MATRIX TRANSFORMATIONS OF SERIES
OF ORTHOGONAL POLYNOMIALS

DAVID BORWEIN, PETER BORWEIN, AND AMNON JAKIMOVSKI

ABSTRACT. For a sequence of polynomials \((P_n)\) orthonormal on the interval \([-1,1]\), we consider the sequence of transforms \((g_n)\) of the series \(\sum_{k=0}^\infty a_k P_k(u)\) given by \(g_n(u) := \sum_{k=0}^\infty b_n b_k P_k(u)\). We establish necessary and sufficient conditions on the matrix \((b_{n,k})\) for the sequence \((g_n)\) to converge uniformly on compact subsets of the interior of an appropriate ellipse to a function holomorphic on that interior.

1. Introduction. Suppose throughout that \(1 < P \leq \infty\), \(1 < R < \infty\), and that all sequences and matrices are complex with indices running through \(0,1,2,\ldots\). We make the following definitions:

\(\mathbb{C}\) is the finite complex plane;

\(\gamma_R\) is the ellipse with foci \(\pm 1\) and half-axes \(a := \frac{1}{2}(R+R^{-1})\), \(b := \frac{1}{2}(R-R^{-1})\). Note that an ellipse with foci \(\pm 1\) having \(R\) as the sum of its two half-axes is necessarily \(\gamma_R\);

\(D_R^\gamma\) is the interior of the ellipse \(\gamma_R\), and \(D_\infty^\gamma := \mathbb{C}\);

\((P_n)\) is an orthonormal sequence of polynomials with respect to a fixed non-negative weight function \(w\) on the interval \([-1,1]\). That is, \(P_n\) is a polynomial of degree \(n\), and

\[\int_{-1}^1 P_n(u) P_m(u) w(u) du = \delta_{nm}.\]

We assume throughout that \(w \in L(-1,1)\) and \(w^{-\epsilon} \in L(-1,1)\) for some \(\epsilon > 0\).

The first of these integrability conditions is standard, and the second is imposed for the purposes of the present paper. The classical Jacobi polynomials, for which \(w(u) = (u - 1)^\alpha (u + 1)^\beta\) with \(\alpha, \beta > -1\), satisfy the conditions.

\(\mathcal{E}\) is the set of all sequences \(a = (a_n)\) such that \(\lim |a_n|^\frac{1}{1+n} = 0\);

*This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

1991 Mathematics Subject Classification. Primary 30C45, 47B37; Secondary 40G05.

Key words and phrases. Orthogonal polynomials, Jacobi, Chebyshev, matrix transforms, Nörlund.
\mathcal{E}^β is the set of all sequences $\mathbf{a} \equiv (a_n)$ such that $\limsup |a_n|^{1+1} < \infty$;

\mathcal{E}_R is the set of all sequences $\mathbf{a} \equiv (a_n)$ such that $\sum_{n=0}^\infty |a_n| R^n < \infty$;

\mathcal{A}_R is the set of all sequences $\mathbf{a} \equiv (a_n)$ such that $\limsup |a_n|^{1/1} = \frac{1}{R}$;

The following lemma, the proof of which appears in [1], shows that \mathcal{E}^β is the β-dual of \mathcal{E}.

Lemma 1. A sequence \mathbf{b} has the property that $\sum_{n=0}^\infty b_n a_n$ is convergent for each $\mathbf{a} \in \mathcal{E}$ if and only if $\mathbf{b} \in \mathcal{E}^\beta$.

The following are the first three of an eight theorems we shall prove concerning matrix transformations of series of orthogonal polynomials. They are analogues of Theorems 1, 2 and 3 in [1] concerning matrix transformations of power series.

Theorem 1. A matrix $\mathbf{B} \equiv (b_{nk})$ has the property that whenever the sequence $\mathbf{a} \equiv (a_n) \in \mathcal{E}_R$ the sequence of functions (g_n) given by

$$g_n(u) := \sum_{k=0}^\infty b_{nk} a_k P_k(u), \quad n = 0, 1, \ldots ,$$

converges uniformly on every compact subset of D_P^2, each series $\sum_{k=0}^\infty b_{nk} a_k P_k(u)$ of orthogonal polynomials being convergent on D_P^2, if and only if

(i) $\lim_{n \to \infty} b_{nk} =: b_k$ for $k = 0, 1, \ldots$;

(ii) $M(p) := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{p}{R} \right)^k < \infty$ whenever $1 < p < P$.

And then $\lim_{n \to \infty} g_n(u) = \sum_{k=0}^\infty b_k a_k P_k(u)$ on D_P^2.

Theorem 2. A matrix $\mathbf{B} \equiv (b_{nk})$ has the property that whenever the sequence $\mathbf{a} \equiv (a_n) \in \mathcal{A}_R$ the sequence of functions (g_n) given by

$$g_n(u) := \sum_{k=0}^\infty b_{nk} a_k P_k(u), \quad n = 0, 1, \ldots ,$$
converges uniformly on every compact subset of \(D^\gamma_P \), each series \(\sum_{k=0}^{\infty} b_n a_k P_k(u) \) of orthogonal polynomials being convergent on \(D^\gamma_P \), if and only if

(i) \(\lim_{n \to \infty} b_{nk} =: b_k \) for \(k = 0, 1, \ldots \);

(ii) \(M(p) := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{p}{R} \right)^k < \infty \) whenever \(1 < p < P \).

And then \(\lim_{n \to \infty} g_n(u) = \sum_{k=0}^{\infty} b_k a_k P_k(u) \) on \(D^\gamma_P \).

Theorem 3. A matrix \(B \equiv (b_{nk}) \) has the property that whenever the sequence \(a \equiv (a_n) \in E \) the sequence of functions \((g_n) \) given by

\[
g_n(u) := \sum_{k=0}^{\infty} b_n a_k P_k(u), \quad n = 0, 1, \ldots,
\]

converges uniformly on every compact subset of \(\mathbb{C} \), each series \(\sum_{k=0}^{\infty} b_n a_k P_k(u) \) of orthogonal polynomials being convergent on \(\mathbb{C} \), if and only if

(i) \(\lim_{n \to \infty} b_{nk} =: b_k \) for \(k = 0, 1, \ldots \);

(ii) \(M := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{1}{P} \right)^k < \infty \).

And then \(\lim_{n \to \infty} g_n(u) = \sum_{k=0}^{\infty} b_k a_k P_k(u) \) on \(\mathbb{C} \).

These theorems show that if the series-to-sequence transform given by \(B \) is regular, then it is necessary in each case that \(\lim_{n \to \infty} b_{nk} = b_k = 1 \) for \(k = 0, 1, \ldots \), and this in turn implies that \(P \leq R \) in Theorems 1 and 2 (i.e., the sequence \((g_n) \) cannot converge uniformly in the interior of any ellipse \(\gamma_P \) with \(P > R \)). Regular sequence-to-sequence transforms of power series have been considered by Peyerimhoff [8] and Luh [7] among others. One of the novel features of our approach is that we deal with series-to-sequence transforms rather than sequence-to-sequence transforms.

Let \((B_n) \) be a sequence of non-zero complex numbers. The associated Nörlund series-to-sequence matrix \(N_B \) is the triangular matrix \((b_{nk}) \) with

\[
b_{nk} := \begin{cases} \frac{B_{n-k}}{B_n} & \text{if } 0 \leq k \leq n, \\ 0 & \text{otherwise.} \end{cases}
\]

The following theorem is an immediate consequence of Theorem 1.
Theorem N. The Nörlund matrix N_R has the property that whenever the sequence $a \equiv (a_n) \in \mathcal{E}_R$ the sequence of functions (g_n) given by

$$g_n(u) := \frac{1}{B_n} \sum_{k=0}^{n} B_{n-k} a_k P_k(u), \quad n = 0, 1, \ldots,$$

converges uniformly on every compact subset of D_R^γ, if and only if

$$\lim_{n \to \infty} \frac{B_{n-1}}{B_n} = b \quad \text{with} \quad |b| = \frac{R}{P},$$

And then

$$\lim_{n \to \infty} g_n(u) = \sum_{k=0}^{\infty} b^k a_k P_k(u) \quad \text{on} \quad D_R^\gamma.$$

Note. In view of Theorem 2, Theorem N remains true if \mathcal{E}_R is replaced by A_R.

2. Orthogonal polynomials.

In this section we set out some of the properties of orthogonal polynomials required in our proofs. Note that the function $u = \frac{1}{2}(z + z^{-1})$ maps the region $\{ z : |z| > 1 \}$ bijectively onto the region $\{ u : u \not\in [-1, 1] \}$, and that each circle $|z| = R$ is mapped onto γ_R. The inverse of this function is $z = u + \sqrt{u^2 - 1}$. Here and elsewhere in the paper the sign of the square root is chosen so that $|u + \sqrt{u^2 - 1}| > 1$ when $u \not\in [-1, 1]$. We then have, for $z = u + \sqrt{u^2 - 1}$, that $|z| = R$ when $u \in \gamma_R$, and $|z| < R$ when $u \in D_R^\gamma$. The function $u = \frac{1}{2}(z + z^{-1})$ maps both the top half and the bottom half of the unit circle $\{ z : |z| = 1 \}$ onto $[-1, 1]$.

Lemma 2. For $\epsilon > 0$ let the non-negative weight function $w \in L(-1, 1)$ associated with the orthonormal sequence of polynomials (P_n) be such that $w^{-\epsilon} \in L(-1, 1)$, and let $|z| \geq 1$ and $u = \frac{1}{2}(z + z^{-1})$. Then

$$|P_n(u)| \leq K(\epsilon)(1 + n)^{2 + 2/\epsilon}|z|^n \quad \text{for} \quad n = 0, 1, \ldots,$$

where $K(\epsilon)$ is a positive number independent of n.

Proof. By Bernstein’s inequality (see [5, Theorem 7])

$$|P_n(u)| \leq \max_{-1 \leq t \leq 1} |P_n(t)||z|^n,$$

and by a result due to Erdélyi [2, Theorem 5]

$$\max_{-1 \leq t \leq 1} |P_n(t)| \leq K_1(\epsilon)(1 + n)^{2 + 2/\epsilon} \int_{-1}^{1} |P_n(t)| w(t) \, dt.$$

Finally, by the Cauchy-Schwarz inequality,

$$\int_{-1}^{1} |P_n(t)||w(t)| \, dt \leq \left(\int_{-1}^{1} P_n(t)^2 w(t) \, dt \right)^{1/2} \left(\int_{-1}^{1} w(t) \, dt \right)^{1/2} = \left(\int_{-1}^{1} w(t) \, dt \right)^{1/2}.$$

Combining the above inequalities we get the required result. \qed
Lemma 3. (Expansion of a holomorphic function in terms of orthogonal polynomials). Let the non-negative weight function \(w \in L(-1, 1) \) associated with the orthonormal sequence of polynomials \((P_n) \) be such that \(w^{-\epsilon} \in L(-1, 1) \) for some \(\epsilon > 0 \). Let \(f(u) \) be holomorphic on the closed segment \([-1, 1]\), and let \(\gamma_R \) denote the largest ellipse with foci \(\pm 1 \) on the interior of which \(f(u) \) is holomorphic. The Fourier series expansion of \(f(u) \) on \(D_R^\gamma \), the interior of \(\gamma_R \), is given by

\[
f(u) = \sum_{k=0}^{\infty} a_k P_k(u),
\]

where

\[
a_k = \int_{-1}^{1} f(t)P_k(t)w(t)\,dt.
\]

The Fourier series is absolutely convergent on \(D_R^\gamma \), and is also uniformly convergent on compact subsets of \(D_R^\gamma \). It is divergent on the exterior of \(\gamma_R \). Further, the sum \(R \) of the semi-axes of the ellipse of convergence is given by

\[
\frac{1}{R} = \limsup_{k \to \infty} |a_k|^{1/k}.
\]

Proof. All but the statement about absolute convergence follows from Theorems 12.7.3 and 12.7.4 in [11], since the conditions on the weight \(w \) are more stringent than those in the said theorems. To prove the absolute convergence part, let

\[
\frac{1}{R} := \limsup_{k \to \infty} |a_k|^{1/k},
\]

and let \(u \in D_R^\gamma \). Then \(R > 1 \) and \(u = \frac{1}{2}(z + z^{-1}) \) with \(1 \leq |z| < R \). Let \(|z| < R_0 < R \). Then \(|a_k| < R_0^{-k} \) for all sufficiently large \(k \). Hence, by Lemma 2,

\[
|a_k P_k(u)| = (|a_k||z|^k)|z^{-k} P_k(u)| \leq K(\epsilon)(1 + k)^{2+2/\epsilon} \left(\frac{|z|}{R_0} \right)^k
\]

for all sufficiently large \(k \), and therefore \(\sum_{k=0}^{\infty} |a_k P_k(u)| \) is convergent. \(\square \)

Lemma 4. (Cauchy-type inequalities for Fourier series). Let the non-negative weight function \(w \in L(-1, 1) \) associated with the orthonormal sequence of polynomials \((P_n) \) be such that \(w^{-\epsilon} \in L(-1, 1) \) for some \(\epsilon > 0 \). Assume that the function \(f(u) \) is holomorphic on \(D_R^\gamma \) and continuous on \(\overline{D_R^\gamma} \), the closure of \(D_R^\gamma \). Let \(\sum_{k=0}^{\infty} a_k P_k(u) \) be its Fourier series. Then

\[
|a_n| \leq \frac{c(R)}{R^n} \cdot \max_{u \in \gamma_R} |f(u)| \text{ for } n = 0, 1, \ldots ,
\]
where $c(R) := \frac{2R}{R - 1} \left(\int_{-1}^{1} w(t) \, dt \right)^{\frac{1}{2}}$.

Proof. Suppose first that $n \geq 1$. By Lemma 3 we have

$$a_n = \int_{-1}^{1} f(t) P_n(t) w(t) \, dt = \int_{-1}^{1} (f(t) - q_{n-1}(t)) P_n(t) w(t) \, dt,$$

where $q_{n-1}(t)$ is any polynomial of degree $n - 1$. It follows that

$$|a_n| \leq E_{n-1}(f) \int_{-1}^{1} |P_n(t)| w(t) \, dt \leq E_{n-1}(f) \left(\int_{-1}^{1} w(t) \, dt \right)^{\frac{1}{2}},$$

where, in the notation of Lorentz [5],

$$E_{n-1}(f) := \inf_{q_{n-1}} \max_{-1 \leq t \leq 1} |f(t) - q_{n-1}(t)|.$$

Further, it is proved in [5, inequality (6), p. 78] that

$$E_{n-1}(f) \leq \frac{2R}{R - 1} \cdot \frac{1}{R^n} \cdot \max_{u \in \mathcal{R}} |f(u)|.$$

Combining the above inequalities we obtain the desired result for $n \geq 1$. Finally, the case $n = 0$ of the Cauchy-type inequality is easily seen to be true since, for $P_0 := P_0(t)$, we have

$$|P_0| \left(\int_{-1}^{1} w(t) \, dt \right)^{\frac{1}{2}} = 1. \quad \square$$

3. Proofs of Theorems 1, 2 and 3. In the proofs of Theorems 1, 2 and 3, u and z are related by $u = \frac{1}{2}(z + z^{-1})$, $z = u + \sqrt{u^2 - 1}$ with $|z| > 1$, the sign of the square root being chosen so that $|u + \sqrt{u^2 - 1}| > 1$.

Proof of Theorems 1 and 2. We prove these two theorems together.

Sufficiency. We assume that

$$\lim_{n \to \infty} b_{nk} =: b_k \text{ for } k = 0, 1, \ldots ;$$

$$M(p) := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{P}{R} \right)^{k} < \infty \quad \text{for} \quad 1 < p < P.$$

Let $a \in \mathcal{A}_R$, or $a \in \mathcal{E}_R$. For $1 < p < P$ choose r so that $1 < r < R$ and $\frac{P}{r} < \frac{P}{R}$. Now choose p_1 so that $p < p_1 < P$ and $\frac{P}{r} = \frac{p_1}{R}$. Suppose $u \in D_{p_1}^r$. Then $u = \frac{1}{2}(z + z^{-1})$ with $1 \leq |z| < p$, and therefore, by Lemma 2,

$$|b_{nk} a_k P_k(u)| \leq K(\epsilon) |b_{nk}| |a_k|(1 + k)^{2+2/\epsilon} r^{k} = K(\epsilon) |b_{nk}| \left(\frac{p_1}{r} \right)^{k} |a_k|(1 + k)^{2+2/\epsilon} r^{k}$$

$$= K(\epsilon) |b_{nk}| \left(\frac{p_1}{R} \right)^{k} |a_k|(1 + k)^{2+2/\epsilon} r^{k} \leq K(\epsilon) M(p_1) |a_k|(1 + k)^{2+2/\epsilon} r^{k} < \infty.$$

Further, by (i) (of either Theorem 1 or Theorem 2),

$$\lim_{n \to \infty} b_n a_k P_k(u) = b_k a_k P_k(u).$$

Since $\sum_{k=0}^{\infty} |a_k|(1 + k)^{2+2/\epsilon} r^k < \infty$, and since p can be chosen arbitrarily close to P in $(1, P)$, it follows, by the Weierstrass M-test, that $g_n(u)$ exists for $n = 0, 1, \ldots$, and

$$\lim_{n \to \infty} g_n(u) = \lim_{n \to \infty} \sum_{k=0}^{\infty} b_n a_k P_k(u) = \sum_{k=0}^{\infty} b_k a_k P_k(u)$$

on D_P^γ, and that the sequence (g_n) is uniformly convergent on compact subsets of D_P^γ. This completes the proof of the sufficiency of conditions (i) and (ii) both for Theorem 1 and Theorem 2.

Necessity. Let $a_k := \frac{1}{R^k(k+1)^2}$. Then $a \in A_R$ and $a \in E_R$. Under the hypotheses of either Theorem 1 or Theorem 2 the series

$$g_n(u) := \sum_{k=0}^{\infty} b_n a_k P_k(u)$$

is convergent on D_P^γ and the sequence (g_n) is uniformly convergent on compact subsets of D_P^γ. Therefore, by the Weierstrass double-series theorem, (g_n) converges to a holomorphic function on D_P^γ. By Lemma 3, we get, for the above sequence a, that

$$b_n a_k = \int_{-1}^{1} g_n(t) P_k(t) \, dt \quad \text{for} \quad n = 0, 1, \ldots.$$

Since $g_n(t)$ converges uniformly on $[-1, 1]$ to $g(t)$ say, we get that

$$\lim_{n \to \infty} b_n a_k = \int_{-1}^{1} g(t) P_k(t) \, dt =: d_k.$$

Hence, for $k = 0, 1, \ldots$,

$$\lim_{n \to \infty} b_n = b_k,$$

where $b_k = d_k R^k(k+1)^2$. This proves the necessity of condition (i) in both Theorem 1 and Theorem 2.

Suppose now that p and \tilde{p} are fixed with $1 < p < \tilde{p} < P$. Since a satisfies the hypotheses of both Theorem 1 and Theorem 2, the sequence (g_n) is uniformly convergent on $D_{\tilde{p}}^\gamma$. Hence we have, for $u \in D_{\tilde{p}}^\gamma$ and $n = 0, 1, \ldots$, that $|g_n(u)| \leq M(\tilde{p}, a) < \infty$, $M(\tilde{p}, a)$ being independent of n. By Lemma 4 we get that

$$|b_n a_k R^k| \leq c(\tilde{p}) M(\tilde{p}, a)$$

for $n, k = 0, 1, \ldots$.
Since \(a_k := \frac{1}{R^k(k+1)^2} \), it follows that
\[
|b_{nk}| \cdot \left(\frac{\bar{p}}{R}\right)^k \cdot \frac{1}{(k+1)^2} \leq c(\bar{p})M(\bar{p}, a) \text{ for } n, k = 0, 1, \ldots,
\]
and hence that
\[
\sup_{n \geq 0, k \geq 0} |b_{nk}| \cdot \left(\frac{\bar{p}}{R}\right)^k \leq c(\bar{p})M(\bar{p}, a) \sup_{k \geq 0} \left\{ \left(\frac{\bar{p}}{R}\right)^k (k+1)^2 \right\} < \infty.
\]
Therefore the condition
\[
\sup_{n \geq 0, k \geq 0} |b_{nk}| \cdot \left(\frac{\bar{p}}{R}\right)^k < \infty \quad \text{whenever } 1 < p < P,
\]
is necessary, i.e., condition (ii) is necessary in both Theorem 1 and Theorem 2. \(\square \)

Proof of Theorem 3.

Sufficiency. We assume that
\[
\left\{ \begin{array}{l}
\lim_{n \to \infty} b_{nk} =: b_k \text{ for } k = 0, 1, \ldots; \\
M := \sup_{n \geq 0, k \geq 0} |b_{nk}| \cdot \frac{1}{k+1} < \infty.
\end{array} \right.
\]
Let \(a \in \mathcal{E} \), and let \(u \in D_R^\gamma \). Then \(u = \frac{1}{2}(z + z^{-1}) \) with \(1 \leq |z| < R < \infty \), and so, by Lemma 2,
\[
|b_{nk}a_kP_k(u)| \leq K(\epsilon)|b_{nk}|a_k|(1 + k)^{2 + 2/\epsilon} |z|^k \leq K(\epsilon)|b_{nk}|a_k|(1 + k)^{2 + 2/\epsilon} R^k \\
\leq K(\epsilon)M|a_k|(1 + k)^{2 + 2/\epsilon}(MR)^k < \infty.
\]
\(\hat{\epsilon} \)From (i) we get
\[
\lim_{n \to \infty} b_{nk}a_kP_k(u) = b_k a_k P_k(u).
\]
Since \(\sum_{k=0}^{\infty} |a_k|(1 + k)^{2 + 2/\epsilon}(MR)^k < \infty \), and since \(R \) can be arbitrarily large, it follows, by the Weierstrass M-test, that \(g_n(u) \) exists for \(n = 0, 1, \ldots \), and
\[
\lim_{n \to \infty} g_n(u) = \lim_{n \to \infty} \sum_{k=0}^{\infty} b_{nk} a_k P_k(u) = \sum_{k=0}^{\infty} b_k a_k P_k(u)
\]
on \(\mathbb{C} \), and that the sequence \((g_n) \) is uniformly convergent on compact subsets of \(\mathbb{C} \).

Necessity. Let \(a_k := k^{-k} \), so that \(a \in \mathcal{E} \). Then, by hypothesis, the series
\[
g_n(u) := \sum_{k=0}^{\infty} b_{nk} a_k P_k(u)
\]
is convergent on \(\mathbb{C} \), and the sequence \((g_n)\) is uniformly convergent on compact subsets of \(\mathbb{C} \). By the Weierstrass double-series theorem, \((g_n)\) converges to an entire function on \(\mathbb{C} \). By Lemma 3 we have

\[
b_{nk}a_k = \int_{-1}^{1} g_n(t)P_k(t) \, dt \quad \text{for } n = 0, 1, \ldots.
\]

Since \(g_n(t) \) is uniformly convergent on \([-1, 1]\) to \(g(t) \) say, we get, for \(k = 0, 1, \ldots \), that

\[
\lim_{n \to \infty} b_{nk}a_k = \int_{-1}^{1} g(t)P_k(t) \, dt =: d_k,
\]

and hence that

\[
\lim_{n \to \infty} b_{nk} = b_k,
\]

where \(b_k = d_k k^k \) for \(k = 0, 1, 2, \ldots \). Thus condition (i) is necessary.

Suppose now that \(\mathbf{a} \) is an arbitrary sequence in \(\mathcal{E} \), and that \(R > 1 \). Since the sequence \((g_n)\) is uniformly convergent on \(\overline{D}_R \), we have, for \(u \in \overline{D}_R \) and \(n = 0, 1, \ldots \), that \(|g_n(u)| \leq M(R, \mathbf{a}) < \infty \). \(\square \) From Lemma 4 we get that

\[
|b_{nk}a_k| \leq c(R)M(R, \mathbf{a})R^{-k} \quad \text{for } n, k = 0, 1, \ldots. \tag{1}
\]

Hence \(\sum_{k=0}^{\infty} b_{nk}a_k \) is convergent whenever \(\mathbf{a} \in \mathcal{E} \), and we have, by Lemma 1, that

\[
M_n := \sup_{k \geq 0} |b_{nk}|^{1+\frac{1}{r}} < \infty \quad \text{for } n = 0, 1, \ldots.
\]

Assume now that

\[
\sup_{n \geq 0} \sup_{k \geq 0} |b_{nk}|^{1+\frac{1}{r}} = \sup_{n \geq 0} M_n = \infty.
\]

This implies that there exists a strictly increasing sequence of positive integers \((n_j)\) such that \(M_{n_j} \to \infty \). This in turn implies that there exists a sequence of non-negative integers \((k_j)\) such that

\[
|b_{n_j,k_j}|^{1+\frac{1}{r}} > \frac{1}{2} M_{n_j} \to \infty \quad \text{as } j \to \infty. \tag{2}
\]

We show now that the sequence \((k_j)\) is not bounded. Assume that it is bounded. Then there is a positive integer \(k^* \) such that \(0 \leq k_j \leq k^* \). Since \(\lim_{n \to \infty} b_{nk} = b_k \) for \(k = 0, 1, \ldots, k^* \), it follows that the set of numbers \((b_{nk})_{n \geq 0, 0 \leq k \leq k^*}\) is bounded, and hence that the set of numbers \(\left(|b_{nk}|^{1+\frac{1}{r}} \right)_{n \geq 0, 0 \leq k \leq k^*} \) is bounded. But this contradicts (2). Therefore the sequence \((k_j)\) is not bounded. We can suppose (by considering a subsequence if necessary) that the sequence is strictly increasing. Choose

\[
a_k := \begin{cases}
\left(\frac{1}{|b_{n_j,k}|} \right)^{\frac{k+1}{2}} & \text{if } k = k_j, \\
0 & \text{otherwise}.
\end{cases}
\]
We then have, by (2), that
\[
\left| a_{k_j} \right| \leq \frac{1}{\sqrt{b_{n_j,k_j}}} < \left(\frac{1}{\frac{1}{2}M_{n_j}} \right)^{\frac{1}{b_{j,j}}} \to 0 \text{ as } j \to \infty.
\]
Therefore \(a \in \mathcal{E} \), but
\[
\left| b_{n_j,k_j} \right| a_{k_j} = \sqrt{b_{n_j,k_j}} \to \infty \text{ as } j \to \infty,
\]
which contradicts (1). Thus the condition
\[
\sup_{n \geq 0, k \geq 0} \left| b_{n,k} \right|^{\frac{1}{b_{j,j}}} < \infty
\]
is necessary, i.e., condition (ii) is necessary.

\[
\square
\]

4. Additional Theorems. In this section we prove some theorems showing that the ellipse of convergence \(D^*_p \) specified in Theorem 2 cannot be enlarged when the matrix \(B \) satisfies conditions (i) and (ii) of that theorem together with certain other conditions. Analogous theorems concerning matrix transformations of power series appear in [1].

Theorem 4. Suppose that \(P \) and \(R \) are finite numbers greater than 1, and that \(B \equiv (b_{n,k}) \) is a triangular infinite matrix (i.e., \(b_{n,k} = 0 \) for \(k > n \)) satisfying
\[
M(p) := \sup_{n \geq 0, k \geq 0} |b_{n,k}| \left(\frac{p^k}{R} \right) < \infty \quad \text{for} \quad 1 < p < P.
\]
Then, for each \(a \in A_R \) and each \(R_1 \geq P \),
\[
\limsup_{n \to \infty} \max_{u \in \gamma_{R_1}} \left| \sum_{k=0}^n b_{n,k} a_k P_k(u) \right|^{\frac{1}{k}} \leq \frac{R_1}{P}.
\]

Proof. Choose \(R_1 \geq P > 1 \), and suppose \(a \in A_R \). Let \(\frac{1}{P} < \lambda < 1 \), and take \(p := \lambda P \). Then \(1 < p < P \). Since \(\limsup |a_k|^{\frac{1}{b_{j,j}}} = \frac{1}{R} \), there is a positive constant \(c(\lambda) \) such that
\[
|a_k| \leq \frac{c(\lambda)}{(\lambda R)^k} \quad \text{for} \quad k \geq 0.
\]
By Lemma 2, for \(u \in \gamma_{R_1} \) we have \(|P_k(u)| \leq K(\epsilon)(1 + k)^{2+2/\epsilon} \frac{R_1}{\lambda^k} \) and hence
\[
\left| \sum_{k=0}^n b_{n,k} a_k P_k(u) \right| \leq K(\epsilon) \sum_{k=0}^n |b_{n,k}| \left(\frac{p^k}{R} \right) |a_k| R^k \left(\frac{R_1}{p} \right)^k (1 + k)^{2+2/\epsilon}
\]
\[
\leq K(\epsilon) M(p) c(\lambda) \sum_{k=0}^n \left(\frac{R}{\lambda R} \right)^k \left(\frac{R_1}{\lambda P} \right)^k (1 + k)^{2+2/\epsilon}
\]
\[
\leq K(\epsilon) M(p) c(\lambda)(1 + n)^{2+2/\epsilon} \sum_{k=0}^n \left(\frac{R_1}{\lambda^2 P^k} \right)^k.
\]
Since \(\frac{R_1}{\lambda^2 P} > \frac{R_1}{P} \geq 1 \), it follows that

\[
\limsup_{n \to \infty} \max_{u \in \gamma_R_1} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^\frac{1}{n} \leq \lim_{n \to \infty} \left(\sum_{k=0}^{n} \left(\frac{R_1}{\lambda^2 P} \right)^k \right)^\frac{1}{n} = \frac{R_1}{\lambda^2 P}.
\]

Letting \(\lambda \nearrow 1 \) we get

\[
\limsup_{n \to \infty} \max_{u \in \gamma_R_1} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^\frac{1}{n} \leq \frac{R_1}{P}.
\]

\(\square \)

Remark. Assume that a triangular matrix \(B \) satisfies

\[
M(p) := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{p}{R} \right)^k < \infty \text{ for } 1 < p < P.
\]

Then

\[
|b_{nn}|^{\frac{1}{n}} \frac{p}{R} \leq M(p) \frac{1}{n} \to 1 \text{ as } n \to \infty,
\]

and hence

\[
\limsup_{n \to \infty} |b_{nn}|^{\frac{1}{n}} \leq \frac{R}{P} \text{ for each } p \in (1, P).
\]

Letting \(p \nearrow P \) we get

\[
\limsup_{n \to \infty} |b_{nn}|^{\frac{1}{n}} \leq \frac{R}{P}.
\]

This suggests that it is not inappropriate to impose the condition

\[
\lim_{n \to \infty} |b_{nn}|^{\frac{1}{n}} = \frac{R}{P},
\]

as we do in the following theorem.

Theorem 5. Let \(B \) be a triangular matrix. Suppose that

\[
\lim_{n \to \infty} |b_{nn}|^{\frac{1}{n}} = \frac{R}{P},
\]

where \(P \) and \(R \) are finite numbers greater than 1. Then for each \(a \in A_R \) and each \(R_1 \geq P \) we have

\[
\limsup_{n \to \infty} \max_{u \in \gamma_R_1} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^\frac{1}{n} \geq \frac{R_1}{P}.
\]

Proof. Assume that the conclusion of the theorem is not true. Then there is an \(a^* \in A_R \) and an \(R_1 \geq P > 1 \) such that

\[
\limsup_{n \to \infty} \max_{u \in \gamma_R_1} \left| \sum_{k=0}^{n} b_{nk} a^*_k P_k(u) \right|^\frac{1}{n} < \frac{R_1}{P}.
\]
Therefore there exists a number \(\tilde{R} \) such that \(1 < \tilde{R} < R_1 \) and, for all \(n \) sufficiently large,

\[
\max_{u \in \gamma_{R_1}} \left| \sum_{k=0}^{n} b_{nk} a_k^* P_k(u) \right|^\frac{1}{n} \leq \frac{\tilde{R}}{P}, \text{ and hence } \max_{u \in \gamma_{R_1}} \left| \sum_{k=0}^{n} b_{nk} a_k^* P_k(u) \right| \leq \left(\frac{\tilde{R}}{P} \right)^n.
\]

Applying Lemma 4 to the function \(g_n(u) := \sum_{k=0}^{n} b_{nk} a_k^* P_k(u) \) we get in particular that, for all large \(n \),

\[
|b_{nn}| |a_n^*| R_1^n \leq c(R_1) \left(\frac{\tilde{R}}{P} \right)^n, \text{ and therefore } |b_{nn}|^{\frac{1}{n}} |a_n^*|^{\frac{1}{n}} R_1^{\frac{1}{n}} \leq c(R_1) \frac{\tilde{R}}{P}.
\]

From the last inequality we get that

\[
\frac{\tilde{R}}{P} \geq \limsup_{n \to \infty} \left(|b_{nn}|^{\frac{1}{n}} |a_n^*|^{\frac{1}{n}} R_1 \right) = R_1 \lim_{n \to \infty} |b_{nn}|^{\frac{1}{n}} \cdot \limsup_{n \to \infty} |a_n^*|^{\frac{1}{n}} = \frac{R_1}{P}.
\]

But this is a contradiction since \(1 < \tilde{R} < R_1 \). Hence the conclusion of the theorem must hold.

The next two theorems are analogues of Theorems 6 and 7 (concerning matrix transformations of power series) in [1], which in turn generalize results about regular and non-regular Nörlund matrices due respectively to Luh [6] and K. Stadtmüller [9, Theorems 6 and 7]. The first of these new theorems, which follows immediately from Theorems 4 and 5, shows, inter alia, that the sequence \((g_n) \) specified in Theorem 2 cannot converge uniformly in the interior of any ellipse \(\gamma_{P_1} \) with \(P_1 > P \) when \(B \) is a triangular matrix satisfying condition (ii) of Theorem 2 together with the diagonal condition of Theorem 5.

Theorem 6. Suppose that \(P \) and \(R \) are finite numbers greater than 1, and that \(B \) is a triangular matrix satisfying

\[
M(p) := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{P}{R} \right)^k < \infty \quad \text{for } 1 < p < P, \text{ and } \lim_{n \to \infty} |b_{nn}|^{\frac{1}{n}} = \frac{R}{P}.
\]

Then, for each \(a \in A_R \) and each \(R_1 \geq P \),

\[
\limsup_{n \to \infty} \max_{u \in \gamma_{R_1}} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^{\frac{1}{n}} = \frac{R_1}{P}.
\]

The next theorem shows that the ellipse \(\gamma_{R_1} \) in the conclusion of Theorem 6 can be replaced by any arc of that ellipse (provided condition (i) of Theorem 2 is also satisfied when \(R_1 = P \)).
Theorem 7. Suppose that P and R are finite numbers greater than 1, and that B is a triangular matrix such that

$$
M(p) := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{p}{R} \right)^k < \infty \text{ for } 1 < p < P, \text{ and } \lim_{n \to \infty} \left| b_{nn} \right|^\frac{1}{n} = \frac{R}{P}.
$$

(i) Then, for each $a \in A_R$ and each $R_1 > P$,

$$
\limsup_{n \to \infty} \max_{u \in \Gamma} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^\frac{1}{n} = \frac{R_1}{P},
$$

where Γ is any closed non-trivial arc of γ_{R_1}.

(ii) If, in addition,

$$
\lim_{n \to \infty} b_{nk} =: b_k \text{ for } k = 0, 1, \ldots, \text{ where } b_k \neq 0 \text{ for } k > k^*,
$$

then, for each $a \in A_R$,

$$
\limsup_{n \to \infty} \max_{u \in \Gamma} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^\frac{1}{n} = 1,
$$

where Γ is any closed non-trivial arc of γ_P.

Proof of (i). By Theorem 6 we know that

$$
\limsup_{n \to \infty} \max_{u \in \Gamma} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^\frac{1}{n} \leq \frac{R_1}{P}.
$$

Hence it is enough to prove that, for every $a \in A_R$,

$$
\limsup_{n \to \infty} \max_{u \in \Gamma} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^\frac{1}{n} \geq \frac{R_1}{P}, \quad (3)
$$

which we now proceed to do. Assume that (3) is not true. Then there exists a sequence $a^* \in A_R$ and a number \tilde{R} such that $P < \tilde{R} < R_1$ and

$$
\limsup_{n \to \infty} \max_{u \in \Gamma} |g_n(u, a^*)|^\frac{1}{n} \leq \frac{\tilde{R}}{P}.
$$

Hence given $\epsilon > 0$ we have, for $z := u + \sqrt{u^2 - 1}$ and all sufficiently large n,

$$
\max_{u \in \Gamma} \left| \frac{g_n(u, a^*)}{z^n} \right| \leq \left(\frac{\tilde{R}}{P} \cdot \frac{1}{R_1} \right)^n 2^n = \left(\frac{\tilde{R}}{R_1} \right)^n \left(\frac{2^n}{P} \right).
$$
Further, from Theorem 6 we get that, for all large \(n \),

\[
\max_{u \in \gamma} \left| g_n(u, a^*) \right| \leq \left(\frac{2^\epsilon}{P} \right)^n
\]

and

\[
\max_{u \in \gamma_{R_1}} \left| g_n(u, a^*) \right| \leq \left(\frac{2^\epsilon}{P} \right)^n.
\]

Let \(P < r < R_1 \). Since the function \(z = u + \sqrt{u^2 - 1} \) is holomorphic and different from zero on \(\mathbb{C} \setminus [-1, 1] \), we have, by Nevanlinna’s \(N \)-constants theorem (see [3, Theorem 18.3.3]), that there exist positive constants \(\theta_1, \theta_2, \theta_3 \) (depending on \(r \) but not on \(\epsilon \)) such that \(\theta_1 + \theta_2 + \theta_3 = 1 \) and

\[
\max_{u \in \gamma_r} \left| g_n(u, a^*) \right| \leq \left(\frac{R}{R_1} \right)^{\theta_1} \left(\frac{2^\epsilon}{P} \right)^{\theta_2} \left(\frac{2^\epsilon}{P} \right)^{\theta_3} = \left(\frac{R}{R_1} \right)^{\theta_1} \left(\frac{2^\epsilon}{P} \right)^n
\]

for all sufficiently large \(n \). Hence, choosing \(\epsilon > 0 \) so small that \(\left(\frac{R}{R_1} \right)^{\theta_1} 2^\epsilon < 1 \), we get

\[
\limsup_{n \to \infty} \max_{u \in \gamma_r} |g_n(u, a^*)|^{\frac{1}{n}} \leq \left(\frac{R}{R_1} \right)^{\theta_1} 2^\epsilon \frac{r}{P} < \frac{r}{P}.
\]

Since \(r > P \), the last inequality contradicts the conclusion of Theorem 5. Hence (3) must hold when \(R_1 > P \).

Proof of (ii). By Theorem 6 we know in this case that

\[
\limsup_{n \to \infty} \max_{u \in \Gamma} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^{\frac{1}{n}} \leq 1.
\]

Hence it is enough to prove that, for every \(a \in \mathbf{A}_R \),

\[
\limsup_{n \to \infty} \max_{u \in \Gamma} \left| \sum_{k=0}^{n} b_{nk} a_k P_k(u) \right|^{\frac{1}{n}} \geq 1,
\]

(4)

Suppose (4) is not true. Then for some \(a^* \in \mathbf{A}_R \) we have

\[
\limsup_{n \to \infty} \max_{u \in \Gamma} \left| \sum_{k=0}^{n} b_{nk} a_k^* P_k(u) \right|^{\frac{1}{n}} < 1.
\]
Write
\[g_n(u, \mathbf{a}^*) := \sum_{k=0}^{n} b_{nk} a_k^* P_k(u) . \]

It follows that there exists a positive number \(q < \frac{R_1}{P} = 1 \), such that, for all \(n \) sufficiently large,
\[\sup_{u \in \gamma_P} |g_n(u, \mathbf{a}^*)| < q^n. \]

Given \(\alpha > 0 \) we get from Theorem 6 that, for all \(n \) sufficiently large,
\[\max_{u \in \gamma_P} |g_n(u, \mathbf{a}^*)| \leq 2^{\alpha n}. \]

By Nevanlinna's \(N \)-constants theorem, there exists a positive number \(\theta < 1 \) (independent of \(\alpha \)) such that, for all large \(n \),
\[\max_{-1 \leq u \leq 1} |g_n(u, \mathbf{a}^*)| \leq (q^{\theta 2(1-\theta)\alpha})^n. \]

Since we can choose \(\alpha > 0 \) so small that \(q^{\theta 2(1-\theta)\alpha} < 1 \), it follows that
\[\max_{-1 \leq u \leq 1} |g_n(u, \mathbf{a}^*)| \to 0 \text{ as } n \to \infty. \]

By Lemma 3 we have
\[b_{nk} a_k = \int_{-1}^{1} g_n(t, \mathbf{a}^*) P_k(t) dt \quad \text{for } n = 0, 1, \ldots. \]

Since \(g_n(t, \mathbf{a}^*) \) tends uniformly to 0 on \([-1, 1]\) as \(n \to \infty \), it follows that
\[0 = \lim_{n \to \infty} b_{nk} a_k^* = b_k a_k^* \quad \text{for } k = 0, 1, \ldots. \]

Since \(\mathbf{a}^* \in \mathbf{A}_R \) we have that \(a_k^* \neq 0 \) for some \(k > k^* \). Hence \(b_k = 0 \) for such a \(k \). But this contradicts the assumption that \(b_k \neq 0 \) for \(k > k^* \). Therefore (4) must hold.

\[\square \]

5. Chebyshev Polynomials. In this section we restrict \((P_n) \) to be the orthonormal sequence on \([0, 1]\) of Chebyshev polynomials of the first or second kind, the corresponding weight functions of which are respectively \(w(x) = \frac{1}{2} (1 - x^2)^{-\frac{1}{2}} \) and \(w(x) = \frac{1}{2} (1 - x^2)^{\frac{1}{2}} \). The special properties of these Chebyshev polynomials that makes them amenable to the proof of Theorem 8 (below) are the familiar identities
\[2P_n \left(\frac{1}{2}(z + z^{-1}) \right) = z^n + z^{-n} \quad (5) \]

when \(P_n \) is of the first kind, and
\[(z - z^{-1}) P_n \left(\frac{1}{2}(z + z^{-1}) \right) = z^{n+1} - z^{-n-1} \quad (6) \]

when \(P_n \) is of the second kind.

The said theorem deals with the possibility of pointwise convergence of the sequence \((g_n(u)) \) specified in Theorem 2 outside the convergence ellipse \(\gamma_P \). It’s analogue for power series is Theorem 8 in [1], which generalizes results due to Lejá [4] and Stadtmüller [9, Theorem 8] about regular and non-regular Nörlund matrices respectively.
Theorem 8. Suppose that P and R are finite numbers greater than 1, and that B is a triangular matrix such that

(i) $\lim_{n \to \infty} b_{nk} =: b_k$ for $k = 0, 1, \ldots$ where $b_k \neq 0$ for $k > k^*$;

(ii) $M(p) := \sup_{n \geq 0, k \geq 0} |b_{nk}| \left(\frac{p}{R} \right)^k < \infty$ for $1 < p < P$; $\lim_{n \to \infty} |b_{nn}|^{\frac{1}{n}} = \frac{R}{P}$, and

(iii) $|b_{nk}| \leq c(\tilde{R})|b_{nn}| \left(\frac{P}{\tilde{R}} \right)^{n-k}$ for $1 < \tilde{R} < R$ and $0 \leq k \leq n$.

Suppose that $a \in A_R$ and that $\limsup_{n \to \infty} |a_n| R^n > 0$. Let

$$g_n(u) := \sum_{k=0}^{n} b_{nk} a_k P_k(u),$$

where (P_k) is the orthonormal sequence on $[-1, 1]$ of Chebyshev polynomials of the first or second kind, and let $P_1 > P$. Then $\limsup_{n \to \infty} |g_n(u)|^{\frac{1}{n}} \leq 1$ for at most a finite number of points u outside the ellipse γ_{P_1} and hence, in particular, the sequence (g_n) can converge at most at a finite number of points u outside the ellipse γ_{P_1}.

Proof. Assume that u is a point outside the ellipse γ_{P_1} for which

$$\limsup_{n \to \infty} |g_n(u)|^{\frac{1}{n}} \leq 1. \quad (7)$$

Let $z := u + \sqrt{u^2 - 1}$, so that $|z| > P_1$; and let

$$\tilde{g}_n(z) := \sum_{k=0}^{n} b_{nk} a_k z^k.$$

Then, by (5),

$$2g_n(u) = 2 \sum_{k=0}^{n} b_{nk} a_k P_k(u) = \tilde{g}_n(z) + \tilde{g}_n(z^{-1})$$

when the Chebyshev polynomials P_k are of the first kind; and, by (6),

$$(z - z^{-1}) g_n(u) = z \tilde{g}_n(z) - z^{-1} \tilde{g}_n(z^{-1})$$

when the Chebyshev polynomials P_k are of the second kind.
Since $|z^{-1}| < P_1^{-1} < P$ it follows from Theorem 2 in [1] that $\tilde{g}_n(z^{-1})$ tends to a finite limit as $n \to \infty$, and therefore from (7) that, in either case,

$$\limsup_{n \to \infty} |\tilde{g}_n(z)|^{\frac{1}{n}} \leq 1.$$ (8)

Theorem 8 in [1] tells us that inequality (8) can hold for at most a finite number of points z satisfying $|z| > P_1$, and thus (7) can hold for at most finitely many points u outside the ellipse γ_{P_1}.

Remarks. A Nörlund matrix N_B for which

$$\lim_{n \to \infty} \frac{B_{n-1}}{B_n} = b \text{ with } |b| = \frac{R}{P}$$

satisfies all the conditions on the matrix in Theorem 8. In this case, however, the condition $\limsup |a_n|R^n > 0$ can be omitted since the corresponding version of the theorem for power series has recently been proved by K. Stadmüller and Gross-Erdman [10, Remark 3.7].

An open and challenging question is whether Theorem 8 holds for other orthogonal polynomials.

References

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel