On the Irrationality of A Certain Multivariate q Series

Peter B. Borwein and Ping Zhou*

December 10, 2001

Abstract

We prove that for integers $q > 1, m \geq 1$ and positive rationals $r_1, r_2, \ldots, r_m \neq q^j, j = 1, 2, \ldots$, the series

$$\sum_{j=1}^{\infty} \frac{q^{-j}}{(1 - q^{-j}r_1)(1 - q^{-j}r_2) \cdots (1 - q^{-j}r_m)}$$

is irrational. Furthermore, if all the positive rationals r_1, r_2, \ldots, r_m are less than q, then the series

$$\sum_{j_1, \ldots, j_m=0}^{\infty} \frac{r_1^{j_1} \cdots r_m^{j_m}}{q^{j_1 + \cdots + j_m + 1} - 1}$$

is also irrational.

AMS Class: Primary 11J72.

1 Introduction and Results

The main result of this paper is the following theorem:

Theorem 1.1: If q is an integer greater than one, m is a positive integer, r_1, r_2, \ldots, r_m are any positive rationals such that $r_1, r_2, \ldots, r_m \neq q^j, j = 1, 2, \ldots$, then the series

$$\sum_{j=1}^{\infty} \frac{q^{-j}}{(1 - q^{-j}r_1)(1 - q^{-j}r_2) \cdots (1 - q^{-j}r_m)}$$

is irrational. Furthermore, if all the positive rationals r_1, r_2, \ldots, r_m are less than q, then the series

$$\sum_{j_1, \ldots, j_m=0}^{\infty} \frac{r_1^{j_1} \cdots r_m^{j_m}}{q^{j_1 + \cdots + j_m + 1} - 1}$$

is also irrational.

This generalizes the irrationality results of the single variable case proved in Borwein [3], Erdős [6], and Erdős and Graham [7]. The approach is via Padé approximants. These provide, when appropriately specialized, rational approximations that are “too good” to allow for rationality. These methods are also used in Borwein and Zhou [4], Mahler [9], Chudnovsky and Chudnovsky [5], Walfiser [10], and Zhou and Lubinsky [11]. Unfortunately the methods are

*Research supported in part by NSERC of Canada
not sufficiently general to allow a unified treatment and each new class of functions requires considerable additional work.

As in [4] we use the standard q analogues of factorials and binomial coefficients. The q--factorial is

$$[n]_q! := [n]! := \frac{(1 - q^n)(1 - q^{n-1}) \cdots (1 - q)}{(1 - q)^n},$$

(1.1)

where $[0]_q! := 1$. The q--binomial coefficient is

$$\left[\begin{array}{c} n \\ k \end{array} \right]_q := \frac{[n]!}{[k]! \cdot [n-k]!}.$$

(1.2)

As

$$q^i - 1 = (q - 1)(q^{i-1} + q^{i-2} + \cdots + 1), \quad i \geq 1,$$

we have

$$\lim_{q \to 1} [n]_q! = n!, \quad \text{and} \quad \lim_{q \to 1} \left[\begin{array}{c} n \\ k \end{array} \right]_q = \binom{n}{k}. $$

(1.3)

Note that (see Borwein [3])

$$[n]_{q-1}! = q^{-n(n-1)/2}[n]!, \quad \left[\begin{array}{c} n \\ k \end{array} \right]_{q-1} = q^{-k(k-1)/2-n(n+1)/2}[n-k]![k]!(1 - q)^n,$$

(1.4)

(1.5)

and (see Gasper and Rahman [8]) for $|t| < q^{-n}$,

$$\frac{1}{\prod_{h=0}^{n} (t - q^{-h})} = (-1)^{n+1} q^{n(n+1)/2} \sum_{l=0}^{\infty} \left[\begin{array}{c} n+l \\ l \end{array} \right] t^l.$$

(1.7)

We prove some properties of approximants to a related function in section 2, and use those properties to prove Theorem 1.1 in section 3.

2 Some Results On A Related Function

Let $q > 1$, $|x_1|, \cdots, |x_m| < q$, and integer $m \geq 1$, and let

$$L^*(x_1, \cdots, x_m) := \sum_{j_1, \cdots, j_m = 0}^{\infty} \frac{x_1^{j_1} \cdots x_m^{j_m}}{q^{j_1 + \cdots + j_m + 1} - 1}. $$

(2.1)

For $m = 1$, and $|x| < 1$,

$$\lim_{q \to 1} (q - 1)L^*(x) = \lim_{q \to 1} \sum_{j=0}^{\infty} \frac{(q - 1)x^j}{q^{j+1} - 1} $$

$$= \sum_{j=0}^{\infty} \frac{x^j}{j + 1} $$

$$= \frac{1}{x} \ln(1 - x). $$

(2)}
So we call $L^*(x_1, \ldots, x_m)$ a multivariate q analogue of log. Now for $k \geq 1$ integer and $|x_1|, \ldots, |x_m| < q$, as

\[
L^*(q^{-1}x_1, \ldots, q^{-1}x_m) = \sum_{j_1, \ldots, j_m = 0}^{\infty} \frac{q^{-(j_1 + \cdots + j_m)x_1^{j_1} \cdots x_m^{j_m}}}{q^{j_1 + \cdots + j_m + 1} - 1} \\
= \sum_{j_1, \ldots, j_m = 0}^{\infty} \frac{(1 - q^{j_1 + \cdots + j_m + 1} + q^{j_1 + \cdots + j_m + 1}x_1^{j_1} \cdots x_m^{j_m})}{q^{j_1 + \cdots + j_m} (q^{j_1 + \cdots + j_m + 1} - 1)} \\
= \sum_{j_1, \ldots, j_m = 0}^{\infty} \frac{x_1^{j_1} \cdots x_m^{j_m}}{q^{j_1 + \cdots + j_m} - 1} - \sum_{j_1, \ldots, j_m = 0}^{\infty} \frac{x_1^{j_1} \cdots x_m^{j_m}}{q^{j_1 + \cdots + j_m + 1} - 1} \\
= qL^*(x_1, \ldots, x_m) = \frac{1}{(1 - q^{-1}x_1) \cdots (1 - q^{-1}x_m)},
\]

we have

\[
L^*(q^{-k}x_1, \ldots, q^{-k}x_m) = q^k L^*(x_1, \ldots, x_m) - \sum_{j=1}^{k} \frac{q^{-j}}{(1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m)} \\
= q^k L^*(x_1, \ldots, x_m) - S_k(x_1, \ldots, x_m), \tag{2.2}
\]

where

\[
S_k(x_1, \ldots, x_m) := \sum_{j=1}^{k} \frac{q^{-j}}{(1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m)}. \tag{2.3}
\]

From (2.2), we have

\[
L^*(x_1, \ldots, x_m) = q^{-k} L^*(q^{-k}x_1, \ldots, q^{-k}x_m) + \sum_{j=1}^{k} \frac{q^{-j}}{(1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m)},
\]

and then

\[
L^*(x_1, \ldots, x_m) = \lim_{k \to \infty} q^{-k} L^*(q^{-k}x_1, \ldots, q^{-k}x_m) \\
+ \lim_{k \to \infty} \sum_{j=1}^{k} \frac{q^{-j}}{(1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m)} \\
= \sum_{j=1}^{\infty} \frac{q^{-j}}{(1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m)}. \tag{2.4}
\]

Now let $q > 1$, $x_1, \ldots, x_m \neq q^j$, $j = 1, 2, \ldots$, and integer $m \geq 1$, and let

\[
L(x_1, \ldots, x_m) := \sum_{j=1}^{\infty} \frac{q^{-j}}{(1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m)}. \tag{2.5}
\]

Then $L(x_1, \ldots, x_m)$ is an extension of $L^*(x_1, \ldots, x_m)$, i.e.

\[
L(x_1, \ldots, x_m) = L^*(x_1, \ldots, x_m), \text{ for } |x_1|, \ldots, |x_m| < q. \tag{2.6}
\]

It is easy to see that we also have the following functional equation for $L(x_1, \ldots, x_m)$:

\[
L(q^{-k}x_1, \ldots, q^{-k}x_m) = q^k L(x_1, \ldots, x_m) - S_k(x_1, \ldots, x_m), \tag{2.7}
\]

3
where \(k \geq 1 \) is an integer and \(S_k(x_1, \ldots, x_m) \) is defined by (2.3). Now we prove some properties of the function \(L(x_1, \ldots, x_m) \).

Theorem 2.1: Let \(n \geq 0 \) be an integer, \(L(x_1, \ldots, x_m), S_k(x_1, \ldots, x_m) \) be defined by (2.5) and (2.3) respectively. Let

\[
R_n(x_1, \ldots, x_m) := \prod_{j=1}^{n} \left(1 - q^{-j}x_1 \right) \cdots \left(1 - q^{-j}x_m \right),
\]

and

\[
I(x_1, \ldots, x_m) := \frac{R_n(x_1, \ldots, x_m)}{2\pi i} \int_{\Gamma} \frac{L(tx_1, \ldots, tx_m)dt}{\left(\prod_{k=0}^{n} (t - q^{-k}) \right)^{n+1}},
\]

where \(\Gamma \) is a circular contour containing \(0, q^{-n}, \ldots, q^{0} \), and let

\[
Q(x_1, \ldots, x_m) := \frac{q^{n(n+1)/2}}{(1-q)n!n!} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} q^{nk+k(k+1)/2} R_n(x_1, \ldots, x_m),
\]

\[
P(x_1, \ldots, x_m) := \frac{q^{n(n+1)/2}}{(1-q)n!n!} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} q^{nk+k(k+1)/2} R_n(x_1, \ldots, x_m) S_k(x_1, \ldots, x_m)
\]

\[+ \frac{R_n(x_1, \ldots, x_m)}{n!} \frac{d^n}{dt^n} \left\{ L(tx_1, \ldots, tx_m) \right\}_{t=0}.\]

Then

(i) \(I(x_1, \ldots, x_m) = Q(x_1, \ldots, x_m) L(x_1, \ldots, x_m) + P(x_1, \ldots, x_m); \)

(ii) \(q^{(m-1)n(n+1)/2} \left(\prod_{j=1}^{n} (q^j - 1) \right) Q(x_1, \ldots, x_m) \in \mathbb{Z}[q, x_1, \ldots, x_m]; \)

(iii) \(q^{(m-1)n(n+1)/2} \left(\prod_{j=1}^{n+1} (q^j - 1) \right) P(x_1, \ldots, x_m) \in \mathbb{Z}[q, x_1, \ldots, x_m]; \)

(iv) For \(n \in \mathbb{N} \) fixed, and \(0 < |x_1|, \ldots, |x_m| < q, \)

\[
|I(x_1, \ldots, x_m)| \leq \frac{c_q}{q^{2mn(n+1)}},
\]

where \(c_q \) is a constant depending only on \(q, m \), and \(x_1, \ldots, x_m \).

Proof of Theorem 2.1: **Proof of (i).** We can see that the integrand in (2.9) has simple poles at \(t = q^0, q^{-1}, \ldots, q^{-n} \), and a pole of order \(n + 1 \) at \(t = 0 \), inside the contour \(\Gamma \). By the residue theorem and the functional equation (2.7), and (1.6), we have

\[
I(x_1, \ldots, x_m) = \frac{R_n(x_1, \ldots, x_m)}{2\pi i} \int_{\Gamma} \frac{L(tx_1, \ldots, tx_m)dt}{\left(\prod_{k=0}^{n} (t - q^{-k}) \right)^{n+1}}.
\]
\[
R_n(x_1,\ldots,x_m) = \frac{R_n(x_1,\ldots,x_m) \sum_{k=0}^{n} \frac{L(q^{-k}x_1,\ldots,q^{-k}x_m)}{\prod_{k\neq k}^{n}(q^{-k} - q^{-k})} q^{-k(n+1)}}{R_n(x_1,\ldots,x_m) \frac{d^n}{dm} \left\{ \prod_{k=0}^{n} (t - q^{-k}) \right\}_{t=0} \sum_{k=0}^{n} \frac{L(tx_1,\ldots,tx_m)}{\prod_{k=0}^{n}(t - q^{-k})} q^{-k(n+1)/2} q^k L(x_1,\ldots,x_m)}
\]

\[
= \frac{q^{n(n+1)/2} R_n(x_1,\ldots,x_m) \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} q^{nk+k(1+1)/2} q^k L(x_1,\ldots,x_m)}{(1-q)^n[n]!} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} q^{nk+k(1+1)/2} S_k(x_1,\ldots,x_m)}{n! \frac{d^n}{dm} \left\{ \prod_{k=0}^{n} (t - q^{-k}) \right\}_{t=0} \sum_{k=0}^{n} \frac{L(tx_1,\ldots,tx_m)}{\prod_{k=0}^{n}(t - q^{-k})} q^{-k(n+1)/2} S_k(x_1,\ldots,x_m)}
\]

\[
= Q(x_1,\ldots,x_m) L(x_1,\ldots,x_m) + P(x_1,\ldots,x_m).
\]

Proof of (ii). As \(\binom{n}{k}\) is a polynomial in \(q\) with integer coefficients, and

\[
R_n(x_1,\ldots,x_m) = \prod_{j=1}^{n} ((1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m))
\]

we have (2.13).

Proof of (iii). From (2.3) and (2.8), for \(1 \leq k \leq n\),

\[
R_n(x_1,\ldots,x_m) S_k(x_1,\ldots,x_m) = \sum_{h=1}^{k} q^{k-h} \prod_{j=1}^{n} ((1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m)),
\]

so from (2.16),

\[
q^{n(n+1)/2} R_n(x_1,\ldots,x_m) S_k(x_1,\ldots,x_m) \in \mathbb{Z}[q_1,\ldots,q_m].
\]

Now for \(t < q^{-\ell}\), where \(\ell > 0\) is an integer such that \(|q^{-\ell}x_i| < q_i\) for all \(i = 1,\ldots,m\),

\[
L(tx_1,\ldots,tx_m) = L^\ell(tx_1,\ldots,tx_m) = \sum_{j_1,\ldots,j_m = 0}^{\infty} \frac{x_1^{j_1} \cdots x_m^{j_m}}{q^{j_1 + \cdots + j_m + 1} - 1},
\]

then from (1.7) and (2.18), for \(t < \min\{q^{-n},q^{-\ell}\},

\[
\frac{L(tx_1,\ldots,tx_m)}{\prod_{k=0}^{n}(t - q^{-k})} = (-1)^{n+1} \frac{n(n+1)/2}{l} \sum_{j_1,\ldots,j_m, l=0}^{\infty} \binom{n+l}{l} \frac{x_1^{j_1} \cdots x_m^{j_m}}{q^{j_1 + \cdots + j_m + l + 1} - 1}.
\]

So

\[
\frac{1}{n! \frac{d^n}{dm} \left\{ \prod_{k=0}^{n} (t - q^{-k}) \right\}_{t=0} \sum_{j_1,\ldots,j_m, l=0}^{\infty} \binom{n+l}{l} \frac{x_1^{j_1} \cdots x_m^{j_m}}{q^{j_1 + \cdots + j_m + l + 1} - 1}}
\]

\[
= (-1)^{n+1} \frac{n(n+1)/2}{l} \sum_{j_1,\ldots,j_m, l=0}^{\infty} \binom{n+l}{l} \frac{x_1^{j_1} \cdots x_m^{j_m}}{q^{j_1 + \cdots + j_m + l + 1} - 1}.
\]
and (2.14) follows from (2.11), (2.17) and (2.19).

Proof of (iv). For $R > 1$ and $\Gamma := \{ z : |z| = R \}$, we have from (2.9),

$$|I(x_1, \cdots, x_m)| \leq R \cdot \frac{R^n(x_1, \cdots, x_m) \max_{|t| = R} |L(tx_1, \cdots, tx_m)|}{R^{n+1} \prod_{k=0}^{n} (R - |q|^{-k})} \leq \frac{f_q \max_{|t| = R} |L(tx_1, \cdots, tx_m)|}{R^n \prod_{k=0}^{n} (R - q^{-k})}. \quad (2.20)$$

Now for $0 < |x_1|, \cdots, |x_m| < q$,

$$|R_n(x_1, \cdots, x_m)| = \prod_{j=1}^{n} (1 - q^{-j} x_1) \cdots (1 - q^{-j} x_m) \leq \prod_{j=0}^{\infty} (1 - q^{-j})^m := f_q, \quad (2.21)$$

where f_q is a constant depending only on q and m.

Let $R = q^{mn}$. As

$$\max_{|t| = R} |1 - q^{-j}tx_i| \geq \max_{|t| = R} |1 - q^{-j} |t||x_i| \geq |1 - q^{mn-j+1}|,$$

for $1 \leq i \leq m$, $j = 1, 2, \cdots$, and

$$q^j - 1 = q^j (1 - q^{-j}) \geq \frac{1}{2} q^j,$$

as q is an integer greater than 1, then

$$\max_{|t| = R} |L(tx_1, \cdots, tx_m)| \leq \max_{|t| = R} \sum_{j=1}^{\infty} \left| \frac{q^{-j}}{(1 - q^{-j} x_1 t) \cdots (1 - q^{-j} x_m t)} \right| \leq \left(\sum_{j=1}^{mn} \frac{q^{j-mn-1}}{(q^j - 1)^m} \right) + \frac{q^{-mn-1}}{(1 - x_1/q) \cdots (1 - x_m/q)} + \left(\sum_{j=1}^{\infty} \frac{q^{-j-mn-1}}{(1 - q^{-j})^m} \right) \leq q^{-mn-1} \left(\sum_{j=1}^{mn-1} \frac{2m}{q^{(m-1)j}} + \frac{1}{(1 - x_1/q) \cdots (1 - x_m/q)} + L(1, \cdots, 1) \right) \leq \frac{q^{-mn-1}}{1 - x_1/q} \cdots (1 - x_m/q) + L(1, \cdots, 1) \leq C_1 q^{-mn}, \quad (2.22)$$

where $C_1 := 2m q + \frac{q}{(1 - x_1/q) \cdots (1 - x_m/q)} + qL(1, \cdots, 1)$ is a constant depending only on q, m, and x_1, \cdots, x_m. Now

$$R^n \prod_{k=0}^{n} (R - q^{-k}) = R^{n+1} \prod_{k=0}^{n} (1 - q^{-n-k}) \geq R^{n+1} \prod_{j=0}^{\infty} (1 - q^{-j}) \geq C_2 q^{mn(2n+1)}, \quad (2.23)$$
where \(C_2 := \prod_{j=0}^{\infty} (1 - q^{-j}) \) is a constant depending only on \(q \). Putting (2.22) and (2.23) into (2.20), we have
\[
|I(x_1, \cdots, x_m)| \leq c_q q^{-2mn(n+1)},
\]
where
\[
c_q := f_q C_1 / C_1.
\]
This completes the proof of Theorem 2.1. \(\square \)

3 Proof of Theorem 1.1

We first prove that for \(0 < x_1, \cdots, x_m < q \), and \(q > 1 \),
\[
|I(x_1, \cdots, x_m)| \neq 0,
\]
where \(I(x_1, \cdots, x_m) \) is defined by (2.9). Note that if we choose the contour in (2.9) to be \(\Gamma = \{ z \in \mathbb{C} : |z| = 1 + \epsilon \} \), where \(\epsilon > 0 \) is small enough such that \(0 < |tx_1|, \cdots, |tx_m| < q \) for \(t \in \Gamma \), then
\[
L(tx_1, \cdots, tx_m) = L^*(tx_1, \cdots, tx_m), \quad t \in \Gamma.
\]
Now
\[
R_n(x_1, \cdots, x_m) = \prod_{j=1}^{n} \left((1 - q^{-j}x_1) \cdots (1 - q^{-j}x_m) \right) > 0
\]
for \(0 < x_1, \cdots, x_m < q \), and
\[
I(x_1, \cdots, x_m) = \frac{R_n(x_1, \cdots, x_m)}{2\pi i} \int_{\Gamma} \frac{L(tx_1, \cdots, tx_m) dt}{t^{2n+2} \left(\prod_{k=0}^{n} (1 - 1/(q^k t)) \right)}
\]
\[
= \frac{R_n(x_1, \cdots, x_m)}{2\pi i} \int_{\Gamma} \frac{L(tx_1, \cdots, tx_m) dt}{t^{2n+2} \left(\sum_{j_0, \cdots, j_n \geq 0} \left(\prod_{k=0}^{n} \left(\frac{1}{q^k t} \right)^{j_k} \right) \right)}
\]
\[
= R_n(x_1, \cdots, x_m) \sum_{j_0, \cdots, j_n \geq 0} q^{-\sum_{k=0}^{n} kj_k} \cdot \frac{1}{2\pi i} \int_{\Gamma} \frac{dt}{t^{2n+2+(j_0 + \cdots + j_n)}}
\]
\[
= R_n(x_1, \cdots, x_m) \sum_{j_0, \cdots, j_n \geq 0} q^{-\sum_{k=0}^{n} kj_k} \sum_{i_1 + \cdots + i_m = 0} \frac{x_1^{i_1} \cdots x_m^{i_m}}{q^{i_1 + \cdots + i_m + 1} - 1}
\]
\[
> 0,
\]
as \(x_1, \cdots, x_m \geq 0, q > 1 \), and as infinitely many terms above are positive, so (3.1) holds.

Now let \(r_1, r_2, \cdots, r_m \) be any fixed positive rational numbers such that \(r_1, r_2, \cdots, r_m \neq q^j \) for all \(j = 1, 2, \cdots \). From (2.7), we can see that the irrationality of \(L(r_1, r_2, \cdots, r_m) \) is equivalent
to the irrationality of \(L(q^{-k}r_1, q^{-k}r_2, \ldots, q^{-k}r_m) \) for any integer \(k \geq 1 \), so we can assume that \(0 < r_1, r_2, \ldots, r_m < q \), and then

\[
L(r_1, r_2, \ldots, r_m) = \sum_{j_1, \ldots, j_m = 0}^{\infty} \frac{r_1^{j_1} \cdots r_m^{j_m}}{q^{j_1 + \cdots + j_m + 1} - 1} > 0.
\]

Now let

\[
H_{m,n}(q) := q^{(m-1)n(n+1)/2} \left(\prod_{j=1}^{n+1} (q^j - 1) \right). \tag{3.3}
\]

Then

\[
0 < |H_{m,n}(q)| \leq q^{(mn+2)(n+1)/2}, \tag{3.4}
\]

and

\[
H_{m,n}(q) \cdot \{Q(r_1, \ldots, r_m), P(r_1, \ldots, r_m)\} \subset \mathbb{Z}[q, r_1, \ldots, r_m]. \tag{3.5}
\]

Now as

\[
\Delta_{m,n} := |H_{m,n}(q)Q(r_1, \ldots, r_m)L(r_1, \ldots, r_m) + H_{m,n}(q)P(r_1, \ldots, r_m)|
\]

\[
= |H_{m,n}(q)| |I(r_1, \ldots, r_m)|
\]

\[
> 0, \tag{3.6}
\]

and from (2.15) and (3.3), we have

\[
\Delta_{m,n} \leq \frac{c_q}{q^{2mn(n+1)}}
\]

\[
= \frac{c_q}{q^{3mn+2(n+1)/2}}
\]

\[
\leq \frac{c_q}{q^{mn^2}}. \tag{3.7}
\]

Finally, if

\[
r_1 := \frac{i_1}{l_1}, r_2 := \frac{i_2}{l_2}, \ldots, r_m := \frac{i_m}{l_m}, \tag{3.8}
\]

with \(i_1, \ldots, i_m \) and \(l_1, \ldots, l_m \) positive integers, then

\[
Q^*(r_1, \ldots, r_m) := (l_1 \cdots l_m)^{2n} H_{m,n}(q)Q(r_1, \ldots, r_m), \tag{3.9}
\]

and

\[
P^*(r_1, \ldots, r_m) := (l_1 \cdots l_m)^{2n} H_{m,n}(q)P(r_1, \ldots, r_m), \tag{3.10}
\]

are integers, and by (3.6) to (3.10),

\[
0 < |Q^*(r_1, \ldots, r_m)L(r_1, \ldots, r_m) + P^*(r_1, \ldots, r_m)|
\]

\[
= (l_1 \cdots l_m)^{2n} |H_{m,n}(q)| |Q(r_1, \ldots, r_m)L(r_1, \ldots, r_m) + P(r_1, \ldots, r_m)|
\]

\[
\leq (l_1 \cdots l_m)^{2n} \frac{c_q}{q^{mn^2}},
\]

which tends to zero as \(n \to \infty \). This shows that \(L(r_1, \ldots, r_m) \) is irrational, that is

\[
\sum_{j_1, \ldots, j_m = 0}^{\infty} \frac{r_1^{j_1} \cdots r_m^{j_m}}{q^{j_1 + \cdots + j_m + 1} - 1}
\]

8
is irrational for \(q > 1 \) integer, \(r_1, r_2, \ldots, r_m \) positive rationals less than \(q \) and integer \(m \geq 1 \), and
\[
\sum_{j=1}^{\infty} \frac{q^{-j}}{(1 - q^{-j}r_1)(1 - q^{-j}r_2) \cdots (1 - q^{-j}r_m)}
\]
is irrational for \(q > 1 \) integer, \(r_1, r_2, \ldots, r_m \) positive rationals such that \(r_1, r_2, \ldots, r_m \neq q^j \) for all \(j = 1, 2, \ldots, \) and integer \(m \geq 1 \).

This completes the proof of Theorem 1.1. \(\square \)

Now by the standard methods (as in chapter 11 of Borwein and Borwein [1]), the estimates in the proof of Theorem 1.1 gives that, under the assumption of the theorem,
\[
|L(r_1, \ldots, r_m) - \frac{s}{t}| > \frac{1}{t^{\alpha}},
\]
for some constant \(\alpha \) and all integers \(s \) and \(t \), and hence
\[
\sum_{j_1, \ldots, j_m = 0}^{\infty} \frac{r_1^{j_1} \cdots r_m^{j_m}}{q^{r_1^{j_1} + \cdots + r_m^{j_m} + 1} - 1}
\]
is not a Liouville number.

References

Department of Mathematics and Statistics
Simon Fraser University
Burnaby, B.C., Canada, V5A 1S6
pborwein@cecm.sfu.ca;
and
Department of Mathematics, Statistics & Computer Science
St. Francis Xavier University
Antigonish, N.S., Canada, B2G 2W5
pzhou@stfx.ca