Rational Interpolation to e^x

PETER B. BORWEIN

Department of Mathematics, Dalhousie University, Halifax, Nova Scotia B3H 4J8, Canada
Communicated by E. W. Cheney
Received April 20, 1981

1. Introduction

We derive estimates for the error in interpolating e^x by rational functions of degree n on intervals of length less than two. Let π_n denote the class of all polynomials of degree at most n with real coefficients. Our main result is the following:

Theorem 1. Let $\gamma_1, \gamma_2, \ldots, \gamma_{2n+1}$ be points (not necessarily distinct) in $[0, a]$, where $a < 2$. Choose $P_n, Q_n \in \pi_n$ so that

$$P_n(\gamma_i) - Q_n(\gamma_i) e^{-\gamma_i} = 0 \quad \text{for} \quad i = 1, 2, \ldots, 2n+1.$$

Then, for $x \in [0, a]$,

$$|P_n(x)/Q_n(x) - e^{-x}| \leq \left(\frac{2e \sqrt{n} e^2 \sqrt{\alpha_n}}{2 - \alpha}\right) \frac{n!(n+1)!}{(2n)!(2n+1)!} \left|\prod_{i=1}^{2n+1} (x - \gamma_i)\right|.$$

Furthermore, Q_n has positive coefficients.

Let

$$\lambda_{n}[a, b] = \min_{\rho \in \pi_n} \|e^x - \rho_n(x)/Q_n(x)\|_{[a, b]}.$$

where $\| \cdot \|$ denotes the supremum norm on $[a, b]$.

The following conjecture was made by G. Meinardus in 1964.

* Supported by the National Science and Engineering Research Council of Canada.

142
CONJECTURE [3, p. 168].

\[\lambda_{m,n}[-1,1] = \frac{m! \; n!}{\alpha^{m+n}(m+n)!(m+n+1)!} (1 + o(1)). \]

D. J. Newman, through some clever manipulation of the Padé approximant, has recently proved

Theorem A [5, p. 24].

\[\lambda_{m,n}[-1,1] \leq \frac{8m! \; n!}{\alpha^{m+n}(m+n)!(m+n+1)!}. \]

G. Németh ([4], see also Braess [1]) has shown

Theorem B.

\[\lambda_{n,n}[-1,1] = \frac{n! \; n!}{4^n(2n)! (2n+1)!} (1 + O(1)). \]

If we choose the \(\gamma_i \) in Theorem 1 to be the zeros of the \((2n+1)\)st Chebyshev polynomial (shifted to \([0, \alpha]\)) then we see that, up to the "slowly growing" \(e^{\sqrt{\alpha n}} \) term, we get essentially the right order of approximation. In light of Theorems A and B it seems plausible that the initial bracketed term of the error estimate is superfluous.

2. Preliminaries

Suppose that \(P_n, Q_n \in \pi_n \) and suppose that \(P_n(x) - Q_n(x) e^{-x} \) has \(2n + 1 \) zeros on the interval \([0, \alpha]\). If \(Q_n(x) = q_0 + q_1 x + \cdots + q_n x^n \) then

\[
(P_n(x) - Q_n(x) e^{-x})^{(n+1)}
= (Q_n(x) e^{-x})^{(n+1)}
= \sum_{k=0}^{n} \binom{n+1}{k} Q_n^{(k)} e^{-x} (-1)^{(n+1-k)}
= \sum_{k=0}^{n} \frac{x^k}{k!} \sum_{j=0}^{n-k} \binom{n+1}{j} (-1)^{j+1}! q_{k+j}.
\]

(1)

Since \((Q_n(x) e^{-x})^{(n+1)} \) has \(n \) zeros on \([0, \alpha]\), we deduce that there exist \(\beta_1, \ldots, \beta_n \in [0, \alpha] \) so that

\[
\sum_{k=0}^{n} \frac{x^k}{k!} \sum_{j=0}^{n-k} \binom{n+1}{j} (-1)^{j+1}! q_{k+j} = q_n \prod_{i=1}^{n} (x - \beta_i).
\]
Thus, if \(q_n \prod_{i=1}^{n} (x - \beta_i) = b_0 + b_1 x + \cdots + b_n x^n \), we have

\[
\begin{bmatrix}
{n+1 \choose 0} - {n+1 \choose 1} + {n+1 \choose 2} - \cdots - (-1)^n {n+1 \choose n} \\
0, - {n+1 \choose 1} + {n+1 \choose 2} - \cdots - (-1)^{n-1} {n+1 \choose n-1} \\
0, 0, - {n+1 \choose 2} - \cdots - (-1)^{n-2} {n+1 \choose n-2} \\
\vdots & \vdots & \ddots & \vdots \\
0, 0, 0, - \cdots - {n+1 \choose 0} \\
\end{bmatrix}
\begin{bmatrix}
q_0 \cdot 0! \\
q_1 \cdot 1! \\
q_2 \cdot 2! \\
\vdots \\
q_n \cdot n! \\
\end{bmatrix}
= \begin{bmatrix}
b_0 \cdot 0! \\
b_1 \cdot 1! \\
b_2 \cdot 2! \\
\vdots \\
b_n \cdot n! \\
\end{bmatrix}
\]

(2)

We can invert (2) to obtain

\[
\begin{bmatrix}
{n \choose n}, {n+1 \choose n}, {n+2 \choose n}, \ldots, {2n \choose n} \\
0, {n \choose n}, {n+1 \choose n}, \ldots, {2n-1 \choose n} \\
0, 0, {n \choose n}, \ldots, {2n-2 \choose n} \\
\vdots & \vdots & \ddots & \vdots \\
0, 0, 0, \ldots, {n \choose n} \\
\end{bmatrix}
\begin{bmatrix}
b_0 \cdot 0! \\
b_1 \cdot 1! \\
b_2 \cdot 2! \\
\vdots \\
b_n \cdot n! \\
\end{bmatrix}
= \begin{bmatrix}
q_0 \cdot 0! \\
q_1 \cdot 1! \\
q_2 \cdot 2! \\
\vdots \\
q_n \cdot n! \\
\end{bmatrix}
\]

(3)

We observe that (3) can be easily derived from (2) combined with the facts that the \((m, n)\) Padé approximant to \(e^{-x}\) is given by

\[
\sum_{v=0}^{m} \frac{m}{v} \frac{(x)^v}{v!} \sum_{v=0}^{n} \frac{n}{v} \frac{x^v}{v!}.
\]

and that for the Padé approximant \(b_0 = b_1 = \cdots = b_{n-1} = 0\).

We are now in a position to prove the following:

Lemma 1. Suppose that \(\pi_n(x) \in \pi_n \) and suppose that \(Q_n = q_0 + \)
q_1x + \cdots + q_nx^n, \text{ where } q_0 > 0. \text{ Suppose also that } P_n(x) - Q_n(x) e^{-x} \text{ has 2n + 1 zeros at } \gamma_1, \ldots, \gamma_{2n+1} \in [0, a]. \text{ Then, if } a < 2, \text{ } Q_n \text{ has positive coefficients and}

\[q_n \leq \left(\frac{2}{2 - \alpha} \right)^{\frac{n!}{(2n)!}} q_0. \]

Proof. The first part follows from an examination of (3) using the facts that for } i \leq n,

\[(i - 1)! |b_{i-1}| \leq (i!) |b_i| \quad \text{and} \quad \binom{n + i - 1}{n} \leq \frac{1}{2} \binom{n + i}{n}. \]

The second part is proved by noting that

\[q_0 \geq n! |b_n| \left(\frac{2n}{n} \right) - (n - 1)! |b_{n-1}| \left(\frac{2n - 1}{n} \right) \]

\[\geq \left(1 - \frac{\alpha}{2} \right) \frac{(2n)!}{n!} q_n. \]

The next lemma is a slight adaptation of a result of S. N. Bernstein [2, p. 38].

Lemma 2. Suppose that f and g are m + 1 times continuously differentiable on [a, b] and suppose that \(f(x) = g(x) = 0 \) has m + 1 solutions on [a, b]. If

\[|f^{(m+1)}(x)| \leq g^{(m+1)}(x) \quad \text{for } x \in [a, b] \]

then

\[|f(x)| \leq |g(x)| \quad \text{for } x \in [a, b]. \]

Lemma 3 [3, pp. 16 and 165]. (a) If \(\gamma_1, \ldots, \gamma_{m+n+1} \in [a, b] \) then there exist \(P_m \in \pi_m, Q_n \in \pi_n, \) so that

\[P_m(\gamma_i) - Q_n(\gamma_i) e^{-\gamma_i} = 0 \quad \text{for } i = 1, 2, \ldots, n + m + 1. \]

(b) If \(\pi_m \neq \pi_m, Q_n \neq Q_n \) and

\[\|e^{-x} - P_m/Q_n\|_{[a, b]} = \min_{P_m \in \pi_m, Q_n \in \pi_n} \|e^{-x} - P_m/Q_n\|_{[a, b]} \]

then \(P_m/Q_n \) interpolates \(e^{-x} \) at exactly \(n + m + 1 \) points in [a, b].
3. Proof of Theorem 1

Lemma 3 guarantees the existence of \(P_n \) and \(Q_n \) with the desired interpolation property. We may assume that

\[
Q_n(x) = q_0 + \cdots + q_{n-1}x^{n-1} + x^n.
\]

Then, as in (1), there exist \(\beta_1, \ldots, \beta_n \in [0, \alpha] \) so that

\[
(Q_n(x) e^{-x})^{(n+1)} = (-1)^{n+1} e^{-x} \prod_{i=1}^{n} (x - \beta_i)
\]

\[
= (-1)^{n+1} e^{-x} R_n(x).
\]

Hence,

\[
(Q_n(x) e^{-x})^{(2n+1)} = (-1)^{n+1} \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} e^{-x} R_n^{(n-k)}(x).
\]

Since \(R_n^{(n-k)}(x) = n!/k! \prod_{i=1}^{k} (x - \rho_{i,k}) \), where \(\rho_{i,k} \in [0, \alpha] \), we have

\[
|(Q_n(x) e^{-x})^{(2n+1)}| \leq n! \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{k!} \alpha^k
\]

\[
\leq n! \sum_{k=0}^{n} \frac{n! \alpha^k}{k! \prod_{k=0}^{n} \frac{n! \alpha^k}{k! (n-k)!}}.
\]

By Stirling's formula, \(n^ne^{-n} < n! < e\sqrt{n} n^ne^{-n} \),

\[
\frac{n! \alpha^k}{k! \prod_{k=0}^{n} \frac{n! \alpha^k}{k! (n-k)!}} \leq \frac{e\sqrt{n} \alpha^k e^{n} n^k}{k^k k^k (n-k)^{n-k}}
\]

\[
= e\sqrt{n} \alpha^k e^{k} \frac{n^k}{k!} \left(1 + \frac{k}{n-k}\right)^{n-k}
\]

\[
\leq e\sqrt{n} \frac{(\alpha \sqrt{n})^k}{k!}.
\]

A little elementary calculus reveals that \((ae^3/n/k^2)^k\) has a maximum at \(k = \sqrt{an} \) and hence,

\[
|(Q_n(x) e^{-x})^{(2n+1)}| \leq (n+1)! \ e\sqrt{n} e^\sqrt{\alpha n}.
\]

We apply Lemma 2 using \(m = 2n + 1 \),

\[
f(x) = P_n(x) - Q_n(x) e^{-x},
\]
and

\[g(x) = e^{\sqrt{n} e^{2^{n+1}} (x + \gamma_i) (x - \gamma_i)} \]

and deduce that for \(x \in [0, \alpha] \),

\[|P_n(x) - Q_n(x) e^{-x}| \leq e^{\sqrt{n} e^{2^{n+1}} (n + 1)! \prod_{i=1}^{2n+1} (x - \gamma_i)} \]

We complete the result by appealing to Lemma 1 to show that for \(x \geq 0 \),

\[Q_n(x) \geq q_o \geq \frac{(2 - \alpha) (2n)!}{2^n}. \]

The \((1, 1)\) Padé approximant to \(e^{-x} \) has denominator \(Q(x) = 1 + \frac{1}{2}x \). It follows that the \((1, 1)\) rational function that interpolates \(e^{-x} \) with multiplicity three at any point \(\beta \) will have denominator \(Q_3(x) = 1 + \frac{1}{2}(x - \beta) \). In particular if \(\beta \geq 2 \) then \(Q_o \) does not have positive coefficients. This shows that \(\alpha < 2 \) is essential, at least for the \(n = 1 \) case, in Theorem 1.

REFERENCES

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium