evaluated. These
four additional parameters are essential even though all these further transitions
involve vibrational and rotational states well within the previously existing range;
there is no indication that further nonadiabatic effects, present in V 00(R), are
required to be taken into account in this fit, consistent with (me/m)2w10K9 for
NaCl being smaller than the best precision. Values of these parameters obtained
from fits of data with Radiatom I, with the corresponding reduced standard
deviations of the respective fits are presented in table 6; all parameters therein
convey the same significance as in preceding tables 1 – 3. Comparison of values of
the same parameters in the separate fits indicates that only small changes occur;
hence for corresponding parameters these fits are reasonably stable. Because the



Table 6. Coefficients of radial functions and other molecular parameters of NaCl X 1SC, depending on extent of data set and constrained
parameters

Parameter 1223 data, ½tNa
0 ; tCl

0 � 1412 data, ½tNa
0 ; tCl

0 � 1412 data, ½tNa
0 �

c0/mK1 15247257G18 15247401G22 15247425G24
c1 K2.076785G0.000037 K2.0768284G0.0000095 K2.0768239G0.0000095
c2 2.54160G0.00027 2.53836G0.00048 2.53836G0.00048
c3 K1.8567G0.0020 K1.84459G0.00162 K1.84459G0.00162
c4 K0.2888G0.0176 0.0198G0.042 0.0195G0.042
c5 . 1.97G0.29 1.975G0.29
c6 . K2.21G0.41 K2.22G0.41

sCl
0

. . K0.238G0.032

tNa
0

[0.81] [0.81] [0.727]

tCl
0

[K0.77] [K0.77] K0.8527G0.0082

tCl
1

. K1.685G0.067 .

uCl
1 /106mK1 . K1.240G0.126 .

U0,1/mK1 u 302.465982G0.000047 302.466455G0.000039 302.467076G0.000039
U1,0/mK1 u

1⁄2 135820.124G0.091 135820.873G0.106 135821.120G0.115
Re/10K10 m 2.36080425G0.00000058 2.36080240G0.00000057 2.36079998G0.00000057
ke/N mK1 108.687209G0.000147 108.688406G0.000171 108.688801G0.000184
ŝ 0.921 0.880 0.881
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additional pure rotational data [149] are so precise, we avoided constraining a
value of tCl

0 in a further fit. With a known precise value of p0 of 23Na35Cl [143] and
fitted value of tCl

0 in formulae 66 and 67, we calculate gr(Re)Z0.00741G0.00060
and tNa

0 ; the latter value was included as a constraint in the fitting until convergence
was attained. This value of gr for 23Na35Cl is a genuine prediction as no value is
known from other experiment or calculation, but its reliability rests on the
assumption of negligible adiabatic corrections as explained above for GeS.

In contrast, the precision of measurement of intensity of spectral lines has
increased little in the past half century; most of that minor increase reflects
improved spectral resolution in the frequency domain, in many cases through
either a Fourier transform of interferometric measurements in a distance domain
with continuous sources of radiation or use of infrared lasers; in either case a
spectral feature associated with a particular transition between discrete
vibration-rotational states might be optimally isolated and well defined, with
minimal distortion of shape and area due to a measuring device. Even the best
strengths of individual isolated lines, measured essentially as an area under a
spectral curve, are likely to have a relative precision worse than 10K3; in cases
of weak lines for which merely increasing the concentration or length of
absorbing path is impracticable, or of difficult samples such as transient species,
one might have reluctantly to accept a relative precision even w10K1. Under
these conditions one has clearly to accept that only the principal factor affecting
intensity, such as a matrix element for electric dipolar moment for a typical band
in absorption or emission or electric dipolar polarizability for a typical band
observed through Raman scattering, is a significant influence, and further
contributions related to adiabatic or nonadiabatic effects – or even magnetic
dipolar or electric quadrupolar contributions – must perforce be neglected during
reduction of experimental data. Measurements of frequency shifts on application
of external electric or magnetic field, relying on a Stark or Zeeman effect, might
attain greater precision, likely w10K4 at best; as these measurements generally
imply a difference between two expectation values for the involved states, they
might be less sensitive to a desired property than a matrix element directly
proportional to that property. In such cases there prevails consequently little or
no need for a refined treatment of experimental data to encompass extra-
mechanical effects or theoretical quantities representing other than a smallest
order of approximation.

That effective hamiltonian according to formula 29, with neglect of V 00(R),
appears to be the most comprehensive and practical currently available for
spectral reduction when one seeks to take into account all three principal extra-
mechanical terms, namely radial functions for rotational and vibrational g factors
and adiabatic corrections. The form of this effective hamiltonian differs slightly
from that used by van Vleck [9], who failed to recognise a connection between the
electronic contribution to the rotational g factor and rotational nonadiabatic terms
[150,56]. There exists nevertheless a clear evolution from the advance in van
Vleck’s [9] elaboration of Dunham’s [5] innovative derivation of vibration-
rotational energies into the present effective hamiltonian in formula 29 through
the work of Herman [60,66]. The notation g for two radial functions pertaining to
extra-mechanical effects in formula 29 alludes to that connection between
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nonadiabatic rotational effects and the magnetogyric ratio [56] that applies directly
to the rotational g factor; the vibrational g factor in a product with linear
momentum squared shares a similar designation [60] despite the lack of known
magnetic effect. If a need arise to include effects of V 00(R) in formula 29, there
appears also to be a direct mechanism to extend its applicability in the following
way: for all contributions to V 00(R) that have as factor the same dependence,
relative to V(R), on a ratio (me/m)2 of electronic and nuclear mass of individual
atomic centres, the algebraic form of contributions to Zv;a

kl and Zv;b
kl would have

exactly the same form as those from V 0(R), through truncated polynomials
analogous to those in formula 47. (Further contributions within V 00(R) with
dependence on me/m to greater than second power would naturally continue to be
negligible.) Any values of fitted coefficients in such polynomials would inevitably
contain, besides the additional nonadiabatic effects formally in V 00(R), contri-
butions propagated from approximations involving use of atomic mass rather than
nuclear mass in relation to gr(R), gv(R) and V 0(R); the relative magnitudes of these
contributions and of V 00(R) therein are difficult to predict. If concern about a
relation between fitted parameters and particular terms within an effective
hamiltonian be lacking, an alternative formulation [151] is likely practical. This
hamiltonian is based on Watson’s effective hamiltonian [152], in which, in a
derivation towards its ultimate form, a term related to the rotational g factor at Re is
set to zero; a use [90] of such a formulation as a basis to argue that one can not
deduce reliable estimates of electric dipolar moment and rotational g factor from
spectra without further information from either application of external fields or
theoretically calculated data is questionable. As the existence of the rotational g
factor through both experiment and a theoretical basis [56] was appreciated long
before Watson’s derivation [152], its neglect in that derivation is a serious
deficiency and an impediment to realistic application of that hamiltonian. A
justification of setting equal to zero that term related to gr(Re) is spurious, as such a
criterion is both arbitrary and avoidable, as demonstrated in an alternative
derivation for the same objective [72]. With the ready availability of both many
experimental and calculated data for the rotational g factor [56] and computer
programs to undertake such a calculation, use of Watson’s hamiltonian should be
avoided if one seeks to deduce from spectra a value of Re maximally independent
of atomic mass. Application of Watson’s postulate [152] of a reduced mass for a
diatomic molecular ion that is inconsistent in having a mass of an atomic ion in the
denominator but masses of only neutral atoms in the numerator should likewise be
eschewed [66]; the g factors, vibrational and rotational, properly encompass such
effects for ions. Either the hamiltonian in formula 29 or an approximate variant
[66] are preferable for practical application in reduction of diatomic spectral data.

In our account here we neglect a third aspect of a spectral line, specifically its
shape, beyond its characteristic frequency and strength. A natural line shape is
almost impracticable to observe and would yield on analysis little or no additional
information about intrinsic molecular properties. Another shape merely reflects
components of molecular velocities in a direction parallel to the direction of
propagation. Apart from these effects, further broadening of spectral lines due to
finite durations, between collisions, of molecules in particular quantum states is
attributed to interactions between colliding molecules rather than directly to
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intrinsic molecular properties of an absorbing or emitting molecule of interest.
Analysis of such effects involving multiple oscillators is not only much more
complicated than a treatment of a single anharmonic oscillator from a theoretical
point of view that lends itself to definition of characteristic parameters useful in
fitting spectra, but has also received much less attention from a theoretical or
computational point of view. A relation between terms in an effective hamiltonian
for a system of only two diatomic molecules interacting during a collision and
observable effects of broadening of spectral lines and modification of the shape of
those lines is indirect, involving averages over several angular variables and over
time. Discussion of general aspects of these collisional effects appears elsewhere
[13].

A notable development since at least 1994 in relation to an application of
Dunham’s formalism in practical spectral analysis is a significant interplay
between quantum chemistry, in a form of sophisticated calculations of molecular
electronic structure and properties, and spectral reduction. In a few cases it has
proved practicable to deduce information about electric and magnetic properties
of diatomic molecules directly from spectral analysis through application of
Dunham’s formalism and its extensions, such as a significant estimate of the
rotational g factor of GaH [89] already mentioned. In another instance, estimates
of electric dipolar moment and rotational g factor of GeS relied upon an
assumption, justified above, that adiabatic corrections are less important than
nonadiabatic effects in relation to moderately massive atomic centres [153]. In
these cases no assistance to spectral analysis from quantum-chemical calculations
arose. In other cases [13] and likely a more typical situation, results for the radial
dependence of the rotational g factor and adiabatic corrections have been
incorporated within the reduction of spectral data of frequency type, enabling
evaluation of spectral parameters of maximal quasi-physical significance – within
a context of a traditional notion of molecular structure and its attendant
hamiltonian; both LiH, the first application [112] of this approach, and H2, as
discussed above, are significant examples of successful derivation of information
about adiabatic corrections and the vibrational g factor following an imposition of
information about the rotational g factor during fitting of frequency data. For H2

also, an imposition of information involving adiabatic corrections enabled
recovery of information from experiments without externally applied electric or
magnetic field about the rotational g factor. Although calculation of adiabatic
corrections was accomplished many years ago, for instance by Kolos and
Wolniewicz [108] for H2 in 1964 through calculations of a nature specific for that
molecular target, a general approach to calculation of the rotational g factor
required further decades before suitable methods became developed; the first
calculation involved direct sums of electronic matrix elements over electronic
states [154], but a refined method, more practical for molecules containing many
electrons, involving a polarization propagator [155], ensued a few years
subsequently. A practical algorithm for calculation of the vibrational g factor
has subsequently been devised [107,108]. With an incorporation of computer code
required for all three extra-mechanical properties into computer program Dalton
[156] for general calculations of molecular electronic structure and properties, it
will have become practical to supplement point-wise calculations of a radial
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function for potential energy, with basis sets of great quality and taking into
account electronic correlation, with these auxiliary influences on vibration-
rotational energies; one can hence calculate the wave number of such a transition
almost within the accuracy of typical superior measurements. Likewise one can
calculate influences on intensities of transitions, such as not only the principal
factors of electric dipolar moment or electric dipolar polarizability but also
magnetic dipolar and electric quadrupolar moments; this information can much
assist the search for further transitions for known carriers of a vibration-rotational
spectrum or new transitions of uncommon species.

The result of this interaction between quantum chemistry, through methods to
calculate molecular electronic structure, of not merely gross determinants of
spectral features but even intimate details marks the emergence of an approach to
conduct of scientific research properly termed computational spectrometry.
Although calculations of electric dipolar moments of molecules have been
practised essentially since the earliest years after the evolution of quantum
mechanics in forms of wave mechanics and matrix mechanics, typical results
pertained to only a single internuclear distance, generally at or near a known Re, so
equivalent to p0; such a value pertains to the intensity of the pure rotational band
but not to vibration-rotational bands that are generally more readily measurable.
Early solutions for prototypical systems, including an anharmonic oscillator by
Heisenberg in his original treatment [157] that became matrix mechanics and a
rigid rotor by Dennison whose treatment according to matrix mechanics [158]
during work in Bohr’s institute in Copenhagen preceded Schrodinger’s treatment
of a rotating harmonic oscillator according to wave mechanics [159], continue
indeed to serve, with Bohr’s [160] and Schrodinger’s [161] treatments of the
H atom, as standard simple models for the interpretation of gross features of
atomic and molecular spectra. Even though radial functions for potential energy
were also calculated early, with typically only qualitatively correct results,
practical methods of calculating minor but significant contributions to discrete
energies of molecular states have been developed much more recently. The
principal factor governing the intensity of vibration-rotational transitions
observed in Raman scattering is the electric dipolar polarizability; unlike the
static polarizability, for which some early calculations were made, the dynamic
polarizability [162,163], which is dependent on the frequency of excitation of the
Raman scattering and which is consequently required to produce an accurate
comparison with or prediction for experiment, was a more recent target of
accurate calculations. As remarked above, measurement of intensities of typical
vibration-rotational and pure rotational spectra in absorption and emission and in
Raman scattering, whether by spontaneous or coherent mechanisms [13], yields
only modest accuracy, and hence requires only the dominant factors of electric
dipolar moment and polarizability quantities to be calculated, nevertheless
accurately, as a function of internuclear distance for an adequate theoretical
description or computational prediction of these spectral properties. In contrast
the great accuracy of measurement of wave number of radiation, or energy of
photons, corresponding to differences between spectral terms, or energies, of
vibration-rotational states, requires not only sophisticated calculation of radial
functions for potential energy but also for rotational and vibrational g factors



J. F. Ogilvie and J. Oddershede312
and adiabatic corrections. With the accomplishment of the latter capabilities in
standard software one can consider computational spectrometry to have attained a
mature state. As a basis of application of Dunham’s algebraic formulation,
the effective hamiltonian in formula 29 is clearly well suited to the practice of
computational spectrometry because a direct relation exists between terms
in this hamiltonian and quantities readily subject to theoretical calculation [66].
In principle, even the generator-coordinate approach [74,75] constitutes a
mechanism for computational spectrometry still conforming to the Dunham
formulation because it is expected to be able to encompass intrinsically [164] what
are regarded as supplementary adiabatic and nonadiabatic corrections to
molecular energies according to a traditional separation of electronic and nuclear
motions. The rotational g factor seems to have been ignored in the development
of that generator-coordinate approach, despite a well founded connection of gr

to both experimental and theoretical quantities; because gr is just as much an
experimentally observable quantity, through the Zeeman effect, as a wave number
of a spectral line, this property warrants attention if the generator-coordinate
approach is to be considered a serious means to interpret molecular spectra.
11. CONCLUSION

Dunham’s expression in formula 8 for vibration-rotational terms is a double
expansion in vibrational and rotational quantum numbers based on the minimum
vibration-rotational energy in a particular electronic state; likewise his radial
function for internuclear potential energy V(x), in formula 16, which serves as a
basis to relate Dunham coefficients Ykl, is an expansion about the minimum
potential energy of that electronic state, which occurs at the equilibrium
internuclear separation Re: both expansions thus possess the disadvantages from
which all such truncated power series suffer. This property of a limited range of
convergence hence bestows emphasis on vibrational states with small values of
quantum number v – those states that with their associated rotational states
typically pertain to almost all measurements of infrared and Raman spectra of
gaseous substances containing diatomic molecular species, and even to many
electronic spectra of such samples in absorption. An alternative general formula
for vibration-rotational terms encompassing all states within a manifold up to a
dissociation limit has never been devised [13]. The exponentially increasing
extent of expressions for coefficients Ykl, despite a powerful implementation of
symbolic software to their elucidation [44], with increasing terms or parameters in
V(x), and associated functions, remains a formal impediment to enhanced
application according to a theory based on an algebraic approach of Dunham and
his successors, although in practice a limiting condition has seldom if ever arisen.

An important fact underlying this approach to analysis of molecular spectra
based on a formalism arising from pioneering work of Dunham and van Vleck,
and advances contributed by their successors, or any other approach, is that not
merely coefficients Ai

kl, V
a;b
kl , Da;b

kl , Bkl or their equivalents but also Y i
kl, various

Z i
kl, Ukl, radial coefficients aj, cj, pj, sj, tj, uj or their equivalent, and even Re and ke,

or fitted values that nominally represent prospective integral kernels in
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expressions for YGCA
kl according to the generator-coordinate theory [74,75], are,

first and foremost, merely fitting parameters; their particular numerical values
adopted according to a given fitting procedure reflect both the quality and
quantity of fitted data through extents both of ranges of vibrational and rotational
quantum numbers and of isotopic variants, as exemplified through results for
NaCl described above. Apart from representatives of integral kernels, the
coefficients aj.uj listed above pertain to radial functions that are artifacts of a
method of separate treatment of electronic and nuclear motions; those radial
functions, such as of potential energy or electric dipolar moment, are not
experimentally observable, even though they might be susceptible to calculation
according to some ansatz. Some fitting parameters of one or other type might be
more suitable to use for moderate extrapolation beyond those extents of data
than parameters of other types if a theoretically justified fitting model be chosen,
but any such extrapolation is fundamentally statistically unreliable and
susceptible to propagation of error associated with the original experimental
measurements, even if limiting forms or conditions be imposed on the fitting
formula; the reliability or accuracy invariably decreases with an increasing
extent of extrapolation beyond characterised states of molecular energies.
Although some parameters of selected type according to a selected model
might be amenable to comparison with quantities calculated theoretically, the
latter calculations involve both approximate models and approximations in
implementation that proscribe an exact comparison, because any diatomic
molecule must involve interaction of at least three elementary particles for which
the problem of many bodies fundamentally lacks an exact solution. Nevertheless,
a nominally theoretical – actually still semi-empirical in practice – calculation
of pertinent quantities can beneficially guide experimental measurements;
conversely, experimental measurements can guide development of theories, as
has occurred repeatedly since the first measurements of optical spectra. Of course
any ansatz of purported calculation from first principles or ab initio reflects,
implicitly, prior experimental information and influence. The development
of molecular spectrometry represents a prime confluence of theory, experiment
and computation – the latter through methods of quantum chemistry, and has
afforded many implications for our understanding of myriad chemical and
physical phenomena. An approach to a quantitative description of spectra of
diatomic molecular species through Dunham’s systematic algebraic formalism,
based naturally on Dunham coefficients Ykl, has served as a model for an area
of science much broader than the number of atomic centres in a molecule of a
size that attracted his attention might indicate.
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