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Abstract

Computational spectrometry, which implies an interaction between quantum chemistry and analysis

of molecular spectra to derive accurate information about molecular properties, is needed for the

analysis of the pure rotational and vibration–rotational spectra of HeHC in four isotopic variants to

obtain precise values of equilibrium internuclear distance and force coefficient. For this purpose, we

have calculated the electronic energy, rotational and vibrational g factors, the electric dipolar

moment, and adiabatic corrections for both He and H atomic centres for internuclear distances over a

large range 10K10m [0.3, 10]. Based on these results we have generated radial functions for atomic

contributions for gr, gy, and adiabatic corrections, involving the coefficients sj
He, sj

H, tj
He, tj

H, uj
He, and

uj
H of z j for 4He1HC for further spectral analysis.
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1. INTRODUCTION

Computational spectrometry [1] implies an interaction between quantum
chemistry, in a practice of calculations of molecular electronic structure, and
analysis of spectra of small free molecules so as to derive, from the latter,
information of maximal physical and statistical significance. The best relative
accuracy of measurement of spectral frequencies is about two parts in 1010 [2]; to
obtain a comparable accuracy in differences of quantum-mechanical energies still
exceeds the capabilities of algorithms and computer hardware, but the calculation
of other pertinent quantities can play a valuable role in the analysis of spectra.
For instance, an accurate knowledge of the dynamic electric dipolar polarisability
[3–7] of a particular molecular species facilitates the observation of that compound
through Raman scattering; likewise accurate data for the molecular rotational gr
factor [8–14] and electric dipolar moment [15] enable extraction of information
about the vibrational gy factor and adiabatic effects from frequency data for pure
rotational and vibration–rotational transitions [16–18] as well as an accurate
function for the internuclear potential energy, within a conventional treatment
involving separation of electronic and nuclear motions. Our work on LiH [17] was
undertaken before a comprehensive theoretical treatment relating the vibrational
gy factor and spectral parameters became available [19]. Afterward we developed
and implemented an algorithm for the calculation of the vibrational gy factor [18].
With a new implementation of the coding of adiabatic corrections in an
established suite of Fortran routines for quantum-chemical calculations in Dalton
[23], we are able to calculate to satisfactory accuracy the principal auxiliary terms
in an effective Hamiltonian for vibrational and rotational motion of atomic centres
in a diatomic molecule. Because these auxiliary terms have only a small, but
significant, effect on energies of molecular vibration–rotational states, there is no
necessity to attain an accuracy comparable with that of electronic energy.

Here we apply this quantum-chemical capability to provide quantitative
knowledge about these auxiliary quantities to assist the extraction of information
about equilibrium properties of helium hydride diatomic molecular cation, HeHC.
By its ionic nature, this compound is highly reactive under laboratory conditions
and hence only a transient species in experiments in the gaseous phase, but
measurements of spectra have yielded moderately precise frequencies of pure
rotational and vibration–rotational transitions throughout energies in a range from
the ground state up to the dissociation limit – even beyond that limit for further
states quasi-bound within the centrifugal barrier – for both 4He1HC and 4He2HC,
as well as less abundant data for two analogous species containing 3He. Because
the curve for the internuclear potential energy of this molecule in the ground
electronic state possesses both a broad and a shallow minimum, a radial function
to represent that potential energy encompasses internuclear distances over a large
range. To cover satisfactorily a corresponding range of energies and ancillary
molecular properties would require radial functions involving as parameters some
70 or 80 coefficients of a distance variable to various powers, which would require
fitting from known frequencies of only some 200 measured transitions within the
electronic ground state. In contrast, wave numbers of about 5500 transitions of
GeO are satisfactorily reproduced with only six fitted parameters [24], but these
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many transitions sample energy for only a small fraction of states below the
dissociation limit. Moreover, the small masses of both nuclei in HeHC cause
intervals of energy between adjacent states in vibrational manifolds to be
relatively large, and likewise for rotational manifolds, such that below the
dissociation limit this curve for the potential energy supports only a few
vibrational states, with their associated rotational manifolds. For these reasons the
simultaneous reduction of all these spectral data of HeHC is challenging to an
extent far beyond that associated with other and less elusive diatomic molecular
species existing in the gaseous phase. In contrast, the calculation of molecular
electronic structure and properties is greatly facilitated by the facts that there are
only two electrons associated with two atomic nuclei and that the symmetry class
of the electronic ground state of HeHC is 1SC, implying that no important
magnetic effects need be included in the computation of those properties. In
summary, one can readily appreciate that this molecular species is an excellent
candidate for the application of the practice of computational spectrometry, so
that analysis of molecular spectra thus assisted can yield information about
equilibrium and other properties to serve both for characterization of this
molecular species and as reference for future calculations.
2. THEORY

As a point of departure we assume, within a conventional separation of nuclear
and electronic motions, an effective Hamiltonian for the motion of two atomic
nuclei and their associated electrons both along and perpendicular to the
internuclear vector, directly applicable to a molecule of symmetry class 1SC for
which magnetic effects are absent or negligible [25]:

ĤðRÞZ
1

2m
P̂ 1C

me

mp
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here P̂ is an operator for linear momentum conjugate to internuclear distance R;
mZMaMb=ðMaCMbÞ is the atomic reduced mass for atomic centres A and B and
their respective masses Ma and Mb; gy(R) and gr(R) are, respectively, radial
functions for the vibrational and rotational g factors; J is a quantum number for
angular momentum of the molecule about the molecular centre of mass; V(R)
denotes internuclear potential energy independent of nuclear mass (including
relativistic corrections); and V 0(R) denotes adiabatic corrections to take into
account a small dependence on nuclear mass that V(R) would otherwise exhibit.
Both rotational and vibrational g factors have an electronic contribution, which is
regarded to pertain to rotational and vibrational non-adiabatic effects, as discussed
below. An additional contribution to both the g factors, which is normally called
the nuclear contribution, arises on the transition from nuclear masses to atomic
masses in the effective Hamiltonian [18,19]. Energy values of this effective
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Hamiltonian are expressed in this form [25]
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½JðJC1Þ�l (2)

in which Dunham coefficients Yk,l result from the principal terms in the effective
Hamiltonian, equation (1), and Zk,l reflect the presence therein of auxiliary terms –
the rotational and vibrational g factors and adiabatic corrections.
2.1. The gr and gy factors

The electronic contributions to the g factors arise in second-order perturbation
theory from the perturbation of the electronic motion by the vibrational or
rotational motion of the nuclei [19,26]. This non-adiabatic coupling of nuclear and
electronic motion, which exemplifies a breakdown of the Born–Oppenheimer
approximation, leads to a mixing of the electronic ground state with excited
electronic states of appropriate symmetry. The electronic contribution to the
vibrational g factor of a diatomic molecule is then given as a sum-over-excited-
states expression
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whereas the electronic contribution to the rotational g factor of a diatomic
molecule consists of two contributions

gel
r ðRÞZ gpara

r ðRÞCgdia
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The ‘paramagnetic’ contribution again involves excited states
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in which for brevity J0jnðf~rig;RÞ is abbreviated in this equation as J0jn, whereas
the ‘diamagnetic’ contribution is a simple average value over the electronic



Analysis of Spectra of HeHC 323
ground state:
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The nuclear contribution to the rotational or vibrational g factor becomes
for a diatomic molecule AB containing nucleus A of protonic number Za along
the z-axis at zaZ j~RaK ~RCMj, and nucleus B with protonic number Zb at
zbZ j~RbK ~RCMj
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2
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2
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2
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(7)

in which the moment of inertia is

I ZmR2 Z
MaMb

Ma CMb

ð~Ra K ~RbÞ
2: (8)

The second form of gnr shows that the nuclear contribution, being independent of
internuclear distance, is constant for a particular molecular species in all its
electronic states.

Calculation of rotational and vibrational g factors by linear response methods
using multiconfigurational self-consistent-field wave functions is described in
detail elsewhere [18,27].

According to convention we suppose that the g factors of a neutral diatomic
molecule can be partitioned into a term depending on the electric dipolar moment ~d
or its derivative ddz=dR and an ‘irreducible’ non-adiabatic contribution girr

r=y [19,28]
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in which the sign of the dipolar moment is chosen to be dz!0 for a molecule of
polarityCABK and with the z-axis pointing from A to B. A detailed expression for
this irreducible non-adiabatic contribution to the rotational g factor has been
derived [29]
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in which
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A related function called RðnÞ
bja
Z ðm=mpÞg

AjB
r was previously introduced [30].

For a molecular ion with charge number Q a transformation between isotopic
variants becomes complicated in that the g factors are related directly to the
electric dipolar moment and irreducible quantities for only one particular
isotopic variant taken as standard; for this species these factors become
partitioned into contributions for atomic centres A and B separately. For another
isotopic variant the same parameters independent of mass are still applicable, but
an extra term must be taken into account to obtain the g factor and electric
dipolar moment of that variant [19]. The effective atomic mass of each isotopic
variant other than that taken as standard includes another term [19]. In this way
the relations between rotational and vibrational g factors and dz and its
derivative, equations (9) and (10), are maintained as for neutral molecules. Apart
from the qualification mentioned below, each of these formulae applies
individually to each particular isotopic variant, but, because the electric dipolar
moment, referred to the centre of molecular mass of each variant, varies from
one cationic variant to another because the dipolar moment depends upon the
origin of coordinates, the coefficients in the radial function apply rigorously to
only the standard isotopic species; for any isotopic variant the extra term is
required to yield the correct value of either g factor from the value for that
standard species [19].

Although the relation between the vibrational g factor and the derivative of
electric dipolar moment, equation (10), is formally equivalent to the relation
between the rotational g factor and this dipolar moment, equation (9), there arises
an important distinction. The derivative of the electrical dipolar moment involves
the linear response of the ground-state wave function and thus a non-adiabatic
expression for a sum over excited states similar to electronic contributions to the g
factors. The vibrational g factor can hence not be partitioned in the same as was
the rotational g factor into a contribution that depends only on the ground-state
wave function and ‘irreducible non-adiabatic’ contribution. Nevertheless girr

v ðRÞ is
treated as such. A detailed expression for girr

v ðRÞ in terms of quantum-mechanical
operators and a sum over excited states, similar to equations (11) and (12), is not
yet reported.
2.2. The adiabatic correction

The adiabatic correction to the Born–Oppenheimer potential energy for a diatomic
molecule A–B is simply given by the sum of the expectation values of the nuclear
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kinetic energy operators [20,21]:
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2MK
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By calculating DUA(R) and DUB(R) separately, we can straightforwardly
calculate the total adiabatic correction V 0(R) for any isotopes of A and B. The
adiabatic corrections are calculated by numerical differentiation of the multi-
configurational self-consistent field (MCSCF) wave functions calculated with
Dalton [23]. The numerical differentiation was performed with the Westa program
developed 1986 by Ågren, Flores-Riveros and Jensen [22].
3. COMPUTATIONAL DETAILS

Both the electronic energy and the electronic contributions to the rotational and
vibrational g factors, dipolar moment and derivative of the dipolar moment were
calculated with full CI wave functions using the aug-cc-pVTZ basis set of
Dunning and co-workers [31,32]. In the calculation of the rotational g factor we
used rotational London orbitals [27,33]. In the calculation of the adiabatic
correction to the potential energy surface we used an MCSCF wavefunction [34]
of the complete-active-space type (CASSCF) [35] with two electrons in nine
orbitals (5s and 2p orbitals) included in the active space and using the aug-cc-
pVQZ basis set. This model was verified for the iso-electronic H2 molecule, for
which we found that the differences to the reference values by Kołos and
Wolniewicz [36] were up to the order of 0.5 cmK1. It was also verified that the
reported digits do not include any errors because of the numerical
differentiation. All calculations were performed with local development versions
of Dalton [23] and Westa [22]. In Table 1 and Figs 1 and 2 we present
calculated values of the total electronic energy EBO

0 and of rotational and
vibrational g factors as a function of internuclear distance R from nearly a
putative united atom to barely interacting He and H atoms far apart. Each g
factor comprises two contributions, one from nuclei, equation (7), that depends
on only atomic numbers and masses and that has hence for 4He1HC the same
value 0.8997 at all internuclear distances, and another from electrons that is
related formally to non-adiabatic effects of either type. For gy the total value at a
particular R is just the sum of an electronic contribution, equation (3), that is
invariably negative, and the positive nuclear contribution; the net result is either
positive or negative depending on the relative magnitudes. For gr, equation (4),
the same positive nuclear contribution sums with a diamagnetic term, equation
(6), that is invariably positive, and a paramagnetic term, equation (5), that is



Table 1. Calculated properties of 4He1HC in its electronic ground state X 1SC as a
function of internuclear distance R – electronic energy, vibrational g factor, diamagnetic
and paramagnetic electronic contributions to rotational g factor, and total molecular
rotational g factor

R 10K10 m Energy/hartree gy gdia
r g

para
r gr

0.3 K2.2315269416 0.6255 0.0023 K0.0328 0.8692
0.4 K2.6867512113 0.6489 0.0001 K0.0321 0.8676
0.5 K2.8713081448 0.6687 0.0002 K0.0336 0.8663
0.6 K2.9456497493 0.6814 0.0005 K0.0371 0.8630
0.7 K2.9713464311 0.6869 0.0008 K0.0416 0.8588
0.77438 K2.9753915000 0.6867 0.0010 K0.0451 0.8556
0.8 K2.9750955024 0.6858 0.0011 K0.0462 0.8545
0.9 K2.9692499440 0.6792 0.0011 K0.0506 0.8501
1.0 K2.9597610664 0.6683 0.0010 K0.0549 0.8458
1.1 K2.9495466617 0.6552 0.0009 K0.0590 0.8415
1.2 K2.9399959858 0.6431 0.0008 K0.0630 0.8375
1.3 K2.9316980164 0.6357 0.0009 K0.0669 0.8336
1.4 K2.9248160702 0.6354 0.0009 K0.0707 0.8298
1.5 K2.9192916304 0.6429 0.0009 K0.0743 0.8263
1.6 K2.9149610967 0.6568 0.0009 K0.0777 0.8229
1.7 K2.9116242596 0.6746 0.0009 K0.0807 0.8198
1.8 K2.9090833625 0.6938 0.0008 K0.0835 0.8170
1.9 K2.9071628083 0.7123 0.0007 K0.0859 0.8144
2.0 K2.9057163342 0.7288 0.0006 K0.0880 0.8123
2.25 K2.9034704823 0.7590 0.0004 K0.0919 0.8081
2.5 K2.9023290253 0.7758 0.0003 K0.0945 0.8054
3.0 K2.9013546908 0.7894 0.0002 K0.0975 0.8024
4.0 K2.9008220843 0.7958 0.0002 K0.0998 0.8001
5.0 K2.9006867790 0.7976 0.0002 K0.1006 0.7993
10.0 K2.9006033488 0.7991 0.0001 K0.1013 0.7985
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invariably negative. For 4He1HC net values of gr are invariably positive, but
another molecular species might have a negative or positive value.

Equations (9) and (11) indicate how the auxiliary radial function for the
rotational factor gr becomes separable into contributions from atomic centres of
types A and B. An analogous separation is practicable for both the vibrational g
factor and the total adiabatic corrections; for the latter quantity this separation is
effected in the original quantum-chemical calculations. Accordingly we express
these calculated values of rotational and vibrational g factors, presented in Table 1,
and adiabatic corrections, presented in Table 3, of 4He1HC to generate coefficients
of radial functions for atomic centres of either type, He or H. The most useful
variable for these functions is z, defined in terms of instantaneousR and equilibrium
Re internuclear distances as

zZ 2
RKRe

RCRe

(15)



Fig. 1. Energy of 4He1HC as a function of internuclear distance R; circles denote points
from quantum-chemical calculations.

Analysis of Spectra of HeHC 327
We have for adiabatic effects [26]
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for non-adiabatic rotational effects [26]
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Fig. 2. Rotational and vibrational g factors of 4He1HC in electronic ground state X 1SC as
a function of internuclear distance R; points from quantum-chemical calculations (B for
gr(R) and , for gy(R)).



Table 2. Calculated electric dipolar moment dz and derivative of dipolar moment
ddz=dR, both in atomic units, of 4He1HC in electronic ground state X 1SC as a function of
internuclear distance R. The origin of the coordinate system is located at the centre of
atomic mass.

R 10K10 m dz a.u. ddz=dR a.u. 1010 mK1

0.3 0.135301 0.722545
0.4 0.217406 0.918361
0.5 0.318590 1.102836
0.6 0.437390 1.269955
0.7 0.571942 1.418063
0.77438 0.681154 1.517001
0.8 0.720432 1.548979
0.9 0.881192 1.663442
1.0 1.052533 1.760218
1.1 1.232545 1.836251
1.2 1.418970 1.887935
1.3 1.609252 1.913332
1.4 1.800798 1.913702
1.5 1.991305 1.893508
1.6 2.179027 1.859144
1.7 2.362884 1.817262
1.8 2.542417 1.773467
1.9 2.717648 1.731718
2.0 2.888907 1.694312
2.25 3.303014 1.624030
2.5 3.703300 1.582100
3.0 4.483148 1.543951
4.0 6.013826 1.522514
5.0 7.532529 1.515933
10.0 15.092297 1.510389
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and for non-adiabatic vibrational effects [26]

me
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me

mp
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1
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X
jZ0
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1
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The coefficients of z j, sHe
j and sH

j for the vibrational factor gy, t
He
j and tHj for the

rotational factor gr, and uHe
j and uH

j for adiabatic corrections, are obtained from
fitting corresponding data in Tables 1–3. The resulting values of coefficients are
presented in Table 4, and they reproduce satisfactorily the computational results
within the likely precision for internuclear distances over the entire specified range.
4. RESULTS AND DISCUSSION

4.1. Electronic structure calculations

The most striking features of the radial function for the vibrational g factor, gy(R),
are a minimum at an internuclear distance of about 1.4!10K10 m and a maximum



Table 3. Calculated adiabatic corrections for He and H, and total adiabatic correction for
4He1HC according to equation (19)

R 10K10 m DUHe 102 u mK1 DUH 102 u mK1
V 0(R) 102 mK1

0.3 357.53 58.81 147.68
0.4 345.30 43.68 129.61
0.5 338.95 32.73 117.16
0.6 336.66 24.88 108.80
0.7 337.04 19.17 103.23
0.77438 338.43 15.89 100.32
0.8 339.06 14.91 99.51
0.9 342.08 11.66 97.04
1.0 345.65 9.15 95.43
1.1 349.40 7.18 94.42
1.2 353.07 5.63 93.79
1.3 356.42 4.39 93.40
1.4 359.33 3.39 93.14
1.5 361.74 2.60 92.95
1.6 363.64 1.96 92.79
1.7 365.11 1.45 92.66
1.8 366.22 1.06 92.54
1.9 367.04 0.76 92.46
2.0 367.65 0.54 92.39
2.25 368.58 0.23 92.31
2.5 369.03 0.09 92.29
3.0 369.41 0.02 92.31
4.0 369.61 0.00 92.35
5.0 369.67 0.00 92.36
10.0 369.70 0.00 92.36
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at an internuclear distance of about 0.7!10K10 m (Fig. 2). We note, furthermore,
that the derivative of the electric dipolar moment, ddz=dR, has a maximum at about
the same internuclear distance as that minimum in the vibrational g factor (Fig. 3).
From equation (10) we discern that this condition implies that the maximum in the
vibrational g factor at about 0.7!10K10 m is due to girr

v whereas the minimum at
about 1.4!10K10 m must have a common origin with a maximum in the dipolar
gradient at the same internuclear distance.

We learn about the origin of these extrema through an expression for the
sum over excited states for the electronic contribution to the vibrational g factor
in equation (3). For that purpose we calculate the excitation energies,
EBO
n ðRÞKEBO

0 ðRÞ, of excited states of least energy but the same symmetry as
the ground state and the corresponding transition moments

hJ0ðf~rig;RÞj
v

vR
jJnðf~rig;RÞi

� �
:

Excitation energies are readily obtained as poles of a polarization propagator
[37– 40], whereas the transition moments are known as first-order non-adiabatic



Table 4. Fitted coefficients of z j in the radial functions for vibrational (sj) and rotational
(tj) g factors and adiabatic corrections (uj) of 4He1HC in its electronic ground state X 1SC

j sj
He sr

H tj
He tj

H uj
He 106mK1 uj

H 106mK1

0 0.10804 0.82887 K0.06000 0.87112 61.69249 2.89692
1 K1.00630 0.21951 K0.56414 0.10765 3.20200 K5.61943
2 K1.00294 0.23343 K0.14567 0.02173 7.72925 3.19362
3 K1.07478 0.26823 K0.04424 0.01772 1.29965 K0.24166
4 0.28861 K0.06439 K0.11731 K0.00518 K1.81693 K0.23783
5 1.79498 K0.42044 0.40975 K0.10477 K16.78919 K2.60926
6 K5.31950 1.23250 0.47226 K0.02612 4.92581 3.98440
7 K1.36709 0.32900 K0.61852 0.14400 19.19119 2.29043
8 12.15919 K2.82900 K0.21459 0.03022 K15.70526 K7.17792
9 K6.49368 1.52457 0.38251 K0.08647 3.49290 4.42733
10 K6.77346 1.58536 K0.10033 0.02491 0 K0.87705
11 7.42127 K1.75617 0 0 0 0
12 K1.94495 0.46452 0 0 0 0
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coupling matrix elements (NACME) of which the calculation is also implemented
in the Dalton program [41].

In Fig. 4 we present the energies and matrix elements for the first three excited
states and in Fig. 5 we show the contributions of the five lowest excited states to
the electronic contribution of the vibrational g factor, equation (3). The terms with
nZ1, 2, 3 in equation (3) are displayed with hollow symbols, whereas the solid
symbols and lines are the result of summation over n from 1 to 2, from 1 to 3, from
1 to 5 and all n in equation (3). According to Fig. 4 the energy of the first three
excited states exhibits no atypical behaviour, but that the NACME to the first
Fig. 3. Electric dipolar moment dz and derivative of dipolar moment ddz=dR of 4He1HC in
electronic ground state X 1SC as a function of internuclear distance R; points from
quantum-chemical calculations (! for dz and 6 for ddz=dR). The origin of the coordinate
system is located at the centre of atomic mass.



Fig. 4. Calculated energies (solid lines with filled symbols) and first-order non-adiabatic
coupling matrix elements (NACME) (dotted lines with empty symbols) of the first three
excited states in 4He1HC as a function of internuclear distance R.
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excited state has a clear maximum at an internuclear distance of 1.4!10K10 m
and a minimum at about 0.6!10K10 m. The NACME to the second and third
excited states show disparate behaviour: the first falls steeply and goes through a
minimum at about 2.0!10K10 m, whereas the latter has a minimum at about
0.7!10K10 m, increases to a maximum at 2.0!10K10 m and then decays slowly.
Fig. 5. Contributions from the lowest five excited states to the electronic contribution to
the vibrational g factor, equation (3), of 4He1HC as a function of internuclear distance R.
Dotted lines and empty symbols are contributions from a particular excited state whereas
solid lines and symbols are the sum of the contributions up to and including the given
excited state. The total electronic contribution (dashed line with ,) is shifted by 1.3.
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According to Fig. 5 the maximum and minimum in the NACME to the first
excited state produce a minimum and maximum in the corresponding contribution
to the electronic contribution to the vibrational g factor. The extrema are at the
same internuclear distances and have positions near the extrema in the total
electronic contribution to gy(R), but are not as steep. The contributions from the
second, third, and up to the fifth excited states modify slightly the position and the
form of the extrema but introduce no fundamental modification. We, therefore,
conclude that the extrema in the vibrational g factor reflect extrema in the first-
order NACME to the first excited state, and not in the energy of the excited state.
The exact position of the minimum in the vibrational g factor is, however,
influenced by more highly excited states.

Figure 2 shows directly that both rotational and vibrational g factors of
4He1HC approach a common value of 0.8 as R becomes large. This behaviour is
characteristic of 4He1HC, as for both neutral diatomic molecular species 1H2

[18] or 7Li1H for which we have undertaken analogous calculations the
asymptotic value of both gr and gy is zero. For 3He2HC the corresponding value
of gr at RZ10K9 m is 0.3.

The adiabatic corrections for the individual atomic centres He and H, listed as a
function of R in Table 3, are combined in the final column of that table into a total
correction according to this formula

V 0ðRÞ

hc
Zme

DUHeðRÞ

MHe

C
DUHðRÞ

MH

� �
(19)

in which me is the electronic rest mass. The total adiabatic correction for 4He1HC

approaches the value for the helium atom that reflects a difference in electronic
energy calculated with the reduced mass of that atom in terms of nucleus and
electrons and with the centre of coordinates at the position of the nucleus, because
HeHC in its electronic ground state X 1SC dissociates into a neutral helium atom
and an ionized hydrogen atom or bare proton.
4.2. Preliminary analysis of spectral data

As an application of this implementation of computational spectrometry, we
present preliminary results of analysis of frequencies of pure rotational and
vibration–rotational transitions, from the literature, of HeHC in four isotopic
variants formed from 4He, 3He, 1H and 2H in appropriate combinations.
With the values of sHejH

j , tHejH
j and uHejH

j in Table 4, we evaluated the auxiliary
coefficients Zk,l in equation (2) and fitted available spectral data to obtain values of
the Dunham coefficients Yk,l. From Y0,1 and Y1,0, respectively, in equation (2) or
equivalent quantities independent of nuclear mass, the equilibrium internuclear
distance independent of nuclear mass has a value Re 10K10 mZ0.7743424G
0.0000020, and the force coefficient has a value ke N mK1Z491.536G0.022. For
comparison, corresponding values for H2 from spectral analysis [18] are
0.7414144G0.0000020 and 576.0854G0.0090, respectively. The equilibrium
distances for these two molecular species in which the binding involves in each
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case only two electrons are hence almost identical, whereas the smaller force
coefficient for HeHC likely reflects that its equilibrium binding energy is less than
half that of H2. From interpolation of the three, or five, points of least energy in
Table 1 the corresponding value of Re 10K10 m is 0.77843, or 0.77595, but these
quantum-chemical computations are not intended for this purpose. Results from
quantum-chemical calculations in Tables 1 and 2 will be applied in further
analysis of spectra of HeHC.
5. FINAL REMARKS AND CONCLUSIONS

Computational spectrometry can serve as a powerful adjunct in analysis of
molecular spectra, especially in a challenging case such as HeHC. Even for less
esoteric diatomic molecules such as H2 and LiH, the results of this approach are
essential to allow an analyst to disentangle the effects of auxiliary terms in the
effective Hamiltonian, equation (1), because of three auxiliary terms – rotational
and vibrational g factors and adiabatic corrections – coefficients in only two such
radial functions can, in general, be evaluated from data of only spectral
frequencies of pure rotational and vibration–rotational transitions for samples
without applied electric or magnetic field. In such circumstances these quantum-
chemical calculations serve as a substitute for information from experiments
involving applied fields, but they are able to generate satisfactorily accurate data
for internuclear distance over a range much greater than has ever been derived
from such experiments.
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