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     This interactive electronic book is organised into several separate computer files, each called a 

Maple worksheet; each worksheet contains executable commands and assignments in a sequence, with 

interspersed text to explain their purposes and effects, but particularly to introduce mathematical 

concepts and principles and to implement the mathematical operations. These assignments and 

commands are generally intended to be executed in a linear sequence from the top to the bottom of 

each section or page, and the user is intended to read the interspersed text to understand the 

progression of these commands.  Each file of this book is a document, comprising a single chapter that 

contains text, and commands executable on a computer operating software Maple 
TM

; this electronic 

document, a worksheet, is operable entirely interactively:  a user reads the text, executes the 

commands and views the output; according to an experimental approach that is encouraged, a user can 

freely modify the command to discover the nature of the correspondingly altered output.  We 

recommend that a user retain a separate archival copy of this original document with no output from 

Maple, and that in general a worksheet containing output should not be saved on exit from Maple 

unless such an archival copy of the original document be available; if alterations to any text or 

command in a worksheet of this electronic book be essential, one should purge the worksheet of 

output, through use of the command Remove output  at the bottom of menu Edit near the top left 

corner of this display, and collapse all sections, through use of the bottom command in menu View 

also near the top left of this display.  

     Within this particular worksheet that includes introductory chapter 0, there are also a preface in a 

traditional manner, a table of contents and a brief overview of Maple.  In its separate file, each chapter 

that treats a traditional area of arithmetic or mathematics comprises in turn groups of sections under a 

particular title; each section, identifiable on Maple's classic interface by a grey square containing a 

plus sign, +, at the left margin and a heading to the right thereof, is normally collapsed so that content 

remains hidden until that section is opened according to a mechanism described below.  To view 

content of such an indented section with the classic interface, set, with a mouse or equivalent device 

that serves as pointer, the cursor on a chosen square containing such "+" and depress the left lever of 

the mouse, or equivalent mechanism of activation; to close an open section for compactness, click on 

"-" in its square.  With Maple's standard interface, which tends to operate slowly with large files on 

old computers because of its implementation in Java, a section is identifiable by a grey triangle at the 



left margin ">" that points to its right side and its accompanying heading; opening that section by 

placing the curson on that triangle and depressing the left lever of a computer mouse, or equivalent 

mechanism, causes the triangle to point downward,and closing that section involves the same 

mechanism -- 'clicking' left with the cursor on the arrow.  With such indented material exposed, one 

can read the text, in generally black letters as in this paragraph, proceeding down the worksheet in 

various ways; one can execute an input statement on a line of red characters wherever it appears by 

ensuring that the cursor is located before the end of that line, even at the first colon or semicolon in 

that line.  Reversing the mechanism to open that section causes the section to become closed and 

collapsed so that the content is concealed from view.  Interspersed among these sections are many 

examples and exercises, also present normally in collapsed or hidden form.  Deemed to be an integral 

component of the learning or discovery, by means of symbolic computation, these examples and 

exercises of the presented mathematics should be examined and undertaken in a linear temporal order 

down any worksheet, and each worksheet in increasing order of chapter number; each example bears 

an identification at the left margin with initial character x, and exercises and their solutions are named 

explicitly.  The reader should attempt the solution of the exercise in a separate 'Window'.  The 

solutions of exercises are available in a separate worksheet.   

     Using the left lever of a mouse, or equivalent device, to click on any word or set of characters 

displayed both in green letters and underlined activates a hyperlink, which opens a new screen that 

contains information pertinent to that hyperlink; to return to the former screen after reading that 

information, one should click on the lower x in the upper right corner of the classic display -- that 

black x with a white or grey background, not the upper x in white on a red background or black on a 

grey background depending on computer, which initiates termination of the Maple session.  Test this 

mechanism of hyperlink by clicking on the next word here -- worksheet; so activating a hyperlink is 

also a general method of quickly altering material displayed on this monitor from one point in a 

worksheet to either  

• a remote point in the same worksheet, or

• another worksheet that is located appropriately or for which an external linking mechanism is 

arranged, or 

• a specific page that provides help on a pertinent topic in relation to usage of Maple comprising 

descriptions of syntax, data types and functions, or 

• a pertinent page in a dictionary of mathematical terms within Maple, or 

• a remote site through an internet browser. 

The pages of either help or dictionary generally contain further hyperlinks to other pages of the 

same or other type.  In worksheets of this book, almost all such hyperlinks in this electronic document 

invoke pages of Help or the dictionary, thus not requiring a connection to internet.  

     For these files we commend use of Maple in both release 11 or subsequent and its classic interface; 

use of its standard interface might be slow if a computer lack sufficient hardware properties such as 

speed of processor or amount of memory; alternatively, use of the standard interface with MW file 

association set to Classic Worksheet Maple 15 in the Worksheet File Association Selector might 

prove satisfactory.  Within a Maple session thus with its classic interface, a square at the left margin 



that contains a plus sign, "+" , like that just below this paragraph beside a heading  P  preface, 

indicates an indented section that contains material about a particular topic to which the heading 

pertains.  To view content of such an indented section, set the cursor, with a mouse or equivalent 

device to serve as pointer, on a chosen square containing "+" and depress the left lever of the mouse or 

other mechanism of activation; to close an open section for compactness, click on "  −   "  in its square.  

With such indented material exposed, one can read the text, and proceed down this worksheet in 

various ways; one can execute an input statement on a line of red characters wherever it appears by 

ensuring that the cursor is located before the end of that line, even to the left of a colon or semicolon in 

that line.  If, for a particular operating system, a classic interface be not available, use of the standard 

interface in mode worksheet can be set through selection of Tools -> Options -> Interface and setting 

the default format to be Worksheet, rather than Document, which might then be applied globally -- to 

all future sessions -- rather than the session in which this option is set.

   P   preface  

 "Every attempt to employ mathematical methods in the study 

of a chemical question must be considered profoundly irrational 

and contrary to the Spirit of Chemistry.  If Mathematical Analysis 

were ever to hold a prominent place in chemistry -- an aberration 

that is happily almost impossible -- it would occasion 

a rapid and widespread degeneration of that science."  

                                                                                      Auguste Comte, Philosophic Positive (1830)

     Despite that injunction by a wise man of a past era, mathematics and methods thereof have 

become an essential component of the study and practice of chemistry at any level beyond 

frivolous mixing of chemical ingredients; even at that date, that attitude had recidivistic overtones, 

because Immanuel Kant, who, with David Hume, was a major influence otherwise on Comte, had 

asserted in 1786 that the then current chemistry failed to qualify as a natural science because it 

lacked a sufficiently mathematical structure.  

"Physics is mathematical not because we know so much about the world but

because we know so little [that] only its mathematical properties we can discover."

                                         Bertrand Russell

     Like other physical sciences, chemistry comprises not only 

• experiment, according to which one undertakes observations of chemical and physical 

phenomena and measures chemical and physical quantities, and 

• theory, according to which one deduces and applies rules to rationalize these correlations, 

interprets the results of experiment, and correlates measurements in various sets, but also, and 

to an increasing extent, 

• computation, through the use of either specific programmes for a particular purpose such as a 

spreadsheet or a general mathematical processor such as Maple with which this worksheet is 

being read.  

Mathematics is inextricably involved in both the recording of chemical and physical observations 

with a numerical component and the correlations between those measurements, and must serve as 

the basis of the computational scheme.  Therefore, as Galileo Galilei remarked in Il Saggiatore, 



1623 -- thus two centuries before Comte, 

"The great book of nature is written in the language of mathematics, 

without the help of which one can comprehend not a single word of it."

which is applicable as much for contemporary chemistry as for physics or other discipline of 

natural science.  In 1874 Alexander Crum Brown presaged that 

"Chemistry will become a branch of applied mathematics, but it will not cease 

to be an experimental science.  Mathematics may enable us retrospectively 

to justify results obtained by experiment, may point out useful lines of research 

and even sometimes predict entirely novel discoveries.  We do not know 

when the change will take place, or whether it will be gradual or sudden ..."

Although, well before 1845, Charles Babbage in Cambridge appreciated the feasibility of 

undertaking calculations of an arithmetical nature with an analytical engine or computer, and 

although his associate Ada Byron Countess Lovelace even understood the practicality of 

undertaking mathematical operations with a computational engine, the prospective impact of such 

computation for chemical purposes was not then apparent for chemists, but before Brown's demise 

in 1922 major utilization of mathematics had occurred for physico-chemical applications, such as 

in thermodynamics and chemical kinetics.  At just about the time of Brown's quoted utterance, in 

1875 Cayley in Cambridge was occupied with enumerating chemical isomers, and in 1878 

Sylvester, who had earlier studied in Cambridge University but was then in USA before returning 

to Oxford, introduced the term graph into the mathematical literature in connexion with those 

isomers.  Programmes to enable symbolic computation developed in parallel with software for 

merely numeric computation, beginning about year 1952.  

Mathematics is both the queen and the handmaiden of all science.

                                                       E. T. Bell

     A mathematical problem, in chemistry or otherwise, might involve at least these techniques:

• numerical algorithms,

• an algorithmic treatment of analytic, algebraic and geometric problems,

• reference to tables and collections of formulae, and

• graphical representation.

Contemporary programmes for computers can perform all these techniques, and a student or 

practitioner of chemistry should include such a programme in his or her arsenal of approaches to 

attack such problems, which nevertheless require of a user the knowledge and understanding of 

mathematical concepts and principles.

"There is no science that is not developed from knowledge of phenomena, but, 

to obtain advantage from this knowledge, it is necessary to be a mathematician."

When Daniel Bernoulli (1700 - 1782), one of eight prominent mathematicians in a famous family, 

asserted thus, he could not in his wildest dreams have imagined that a programme for a common 

digital electronic device can not only incorporate enormous mathematical knowledge accumulated 

over five millennia but also undertake mathematical operations with a speed and accuracy that far 

surpasses a human computer, so that statement has become inaccurate:  one need not be a 

mathematician -- understanding the mathematical concepts and principles, a scientist need only 



then instruct a computer to implement whatever operations be appropriate for an analysis of an 

observed phenomenon.  That same computer programme provides, moreover, an admirable 

vehicle for the teaching, learning and understanding of mathematical concepts and principles.  As 

the computer programme generally enables a quick and correct response to any mathematical 

command that is posed in an acceptable manner, a student and his instructor are able to focus on 

conceptual understanding of each and every topic, each of which is readily susceptible to 

geometric or graphical, numerical and algebraic presentation for the utmost enhancement of 

understanding. 

     Apart from an obvious requirement to process numeric data from a laboratory, which typically 

requires an application of statistical methods, even a balanced chemical equation is a 

mathematical statement:  unlike an algebraic equation that relates symbols, a chemical equation 

provides either a concise summary of conversion during a chemical reaction or a relation between 

physical properties.  A balanced chemical equation of either kind implies conservation of both 

mass and charge, generally without transmutation of chemical elements; a chemical equation of 

both kinds likewise conveys both symbols that represent chemical species or properties and, 

implicitly, units:  units on both sides of a chemical equation must consequently balance, and 

results obtained from a formula involving chemical or physical properties must be independent of 

units according to a chosen system.  Beyond these uses of equations in chemistry, one must 

appreciate principles that underlie a building of more overtly mathematical models of processes 

and structures, to develop understanding at a microscopic level and thereby to test predictive 

powers of such a model, but neither the model nor the medium must become itself the message.  

The description, understanding and application of all such models in chemistry form the basis of 

all instructional courses in chemistry, be they qualitative or quantitative; without models chemistry 

would remain an accumulation of seemingly unrelated facts and observations.  One must learn 

many facts before one can appreciate the power and application of a theoretical model to create a 

schema with which to expand one's understanding of chemistry.  One must equally possess a 

significant understanding of the nature and domain of a mathematical model, so as not to 

confound observable chemical or physical properties with its artefacts.  Of three levels of chemical 

meaning, a macroscopic domain as a direct object of observation in a chemical laboratory or 

elsewhere is the most immediate; only a reasonably profound appreciation of mathematical 

principles and properties enables a chemist to distinguish between a microscopic, or atomic -- but 

still physical, level, and, at a third level, sophisticated models that chemists and physicists have 

devised and that seem to blur margins between physical reality and mathematical application.  In 

their citation to Sir John A. Pople (1925 -- 2004), whose initial interest in Cambridge was 

mathematics but whose admirable achievements throughout his long career greatly advanced the 

possibility of simulating molecular structure and reactions, when (with W. Kohn) he was named 

Nobel Laureate in chemistry in 1998, the Swedish committee declared, perhaps with hyperbole apt 

for the occasion, 

"We celebrate the fact that mathematics has invaded chemistry, that, by means of 

theoretical calculations, we can predict [diverse] chemical phenomena."  

Their allusion to calculations of essentially of only a fundamentally arithmetical character implies 

the third level to which we allude above, but quantum chemistry is by no means the only -- or even 

the most important -- reason to cultivate a strong basis of mathematics for a purpose of 



understanding fundamental chemical precepts and to undertake myriad chemical applications.  

     Mathematics has a structure similar to that of chemistry, but is, by its nature, inherently 

abstract:  one can neither observe nor measure an algebraic formula.  Mathematical structures are 

based on assumptions or axioms in given sets, and provide an impetus to seek theorems that 

enable one to develop tools for use in mathematics in defined areas, such as number theory, 

calculus, vector spaces, topology, combinatorics, linear programming et cetera:  all these, and 

other, subject areas provide tools to treat a chemical model.  Mathematics resembles chemistry in 

some respects:  whereas a chemist might prepare a new chemical compound or material, a 

mathematician might develop a new area of mathematics.  A problem arises that, to construct a 

model and to solve equations of all sorts, a chemist requires mathematical principles to develop 

tools, but mathematical subtleties might be overlooked until anomalous results arise.  In 

acknowledging this situation, we discern and appreciate that software for symbolic computation 

provides a powerful tool and a tutor for application of mathematical principles in a chemical 

context.

"Throughout history, mathematics has been investigated by observation and quasi-experiments."

                                                                                             B. J. Krist

     We denounce a formal mathematical logic of theorem, lemma and corollary devised for inner 

mathematical documentation and communication and associated with, or attributed to, an invented 

mathematician Nikolas Bourbaki that is entirely inappropriate for almost all students of chemistry; 

we learn best through examples illustrated by algebraic, geometric or graphical and numeric 

means, for which purpose powerful software for symbolic computation is astonishingly beneficial.  

These quasi-experiments are also conveniently performed with computer programs for symbolic 

computation.  Some statements of theorems are, however, useful to even a student of chemistry in 

providing a precise expression of a particular and important result; each student of chemistry 

should experience the teaching of mathematics by a mathematician, and of physics by a physicist, 

so that he or she acquires some intuition of the ways that exponents of these disciplines approach 

the solution of their problems; objects in the universe comprise not only chemical aspects, and the 

capability to appreciate various aspects of systems great and small is part and parcel of a chemical 

education.

      The importance of graphical constructions in teaching and learning can not be underestimated, 

although lacking from that formal logic:

"One picture is worth a thousand words."

                                                          attributed to Emperor Sung

Not only geometry benefits from graphical constructions that can simulate objects in three spatial 

dimensions with rotation to enable multiple perspectives, and animation of these objects 

essentially brings them to life.

"He who understands geometry understands anything in the universe."

                                     Galileo Galilei

The overview of each chapter in the present work provides, however, a synopsis of pertinent 

principles and definitions; at least browsing each such section is recommended before embarking 

on an implementation of those principles, and regular consultation of an overview is likewise 

commended during progress through the various sections and groups thereof.  In this introductory 

chapter and after plotting comands are introduced at length in chapter 2 and section group 2.1, 



copious figures and geometric constructs abound to illustrate every topic within the many sections 

following the overview of each chapter.

     Students who arrive at an institution of tertiary educational level to study chemistry and who 

possess diverse backgrounds and varying knowledge of mathematics might evince astonishment 

on being confronted with a prospect of undertaking further courses in mathematics concurrently 

with chemistry.  

He who understands only chemistry does not understand that properly either."

                                                            Georg Christoph Lichtenberg

The thus essential content of mathematics in such supportive courses has tended to be traditional, 

in the sense that, with few notable exceptions, topics covered and a mode of their delivery have 

been developed with regard to perceived real or imagined needs before the present era of readily 

accessible and powerful computing hardware and associated mathematical software.  Many 

students of science find mathematical concepts difficult to understand, no matter how carefully 

and thoroughly they are explained, because mathematical abstraction is an inescapable and 

impeding element:  for instance, in early stages of a course of chemistry students find it difficult to 

distinguish between variables and parameters in a formula or equation -- with a requirement to 

maintain a consistent treatment of units as an added complication.  We must therefore recognise 

that mathematics is difficult for our students, a significant proportion of whom lack a capacity to 

understand mathematics at a level required for use in chemical applications deemed important.  In 

universities of deservedly commendable academic reputation, instructors of service courses in 

these circumstances emphasize reproducing mathematical recipes to be used by students to solve 

standard exercises without much understanding.  Students who find mathematics indigestible 

during their introductory courses experience considerable difficulty when exposed to applications 

within a chemical context because the original mathematical concepts, commonly rooted in 

familiar variable identifiers x and y, are incompletely understood.  

     Readily available software for symbolic computation proffers an opportunity to develop the 

teaching of mathematics to chemists in an alternative way.  Such a course, which differs from 

traditional teaching in both content and development of skills, provides an opportunity for all 

mathematical processes to be performed using sophisticated software for symbolic computation:  

availability of this software consequently alters the way that we teach, learn and apply 

mathematics in a chemical context.  Use of symbolic computation increases a level of what can be 

achieved without a necessity to understand higher mathematics in fine detail, thereby enabling a 

student to focus on chemical applications; for example, one can solve differential equations of 

chemical kinetics without knowledge of the detail of these equations, such as their symmetries, as 

one merely instructs the software to find a solution.  A student can thereby concentrate on solution 

of exercises in which, for example, parameters of a chemical problem are varied.   Likewise, in 

treating series one need no longer to remember and to apply an appropriate test of convergence:  

the software is instead instructed to sum a series; if a result is finite, although oscillating partial 

sums might not be recognized, convergence is possible.  Although these and other applications of 

mathematical tools serve to challenge the way that we teach and have taught mathematics, we 

must remain aware of those aspects of chemistry in which a profound understanding of 

mathematics is essential:  in these cases one must develop new courses that emphasize and 

develop concepts in an appropriate manner, taking care to integrate the application of symbolic 



computation as a tool to execute calculations.  

     A paradox has arisen that, during the past half century, chemistry has become formally much 

more mathematical, with strong emphasis on, or influence of, quantum mechanics and 

chemometrics within undergraduate curriculum, whereas in major universities the total number of 

hours of lectures in obligatory formal courses of mathematics for students of chemistry might have 

greatly decreased, for instance from as much as 400 to less than 120 hours.  Here again, symbolic 

computation provides a means whereby a student of chemistry can acquire both an understanding 

of concepts and a capability and facility to execute chemical calculations without concern about 

details of mathematical methods and their tedious implementation; in sparing a student much 

tedious manual practice to ingrain skills, either the range of topics taught through use of symbolic 

computation can be much increased within a given duration of lectures, or the total duration can 

be significantly decreased -- or both!  Although typical use of this book is likely as a textbook 

associated with a lecture course of traditional form but incorporating demonstrations and 

complemented with supervised practical sessions, the nature of this book and its particular files 

that operate interactively on a computer on which Maple is installed make it peculiarly applicable 

to self learning, or for distance learning at any location even remote from a campus or human 

instructor.  Depending on the general level of attainment of a student entering a traditional course 

within an institution for which this book might serve as text, an instructor might cover most 

material within part I in lectures as few as 40 hours, roughly one group of sections per lecture of 

nominal duration one hour, but we commend that an equal duration of individual practice on a 

computer with tutorial supervision be arranged for each student, naturally supplemented by 

separate practice without tutor as much as each student requires.  Lectures and practical class of 

total duration 80 hours, during a typical academic year that might be subdivided into semesters or 

terms, might be thus the minimum formal instruction envisaged to provide a student of chemistry 

with a capability to undertake all mathematical operations discussed in chapters 1 -  8 that 

constitute part I herein; when circumstances allow, extension of a course over three terms or 

semesters might be preferable.  Although a student whose learning of mathematics at tertiary 

educational level proceeds according to this medium might lack capabilities to perform routine 

manual operations relative to a student taught in a traditional way with formal instruction of the 

same duration, the former student, given a computer, Maple and files corresponding to this book, 

is likely to be far more successful in solving real chemical problems over a broad range and with a 

mathematical component -- not merely trivial examples, than the latter student given his or her 

textbooks and tables, pen and paper:  that advantage is our objective, our vision.  A student taught 

to do mathematics on a computer in this way must naturally be assessed on such use analogously 

with a computer.  

"The human mind is never performing its highest function 

when it is doing the work of a calculating machine." 

                                                  Lord Kelvin

     With this justification to abandon teaching mathematics in a traditional manner to support 

chemistry, we take as our objective and purpose to show how to undertake successfully many 

mathematical operations encountered during, or beyond, an undergraduate programme of chemical 

study.  In succeeding chapters, we summarize mathematical concepts and principles associated 

with each topic, and incline the presentation to illustrate the use of Maple software to implement 



appropriate operations, to display plots and to solve mathematical and chemical problems.  We 

recognise that to understand a concept means to assimilate that concept into an appropriate 

schema, and that an appropriate schema implies one that takes into account enduring learning, not 

just an immediate result.  Our objective is an enduring understanding of concepts, not merely 

acquiring a transient skill to manipulate mathematical quantities by means of a computer.  The 

curricular topics that we present are selected for their epistemic and pedagogical, but primarily, 

pragmatic value.  In so proceeding, we eschew any tacit assumption that a student of chemistry has 

been already exposed to aspects of mathematics in other courses in general mathematics at a 

tertiary level:  assuming only traditional arithmetic, algebra, plane geometry and trigonometry 

commonly taught in a secondary school, we explain mathematical operations and their 

implementation on a computer with the use of software to accept the burden of most algebra and 

analysis.  Indeed, we formally recall, in a manner impracticable without powerful algebraic and 

graphic resources, pertinent arithmetic, algebra and elementary functions in chapter 1, and 

descriptive geometry and trigonometry in chapter 2.  At university entrance, students are typically 

acquainted with use of a computer for word processing, spreadsheets and graphics; some students 

might have also written and executed programmes in Basic, Fortran, C, Pascal or Visual Basic.  

All technical tasks for which a student of chemistry is likely to consider the use of a computer can 

be performed with a single piece of software, with which one can execute not only operations of 

arithmetic with real or complex numbers but also those of a symbolic nature such as algebra, 

trigonometry, differential and integral calculus, differential and integral equations, group theory, 

theorems in plane geometry and statistics.  A single computer programme developed to encompass 

this nature contains within itself immense mathematical knowledge accumulated over a few 

millennia, making obsolete traditional repositories of mathematical information such as tables of 

values of elementary functions, lists of definite and indefinite integrals, handbooks of special 

functions et cetera; if such tables be not compiled or verified with symbolic computation, they are 

likely to contain typographical and other errors.  Such software even enables the preparation of 

comprehensive essays and reports complete with mathematical analysis, tables of data in 

embedded spreadsheets or other array forms, and illuminating graphs and embedded pictures.  We 

must bear in mind, however, that any mathematical software, like any other product of human 

ingenuity, is prone at any time to contain its own flaws of design and execution, inconsistencies 

and peccadilloes roughly analogous to typographical errors in traditional media; an advantage of 

such software over statically printed material is that one can immediately test answers for 

correctness, and one might even correct the internal procedures if desired.  With such software, an 

opportunity arises during presentation of each mathematical topic to explore algebraic, descriptive, 

graphic and numeric aspects of that topic or algebraic input; in particular, our strong emphasis on 

graphic illustration greatly aids a student to develop his or her geometric intuition about each and 

every  mathematical concept, which is a substantial component of a mathematical understanding.  

     As a vehicle in our presentation we employ a particular commercial software product Maple 
TM

, 

because    

• it is highly developed for mathematical purposes, incorporating algebraic, graphic and numeric 

aspects, within a teaching environment, and even includes packages of commands intended for 

instructional purposes,



• it is readily available, has a gradual learning curve and makes only moderate demands on typical 

contemporary computing hardware, and

• it has licensing arrangements such that student copies might become attractively priced.

     Maple originated in a concerted academic endeavour at University of Waterloo in Canada 

primarily to assist a student of science and engineering to undertake mathematical operations with 

software in much the same way that such a student executed arithmetical operations on a pocket 

calculator, or analogously executed programmed sequences of arithmetical operations in a 

traditional numeric language such as Fortran or Pascal for a digital computer, but has become a 

product of an industrial company that is part of the global software industry.  Books numbering 

more than 500 titles on Maple and its diverse applications have been published, and students and 

academic staff in their millions in educational institutions around the globe have immediate access 

to this software.  Much information about available Maple worksheets and reference materials can 

be found at the Maple application centre, and on employing a search mechanism of an internet 

browser programme.  At the same time, a familiarity with Maple and an endeavour to accomplish 

other than trivial operations makes one abundantly aware of its present and inevitable deficiencies, 

which exist through omission and commission of its commercial developers and their failure to 

maintain vigilantly an alert and responsive appreciation of genuine and articulate technical 

criticism.  Much, if not all, that we describe in Maple can be accomplished with alternative 

programmes -- that likewise suffer from idiosyncratic deficiencies, but with variations in form of 

command or syntax, in reliability of results and in speed of computation.  Except as otherwise 

noted, all computer instructions in accompanying files and discussion about Maple statements 

apply directly to Maple in its form release 16, to which we refer hereafter as Maple; operation in 

another release is naturally subject to features of design specific to that release, but few commands 

that we employ according to release 16 operate differently according to preceding releases back to 

even Maple 8, apart from those few commands that rely on newer packages.  We have tested all 

this material with Maple's release 16 but have incorporated few innovations of this software since 

Maple 11.

     An attractive approach to the teaching of mathematics and to performance of calculations on a 

computer might seem to develop principles of mathematics for students of chemistry in a 

traditional way, and subsequently to demonstrate how corresponding applications are executed on 

a computer using a symbolic processor.  Such an approach embodies two significant 

disadvantages:  students who find it difficult to understand mathematics taught in a traditional way 

find their problems compounded at a subsequent stage involving implementation of mathematics 

on a computer; secondly, whether inevitably or not, a user must respect the conventions of the 

chosen software, which at present operates in a logical manner that might differ from that in which 

a traditional mathematician might think or have been taught.  A symbolic processor is, moreover, 

capable of displaying rotatable objects and animated graphics that transcend traditional static 

limitations of printed paper or blackboard.  For these reasons, we introduce progressively many 

arithmetical or mathematical operations in Maple, although commands for these functions and 

operators form only a small fraction of the total in Maple, and we seek to exploit this graphical 

capability; our resolve is concurrently to explain mathematical relevance of these operations 

illustrated with mathematical and chemical applications.  Based on our experience of teaching 



mathematics with Maple in this way, we contend that a student of chemistry can thereby acquire 

an understanding of mathematics at least as profound as he or she might according to a traditional 

regime:  first learning principles, then practising solution of mathematical problems but without 

mindless drill, and rapidly undertaking applications in chemistry.  Our approach here is based on a 

premise that, even if a user of this material is already acquainted with mathematical concepts and 

principles underlying most topics, such as in chapters 1 and 2 in part I of which pupils in schools 

encounter various aspects before university admission, recollection of a foundation of each topic 

aids an understanding of the execution of associated commands and operators; we thus recall and 

propound essential mathematical topics, both principles and practice, whether presenting them 

afresh to a particular student, and emphasize illustrating how one can execute pertinent 

mathematical operations with symbolic processor Maple.  When a mathematical concept is likely 

to be fresh for a student at tertiary educational level, we provide sufficient explanation beyond that 

required to enable implementation of the software in a reasonably competent manner.  The great 

extent of the content of part I of this interactive electronic textbook might seem daunting in 

advance; far from indicating an unwillingness to distinguish relevant material from minor details, 

this bulk enables a user of symbolic computation for chemical purposes to have, in one readily 

searchable source, nearly all the mathematical armoury that he or she might apply to attack a 

pertinent mathematical problem.

     In this book, viewed whether in printed form or interactively on a computer's monitor, we seek 

to demonstrate how one can employ symbolic computation to implement not only mathematical 

operations that are traditionally undertaken manually but also realistic calculations of intrinsic 

chemical and heuristic interest.  Consistent with these objectives, we develop the requisite 

material in two parts:  the chapters in part I are akin to material discussed in traditional textbooks 

of basic mathematics according to traditional subdivisions algebra, calculus, linear algebra, 

differential equations and statistics, in which we illustrate the grammar and syntax of Maple, but 

with occasional examples of a chemical nature, where practicable, selected to illustrate application 

of mathematical methods and operations; the chapters in part II cover selected topics of direct 

chemical applications in some depth to show advanced or special applications of mathematical 

methods in a chemical context, for which previous knowledge of topics in part I is essential.  By 

including diverse areas of mathematics and their applications within a single work, we have 

sought to maintain an holistic view of mathematics rather than to consign topics to separate 

compartments of knowledge; our emphasis is thus placed on all mathematics rather than particular 

subsidiary parts such as calculus, linear algebra et cetera, even if individual chapters bear such 

titles.  We hope that students who are taught or who learn in this way appreciate mathematics as a 

whole tool that is applicable to the solution of chemical problems.  Although pedagogical 

exercises and problems number fewer than in traditional text books collectively covering topics in 

the same range, the best practice of these mathematical topics involves solution of chemical 

problems in textbooks of chemistry; in this way those mathematical topics of greatest chemical 

importance become practised most intensively.  

A great discovery solves a great problem, but there is a grain of discovery in the 

solution of any problem.  Your problem may be modest, but if it challenges your 

  curiosity and brings into play your inventive faculties, and if you solve it by your 

own means, you may experience the tension and enjoy the triumph of discovery.



                                                                                           George Polya

Of the hundreds of exercises that pervade the chapters of Part I, many accompanying solutions 

contain additional explanation that illuminates the topic; even if a reader directly solves an 

exercise, consulting the given solution is still meritorious because an alternative method or 

additional comment conveys enlightenment.  In any case there seems little point in stimulating 

repeated input of the same command in repetitive problems on a particular topic; such drill we 

consign to the traditional teaching of mathematics.  With this book's reasonably broad coverage of 

mathematical topics of prospective application in chemistry, whenever a reader encounters 

elsewhere a problem with unfamiliar mathematical connotation, recourse to study of appropriate 

material in this book is likely to facilitate solution.  By not refraining from producing somewhat 

complicated expressions, which a student would typically never be expected to treat with only 

manual operation, we reinforce a student's understanding of an algebraic formulation of 

mathematical concepts, and strengthen his or her ability to undertake meaningful manipulations.  

With regard to part II, we claim neither to achieve exhaustive coverage nor to treat 

comprehensively a particular topic; the topics selected reflect the interests and experience of the 

author and his colleagues, and serve as examples of mathematical approaches amenable to 

execution with symbolic computation, whilst aiding students to appreciate how mathematics 

becomes applicable to chemical problems.  A reader whose interests lie in other chemical 

directions can of course employ operations presented in the early chapters, with examples of 

methods discussed thereafter, to develop his or her own treatment of a desired topic.  

     During the past half century biochemistry has become a discipline practically separate from 

chemistry, although it retains a strongly chemical outlook and shares the same mathematical basis; 

the content of part I of this book is consequently just as suitable for students of biochemistry as for 

chemistry.  As the chemical examples and illustrations still occupy only a small portion of part I, 

this book might equally well serve students of other science and engineering divisions.   

     In composing this work we have consulted many standard textbooks of mathematics and its 

various branches, and our colleagues, for further edification of diverse aspects of both 

mathematics and implementation with Maple. We generally omit historical aspects of 

mathematics; such information is available at www-groups.dcs.st-and.ac.uk/~history, whereas 

biographies of mathematicians and origins of mathematical terms are found at 

jeff560.tripod.com/mathword.html.  Maple contains a useful mathematical dictionary including 

some historical and biographical content; a related printed compendium of explanations of 

mathematical terms is available in Dictionary of Mathematics, by E. J. Borowski and J. M. 

Borwein, published originally by Harper-Collins in 1989 and reprinted in further editions; another 

useful source of information about mathematical terms is Words of Mathematics by S. 

Schwartzman.  We make copious references to Maple's dictionary of mathematical topics through 

hyperlinks, underscored and appearing in green letters such as is embodied in two such words; 

within Part I of this work, we typically make such an appropriate hyperlink for a possible term at 

its first occurrence within each section, so that a reader might find each such section as self 

contained as is practicable, but it is certainly envisaged to be neither necessary nor desirable for a 

reader activate each and every hyperlink encountered in reading the text between Maple 

commands.  Moreover, not only do some meanings in this dictionary comprise multiple senses, 

the most appropriate of which a reader must select for the particular context of the hyperlink, but 



also some meanings might appear tangential to that context; a reader must simply endeavour to 

derive the maximum benefit from the available information.

     For the second edition of this part I during 2005 -- 2008, and again for the third editions in 

years 2010 -- 2011 and the fourth edition in year 2012, all chapters have been thoroughly revised 

and extended, resulting in nearly twice as much material as in the first edition 2005; particular 

emphasis was directed at the strengthening of the content for chapters on linear algebra, 

differential equations and statistical topics.  Although the present coverage in part I largely fulfills 

the objective of its encompassing almost all material that an instructor of chemistry at an 

undergraduate level might wish his students to have learned and understood from courses taught 

by professors of mathematics, there remains scope for improvement and enhancement.  

Concurrently with this revision and extension of part I, work on part II has yielded much material 

on topics requiring a strong mathematical foundation, even though these topics are traditionally 

taught in senior undergraduate or post-graduate courses in chemistry by professors of chemistry as 

instructors.  The titles of several prospective chapters for part II appear in the Table of Contents 

below as a tentative indication of the scope of that second volume, and a few of those topics have 

resulted in either full chapters, or introductions that will become expanded to full chapters in 

subsequent editions; such topics must clearly be selective rather than comprehensive, but have 

been chosen for their general interest and pedagogical value, naturally reflecting the interests and 

experience of the author and those colleagues who have kindly contributed material over the past 

decade or more.

     For an edition of this book that does not contain the solutions of exercises, that separate 

worksheet is available on explicit request to the author at ogilvie@cecm.sfu.ca.

     We thank many colleagues and friends who have provided valuable information and assistance 

at various periods during the preparation of this work.  In particular, three colleagues have 

contributed significant material to this work:  before retirement from University of York, U.K., 

and its department of chemistry, Dr. Graham Doggett generated extensive material and comments 

during a period in which he worked actively as coauthor, before pressure of other activities 

required him to withdraw from this project, and he graciously gave permission for the inclusion of 

this material without his formal coauthorship; at Simon Fraser University in an environment of the 

Centre for Experimental and Constructive Mathematics, Gregory J. Fee and Professor Michael B. 

Monagan also generously provided advice and information about procedures and commands that 

have both assisted greatly the correctness and extended the scope of this work, and have greatly 

encouraged the development of this project throughout its duration.  In recognition of those 

significant contributions, the names of those three men appear under mine at the authorship level, 

but are not formally assigned coauthorship because they must not be held responsible for any 

deficiencies of the published work.  Among others who have contributed also significant advice 

and material but to a lesser extent and whose specific contributions are attributed at particular 

points, I am grateful to Dr. Preben Alsholm who contributed his procedure for non-linear 

regression and other helpful advice, Professor Robert Israel who contributed a procedure to 

balance chemical equations automatically and many helpful hints to solve programming problems, 

Dr. Edgardo Cheb-Terrab, Dr. Allan Wittkopf and Dr. David Holmgren who provided much 

helpful advice and information about differential equations, Professor R. Corless about integral 

equations, and other colleagues and visitors in Centre for Experimental and Constructive 



Mathematics, at www.cecm.sfu.ca on internet, and the Department of Mathematics, at 

www.math.sfu.ca, at Simon Fraser University, at www.sfu.ca, Professor Vernor Arguedas, Eric 

Romero, Mauricio Guterriez and Rafael Rodriguez at Universidad de Costa Rica and F. Wang; in 

a contemporary context, the former Maple bulletin board, Maple Primes and current news groups 

on symbolic computation and on Maple in particular have naturally provided a source of advice 

and inspiration.  I am particularly grateful to Professor David P. Craig, F.R.S., who was my host in 

the Australian National University during which in 1973 occurred my initial acquaintance with 

computer algebra and the first of about a dozen processors thereof including Maple, whose 

comments and criticism on most aspects of Part I over several years have been most incisive and 

instructive, and who has also kindly provided some examples.  Students in several countries -- 

Australia, Canada, Costa Rica, Denmark, Poland, USA -- have been exposed to various material in 

Part I during the years since the inception of the formal construction of this book in 1997, and 

their response and reaction have proved most helpful in identifying errors and obscurities to be 

rectified.  Errors of both omission and commission, reflecting a necessarily limited knowledge and 

understanding of any topic, remain the responsibility of this author; I shall naturally welcome all 

comments on, and constructive criticism of, this work, particularly about errors and omissions and 

suggestions for extension.

J. F. Ogilvie,  2013  February  8 

Centre for Experimental and Constructive Mathematics, Department of Mathematics, Simon 

Fraser University, Burnaby, British Columbia, Canada

and Escuela de Quimica, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San 

Pedro de Montes de Oca, San Jose 11501-2060, Costa Rica.
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   O  overview of Maple

     Maple is primarily a computer programme, or software, with which one undertakes interactive 

calculations involving mathematical objects, although in its mature state its capabilities far 

transcend that quintessential aspect.  One can work with Maple in more than one way, even on a 

particular computer and under a particular operating system on that machine.  For most purposes 

involving exploration of mathematical topics and general interactive calculations, a Maple 

worksheet provides a convenient display that includes 

• input statements and commands and their output in numeric and symbolic form, 

• plotting instructions and their output as figures embedded within a worksheet,  

• spreadsheets also embedded within a worksheet, and

• associated explanatory text.  

For intensive programmed calculations a worksheet is less efficient, or executes less rapidly, than 

Maple used in another form that allows input only as command lines, not by clicking on icons in 

menu and context bars et cetera.  

     In a form such as this worksheet, our content is designed to take advantage of a graphic 

interface for a user:  three components -- 

• an essential kernel that executes mathematical commands, 

• libraries of procedures for more or less special purposes, and 



• an interface between machine and user  

-- combine to constitute an operational version of Maple. The libraries, some of which are 

automatically invoked on input of particular commands whereas others require explicit invocation, 

and the kernel of Maple in a particular release are common to computers of almost all types, but a 

graphic interface is peculiar to each type to the extent that features and operations might vary 

among those types.  A worksheet is a document that can contain descriptive text, like this 

paragraph printed in black, execution groups with input in red and output in blue, such as

> (3*x + 5)*(2*y  + 3);

6 x y  +  9 x +  10 y  +  15 

and embedded graphics and spreadsheets; such a worksheet has a common appearance across 

various computers and operating systems, and is entirely transferable between computers, 

provided that they run Maple in the same release and, for Maple 9 or afterward, that the computer 

operates the same interface -- either classic or standard.  As a result of the graphic interface, 

operations are undertaken in various ways, such as with explicitly typewritten commands that 

make no profound use of such an interface, or with control or command keys depressed 

concurrently with various other keys, or with moving a cursor onto a pictograph near the top or 

bottom of a display on a monitor and clicking a mouse -- or equivalent mechanism.   To initiate a 

desired action, we generally employ the former mechanism, namely with commands and 

statements typed explicitly, because an explanation of such a procedure from this printed text is 

easier that way than otherwise.  We assume generally a computer on which this worksheet 

executes to possess a mouse with two or more levers, and express actions accordingly to effect 

some result; if a particular computer have an alternative peripheral device, one must undertake the 

corresponding action.  

     When one has opened a worksheet within a Maple session to read this text, one can generally 

observe at the top of the display on the monitor four horizontal rows of words or pictographs, each 

of which is called a bar.  Uppermost, a title bar likely indicates at left a version of Maple and a 

name of a file that is open in the present window; clicking at extreme left or right ends of this file 

is likely to terminate, after confirmation, this Maple session.  Below this title bar is a menu bar:  

clicking, with a computer 'mouse' or equivalent device, on any word therein, from File, at left, to 

Help, near the centre or extreme right, invokes a menu corresponding to that heading.  Three 

items at top of menu View relate to three further bars -- for tool, context and status, which one 

can thereby make to appear or to disappear according to their status altered on clicking with a 

mouse.   Menu File operates in a more or less standard manner according to the underlying 

operating system of the computer on which Maple is running, whereas other menus relate more 

specifically to operation of Maple.  That menu File contains an item Preferences according 

to which a user may set conditions of operation of Maple, for instance to save automatically the 

file on which a user is working at the end of a particular specified interval, or to activate or to 

deactivate Balloon Help.  If that Balloon Help be activated, on clicking left on that name, 

subsequent motion, by means of a mouse, of the cursor, in the form of an arrow, onto a particular 

pictograph, or item of a menu, causes display of a short description to advise about a function of 

that item. Below the menu bar, a tool bar contains pictographs relating to common operations such 

as copying, printing, reading an existing worksheet or restarting to clear the internal memory.  The 



fourth row down from the top of the display is a context bar, the content of which depends on the 

nature of a location of the cursor within the visible portion of a worksheet:  if that cursor be 

located within text such as these words, the context menu pertains to properties of text such as 

font, size of letters, justification at right or left or not at all, et cetera, whereas, if the cursor lie on a 

command executable with Maple, or a graph, or a spreadsheet, a separate context bar that contains 

pertinent pictographs appears automatically.  On activating an icon, containing !!!, in the context 

bar that appears when the cursor is on a Maple input or output item, one can even execute 

automatically all Maple commands in an entire worksheet.  At the bottom right of the display 

appears a status bar that indicates the cumulative duration of execution involving the computer 

processor, size of workspace and available memory.    

     To effect a particular action, mechanisms alternative to typing commands in an input line might 

exist, such as use of key Ctrl or Alt in combination with a key for an alphabetical or numeric 

character; through consultation of Help invoked in a menu at the top of the display, or of printed 

manuals, or of experienced users of Maple, one can become acquainted with these mechanisms.  

For instance, clicking on Help above, or, equivalently, depressing concurrently keys Alt and H is 

an alternative to typing ? in an input line to invoke help; depressing function key F1 whilst the 

cursor is on a Maple command, or even a key word within this text -- for Maple 11,  invokes the 

Help page for that command or term.  In this text we habitually neglect such vital ancillary 

activities as beginning, suspending and ending a Maple session, saving and recalling files, use of a 

mouse with one, two or three levers or buttons et cetera.  Experience with other software on a 

computer of a particular type is helpful in relation to operation of Maple on the same machine, as 

Maple is designed to operate under conventions fairly standard for a machine of that type, but 

even without such experience one can learn quickly how to undertake mathematical operations by 

executing commands and statements, as we cursorily sample in section 0.21 of this worksheet.  

With Maple 9.5 or subsequent release, a dictionary of mathematical terms is accessible through 

menu Help or through clicking on a particular hyperlink with a lever on a mouse; explanations 

and examples of applications of many mathematical terms appear there.

     Once this worksheet is open, so that one can read this text, one proceeds by placing the cursor 

in a line of input to Maple displayed in red lettering -- the best location at which to place the 

cursor is just to the right of a black symbol  > displayed at the left margin -- and by then 

depressing key "Return" or a key marked <--'  or possibly "Enter", depending on a computer of a 

particular type; after execution of that input line, the cursor moves automatically to the left edge of 

the next line of input, which is similarly executed.  We expect that, on encountering a particular 

portion of this content for the first time, one reads the text in black displayed between lines of 

input in red; therein we recall mathematical principles and explain how to implement them in 

practice with this computer programme.  According to a convention under which Maple is 

designed, a line of input intended to be executed begins in the classic interface beside a black 

character  > and is printed in red letters; if the corresponding output expression, printed in blue, be 

short, it is centred across the screen or page, otherwise it is printed beginning from the left margin.  

Unexecutable text such as these words, intended for human not mechanical attention, is printed in 

black letters.  At those locations within text at which we mention Maple commands rather than 

just terms or algebraic quantities, these commands might be printed in red letters and a 

distinctive font, whereas output quoted within the text might be printed in blue letters, but such 



commands are not there executable.

    Just as for any traditional spoken or written language, vocabulary, punctuation and rules to 

construct a command -- syntax -- are associated with a programming language.  Unlike a spoken 

or written sentence, in which lack of grammatical precision or imprecise spelling or pronunciation 

might not preclude understanding, with computer programmes almost no deviation from rules is 

allowed in construction of a statement, corresponding to a succession of operators with precise 

names and punctuation.  There is not just one way to achieve a desired outcome:  just as in any 

spoken language, a command can be posed with words in disparate sequences to achieve a given 

objective.  In programming environments such as Maple, economical use of commands is a 

preferred style.  In early chapters of this text we generally endeavour to avoid using too succinct 

collections of operators, so as to preclude a reader puzzling over programming syntax rather than 

an underlying logical basis to solve a particular problem. 

     In all languages punctuation is important:  in both computer and written languages, commas 

separate items in a sequence, list or set; all commands to a computer have a particular terminating 

character analogous to a full stop, period or point at the end of a printed sentence, whether it be an 

explicit mark or a generally invisible character to signal the end of a line.  In Maple, a 

mathematical sentence or statement in only one form -- a command or instruction -- invokes action 

of Maple, whereas a comment is ignored by this processor and appears solely for information of a 

reader; anything following # on an input line is treated as a comment, such as in this example, 

>  # This is a comment.

whereas anything else on an input line or anything before # is treated as input and must 

accordingly obey rules for an error message to be averted.  

A semicolon ; is important!  

     When Maple is invoked ready for use according to a classic interface that presents  > at the left 

margin as a prompt, to terminate the specification of any input to Maple within that line, one must 

type either a semicolon ; or a colon : and depress key "Enter" or (carriage) "Return" before 

execution can begin; merely depressing a key for "Enter" without presence of a semicolon or colon 

is insufficient to initiate execution, but generally elicits a Warning about premature end of input.  

If a semicolon be used, any output appropriate to an input is displayed, in blue; if a colon be used, 

a command is executed but no output is displayed.  Messages to advise of an error in input or a 

warning about altered meanings of names of operators appear in magenta or blue.  To have 

displayed a result of a calculation we generally terminate an input line with; and initiate execution 

of a statement or instruction by depressing key "<---'" or "Enter"; a few commands produce no 

output even when terminated with a semicolon, whereas invoking help with ? or ?topic, in which 

topic denotes a name of a command of interest, requires no terminating punctuation.   

     An alternative mode -- mathematical input -- exists for which a question mark ? serves as a 

prompt; under these conditions no colon or semicolon is required to terminate a particular 

command or statement to initiate execution -- a depression of key "Enter" suffices.  To enter this 

mode involves clicking on the icon x at the left of the context bar when the context is a line of 

input.

     Details about use of reserved names and arithmetical operators, distinction between 

parentheses ( ), brackets [ ] and braces { }, and related matters we introduce summarily in section 



0.21 below or as required in section 1.108 and elsewhere in chapter 1 and subsequently; on 

proceeding through exemplary illustrations in chapter 0 here below, one achieves a glimpse of 

both the nature of contemporary symbolic computation, and the use of Maple in particular, 

concurrently with discovering the immense mathematical capabilities of this processor. 

 chapter 0    Illustrations  of  use  of  Maple 

  0.0  overview

     Maple is a mathematical programme for electronic digital computers that contains 

mathematical knowledge accumulated during 5000 years.  Here follow five diverse illustrations to 

demonstrate how powerful and flexible is Maple software applied to mathematical aspects of 

chemical and physical phenomena.  First we solve equations of two kinds:  in a direct chemical 

context we treat six linear equations in a set with seven unknowns to balance a chemical equation, 

deriving thereby a numerical answer; we then solve an equation involving a cubic formula that 

arises in a problem of physico-chemical interest, seeking a symbolic answer.   We exhibit Maple's 

symbolic capability also with an algebraic operation according to differential calculus on a simple 

expression, which might be a challenging manual task.  To demonstrate a graphic capability we 

display approximately a unit cell of a crystal in mock three-dimensional form.  Maple is not 

merely a symbolic and numeric calculator with graphical capabilities but also a repository of much 

mathematical and scientific knowledge; by clicking on an underscored word or phrase, such as 

linear equations above, one views material from a dictionary of definitions of mathematical and 

statistical terms, whereas Maple is a repository also of much information about chemical elements 

and fundamental physical constants, among other topics.  With a spreadsheet in Maple we can 

implement both traditional numeric operations and a novel symbolic capability.  

      To proceed throught this chapter, or any succeeding chapter, one simply opens a section of 

which a number and title appear at the left side of this display, reads the text displayed in black 

letters and executes the commands displayed in red letters, by depressing key "Enter" or 

equivalent depending on computer type; the latter generally causes display of output dictated by 

that command, in blue type for mathematical expressions or as a graph for a plotting command.  

Sample these sections to acquire a flavour of this powerful software for mathematical 

applications; explore the menus at the top of this display to discover how to use Maple as a text 

editor and diverse other capabilities.

     Following these five sections designed to whet a user's appetite for symbolic computation and 

associated capabilities in their advanced form in Maple, a further section presents a brief 

introduction to some essential commands and operations that a reader might find directly useful 

and applicable on the basis of already learned mathematical knowledge; these commands are 

likely pertinent beyond the mathematical context of these worksheets concurrent with this study of 

mathematics, and every topic or command in this summary is explained at an appropriate length in 

succeeding chapters in part I of this book. 

  summary of chapter 0  

     After these few samples of what software for symbolic computation and associated operations 

can accomplish, we proceed, in eight succeeding chapters within part I, to introduce systematically 



both the important mathematical concepts and principles and the corresponding commands and 

operations in Maple that we require to undertake significant chemical applications, such as those 

for which we deploy mathematical methods in part II.  The mere sample of some common 

commands and operations in section 0.21 that concludes this chapter is intended not to guide a 

user to undertake confidently those operations but only to demonstrate the possibilities; a user 

should avoid implementing those, or any other, commands without either consulting menu Help  

on the properties of each particular item and option or progressing through the ensuing text to the 

appropriate explanation provided therein.  

     After six decades of intensive development, software for symbolic computation has achieved 

an astonishing performance and power, matching the enormous development of the hardware on 

which it operates; though not lacking in minor deficiencies, Maple in particular offers 

incomparable resources to solve problems of a mathematical, or mathematically expressible, 

nature to enhance the capability of a chemist, or of a scientist and engineer in general, to 

accomplish practically all technical aspects of his or her professional tasks.  Even the content of 

the next eight chapters is far from a comprehensive survey of the total extent of commands and 

operators that Maple offers, but anybody who has achieved a reasonably firm knowledge of these 

chapters is likely to find that he or she possesses a capability to develop effective solutions to 

almost all mathematically expressible problems for which formal, algebraic, numeric and 

graphical methods might be applicable separately or in combination.  A prime objective of the use 

of software for symbolic computation is to enable a user to concentrate on formulating the 

mathematical problem, rather than to be concerned with tedious details of its solution according to 

a well defined formulation:  a substantial knowledge of both the mathematical principles and their 

implementation with software is a requisite for this purpose.

chapter 1    Numbers,  symbols  and  elementary functions

  1.0  overview and principles  

     This chapter serves to introduce many commands and operators that prove invaluable in 

undertaking numeric or symbolic operations, first in essentially arithmetic, next in algebra, and 

then working with elementary mathematical functions exponential and logarithmic.  When a 

reader encounters this book in a university context, he or she has undoubtedly encountered already 

many of these arithmetical and mathematical topics during preceding years at a primary or 

secondary school; the presence of this material serves here a purpose to enable a reader to 

understand how symbolic computation functions generally without a hindrance of mostly fresh 

mathematical content to obscure a distinction between mathematics and its implementation on a 

computer.  In conducting a discussion of even arithmetic at this stage of progress in learning 

mathematics, we employ, however, a formalism and approach more abstract than would be 

practicable in a context of an elementary school.  Arithmetic is a branch of mathematics concerned 

with numbers, relations among numbers and observations on numbers and their use to solve 

problems.  After distinguishing between a function and a formula, we introduce methods to define 

our own functions with an arrow notation, and proceed to explore the elementary functions.  

Analysis, which originally meant solution backwards, includes all mathematical methods in which 

the existence of the quantity sought is first assumed as an unknown variable quantity, and its value 



derived by means of a mathematical process is regarded as analytic; analysis evolved to 

encompass symbolic methods that yielded equations, in contrast with a geometric mode of 

solution.  The solution of equations and inequalities is an important aspect of any application of 

mathematics in science and technology.  In what follows we formally define pertinent 

mathematical concepts. 

     One distinguishes mathematically between a continuous aspect, such as real numbers and limits

, and a discrete aspect, such as natural numbers and in number theory; methods of number theory 

are applied to yield subtle coding of data and digital information. 

set and ring  

     An important concept for which a precise definition is difficult is a set, which implies a 

collection, possibly uncountable, of distinct numbers or objects; each set is an entity in its own 

right, and the identity of a set depends only on its members, not on their order.  A subset is a set of 

which each member is also a member of a larger set.  In these definitions we assume a property 

equality implied with an 'equal' sign (Robert Recorde, 1557), =, that is fundamental to arithmetic 

and mathematics; for logical clarity one must distinguish between equal that implies an identity, or 

equivalence, of quantities on either side of that sign, and an assignment according to which a 

quantity, generally to the right side of that sign, becomes known to the author and to the computer 

processor by a name, generally to the left of that sign.  That distinction between equality and 

assignment is crucial in the operation of this software Maple.  

     A set, commonly displayed as a list between braces {...}, is completely defined according to a 

rule that determines whether a particular object is a member; an empty or null set exists, denoted 

{} or Φ.  A finite set can not be put into correspondence one to one with a proper subset of itself.  

A linearly ordered set S has a relation R such that the domain and range of R are contained in S, 

and S satisfies the conditions that  

• for any ,x y in S,either  < x y or  = x y or  < y x, in which < implies 'precedes', 

• for  < x y and  < y z, then  < x z,    

• there exists a first member α such that  < α x for any other member x of the set, and

• there exists a last member β such that  < x β for any other member x of the set.

A set is finite if, no matter which linear ordering is applied, each non-empty subset has both a first 

member and a last member.  Any set of positive integers has a first member.  

     A set R becomes a ring if, for three members ,a b and c therein, 

• an associated sum  + a b and product a b are also within that ring, 

•  =  + a b  + b a,                       commutative property,

• (  + a b) + c = a + (  + b c),      distributive property,

• for a member 0 of that ring,  + x 0 =  =  + 0 x x for all x in R, so there is a unique real number 0 or 

zero or nought that is the additive identity, 

• for each member a in R, there exists another member −a such that a + (−a) = 0, so for each real 

number there is a real number −a called the additive inverse,



• for a member 1 of that ring, product 1 x = product x 1 = x for all x in R, so there is a unique real 

number 1 or unity that is the multiplicative identity, 

• (a b) c  =  a (b c),               associative property,

•  = a ( ) + b c  + a b a c,         distributive property.

      The following two conditions are not necessarily properties of a ring:

•  = a b b a,                            commutative property, 

• for each member a in R except  = a 0, there exists another member 
1

a
 such a 

1

a
 =1 , so 

1

a
 serves 

as the multiplicative inverse or reciprocal of a.

Here a quantity a b implies a product as a result of an operation multiplication of two 

multiplicands or multipliers for which no operator such as * between the two factors appears 

explicitly, merely a space between the two quantities to distinguish from a compond symbol ab; 

such usage constitutes implicit multiplication; in text we might use x or * to indicate explicit 

multiplication where necessary, but in Maple input we must use * (or . in special circumstances) 

for this purpose.  

numbers

     One classifies numbers according to the following sets.  A natural number, denoted N, includes 

zero and each counting number 1, 2, 3, 4 ... in a set; it is a cardinal number that need take no 

account of its position in any sequence, for contrast with an ordinal number -- first, second, third 

... -- that defines a position in such a sequence:  for instance, the third item in a sequence 5, 10, 15, 

20 ... is cardinal number 15.  An integer, denoted Z, extends natural numbers to include negative 

numbers:  counting numbers and natural numbers each constitute a subset of integers.  Integers are 

both discrete and countable, but denumerable.  A natural number greater than 9 is represented 

using arabic numerals that constitute natural numbers 0, 1, 2 ... up to 9; such a number can be 

written as a sum of numerals each multiplied by ten as a base to an integer power as an exponent, 

such as 

1234 = 1*10
3
 + 2*10

2
 + 3*10  

1
 + 4*10 

0
.  

In that displayed relation appears = , known as an equality operator or equals sign, which implies 

that the quantities on either side evaluate to identical values; operator * between a number and 10 

to some power constitutes explicit multiplication.  If two quantities x and y are not identical or 

equivalent, so that  ≠ x y, one quantity x might be less than,  < x y, or greater than, x > y, the other 

quantity y; we thus establish the meaning of four operators, namely =,  ≠   , < and >.  

     Thus zero    

• is a cardinal number,

• is an essential member of any system of numbers beyond counting numbers,

• is a place holder, in place-value notation, to distinguish magnitudes with the same significant 

digits, as in 37, 370, 3700,

• is an identity element for operation addition, such that  =  + a 0  + 0 a = a,



• has a multiplicative property such that a * 0 = 0 * a = 0,

• is an invalid divisor, such that 
x

0
 is undefined for arbitrary x, and 

• operates as an exponent to yield unity, such that  = x
0

1 for arbitrary x, as implemented in Maple 

even though there are exceptional conditions in which this result be invalid.   

For comparison, unity   

• is also a cardinal number,

• is the digit other than zero in a binary system of numbers,

• is an identity element for operation multiplication, such that a * 1 = 1 * a  = a,

• is a valid divisor such that  = 
x

1
x for arbitrary x, which is a trivial result, and

• operates as an exponent likewise to yield the base as a trivial result,  = x
' '1

x for arbitrary x.  

natural numbers and prime numbers  

     For a property  = c a b with , ,a b c integer, a and b become divisors of c, with these properties:

• if an integer be divisible by 2, it is called even, otherwise odd;

• a natural number n is divisible by 2 if it be even;

• a natural number n is divisible by 3 if the sum of its digits be divisible by 3;

• a natural number n is divisible by 4 if its rightmost two digits be divisible by 4;

• a natural number n is divisible by 5 if its rightmost digit be 0 or 5;

• a natural number n is divisible by 6 if it be even and if the sum of its digits be divisible by 3;

• a natural number n is divisible by 9 if the sum of its digits be divisible by 9;

• a natural number n is divisible by 10 if its rightmost digit be 0;

• a natural number n with n > 2 is prime if it be divisible by only 1 and itself.  

According to Euclid's theorem, the prime numbers are uncountable, or infinitely many, and, 

according to the fundamental theorem of arithmetic, each natural number n with n > 2 is a product 

of prime numbers; this decomposition is unique if the prime numbers be ordered by magnitude.  

The least common multiple of two natural numbers a and b is obtained on multiplying all distinct 

prime numbers decomposed from a and b.  The greatest common divisor of two natural numbers a 

and b is obtained on forming a product of all prime numbers that occur in both decompositions of 

a and b into prime numbers.  Two natural numbers are relatively prime if their greatest common 

divisor be unity; for instance, a number 7 is relatively prime to 8, 9, 10, 11, 12 and 13, but not to 

14.  For a real number x > 2, the prime number function π(x) is the number of prime numbers < x.  

The fundamental theorem of prime numbers is that, for a large number x, an asymptotic equality π(



x) ~ 
x

( )ln x
  as  → x ∞.  Riemann's ζ function of argument s is 

 = ( )ζ s ∑
 = n 1

∞
1

n
s

with s a possibly complex number for which ( )ℜ s  > 1.

     Numbers in other than a decimal or denary system, based on 10, are analogously composed as a 

sum of natural numbers less than a base or radix multiplied by that base to various powers; such 

systems include binary -- with base 2 and symbols 0 and 1 as intrinsic numerals; octal -- with base 

8 and symbols 0, 1, 2, 3, 4, 5, 6, 7; duodecimal -- with base 12 and symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, T, E; and hexadecimal -- with base 16 and symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, or 

the corresponding minuscules , , , , ,a b c d e f.  

     A rational number or vulgar fraction, denoted Q, is a ratio of integers represented with a 

numerator and a denominator; for a common or proper or simple fraction, such as 
3

4
 , the 

magnitude of a ratio of numerator and denominator is less than unity or 1, whereas an improper 

fraction, such as 
5

3
, can be expressed as a mixed fraction having both an integer and a fractional 

part, correspondingly 1
2

3
.  As an integer can be formally expressed as a ratio of the same integer 

and unity, integers can be practically considered a subset of rational numbers.  Rational numbers 

are dense and denumerable. 

     A real number, denoted R, might contain an embedded decimal point in a form such as 0.1234 

or 1.2345 for a decimal fraction; a real number is generally associated with such a decimal fraction 

but can in practice be considered to include a rational number or an integer as a subset.  Real 

numbers are uncountable and non-denumerable.  A real number is rational only if its decimal 

expansion terminates.  For n even,  = ( )x
n
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     According to Peano's axioms that number five,  

• we define a set N of natural numbers to be non-empty and to have a distinguished element 

unity.  

• For each member of that set there exists one and only one successor.  

• The member unity is the successor of no other member.  

• For each successor there is at most one member of that set.   

• In a subset M of set N that contains unity, if n is in M,  + n 1 is also within M:  this axiom involves 

mathematical induction.  



According to this foundation of Peano's axioms, one introduces first zero and negative integers to 

define Z, and then ratios of integers to define Q.  

     For two numbers ,a b, if a > b,  − a b is a positive number, and vice versa.  For three real 

numbers , ,a b c, with a > b, a + c  > b + c .  If , ,a b c are real numbers with a > b and c > 0, c a > 

c b.  If a > b, a boolean test whether  − a b > 0 yields a result true, otherwise false or possibly 

undecidable.      

    A geometric interpretation of real numbers R, which hence contain rational numbers Q and 

integers Z, associates these quantities with points along an euclidean line (straight line in 

euclidean space, hence R 
1
 implying one dimension).  A distance between two points a and b is 

the absolute value of their difference,  − b a , that is also expressible as a (positive) square root of 

the square of that difference, ( ) − b a
2
.  A map or mapping procedure that converts one quantity 

into another and that preserves distance is called an isometry; two isometries of  R 
1
 are a 

translation, such that  → x  + k x, and a reflexion, such that  → x  − k x.  The general orthogonal 

group of one dimension, designated GO1, comprises two isometries x -> + x that fix the origin, or 

position of zero, along the euclidean line.  

     The properties of real numbers include, beside those -- associative, commutative, indentity, 

inverse and distributive -- of a ring listed above, also closure whereby sum  + a b is unique and 

product a b is unique.  

     We define an interval as a set I of real numbers with two properties:  

• the interval contains at least two numbers; 

• if two numbers belong to I, any number between those two numbers belongs also to I.  

The set R of all real numbers is an interval.  For each other interval I there exists a number a or 

there exist two numbers a and b, with a < b, such that I comprises one among the following eight 

sets for some number x:

x  <  a,     x  <  a,    

    x  >  a,   x  >  a,       

a  <  x  <  b,    a  <  x  <  b,    

a  <  x  <  b,   a  <  x  <  b    

in which '<' denotes less than, '<' denotes less than or equal to, '>' denotes greater than, and '>' 

denotes greater than or equal to.  An interval I can hence be defined as a set of real numbers of 

one type among these nine:  all real numbers R or the eight displayed sets.  Each interval I except 

R has at least one endpoint.  A closed interval includes the endpoints, if any.  An open interval 

excludes the endpoints, if any.  The real numbers R thus constitute both an open and a closed 

interval.  Any interval that involves only < is closed, of which there are three among the displayed 

eight sets.  Any interval that involves only < is open, of which there are three among the displayed 

eight sets.  The other displayed intervals are either half closed or half open.  A closed interval, 

which thus includes endpoints, might be denoted [a, b], whereas an open interval might be 

denoted (a, b); one half-open interval might be analogously denoted [a, b).  An interval is bounded 

if it possesses two endpoints; the latter four intervals among the displayed eight are hence 

bounded.  A condition x > a implies an unbounded interval [a, ∞ ), which is regarded as closed, 



whereas a condition x > a implies an unbounded interval (a, ∞ ), which is regarded as open; ∞ 

denotes infinity. 

arithmetic

     Arithmetic involves application of the theory of numbers in elementary aspects required for 

mensuration and numerical calculations -- addition, subtraction, multiplication, division, raising to 

a power and extraction of a root.  In a collection (or set) of 1, 2, 3 or, in general, n objects (or 

elements), the act of determining the number of objects present is called counting.  For an empty 

set, no object is present, and the count yields the number 0.  Numbers n thus obtained are called 

natural numbers, represented as N; whether natural numbers include zero is debatable.  Natural 

numbers constitute a subset of integers, represented as Z, that thus include positive numbers and 

negative numbers; a negative number is formed on subtraction of a positive number from zero.  

The scope of numbers becomes extended to rational numbers, represented as Q, which are 

considered to be formed on division of two integers of which the quotient might not evaluate or 

simplify to an integer.  A rational number thus has the form of a numerator as dividend divided by 

a denominator as divisor.  The numerator and denominator are together called the terms of the 

rational number or fraction.  When the numerator but not the denominator of a rational number is 

unity, the rational number is a fractional unit; multiplication of such a positive fractional unit by a 

natural number generates a common fraction if the magnitude of the numerator be less than that of 

the denominator, otherwise an improper fraction.  An integer is invariably expressible as a fraction 

with unity in the denominator; the fractions and integers constitute together the rational numbers.  

A decimal fraction has a magnitude less than unity and is written in a notation of a decimal place 

value following a decimal point.  A percentage signifies a number of parts per hundred, or per cent

; a permillage signifies a number of parts per thousand, or per mil.  A ratio signifies a quotient or 

proportion of two numbers or magnitudes or expressions; for instance, if a mixture contain by 

mass one quarter of one compound and three quarters of another compound, the two compounds 

are present in a ratio 1:3 by mass.  

      A ratio of two numbers a and b, expressed as a : b, is a fraction 
a

b
 provided that  ≠ b 0.  A 

proportion expresses an equality of two ratios, in a form a : b :: c : d; here a and d are called the 

extremes, b and c are called the means, and d is called the fourth proportional.   In a proportion a : 

b :: b : c, b is a mean proportional between a and c and c is a third proportional to a and b.  In 

these proportions the middle pair of colons might be replaced by an equals sign, as in a : b = c : d, 

and the laws of proportions follow from its expression  = 
a

b

c

d
 as equal ratios:    = a d b c,  = 

b

a

d

c
, 

 = 
a

c

b

c
,  = 

 + a b

b

 + c d

c
,  = 

 − a b

b

 − c d

c
 and  = 

 + a b

 − a b

 + c d

 − c d
, providing that no denominator equal 

zero.  A proportion or ratio equation has a form of an equality between two ratios, expressed for 

instance as  = 
a

b

c

d
 or a : b :: c : d, in which a and d are the outer terms; b and c are the inner terms; 

a and c are the antecedents, whereas b and d are the consequents.  The product a d of the outer 

terms equals the product b c of the inner terms.  Interchanging the terms of a proposition yields a : 



c :: b : d, b : d :: a : c and d : c :: b : a.  The derived proportions include (  + a b) : a :: (  + c d) : d and 

(  + a b) : (  − a b) :: (  + c d) : (  − c d).  A continued proportion is expressed a : b :: b : c, which is a 

proportion with equal inner terms in which  = c
b

2

a
 ; for the mean proportion in which a : b :: b : c, 

 = b a c .  For a continuous proportion, a : b : c : d ... a1 : b1 : c1 : d1 ..., which implies 

rearrangement into individual proportiions such as a : b :: a1 : b1, a : c :: a1 : c1 et cetera.   

     If a be proportional to b or a vary directly with b, expressed as a α b, an equality requires an 

inserted parameter k as factor of proportionality as in  = a k b; conversely, if a be inversely 

proportional to b or if a vary inversely with b, expressed as a α 
1

b
, an equality requires an inserted 

parameter k of proportionality as in  = a
k

b
.  If a vary jointly with b and c, the equality becomes 

 = a k b c.

     In chemistry or physics, a number is typically accompanied by units, such as a length of extent 

one metre or 1 m.  According to the International System of Symbols, Units and Notation, such a 

unit might have a prefix to generate a unit of a convenient size, such as kilometre, abbreviated km, 

equivalent to 1000 m, or millimetre, mm, equivalent to 
1

1000
 m, but only m -- neither km nor mm 

-- is a SI unit.  According to engineering or scientific notation, a number might be expressed as a 

product of a decimal fraction and ten to some positive or negative power, so 1456.789 as 1.456789 

10
3
.

complex numbers

     A complex number resolves the failure to find a real number x that satisfies a simple quadrative 

equation  =  + x
2

1 0.  Between real and complex numbers there are similarities and differences:  

• real numbers might be ordered whereas complex numbers can not, in general, be ordered;

• the notion of infinity for a complex number differs from that for a real number;

• the set of all real numbers is a proper subset of the set of complex numbers.

A complex number z is defined as an ordered pair  = z ( ),a b  in which both a and b are real 

numbers.  We express z in terms of a and b as  = z  + a i b.  An imaginary number, which has no 

specific symbol, has a form conventionally expressed as b i, which is a product of real number b 

with  = i −1  as the square root of minus unity.  A sum of a real part a and an imaginary part b i, 

such as z =  + a b i, in which a and b are real numbers, forms a complex number z, denoted C; the 

real part is denoted  = ( )ℜ z a and the imaginary part is denoted  = ( )ℑ z b.  If   = ( )ℑ z 0,  = z ( ),a 0  

reduces to real number a; if  = ( )ℜ z 0 and  = b 1, ( ,0 1) = i, a special number that is called the 

imaginary unit.  As complex numbers are defined as ordered pairs, two such complex numbers 

 = z1 ( ),a1 b1  and  = z2 ( ),a2 b2  are equal only if parts real  = a1 a2 and imaginary  = b1 b2 are 

separately equal, as written.  As arithmetical properties of complex numbers, such as  = z1  + a1 i b1 

and  = z2  + a2 i b2 obey    



• addition according to   + z1 z2 = ( , + a1 a2  + b1 b2) = (  + a1 a2) + i ( ) + b1 b2 , and 

• multiplication according to  = z1 z2 ( ), − a1 a2 b1 b2  + a1 b2 a2 b1  = (  − a1 a2 b1 b2) + i (

 + a1 b2 a2 b1).

As algebraic properties of complex numbers, complex numbers conform to these axioms:  

• , + z1 z2 z1 z2 are within the set of complex numbers C;

• addition is commutative,  =  + z1 z2  + z2 z1;

• addition is associative, z1 + (  + z2 z3) = (  + z1 z2) + z3;

• multiplication is commutative,  = z1 z2 z2 z1

• multiplication is associative, z1 (z2 z3) = (z1 z2) z3, and

• multiplication is distributive over addition,  = z1 ( ) + z2 z3  + z1 z2 z1 z3. 

For these reasons  =  + z 0 z and  = z 1 z, so that numbers zero and unity retain their identity 

properties in the field of complex numbers.  Hence z + (−z) = 0, and z 
1

z
  = 1 for  ≠ z 0;  = z  + a i b 

has an additive inverse −z = −  − a i b. For subtraction of two complex numbers we apply the 

additive inverse,  =  − z1 z2 z1 + (−z2)  = (  − a1 a2) + i ( ) − b1 b2 .  For real numbers ,a b in any couple, 

ordering implies  < a b or a > b or  = a b, whereas for complex numbers ordering is practicable only 

when imaginary parts are all zero.

     A complex number in a cartesian form defined as above by replacing a and b to obtain 

 = z  + x i y with real numbers x and y implies a correspondence one to one between that number 

and a point in plane xy, also called a complex plane or plane z.  In that plane, axis x represents a 

real number and the pertinent axis becomes the real axis; analogously a point along axis y 

represents an imaginary number, and axis y become the imaginary axis.  A complex number may 

be regarded also a a vector in the complex plane, cf section group 6.2; a complex number is polar 

coordinates is explained in section 2.311. 

     A complex number  = z  + a b i  has a conjugate, represented z, and of form  = z  − a b i, with 

these properties: 

•   = ( )z z, or a complex conjugate of a complex conjugate regenerates the original quantity,

•  = z z only if z be a real number, 

• for two complex numbers z and w, the complex conjugate of their sum is  = ( ) + z w  + z w or of 

their difference is  = ( ) − z w  − z w, 

• the complex conjugate of their product is ( )z w  = z w and of their quotient is  = 










z

w

z

w
  for 

 ≠ w 0, and 

• for each natural number n the power law is  = z
n

( )z
n

.  



In the complex plane, complex conjugate number z =   = ( ),x −y  − x i y located as a reflexion of z = 

( ,x y) =  + x i y across the real axis.  The absolute value or magnitude or modulus of a real number 

is the value of that number disregarding the sign; the absolute value of a complex number 

 = z  + a b i is this non-negative square root of the squares of real and imaginary parts, | z | = 

 + a
2

b
2
, which is the length of the vector from its base at the origin of the complex plane.

For a multiplicative inverse, for  ≠ z 0 we apply  = 
1

z

z

z z
  =  

 − a i b

 + a
2

b
2
 .  For division, we apply the 

multiplicative inverse of the divisor  ≠ z2 0 as 
z1

z2

 = z1( 
1

z2

)  = 
 +  + a1 a2 b1 b2 i ( ) − a2 b1 a1 b2

 + a2

2
b2

2
 .  In 

practice, addition and subtraction are conveniently performed with these cartesian forms, but 

multiplication and division might be more conveniently performed with polar forms. 

     A gaussian integer is a complex number of which each real and imaginary part is separately an 

integer, such as 3 + 4 i; such gaussian integers form an euclidean domain.  A gaussian integer z is 

composite if it be factorizable into a form  = z u v in which u and v are both gaussian integers 

excluding +1 and + i, and prime otherwise; hence 2 is composite because  = 2 ( ) + 1 i ( ) − 1 i , but 3 

is prime because no analogous relation holds.

     For two complex numbers a and b, the absolute value of a product equals the product of the 

absolute values of the factors:

 = a b a b ,

and analogously for a quotient providing that the denominator be not zero,

 = 
a

b

a

b

For a sum we find

 + a b
2
 = ( ) + a b ( ) + a b   =   + a a b b + (  + a b b a)

which we rewrite as

 + a b
2
  =   +  + a

2
b

2
2 ( )ℜ a b

The difference is accordingly 

 − a b
2
  =   +  − a

2
b

2
2 ( )ℜ a b

from which we obtain a relation 

 + a b
2
  +   − a b

2
  =  2 (  + a

2
b

2
 ).

Regarding inequalities, from a definition of the absolute value or modulus, we deduce that

  ≤ − a ( )ℜ a  <  a  

 ≤ − a ( )ℑ a  <  a

Applying these conditions to a formula for an absolute value of a sum above we obtain

 ≤  + a b
2

( ) + a b
2

or 

 ≤  + a b  + a b

This relation is called the triangle inequality because of its implication that the length of one side 

of a triangle is less than or equal to the sum of the lengths of the other two sides.  As a special 



case, for complex number z = a + b i we find

 ≤  + a b I  + a b

This relation is extensible to an arbitrary sum as

 ≤  +  +  + a b c ...  +  +  + a b c ...

which implies that the maximum value of the absolute value of a sum is the sum of the absolute 

values of its addends. 

     Because complex numbers conform to commutative, associative and distributive rules and 

because additive and multiplicative inverses exist, complex numbers in set C constitutes a field, of 

which real numbers in set R form a subset.   

     In relation to complex ∞, the following rules apply for all z in C:

•  =  + z ∞ ∞,

•  = z ∞ ∞,

•  =  + ∞ ∞ ∞,

•  = ∞ ∞ ∞,

•  = 
z

∞
0, and

•  = 
z

0
∞.

Hence product   = −1 ∞ ∞, but product 0 ∞ and quotient 
∞

∞
 are undefined.

numbers of other types 

     There exist also irrational numbers, such as the archimedean number π or pi that is the ratio of 

the circumference of a circle to its diameter, the Euler number e that is the base of natural 

logarithms, and 2  that implies the square root of 2. An irrational number, which is represented 

approximately as a decimal number that lacks a pattern of repeating groups of digits, is not 

expressible as a ratio of integers of finite magnitude.  A number such as π or e that is not a root of 

a polynomial equation with rational coefficients is called a transcendental number.  A random 

number is a member of a sequence having a property that no member is predictable from 

preceding elements or items within that sequence; members of such a sequence can form no 

progression nor follow a regular or repetitive pattern.  Among real numbers of other types are an 

algebraic irrational number that is inexpressible as a ratio of two integers, such as a square root or 

cube root of a rational number, and a transcendental number that is not a root of a polynomial 

equation with rational coefficients.  We encounter such numbers in subsequent sections.

     Concerning operations with numbers, addition or multiplication of one counting number by 

another generates a further counting number, whereas division of one counting number by another 

might generate a rational number; subtraction of one counting number by another might generate a 

negative integer.  Addition or subtraction of a number with zero generates no other number, 

whereas multiplication or division of a number by unity generates no other number.  

     A factorial function of integer n is a product of the first n counting numbers and hence yields 



only an integer.  The numbers , , , + !2 2  + !3 3  + !4 4 ... for , , , = n 2 3 4 ... are not prime numbers, 

and for increasing n the sets of non-primes in gaps between primes become increasingly long.  

Gamma function ( )Γ n  for integer n equals an integer that is a factorial of  − n 1 and integer n > 0, 

such that  = ( )Γ  + n 1 !n   Restricting the argument of a gamma function ( )Γ n  to a positive integer n 

thus generates a factorial function, but for a general complex argument this function produces 

complex real numbers.  An important special function, beta function ( )β ,p q , is related to the 

gamma function in that  = ( )β ,p q
( )Γ p ( )Γ q

( )Γ  + p q
 .  

sequence, set, list, table and array  

     Of quantities available to pertain to prospectively multiple items within a collection, a 

sequence and a set have mathematical significance, but Maple provides also a list for which many 

applications exist, including a package of specific commands.  Consider a sequence ( , ,x1 x2 x3, ... , 

xn) of real numbers; the set of all such sequences constitutes an n-space, and is denoted R 
n
.  The 

first member of ( , ,x1 x2 x3, ... , xn) is x1, the second member is x2, et cetera.  R 
2
 denotes a space 

having two dimensions according to which one can plot a graph in a plane, and R 
3
 denotes 

analogously a space in three dimensions.  Many results and techniques that one might develop for 

R 
n
 with n > 3 become useful mathematical tools, but lack a direct geometrical significance or 

graphic depiction.

     A sequence of integers that arises in diverse cases in both biological and physical sciences is 

that attributed to Fibonacci, who is credited with introducing arabic numerals into Europe to 

replace roman numerals; in such a sequence, each number is a sum of the preceding two: with 0 

and 1 as initial values, further members are hence 1, 2, 3, 5, 8, 13 ...  

     As chemical instances of a sequence, here are symbols of chemical elements

       n  =  1,   2,    3,    4,   5,  6,   7,   8,   9,  10  ...  

      elements =  H,  He,  Li,  Be,  B,  C,  N,  O,  F, Ne ...           

in which the latter line is hence a sequence, and the number of alkyl derivatives of benzene, C n H

  − 2 n 6, with carbon atoms numbering , , , = n 6 7 8 ... [N. J. A. Sloane and S. Plouffe, Encyclopaedia 

of Integer Sequences, Academic Press, San Diego USA, 1995]:

        n  =  6,  7,  8,  9,  10,  11,   12,   13,   14,  ...  

      No. =  1,  1,  4,  8,  22,  51,  136,  335,  871, ... 

A sequence implies not only the ordering of events, which might be numerical or non-numerical, 

in a set with respect to time but also the use of an attribute possessed by members of the set for 

that ordering, such as atomic number for chemical elements.  A sequence differs from a series in 

that a sequence is an ordered set but a series involves a sum of quantities in a set.  A sequence is 

finite or infinite according to the number of elements or terms therein.  Term n of arithmetic 

sequence , , ,a  + a d  + a 2 d ..., with common fixed difference d is  = an  + a ( ) − n 1 d; the sum of an 

arithmetic series having n terms in that arithmetic sequence is n 
 + a an

2
 .  Term n of a geometric 

sequence , , ,a a r a r
2

... is a r
( ) − n 1

; the sum of a geometric series having n terms in that sequence 



is 
a ( ) − 1 r

n

 − 1 r
  with  ≠ r 1.  For an infinite geometric series of the same form and with  < r 1, the 

sum is 
a

 − 1 r
 .

      A union of two sets A and B denotes the set C described with a rule that x be a member of C if 

x belong to either A or B or both.  An intersection of two sets A and B denotes a set C described 

with a rule that x be a member of C if x belong to both sets A and B.  An intersection of two sets is 

hence the common part of the two sets whereas a union of two sets is formed from a consolidation 

of two sets into one set.  A difference of set A and set B contains the members of set A that are not 

members of set B, whereas a symmetric difference of two sets A and B contains members of sets 

A and B that are not members of both sets.  

     As another term for a compilation of quantities that is not a specifically mathematical entity, a 

table has elements to which we can refer with an index other than a positive integer.  As a 

specialization of a table for which indices to define an entry or element must be integer or a 

symbol that evaluates to an integer, an array represents such an extended structure in Maple to 

contain data that can have 0 -- 63 dimensions or indices; its name or symbol can correspondingly 

bear up to 64 integers as indices or subscripts.  As an extension of a concept of an array in Maple, 

a table enables one to work with natural notation, and serves as a basis of not only an array but 

also a matrix and a vector that have symbolic elements by default; the latter features are 

implemented in the superseded package linalg.  In contrast, a rectangular table, or rtable, is a 

distinct structure used internally in Maple and that serves in turn as a basis of an array, a matrix, 

and a column or row vector of which each element or component is zero by default, all 

implemented within package LinearAlgebra, introduced in chapter 6.  As a list is an 

inefficient mechanism to treat numerous items as a collection, an array or table is preferable.  

algebra

     Algebra, from an arabic word meaning reunion, is a study of four basic arithmetical operations 

-- addition, subtraction, multiplication and division -- typically involving symbolic quantities, and 

the solution of equations that arise thereby; such an exercise is practicable because the objects 

upon which these operations act might all be left indefinite.  An algebraic expression might 

comprise numbers of any kind, parameters or constants that have a fixed value in a particular 

context, and variables or unknown quantities that might assume one value in a set within that 

context and within a particular domain, separated with arithmetical operators.  In algebra the 

symbols used instead of numbers were originally viewed as numbers not determined, or in a sense 

that a quantity that a symbol represented was left indefinite, but in modern abstract algebra even 

the quality of the symbols might be left indeterminate, yielding a genuine theory of operations.  

For symbols to represent  mathematical variables in an abstract algebraic context, one generally 

employs letters near the end of the alphabet, typically x for independent variable and y for 

dependent variable, whereas, for parameters that can represent constant or invariant quantities 

within those formulae, letters near the beginning of the alphabet, such as , ,a b c, ... are in common 

use, following Descartes, but greek or other letters might be alternatively applied for particular 

purposes.  Symbols to denote variables for chemical or physical quantities involve typically the 

first letter of the name, such as T for temperature, V for volume,  ...; such names and their symbols 



are subject to conventions adopted by International Unions of Pure and Applied Chemistry, and 

Physics, or International Organization for Standardization.  

     Algebra is a language comprising not words but symbols:  algebra is a branch of elementary 

mathematics that generalizes arithmetic in using variables to range over numbers; a symbol can 

denote an unknown quantity within a mechanism to determine its value through elementary 

operations of arithmetic.  Such an operation involves an operator and its operand or argument:  to 

effect an operation, an operator operates on an operand to produce a result whereby one quantity is 

converted, or mapped, into another.  Such an operator might be simply a plus sign that converts 

two quantities into their sum, according to arithmetic, or a squaring operator that yields a product 

of a quantity with itself, or a differential operator with respect to a specified variable that yields a 

derivative, as explained in chapter 3, or an integration operator with respect to a specified variable 

that yields an antiderivative, as explained in chapter 4, or even a matrix that acts on a vector so as 

to yield a rotated result, as explained in chapter 6.     

     An associative operation for at least addition is one for which parentheses are superfluous, such 

as 

(  + a b) + c  =  a + (  + b c)  =   +  + a b c .

A binary operation involves two elements or members of a set, or applies to two elements in its 

domain.  More abstract algebras serve for the study of systems such as rings, groups and fields 

with operations not involving implicitly or explicitly infinite sets:  a ring is a set of numbers on 

which operations addition, subtraction and multiplication can be performed without restriction; if 

a ring contain two or more, equal or unequal, numbers p and q, , + p q  − p q and p q are also 

members of that ring.  A group is a set that is closed under an associative binary operation, 

generally called multiplication; a field is a set of numbers subject to two binary operations, such as 

multiplication and division (except by zero).  Real numbers and rational numbers are thus fields, 

whereas integers constitute a ring.  A complex number that is not zero, such as  + 3 2 i, comprises 

two linearly independent parts -- 3 and 2 i -- in a field of real numbers, but not in a complex field.  

The theory of groups has important applications in chemistry, in classification of symmetries of 

molecular structures and their deformations from their equilibrium conformations, treated in 

chapter 10 and elsewhere; we allude to such groups in a mathematical sense at various pertinent 

points. 

    A field is a set of elements -- numbers -- having two operations, addition denoted + and 

multiplication denoted ., and an equality operator = to satisfy the following seven postulates and a 

further qualification about that equality operator;

• closure :  for each couple ,x y of elements in the set, a sum  + x y and a product  . x y are in the 

set;

• commutation:  for each couple ,x y of elements in the set,  =  + x y  + y x and  =  . x y  . y x;

• association:  for each triple , ,x y z of elements in the set, x + (  + y z) = (  + x y) + z  and  x . (y . z)  

=  (x . y) . z ; 

• additive identity -- zero:  there exists an element, 0, in the set such that for each x in the set 

 =  + x 0  + 0 x = x ;



• multiplicative identity -- unity:  there exists an element, 1, in the set such that for each x in the 

set 1 . x = x . 1 = x ;

• distribution: for each triple , ,x y z of elements in the set, (x + y) . z  = x . z  + y . z  and x . (  + y z) 

= x . y  + x . z ;

• inverse:  for each element x in the set, there exists in the set another element −x, such that x + (

−x) = 0; if x be not zero, there exists in the set an element 
1

x
 such that x . 

1

x
  = 1; the element −x 

is called an additive inverse or negative of x, and an element 
1

x
 is called a multiplicative inverse 

or reciprocal of x; the elements −x and 
1

x
 represent single elements, not the results of a 

subtraction or division.

• equality operator:   = x y implies that  =  + x z  + y z and x. z = y. z ; for  ≠ z 0, x. z = y. z implies that 

 = x y, which constitutes the law of cancellation.

Typical examples of fields include the field of complex numbers, the field of rational numbers and 

the field of real numbers.  Further properties -- reflexive, symmetric and transitive -- of a field and 

its elements arise in connection with modular arithmetic.  Applications of a field are implicit in the 

solution of an equation. 

     Although numbers - real and complex - and scalar symbolic or common algebraic quantities 

obey the commutative law for multiplication, other quantities that are important in chemical 

calculations, such as matrices in a context of linear algebra, lack this property; W. R. Hamilton 

discovered such non-commuting quantities in 1843, and there have been devised other quantities, 

such as octonions, that fail to commute even for addition, but these are unimportant in chemistry.            

     The set of all integers fails to constitute a field because 1 is the only non-zero integer that has a 

multiplicative inverse that is also an integer.  These postulates omit either subtraction or division 

because the existence of an additive inverse implies that adding that additive inverse effects 

subtraction, and the existence of a multiplicative inverse implies that multiplying that 

multiplicative inverse effects division.

     The set of all even integers is closed under both addition and multiplication, contains zero, and 

for each even integer x contains the number −x that is also an even integer.  Two properties of a 

field that are not satisfied are the lack of a multiplicative inverse and the lack of a multiplicative 

identity, unity; the set of all even integers hence fails to constitute a field.

      Besides numbers, mathematics is concerned with variables each of which might be represented 

with an appropriate symbol and take any value among those in a given set; the set forms the 

domain of that variable.  A real variable has as domain either all real numbers or a subset thereof.  

A variable might be continuous in a particular interval or take only discrete values in a particular 

domain.  If a set of a particular domain contain only one value, the corresponding variable is a 

constant.  Common algebraic operations involve expansion and factoring of expressions 

containing variables and numbers, and simplifying the results, but for such simplification there is 

no absolute criterion.  



     A polynomial in one or more variables, which is a common algebraic expression, is a 

mathematical expression comprising a sum of terms each of which is a product of a constant and 

one or more variables or indeterminates raised to a non-negative integer power.  A polynomial in 

one independent variable has this form,

 = ( )P x  +  +  +  +  + c0 c1 x c2 x
2

... c  − n 1 x
( ) − n 1

cn x
n

and contains an independent variable x to various powers and coefficients cj with index or 

subscript j taking integer values from 0 to n; these coefficients cj are symbols for quantities that 

take finite numerical values in a particular case; such a polynomial might be considered both a 

function of that variable, ( )P x , and an algebraic entity comprising that variable and the set { },x cj  

of coefficients separated with appropriate arithmetical operators.  The degree of a polynomial is 

the greatest power of the variable therein, n in the displayed formula above; for small degrees, 

particular descriptors of polynomials are degree one -- linear, two -- quadratic, three -- cubic, four 

-- quartic, five -- pentic, et cetera.  The domain of this polynomial is a set of all real and finite 

numbers, so that ( )P x  yields a finite result for any real and finite value of independent variable x.  

If evaluating a polynomial ( )f x  for  = x a yields zero as a result,  − x a is a factor of that polynomial.  

A polynomial such as  − x
2

3 for which substitution of no integer for x yields a zero result is 

irreducible over integers.  A polynomial of degree greater than first has a regular graph or smooth 

curve, without discontinuity or cusp; a polynomial of degree zero or unity plots in cartesian 

coordinates as a straight line.  The graph of a polynomial of degree n has at most  − n 1 turning 

points.  In the immediate vicinity of the abscissal axis, the graph of a polynomial for which 

( ) − x a
n
 is a factor closely resembles a graph of α ( ) − x a

n
.  When a polynomial ( )f x  is divided by 

 − x r for r not a root, the remainder is ( )f r ; if ( )f r =0,  − x r is a factor of ( )f x  and r is a root of that 

polynomial, and conversely.  According to the fundamental theorem of algebra, every polynomial 

equation  = ( )P x 0, with ( )P x  of degree n and of the above form, has n complex roots, of which 

some might be multiple; for these roots , ,r1 r2 ... that might be real, ( )P x  is expressible as a 

product of n linear factors  = ( )P x ( ) − x r1 ( ) − x r2 ....  If rational number 
p

q
 , with p and q having 

no common factors other than +1, be a root of ( )P x  = 0, with ( )P x  of the form displayed above, p 

is a factor of c0 and q is a factor of cn.  For ( )P x  a polynomial with all coefficients cj being real 

numbers, if, for real numbers a and b, ( )P x  = x a = ( )P a  and ( )P x  = x b = ( )P b  have opposite signs, 

the equation  = ( )P x 0 has at least one real root between a and b.  Likewise, for polynomial ( )P x  

with all coefficients being real numbers, for each complex root  + a b i there exists another root its 

complex conjugate  − a b i with  = i −1 ; analogously, for ( )P x  with rational coefficients and  

, ,p q r being rational numbers but r  being irrational, for each root of form  + p q r  there exists 

another root  − p q r .  

     A formula  = y ( )f x  is algebraic if, for all x in its domain, it satisfies an equation of form

 =  +  +  +  + ( )p0 x y
n

( )p1 x y
( ) − n 1

... p  − n 1 y ( )pn x 0

in which ( )p0 x , ( )p1 x , ...,  ( )pn x   are polynomials in x and n is a positive integer.  A formula that is 

not algebraic is transcendental, of which exponential, logarithmic and trigonometric formulae are 



instances.  

     According to the remainder theorem, for a constant r and a polynomial ( )P x , the remainder of 

the quotient 
( )P x

 − x r
  is ( )P r .  If r be a root of polynomial ( )P x ,  − x r is a factor of ( )P x .  According 

to the rule of signs discovered by Descartes, for a polynomial  = ( )P x 0 with real coefficients and 

written with descending powers of x in which a sign reversal occurs between consecutive terms, 

the number of positive roots is either equal to the number of those reversals or is less than that 

number by an even integer; the number of negative roots is either equal to the number of sign 

reversals in ( )P −x  or is less than that number by an even integer.  For a polynomial 

 = ( )P x  +  +  +  +  + x
n

p1 x
( ) − n 1

p2 x
( ) − n 2

... p  − n 1 x pn = 0 of order n in which the coefficient of the 

leading term is unity, so that that term is x
n
, 

• the sum of roots is −p1;

• the sum of all binary products of roots is p2;

• the sum of all ternary products of roots is −p3; ...

• the product of all roots is ( )−1
n

pn.    

     If  = x a be substituted into a polynomial ( )f x , the value ( )f a  so obtained is the remainder that 

would result from the quotient of ( )f x  and  − x a.  Likewise, if a polynomial ( )f x  of degree n be 

divided by ( ) − x a ( ) − x b  with  ≠ a b, the quotient becomes a polynomial of degree  − n 2 with a 

remainder of form  + c x d.

     An expression in a single variable and containing an embedded equality operator is either an 

identity, true for any value of that operator, or a conditional equation, true for only particular 

values of that variable.  The preceding displayed equation for the associative law involving ,a b 

and c is an identity that is true for arbitrary values of those quantities, but a conditional equation,

 =  + 3 x 7  + 5 x 1

is true for only a particular value  = x 3; that value hence satisfies that equation that is a linear 

equation in a single unknown quantity identifiable as the symbol x.  Finding such a particular 

value, or solving an equation for a particular variable, generally signifies isolation of that variable 

on the left side of an equality and having all other numbers and variables on the right side; a 

solution of an equation, or of equations in a set, implies values in a unique set that yield a true 

statement when substituted for unknown quantities in that equation, or equations in that set.  

Procedures that yield equivalent equations are  

• adding or subtracting the same quantity on both sides of an equality operator,

• multiplying or dividing both sides of the equality operator by the same non-zero quantity, and

• simplifying an expression on either side of an equality operator, such as by factoring or 

expanding. 

     A symmetric equation has coefficients arranged symmetrically, such as in 

 =  +  +  + a x
3

b x
2

b x a 0; such equations might have simpler solutions than for non-symmetric 



equations.  

     Fundamental results of mathematics are expressible not only as equalities, involving operator 

=, but also inequalities, involving operators <, >, < and >.  A value of a variable satisfies an 

inequality in the same way that it might satisfy an equality, but a solution set for an inequality 

might be large or define a domain rather than comprising a single discrete value or multiple 

discrete values.  An inequality has these properties:

 if  < a c,  <  + a b  + c b ;

for b positive, if  < a c,  < a b c b and  < 
a

b

c

b
 ; 

 if  and  < a b  < b c ,  < a c , according to the transitive property;

    if a > 0 ,  < b a only if  < −a b < a ;

 if a > 0, b  > a only if  or  < b −a b > a .

solution of equations 

     An equation is a statement of equality between two expressions called members.  An equation 

that is true for only a certain value or values of symbolic quantities therein, such as  =  + 3 x 5 11 

that is true for only  = x 2, is called a conditional equation; an equation that is true for all 

permissible values of symbolic quantities therein, such as  = 2 ( ) + x 3  + 2 x 6 that is true for any 

value of x, is an identity. To evaluate numerically or symbolically the value of an unknown 

quantity that appears in a conditional equation is to solve that equation; that solution satisfies that 

equation.  Among operations that one might apply to solve an equation are adding, subtracting, 

multiplying or dividing equals to equals to obtain results that are equal, provided that in the latter 

case there is no division by zero; for instance, to solve  =  − x 2 3, we add 2 to each side of the 

equality to produce  =  −  + x 2 2  + 3 2, so that  = x 5.  Equivalent equations have the same solutions, 

such as  =  − x 2 3 and  = 2 x 10, for which in either case  = x 5.  Operations addition and subtraction 

of equals to equals invariably yield equivalent equations, but multiplication and taking powers of 

equals might introduce extraneous or redundant solutions beyond those of the original equation; if 

an operation decrease the number of solutions, the derived equation is described as defective. 

Operations division or taking of reciprocals of equals might yield defective equations.  

     A processor for symbolic computation, such as Maple, provides powerful means to solve 

equations and even inequalities of many kinds and extents of complicatiion, but there remains a 

task of the user of such computer algebra to express the problem to be solved, which is likely 

stated in more or less formal language, in algebraic terms that are susceptible to formal 

mathematical solution; such a task might not be trivial, requiring clear thinking and converting 

words into meaningful symbols and their coefficients.  For multiple equations of linear type in 

their systems, a powerful formalism has been developed in a form called linear algebra involving 

matrix, vector and other quantities, as we describe in chapter 6; for non-linear systems of one or 

multiple equations, a processor for symbolic computation might still enable an attack upon a 

problem by both algebraic and numeric means, although, as the degree, or extent of complication, 

of the system increases, the prospect of finding an exact algebraic solution fades rapidly.  Under 

those conditions, numeric methods, generally approximate, remain, but they are persistently 

sensitive to numerical error.  It is incumbent upon a student of mathematics to develop a talent for 

converting problems expressed in ordinary words into algebraic conditions that are susceptible to 



solution by whatever methods and facilities be available.  

     A rational integral equation is a statement of equality between two rational integral expressions 

or polynomials, each of which contains rational integral terms of form a x
α

y
β

z
γ
 in which a might 

denote a number of any kind but exponents , ,α β γ of unknown quantities , ,x y z are non-negative 

integers.  A linear equation or an equation of first degree is expressible in a form  =  + a x b 0, in 

which x is a variable and a and b are parameters that denote real numbers.  For two linear 

simultaneous equations in two variables, the equations have graphs either of two lines that 

intersect at exactly one point, yielding one consistent solution to the system, or of two lines that 

are parallel -- and have the same slope -- and fail to intersect, in which inconsistent case there is 

no solution, or of two lines that coincide, for which consistent case the solutions number 

uncountably.  Alternative to that graphical method to solve two simultaneous linear equations in 

two unknown quantities are solution by addition or subtraction and solution by substitution.  To 

solve three simultaneous linear equations as a system in three unknown quantities or variables, 

one unknown might be eliminated between two equations, and then the same unknown from any 

other couple of equations.

     An equation expressible in a form  =  +  + a x
2

b x c 0 in which appear variable x and parameters 

, ,a b c that denote real numbers is quadratic or of second degree.  For a pure quadratic equation for 

which  = b 0 in the preceding formula so yielding a form  =  + a x
2

c 0, the solution is simply one of 

two roots, x = + −
c

a
 or − −

c

a
.  For a general quadratic equation with  ≠ a 0 and  ≠ b 0, 

 = y  +  + a x
2

b x c

if the roots are not conveniently found by factoring, completing the square yields an expression 

that one factors to generate the roots; completing the square for that general formula and 

subsequent algebraic operations yield two general equations that express the roots for  = y 0 to be

  x1 =  
−  + b  − b

2
4 a c

2 a
  and x2 =  

−  − b  − b
2

4 a c

2 a
, 

which Maple finds directly; if , ,a b c be real numbers and if discriminant  − b
2

4 a c > 0, the two 

roots are real and disparate, whereas if , ,a b c be real numbers and if  <  − b
2

4 a c 0, the two roots 

are disparate and complex, one being the complex conjugate of the other; for  − b
2

4 a c =  0, the 

roots are real and equal, so amounting to one root repeated.  The sum of the two roots is evidently 

−
b

a
 and their product is 

c

a
.  A quadratic formula, such as that named y above, plots as a parabola, 

of which the real roots occur at intersection of the abscissal axis of that curve.  For a radical 

equation, such as  =  − x 5 x  or other containing cube roots or other and smaller exponents, in 

which one or more unknown occurs within a radical, isolating one radical on one side of an 

equality and raising both sides to clear that radical, and continuing likewise until all radicals are 

cleared, is a method of solution, but extraneous roots must be rejected by testing of the solutions.  

A graphical method is effective to find the real roots of two simultaneous quadratic equations in 

two unknowns.  For equations that are symmetric in unknown quantities, such as 

 =  +  +  +  + 3 x
2

3 y
2

2 x y 5 x 5 y 7, a possible solution might be obtained on substituting  = x  + u v 



and  = y  − u v.  Invoked with a particular command, Maple attempts to solve all equations or 

systems thereof, but a solution might not be practicable in a particular case.  

     Equations involving polynomials up to quartic have roots expressible in exact algebraic form, 

but not in general for pentic polynomials or beyond.  Even for a general cubic equation, the 

formulae for the roots are excessively complicated for most purposes, but with unit coefficients 

Maple provides solutions for polynomials of arbitrarily great order.  For a general cubic equation 

 =  +  +  + a x
3

b x
2

c x d 0, solutions occur in one of three sets depending on the value of coefficients 

, , ,a b c d:  three real and distinct roots, three real roots of which two are equal, and one real and 

two complex roots, of which one of the latter is the complex conjugate of the latter.  A cubic 

equation in reduced form  =  +  + y
3

p y q 0 with a > 0 has a real root

  = y
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For that equation in reduced form, generated on substitution  = x  − y
a

3
, for three real roots  < p 0 

and the discriminant  <  + 4 p
3

27 q
2

0 ; 

 = y  + q

2 p −
p

3

3
 or  − q

2 p −
p

3

3
 .  

For three real roots of which two are identical, that discriminant  =  + 4 p
3

27 q
2

0 .  In the other 

case  + 4 p
3

27 q
2
 > 0, there are one real and two complex roots, the latter as a conjugate pair.

     For a quartic equation  =  +  +  +  + x
4

a x
3

b x
2

c x d 0, substitution  = x  − y
a

4
 yields a reduced 

form.  A special biquadratic equation  =  +  + a x
4

b x
2

c 0 that is a special case of a quartic equation 

is directly soluble through a substitution  = x
2

y, to become a quadratic equation with roots ,y1 y2 to 

yield the ultimate solutions +y1 and + y2.  

     The solution of a general biquadratic equation,

  =  +  +  + x
4

p x
2

q x r 0,

depends on the behaviour of solutions of the cubic resolvent equation,

 =  +  +  − y
3

2 p y
2

( ) − p
2

4 r y q
2

0

that has roots , ,a b c; for real coefficients , ,p q r and for all , ,a b c > 0, the original equation has 

four real roots, whereas for a > 0 and ,b c < 0 there are two pairs of complex conjugate roots; for a 

real and ,b c mutually complex conjugate, there are two real and two complex conjugate roots.  

The roots of the original biquadratic equation are

 = 2 x1  +  + u v w,         = 2 x2  −  + u v w,     = 2 x3 −  +  + u v w,    = 2 x4 −  −  − u v w

in which , ,u v w are solutions of equations  = u
2

a,  = v
2

b,  = w
2

c with a requirement that  = u v w q.

     If , , ,a b c  .. ´ ´ be roots of an equation

  =  +  +  +  +  + pn x
n

p  − n 1 x
( ) − n 1

p  − n 2 x
( ) − n 2

... p1 x p0 0, 



the sum of the roots is −
p  − n 1

pn

, the sum of products of roots taken two at a time is 
p  − n 2

pn

, the sum 

of products of roots taken three at a time is −
p  − n 3

p0

, ... and the sum of products of roots taken n at 

a time is 
( )−1

n
p0

pn

.

     A reciprocal equation  = ( )f x 0 of polynomial form is unaltered when the variable is replaced 

by its reciprocal.  For instance, for  =  +  + a x
2

b x c 0 to be a reciprocal equation,  = a c.  If  = x r be 

a root of such an equation,  = x
1

r
 must also be a root of this equation and the roots must occur in 

pairs.  If the degree of  = ( )f x 0 be odd, one root must be its own reciprocal, i.e.  = x 1 or  = x −1.

     These equations,

 = 
 + x

2
3 x

 − x 2

 + x 3

 − x 2
 ,         =  + x

2
3 x  + x 3

are not equivalent because they do not possess the same roots; the proof of this statement requires 

that no cancellation of denominators be undertaken before solution.  The latter equation is called 

an auxiliary equation because it is useful in determining the solutions of the former.  To solve this 

equation,

 =  −  − 3 x  − 2 x 3 5 0

by hand, we might isolate the surd to one side,

  =  − 3 x 5  − 2 x 3

square both sides, and solve the resulting expression to obtain as roots , = x1 2  = x2

14

9
 ; if we 

substitute both latter roots separately into the original expression we find that only  = x1 2 satisfies 

that equation,  =  −  − 3 x  − 2 x 3 5 0; the other value  = x2

14

9
 is called extraneous.  Such 

multiplication or division of both sides of an equality operator by an expression that involves the 

variable might thereby introduce extraneous solutions that fail to satisfy the original equation; one 

should therefore verify all prospective solutions of equations after such operations.

     One application of solution of an equation is to find the inverse of a formula or expression.  If y 

be the name assigned to a formula or expression involving an independent variable x, which we 

represent as  = y ( )f x , the inverse of that relation is expressed as  = x f
( )−1

(y), distinct from a 

reciprocal, 
1

f
.  Although, for a particular formula or expression ( )f x , an inverse formula might not 

be expressible in an explicit algebraic form, one can generally solve numerically and tabulate the 

results for a domain of x of interest or plot the expression or formula and read coordinates from 

the graph.  In some cases, either  variable is inseparable to one side of an equality; such formulae 

or expressions are expressed ( )f ,x y  and are described as implicit.  

     An inequality expresses a condition that one expression is greater than or less than another 



expression.  If  < a b, the difference  − b a is a positive number; if a > b, the difference  − b a is a 

negative number.  An absolute inequality is true for all values of the quantities involved; for 

instance,  < −1 x
2
 for all real x.  A conditional equality is true for a particular domain of a quantity; 

for instance  + x 3 > 5 holds for x > 2.  Inequalities  < a b and  < c d have the same sense, whereas 

inequalities  < a b and c > d have the reverse sense.  An inequality is invariant if each side be 

increased or decreased by the same quantity.  The sense of an inequality is invariant if each side be 

multiplied or divided by the same positive quantity, but the sense of that inequality is reversed if 

each side be multiplied or divided by the same negative quantity.  For , ,a b n positive quantities 

and  < a b,  < a
n

b
n
 but a

( )−n
 > b

( )−n
. If  < a b and  < c d,  <  + a c  + b d; if  < 0 b < a and  < 0 d < c, 

 < b d a c.  For inequalities,

• for  < a b,  <  + a c  + b c and  <  − a c  − b c; 

• for  < a b and c positive,  < a c b c and  < 
a

c

b

c
 ;

• for  < a b and c negative,  < b c a c and  < 
b

c

a

c
 ;

• for  < a b and  < b c,  < a c;

• for a > 0 and  < x a,  < −a x < a ;

• for a > 0 and x  > a,  < x −a or x > a.

Maple attempts to solve inequalities with the same command to solve equalities.

     For reasons of algebraic or mathematical simplicity, linear relations are most tractable; linear 

algebra constitutes an immense separate branch of mathematics, having important chemical 

applications, constructed on such relations, which we treat in chapter 6.  After linear relations, 

naturally quadratic relations are next most tractable, and many chemical and physical models are 

based on such a relation.  Other common relations involve exponential functions and, their 

inverse, logarithmic functions, treated in sectiion groups 1.4 and 1.5 respectively, with polynomial 

and other functions that we treat in chapter 2.

     A general, but typically inefficient, method of finding a root x or zero of ( )f x  = 0 is called 

bisection, or a binary search method that requires ( )f x  to assume values with opposite signs for 

values of x that define an interval within which a root must occur.  The search operates by finding 

the sign of ( )f x  at the middle of the interval and then choosing the subinterval for which the sign 

change persists; this subinterval is then bisected and the process is repeated until the subinterval 

containing the root is as small as desired to express the root to digits of satisfactory number.  

Although convergence is slow in that the number of bisections might be large to obtain a 

sufficiently small subinterval, the method invariably converges to a solution; for this reason this 

method might serve as an initial operation for a more efficient method, such as Newton's method, 

discussed in section 3.308, that involves derivatives of the formula or function, or the secant 

method or the regula falsi as the rule of false position.  One or other method among these might be 

automatically invoked with Maple operator fsolve.      



mathematical proof

      A conjecture is an idea that is subject to proof.  Some mathematical conjectures have been 

published for centuries without a proof being demonstrated, even though no counterexample be 

known.  For instance, Goldbach formed a conjecture that each even integer greater than four is 

expressible as a sum of two odd prime numbers; as examples,  = 8  + 5 3,  = 10  + 7 3 ...  Whereas 

some even integers might be such a sum in many ways, for example 150 in twelve ways, others 

occur as few such sums, for example 98 and 128 in only three ways.  For this conjecture there is 

no known counterexample, but no proof has been discovered to convert this idea into a theorem.  

For an extension by Goldbach that each odd number is a sum of three prime numbers, Vinogradov 

formed a proof that enables the latter idea to become a theorem.  

     Mathematical induction provides a method to prove a general theorem or formula from 

particular cases.  Such a proof has two steps -- first to demonstrate by substitution that the theorem 

or formula is true for some single positive integral value of n, such as  = n 1 or  = n 2, and then 

according to an assumption of that truth for  = n k to prove its truth for  = n  + k 1.  For instance, to 

prove, for all positive integer values n, a sum from unity,  =  +  +  +  + 1 2 3 ... n
n ( ) + n 1

2
, we test 

that this relation holds for  = n 2, for which  = 
2 ( ) + 2 1

2
 + 1 2; assuming this formula for  = n k, the 

sum up to  = n  + k 1 is  +  + 
k ( ) + k 1

2
k 1, which equals 

( ) + k 1 ( ) + k 2

2
 that is the value of 

n ( ) + n 1

2
 when  = n  + k 1.

formula and function  

     A formula is an equation that expresses a general fact, rule or principle, such as  = C 2 π r that 

states the circumference of a circle to equal twice the product of π and the radius.  In undertaking 

calculations, chemists employ many mathematical formulae and functions, some of an elementary 

and general nature and others more closely related to chemical applications.  We review in this 

chapter mostly the former and demonstrate common operations involving them.  As a formal 

definition based on two non-empty sets I and O that might represent input and output, a function 

from I to O is a rule of correspondence that assigns to one element of O exactly one element of I; 

that correspondence might imply the use of a formula to relate an element of I to a corresponding 

element of O, so that an element of I acts as input for the output of O.  The domain of a function or 

formula is the set of all inputs I, and the range is the set of all outputs O.  The symbol to represent 

an element in the domain of a function is the independent variable, and the symbol to represent an 

element in the range is the dependent variable.  A graph of a formula or function in plane xy 

comprises those points ( ,x y) such that x is in the domain of that formula and y is in its range; such 

a graph represents a function y with formula ( )f x  provided that any line parallel to the ordinate 

axis intersects the graph at one point at most.  A graph in a form of a curve, not a straight line, 

might exhibit one or more turning points at which the graph alters from rising to falling, or vice 

versa, thus exhibiting a maximum or a minimum, which might be local or global. The exponential 

function, in which an independent variable appears as a power of a number -- generally e, is 



considered to be the most central in mathematics, whereas the natural logarithmic function finds 

diverse applications, including the study of prime numbers that are important in cryptography and 

secure communication.  Although trigonometric functions have a geometric basis, their relation to 

exponential and logarithmic functions and to complex numbers gives them broad significance.  A 

graphic representation of a function has several advantages:  for this reason we introduce plots of 

formulae and functions in their context, but leave their extensive discussion to section group 2.1.  

Many functions, of which we describe only a few in this chapter, are known to Maple as having 

either defined procedures for simplification or one or more operators for evaluation, differentiation 

and expansion.  

     To represent a formula or a related function, we might use words in a verbal description, 

numbers in a table of values, a graph for visual examination or an explicit algebraic form; multiple 

representations of a particular formula provide insight into its nature.  A function is a relation 

between two sets that associates a unique element of the second set with each element of the first 

set; for such a relation expressed as  = y ( )f x , y is the value of function f for argument x, or f 

operates on its operand in an operation to yield a result y.  For a function relating two sets, one set 

S of arguments and another set T of values, S is the domain of that function and T is the codomain

, expressed concisely as  f :   → S T or f :   → x y.  For s being a subset of S, ( )f s  is a set of values 

of ( )f x  for x within s, and is called the image of s under function f; the image ( )f S  of the domain is 

the range of the function.  A mapping of x according to function f generates a corresponding value 

y.  Although these relations can be expressed in terms of symbols, they apply equally well to 

numbers.  For an operation to achieve doubling a magnitude and changing a sign, a set {1, 2, 3, 4, 

...} -- enclosed within braces by convention -- is mapped into another set { , , ,−2 −4 −6 −8, ...}; in 

this case the domain of the first set is positive integer, and its codomain is even negative integer.  

     In a context of a single independent variable, a function enables one to relate an independent 

variable to a corresponding dependent variable, hence mapping one quantity into another.  For 

instance, according to an expression having the form of an equality involving two real variables x 

and y,   

  = y  + x
2

1 

the right side of the equality sign contains a formula x
2
 + 1, in which a value of a single 

independent variable x determines a dependent variable y that appears on the left side of the equals 

sign; this expression might be considered to provide a definition of a name y assigned to that 

formula as an equation rather than an equation.  This relation might also be expressed as  = y ( )f x  

in terms of a  function f for which a formula  = ( )f x  + x
2

1 produces output on adding unity to the 

square of input variable x; the formula is valid for any value of x, assumed real, and the output is 

then invariably a positive number.  Values of x allowed as input form a domain; corresponding 

values of y form a codomain or range; for the particular formula  = y  + x
2

1, the domain of x is [

,−∞ ∞] whereas the codomain of y is [ ,1 ∞].  The graph of that function f in plane xy comprises 

those points ( ,x y) such that x is the domain of f and  = y ( )f x .  For two arithmetic operations from 

functions f and g, the domain of x for a sum (f + g)(x), difference (f - g)(x) or product (f g)(x) is a 

domain common to both ( )f x  and ( )g x , but for a quotient (f /g)(x) the domain excludes points at 



which  = ( )g x 0.  Two functions f and g are mutually inverse if  = ( )f ( )g x x for each x in the 

domain of g and if  = ( )g ( )f x x for each x in the domain of f; such mutually inverse functions or 

their formulae have graphs symmetric about a line of unit slope.  For two functions f and g, their 

combined effect on a particular argument or operand is  = ( )( ) + f g x  + ( )f x ( )g x , 

 = ( )( ) − f g x  − ( )f x ( )g x ,  = ( )( )f g x ( )f x ( )g x  and  = ( )










f

g
x

( )f x

( )g x
 providing that  ≠ ( )g x 0 in the 

latter case; for instance, for the composition (f o g)(x) evaluates function f at ( )g x  with ( )g x  as the 

domain of f.  For the composition of two functions f and g with composition operator @,  (f@g)(x) 

= ( )f ( )g x , for which the domain of f@g comprises those values of x in the domain of ( )g x  for 

which ( )g x  is in the domain of ( )f x .  A function is one to one if any line parallel to the abscissal 

axis intersects its graph at one point at most; a function f has an inverse if and only if f be one to 

one. 

     If the scope of x be extended to include complex numbers, the output is in general complex.  In 

this way a function resembles a machine in having three key attributes -- a name, an input and an 

output; a name is a label attached to a formula to identify it, and the formula of that name operates 

on input data to produce output.  In common situations in which input and output are numbers, 

typically with attached units in a chemical context, the formula, prescription or algorithm that 

describes how output is produced from input is called a function.  In practical use of a function, 

we should be aware of values of its arguments as independent variables that have an appropriate 

domain and sign for a  problem of interest.  A function might comprise a single operator, such as 

the sine function, and multiple such operators and other algebraic operations, such as sine plus 

cosine.  In chemical situations in which we typically encounter multiple independent variables as 

arguments of a particular function, variables in a formula on the right side of an equation or 

assignment might be numerous.   We adopt this intuitive definition of function as it relates readily 

to expressions, formulae and equations that we meet in chemistry.  

     For y α x
n
 in which α signifies proportionality, dependent variable y varies directly with 

independent variable x as in x
n
 raised to power n, whereas for y α x

( )−n
 dependent variable y varies 

inversely proportionally to x
n
; for y α w x, dependent variable y varies jointly with independent 

variables w and x, whereas for y α 
w

x
 dependent variable varies directly with w and inversely with 

x.  

     A mathematical model describes mathematically a chemical, physical or other phenomenon.  

Common models have these types:

• linear formula, if the relation between one variable and another can be depicted as a straight 

line, of form  = y  + m x b;

• power formula, if the relation between two variables involves one variable taken to a particular 

power, of form  = y x
j
;

• polynomial formula, if the relation between an independent variable and its dependent variable 

involves a finite sum of terms containing the independent variable to disparate powers, of form 



 = y ∑ aj x
j
 in which there is no particular rule for the occurrence of a term x

j
 to have a 

coefficient  ≠ aj 0;

• rational formula, if the relation between an independent variable and its dependent variable 

involves a ratio of polynomials, of form  = y
( )f x

( )g x
;

• algebraic formula, if the relation between an independent variable and its dependent variable is 

constructed with algebraic operations on polynomials, of form  = y ( )f  + x
a

b  in which f might 

imply a suare root for instance;

• trigonometric formula, if the algebraic function involves a trigonometric operator, of circular or 

hyperbolic kind, with an independent variable as operand, of form  = y ( )sin  + a x b ;

• exponential formula, if the power formula involves a constant with a variable as power, of form 

 = y a
x
;

• logarithmic formula, if the formula includes a logarithmic operator, of form  = y ( )log x ;

• transcendental formula, for a formula of other than algebraic type, of which a trigonometric, 

exponential or logarithmic formula is a special case.

     Among some functions of special types, a constant function  = y ( )f x , for which ( )f x  is 

identically equal to a constant value for all x in the domain of definition [ ,a b], has an equation y = 

constant for x in [ ,a b].  A step function defined on an interval [ ,a0 an] comprising sub-intervals or 

partitions [ ,a0 a1), [ ,a1 a2), ... [ ,a  − n 1 an], each of which except the latter is a half-open interval, has 

associated with each sub-interval a constant ck; such a step function is thus a succession of 

constant functions, each on its sub-interval.  A function absolute value has a form  = ( )f x x ; its 

geometric form comprises a line  = y x for x > 0 and  = y −x for  < x 0.  Some properties of a  are a  

> 0,  = a −a ,  = a a for a > 0 or −a for  < a 0, +  ≤ a a ,  ≤  − a b  + a b   ≤   + a b , 

 ≤  − a b  − a b   ≤   + a b ,  = a b a b  and  = 
a

b

a

b
 .

     An even function  = y ( )f x  is defined for both positive and negative x such that  = ( )f −x ( )f x ; the 

geometrical implication is that the graph of this function shows symmetry about the ordinate axis 

such that the graph for negative x is a reflexion across the ordinate axis of a graph for positive x, 

such as for x  or x
2
.  An odd function  = y ( )f x  is defined for both positive and negative x such that 

 = ( )f −x − ( )f x ; the geometrical implication is that the graph of this function is obtained first on 

reflexion across the ordinate axis and then on reflexion across the abscissal axis.  An odd function 

must satisfy  = ( )f 0 0 because  = − ( )f 0 ( )f 0 .  Most functions are neither even nor odd, but the 

product of two even functions, or of two odd functions, is an even function, whereas the product 

of an even function and an odd function yields an odd function.  A function ( )f x  bounded on an 

interval has values therein neither exceeding some value V nor less than some value v for x within 

that interval; values V and v are called lower bound and upper bound respectively, and might occur 

only at the end points of that interval.  The graph of a convex function has a property that a chord 



joining any two points A and B thereon invariably lies above the graph of the function contained 

between those two points.  The graph of a concave function has a property that a chord joining any 

two points A and B thereon invariably lies below the graph of the function contained between 

those two points.  A polynomial function of degree k is an algebraic expression of form

 = y  +  +  +  + ak x
k

a  − k 1 x
( ) − k 1

... a1 x a0

in which k is a positive integer; this polynomial, such as linear for degree 1, quadratic for degree 2, 

cubic for degree 3, quartic for degree 4 and quintic for degree 5, is defined for all x.  A rational 

function is expressible as a quotient of two polynomials, such as  = 
( )f x

( )g x

 +  +  + a0 a1 x a2 x
2

a3 x
3

 +  + b0 b1 x b2 x
2

 .  

The domain of a rational function comprises all real numbers except roots of ( )g x  for which 

 = ( )g x 0; the intercepts on the abscissal axis occur at points at which  = ( )f x 0.  Multiple branches 

of a graph of such a rational function occur if any real root of ( )g x  exist; at such a point the curve 

is discontinuous, and approaches an asymptote from either side of that point.     

     An algebraic function  = y ( )f x  might be transformed into a polynomial, or multinomial, 

involving both variables x and y, the greatest powers of which both exceed unity; examples are 

a monomial y  =  + x  for x > 0 that becomes  = ( )f ,x y  − y
2

x = 0, 

and 

 = y  +  − x
3

2 x 3 that becomes ( )f ,x y  =  −  +  +  −  +  − y
2

2 y x
3

6 y x
6

6 x
3

9 4 x = 0, 

although not all algebraic functions are expressible in this manner and such a transformation might 

introduce extraneous roots.  

     A function is transcendental if it be not algebraic, such as  = y  − x ( )cos x ; a transcendental 

number  is a root of a transcendental equation, such as a root of  =  − x ( )cos x 0.  The signum 

function ( )signum x  has a value +1 when the sign of x is positive, −1 when the sign of x is 

negative, and 0 when  = x 0; except the case  = x 0,  = ( )signum x
x

x
 .  A function f is injective if, 

for  ≠ x1 x2,  ≠ ( )f x1 ( )f x2 ; a condition  = ( )f x1 ( )f x2  implies that  = x1 x2.  A function f is bijective if 

( )f x  yield only a single and unique result for each value of x; a plot of that bijective function 

intersects any horizontal line, with equation  = y c for arbitrary c, in at most one point.     

     In a mathematical context, a sequence is a function f defined for only integer values of its 

argument and having for its range an arbitrary set; a sequence is hence a function of a particular 

kind of which the domain is the set of counting numbers or positive integers.  If members of a 

sequence (xj) have values on some interval I such that  < v uj < V for all value of j, the sequence is 

described as bounded, with lower bound v and upper bound V, whereas if x  + j 1 > xj for all j the 

sequence is described as strictly monotonically increasing.  Other prospective descriptions of a 

sequence on some interval are bounded above, bounded below, unbound, monotonic, strictly 

monotonically decreasing, oscillating (alternate members have opposite signs) et cetera.  These 

terms might apply to functions other than sequences.

exponential function 

     Exponential formulae arise in chemistry in forms 2
x
, e

x
 and 10

x
 in many contexts, such as 



• Beer-Lambert law,  = I I0 10
( )−ε c l

, in exponential form, relating the intensity of radiation 

incident Io on, and transmitted I  through, an absorbing medium of concentration c and length l 

of optical path, with absorption coefficient ε;

• Boltzmann factor, e









−

E

R T
, that occurs in partition functions, with energy Ej, gas constant R and 

temperature T;

• concentration in reacting systems in which a reactant is subject to loss according to first kinetic 

order,  = ( )c t c0 e

( )−k
1

t

, in which appear concentration ct at time t, initial concentration c0 at time 

 = t 0, and rate coefficient k1;

• Arrhenius equation (attributed to van't Hoff),  = k A e













−

E
a

R T
, relating a rate coefficient k at 

temperature T to a pre-exponential factor A and activation energy Ea, with gas constant R;

• decay of electronic density with distance r from an atomic nucleus, proportional to e















−
r

a
o

, with 

Bohr radius ao as scale factor.

     For positive real number b and for each positive real number x, quantity b
x
 as an exponential 

formula is a unique real number.  When x be irrational, we approximate b
x
 as closely as desired on 

evaluating b
r
 for which r is a rational number sufficiently near number x.  For real number b, if 

 and  = b
x

b
y  ≠ b 1,  = x y.  The laws of exponents are 

•  = a
m

a
n

a
( ) + m n

,

•  = ( )a
m

n

a
( )m n

, and

•  = ( )a b
n

a
n

b
n
.

The properties of rational exponents are applicable to irrational exponents.  

     In 1676 Newton introduced this exponential function e
x
 that has a property of an infinite series, 

 = e
x  +  +  +  + 1 x

x
2

!2

x
3

!3
... = ∑

 = k 0

∞
x

k

!k
 ,

that converges for all real x, and also for all complex x as discovered by Euler 75 years later.  The 

quantity  = y e
x
 is strictly increasing and continuous for all real argument x.  The Euler limit

 = e
x

lim
 → n ∞









 + 1

x

n

n

holds for all real numbers; for all complex numbers z,  ≠ e
z

0, so vanishes nowhere.  In a complex 

domain,  = e
( ) + x 2 π i

e
x
 for all complex numbers, with  = i −1 .   The value of e

1
 =  e as a decimal 



fraction is an irrational number that is non-terminating and non-repeating, as exhibited in these 

first twenty digits, 2.7182818284590452354.

     An expression b
x
 within these equalities of form 

 = y b
x
  =  e

( )x ( )ln b

and that conforms to the laws of exponents above is called an exponential formula;  here b is a 

base that is a positive number and hence supposed to be a constant, and x is an exponent that is an 

independent variable, for contrast with x
b
 in which, for variable x, exponent b is supposed to be a 

constant.  The ultimate formula at the right above reduces the general exponential function to a 

function of e.  Bases that we commonly encounter are 2, 10 and e.  The latter, a  transcendental, 

and hence irrational, number that serves as base of natural logarithms, pervades science and 

mathematics; for this reason an exponential function with base e becomes the canonical 

exponential function.  For all exponential formulae b
x
 independent of base b, the point (0,1) is an 

intersection with the ordinate axis or an ordinate intercept, but for only  = b e the slope of the curve 

at this point equals unity.  This natural exponential function is continuous at all points in its 

domain, which is [ ,−∞ ∞].  Functions of other forms such as trigonometric that have their roots in 

this exponential function we discuss in chapter 2.   

logarithmic function  

     A logarithm is the power x to which a number b as base of that logarithm must be raised to 

equal a particular value y.  A logarithmic function is thus an inverse of an exponential function; 

inverting an equation displayed above for a general exponential function yields

 = x ( )logb y

A natural logarithm, described by Napier and generally denoted ln (from french, logarithmic n

aturel), has base e, a notation supposed to honour Euler, and represented in text as e, whereas a 

common logarithm, described by Briggs and denoted generally denoted log by chemists, has base 

10.  Their properties are similar, but, for a formula containing a logarithm with a particular 

argument, the value of this formula depends on the base of the logarithm.  With a general log

arithm to base b other than 10 we need not be concerned; the logarithms of interest are essentially 

thus ( )log10 x  and ( )loge x , of which the latter is commonly expressed as ( )ln x .  Independent of the 

value of a base, a or b, within an appropriate range, for real positive x and y and  ≠ y 0, the laws of 

logarithms are 

•  = ( )logb b 1

•  = ( )log 1 0

•  =  + ( )log x ( )log y ( )log x y ,

•  =  − ( )log x ( )log y








log

x

y
,

•  = ( )log x
n

n ( )log x , 

•  = b

( )log
b

x

x , and



•  = ( )loga x
( )logb x

( )logb a

     For a logarithm of a number expressed as a real number with embedded decimal point, the 

digits preceding that point constitute the characteristic of that logarithm and the digits following 

that point constitute the mantissa.  For a briggsian logarithm of a number greater than unity, the 

characteristic is positive and its value is the number of digits preceding the decimal point of the 

number, minus unity; for a briggsian logarithm of a number less than unity, the characteristic is 

negative and its value is the number of zero digits following the decimal point of the number, plus 

unity.  An antilogarithm is a number corresponding to a given logarithm.    

    Logarithmic and exponential functions are hence interrelated in that one is the inverse of the 

other, as shown above.  In general, if function f  be defined for a given domain ( )d f  and a range of 

values of  ( )f x  be specified with ( )r f , and if function g have domain ( )r f  and range ( )d f , for any x 

in ( )d f  there is an unique value of ( )f x  for which ( )g  = ( )f x x .  A function that satisfies these 

requirements is termed monomorphic or single-valued, or a function "1:1":  each such function has 

an inverse function, which is also 1:1.  For instance, for the canonical exponential function ( )d exp  

= [ ],−∞ ∞ , and ( )r f  = [ ],0 ∞ , and ( )d ln  = [ ],0 ∞  with ( )r ln  = [ ],−∞ ∞ .  For any r > 1, the natural 

logarithm of r, or ( )ln r , is definable such that it becomes the area of a region between lines  = x 1 

and  = x r and between the abscissal axis, pertaining to x and on which  = y 0, and a curve 

representing a graph  = y
1

x
.

     To alter the base to b, we use  = ( )logb x
( )ln x

( )ln b
, or, for a base b of logarithms less than unity, 

( )logb x  becomes simplified to −
( )ln x

( )ln b
 .  Logarithmic equations are susceptible to extraneous 

solutions.   

     Logarithmic formulae arise in many chemical contexts, such as

•   = pH − ( )log10 aH+  in terms of activity of hydrogen ion H 
+
;

• Debye-Huckel limiting law,  = ( )log γ+- −A z+ z- I, for ionic strength I in terms of mean activity 

coefficient γ+-, charges z+ and z- on positive and negative ions; coefficient A is a collection of 

factors that takes into account the temperature and the solvent;

• Clausius-Clapeyron equation,  = 










ln

P2

P1

∆ Hvap

R
 (  − 

1

T1

1

T2

),  relating the vapour pressures P1 at 

temperature T1 and P2 at T2 to the enthalpy of vapourization ∆ Hvap;

• Nernst equation,  = Ecell  − E
o

R T

z F
 ( )ln Keq , relating electromotive force or cell potential Ecell to 

the standard potential E
o
 for that cell, with gas constant R, temperature T, number z of electrons 

transferred in the cell reaction, Faraday constant F, and equilibrium quotient Keq;



• Beer-Lambert law,  = 








ln

Io

I
A = ε c l, relating absorbance A to a ratio of intensity of radiation 

incident Io on, and transmitted I , through an absorbing medium of concentration c and length l 

of optical path, with absorption coefficient ε;

• Boltzmann relation,  = S k ( )ln Ω , relating entropy S to number Ω of microstates that correspond 

to a particular observed thermodynamic macrostate, with Boltzmann constant k.

    With the preceding summary of mathematical principles, we begin our exploration of 

mathematical topics pertinent to their implementation and to chemical applications with a survey 

of basic terms -- grammar and syntax -- in the language for numeric and symbolic computation 

that is Maple.  As this mature processor for symbolic computation has capabilities much more 

numerous and diverse than a merely numeric computing language, such as Fortran, so there are 

correspondingly abundant terms and constructs in this language.  An effective use of Maple in 

chemical, or other, applications requires an acquaintance with these terms -- not all of them, but a 

subset likely to be important for envisaged applications.  Even though familiarity with a small 

subset of Maple's commands and operators, such as those in section 0.21, suffices for many 

common purposes, acquaintance with a larger subset is helpful so that one can retain a notion of 

what might be accomplished when a necessity arises; invoking Help in the menu bar on a 

particular topic, as described in section 1.01, can then refresh and expand one's knowledge of a 

less familiar operator that can be accordingly applied as required.  The usage of commands and 

operators becomes meaningful within mathematical contexts that exhibit their properties and 

limitations.  Although such terms and contexts might, at first glance, seem remote from chemistry, 

subsequent and genuinely chemical applications depend directly upon them.  A chemist -- at 

whatever level -- benefits from becoming at least acquainted with many terms, so to facilitate 

progress towards solution of relevant problems when an important chemical application arises.

     We explain in section group 1.1 how to perform simple arithmetical operations with Maple, 

and introduce commands to treat numbers in various collections; in section group 1.2 we 

manipulate algebraic quantities and equations, and we solve equations, prefatory to working with 

elementary functions in section groups 1.4 and 1.5 and with operations of calculus in subsequent 

chapters.  In section group 1.3 we distinguish between a formula and a function, and introduce a 

simple method to form a function for a particular application.  Section group 1.4 describes the 

properties of exponential functions, and  section group 1.5 logarithmic functions.  In so 

proceeding, we introduce many commands and operators, in contrast with few in some subsequent 

chapters; a working acquaintance with commands or statements of types described here enables 

one to undertake significant calculations for chemical applications with advanced mathematical 

methods but few additional commands.

   summary of chapter 1

     In this chapter we learn how, with symbolic computation, to perform arithmetic, in section 

group 1.1, and algebra, in section group 1.2, to form our own functions in section group 1.3, and 

to work with exponential functions in section group 1.4 and logarithmic functions in section 1.5.  

Most operations appearing for illustration here we might perform manually with little effort, 

although, as expressions become complicated, we appreciate how a symbolic processor such as 



Maple can spare us tedious manipulation that might be generally incidental to chemical 

significance.  More important than particular arithmetical and algebraic operations is an 

acquisition of at least an inkling of a manner in which we can do arithmetic and mathematics with 

a computer; although we must conform to the conventions of the design of a particular symbolic 

processor, a benefit of this subservience is that we thereby become master of a great mathematical 

capability, applicable to solve problems of chemical, technical or other nature in time to come.  

When we combine this knowledge of generally primitive operations expounded in chapter 1 with 

progressively higher mathematical and statistical capabilities developed in seven succeeding 

chapters in part I, we form a strong basis upon which to attack sophisticated chemical problems in 

chapters in part II. 

     Besides properties and capabilities of various commands and operators introduced in this 

chapter, one must be aware of a distinctive property of a computer programme for symbolic 

computation such as Maple, namely that a symbol such as x or y can signify two disparate 

meanings:  a symbol might denote an independent variable that has no value other than itself, and 

that might accordingly be called atomic (type atomic) or kernel, or a symbol might denote a name 

of a quantity as a dependent variable that has a value in terms of either a number or an expression 

involving other and atomic variables; such symbols might coexist in general usage at any point in 

a calculation.  Other essential practices that one learns early on acquaintance with Maple are a 

necessity to end each statement with colon : or semicolon ;, a distinction between operators for 

equality = and assignment :=, and the need of an explicit operator * for multiplication -- implicit 

multiplication is not practicable with Maple.  Many errors of a novice user of Maple involve 

precisely these aspects.

 chapter 2    Plotting,  geometry, trigonometry and functions 

  2.0  overview and principles  

     In this chapter, after we introduce the powerful plotting capabilities of Maple, we use graphs to 

depict the properties of formulae, functions and geometrical objects. We relate trigonometry and 

complex numbers, and undertake some complex analysis.  Much of the discussion of plotting in 

section group 2.1 and of procedures in section 2.601 is concerned with the implementation of 

mathematics with processor Maple, but such information is invaluable for the purpose of 

supporting a profound understanding of mathematical principles and concepts and their 

implementation for applications in chemistry.  Although in chapter 1 there was minimal usage of 

plots, the reason was not their limited value but rather that their active use involves a substantial 

complement of commands and operators that become more meaningful when an acquaintance 

with basic mathematics has been assured.  In combination with the arithmetic, algebra and 

elementary functions expounded expansively in chapter 1, this chapter constitutes a strong 

foundation for higher mathematics to follow, including calculus, linear algebra, differential and 

integral equations, and statistical applications, and those topics in turn for the applications in 

chemistry in part II. 

plotting  

     A graph is a drawing that exhibits geometrically a relation between quantities in various sets, or 



between numbers, by means of lines, points and other features plotted with respect to coordinate 

axes.  Graph theory is an entire abstract branch of mathematics concerned with application of 

planar graphs and their generalizations, points or vertices and line segments that connect vertices, 

applied in the study of topology and combinatorial analysis and cognate topics, of which we 

discuss chemical applications in chapter 11.  For chemical purposes we here restrict our attention 

merely to plotting points, curves and objects in two dimensions, or within 

pseudo-three-dimensional displays, to illustrate the properties of, and the relations among, 

quantities of interest.  Graphs of other forms, such as a bar chart or pie chart, have applications in 

the display of numerical data, for instance for statistical purposes.

     The graph of an equation in two variables is the set of all points of which the coordinates 

satisfy the equation.  An approach to describe a function -- some ( )f x  as a formula, in terms of a 

mapping from numbers in one set x, with or without units, as input, to another number y, as output 

and with or without its corresponding units, provides no simple visualization of a way in which 

output relates to input; employing graphical representations as plots, we improve our 

understanding of functions of one or two variables.   For a particular numerical value of x as a 

single independent variable in some formula ( )f x , we evaluate numerically ( )f x  to form an 

ordered couple, or duple, expressed symbolically as ( ,x ( )f x  ), signifying  values for (abscissa, 

ordinate), according to terms specifying coordinates attributed to Leibniz.  One method to describe 

the position of a point in a plane is to use as reference two intersecting lines, not necessarily 

perpendicular, called axes, as a frame of reference for that point; the point of intersection of these 

reference lines is called the origin.  In a vertical plane, one reference line is conventionally 

horizontal, called the abscissal axis, typically accorded a symbol x in an abstract mathematical or 

geometric application but designated any appropriate symbol as an independent variable in a 

chemical or physical context; another line is conventionally vertical, called the ordinate axis, and 

typically accorded a symbol y corresponding to x, or another appropriate symbol, as a dependent 

variable; this system of reference is known as a cartesian or rectangular system of coordinates, 

after Descartes who founded analytic geometry among other mathematical innovations.  A point P 

becomes coordinated to the reference frame by means of two directed line segments, one parallel 

to each axis, that intersect at that point; the distance and sense along the abscissal axis corresponds 

to the value of an abscissa of the point, whereas the distance and sense along the ordinate axis 

corresponds to the value of its ordinate.  We mark on a sheet of traditionally ruled graph paper a 

point such that the numerical value of x indicates the distance of that point from one reference line 

and the numerical value of ( )f x  indicates the distance of that point from another reference line 

perpendicular to the former reference line; that point hence represents an ordered couple.  With 

further points formed from other ordered couples obtained on incrementing or decrementing x by a 

constant amount and evaluating the corresponding value of ( )f x , we see a pattern in which we can 

join each two adjacent points with a short and smooth curve, or even just a straight line if points 

are close together.  The total curve represents a graph of formula ( )f x  over a certain range, or 

partial domain, of x.  A point ( ,x ( )f x ) is on a particular curve if its coordinates satisfy the equation 

of that curve, which would be  = y ( )f x  explicitly or  = ( )F ,x y 0 implicitly.  A locus is a path traced 

by a point that moves according to a given condition; the locus of an equation is a geometric 

figure of which any point thereon satisfies that equation; the locus of an equation, or inequality, is 



defined as the totality of all points of which the coordinates satisfy that equation, or inequality, and 

only those points.  Some graphs are recognisable to pertain to a well known geometric feature, 

such as a straight line or a circle, whereas another graph might not be an entirely smooth unbroken 

curve but possess a discontinuity.  The laborious exercise of constructing by hand such a graph we 

avoid by utilising Maple's facilities, for which a short command -- or even merely applying a 

computer mouse -- suffices to generate a meaningful plot.  In preliminary instances before this 

chapter during our survey of use and availability of important functions contained in Maple's 

library, we employ Maple's facility smartplot to avoid encumbering prematurely our 

explanation of functions with details of producing graphical displays; we here proceed to describe 

powerful commands for plotting in various forms. 

     To obtain, from a graph of ( )f x , the graph of  + ( )f x a, we translate a units parallel to the 

ordinate axis in an increasing value of ordinate; the graph of  − ( )f x a we translate a units parallel 

to the ordinate axis in decreasing value of ordinate; the graph of ( )f  + x a  we translate a units 

parallel to the abscissal axis in a decreasing value of abscissa; the graph of ( )f  − x a  we translate a 

units parallel to the abscissal axis in an increasing value of abscissa; the graph of − ( )f x  we reflect 

at the abscissal axis, and the graph of ( )f −x  we reflect at the ordinate axis.  Combinations of these 

operations that are not reverse of each other are practicable.  A graph in plane xy represents a 

formula  = y ( )f x  of a function f provided that any vertical line, of form  = x a for any number a, 

intersects that graph in at most one point; some functions have a complicated dependence on x 

such that multiple intersections occur along a vertical line.

     As a geometric figure is a graphic realization of a formula, a curve provides a general 

geometric representation of a formula  = y ( )f x ; for inversion to be unique there must exist a 

mapping one to one of a value of x to a value of y:  either ( )f x  must be strictly monotonic within 

its domain of definition or otherwise it must be expressible piecewise as functions in a set, each of 

which must be strictly monotonic on its appropriately chosen domain.  The concept of a 

parametric representation eliminates the necessity of subdivision of the domain and allows even 

curves with loops.  Instead of considering an explicit functional form f to relate one variable x to 

another variable y, or an implicit relation such as  = ( )F ,x y 0, we consider both x and y separately 

as two formulae in terms of an auxiliary or parametric variable such as t, so  = x ( )u t  and  = y ( )v t , 

with t within a domain [ ,α β]; such a representation is convenient for an expression of coordinates 

of an object undergoing curvilinear motion.  In some cases the ranges of dependent variables are 

more readily determined in parametric form than in an explicit relation.  In some relations, for 

conventional variables independent x and dependent y, the latter would be a multiply valued 

function of the former, whereas in a parametric form both ( )x t  and ( )y t  are single-valued 

functions of parametric variable t.  Translations of a locus are readily implemented when one 

employs a parametric representation.  For a case  = y t
2
 and  = x t for t in a domain [ ,−∞ ∞], the 

parametric variable can be eliminated between the two formula to yield  = y x
2
, for which the 

geometric representation is a parabola that lies in the upper half-plane and is symmetric about the 

ordinate axis with its vertex passing the origin.  In other circumstances, one can not eliminate the 

parametric variable, as expected because a parametric representation is more general than an 

explicit representation.  When x and y be trigonometric functions of a third variable t, and with 



axes x and y oriented mutually perpendicularly, values of x and y obtained in this manner yield two 

trigonometric curves at right angles; such figures are called Lissajous figures.  A parametric 

representation of  a particular curve is in general not unique:  altering the parametric variable 

yields an alternative algebraic representation that has the same geometric representation.  

     As an alternative to cartesian coordinates in a plane, polar coordinates, typically expressed as (

,r θ), become defined relative to an origin generally taken as a pole from which extends in one 

direction, typically that corresponding to the positive direction of the abscissal axis in cartesian 

coordinates, a half-line called the polar axis; the other coordinate is the polar angle through which 

the polar axis must be rotated, in a counter-clockwise sense, to coincide with a line segment from 

the origin to a particular point.  The coordinates of the pole are (0, θ) for arbitrary θ; for any other 

point the coordinates are ( ,r  + θ 2 n π) with integer n, hence of uncountable number.  In polar 

coordinates a curve is defined as the locus of points that satisfy an equation explicitly as   = r ( )f θ  

or its inverse, or implicitly as  = ( )F ,r θ 0.  For the translation from cartesian coordinates ( ,x y) in a 

plane to polar coordinates ( ,r θ), the pertinent relations are 

 = r  + x
2

y
2
,     = ( )cos θ

x

 + x
2

y
2

,     = ( )sin θ
y

 + x
2

y
2

 ,

so  = ( )tan θ
y

x
 with a prospective ambiguity because of principal values.  For some problems, 

expression in terms of polar coordinates rather than cartesian coordinates might produce a 

simplification.

     For three spatial dimensions, the most common systems of coordinates are cartesian, for which 

a point is specified as ( , ,x y z), or spherical polar, for which a point is specified as ( , ,r θ φ).  A 

surface of an object in three dimensions is effectively a two-dimensional object.

geometry

     We treat descriptive geometry, rather than formal axiomatic geometry that is less applicable to 

such chemical applications as molecular structure. For this purpose we require four concepts, of 

which the latter three pertain specifically to geometry.  As explained and applied in section group 

1.1, a set is considered to be a collection, possibly infinite, of distinct numbers or objects, that 

becomes an entity in its own right, and with an identity dependent upon only its members.  A point

, which is a basic element in axiomatic geometry, in a cartesian space is an element that is located 

according to a single n-tuple of coordinates;  n, the number of dimensions of a formal space under 

consideration, is typically two or three for general conditions that allow plotting, but informally a 

point is a geometrical element having no dimensions.  In cartesian geometry a line is a straight 

geometric figure having extension in only one dimension, known as length -- which is infinite -- 

but no thickness; a plane is a geometrical figure described as a flat surface, thus having extension 

in only two dimensions described as length and width -- each of which is infinite so that the plane 

has no edges -- but no thickness.  According to axiomatic geometry these four concepts are 

undefined terms in a sense that each is assumed rather than provable.  A line is assumed also to 

constitute points in a set; a line segment is a part of a line lying between two of its points, whereas 

a ray is a half-line extending from a particular point.  In a cartesian space of two dimensions, any 

two distinct points define a line of which the segment between them is the least path; in three or 

more dimensions the direction of a line is given by its direction cosines.  An angle is defined 



according to the rotation of a segment of a straight line about an axis perpendicular to that line, 

and forms thus a geometric figure formed between two distinct rays or line segments with a 

common point or vertex, or by regions of two distinct planes that extend from a common line; the 

fundamental unit of measurement of an angle is radian.  A bisector of an angle divides the interior 

of that angle into two equal parts.  According to an euclidean space, two distinct points uniquely 

determine a line.  Points in any set constitute a geometric figure, of which a line or a line segment 

is one particular type.  Three distinct points not collinear define a triangle, for which those points 

serve as vertices and segments of lines between each couple of points serve as edges, and 

analogously for polygons with more numerous vertices; a polygon is a closed plane figure 

bounded by three or more straight line segments that terminate at the same number of vertices and 

that intersect at only those vertices.  The sum of interior angles of a polygon with n edges is 

2 ( ) − n 2 π rad, but the sum of exterior angles is 2 π rad independent of the number of edges.  A 

regular polygon has all edges of equal length; the apothem of a regular polygon is the distance 

from the centre to any vertex, and the area of such a polygon is a product of half the length of an 

apothem and the perimeter.  A convex polygon has no interior angle greater than π rad.  

     Two triangles are congruent if

• two angles and a side have the same values, or

• three sides have the same lengths, or

• two sides and the included angle have the same values.

Many relations between the sides and angles of a triangle involving trigonometric functions appear 

in the discussion of trigonometry below. 

     A simplex is a geometrical figure with line segments as edges, or sides, and vertices for which 

both edges and vertices number one more than the dimensions of a pertinent space; for a space of 

two dimensions the simplex is hence a triangle, or for a space of three dimensions a tetrahedron, 

not necessarily regular.  Any three distinct points in a plane, not collinear, define a circle.  

     A polyhedron is a closed solid geometrical figure, or its surface, that is bounded by at least four 

polygons not coplanar, so that pairs of faces meet at an edge and three faces meet at a vertex; such 

a figure is hollow.  Five regular polyhedra -- a tetrahedron with four equilateral triangular faces, a 

cube with six square faces, an octahedron with eight equilateral triangular faces, a dodecahedron 

with twelve equilateral pentagonal faces and an icosahedron with twenty equilateral triangular 

faces -- have equal lengths of edges and angles between faces at vertices.  For any polyhedron, 

regular or irregular, in three spatial dimensions, a general relation between the numbers of faces, 

edges and vertices is

 =  +  − vertices faces edges 2.

A prism is a polyhedron with two parallel and congruent faces, called bases, which make all other 

faces parallelograms; its volume is a product of the area of its base and the perpendicular distance 

between the planes of the bases.   A pyramid is a polyhedron of which one face, considered to be 

the base, is a polygon and other lateral faces triangular with a common vertex, called the apex.  A 

cylinder is a special case of a prism with a circular base; a cone is a special case of a pyramid with 

a circular base.  For a hollow right circular cone with an horizontal base, an horizontal slice above 

the base produces a circle and a vertical slice produces an hyperbola; a slice at an acute angle with 



the vertical axis produces an ellipse if the slice does not pass the base or a parabola otherwise:  

these geometrical figures in two dimensions are thus conic sections of which circle and ellipse are 

closed curves and hyperbola and parabola open. 

     For an angle of which the vertex is at the centre of a circle, this central angle intercepts an arc 

on the circumference of that circle, and the arc subtends that central angle.  The ratio of the arc to 

the radius of the circle is a measure of the extent of the angle subtended by that arc, with unit 

radian; 1 radian is a measure of a central angle that intercepts an arc of a circle equal to its radius.  

A sector of a circle is a region in a plane with boundaries comprising two radii and the intercepted 

arc.  Relative to an origin and a horizon as a base, an angle of elevation implies a rotation of a line 

segment in a counterclockwise direction, whereas an angle of depression implies a corresponding 

rotation in a clockwise direction.    

     The location of a point in a plane is related to a system of coordinates, generally cartesian 

coordinates that imply an ordered couple of real numbers in R 
2
, and analogously for location of 

points in three spatial dimensions with an ordered triple of real numbers in R 
3
.   A location within 

a plane is thus specified by reference to two number lines, called axes, which are at a right angle to 

one another according to conventional cartesian coordinates; in a vertical plane in two dimensions, 

one axis generally drawn horizontally serves as abscissal axis, commonly associated with letter x, 

and another axis corresponding vertically serves as ordinate axis, commonly associated with letter 

y.  For a particular point within that plane, the real number along each axis that defines a location 

becomes one member of that couple, with the number pertaining to the abscissal axis preceding 

the number pertaining to the ordinate axis.  For a point within three spatial dimensions, the 

vertical axis is commonly associated with letter z.  Although graphic depiction of points in spaces 

of dimension greater than three is impracticable, the pertinent algebraic operations, or vector 

operations (cf section group 6.2), are readily extensible to arbitrary dimensions.  For two points in 

plane xy with cartesian coordinates ( ,x1 y1) and ( ,x2 y2), the distance between the two points has the 

magnitude

  = d  + ( ) − x2 x1

2
( ) − y2 y1

2
 ,

and the midpoint between those two points on a segment of a straight line is 

( ,
 + x2 x1

2

 + y2 y1

2
 ) ; 

these formula are extensible to multiple dimensions in an obvious manner.  The slope of the 

straight line passing those two points in two spatial dimensions is 

 = m
 − y2 y1

 − x2 x1

 ,  

which is a ratio of the rise in the numerator and the run in the denominator.  The slope of a line 

parallel to the abscissal axis is accordingly zero, whereas the slope of a line parallel to the ordinate 

axis is undefined.  The equation of that line passing the two specified points is accordingly

•   = 
 − y y1

 − y2 y1

 − x x1

 − x2 x1

 in a form with two points ( ,x1 y1) and ( ,x2 y2), or



•   − y y1= m ( ) − x x1  in a form with slope m and one point ( ,x1 y1), or

•   = y m ( ) − x a   in a form with slope m and abscissal intercept a, or 

•   = y  + m x b in a form with slope m and ordinate intercept b, or

•  =  + 
x

a

y

b
1 in a form with abscissal intercept a and ordinate intercept b.  

Two lines are parallel only if their slopes are equal --  = m1 m2, so the lines lack an intersection, 

whereas two lines are mutually perpendicular or orthogonal if their slopes conform to  = m1 −
1

m2

 .  

The inclination of a line is the angle of counter-clockwise rotation in an interval [0, π[ from the 

positive abscissal axis to that line, whereas the declination is the corresponding angle of rotation 

in a clockwise sense.  

      Symmetry is an important concept in geometric constructions.  Two points are symmetric with 

respect to a line if that line is a perpendicular bisector of a segment of a straight line joining those 

points.  A graph is symmetric with respect to a line if all points of that graph occur in pairs 

symmetric with respect to that line.  An equation in x and y has its graph symmetric with respect to 

axis x if that equation is unaffected on replacing y by  −y -- such as  = y
2  + x 1, with respect to axis 

y if that equation is unaffected on replacing x by −x -- such as  = y  +  + x
4

2 x
2

1, and with respect to 

the origin if that equation is unaffected on replacing both x by −x and y by −y, such as 

 = x
2

( ) − 1 y
2

1; the former operation is equivalent to reflexion at axis y, the next operation 

analogously reflexion at axis x, and the latter operation inversion at the origin.  Analogous 

arguments apply to symmetry of geometrical constructions in a physical space with three 

dimensions.

     In evaluating a point ( ,x y) of which these coordinates satisfy a particular equation, we consider 

only real values.  When a variable appears in an equation to an even power, a solution for that 

variable might involve a square root (or other even root).  A condition that a negative number has 

no real square root might then limit the extent of a curve.  For instance for  =  + x
2

y
2

4, solution 

for x yields +  − 4 y
2
; for | y | > 2, the quantity under the surd sign has a negative value; the extent 

of the curve along axis x is thus limited to an interval [ ,−2 2], and likewise along axis y by 

symmetry.  The points at which a particular curve intersects an axis of a coordinate system is 

called an intercept; in two dimensions an abscissal axis for an abstract or pure algebraic case 

typically bears a label x, and the ordinate axis analogously y.  In this case, we find an intercept of 

axis x on setting  = y 0, and a y intercept analogously on setting  = x 0, readily using commands 

solve or fsolve as discussed in section 1.208; such a value of ( ,x 0) or ( ,0 y) might be a 

stationary or critical point that one locates on plotting with algcurves[plot_real_curve]

, as described in section 2.103.  For a vertical plane containing a system of axes, an equation of a 

horizontal line passing point (a,b) is  = y b, whereas the equation of a vertical line passing that 

point is  = x a.

     As a point P( ,x y) moves in a plane along a particular curve farther from the origin, the least 



distance between that point and a fixed straight line might tend to zero; such a line would then 

become an asymptote of that curve.  In a case of a ratio   = y
( )Q x

( )S x
 of polynomials ( )Q x  and ( )S x  

that lacks a common factor, if  = x c be a root of ( )S x  in the denominator, as the x coordinate of a 

tracing point P( ,x y) approaches  = x c,  → `(x-c)` 0 and  → y ∞; hence a vertical line  = x c becomes 

an asymptote for that curve, and such a value of x becomes a pole of rational expression y. Such a 

rational function has then a discontinuity along axis x; a few commands for locating such a 

discontinuity are introduced in section 3.103.  Likewise, a ratio of polynomials in y in a form 

 = x
( )Q y

( )S y
 might exhibit horizontal asymptotes, or discontinuities along axis y.  

     According to euclidean geometry, any point on a line might be selected as the origin of a 

system of coordinates with coordinate 0, and any other point might be selected as the unit point 

with coordinate 1.  Every point on a line has thus a real number as its coordinate, and every real 

number has a point as its graph.  As an euclidean line involves real numbers, points in a set can be 

placed in unitary correspondence with real numbers in their set.  For a line segment AB, a point 

thereon that is not an end point, such as A or B, is an interior point.  The length of a line segment 

is a measure of that segment; two line segments that have the same length are congruent line 

segments.  Two line segments that have a common end point form a plane angle with line 

segments as sides and a common end point as a vertex.  If angle α have as its measure 0, no matter 

whether radian or degree, the two segments are collinear; for 0 < α < 
π

2
 rad  =  90 

o
, this angle is 

acute; for α =  
π

2
 rad  =  90 

o
, a right angle, and the line segments are perpendicular; for 

π

2
 rad  =  

90 
o
  < α < π rad  = 180 

o
, an obtuse angle; for α  =  π  = 180 

o
, a straight angle, and for π rad  = 

180 
o
 < α < 2 π rad  =  360 

o
, a reflex angle.  A reflex angle is hence the larger of two unequal 

angles between two distinct line segments that meet at a vertex.  Any two angles with equal 

measure are congruent angles.  A general closed geometrical figure with coplanar and 

non-intersecting edges is a polygon, of which a particular figure with three coplanar sides is a 

triangle, with four coplanar sides is a quadrilateral or tetragon, with five coplanar sides is a 

pentagon, with six coplanar sides is a hexagon, et cetera.  A rectangle denotes the periphery of a 

rectangular figure, and analogously for other polygons.   A regular polygon has equal interior 

angles and equal lengths of adjacent edges.  A quadrangle is a plane figure comprising four points 

each of which is joined by at least two lines to two other points; the line segments between 

vertices might intersect so that this figure is not a quadrilateral or tetragon, and hence not a 

polygon; a quadrangle is convex and hence a quadrilateral if both diagonals lie inside, re-entrant if 

one lie outside and crossed if both lie outside.  A salient angle is less than π rad = 180 
o
, and an 

interior angle of a polygon is salient if its vertex point outwards.  

     A conic section is a curve formed where a plane intersects a right circular cone -- of type circle, 

ellipse, parabola or hyperbola.  A circle constitutes the set of all points in a plane on its 

circumference or periphery equidistant from a fixed point called the centre; the distance from 

centre to circumference is the radius.  The equation of a circle in cartesian coordinates in standard 



form is 

 =  + ( ) − x h
2

( ) − y k
2

r
2
, 

with the centre at ( ,h k) and radius r; the diameter  = d 2 r, the length of the circumference is π d 

and the area of the planar surface within the circle is 
π d

2

4
 or π r

2
.  A sector of a circle is a region 

bounded by two radii and the intercepted arc; the area of this sector is 
1

2
 r

2 θ, in which angle θ is 

measured in radians.  

     An ellipse constitutes the set of all points on its periphery or circumference of which the sum of 

distances from two fixed points, called foci, is constant; the two foci define a line called the focal 

or major axis, and the centre of the ellipse is midway between these foci; the vertices of an ellipse 

lie at the intersections of this axis with the periphery.  With a system of cartesian coordinates, the 

equation of an ellipse in standard form is 

 =  + 
( ) − x h

2

a
2

( ) − y k
2

b
2

1; 

with the centre of the ellipse located at the origin such that , = h 0  = k 0, the foci are located at (+c

,0) with  = c
2  − a

2
b

2
, and the vertices are located at (+a,0).  The length of the major axis between 

these vertices is 2 a, the length of the minor axis perpendicular to the major axis is 2 b, and the 

ellipse is symmetric to reflexion across both these axes; the eccentricity of the ellipse, which is 

here a measure of its deviation from a circular shape, is

  = e
c

a
  =  

 − a
2

b
2

a
 .  

For semi-major axis a and semi-minor axis b, parametric equations to define an ellipse are 

, = x a ( )sin θ  = y b ( )cos θ , or equivalently , = x a ( )cos θ  = y b ( )sin θ  for  < 0 θ < 2 π.

     A parabola constitutes the set of all points in a plane equidistant from a fixed line, the directrix, 

and a fixed point, the focus, not on that line, and this parabola is symmetric to reflexion across its 

axis that is perpendicular to the directrix and contains the focus; the vertex of a parabola occurs at 

the intersection of the curve with that axis.  A canonical equation of a parabola is 

 = y
2

4 a x, 

which yields a curve symmetric about axis x with its vertex at the origin, its focus at (a,0) and a 

distance 2 a between focus and directrix.  An equivalent relation  = y 4 a x
2
 is symmetric about axis 

y; for an equation  = y  +  + a x
2

b x c completing the square enables rewriting in a form 

 = y  + a ( ) − x h
2

k, for which an axis of symmetry is  = x h; the parabola opens upward if a > 0 or 

downward if  < a 0.    

     An hyperbola constitutes the set of all points in a plane with a constant difference of length 

between two fixed points, the foci; an hyperbola comprises two branches asymptotic to two 

intersecting fixed lines.  A standard equation to describe an hyperbola is

  =  − 
x

2

a
2

y
2

b
2

1, 



for which the transverse axis coincides with axis x and the conjugate axis coincides with axis y.  

The distance between the vertices on the transverse axis, the length of the transverse axis, is 2 a, 

the length of the conjugate axis is 2 b, the centre is midway between these two vertices, and the 

asymptotes are y = + 
a

b
 x; the foci are located at (+c, 0) and the eccentricity is  = e

c

a
, with 

 = c
2  + a

2
b

2
.  A directrix is defined for also an ellipse and an hyperbola but not for a circle.  

     By means of polar coordinates, a curve of a conic section -- ellipse, parabola, hyperbola -- is 

describable as the locus of a point that moves so that a ratio e of its distances from a fixed point 

and a fixed line remains constant, in which e is the eccentricity as defined above; for an ellipse the 

range of e is the closed interval ]0,1[, for a parabola  = e 1, and for an hyperbola e > 1.  An ellipse 

and an hyperbola are also definable as the loci of a point that moves so that the sum and 

difference, respectively, of its distances from two fixed points remain constant.  Fermat showed 

that every equation of first or second degree in one independent variable is reducible to that of a 

line or a of a conic section.  For a quadratic equation reduced to a form  =  +  + x
2

a x b 0, a 

graphical solution is obtained on plotting two points at (0,1) and ( ,−a b) and drawing a circle with 

the distance between these two points as diameter; two intercepts of the circle with the abscissal 

axis are the roots of this equation. 

     For centred conic sections with a > 0, b > 0 and c > 0,   =  + 
x

2

a
2

y
2

b
2

1 is an equation in normal 

form describing the locus of points defining an ellipse with major axis x if a > b or major axis b if 

 < a b,  =  + 
x

2

a
2

y
2

b
2

−1 definiing an imaginary ellipse, and  =  + 
x

2

a
2

y
2

b
2

0 defining a double point; 

 =  − 
x

2

a
2

y
2

b
2

1 describing an hyperbola with two lobes along axis x,   =  − 
y

2

b
2

x
2

a
2

1 with two lobes 

along axis y,  =  − 
x

2

a
2

y
2

b
2

0 a double line bisecting axes x and y.  For a non-centred conic section 

 = y a x
2
 is an equation in normal form describing the locus of point defining a parabola symmetric 

about positive axis y,   = x a y
2
 is an equation in normal form describing the locus of point defining 

a parabola symmetric about positive axis x,  = y
2

0 defines a double line along axis x,  = y
2

a
2
 

defines two lines as y = + a, and  = y
2 −a

2
 defines two imaginary lines.  

     In three spatial dimensions, a quadric surface is a graph of an equation that is quadratic in 

coordinates ,x y and z of cartesian type, for instance; such an equation has a general form

 =  +  +  +  +  +  +  +  +  + A x
2

B y
2

C z
2

D x y E y z F z x G x H y I z J 0

in which , , ,A B ... J are parameters of which the relative values determine the shape of the 

surfaces, which might be a cylinder elliptic, hyperbolic or parabolic, an ellipsoid, an elliptic 

paraboloid, an elliptic cone, an hyperbolic paraboloid, or an elliptic hyperboloid of one or two 

sheets.                       



     Likewise in normal form, an equation  =  +  + 
x

2

a
2

y
2

b
2

z
2

c
2

1 defines in three spatial dimensions a 

surface designating an ellipsoid,  =  +  + 
x

2

a
2

y
2

b
2

z
2

c
2

−1 defines an imaginary ellipsoid, and 

 =  +  + 
x

2

a
2

y
2

b
2

z
2

c
2

0 defines an origin;  =  +  − 
x

2

a
2

y
2

b
2

z
2

c
2

1 defines an hyperboloid of one sheet, 

 =  +  − 
x

2

a
2

y
2

b
2

z
2

c
2

0 defines a double cone, and  =  −  − 
x

2

a
2

y
2

b
2

z
2

c
2

1 defines an hyperboloid of two 

sheets, all symmetric about axis z.  Furthermore,  =  + 
x

2

a
2

y
2

b
2

2 c z defines an elliptic paraboloid, 

 =  − 
x

2

a
2

y
2

b
2

2 c z defines an hyperbolic paraboloid having a col,  =  + 
x

2

a
2

y
2

b
2

1 defines an elliptic 

cylinder,  =  + 
x

2

a
2

y
2

b
2

−1 defines an imaginary elliptic cylinder,  =  + 
x

2

a
2

y
2

b
2

0 defines a degenerate 

elliptic cylinder that coincides with axis z,  =  − 
x

2

a
2

y
2

b
2

1 defines an hyperbolic cylinder,  =  − 
x

2

a
2

y
2

b
2

0 

defines two intersecting planes,  = x 2 c y
2
 defines a parabolic cylinder,  = x

2
a

2
 defines two parallel 

planes at x = + a, and  = x
2

0 defines a double plane.

     All planar geometry considered above corresponds to the euclidean system attributed to Euclid, 

who composed the first systematic discussion of geometry.  According to this system as stated by 

Playfair, for a given line and a separate point, there is at most one line through that point that is 

parallel to the given line.  That postulate is inapplicable to other geometries, such as the 

hyperbolic plane in which, according to Poincare's disc model on the interior of a circle, lines are 

represented by arcs of circles that are orthogonal to the boundary circle, plus diameters of the 

boundary circle.  In this model, the distance between points P and Q within the circle is 

 = ( )d PQ








ln

XP YQ

XQ YP
; here P lies on an intersection of two arcs that are orthogonal to each 

other at that intersection, and points X and Y denote the intersections of the arc containing Q at 

the bounding circle; here XP  denotes the euclidean distance between points X and P.  A 

characteristic property of hyperbolic geometry is that the angles of a triangle add to less than a 

straight angle (π radians in euclidean geometry); in the limit as the vertices go to ∞, there are even 

ideal hyperbolic triangles in which all three angles are zero.  A non-euclidean geometry can be 

understood on picturing the drawing of geometric figures on curved surfaces, for example, the 

surface of a sphere or the inside surface of a bowl. 

trigonometry

      In contemporary mathematics, trigonometry is a branch thereof linked closely with algebra, but 

it originated as an evolution of geometry, and, in particular, of measurement of triangles.  We 

focus on the latter development because the structure of chemical matter is generally described at 

an atomic level in terms of lengths between two atomic centres and angles involving at least three 



atomic centres; trigonometry provides us with tools to express these molecular properties.  We 

introduce common trigonometric functions by means of a geometric construction; their relations 

with other algebraic quantities and other trigonometric functions emerge subsequently.  

     Rotation of a straight line about a point in two dimensions from an initial ray to a terminal ray 

causes it to sweep through an angle that we measure in various units; two directions of rotation are 

clockwise and anticlockwise or counterclockwise, of which the former is conventionally taken as a 

positive direction and the latter accordingly as a negative direction.  An angle comprises two rays 

or line segments with a common end point, called a vertex, and the two line segments are called 

sides.  Three units of rotation applicable in science and engineering are degree, radian and grad.  

According to tradition originating with or before the ancient Babylonians, a full angle is equal to 

360 
o
, so a straight angle 180 

o
 and a right angle 90 

o
, whereas an engineering unit called grad has 

a full angle equal to 400 grad, a straight angle 200 grad and a right angle 100 grad, relative to full 

angle equaling 2π rad, a straight angle π rad and a right angle 
π

2
 rad in SI unit. The practical units 

of angular measurement hence include degree, such that 180 
o
 = π rad, or grad, such that 100 grad 

= a right angle or 90 
o
 or 

π

2
 rad.  The standard position of an angle has its vertex at the origin of a 

system of cartesian coordinates in a plane and the initial ray along the positive abscissal axis; the 

standard position of an angle is defined according to the quadrant -- I, II, III or IV, 

ordinate axis  

+

|

II            |             I

                   --    ______________|______________ +   abscissal axis

|

                     III           |           IV                     

|

--

depending on the angle being acute, obtuse, reflex but less than 
3 π

2
 rad or reflex but greater than 

3 π

2
 rad respectively -- in which the terminal ray lies.  The reference angle for an angle in standard 

position is the acute angle between its terminal ray and the abscissal axis.  According to 

convention, rotating a straight line until it returns to its initial orientation sweeps through a full 

angle; a straight angle is half that full angle, and a right angle is half the latter.  A triangle that 

contains a right angle is a right triangle, whereas a triangle with all three sides of equal length, 

thus with all three angles equal to 
π

3
 rad or 60 

o
, is equilateral, with two sides of equal length, thus 

with two equal angles opposite those sides, is isosceles, and with all sides of disparate lengths 

scalene.  For a right triangle, according to a theorem of Pythagoras, the square of the length of the 

side opposite the right angle is equal to the sum of the squares of the lengths of the other two 

sides; conversely, if the lengths of sides of a triangle conform to a relation that the square of one 



side equals the sum of squares of the other two sides, the figure is a right triangle.  Two triangles 

with equal angles and corresponding sides proportional are similar.  For a right triangle, the sum 

of the other two angles must be 
π

2
 rad, and one of those two angles is the complement of the other.  

The natural, and SI, unit of a plane angle is radian, abbreviated rad, or of a solid angle in three 

dimensions is steradian, abbreviated sr.  

     Circular trigonometric functions include sine, cosine and tangent, their respective reciprocals 

cosecant, secant and cotangent, and their respective inverses arcsine, arccosine, arctangent, 

arccosecant, arcsecant and arccotangent.  For complementary angles of which a sum is 
π

2
 rad, the 

sine of one angle becomes the cosine of the other, and the cofunction of an angle is the original 

function of the complementary angle analogously for the other circular functions; the value of a 

circular trigonometric function depends on only the angle that determines the terminal ray.  Two 

angles in standard position are coterminal when they have the same terminal ray; coterminal 

angles have the same values of trigonometric functions.  Hyperbolic trigonometric functions 

correspondingly include hyperbolic sine, hyperbolic cosine and hyperbolic tangent, their 

respective reciprocals hyperbolic cosecant, hyperbolic secant and hyperbolic cotangent and their 

inverses hyperbolic arcsine, hyperbolic arccosine, hyperbolic arctangent, hyperbolic arccosecant, 

hyperbolic arcsecant and hyperbolic arccotangent. Hyperbolic functions sinh and cosh are related 

to a curve for a formula  =  − x
2

y
2

1, called a unit hyperbola, analogously as functions sine and 

cosine are related to a formula for a unit circle,  =  + x
2

y
2

1.  The domain of function sine is d(sin) 

= [ ],−∞ ∞  and the range or codomain is r(sin) = [ ],−1 1  , but there are uncountably many values 

of θ for which ( )sin θ  has the same value.  In relation to mapping of a function to another function 

or of one set to another set, if two sets be associated in such a way that separate members of a 

domain are coupled with separate members of their codomain, although not all members of the 

codomain need be members of a specified range, the mapping is injective.  So that sine be an 

injective function, we restrict by convention its domain to 








,−

π

2

π

2
 ; all points in this interval are 

uniquely connected with points in range [ ],−1 1 .  A domain for function cosine is analogously 

restricted to [ ],0 π ; tangent is likewise restricted to an open interval ] ,−
π

2

π

2
 [, but in this case, as 

end points are excluded, a value of tan(θ) also remains finite.  Other ranges of values of θ for 

domains of these functions are selectable as long as a monomorphic nature of each function is 

preserved.  All these circular trigonometric functions are periodic in that a period p > 0 exists such 

that  = ( )f  + x p ( )f x .  For sine and cosine functions, and their reciprocals, the period is 2 π rad, 

whereas for tangent function and its reciprocal cotangent the period is π rad.  For such a periodic 

function the amplitude is half the difference of maximum and minimum values. Two acute angles 

are complementary when their sum is 
π

2
 rad; for such complementary angles the value of a circular 

trigonometric function is equal to that of the complementary trigonometric function of the 



complementary angle, and vice versa -- for  < θ
π

2
,  = ( )sin θ









cos  − 

π

2
θ , et cetera, as shown at the 

bottom of the table below.  An angle is in a standard position if the vertex between its two 

definining rays is at the origin and the initial side coincides with the abscissal axis; for angle θ not 

a multiple of 
π

2
, the reference angle associated with θ is the acute angle, with positive measure, 

formed by the abscissal axis and the terminal side of angle θ.   

properties of circular trigonometric functions of θ  

---------------------------------------------------------------------------------------------------------------------

sine  -- sin,          domain   all real numbers,    codomain   [ ,−1 1],    period    2 π ,   amplitude  1,    

sinusoidal graph       

cosine -- cos,      domain   all real numbers,    codomain   [ ,−1 1],    period    2 π,    amplitude  1,    

sinusoidal graph       

tangent -- tan,      domain   all real numbers except +
π

2
, +

3 π

2
 ... ,      codomain   [ ],−∞ ∞  ,  period    

π ,                     

                  asymptotes   θ = +
π

2
, +

3 π

2
, ...,       θ intercepts  0, +π, +2 π ...,    other intercept    0    

cotangent -- cot,  domain   all real numbers except  0, +π, 2 π ... ,      codomain   ,[ ],−∞ −1 [ ],1 ∞  ,     

period    π ,    

                             asymptotes   θ =  0, +π, +2 π, ...,    θ  intercepts    +
π

2
, +

3 π

2
, ...,   other intercept    

undefined  

secant -- sec,      domain   all real numbers except +
π

2
, +

3 π

2
 ... ,      codomain    ,[ ],−∞ −1 [ ],1 ∞ ,       

period    2 π , 

             asymptotes   θ = +
π

2
, +

3 π

2
, ...,       θ intercept    none,    other intercept    1              

cosecant -- csc,   domain   all real numbers except  0, +π, 2 π ... ,      codomain   ,[ ],−∞ −1 [ ],1 ∞  ,     

period    2 π , 

                         asymptotes   θ =  0, +π, +2 π, ...,    θ  intercepts   none,   other intercept    

undefined             

---------------------------------------------------------------------------------------------------------------------

, , = ( )sin θ








cos  − 

π

2
θ  = ( )tan θ









cot  − 

π

2
θ  = ( )sec θ









csc  − 

π

2
θ  

, = 








sin

θ

2

2
 − 1 ( )cos θ

2
 = 









cos

θ

2

 + 1 ( )cos θ

2
,  = 









tan

θ

2

( )sin θ

 + 1 ( )cos θ
   

properties of a ( )sin  + b θ c  and a ( )cos  + b θ c  --  period  
2 π

b
 ,   amplitude  a ,  phase shift   −

c

b
 

Each circular trigonometric function is related to another through these formulae, in which for 



arbitrary value of angle θ the sign of the root is given according to the quadrant of the angle:

( )sin θ  = +  − 1 ( )cos θ 2
 , ( )sin θ  = + 

( )tan θ

 + 1 ( )tan θ 2
 , ( )sin θ  = + 

1

 + 1 ( )cot θ 2
 , ( )sin θ  = 

1

( )csc θ0

( )cos θ  = +  − 1 ( )sin θ 2
, ( )cos θ  = + 

1

 + 1 ( )tan θ 2
 , ( )cos θ  = + 

( )cot θ

 + 1 ( )cot θ 2
 , 

 = ( )cos θ
1

( )sec θ

( )tan θ  = + 
( )sin θ

 − 1 ( )sin θ 2
 , ( )tan θ  = + 

( )cos θ

 − 1 ( )cos θ 2
 , ( )tan θ  = 

1

( )cot θ

with corresponding formulae for the reciprocals of these functions.  

     Of hyperbolic trigonometric functions, both sinh and tanh are monomorphic or "1:1", whereas 

cosh is bimorphic or double-valued or "2:1":  for this reason the domain of sinh and tanh is 

[ ],−∞ ∞  whereas [ ] ≤ 0 x  for cosh.  Domains of inverse circular and inverse hyperbolic functions 

also are defined so as to be monomorphic or to display behaviour 1:1.  

     Although we introduce circular trigonometric functions here with angles as arguments, a real 

variable might equally serve as a variable, which makes a function containing such a trigonometric 

function periodic; the smallest positive number τ for which the periodic function ( )f  + x τ  = ( )f x  is 

the period.  The sum or difference of two periodic functions is also periodic.  For a general sine 

formula of type  = ( )f x α ( )sin  + ω x φ  containing parameters ,α ω and φ as constants and the 

former two also positive constants, the amplitude α is half the range of ( )f x , the period is 
2 π

ω
 and 

the phase shift is −
φ

ω
.  Replacement of a real variable with an imaginary variable in a circular 

trigonometric function annuls its periodic properties and converts it to an hyperbolic trigonometric 

function.  

     Although for the sine of an angle θ raised to a power n we might write sin 
nθ, we must compute 

this quantity as ( )sin θ n
, i.e. first finding the sine of the angle and taking the result to power n, and 

likewise for other trigonometric functions.  Likewise a notation sin 
( )−1

θ implies not the reciprocal 

of ( )sin θ  but its inverse, ( )arcsin θ .  The formula ( )sin θ , which is defined for all real θ, lacks an 

inverse, but with the domain of function sine restricted to 








,−

π

2

π

2
,  = ( )sin ( )arcsin θ θ for all θ in 

an interval [ ,−1 1]; likewise  = ( )arcsin ( )sin θ θ and  = ( )arctan ( )tan θ θ for all θ in an interval 









,−

π

2

π

2
 , but for  = ( )arccos ( )cos θ θ the interval of θ is [ ],0 π .  A function that has, as a value, a 

principal value of a function with many values is indicated conventionally by writing it with an 

initial majuscule or capital letter, such as in Sin 
( )−1

(θ), but for Maple arcsin(θ) has that 

significance.



     For a triangle with a side of length a opposite an angle of extent α, a side of length b opposite 

an angle of extent β and the other side of length c opposite an angle of extent γ, the law of sines is 

 = 
( )sin α

a

( )sin β

b
  =  

( )sin γ

c

Use of this law to solve a general triangle requires at least the length of one side and the extent of 

the opposite angle and one other side or angle, but two possible solutions might arise.  For the 

same triangle, the cosine law is for the side of length c,

 = c
2  +  − a

2
b

2
2 a b ( )cos γ

and analogously for any other side.  Use of this law to solve a general triangle requires either the 

lengths of three sides or of two sides and the extent of the included angle between those two sides.   

According to the tangent rule, 

 = 








tan

 − β γ

2

 − b c

 + b c
 









cot

α

2
 

or, with its cyclic permutations among , ,a b c and , ,α β γ,

 = 
 − a b

 + a b









tan

 − α β

2









tan

 + α β

2

  = 









tan

 − α β

2









cot

γ

2

the former case involves three angles and two sides, or just two sides and two angles in the latter 

case at the left; these formulae are also useful in solving plane triangles.  According to Heron's 

formula, the area of a triangle equals half the product of the lengths of two sides multiplied by the 

sine of the included angle: 

 = A
1

2
 a b ( )sin γ , or  = A s ( ) − s a ( ) − s b ( ) − s c   =  ρ s

in which   = s
 +  + a b c

2
 is half the perimeter of the triangle and ρ is the radius of the inscribed 

circle,

 = ρ ( ) − s a








tan

α

2
  =   = ( ) − s b









tan

β

2
( ) − s c









tan

γ

2

 = ρ s








tan

α

2









tan

β

2









tan

γ

2
  =  4 r









sin

α

2









sin

β

2









sin

γ

2
,

with radius r of the circumcircle of a triangle,

 = r
a

2 ( )sin α
  =   = 

b

2 ( )sin β

c

2 ( )sin γ
and

 = s 4 r








cos

α

2









cos

β

2









cos

γ

2
 

Each triangle has also three escribed circles, each of which is a circle tangent to one side and to 

the extensions of the other two sides of a triangle; the center of each circle is an excentre with an 

exradius ρa or ρb or ρc to the perimeter.  



 = ρa s








tan

α

2
  =  

a








cos

β

2









cos

γ

2









cos

α

2

 = ρb s








tan

β

2
  =  

b








cos

α

2









cos

γ

2









cos

β

2

 = ρc s








tan

γ

2
  = 

c








cos

α

2









cos

β

2









cos

γ

2

A triangle has also three medians,  each of which is a straight line joining one vertex of a triangle 

to the midpoint of the opposite side, each of length

 = sa

1

2
 +  + b

2
c

2
2 b c ( )cos α

 = sb

1

2
 +  + a

2
c

2
2 a c ( )cos β

 = sc

1

2
 +  + a

2
b

2
2 a b ( )cos α

three bisectors of angles from a vertex to the opposite side, each of length

 = wα

2 b c








cos

α

2

 + b c

 = wβ

2 a c








cos

β

2

 + a c

 = wγ

2 a b








cos

γ

2

 + a b

and three altitudes perpendicular from a vertex to the opposite side of a triangle, each of length 

 = ha b ( )sin γ   =  c ( )sin β  

 = hb a ( )sin γ   =  c ( )sin α

 = hc a ( )sin β   =  b ( )sin α

The stature of a triangle over side a is

ha =  = b ( )sin γ c ( )sin β

In terms of that height the surface area of a triangle is

 = A
1

2
 ha a  



and the latter formulae are permutable for the other sides.

With  =  +  + α β γ π rad, other formulae for a plane triangle are

 = 








sin

γ

2

( ) − s a ( ) − s b

a b
 

 = 








cos

γ

2

s ( ) − s c

a b

 = 








tan

γ

2









sin

γ

2









cos

γ

2

 = 
 + a b

c









cos

 − α β

2









cos

 + α β

2

  =  









cos

 − α β

2









sin

γ

2

 = 
 − a b

c









sin

 − α β

2









sin

 + α β

2

  =  









sin

 − α β

2









cos

γ

2

Mollweide's formulae, of which cyclic permutations among , ,a b c and , ,α β γ furnish four 

analogous relations,  

 = 
 + a b

c









cos

 − α β

2









sin

γ

2

 = 
 − a b

c









sin

 − α β

2









cos

γ

2

this tangent formula,

 = ( )tan γ
c ( )sin α

 − b c ( )cos α
 =  

c ( )sin β

 − a c ( )cos β
and a projection formula,

 = c  + a ( )cos β b ( )cos α

According to the application of selected items among the above, given

-  one side c and adjacent angles α and β,

-  two sides a and b and angle γ between them,

-  all three sides , ,a b c, and



-  two sides a and b and one opposite angle α,

one can determine uniquely the other angles, sides and area of the plane triangle.

     Direction ratios are numbers proportional to direction cosines; for direction ratios , ,a b c in a 

space R 
3
 of three dimensions, 

 = ( )cos α
a

 +  + a
2

b
2

c
2

 ,      = ( )cos β
b

 +  + a
2

b
2

c
2

 ,      = ( )cos γ
c

 +  + a
2

b
2

c
2

The cosine of angle θ between two lines with direction angles , ,α1 β1 γ1 and , ,α2 β2 γ2 is

 = ( )cos θ  +  + ( )cos α1 ( )cos α2 ( )cos β1 ( )cos β2 ( )cos γ1 ( )cos γ2

For a plane defined by equation  =  +  + A x B y C z  D, coefficients ,A B and C are direction ratios 

for any normal, or line perpendicular, to that plane.  The distance from that plane to a point P1 = (

, ,x1 y1 z1) is

 +  +  − A x1 B y1 C z1  D

 +  + A
2

B
2

C
2

The equations of a straight line that is such a normal passing point P1 are

 = 
 − x x1

A

 − y y1

B
 = 

 − z z1

C

The cosine of angle θ between two planes of which normals have direction ratios , ,A1 B1 C1 and 

, ,A2 B2 C2, or between two lines with these direction ratios, is

 = ( )cos θ
 +  + A1 A2 B1 B2 C1 C2

 +  + A1

2
B1

2
C1

2
 +  + A2

2
B2

2
C2

2

These relations are useful in calculation of interatomic distances, interbond angles and related 

quantities.  

trigonometry and complex number 

     A complex number of unit modulus is expressible as  + ( )cos θ i ( )sin θ , which is in turn related 

to a complex exponential quantity through Euler's formula,

 = e
( )i θ

 + ( )cos θ i ( )sin θ         

with  = i −1 .  Raising both sides of this formula to power n yields

 = ( )e
( )i θ

n

( ) + ( )cos θ i ( )sin θ n

=   = e
( )i n θ

 + ( )cos n θ i ( )sin n θ

which constitutes de Moivre's formula that is valid for all complex x and all n, positive or negative

, integer or rational or real.  A polar representation of complex number  = z  + x i y in its cartesian 

form is  = z r ( ) + ( )cos θ i ( )sin θ ; therein modulus  = z r =  + x
2

y
2
  represents the distance 

between the origin and point ( ,x y) in the complex plane, and, in that complex plane, axis x 

becomes the real axis and axis y becomes the imaginary axis.  In polar coordinates ,r θ are related 

to rectangular coordinates ,x y through  = x r ( )cos θ  and  = y r ( )sin θ , in which  = θ ( )arg z  with θ as 



argument, amplitude or phase of z is represented geometrically as the angle between the half line 

defined by positive axis x and a line segment joining the origin to point ( ,x y).  Because 

trigonometric functions are periodic, θ or ( )arg z  has uncountably many values, one differing from 

another by a multiple of 2 π; its principal value is the particular value that lies in interval ] ,−π π].  

To calculate that principal value, we apply  = ( )tan θ
y

x
, which for known x and y yields a value in 

interval ] ,−
π

2

π

2
]; because the latter interval fails to coincide with the preceding interval, if ( ,x y) 

lie in quadrant II we add π to 








arctan

y

x
, whereas if ( ,x y) lie in quadrant III we subtract π from 









arctan

y

x
.  Some particular principal values of 









arctan

y

x
 for ( ,x y) are for ( ,x x), 0; for ( ,x −x), π; 

for ( ,−x x),  + 
3 π

4
2 n π with integer n, but for (0,0) θ is undefined.

     The distance r between two points representing z1 and z2 in the complex plane is expressed as 

r =  =  − z2 z1  −  − x2 x1 i ( ) − y2 y1   =  + ( ) − x2 x1

2
( ) − y2 y1

2
 

With z0 complex and r real, relation  = r  − z z0  defines the locus of points z in the complex plane 

to represent a circle of radius r centred at z0.  

     A geometric interpretation of addition of two complex numbers involves the parallelogram law, 

according to which the diagonal of the resultant parallelogram defines a boundary between two 

triangles, one side of each of which is defined by one addend of the sum; because the sum of 

lengths of any two sides of a triangle must be greater than or equal to the length of the other side, 

we obtain these triangle inequalities:

 ≤  + z1 z2  + z1 z2 ,

  ≤  − z1 z2  − z1 z2 ,

which are combined in the following relation.

 − z1 z2  <  ≤  + z1 z2  + z1 z2

This result is extensible to complex numbers of finite number according to a generalized triangle 

inequality,

   ≤ ∑
 = j 1

n

zj ∑
 = j 1

n

zj

     We define an euclidean norm such that 

 = ( )N  + x i y  + x
2

y
2
  =  ( ) + x i y ( ) − x i y ; 

multiplication by a fixed number  ≠ z0 0 multiplies all lengths by ( )N z0 , which defines an 

euclidean similarity.  When  = ( )N z0 1,  → z z0 z becomes an euclidean congruence or isometry.  

For a complex unit u, which implies complex number u to have modulus unity, a map  → z u z 

corresponds to a rotation, and  → z u z constitutes a reflexion.  Specifically, for u = 1, reflexion 

occurs about axis x; for  = u −1, reflexion occurs across axis y; for  = u i, rotation occurs by 
π

2
 rad 



anticlockwise, which also corresponds to reflexion across a diagonal bisecting quadrants I and III, 

or at angle 
π

4
 anticlockwise to axis x, and for  = u −i, rotation occurs by −

π

2
, which also 

corresponds to reflexion bisecting quadrants II and IV or at angle −
π

4
 , so clockwise to axis x.  

     Two geometric operations pertain to properties of groups:  a special orthogonal group SO2 that 

comprises all multiplications  → z u z by complex unit u corresponds to a circle of real angles θ, 

considered mod 2 π, whereas a general orthogonal group GO2 includes the former with an 

additional map  → z u z.  

sequence and series  

     Among mathematical expressions that have diverse and important applications in a chemical 

context, a sequence implies a function defined on a set J of all positive integers as domain; for ( )f j  

= xj with j in J, , ,x1 x2 x3 ... or (xj) denotes the sequence f, of which the values as elements xj are 

called terms of that sequence, and j serves as a counting index.  Examples of such sequences are, 

numerical, , , , ,1
1

2

1

3

1

4
... and, algebraic, , , , ,1 x x

2
x

3
...  The terms of a sequence need not be 

distinct, as in Fibonacci's sequence -- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ..., and an infinite sequence 

contains elements of uncountable number.  Alternatively, a sequence of numbers comprises a set 

in a definite order and fomed according to a specific rule.  Of the two parts of a recursive 

definition of a sequence, the first part specifies the first term or terms of that sequence, and the 

second part indicates how each term is calculated from the preceding term or terms.  For instance, 

a first term  = x0 1 and a relation  = xn  + 2 x  − n 1 3 generates a numerical sequence 1, 5, 13, 29, 61, 

125, ..., but, for those six terms of that sequence, recursive definitions of uncountable number 

generate those particular values.  

     A sequence (xj) in a metric space X converges if there exist a point p such that for each epsilon 

or ε > 0 there is an integer n for which j > n implies that in X a distance ( )d ,xj p   < ε, or for which 

p is a limiting value of (xj); if there exist no such limit, (xj) diverges.  Such a criterion for 

convergence depends not only on (xj) but also on X:  for instance the sequence ( 
1

j
 ) for positive 

integer j converges in R 
1
 to 0, but fails to converge in the set of all positive real numbers.  The set 

of all points xj with , , = j 1 2 3, ... is the range of (xj), which might be finite or infinite; the sequence 

(xj) is bounded if its range be bounded.  A sequence has increasing terms if  x  + n 1 > xn for all 

counting numbers n, non-decreasing terms if  x  + n 1 > xn , decreasing terms if x  + n 1 <  xn and 

non-decreasing terms if x  + n 1 <  xn; a sequence possesses an upper bound if, for any j,  < xj U , or a 

lower bound if xj > L.  A bounded and monotonic sequence has a limit, and a monotonic sequence 

has a limit only if it be bounded; for that limit L of a sequence, for a given ε > 0 there exists a 

counting number N such that, for all N > j, |  − xj L| < ε.  If sequence {xj} have limit ξ and sequence 

{yj} have limit υ, {c xj} has limit c ξ for a constant c, {xj + yj} has a limit  ξ + υ, {xj yj} has a limit 



ξ υ, and { }
xj

yj

 has a limit 
ξ

υ
 provided that  ≠ υ 0 and that no  = yj 0.  

     An arithmetic progression comprises a sequence of numbers with a common interval between 

consecutive terms.  A geometric progression comprises a sequence of numbers with a common 

ratio between consecutive terms.  The terms between any two specified terms in a progression are 

the means of that progression, arithmetic mean or means for an arithmetic progression or 

geometric mean or means for a geometric progression.  

     A sequence , , ,u1 u2 u3 ... has a limit if, for every preassigned positive number ε, one can 

discover a number N such that  <  − un L ε for all integers n > N.  If a sequence have a limit L, this 

condition is expressed as lim
 → n ∞

 = un L; if no limit exist, this condition is expressed as lim
 → n ∞

 = un ∞ 

.  If lim
 → n ∞

un and lim
 → n ∞

vn exist, 

•  = lim
 → n ∞

 + un vn  + ( )lim
 → n ∞

un ( )lim
 → n ∞

vn  and  = lim
 → n ∞

 − un vn  − ( )lim
 → n ∞

un ( )lim
 → n ∞

vn ;

•  = lim
 → n ∞

un vn ( )lim
 → n ∞

un ( )lim
 → n ∞

vn

•  = lim
 → n ∞

un

vn

lim
 → n ∞

un

lim
 → n ∞

vn

  provided that lim
 → n ∞

 ≠ vn 0;

• if lim
 → n ∞

 = vn 0 and lim
 → n ∞

 ≠ un 0, lim
 → n ∞

un

vn

 does not exist;

• if lim
 → n ∞

 = vn 0 and lim
 → n ∞

 = un 0, lim
 → n ∞

un

vn

 might exist;

• lim
 → n ∞

vn

k
  =  ( )lim

 → n ∞

vn

k
 for any real number k.

     A sequence is bounded if, for positive number N independent of n,  ≤ un N.  A sequence 

increases monotonically if u  + n 1 > un or decreases monotonically if  ≤ u  + n 1 un.  A bounded and 

monotonically increasing or decreasing sequence has a limit, but a sequence might have a limit 

without being monotonically increasing or decreasing.  

     A series is defined as a sum of sequential terms of countable or uncountable number, such as 

this infinite numerical series,

1  +  
1

2
  +  

1

4
  +  

1

8
  +  ...  +  

1

2
k
  +  ... 

or this finite symbolic series, 

a0 + a1 + a2 +  ...  + an 

in contrast to this sequence,

1,  
1

2
,  

1

4
,  

1

8
,  ...  

1

2
k
 , ...



or this,

, , , , ,a0 a1 a2 a3 ... an

each of which is merely an ordered set of such terms; each term in such a sequential sum is 

defined according to a formula or prescription.  Such a sequential sum might be finite or infinite, 

according to whether it terminates at a particular term or continues indefinitely.  We represent the 

former series as a sum with a Sigma or Σ notation as ∑
 = k 1

∞
1

2
k
 and the latter series as ∑

 = j 1

n

aj in 

contrast with the latter sequences { }
1

2
k

 and {aj}.  The domain of an infinite sequence is the set of 

natural numbers.  An alternative method to generate this sequence involves use of a recurrence 

relation as a prescription, according to which each successive term yj is obtained from the 

preceding term y  − j 1; in the case of ∑
 = k 1

∞
1

2
k
 or { }

1

2
k

, for counting index j beginning at unity the 

relation is

 = yj 1 if  = j 1 or 
y  − j 1

2
 otherwise

As a generator of sums, we consider ( ) + a 1
n
; for positive integer n, n > 0, the sum has a finite 

number of terms and the coefficients of a and b involve binomial coefficients 
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k
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!n

!k !( ) − n k
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n

1
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( ) − n 1
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n

2
 a

( ) − n 2
  +  ...  =  ∑

 = k 0

n









n

k
a

( ) − n k
 

Such sums are generated readily as Taylor series for arbitrary values of exponent n.  The 

coefficients follow regular patterns

        = n −3     1,  −3,  6,  −10,   15,   ...

        = n −2     1,  −2,  3,    −4,     5,   ...

        = n −1     1,  −1,  1,    −1,     1,   ...

        = n 0        1,   0,   0,      0,     0,  ...

        = n 1        1,   1,   0,      0,     0,  ...

        = n 2        1,   2,   1,      0,     0,  ...  

        = n 3        1,   3,   3,      1,     0,  ...    

     A sequence, in symbolic form with term yj such as 

, , ,y1 y2 y3 ...

represents a function; its domain is specified as either a subset of positive integers j or all positive 

integers.  For a finite series, there is an upper bound of j that enumerates the terms, 

a0 + a1 + a2 +  ...  + an 

in this case for  = j n.  This series 

 +  +  +  +  +  + 2
0

2
1

2
2

2
3

2
4

2
5

...



is a constant series, such that a partial sum, of arbitrary length, plus unity has also a value 2
( ) + n 1

, 

in which n is a positive integer:

 = ∑
 = j 0

n

2
j  − 2

( ) + n 1
1

This sequence,  

, , , , ,1
1

2

1

3

1

4

1

5
...

known as an harmonic progression because the reciprocals of terms in the sequence conform to an 

arithmetic progression, yields an harmonic series;

 +  +  +  +  + 1
1

2

1

3

1

4

1

5
... 

the individual terms form a sequence, above, that converges to a limiting value 
1

∞
 = zero, but the 

sum of this harmonic series diverges:  decomposing this series into a sum of partial sums,

1 + 
1

2
  + (  + 

1

3

1

4
 ) + (  +  +  + 

1

5

1

6

1

7

1

8
) + ...

of which each partial sum of terms within parentheses is greater than 
1

2
 , as  + 

1

3

1

4
 >  + 

1

4

1

4
,  

 +  +  + 
1

5

1

6

1

7

1

8
 >  +  +  + 

1

8

1

8

1

8

1

8
 et cetera demonstrates that this total sum increases without limit.  

The concept of convergence of a sequence is thus distinct from the concept of the convergence of 

a series.  If a series ∑
 = j 1

∞

aj converge,  = lim
 → j ∞

aj 0.   Even if a series converge, the rate of 

convergence might vary greatly:  for instance, this series

 = 
π

2

6
 +  +  +  +  +  +  + 1

1

2
2

1

3
2

1

4
2

1

5
2

...
1

r
2

... 

converges slowly, requiring more than 500 terms to achieve precision in the third digit, whereas an 

alternative series  

 = 
π

2
 +  +  +  + 

1

1

1 ( )1

1 ( )3

1 ( )1 ( )2

1 ( )3 ( )5

1 ( )1 ( )2 ( )3

1 ( )3 ( )5 ( )7
...

achieves convergence to the third digit in only ten terms.  The latter two series are instances of 

non-negative series, for which each term is non-negative.  If series ∑
 = j 1

∞

aj have sum α and ∑
 = j 1

∞

bj 

have sum β, ∑
 = j 1

∞

c aj = c α for constant c and ∑ ( aj + bj) = α + β.   

     A geometric series has this form,

 +  +  +  +  + a a r a r
2

a r
3

a r
4

...



has a finite sum, or converges to a limiting value, if  < lim
 → n ∞

a r
n

 − a r
n

1
1 or  < r 1; this constraint 

on values of r for which the series converges defines its interval of convergence, which is twice 

the radius of convergence of a power series.  The partial sum of the first n terms is 

 = Sn  +  +  +  + a a r a r
2

... a r
( ) − n 1

  =  
a ( ) − r

n
1

 − r 1
 

and the sum of an infinite geometric series is 

 = S
a

 − 1 r

     For an alternating series, the signs of consecutive terms alternate between positive and 

negative; the maximum possible error when an alternating series is truncated is the first omitted 

term.  

     A formula or function of a particularly general and useful kind is a functional series in which 

terms contain a variable with non-negative integers as powers; the variable might be a simple 

symbol, here x,  

  = ( )f x  +  +  + c0 c1 x c2 x
2

c3 x
3

+ ...   

with coefficients cj and j = 0, 1, 2, 3 ..., or be itself an expression involving a function, such as e
x
 

in this series:

   = ( )g x  +  +  + c0 c1 e
x

c2 e
( )2 x

c3 e
( )3 x

+ ... 

A power series can be expanded about a centre other than the origin of a system of coordinates, 

such as a in

 = ( )h x  +  +  + c0 c1 ( ) − x a c2 ( ) − x a
2

c3 ( ) − x a
3

+ ... 

in contrast with power series f(x) above for which the expansion centre is implicitly zero.  A 

power series hence contains terms containing a variable to ascending positive powers, either with 

an explicit centre of expansion as above or in an expanded form.  A polynomial is a formal power 

series that has, different from zero, coefficients of only finite number; a monomial is an 

expression comprising a single term, such as 3 c x
2
, and formally each such term constitutes a 

basis element such that a linear combination of these monomials in sums and differences becomes 

a polynomial.  Other basis elements might be Lagrange functions of form 
 − x xj

∏
j<>k

( ) − xj xk

, or 

Bernstein polynomials of form  n Ck x
k

( ) − 1 x
( ) − n k

 in which appears the binomial coefficient  n Ck 

= 
!n

!k !( ) − n k
 defined in section 1.116.  

     A polynomial, or multinomial, formula is a mathematical expression that comprises a sum of 

terms of finite number, each term of which is a product of a constant and one, or more, variables 

or indeterminates raised to a power that is a non-negative integer; a simple polynomial of form

 +  +  + c0 c1 x c2 x
2

c3 x
3
 

in variable x and with coefficients cj,  , , , = j 0 1 2 3..., is thus a finite power series.  The degree of a 



polynomial in a particular variable is the largest power to which that variable is raised.  An infinite 

series, such as ( )f x  above, is a functional series that has a form resembling that of a polynomial 

except that it terminates at no particular power of the independent variable, x in the above 

examples; a consequence of this lack of termination is a requirement to specify a domain that 

includes only those real numbers for which ( )f x  remains finite.  For instance the power series 

 = ( )f x  +  +  +  + 1 x x
2

x
3

...

yields no finite result for x > 1 or for  < x −1:  in the former case the value of the sum increases 

without limit, whereas in the latter case the sum oscillates between positive and negative values of 

large magnitudes as further terms become included.  Power series are useful not only in chemistry 

because they provide an alternative means to represent transcendental functions such as 

exponential and trigonometric functions, because they allow a simple means to investigate the 

properties of complicated functions for small or large values of an independent variable, and 

because they allow a representation of data without requiring any particular chemical or physical 

basis of such representation; as instances of the latter, the thermal capacity ( )Cp T  at constant 

pressure of a substance as a function of temperature T or the electric dipolar moment ( )p R  of a 

free diatomic molecule as a function of internuclear separation R might represent data for those 

properties that results from fits of experimental or theoretical evaluations at various values of the 

respective independent variables.  The disadvantages of these representations are that they are 

unreliable not only beyond the domain of definition from fitted data -- extrapolation, but also even 

within that domain except at or near a fitted value.  

     The fundamental theorem of algebra states that a polynomial of degree n has at least one root 

and possibly n roots, which are in general complex but which might be purely real or purely 

imaginary depending on the degree and the values of coefficients.  A general equation of a 

polynomial of degree n, written in order of descending values of powers of variable x, is

 = ( )P x  +  + an x
n

a  − n 1 x
( ) − n 1

a  − n 2 x
( ) − n 2

 +  ...  +  =  + a1 x a0 0

in which each coefficient aj is a real number with  ≠ an 0.  This function  = y ( )P x  is continuous 

throughout the entire domain of x.  Its limit as  → x ∞ is +∞ if an > 0 or −∞ if  < an 0; its limit as 

 → x −∞ is +∞ for an > 0 and n even or  < an 0 and n odd, or −∞ for an > 0 and n odd or  < an 0 and n 

even.  If n be odd, the graph of  = y ( )P x  intersects the x-axis at least once; the point of intersection 

corresponds to a solution of an equation  = ( )P x 0.  If n be even and an > 0, ( )P x  has a global 

minimum:  there exists a point  = x a at which  ≤ ( )f a ( )f x  for all x; if n be even and  < an 0, ( )P x  

has a global maximum.  For n > 2, function  = y ( )P x  has at most  − n 1 local extrema, which are 

alternately local minima and local maxima.  For n > 3, the graph of  = y ( )P x  has at most  − n 2 

points of inflexion.  If the roots of ( )P x , which are particular values of x that satisfy this general 

but conditional equation, be ,r1 r2, ... , rn,  

 = ( )P x a0 ( ) − x r1 ( ) − x r2  ... (  − x rn)

These roots have symmetric formulae such that 

 = −
a  − n 1

an

∑
 = i 1

n

ri , 



  = 
a  − n 2

an

∑
 = j 1

n 











∑

 = i 1

n

ri rj  , 

 = −
a  − n 3

an

∑
 = k 1
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∑

 = j 1

n 











∑

 = i 1

n

ri rj rk  ,

 ... , 

r1 r2 ...  = rn

( )−1
n

a0

an

If m roots have the same value r, r is a multiple or repeated root of order m; hence 

 = ( )P x ( ) − x r
m

( )Q x .  All multiple roots are zeros of the greatest common divisor of ( )P x .  If r be 

a root of ( )P x , so that  = ( )P r 0, ( )P r  contains a factor   − x r  such that division of ( )P x  by  − x r  

yields a formula ( )Q x  of degree decreased by unity.  When ( )P a  and ( )P b  have opposite signs for 

real a and b, a real root lies between a and b; an interpolated value

  = c  − a
( )P a ( ) − b a

 − ( )P b ( )P a
 

provides an estimate of that real root, and repetition of this calculation with ( )P c  produces closer 

limits.  For 
 − b a

 − ( )P b ( )P a
 to become replaced with a reciprocal of a derivative constitutes Newton's 

method to find roots, which is implemented in Maple's procedures to solve equations; this formula 

we present explicitly in section 3.308.  For a general polynomial ( )P x , if an approximate complex 

root can be found, with Newton's method one generates improved estimates of that root, subject to 

certain conditions.  For a polynomial formula ( )P x  such as that above with real numbers for all 

coefficients, if complex number  + a b i with  = i −1  and  ≠ b 0 be a root of that equation  = ( )P x 0, 

its complex conjugate  − a b i is also a root of that equation:  such conjugate roots thus invariably 

appear in couples.  For a polynomial formula ( )P x  with real coefficients written with x in order of 

either ascending or descending powers, a variation of sign occurs where two successive 

coefficients have opposite signs; for a polynomial formula ( )P x  such as that above with real 

numbers for all coefficients, for the equation  = ( )P x 0 the number of positive roots is either equal 

to the number of variations of sign of ( )P x  or less than that number by an even integer, and the 

number of negative roots is either equal to the number of variations of sign of ( )P −x  or is less than 

that number by an even integer.  For a polynomial formula ( )P x  such as that above with rational 

numbers for all coefficients, if  + b c d  in which , ,b c d be rational and d  irrational be a root of 

that equation, another root of that equation is  − b c d .  For a polynomial formula ( )P x  such as 

that above but with coefficients restricted to integers, a theorem on rational roots asserts that, for a 

rational number 
p

q
 in which p and q have no common factor other than +1 and that is a root of the 

equation  = ( )P x 0 of that polynomial, p is a factor of a0 and q is a factor of an.  

     Polynomial functions with special properties arise in solutions of differential equations; 

orthogonal polynomials associated with Chebyshev, Hermite, Laguerre and Legendre that have 



particular chemical applications appear in subsequent chapters.  Many a special function, defined 

as a non-elementary transcendental function, arises typically as a solution of an integral or a 

differential equation, and has thereby no simple algebraic representation; examples of special 

functions already encountered in section 1.117 are gamma Γ and beta Β functions, which we relate 

to integrals in section 4.304, whereas Bessel and hypergeometric functions arise from differential 

equations.  Such functions we encounter also in subsequent chapters, whereas in this chapter our 

attention is devoted to geometry, trigonometry, series, complex functions and related topics.

     For a numerical representation of a function, such as numerical results obtained in a laboratory, 

a numerical value of a dependent quantity might be desired at a value of independent variable 

between those for which measurements are made, an operation known as interpolation.  Two 

simple methods to accomplish this objective are linear interpolation, appropriate to only a linear 

scale, and graphical interpolation, neither of which  might be accurate in a general case.  Three 

algebraic methods are polynomial interpolation, in which known points are fitted to a polynomial 

of sufficient degree, Thiele interpolation, in which points are fitted to a continued fraction of 

sufficient levels, and a spline function, according to which the measured points in contiguous sets 

are fitted with segmented polynomials of small degree.  For a spline fit, multiple successive 

points, ordered according to abscissal value, are approximated with a polynomial of selected 

degree -- commonly three; the point of minimum abscissa is discarded and a further point is added 

at the other side, and the fit is repeated.  These local polynomials are subject to a condition that, at 

a point at which two meet, the slopes must be identical; use of only a small element from each 

constrained polynomial yields an impression of a smooth curve.  Such a spline fit is useful when 

many measurements are available to be fitted according to an empirical, rather than a theoretical 

description, and are differentiable throughout the entire domain of measurement; such splines 

might be suitable for both smoothing of data and interpolation.  If points be subject to random 

perturbation, a statistical fitting method is applicable; otherwise a spline function might be most 

reliable.  A purely numerical approach involving no explicit algebraic form is based on an 

interpolation formula for forward differences attributed to Newton and Gregory, as follows:

 = ( )f p  +  +  +  + f0 p ∆ f0

p ( ) − p 1 ∆
2

f0

1 ( )2

p ( ) − p 1 ( ) − p 2 ∆
3

f0

1 ( )2 ( )3
... 

in which f0 is the value of the dependent variable at the measured point nearest the unknown 

value, p is the fraction of the interval between known points containing the unknown point, ∆ f0 is 

the first difference between values of dependent variable at the two known points enclosing the 

unknown point, ∆
2

f0 is the first difference between first differences of values of dependent 

variables at three known points enclosing the unknown point -- or the second difference, et cetera.  

According to gaussian interpolation one fits a polynomial of degree n to  + n 1 points, which we 

illustrate with a cubic polynomial to fit four points ( ,xj yj) for  = j  .. 0 3

 = y
( ) − x x1 ( ) − x x2 ( ) − x x3

( ) − x0 x1 ( ) − x0 x2 ( ) − x0 x3

 y0 + 
( ) − x x0 ( ) − x x2 ( ) − x x3

( ) − x1 x0 ( ) − x1 x2 ( ) − x1 x3

 y1 

+ 
( ) − x x0 ( ) − x x1 ( ) − x x3

( ) − x2 x0 ( ) − x2 x1 ( ) − x2 x3

 y2 + 
( ) − x x0 ( ) − x x1 ( ) − x x2

( ) − x3 x0 ( ) − x3 x1 ( ) − x3 x3

 y3



This equation fulfills a condition of being a cubic equation that passes the specified points:  for 

instance, when  = x x2, only the third term differs from identically zero and has identically a value 

y2.  Interpolation, with either Newton's or Gauss's method, is unwise for an order greater than 

cubic because the process might become unstable, yielding sinuous and unrealistic curves, 

particularly if errors or uncertainties impose an irregular or unsmooth progression of data points; 

in such a case interpolation with a spline formula, whereby continuity of derivatives is preserved 

at each point as well as an exact fit there, except zero curvature at the ends of the curve, is likely 

to prove more satisfactory.  For a natural spline, as coded in Maple's procedures, the derivatives at 

the end points are set to zero, rather than being set to the derivatives in the adjacent intervals.  

Linear interpolation is practical also in multiple dimensions and can substantially decrease 

duration of calculations when a function of multiple variables must be evaluated many times; 

interpolation of greater order, such as parabolic, is also practicable for multidimensional tables, 

but linear extrapolation generally suffices.

     A recurrence relation or difference equation is an equation that expresses one term of a 

sequence or series as a formula or function involving preceding members of that sequence, of 

form  = x  + k j ( )f , , ,k xk ... x  +  − k j 1 , thereby providing a recursive definition of that sequence; the 

number of terms , ,xk ... x  +  − k j 1 is the order of this recurrence relation that requires the same 

number of initial values to define all members of that sequence or series.  In some cases, such a 

relation is solvable to yield an explicit expression for an arbitrary member of that sequence.  Such 

relations arise also in the solution of differential equations; cf section group 7.2.

     A recurrence relation might be the outcome of a practice of mathematical induction, according 

to which, for each natural number n, there holds a proposition P such that the base clause P1 is 

true for  = n 1 and, for a greater integer k, if Pk be true, the proposition is true for P  + k 1;  the 

conclusion is that the proposition is true for all integers.  

     An argument of a power series, as illustrated above, might be a simple variable x or an 

expression, called a functional, involving an elementary function.  A functional is a function of 

which its domain comprises functions in a set; ( )cos n x  is hence a functional of a function n x.  A 

series of alternative form such as a Fourier series that can represent a periodic function ( )F x  of 

repeating length L, of form for a cosine series, 

 = ( )F x  +  +  +  + a0 a1









cos

π x

L
a2









cos

2 π x

L
a3









cos

3 π x

L
...

involves not a variable to various powers but cosine functions, of general form 








cos

n π x

L
 in 

which coefficients n of the variable in the functional take values of successive integers.  A Fourier 

sine series contains sine functions instead of cosine, as above, whereas the most general Fourier 

series contains both cosine and sine terms, or exponential terms because Euler's identity

 = e
( )i θ

 + ( )cos θ i ( )sin θ ,

in which  = i −1 , connects exponential and trigonometric functions; a Fourier series is thus 

equivalently expressed as



 = ( )F x ∑
 = k −∞

∞

ck e











i k x

L
 

If ( )F x  be a real function, factors of sine and cosine in each term of a trigonometric Fourier series 

are also real, but factors ck in an exponential Fourier series are generally complex.  When a 

summation becomes replaced by integration, the result might be an integral transform, such as a 

Fourier transform or a Laplace transform.

     In a functional series, a factor of a coefficient in each term that contains an independent 

variable is called a basis function, which might be a simple variable to a power, such as x
k
 in a 

polynomial or Maclaurin's series or ( ) − x h
k
 in a Taylor's series with expansion centre h, 

 +  +  +  + a0 a1 ( ) − x h a2 ( ) − x h
2

a3 ( ) − x h
3

...

with  = h 0 for a Maclaurin's series but  ≠ h 0 for a Taylor's series, or a functional of that variable, 

such as e
( )k x

 or ( )cos k x .  The Taylor's series as an expansion of a formula as a power series, for 

instance in x, has a positive radius R of convergence, which means that the series converges 

absolutely for  < x R with R > 0.  Every power series ∑
n

cn x
n
 has a radius of convergence:  for 

 = R 0, the series converges for only  = x 0; for  → R ∞, the power series converges absolutely for all 

x, whereas for 0 < R < ∞ the series converges absolutely for  < x R, diverges for x  > R, and 

might converge for  = x R.  Although requiring no particular theoretical derivation, a power series 

might be generally useful within a finite range of its argument, but, for purpose of extrapolation 

beyond a range in which it is defined, it is unreliable because of likely rapid divergence.  

convergence of series  

     Among tests to determine whether an infinite series converges are the following: 

• if another series, obtained on taking an absolute value or magnitude of each term in an infinite 

series of interest, converge, the original infinite series is absolutely convergent; 

• if an infinite series with only positive terms converge, a finite series of the same terms is 

convergent;

• if in a series each term have a magnitude smaller than that of a corresponding term in another 

series that is known to converge, the former series is convergent; if in a series each term have a 

larger magnitude than a corresponding term in another series that is known to diverge, the 

former series is divergent;

• a series with terms of alternating signs is conditionally convergent if successive terms approach 

zero and if magnitudes of successive terms decrease monotonically; if the same series with an 

absolute value or modulus of each term also converge, the original series is absolutely 

convergent; the terms of an absolutely convergent series might be arranged in any order without 

affecting the convergence, but, depending on the ordering of terms of a conditionally 

convergent series, the series might converge or diverge;

• if successive terms of a partial sum approach a limit other than zero or approach no limit, the 

series diverges;



• for a series with only positive terms, for a limiting ratio of successive terms aj and a  + j 1,

r  =  lim
 → j ∞

a  + j 1

aj

  < 1

     the series converges; if this ratio r > 1, the series diverges; if r = 1, this test is inconclusive -- 

the series might converge or diverge; if the ratio approach no limit but not increase without bound, 

this test is also inconclusive;

• for an infinite series comprising a sum of terms aj, if the limit of the jth root of absolute value of 

aj according to 

  lim
 → j ∞

aj











1

j
  < 1

     this series is absolutely convergent; if this limit > 1, the series is divergent; if this limit = 1 the 

series might be absolutely convergent, conditionally convergent or divergent;

• another test involving an improper integral is presented in section 4.405.

Within a domain of convergence, power series can be added or multiplied, terms might be 

permuted, and one can differentiate or integrate term-wise as desired; upon differentiation or 

integration the domain of convergence does not alter.  

     For a power series in x such as ∑
 = j 0

cj x
j
 or in (  − x a) such as ∑

 = j 0

cj ( ) − x a
j
 with constant a, the 

set of values of x for which that power series converges is called its interval of convergence, which 

might become evaluated with the ratio test supplemented with other tests applied at the bounds of 

the interval.    

     For two arbitrary sequences {aj} and { }bj  and with  = ∑
 = j 1

n

aj An, according to Abel's formula for 

partial summation a further sum is  

   = ∑
 = j m

n

aj bj  +  − 












∑

 = j m

n

Aj ( ) − bj b  + j 1 An b  + n 1 A  − m 1 bm

A series that is not rapidly convergent for all values of its expansion variable has dubious value to 

represent a formula or function, and ought generally to be avoided.  A Fourier series in x is 

uniformly convergent for all real values of x.   

    As a strategy to test a series for convergence or divergence, one might classify a series 

according to its form.

• A p series of form ∑ 1

k
p
  is convergent for p > 1 and divergent for  < p 1.

• A geometric series of form ∑ a r
n
 is convergent for  < r 1 and divergent for r  > 1; some 

manipulation might be applicable to convert a series to this form.

• For a series of form resembling a p or geometric series, a comparison test is applicable for a 



series with positive terms, or for ∑ aj  when negative terms also occur.

• When  ≠ lim
 → k ∞

ak 0, a test for divergence becomes applicable.

• For a series of form ∑ ( )−1
k

aj with  = k j + 1, a test for an alternating series is applicable.

• For a series containing a factorial quantity or product including a constant raised to power n, the 

ratio test is applicable, but, when 
a  + k 1

ak

 --> 1 as  → k ∞ for a p series or rational or algebraic 

formulae of k, the ratio test is inapplicable.

• For a term of form  = ak bk

k
, the root test might be appllicable.

• For a term of form  = aj ( )f j  with d
⌠
⌡


1

∞

( )f x x readily evaluated, the integral test becomes 

applicable; cf. section 4.405.

     A Pade approximant is a rational formula 
( )Pn x

( )Qm x
 of a particular type whereby the coefficients 

in polynomials  = ( )Pn x ∑
 = k 0

n

ak x
k
 of degree n in the numerator and  = ( )Qm x ∑

 = k 0

m

bk x
k
 of degree m in 

the denominator, hence  +  + n m 1 parameters in total, are chosen to reproduce exactly the values 

of derivatives of the fitted formula ( )f x  up to a particular order; commonly  = b0 1.  To calculate 

coefficients ak and bk, one expands first formula ( )f x , if type other than polynomial, in a Taylor 

series, typically of order  + n m, then solves the identity  = ( )f  + n m x ( )Qm x ( )Pn x  for coefficients 

,ak  = k  .. 0 n and ,bk  = k  .. 1 m.  The advantages of a Pade approximant over a mere polynomial are 

that, whereas a polynomial must diverge eventually outside a domain of definition from either 

experimental data or theoretical form, this rational function formula might be constrained to obey 

limiting or asymptotic properties through the choice of n and m.  

function of a complex variable  

     Analogous to the abstraction of a real number to an algebraic variable such as x, we abstract the 

notion of a complex number  + a b i to a complex variable, generally denoted  = z  + x i y, with its 

real and imaginary parts represented by real variables x and y, respectively.  A calculus based on 

complex variables yields a branch of analysis called complex analysis, which has applications in 

diverse areas of science and engineering:  in physics, complex numbers serve to describe the 

behaviour of an electromagnetic field; for atomic systems complex numbers and complex 

functions play a central role.

     A complex equation is generally equivalent to two real equations.  Replacing a real variable x 

in a function ( )f x  by  = z  + x i y, with  = i −1 , to form ( )f z  creates a function of a complex 

variable.  Assuming a function ( )f x  of a single real variable x, and denoting that function y such 

that  = y ( )f x , for various real values assigned to x we plot specific points in plane xy to obtain a 



graph of that function.  For a complex variable of form  + x i y, which we conventionally denote as 

z so that  = z  + x i y, a function of z conventionally denoted  = w ( )f z  is in general also complex; z 

then signifies a complex independent variable and w signifies a corresponding complex dependent 

variable.  For example, with  = ( )f z z
2
, expansion yields  = ( )f z  −  + x

2
y

2
i 2 x y.  Although we can 

plot a point z in an Argand diagram for any particular numerical values of x and y measuring x 

along the real axis and y along the imaginary axis, we can not plot directly ( )f z  with x and y 

because ( )f z  has in general both real and imaginary parts, requiring four dimensions in total.  We 

hence represent values of ( )f z  on a separate plane; with  = w ( )f z  having real part u and imaginary 

part v as in  = w  + u i v; we thus obtain two complex variables --  = z  + x i y and  = w ( )f z  =  + u i v.  

A point P with coordinates ( ,x y) in plane z becomes transformed into a corresponding point P' in 

plane w through the transformation relation or transformation function  = w ( )f z ; the location P' 

depends on both the initial location P and the transformation relation, according to which 

operation, called the mapping of P onto  P', P' is generated as the image of P.  A fixed point of a 

transformation is a point that remains invariant.  A segment of a straight line in plane z, defined 

between two specified points, becomes mapped to a corresponding segment of a straight line in 

plane w only if the transformation is a linear relation, of form  = w ( )f z  =  + a z b.  A transformation 

of form  = w  + a z b with parameters ,a b real or complex numbers a few types:

• for  = a 1 and complex b, the result of transformation of a straight line is a translation of that 

straight line, by b; 

• for a real and  = b 0, the result of transformation of a straight line is a magnification for a > 1 or 

compression for  < a 1 of that straight line, by a ;

• for a complex and  = b 0, the result of transformation of a straight line is a rotation of that 

straight line, by the argument of a or argument(a); 

• for various combinations of the above cases, the result of transformation of a straight line is an 

appropriate combination of translation, magnification or compression, and rotation of that 

straight line.

To evaluate the effect of a linear transformation, we express each factor in a polar representation:  

for  = w a z,  = a α e
( )i φ

 and  = z r e
( )i θ

; the product  = w a z =  = α e
( )i φ

r e
( )i θ

α r e
( )i ( ) + θ φ

.  For α > 

1, radius r becomes dilated to α r, whereas for α < 1, radius r becomes contracted in the same 

way.  This transformation rotates point z by angle φ about the origin. 

     For a non-linear transformation, the result depends on the nature of that transformation and 

whether the original function in plane z passes the origin.  For a transformation z
n
, a length r 

becomes r
n
 and the angle becomes n θ.  

     The transformation  
1

z
  transforms lines in plane z to lines in plane w and circles in plane z to 

circles in plane w.  A line not passing the origin in plane z is transformed into a circle passing the 

origin in plane w, and a circle passing the origin in plane z becomes a line that does not pass the 

origin in plane w.  A line passing the origin in plane z is transformed into a line through the origin 



in plane w, whereas a circle that does not pass the origin in plane z is transformed into a circle that 

does not pass the origin in plane w.

     Whereas, according to classical analytic geometry, an equation of a locus in two spatial 

dimensions is expressible as a relation between x and y, that relation is expressible likewise in 

terms of a complex number z and its complex conjugate z.  A parametric equation  = z  + a b t plots 

as a straight line in the complex plane for complex numbers a and b with  ≠ b 0 and parametric 

variable t taking all real values.  Two equations  = z  + a b t and  = z a' + b' t represent the same line 

only if a' −a and b' are real multiples of b; the lines are parallel when b' is a real multiple of b and 

equally directed for b' a positive multiple of b.  

     Conformal mapping from plane z to plane w implies that angles between lines in plane z are 

preserved in both magnitude and sense of direction in their images in plane w.  For a 

transformation to be conformal requires that  = w ( )f z  must be a regular function of z:  it must be 

defined and have single values, and the slope of the curve depicting the function must not be zero 

at a point of such intersection.   For a general linear transformation of form  = w  + a z b, because 

 = 
∂

∂

z
w a  ≠  0, a mapping of such a form has no critical point and hence provides a conformal 

mapping of the entire plane z.  For a particular case in which  = a 0, the mapping  = w  + z b leaves 

invariant the shape and size of a curve in plane z and translates that curve in plane w by a distance 

b  so that the origin in plane z coincides with point ( ,−b 0) in plane w.  For the complementary 

particular case in which  = b 0, the mapping  = w a z, which becomes in polar form  = w ρ r e
( )i  + Θ θ

 

from  = z r e
( )i θ

 and  = a ρ e
( )i Θ

, has the effect of multiplying the modulus of z by a constant factor 

ρ, thus for dilation with ρ > 1 and contraction with  < ρ 1, and to increase the argument of z by a 

constant angle Θ, so to rotate about the origin by the same angle Θ.  The general linear 

transformation thus becomes described geometrically as a dilation or contraction, a rotation and a 

translation in combination.  The effect of a mapping  = w z
n
 for integer n is to transform the 

segment  ≤ 0 ( )arg z  < 
2 π

n
 onto the entire plane w, with a cut along axis u because the origin of 

plane w is a critical point at which 
∂

∂

z
w vanishes.  The inversion mapping  = w

1

z
 of points z with 

respect to the unit circle is followed by their reflexion in the real axis; such an inversion maps 

points interior to the unit circle about the origin in plane z onto the exterior of the circle about the 

origin of plane w.  A straight line parallel to axis x or y in plane z becomes under inversion a circle 

in plane w that passes the origin and has its centre on axis u or v, whereas a straight line not 

passing the origin in plane z transforms into a circle through the origin in plane w but a straight 

line passing the origin in plane z becomes also a straight line through the origin in plane w.  A 

mapping of form  = w
 + a z b

 + c z d
 is called a bilinear or linear fractional transformation of which a 

general linear transformation or inversion is a special case; its application maps straight lines and 

circles into straight lines and circles, but not necessarily in the same order.  



      Conformal mapping is applicable in a solution of problems involving Laplace's equation in 

two independent variables, for the conduction of heat, the flow of a fluid or an electrostatic 

potential. 

     A computational procedure resembles a simple function in mapping input variables into output 

variables, but offers great flexibility and scope through its extent being limited by only the 

ingenuity of the programmer and the resources of the computer on which it runs.  Such procedures 

comprise sequences of repetition and conditional constructs with internal assignments and tests to 

implement arbitrarily complicated operations on the input data or variables.  Language Maple 

itself comprises almost innumerable procedures for arithmetic, algebraic and graphical purposes; a 

user can extend the capability of the language for particular purposes nearly without limit, apart 

from the computer resources.

     The topics within these chapters 1 and 2 collectively constitute what might be called 

pre-calculus, even though some differential or integral properties are germane to the discussion of 

functions of various kinds and of geometry and trigonometry.  Many commands and operators 

within Maple that we discuss and apply herein and for which these topics serve as a vehicle for 

introduction are nevertheless essential for an effective and efficient application of symbolic 

computation in an attack of diverse problems in chemistry.

  summary of chapter 2

     Beyond elementary functions exponential and logarithmic explained in chapter 1, we encounter 

in this chapter circular and hyperbolic trigonometric functions and their inverses.  We discuss also 

polynomial and rational formulae and functions according to both algebraic and graphical 

properties; algebraic properties include the relation between functions and conversions to 

expressions of other kinds, such as series.  To be operational, most functions require an input -- 

numerical or symbolic -- and yield an output that might be an object of a kind different from that 

of the input. Elementary functions of types exponential, logarithmic and trigonometric are also 

transcendental functions.  For comparison, a special function, i.e. not elementary, is function Γ 

that is also a transcendental function.  Series of a few kinds are introduced, and animated plots 

illustrate vividly how properties of these quantities depend on the number of terms in a series.  All 

these quantities provide a basis for symbolic mathematical treatments in succeeding chapters.   

Numerous functions are available in Maple in a list formed here; help on a topic therein is 

obtained on invoking this hyperlink.  

> ? index, function

     Information is available on procedures and programming in Maple; help on a particular topic in 

presented lists is obtained on invoking this hyperlink.

> ? index, procedure

    Apart from an automated mechanism available through smartplot, diverse and powerful plotting 

facilities are available in Maple; we explain plots of diverse types in two and three dimensions, 

and indicate how one can exploit options of plotting to enhance the impact of a plot on a viewer.  

     Although most mathematical topics discussed in this chapter might nominally be introduced in 

secondary school, and most corresponding operations might be conducive to manual execution, 

our coverage and discussion are generally extensive, although not intended to be comprehensive.  

Entire courses on complex analysis, number theory, abstract algebra et cetera that are of interest to 

students specialist in mathematics might have their initial point on this basis.  For a student whose 



interest is primarily chemistry, all this material provides a strong foundation on which to construct 

calculus, linear algebra and other higher mathematics, according to topics in succeeding chapters 

for which an application to chemistry in its various branches becomes readily discernible.

 chapter  3   Differentiation 

  3.0  overview and principles 

     Our ability to describe how concentrations of chemical compounds vary with time expands our 

understanding of chemical systems.  Although algebra, geometry and trigonometry are useful to 

describe relations among static quantities, these tools lack concepts appropriate to describe a 

temporal variation.  To describe motion, as a temporal variation of spatial coordinates, or the 

progress of a chemical reaction, as a temporal variation of the concentration of reactants, the 

infinitesimal calculus provides additional tools through differentiation and integration; like 

addition and subtraction, these operations are mutually opposite:  what one operation does, the 

other reverses the effect.  Isaac Newton developed calculus from a point of view of a derivative as 

a rate of change whereas Leibniz developed calculus in terms of differential quantities.

      Chemical processes involving a temporal variation of a property of a chemical system are a 

principal concern of chemists, for instance the variation with time of concentration of reactants 

and products in chemical reactions or the rate of emission of radiant energy in a photoluminescent 

process.  The temporal rate of variation of concentration of a species attracts particular chemical 

attention, as such rates are characteristic of the chemical nature of the constituents of a reacting 

mixture.  Such a rate one treats in a quantitative mathematical manner as a derivative of a quantity, 

such as concentration, with respect to time; an alternative term for a derivative is a differential 

quotient, or perhaps differential coefficient.  In this chapter we explain how to perform operations 

involving derivatives, or differential calculus, involving a single independent variable in either a 

formula of algebraic form or even purely numerical data.  We express formally a fundamental 

definition of a limit:  already introduced informally in a discussion of limiting behaviour of a 

formula or function under some specified conditions, this concept underpins a definition of not 

only a derivative but also an integral.  We proceed to define and to evaluate derivatives through a 

basic definition of a limit, and view applications of derivatives with the aid of plots.  We introduce 

differential quantities and employ them in a tangent approximation for chemical applications. 

limit 

     A limit of a function such as ( )f x  is its value to which an approach becomes increasingly near 

as its independent variable x approaches a stated value, such as  = x p.  For a real function ( )f x  

there exists a limit L at a point p, at which ( )f x  be defined, if ( )f x  satisfy this condition:

for every ε > 0 there exists δ > 0 such that |  − ( )f x L | < ε for all x such that |  − x p | < δ .

Here ε is a conventional symbol for a small but rigorously positive quantity associated with 

formula ( )f x  whenever its independent variable x is within another small but rigorously positive 

quantity δ of a stated value p.  If ( )f x  be continuous at p, this condition is expressed as 

 = lim
 → x p

( )f x ( )f p

For a value k to be a limit of a formula ( )f x  as  → x ∞, expressed as 



 = lim
 → x ∞

( )f x k

there must exist a large integer N such that 

|  − ( )f x k |  <  ε  for all x > N .

A discontinuity occurs at a point, or value of an independent variable, at which a value of a 

formula differs from its limit as the value of the independent variable approaches that limit, or at 

which a formula or function is undefined.  A singular point, or singularity, is a point at which a 

curve representing a formula or function lacks an unique smooth tangent; a point at which a curve 

crosses itself is such a singularity.

• If a function ( )f x  be defined at a point  = x p -- so that  = ( )f x  = x p ( )f p   exists, 

• if a limit, lim
 → x p

( )f x , exist on approach to p from both greater and smaller values of x, and 

• if that limit equal ( )f p , 

i.e.  = lim
 → x p

( )f x ( )f p , 

that function ( )f x  is continuous at  = x p.  The limit of a sum is a sum of separate limits, a 

distributive property, 

  lim
 → x p

( )f x   +  ( )g x   =  lim
 → x p

( )f x   +  lim
 → x p

( )g x ; 

the limit of a product is a product of limits of the factors,

  = lim
 → x p

( )f x ( )g x ( )lim
 → x p

( )f x ( )lim
 → x p

( )g x  ,

including a special case in which one factor is a constant,

  = lim
 → x p

c ( )f x c ( )lim
 → x p

( )f x  ;

and the limit of a quotient is a quotient of separate limits,

   = lim
 → x p

( )f x

( )g x

lim
 → x p

( )f x

lim
 → x p

( )g x
 ,

provided that a limit in a denominator be not zero.  If both numerator and denominator have zero 

limits at  = x p, the quotient of the limits becomes 
0

0
, so undefined, but a limit of this quotient of 

functions might still exist. The limit of a formula to some power is

lim
 → x p

( )f x
n
  =  ( )lim

 → x p

( )f x
n

for n some real positive or negative number, and for a logarithm of a formula, 

lim
 → x p

( )ln ( )f x   =  ( )ln lim
 → x p

( )f x

difference quotient and differential quotient  

     For a dependent variable y that has a functional dependence ( )f x  on a single independent 

variable x, a derivative, conventionally written 
dy

dx
, is a limit of a quotient of a difference (  + y ∆ y 

) −y  =   − ( )f  + x ∆ x ( )f x  with an increment ∆ x in x, as that increment tends to zero:



dy

dx
  =  lim

 → ∆ x 0

 − ( )f  + x ∆ x ( )f x

∆ x
 

We might equally write a decrement instead of an increment, as in  

dy

dx
  =  lim

 → ∆ x 0

 − ( )f  − x ∆ x ( )f x

∆ x

We thus distinguish between an instantaneous rate of variation of y with x, evaluated with the 

derivative on the left side, and a mean rate of variation of y with x over some finite interval ∆ x, as 

in 
 − ( )f  + x ∆ x ( )f x

∆ x
, before evaluating the limit on the right side.  For the difference quotient 

∆ y

∆ x
, 

the corresponding differential quotient is 
dy

dx
 or 

∂

∂

x
y, and differential dy is the differential of y that 

belongs to differential dx.  For a particular point with coordinates ( ,x0 y0) on a continuous curve 

corresponding to formula  = y ( )f x , an increment ∆ x  yields a corresponding change ∆ y, such that

  = 
∆ y

∆ x

 − y y0

 − x x0

  =   = 
 − ( )f x ( )f x0

 − x x0

 − ( )f  + x0 ∆ x ( )f x0

∆ x
  =  ( )tan α , 

in which the secant is a straight line passing points ( ,x y) and ( ,x0 y0) and the corresponding 

difference quotient makes an angle α with axis x.  In the limit in which ∆  → x 0, the secant 

becomes a tangent of which the differential quotient indicates the gradient.

derivative 

     Differentiation is a process of evaluating such a derivative of a formula with respect to some 

variable therein.  Differentiation of a first derivative or a derivative of first order, such as above, 

produces a second derivative, or a derivative of second order, expressed as 

 standard notation:           
d

dx
 (

dy

dx
) =  

d
2

y

d x
2
 ,

Maple notation:            
∂

∂

x
 
∂

∂

x
y  =  

∂

∂2

x
2

y ,

and so forth.  Here the first part 
d

dx
 , for which Maple might deploy letter d in a special font in 

both numerator and denominator as 
∂

∂

x
 , is a differential operator implying differentiation, once, of 

a formula on which it operates, with respect to independent variable x; in this case the formula 

evaluated from  
dy

dx
 or  

∂

∂

x
y on which it operates is a first derivative of y with respect to x.  

According to SI convention and standard mathematical notation, letter 'd' in those derivatives is 

written in roman font, not italic font like that for the independent or dependent variable, but that 

notation is impracticable here in this Maple worksheet.  The latter operation, i.e. differentiating a 

derivative, yields a second derivative, for which notation 
∂

∂2

x
2

  or 
d

2

dx
2
 implies analogously 



differentiation of a formula twice with respect to x; hence operation of 
∂

∂

x
  on 

∂

∂

x
y  yields 

∂ ∂

∂2

x x
y , 

expressed in Maple also as 
∂

∂2

x
2

y, not 










dy

dx

2

 expressed in Maple as 










∂

∂

x
y

2

.  An alternative 

notation for a first derivative of a formula ( )f x  with respect to x is f '(x), and for its second 

derivative is f "(x).  As mentioned above, Newton's view of a derivative was a rate of change, 

implying time to be the independent variable; Newton represented a first derivative such as 
dx

dt
 

with a notation x
.
, hence with a point above the dependent variable.  A geometric definition of a 

derivative as a tangent to a curve is explored in the sections below.  

     As an example of differentiation we extract a first derivative of a simple quadratic formula

  = y ( )f x  =   +  + 3 x
2

5 x 2   

With increment ∆x in independent variable x and ∆y as the corresponding increment in dependent 

variable y, we form an expression in terms of increments in both x and y, 

 =  + y ∆ y ( )f  + x ∆ x   =  3 ( ) + x ∆ x
2
 +  + 5 ( ) + x ∆ x 2  

 =   +  + 3 x
2

6 x ∆ x 3 ∆ x
2
  +  +  + 5 x 5 ∆ x 2 ;

after expansion, we subtract the original expression  = y ( )f x  to obtain

∆ y =  − ( )f  + x ∆ x ( )f x   =  (  +  + 3 x
2

6 x ∆ x 3 ∆ x
2
  +  +  + 5 x 5 ∆ x 2 )  −   (  +  + 3 x

2
5 x 2 )  

      =   +  + 6 x ∆ x 3 ∆ x
2

5 ∆ x                  

after cancellation of like terms with positive and negative signs.  After dividing both sides by ∆x 

supposed to have a finite magnitude, we obtain

∆ y

∆ x
  =   +  + 6 x 3 ∆ x 5 .

According to a definition of a derivative, we form a limit of both sides of this equality as ∆  → x 0,

 = 
∂

∂

x
y lim

 → ∆ x 0

∆ y

∆ x
  

                          =   lim
 → ∆ x 0

 +  + 6 x 3 ∆ x 5  

=   + 6 x 5  ,

because the second term 3 ∆x in a limit on the right side of the equality sign vanishes in the limit 

as  ∆  → x 0.  The first  derivative of a formula named y, 

y  =   = ( )f x  +  + 3 x
2

5 x 2 

with respect to x is hence 

∂

∂

x
y  =  f '(x)  =   + 6 x 5 .  

     Three theorems that are important in the theory of differentiation are Rolle's theorem and two 

theorems on mean values.  According to Rolle's theorem, for a formula ( )f x  that is continuous on 

a closed interval [ ,a b], thus including the end points, of x and that has a first derivative 

everywhere in the open interval ] ,a b[ (thus excluding the end points), if 



 = ( )f x  = x a ( )f x  = x b 

there exists at least one point at  = x c at which

 










d

d

x
( )f x

 = x c

 = 0.  

If for a function with formula ( )f x  that is continuous on interval [ ,a b] and with formula ( )f a  at 

 = x a and ( )f b  at  = x b a product  < ( )f a ( )f b 0, there exists at least one value  = x c within that 

interval for which  = ( )f c 0.  That continuous function increases on the same interval if ( )f a  < ( )f b

, or 
d

d

x
( )f x  > 0, and decreases on that interval if ( )f a  > ( )f b , or 

d

d

x
( )f x  < 0.  For the same 

conditions applicable to two formulae ( )f x  and ( )g x  with respect to the same interval, and if also 

 ≠ 
d

d

x
( )g x 0 on the open interval, according to Cauchy's mean-value theorem there exists at least 

one point at  = x c at which in a general case 

 = 
 − ( )f b ( )f a

 − ( )g b ( )g a











d

d

x
( )f x

 = x c











d

d

x
( )g x

 = x c

 .

For a particular case of a mean-value theorem in which  = ( )g x x, 

 = 
 − ( )f b ( )f a

 − b a











d

d

x
( )f x

 = x c

geometric aspects of derivatives  

     Besides a formal algebraic definition, a first derivative has a geometric definition as the slope 

of a tangent to a continuous curve representing  = y ( )f x  at any point along that curve with abscissa 

x.  A stationary point on that curve -- an extremum that is either a maximum or a minimum -- and 

a point of inflexion are then defined in relation to particular values of first, second and third 

derivatives.  When one (or more) derivative of a formula or function has zero value for a particular 

value of an independent variable, a point on the corresponding curve displays a special property in 

a geometric sense.  Whereas the first derivative represents a slope of a tangent to a curve, or its 

gradient, the second derivative represents concavity, which is related in turn to curvature.  A point 

at which a first derivative is zero is a stationary point or a critical point; such a point at which a 

tangent has zero slope can mark the presence of an extremum -- a maximum or minimum that is a 

turning point of a curve -- which might be local or global, or a point of inflexion; likewise, for a 

second derivative to be zero might, subject to further tests, indicate a point of inflexion, at which a 

tangent might or might not have zero slope.  Near a local maximum of a curve describing a 

formula or function, concavity is defined to be concave downward, or in a vicinity of a local 

minimum, concave upward.  Curvature measures a rate at which the inclination of a tangent to a 

curve varies relative to a length of arc, which is a segment of a curve; curvature is positive for a 

curve that is concave upward, or negative for a curve that is concave downward.  To test these 

effects, one evaluates a second derivative of an expression at a chosen turning point:  a positive 

value of the second derivative indicates a local or global minimum whereas a negative value 

indicates a local or global maximum; a zero value might indicate a point of inflexion, at which 



concavity changes sign along the curve across the point.  A further test for a point of inflexion is 

to verify that the third derivative has a finite value at a location under consideration.  On passage 

through a turning point from left to right, the slope of a tangent line changes from positive to 

negative for a maximum, and from negative to positive for a minimum; the slope of a tangent line 

retains its sign at a point of inflexion of a curve, but that tangent line crosses that curve.  

     The algebraic derivative of a formula ( )f x  with respect to its single independent variable x 

provides information about the geometric properties of the associated curve in a cartesian plane; 

because these geometric concepts related to derivatives are important, we rephrase them here.   

For a formula to assume ascending values on an interval I between x1 and x2 signifies that 

 < ( )f x1 ( )f x2 ; vice versa, for a formula to assume descending values on the same interval signifies 

that ( )f x1  > ( )f x2 .  In the former case the derivative 
d

d

x
( )f x  > 0 on that interval and is not 0 

everywhere thereon, whereas in the latter case 
d

d

x
( )f x  < 0 and is not 0 everywhere thereon.  

Moreover, in the former case the slope m of the curve representing ( )f x  is likewise positive, or at 

least non-negative, on that interval, but negative, or at least non-positive, in the latter case.  A 

stationary point or critical point of a curve representing a formula is a point in the domain of that 

formula at which the first derivative 
d

d

x
( )f x  is either zero or does not exist; at such a stationary 

point, that curve has either at least a local or relative maximum or minimum, either of which is at 

least a local extremum.  If there exist no such extremum of lesser value of ( )f x , that extremum is a 

global minimum, or for no other extremum of greater value of ( )f x  that extremum is a global 

maximum; a formula ( )f x  that be continuous on a closed interval must attain an absolute 

maximum and an absolute minimum within that interval.  At such a relative or global maximum, 

the first derivative and the slope of the tangent line of the curve alter from positive to negative as x 

varies through that stationary point and the curve is concave downward, whereas at such a relative 

or global minimum the first derivative and the slope of the tangent of the curve alter from negative 

to positive as x varies through that stationary point and the curve is concave upward.   At such a 

stationary point at which the first derivative 
d

d

x
( )f x  is zero, the second derivative 

d

d
2

x
2

( )f x  is 

negative if the formula and curve have there a local or global maximum, or positive if the formula 

and curve have there a local or global minimum.  An extremum of ( )f x  might also occur at a point 

at which 
d

d

x
( )f x  or 

d

d
2

x
2

( )f x  does not exist.  Between intervals of opposite concavity there must 

exist a point of inflexion at which the second derivative 
d

d
2

x
2

( )f x , if it exist, is zero and changes 

sign as x increases through that point; at such a point of inflexion the tangent line crosses the 

curve, with this tangent line either parallel to the abscissal axis for a horizontal point of inflexion 

or parallel to the ordinate axis for a vertical point of inflexion.  Application of these conditions on 

the zero values of first and second derivatives of a formula enables one to locate absolute extrema 



and stationary points on a closed interval.  

     If x and y are specified as parametric functions of t, provided that  ≠ 
∂

∂

t
x 0,

 = 
∂

∂

x
y

∂

∂

t
y

∂

∂

t
x

 = 
∂

∂2

x
2

y
∂

∂

t











∂

∂

x
y

∂

∂

t
x

     A formula is differentiable only if its variable can assume values in a continuous range.  If a 

complicated formula defy rearrangement such that a variable considered dependent be isolable on 

one side of an equality, implicit differentiation is practicable whereby differential operator 
∂

∂

x
 is 

applicable to each term of this formula.  A more abstract and general differential operator D is 

applicable to a function without explicit reference to a specific independent variable; for instance, 

 = ( )D sin cos 

 Logarithmic differentiation that implies evaluating derivatives after taking logarithms of each side 

of an identity is most applicable to expressions involving products or quotients; a logarithmic 

derivative is the derivative of a logarithm of a particular formula,  = 
d

d

x
( )ln ( )f x

d

d

x
( )f x

( )f x
 according 

to the chain rule.  Both these operations that might be useful in manual work are superfluous when 

a symbolic processor is applied; implicit differentiation might be applicable for this purpose.  

differentiation of complex formula  

     In forming derivatives above we implicitly assume real numbers and real formulae.  By analogy 

with a real function of two real variables, a complex formula  = w ( )f z  = ( )f  + x i y  is continuous at 

 = z z0 if

 lim
 → z z

0

 = ( )f z w0     and      = ( )f z0 w0 .  

Like a real function ( )f x , a complex function ( )f z  is differentiable, and has a derivative 

 = 










∂

∂

z
w

 = z z
0











d

d

z
( )f z

 = z z
0

 at a point z0 provided that function ( )f z  is defined in the vicinity of z0 

and that the limiting value of 
∆ w

∆ z
 as ∆  → z 0, 

i.e.    
d w

d z  = z z
0

 =  lim
 → ∆ z 0

 − ( )f  + z0 ∆ z ( )f z0

∆ z
 , 

exists as a limit in the complex plane independent of the direction of approach to that point, 

wherever that limit exist.  To illustrate this property we consider a derivative of z and of its 



complex conjugate z; either derivative exists only if the value of a limit be independent of the 

direction of approach to that limit.  First for  = z  + x i y, we apply the definition of a derivative as a 

limit at point z0, and take  = w ( )f z ; then  = ∆ w  − ( )f z ( )f z0 , and 

 = 
dw

dz
lim
 → z z

0

∆ w

∆ z

For z we approach a point (0,0) along axes x and y.  For axis x we apply the limit,

 = 
 +  − z ∆ z z

∆ z

 +  +  − x i y ∆ x ( ) + x i y

∆ x
  =   = 

∆ x

∆ x
1 

For axis y we apply the limit analogously,

   = 
 +  − z ∆ z z

∆ z

 +  +  − x i y i ∆ y ( ) + x i y

∆ y
  =   = 

∆ y

∆ y
1

Accordingly we obtain the same value of the limit on the approach to the origin along either axis.  

When we apply these limits for z we obtain for approach to the origin along axis x,

 = 
 − ( ) + z ∆ z z

∆ z

 − ( ) +  + x i y ∆ x ( ) + x i y

∆ x
 =  

 −  +  − x i y ∆ x ( ) − x i y

∆ x
   =  = 

∆ x

∆ x
1

but for axis y we obtain

 = 
 − ( ) + z ∆ z z

∆ z

 − ( ) +  + x i y i ∆ y ( ) + x i y

∆ y
 =  

 −  −  − x i y i ∆ y ( ) − x i y

∆ y
   =  = 

−∆ y

∆ y
−1

Because these limits are not identical, the derivative of z does not exist, even though the function 

is continuous everywhere.

    Rules of differentiation of a function of a complex variable are the same as for a real variable, 

except for possible requirements involving the same branch of that function.  There exist complex 

functions for which no derivative exists, even for a quantity as simple as z, as derived above, 

because that limit above depends on the direction of approach.  Maple provides a derivative with 

respect to only an atomic quantity -- one for which there is no preceding assignment -- that is also 

a name or a symbolic quantity; for this reason, whether a quantity z be real or complex is 

immaterial as long as there is no preceding assignment to that quantity.  If one must differentiate 

with respect to a quantity that is not atomic, an appropriate substitution must be made before 

differentiation and then the reverse substitution afterward.  

numerical differentiation  

     For numerical data rather than an algebraic formula or function, either a derivative be estimated 

through ratios of finite differences, or an algebraic formula might be fitted to regularly varying 

data and subsequently differentiated.  In the former case, differences in the following set might 

serve for the calculation of numerical approximations to derivatives.  For points in a set {( ,xi yi)} 

with xi at equal intervals ∆ x, the first difference for point i is

 = ∆ yi  − y  + i 1 yi,

the second difference is 

 = ∆
2

yi  − ∆ y  + i 1 ∆ yi =  −  + y  + i 2 2 y  + i 1 yi,

the third difference is



 = ∆
3

yi  − ∆
2

y  + i 1 ∆
2

yi

et cetera; this scheme for point i involves only points , , + i 1  + i 2 ..., but other equivalent schemes 

are devised for points on both sides of each point in turn.  

     The simplest method to obtain a numerical first derivative is hence to apply Newton's 

difference quotient,

 = 
dy

dx

 − ( )f  + x ∆ x ( )f x

∆ x
,

in which = implies an approximate equality, and x and  + x ∆ x are adjacent points for which the 

corresponding values ( )f x  and ( )f  + x ∆ x  are known; the slope of this secant line differs from the 

slope of the tangent line by an amount that is approximately proportional to ∆ x.  As ∆ x -> 0, the 

slope of the secant line approaches the slope of the tangent line, and the accuracy of the 

approximation increases.  An alternative formula involving two known points is this approximate 

equality 

 = 
dy

dx

 − ( )f  + x ∆ x ( )f  − x ∆ x

2 ∆ x
 ;

in this case the errors of first order cancel, and the slope of the secant lines differ from the slope of 

the tangent line by an amount that is approximately proportional to ∆ x
2
; for this reason, for small 

values of ∆ x, this approximation to the slope of the tangent line is more accurate than the 

preceding expression that involves an increment at only one side of a given point.  Although the 

derivative is being evaluated at x, the value of ( )f x  is not involved.  A method of greater order 

involves five points in this approximate equality,

 = 
dy

dx

−  +  −  + ( )f  + x 2 ∆ x 8 ( )f  + x ∆ x 8 ( )f  − x ∆ x ( )f  − x 2 ∆ x

12 ∆ x
 ,

in which the error is proportional to 
∆ x

4

30
 .

     Based on a formula for interpolation attributed to Gregory and Newton, first derivative 
dy

dx
 at 

point i with coordinates ( ,xi yi) is also evaluated from 

dy

dx  = x x
i

 =  
1

∆ x
 (∆ yi −

1

2
 ∆

2
yi + 

1

3
 ∆

3
yi −... )

and second derivative 
∂

∂2

x
2

y at point i is evaluated from













∂

∂2

x
2

y
 = x x

i

 = 
1

( )∆ x
2
 ( ∆

2
yi −∆

3
yi + 

11

12
  − ∆

4
yi ... )

Although these operations might be automated through the use of a spreadsheet, likely a value of 

the desired first or second derivative might have superior accuracy from the use of a fitted spline 

formula and algebraic differentiation.    

Taylor series  

     A Taylor's series comprises a sum of terms in each of which a derivative of successively 

increasing order evaluated at a particular point is coefficient of an expression or variable with an 



exponent of the same degree:  

f(x)  =  

( )f x  = x x
0

!0
 + 

d ( )f x

dx  = x x
0

( ) − x x0

!1
  +  

d
2

( )f x

d x
2  = x x

0

( ) − x x0

2

!2
           

               +  

d
3

( )f x

d x
3  = x x

0

( ) − x x0

3

!3
  +  

d
4

( )f x

d x
4  = x x

0

( ) − x x0

4

!4
  +  ...  ;

if  = x0 0, the series is a Maclaurin's series.  The radius r of convergence of a Taylor's series is the 

distance from the expansion centre x0 to the nearest singularity of ( )f x , and the circle of 

convergence is a circle of radius r of convergence centred at  = x x0;  such a circle exists in the 

complex plane.  For instance, for a function  = ( )f x
1

 + 1 x
2
 there exist poles at x = +i, and a Taylor 

series for this function converges for only  < x 1.  These series are expressible also in terms of 

operator D.

     Two geometric properties of a curve at a particular point ( ,x0 y0) are a tangent line and a normal 

line.  For a tangent line defined with a formula   = y  + m x b, its slope m is just the first derivative, 

so m =  
dy

dx
, of the formula for the curve evaluated at that point; its intercept b on the ordinate axis 

is then evaluated on substituting coordinates x0 and y0 and that value of m into a defining relation, 

 = y  + m x b.  For a normal line defined likewise as  = y  + m x b, its slope m is just the negative 

reciprocal of the first derivative of the formula for the curve, so  = m
−1

∂

∂

x
y

 ; its intercept b on the 

ordinate axis is then again evaluated on substituting coordinates x0 and y0 and that value of m into 

a defining equation; if 
∂

∂

x
y = 0 at that point ( ,x0 y0), the normal line is parallel to axis y and has 

equation  = x x0.

root of equation with Newton's algorithm  

     Here we apply calculation of derivatives to a general problem -- to find a real root of an 

equation in one unknown quantity of form  = ( )f x 0. For this purpose Gauss based an approach on 

Newton's algorithm; at each stage of an iterative process, an approximate value of x from the 

preceding stage becomes its value to be corrected with a ratio 
( )f x

d

d

x
( )f x

 :  

   = x  + j 1  − xj

( )f xj











d

d

x
( )f x

 = x x
j

  .   



Convergence to a solution xc occurs as  → j ∞ providing that 

• that ( )f x  has two continuous derivatives, 

• that  ≠ 










d

d

x
( )f x

 = x x
j

0, and 

• that an initial estimate x0 is sufficiently near xc.  

     In a particular case that the first derivative 










d

d

x
( )f x

 = x x
j

 at a particular point xj is small, 

convergence might be difficult to attain.  Under that particular condition an alternative method 

might be practicable, involving this iterative formula with a second derivative first,  

 = x  + j 1  − xj

−2 ( )f xj













d

d
2

x
2

( )f x
 = x x

j

 

and then reverting to the above formula when near x  + j 1 the first derivative becomes larger.

differential  

     Following Leibniz, before this point we regard Maple's notation 
∂

∂

x
y to denote a single entity 

implying a derivative of an expression or formula named y with respect to its single independent 

variable x, according to a definition above.  Another view of this derivative is a ratio of two 

separate quantities, a differential dy of dependent variable y and a differential dx of independent 

variable x, of which this ratio constitutes a derivative; neither differential quantity implies 

necessarily an infinitesimal change.  An increment in independent variable x is denoted ∆ x, which 

is expressible as dx; this increment hence becomes known as the differential of x.  A differential 

dy of a given function, such as ( )f x , is expressed as a product of a derivative of that function f '(x) 

and a corresponding increment dx of independent variable x.

dy  =  
dy

dx
  dx =  f '(x) dx

Although dx is thus an increment in x, dy is not in general the corresponding increment in y, 

expressed as ∆ y and calculated as 

 = ∆ y  − ( )f  + x ∆ x ( )f x  ;

only for a linear formula is this derivative 
dy

dx
 or  

∂

∂

x
y at any point equal to a ratio 

∆ y

∆ x
  with an 

arbitrary variation ∆x of independent variable x in the denominator and thus dy equal to a 

corresponding variation ∆y in the numerator.  A tangent to a smooth curve at a particular point is 

by definition a straight line; the slope of this tangent is a derivative 










dy

dx
t

 of a linear relation 

defining that straight line, and is by definition equal to a derivative 










dy

dx
c

of a formula defining 



that curve at that point.  That derivative 










dy

dx
t

 pertaining to the tangent line is equal to a ratio 
∆ y

∆ x
 

for variation ∆x of arbitrary magnitude and a corresponding variation ∆y for that tangent line; the 

differential dx is exactly equal to the variation ∆x, and to the extent that the curve deviates from 

that tangent line a corresponding differential dy for the curve deviates from ∆y.  The tangent 

approximation thus has as its basis the use of a derivative 










dy

dx
t

, or the slope of a line tangent to a 

curve at a particular point, and its associated differentials dy and dx, as an approximation of the 

derivative 










dy

dx
c

, or the slope of that curve, and the differential dy associated with the tangent line 

to estimate the true increment ∆ y at some distance ∆ x away from that point.  At a critical point or 

extremum,  = 
dy

dx
0, so that  = dy 0; at such a point one can not use a differential dy to approximate a 

change ∆ y of formula  = y ( )f x .

     With a relation between independent and dependent variables known in symbolic form, this 

tangent approximation is generally superfluous because, with a symbolic processor such as Maple, 

one can almost invariably obtain readily an exact variation through a derivative expressed in terms 

of symbols, but with numerical data this approximation might have some applicability.

      Differentials pervade physical chemistry, and chemical kinetics in particular.  For example, 

consider a dependence of concentration [ ]A  on duration t of a reaction of first kinetic order 

according to  = [ ]A a e
( )−k t

, in which a is the initial concentration of reactant and k is a rate 

coefficient.  According to that definition, we differentiate to obtain                             

                                                                d  = [ ]A −k a e
( )−k t

 dt,

For given t and dt, we can estimate a depletion d [A] of A.  In thermodynamics of phase 

transitions, the Clapeyron equation  = 
∂

∂

T
P

∆ H

T ∆ V
 describes the effect of pressure on the 

temperature of a transition in terms of the molar volume change ∆ V and the molar enthalpy 

change ∆ H that accompany that transition. Differentials of variables that describe a physical state 

of a chemical compound are important in thermodynamics; as experimental conditions generally 

involve multiple independent variables, we consider these applications in chapter 5.

     Differentation constitutes a powerful tool for the solution of problems in diverse fields; many 

such applications involve rates, such as of chemical reactions, and maxima and minima.  The great 

utility of a symbolic processor, such as Maple, is that, to differentiate a complicated function, we 

need not concern ourselves how differentiation is achieved or with deployment of conventional 

rules for a product, quotient, chain rule or other particular procedure:  three commands -- diff 

for explicit differentiation with respect to a specified variable, implicitdiff for implicit 

differentiation either when a dependent variable is not readily isolable or for formulae expressed 

parametrically, and D as a differential operator -- suffice to activate Maple to implement the most 

appropriate approach for any algebraic expression. 



  summary of chapter 3

     In this chapter we investigate the nature of a limit or an asymptotic approach to a value, and 

how a derivative in calculus is based on such a limiting behaviour of a ratio of two small changes.  

Only a few commands provide tremendous power for operations in differential calculus.  We 

apply differentiation to various formulae and functions, and discover complications caused by 

discontinuous conditions.  A derivative viewed as a ratio of differential quantities constitutes a 

simple method to estimate a variation in a value of a function when an independent variable is 

incremented a given amount, although this method is generally superfluous when one has access 

to powerful software for symbolic computation that readily enables an exact calculation.  

Chemical application of these principles arises in estimation of error when one processes 

experimental data through use of a formula, as demonstrated in examples in chemical kinetics and 

thermodynamics.

 chapter 4   Integration 

  4.0  overview and principles   

     In chemistry an integral is widely applicable to transform one formula or function, typically 

associated with a measured property, into another formula or function.  Thermodynamic functions 

given at a particular temperature considered a standard temperature are converted to values at 

another temperature through integrals involving thermal capacities.  In reaction kinetics, for 

instance, if one knows a rate of disappearance of a species, by means of an integral one can 

generate a formula or function to describe how concentration of that species varies temporally; 

likewise, if one knows a probability per unit volume, or probability density, of finding an electron 

in an infinitesimal molecular volume containing a given point, one might evaluate a probability of 

finding an electron in a given volume of interest with a definite integral of that density.  Of these 

two examples, the former involves an indefinite integral whereas the latter involves a definite 

integral for which the spatial coordinates specify the bounds of integration.  

integral

          Before we elucidate use of integrals in a chemical context, we consider a derivative, 

explained in chapter 3, as a basis on which to inter-relate integrals of these two kinds.  If we have 

a prototypical derivative with ( )f x  a continuous function on a particular interval,

 
dy

dx
  =  f(x), 

we multiply both sides by a differential dx, to form 

 
dy

dx
  dx  =  dy  =  f(x) dx 

Because integration is formally an operation inverse to differentiation, the left side of this equation 

is simply dy that we  integrate directly to y, as an infinite sum of infinitesimal quantities; we thus 

obtain a formula

 d
⌠
⌡
 y   =   y   =   d

⌠
⌡
 ( )f x x   

          =  ( )F x



for an indefinite integral on the right side, to which we assign a name ( )F x ; ( )F x  contains an 

additive constant because on differentiation of ( )F x  to yield ( )f x  any contribution due to that 

constant vanishes, but such an additive constant is arbitrary unless additional information be 

available to set it to a particular value.  Following an integral sign on the right side, ( )f x  is an 

integrand and dx is a corresponding differential quantity that serves as integrating element.  For an 

indefinite integral ( )F x  of an integrand ( )f x ,  

 = 
d

d

x
( )F x ( )f x  

formula F(x) is called an antiderivative of ( )f x .  The latter equation implies that 

d

dx
  = d
⌠
⌡
 ( )f x x ( )f x

An indefinite integral is thus a formula, called an antiderivative, of which the derivative is a given 

formula; for some derivatives no antiderivative might exist in an explicit algebraic form.  An 

indefinite integral or antiderivative ( )F x  of a formula ( )f x  is thus a family of formulae of 

uncountable number, each of which has ( )f x  as its first derivative; one member of this family 

differs from another member by at most an additive constant. A geometric interpretation of this 

condition is that curves of the integral number uncountably that are related to one another through 

a parallel displacement along the direction of the ordinate axis.

indefinite integral  

      If ( )f x  and ( )g x  have antiderivatives on an interval, on that interval other formal definitions 

are a distributive property or rule of linearity,

 = d
⌠
⌡
[ ] + ( )f x ( )g x x  + d

⌠
⌡
 ( )f x x d

⌠
⌡
 ( )g x x

or for multiple integrating variables in a sum,

d
⌠
⌡
( x + dy + dz + ...)  =  d

⌠
⌡
 x  +  d

⌠
⌡
 y  +  d

⌠
⌡
 z  +  ...

and for constant c,

 = d
⌠
⌡
c ( )f x x c d

⌠
⌡
 ( )f x x   

 = d
⌠
⌡
c x c d

⌠
⌡
 x

whereas an indefinite integral of a unit integrand yields this result,.

 = d
⌠
⌡
 x  + x C

in which C is a constant of integration, to be evaluated from external conditions.  The latter 

integral is a special case, for  = n 0, of the following general rule.

 = d
⌠

⌡
x

n
x

x
( ) + n 1

 + n 1
   +  C,           for  ≠ n −1

Integration by parts implies that 



 = d
⌠
⌡
 ( )f x ( )g x x  − ( )f x d

⌠
⌡
 ( )g x x d

⌠

⌡





[










d

d

x
( )f x d

⌠
⌡
 ( )g x x ] x

and integration by substitution implies that

 = d

⌠

⌡





( )f ( )g x










d

d

x
( )g x x d

⌠
⌡
 ( )f u u

 = u ( )g x

definite integral  

     If formula ( )f x  be continuous on a finite interval [ ,a b], a definite integral of ( )f x  with respect 

to x between  = x a and  = x b exists along that line of axis x and has form A according to 

A = d
⌠
⌡


a

b

( )f x x =   − ( )F b ( )F a , 

in which end points of an interval of x over which integration is performed, or the bounds of that 

integral, are specified to have values a and b as indicated below and above an integral sign, 

respectively; no such bounds appear for an indefinite integral.  f(x) is an integrand or expression to 

be integrated.  As  = 
d

d

x
( )F x ( )f x , the above formula embodies the fundamental theorem of 

calculus.  Conversely, when ( )f x  is continuous on an interval [ ,a b], a function F of formula

 = ( )F x d
⌠
⌡


a

x

( )f t t

is differentiable on that interval, and  = 
d

d

x
( )F x ( )f x .  This theorem is expressible in an alternative 

form, subject to ( )f y  being continuous,

 = 
∂

∂

x













d

⌠
⌡


a

x

( )f y y ( )f x

which shows that the derivative of the integral generates the original formula.  

     A definite integral might be split into multiple contributions; for two contributions,

 = d
⌠
⌡


a

b

( )f x x  + d
⌠
⌡


a

c

( )f x x d
⌠
⌡


c

b

( )f x x

provided that  ≤ a c  ≤  b.  Two further rules are

 = d

⌠

⌡
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b

( )f ( )g x
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x
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⌠
⌡
 ( )f u u

 = u ( )g x
] a 

b
  =  d

⌠
⌡


( )g a

( )g b

( )f u u

 = d
⌠
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a

b

( )f x x d

⌠

⌡





( )f ( )g t










d

d

t
( )g t t

 = t ( )g x

] a 
b
  =  d

⌠

⌡





( )g a

( )g b

( )f ( )g t










d

d

t
( )g t u

in the central expressions of which the definite integral is to be eventually evaluated as a 

difference of the indefinite integrals into which is substituted  = x b and  = x a.



     If formula ( )f x  be continuous on finite interval [ ],a b , definite integral d
⌠
⌡


a

b

( )f x x also exists.  

The definite integral of a continuous function is a differentiable function of its upper limit of 

integration:

 = 
∂

∂

x













d

⌠
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a

x

( )f t t  − ( )f x










∂

∂

x
( )f a   =  ( )f x  , 

because 
∂

∂

x
( )f a  = 0 or a derivative of a constant is zero.  Integration in calculus implies evaluation 

of such an integral, either definite when a lower bound, such as x = a and upper bound x = b, are 

specified at an integral sign, or indefinite in their absence; as an exception, in some cases a 

variable such as x might appear as an upper bound.  An outcome of this distinction between 

integrals of two kinds is that one can regard an indefinite integral as an operation on a function 

( )f x  to produce another function ( )F x ; for a definite integral, a result A is just a number, likely 

with units, or a quantity that evaluates to a number, of which a value depends upon values of a and 

b.  

     If an integrand be odd an odd formula -- such that  = ( )f −x − ( )f x , its definite integral over an 

interval   .. −a a is zero:

  = d
⌠
⌡


−a

a

( )f x x 0      if  = ( )f −x ( )f x  .

If an integrand be an even formula -- such that  = ( )f −x ( )f x , its definite integral over an interval  

 .. −a a is twice that over an interval  .. 0 a:

 = d
⌠
⌡


−a

a

( )f x x 2 d
⌠
⌡


0

a

( )f x x       if     = ( )f −x ( )f x  .

     To evaluate a definite integral, a direct approach is first to find an expression F(x) in algebraic 

or symbolic form for an indefinite integral of the same integrand f(x), such that  
d

d

x
( )F x  = f(x), 

and then to calculate the difference between values of that antiderivative substituted with upper 

and lower bounds of an interval or domain of an integrating variable, i.e.

A =  d
⌠
⌡


a

b

( )f x x = ( )F x  = x b  −    ( )F x  = x a      

 or      

 A =  F(b)  −    F(a).  

For an integral definite or indefinite a typical approach hence involves finding first an 

antiderivative F(x), if it exist.  For an indefinite integral, F(x) is not an antiderivative function of 

most general form; for this reason we take care to refer to F(x) as an antiderivative function.  For 

an indefinite integral one must add to an antiderivative an arbitrary constant, such as C, as a 

constant of integration to obtain an antiderivative of most general form; such a constant of 

integration implies no dependence on an integrating variable x because, for whatever value of such 

a constant C, a rigorous equality   



∂

∂

x
( ) + ( )F x C   =   

d

d

x
( )F x   =   f(x)  

holds.  As each value of C implies a distinct antiderivative function, such functions are 

uncountable.  Each formula for differentiation thereby becomes restated as a formula for 

antidifferentiation.  For a definite integral, a fundamental theorem of integral calculus, to be 

explained as a limit of a sum, ensures that we express the form of A above in terms of a difference 

between values of antiderivative function ( )F x  at upper and lower bounds of an interval over 

which definite integration is performed, 

 = A  − ( )F b ( )F a , 

as above, no matter what be the value of a constant that we choose for that antiderivative function, 

but that value must be the same for ( )F a  and ( )F b .  The significance of a constant of integration 

reappears when we consider the solution of differential equations in chapter 7.  An alternative 

term for a bound or end point of an interval of integration is a limit, but the latter term has a 

significance different from that of a limit of a function as in lim
 → n ∞
∑
 = i 0

n

xi , as discussed in chapter 3.  

     According to a definition of an indefinite integral as an antiderivative, 

if  = ( )f x
d

d

x
( )F x ,   = d

⌠
⌡


a

x

( )f t t  − ( )F t  = t x ( )F t  = t a =   − ( )F x ( )F a , 

in which a is a constant quantity.  Differentiation with respect to x yields

 = 
∂

∂

x













d

⌠
⌡


a

x

( )f t t
∂

∂

x
( ) − ( )F x ( )F a   =   = 

d

d

x
( )F x ( )f x  ,

as shown above.  Analogously, 

 = d
⌠
⌡


x

a

( )f t t  − ( )F a ( )F x ,

so that 

 = 
∂

∂

x













d

⌠
⌡


x

a

( )f t t −










d

d

x
( )F x  = − ( )f x

or, with  = 
d

d

x
( )F x ( )f x , 

 = ( )F x d
⌠
⌡


a

x

( )f t t

For an alternative change of variable from x to ξ, with ( )f x  continuous between end points a and b

, with  = a ( )g α  and  = b ( )g β , and with 
d

d

ξ
( )g ξ  continuous between α and β such that for ξ 

between α and β ( )g ξ  is between a and b,



 = d
⌠
⌡


a

b

( )f x x d

⌠

⌡





α

β

( )f ( )g ξ










d

d

ξ
( )g ξ ξ

     Other properties of a definite integral with both ( )f x  and ( )g x  continuous between the same 

end points  = x a and  = x b and a constant c are

 = d
⌠
⌡


a

b

( )f x x − d
⌠
⌡


b

a

( )f x x

 = d
⌠
⌡


a

b

 + ( )f x ( )g x x  + d
⌠
⌡


a

b

( )f x x d
⌠
⌡


a

b

( )g x x

 = d
⌠
⌡


a

b

c ( )f x x c d
⌠
⌡


a

b

( )f x x

d
⌠
⌡


a

a

( )f x x =  0

 ≤ ( )min ( )f  − b a d
⌠
⌡


a

b

( )f x x  ≤  ( )max ( )f  − b a

if  ≤ ( )f x ( )g x  on [ ,a b],  ≤ d
⌠
⌡


a

b

( )f x x d
⌠
⌡


a

b

( )g x x

     To construct a finite increment of function ( )F x  between values x1 and x2 of independent 

variable x, we integrate with integrand  = ( )f x
d

d

x
( )F x , 

 =  − ( )F x2 ( )F x1 d
⌠
⌡


x
1

x
2

( )f x x  

     In a chemical context, generally no ambiguity arises about a constant C of integration, as we 

typically possess information about a system of interest that enables us to evaluate C.  For 

example, in a chemical reaction, in which temporal variation of a concentration is measured that 

embodies a significance of ( )f t , we generally know an initial concentration at a particular time t0, 

and therefore specify a value of ( )F t  at  = t t0, or ( )F t0 ; a symbol for an independent variable is 

here t, for time, instead of customary x in abstract algebraic notation.

     Methods of integration include integration of partial fractions, integration by parts and 

substitution; these methods are explained and illustrated in sections 4.203, 4.204 and 4.205, 

respectively.  There is no general method applicable to an arbitrary integrand; for a particular 

integrand of complicated nature, one might try various methods, but for some integrands, even 

those of apparently simple form such as e
( )−x

2

, there is no known algebraic antiderivative.  In such 

cases of a definite integral, one might apply numerical integration or quadrature to obtain a 

numerical result, provided that no symbols appear in the integrand or end points other than that of 

the integration variable. 



geometric interpretation of integration  

     An informal geometric definition of a definite integral is that in a graph of a given positive 

function it represents an area between a curve and the abscissal axis between two specified values 

of independent variable known as bounds of integration.  For bounds of integration  = x a and  = x b

, interval [ ,a b] along abscissal axis x is divided into n equal subintervals of width ∆x; a sum of 

areas of rectangles, each of width ∆x and of stature ( )f x  between abscissal axis x and a curve of 

that positive function ( )f x  for some x within that subinterval, as  → n ∞, yields a total area of that 

region and a value of an associated definite integral.  Each element of width ∆x along the abscissal 

axis is associated with a corresponding element of area ( )f x ∆ x of a rectangle bounded above by 

the curve pertaining to ( )f x . A geometric definition, due to Riemann, of a definite integral is hence 

an area that is formed as a limit of a sum of areas of contiguous rectangles between the abscissal 

axis and the curve corresponding to a formula ( )f x  pertaining to a bounded function f taking real 

values between two points a and b on that axis as the number of such rectangles increases without 

limit, so that the width ∆x of each rectangle tends to zero:

lim
 → n ∞
∑
 = j 0

n

( )f  + a j ∆ x ∆ x  =  d
⌠
⌡


a

b

( )f x x  =  A

Lebesgue integration is a generalization of a Riemann integral to functions that have 

discontinuities, and a Stieltjes integral is an extension of a Riemann integral that allows 

integration of a function with respect to another function.   

      An alternative definition of a definite integral is a difference of two indefinite integrals, each 

of which is evaluated at an end point b or a of integration, as mentioned above:  

 = d
⌠
⌡


a

b

( )f x x  − d
⌠
⌡
 ( )f x x

 = x b
d

⌠
⌡
 ( )f x x

 = x a
.  

applications of integration

     Two common applications of a definite integral involve finding an arithmetic mean value and a 

root-mean-squared value of a continuous formula in some stated domain of independent variable.  

An arithmetic mean value of a formula between two bounds corresponds to simply the area under 

the curve of that formula between those end points divided by their difference,

 = arithmetic mean
1

 − b a
  d
⌠
⌡


a

b

y x .  

The mean-value theorem, which is an elementary result in mathematical analysis, is a particular 

application of this definition.  A root-mean-squared value of a formula in a stated range between 

two bounds that define an interval becomes analogously the square root of an integral of that 

formula squared between those bounds divided by their difference:  

 = root-mean-squared value

1 d
⌠

⌡


a

b

y
2

x

 − b a
 .

These quantities are important not only in purely statistical contexts but also, for instance, in 

relation to properties of molecules in a gaseous sample.  Exercises on applications of these 



formulae to a kinetic-molecular description of gaseous samples arise after section 4.303 because 

the upper bound of integration being ∞ makes these integrals formally improper.

     A property of a plane figure is its centroid.  The centroid of a triangle is located at a point at 

which its medians coincide; a median of a triangle is a segment of a straight line drawn from one 

vertex to a midpoint of the opposite side.  For a continuous object of uniform density in three 

dimensions, the centroid becomes the centre of mass or centre of gravity, which is evaluated 

through integrals.  The position of a centroid of a plane figure depends on not only its area but also 

the way that the area is distributed, i.e. the shape of that figure ( )y x .  Cartesian coordinates ( ,xc yc) 

of a centroid of a plane figure relative to axes x and y are evaluated with these integrals,  

 = xc

d
⌠
⌡


a

b

x y x

d
⌠
⌡


a

b

y x

  

and 

 = yc

1 d
⌠

⌡


a

b

y
2

x

2 d
⌠
⌡


a

b

y x

 ,

in which an integral in each denominator is recognisable as the area of the figure that extends from 

 = x a to  = x b.  For a planar figure of uniform density, the centroid coincides with the centre of 

mass.  These coordinates of a centroid are first moments of this figure about the corresponding 

axes, x or y; moments of greater order are evaluated analogously with integrands involving greater 

powers.  First moments of a figure about mutually perpendicular axes passing the centroid are 

zero.  For a non-continuous figure or object in two or three dimensions, such as a molecule in 

which mass is concentrated at positions of atomic nuclei, a centroid is evaluated through finite 

sums; for a molecule the second moment of mass, called the moment of inertia, is important in 

relation to its spectral properties pertaining to rotational motion, according to which its geometric 

structure might be characterised in favourable cases.

     Geometric applications of a definite integral hence include an area of a figure of a given shape, 

a volume of a solid of revolution, an area of a surface of revolution, a length of a curve, and 

centroids of a figure; physical applications of a definite integral include work as an integral of 

force over some distance or as an integral of pressure over some volume, a centre of mass that is 

related to a product of uniform mass density and a centroid, moments of inertia of a body of 

uniform density and a given shape, of which some such applications have also direct chemical 

pertinence.  

special functions 

     Although a differentiation to yield an explicit derivative is practicable for almost any 

continuous formula or function in algebraic form, the converse is false.  An integration of an 

algebraic form might commonly yield a function or formula not in algebraic form, such as 



 = d

⌠

⌡





1

x
x ( )ln x  that yields the indicated elementary formula; in many cases the result of such an 

indefinite integral is a special formula or function that is simply a name given to that integral.  

Below appear a few such instances.

     Among such special functions involving integrals, the gamma function Γ, introduced in section 

1.117, is defined as this integral,

 = ( )Γ x d
⌠

⌡


0

∞

t
( ) − x 1

e
( )−t

t

which is convergent for all real x > 0.  For a positive integer n, ( )Γ  + n 1  = !n , a factorial, as 

introduced in section 1.116.  Two other forms that yield a factorial for positive integer n are

 = d

⌠

⌡






0

1









ln

1

t

n

t d

⌠

⌡






0

∞

t
n

e
t

t  =  !n

To verify the left integral, for which one might expect a problem for the integrand at both bounds 

of the integral, we must express  = 








ln

1

t
− ( )ln t , and raise that quantity to power n:

> Int((-ln(t))^n,t=0..1) = int((-ln(t))^n,t=0..1) assuming n>0;

 = d
⌠

⌡


0

1

( )− ( )ln t
n

t ( )Γ  + n 1

the result is clearly equal to ( )Γ  + n 1   =  n ( )Γ n   =  !n .  This plot of ( )Γ x ,

> plot(GAMMA(x), x=-5..5, -6..10, discont=true, 

     title="Gamma function", titlefont=[TIMES,BOLD,12]);



shows that ( )Γ x  has discontinuities at  = x 0 and x = any negative integer, but is a continuously 

increasing function for x > 
3

2
.  This expression of ( )Γ x  as an integral is useful for an evaluation of 

other integrals, such as d
⌠

⌡


0

∞

x
6

e
( )−x

x 

> Int(x^6*exp(-x), x=0..infinity) = int(x^6*exp(-x), 

x=0..infinity);

 = d
⌠

⌡


0

∞

x
6

e
( )−x

x 720

which is just  = ( )Γ 7 !6 ; 



> GAMMA(7) = 6!;

 = 720 720

the latter integral is a special case for  = n 6 of this general integral,

> Int(x^n*exp(-x), x=0..infinity) = int(x^n*exp(-x), 

x=0..infinity);

 = d
⌠

⌡


0

∞

x
n

e
( )−x

x ( )Γ  + n 1

which yields function Γ directly, and likewise for analogous integrals that Maple evaluates 

automatically.  A duplication formula involving Γ functions is

 = 








Γ  + n

1

2

π ( )Γ 2 n

2
( ) − 2 n 1

( )Γ n

 ,

which takes a simple form for positive integer n.  Although Maple fails to solve the following 

integral so as to recognise it as yielding ( )Γ  + n 1  or !n ,

> int(ln(1/t)^n, t=0..1) assuming n::posint;

d

⌠

⌡






0

1









ln

1

t

n

t

it succeeds with this form.

> Int(t^n/exp(t), t=0..infinity) = int(t^n/exp(t), 

t=0..infinity);

 = d

⌠

⌡






0

∞

t
n

e
t

t ( )Γ  + n 1

> rhs(%) = convert(rhs(%), factorial);

 = ( )Γ  + n 1 !n

     Also introduced in section 1.117, beta function ( )Β ,m n  is defined through this integral,

 = ( )Β ,m n d
⌠

⌡


0

1

x
( ) − m 1

( ) − 1 x
( ) − n 1

x

which converges for m > 0 and n > 0.  With a substitution  = x ( )sin α 2
, an alternative form is

 = ( )B ,m n 2 d
⌠

⌡


0

π

2

( )sin α
( ) − 2 m 1

( )cos α
( ) − 2 n 1

α

Use of the latter form and trigonometric identities yields a reduction formula

 = ( )B ,m n
( ) − m 1 ( ) − n 1

( ) +  − m n 1 ( ) +  − m n 2
 ( )Β , − m 1  − n 1

Functions Γ and Β are related through



 = ( )Β ,m n
( )Γ m ( )Γ n

( )Γ  + m n

which is valid for general real values of m and n, and which is relatable in turn to both factorials 

and binomial coefficients for m and n being positive integers.

     The error function erf(x), defined through this integral,

 = ( )erf x
2

π
d

⌠

⌡




0

x

e
( )−t

2

t

that occurs in physical and statistical applications, has no explicit algebraic solution, but is readily 

evaluated in Maple for any value of x.  Two related special functions with trigonometric functions 

instead of an exponential function are Fresnel integrals.  

      Another special function that arises from an integral involving an exponential function is

 = ( )Ei x d

⌠

⌡





−∞

x

e
t

t
t

called the exponential integral Ei(x), which has three related functions likewise based on integral:  

the logarithmic integral Li(x),

  = ( )Li x ( )Ei ( )ln x     or     = ( )Li e
x

( )Ei x

which provides an approximation to the number of primes less than or equal to x, the sine integral 

Si(x),

 = ( )Si x d

⌠

⌡





0

x

( )sin t

t
t

and the cosine integral Ci(x),

 = ( )Ci x  +  + γ ( )ln x d

⌠

⌡





0

x

 − ( )cos t 1

t
t

     Elliptic functions that provide a means to evaluate other definite integrals are known of a few 

variants, complete and incomplete and complementary.  An incomplete elliptic integral of the first 

kind is expressible in trigonometric terms as 

 = ( )F ,α φ d

⌠

⌡





0

φ

( ) − 1 α
2

( )sin θ 2









−

1

2

θ

which is valid for φ in a closed interval [ ,0
π

2
] and for α in an open interval ]0,1[.  An incomplete 

elliptic integral of the second kind is expressible in trigonometric terms as 



 = ( )E ,α φ d

⌠

⌡





0

φ

( ) − 1 α
2

( )sin θ 2











1

2

θ

with the same ranges for φ and α.  If  = φ
π

2
, these integrals are complete.  Maple evaluates all these 

elliptic integrals with arbitrary values of arguments, and provides information on any through the 

FunctionAdvisor, for instance this case.

> FunctionAdvisor(EllipticK);
The symmetries for EllipticK are unknown to the FunctionAdvisor

EllipticK belongs to the subclass "Elliptic_related" of the class "2F1" and so, 

in principle, it can be related to various of the 26 functions of those classes 

- see FunctionAdvisor( "Elliptic_related" ); and FunctionAdvisor( "2F1" );
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Elliptic functions are expressible also in algebraic terms, rather than trigonometric terms, as 

indicated in the pertinent help pages.

geometric applications of definite integrals

     A geometric application of a definite integral alternative to finding an area under a curve in two 

dimensions or the volume of a solid or area of a solid of revolution in three dimensions is to find a 

length of an arc of a curve; this property is called a path integral or line integral, or a curvilinear 



integral of the second kind. This property has chemical applications whenever one focuses 

attention on, for example, an appropriately defined path either between two thermodynamically 

defined states, or a trajectory of minimum energy in a chemical reaction:  in these, and other, 

situations, our typical concern is with a function of more than one independent variable, the 

properties of which we describe in chapter 5.  To introduce this concept, we consider a length of 

an arc along a curve of function y(x) in a plane.  Between two adjacent points on a curve, we take 

a difference in abscissae of their coordinates to be dx and a corresponding difference in ordinates 

to be dy; approximating the arc of this curve by a segment of a straight line, we apply a theorem of 

Pythagoras that the length ds of this hypotenuse approximating the arc is

 = ds
2  + dx

2
dy

2
 ;

dividing through by dx
2
 and taking a square root of each side, we express a derivative 

ds

dx
  as 

 = 
ds

dx
 + 1










dy

dx

2

 .

Integrating the left side with respect to x between two points a and b yields, in cartesian 

coordinates,  

s  =  d

⌠

⌡





a

b
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x  =  = d

⌠
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t
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2

t ,

or in polar coordinates,

 = s d

⌠

⌡






θ
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θ
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θ
( )r θ

2

( )r θ 2 θ  =  d
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( )f ,( )r t ( )θ t  + 










d

d

t
( )r t
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d

d

t
( )θ t

2

t   ;

in each case on the right side we show also the result in parametric form, with parameter t.  The 

area bounded by a curve expressed in polar coordinates as  = r ( )f θ  is

 = area
1

2
 d
⌠

⌡


θ
1

θ
2

( )f θ 2 θ

and the slope of a line tangent to that curve is 

 + 










d

d

θ
( )f θ ( )sin θ ( )f θ ( )cos θ

 − 










d

d

θ
( )f θ ( )cos θ ( )f θ ( )sin θ

For  = r ( )f θ  continuous on an interval [ ,α β], the area enclosed by that curve between those 

bounds is



 = area
1

2
 d
⌠

⌡


α

β

( )f θ 2 θ

      As an alternative approach to evaluate the length of a curve, we apply an explicit definition of 

a curve involving a parametric variable.  A curve might be expressible as a graph of an equation or 

formula, but also in parametric form as equations in a set involving a further variable.  For 

instance, a graph in plane xy of equation

  =  + 
x

2

a
2

y
2

b
2

1 

generates an ellipse, but this geometric figure is also the graph of these parametric equations:  

, = x a ( )cos t  = y b ( )sin t  with parametric variable t in a domain [0,2π].  If the domain of function f 

named y be an interval I, the graph of ( )y x  in plane xy is also the graph of parametric equations

 , = x t  = y ( )f t  .  

An intersection of graphs in three dimensions of two equations such as  = y ( )f x  and  = z ( )g ,x y  is 

analogously the graph of parametric equations

 , , = x t  = y ( )f t  = z ( )g ,t ( )f t  .  

Parametric equations are thus widely applicable.  A curve in three spatial dimensions is thus a 

graph of parametric equations 

, , = x ( )f t  = y ( )g t  = z ( )h t

in a set such that ,f g and h be continuous on an interval [ ,a b] of parametric variable t; the points 

that correspond to a and b constitute the end points of the curve.  A simple curve has a property 

that, with a possible exception of a and b that would make it a simple closed curve, no two 

numbers in that interval [ ,a b] determine the same point on the curve.  For a closed curve the end 

points coincide.  

     A curve is a continuous image of an interval.  For a point ( )P t  in three spatial dimensions with 

coordinates , ,( )f t ( )g t ( )h t , its distance from a fixed point ( )P t0  is 

 = ( )d t  +  + ( ) − ( )f t ( )f t0

2
( ) − ( )g t ( )g t0

2
( ) − ( )h t ( )h t0

2

If , ,( )f t ( )g t ( )h t  be continuous, this distance approaches zero as  → t t0, in which case ( )P t  is a 

continuous function of t and the curve is connected.

     A formula or function ( )f x  that is real rather than complex and that can be represented with a 

convergent power series throughout a vicinity of  = x a is called analytic at  = x a.  For a complex 

variable  = z  + x i y, in which  = i −1  , such that z is associated with a point ( ,x y) in a complex 

plane, a single-valued function ( )f z  has a derivative 
d

d

z
( )f z  =  f '(z) if 

f '(z) = lim
 → ∆ z 0

 − ( )f  + z ∆ z ( )f z

∆ z

for which ∆  → z 0 through any complex values.  For such a variable z and a fixed point z0 in any 

open, simply connected domain R excluding a boundary, a function ( )f z  is analytic in R if any of 

these four conditions hold.

• ( )f z  has a derivative f '(z) at each point in R.



• ( )f z  is integrable in R in a sense that an integral  = d
⌠
⌡
 ( )f z z 0 about every closed path in R; 

thereby

 = ( )F z d
⌠
⌡


z
0

z

( )f z z

    is an analytic function of z having only a single value at each point and is independent of path in 

R.

• ( )f z  has an expansion as a Taylor series in (  − z z0) to various powers about each point z0 in R.

•  = ( )f z  + ( )u ,x y i ( )v ,x y , for which both ( )u ,x y  and ( )v ,x y  have continuous partial derivatives 

-- cf section 5.104  -- that satisfy these differential equations:

 = 
∂

∂

x
u

∂

∂

y
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∂

∂

y
u −











∂

∂

x
v  

     in which u and v are conjugate functions, each satisfying Laplace's equation -- cf example 

x6.403, 
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u 0
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v 0

Hence, from conditions in the first derivatives above,  
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2
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2
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x y
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If ( )f z  be analytic at all points along a circle with centre O, but not at O,  = z0 O is an isolated 

singular point; this point is a pole of order n if n be the smallest positive integer for which 

( ) − z z0

n
( )f z  remains finite.  If there exist no such value of n, z0 is an essential singularity.  

Polynomial, sine, cosine and exponential formulae are analytic everywhere, and sums, differences, 

products of polynomial, sine, cosine and exponential formulae are also analytic everywhere; 

quotients of any two such expressions are analytic at all points at which the denominator is other 

than zero.

     A scalar function Φ with formula ( )Φ ,x y , continuous second derivatives and satisfying 

Laplace's equation, 

  + 












∂

∂2

x
2

Φ












∂

∂2

y
2

Φ   =  0  , 

on a particular domain is called an harmonic function.

series and integrals

     A necessary, but insufficient, condition for convergence of a series ∑
k

ck is that magnitudes of 

successive terms decrease to ensure that at least a partial sum Sn yields a finite result in the limit as 

n tends to infinity, as described in section 2.403.  Whereas  = ck 2
k
 obviously fails this criterion, 



both   = ck

1

k
 and  = ck

( )−1
( ) + k 1

k
 generate series that might converge.  Using a functional notation 

with arrow to specify terms in the series, we write ck as ( )c k , so that c :=  → k ck .  An integral test 

involves bounding a sum by an integral, over a region from 0 to ∞, and discrete variable k by 

continuous variable x.  A decreasing function ( )f x  has a property that ( )c k  is bounded by ( )f k  at 

all k; the original sum ∑
 = k 1

∞

ck becomes bounded by an integral d
⌠
⌡


0

∞

( )f x x, with ( )f x  as a decreasing 

function as x increases.  The sum ∑
 = k 1

∞

ck is equivalent to an area that must be less than an area 

implied by that definite integral d
⌠
⌡


0

∞

( )f x x because ck is less than, or bounded by, ( )f x  at all k.  

One achieves convergence if this integral have a finite value, real or complex.  

           A power series, of form  ∑
k

ck ( ) − x a
k
, is useful within a circle of convergence because it 

can represent an analytic function ( )f x  and because operations addition, subtraction, multiplication

, division, differentiation and integration are valid for each term.  Coefficients ck, , , , = k 0 1 2 ... of 

such a power series are unique for a given representation.  Within that circle of convergence, an 

infinite series in the form of a power series is manipulable like a polynomial.  As a generalization 

of a Taylor series, a series that contains a specified independent variable to both positive and 

negative powers, unlike only positive powers that occur in a Taylor series, is named after Laurent, 

and might be expressed as a doubly infinite power series in a complex number z, 

 = ( )f z ∑
 = j −∞

∞

cj ( ) − z z0

j

for which terms to non-negative powers are equivalent to a Taylor series and further when  = z0 0 

to a Maclaurin series, and terms to negative powers are equivalent to a Taylor series in ( ) − z z0

( )−1
 

or 
1

 − z z0

 ; when terms with both non-negative and negative powers exist in such a series, the 

general descriptor Laurent series is applicable.  Terms in such a series with negative powers 

constitute the principal part, and other terms constitute the regular part.  A function analytic in an 

annular region 

 < 0 r1  ≤   − z z0   ≤  r2 

might be represented with such a Laurent expansion in which coefficients cj are evaluated with 

this integral,

 = cj

d

⌠

⌡






( )f z

( ) − z z0

( ) + j 1
z

2 π i



with  = i −1 .  Integration is performed along any simple closed contour in the region of 

analyticity enclosing an inner boundary  =  − z z0 r1.  Providing that function ( )f z  is regular in a 

region bounded with a closed path except for poles and isolated singularities of finite number, the 

value of this contour integral is a product 2 π −1  with a sum of all residues at all poles and 

essential singularities inside that closed path.  With ( )f z  expressed as 
( )p z

( )q z
 in which ( )q z  is 

regular and ( )p z  has a  simple pole, or pole of order unity, at z0, the residue is

  = c−1

( )q z











d

d

z
( )p z

 = z z
0

 ; 

if z0 be a pole of order n, the residue is 

 = c−1















∂

∂
 − n 1

z
 − n 1

( )( ) − z z0

( ) − n 1
( )f z

 = z z
0

!( ) − n 1
 .  

If z0 be an isolated essential singularity, the Laurent expansion yields the residue.  

     A functional series, of form

 +  +  + c0 ( )f0 x c1 ( )f1 x c2 ( )f2 x ...

contains terms each of which comprises a product of a constant ck and a formula ( )fk x  of some 

function f in which constant ck serves as coefficient of basis function ( )fk x .  For a power series 

each term ( )fk x  is simply x
k
 or ( ) − x a

k
.  For a Fourier series each term has a basis function of 

formula ( )sin k x  or ( )cos k x , or a linear combination of such terms, or equivalently an exponential 

formula e
( )i k x

 in which  = i −1 ; whereas a Taylor series of ( )f x  has coefficients determined by its 

derivatives at a single point, an infinite Fourier series of ( )f x  as a sum of trigonometric, or their 

equivalent exponential, terms has coefficients determined by its integrals over a fixed interval.  

This sum of continuous and periodic formulae converges pointwise to a possibly discontinuous 

and non-periodic function; for a Fourier series that represents an even function, for which 

 = ( )f x ( )f −x , all sine terms vanish, whereas for a Fourier series that conversely represents an odd 

function, for which  = ( )f −x − ( )f x , all cosine terms vanish -- their coefficients are identically zero. 

improper integral  

     A definite integral is considered improper if one end point or both end points of integration be 

infinite, or if an integrand become infinite, or undefined, between end points of integration; such 

integrals are termed improper integrals of first and second kinds respectively.  We treat an 

improper integral of the first kind directly with an upper or lower bound, or both bounds of an 

interval of integration, as follows, provided that these limits exist.

 = d
⌠
⌡


a

∞

( )f x x lim
 → t ∞

d
⌠
⌡


a

t

( )f x x

 = d
⌠
⌡


−∞

a

( )f x x lim
 → t ( )−∞

d
⌠
⌡


t

a

( )f x x



 = d
⌠
⌡


−∞

∞

( )f x x lim
 → t ( )−∞

d
⌠
⌡


t

a

( )f x x + lim
 → t ∞

d
⌠
⌡


a

t

( )f x x

If ( )f x  become infinite or have a singularity at  = x b with  ≠ b a, an improper integral of the second 

kind becomes

 = d
⌠
⌡


a

b

( )f x x lim
 → h 0

d
⌠
⌡


a

 − b h

( )f x x ;

if the limit exist, it becomes the value of the improper integral.  If a singularity occur in an interior 

of an interval between bounds of integration, the integral is a sum of two improper integrals on 

subintervals above and below the singularity; with a singular point at c within [ ,a b], the integral is 

accordingly

 = d
⌠
⌡


a

b

( )f z z lim
 → h 0

d
⌠
⌡


a

 − c h

( )f z z + lim
 → h 0

d
⌠
⌡


 + c h

b

( )f z z 

If these limits exist, the corresponding improper integral converges, otherwise it diverges.   

     A Cauchy principal value of a definite integral of ( )f x  over interval [ ,a b], in which a formula 

is undefined at interior point  = x c, is defined formally in the following way, in which ε is a small 

positive number:

               lim
 → ε 0

 + d
⌠
⌡


a

 − c ε

( )f x x d
⌠
⌡


 + c ε

b

( )f x x.

If a limit of a sum of two integrals yield a finite result as ε tends to zero, the result is termed a 

Cauchy principal value.

     When a finite discontinuity be present within an interval of integration, a correct result is 

obtainable on integrating separately the two parts on either side of that discontinuity; for instance, 

if within an interval [ ,a b] there exist a discontinuity at c such that applicable formulae be ( )f x  in a 

subinterval [ ,a c] and ( )g x  in a subinterval [ ,c b], the value of the total integral is a sum of these 

contributions from the two subintervals:

 + d
⌠
⌡


a

c

( )f x x d
⌠
⌡


c

b

( )g x x . 

     A differentiable function or its formula is necessarily continuous in its domain, or a subinterval 

contained within that domain, but a converse condition is false, as we demonstrate in section 

3.303.  Just as there exist continuous algebraic functions that are not everywhere differentiable, so 

integration of many functions, even simple ones, is impracticable in closed form; in such cases no 

simple algebraic expression in terms of elementary functions and their combinations is known to 

have a derivative equal to a particular integrand for which integration is sought.  Three 

possibilities arise in such a situation:  an expression in terms of a special function might be 

known, for which a special function is previously defined as the sought integral or something 

related to it; an integrand might yield a satisfactory approximation in series form within a region 

of interest -- a condition that one ought to test -- that can be integrated term by term; if those 

approaches fail, a final resort is numerical integration or numerical quadrature.  Beyond such a 



situation in which an algebraic expression for an antiderivative function remains elusive, it is 

important to test that an integrand is well behaved, in a sense of taking a finite value for any 

argument of the function on an interval of interest; a plot of an integrand is enlightening in this 

respect.  If an integrand contain a finite or infinite discontinuity, one must take care to elucidate 

the form of either an antiderivative or a value of a definite integral, depending whether an integral 

be indefinite or definite:  such improper integrals we examine in section group 4.3.

     To evaluate a definite integral containing an integrand for which no antiderivative is known, 

one can either approximate that integrand by a series and integrate algebraically term by term or 

effect numerical integration, also called numerical quadrature.  In the latter case one applies a 

formula involving weighted sums of function values at given points according to standard rules, 

such as the trapezium rule or Simpson's rule; for the latter rule the number of terms in the sum 

must be even.  Such a rule has order n if it be exact for a polynomial of that degree:  hence the 

trapezoidal rule has order 1 and Simpson's rule has order 3:  the latter rule is hence more accurate 

than the former, and both are more accurate than the rectangular rule, for which the curve of the 

formula to be integrated is approximated by a sequence of step functions.  Romberg integration is 

an extension of the trapezium rule in which a successive combination of estimates to produce 

estimates equivalent to fitting polynomials of greater order; as this method is susceptible to 

rounding error through multiple arithmetical operations at each stage, enhanced numerical 

precision in performing those operations is advisable.  A quadrature formula is described as closed

, as for a closed interval, if it sample the end points, or open otherwise.  In gaussian quadrature, 

the intervals between adjacent points must be unequal and the number,  + n 1, of evaluations of the 

function is fixed; this method, which is generally exact for a polynomial of order  + 2 n 1, is 

amenable for quadrature in multiple dimensions.  

     To indicate the accuracy of numerical integration with these methods, we consider a formula 

( )f x  as integrand for which we seek the area of a narrow region of width  = h  − b a containing a 

point  = x ξ:

for the trapezoidal rule,  = n 1,

 = d
⌠
⌡
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b

( )f x x
( ) − b a ( ) + ( )f a ( )f b
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for Simpson's rule with three terms in a sum,  = n 2,
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for Simpson's rule with four terms in a sum,  = n 3,
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and for five terms in a sum,  = n 4,
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in each case the specified value n denotes that the formula is exact for x
k
, with , , , = k 0 1 ... n.  

When the region  .. a b is not narrow, Simpson's rule is applicable in a composite form for m 

subintervals such that the rule is applied to each subinterval of width  = h
 − b a

m
 and sums apply 

with x incremented as  = xj  + a j h for , , , = j 0 1 ... m; for instance,  

 = d
⌠
⌡
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( )f x x
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4
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4
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 = x ξ

180

In each case the last term indicates the order of the error of this numerical approximation.

     In contrast with differentiation for which algorithmic rules invariably yield an algebraic result 

as a derivative of a continuous algebraic function, no systematic approach to integration is reliable 

or completely general.  An algorithmic approach is applicable only to a rational function, having 

both as numerator and denominator a polynomial, although an algorithm by Risch and Norman is 

embedded in Maple to respond to integrals of radical and trigonometric functions.  For other 

integrands, numerical evaluation of a definite integral is practicable if no symbolic parameter 

appear in that integrand or if bounds of integration contain no symbolic parameters; in other cases 

one can obtain an idea of the behaviour of a definite integral by substituting varied numerical 

values of symbolic parameters.  An alternative approach involves plotting an integrand to discover 

which region produces a large contribution to the integral, and then approximating the integrand 

with a series expanded about a point well within that region; if an integrand have multiple regions 

of large contributions separated by minima, a sum of contributions to the integral might be 

obtained on applying series expanded about multiple points. 

Fourier series  

     Each unique periodic formula or function  = ( )f x ( )f  + x k p  that is partially monotonic and 

continuous is uniquely representable as a Fourier series with a decomposition into a spectrum of 

( )f x  according to discrete frequencies k f0.  As an instance of a functional series, an important 

application of integrals of trigonometric functions sine and cosine arises in construction of a 

Fourier series to represent, or to approximate, a discontinuous or singly valued periodic function 

on assigning suitable values to coefficients in such a series; for this purpose we describe, in 

section group 4.5, solution of those integrals and formation of Fourier series of selected geometric 

forms.  A Fourier series is remarkable because therein a sum of continuous and periodic functions 

converges pointwise to a possibly discontinuous and non-periodic function.  A periodic formula or 

function conforms to a condition  = ( )f x ( )f  + x k p  in which p corresponds to the period and k is an 



integer, positive or negative.  Because sine and cosine functions, and their exponential counterpart 

of form e
( )i x

, are periodic functions, they are appropriate to represent a periodic function of 

another kind.  For two periodic functions ( )f x  and ( )g x , their inner product ( ,f g) is defined as

( ,f g)  =  d
⌠
⌡


−
p

2

p

2

( )f x ( )g x x  

in which the bounds of integrations define between them at least one period of these functions; the 

domain of integration might also be  .. −∞ ∞ or  .. 0 ∞, or  .. −π π, depending upon conditions.  An 

even formula or function is one for which  = ( )f x ( )f −x , such as ( )cos x , whereas for an odd 

function  = ( )f −x − ( )f x , such as ( )sin x .  These properties result from the orthogonality properties 

of these trigonometric functions.

d
⌠
⌡


−π

π

( )sin n x ( )cos m x x =  0

 = d
⌠
⌡


−π

π

( )sin n x ( )sin m x x 0  if  ≠ n m ,  = π if  = n m

 = d
⌠
⌡


−π

π

( )cos n x ( )cos m x x 0  if  ≠ n m,  = π if  = n m

An integral of a product of an even function, such as cosine, and an odd function, such as sine, 

over a domain that contains periods of integer number, or over an infinite domain, must be zero.  

A further advantage of a Fourier series is its application to describe a discontinuous function; a 

Fourier series might be differentiated or integrated term by term, and summation of a Fourier 

series is practicable for sum functions.  

     An expansion of a function or its representation with sine and cosine, or exponential, functions 

serves as a Fourier series:

 = ( )F θ  +  + 
a0

2
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∞

ak ( )cos k θ












∑

 = k 1

∞

bk ( )sin k θ

For a periodic function ( )f θ  with a period of extent 2 π rad, coefficients ak and bk are generated 

according to these integrals, 

  = ak

1

π
 d
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0

2 π

( )f θ ( )cos k θ θ

  = bk

1

π
  d
⌠
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0

2 π

( )f θ ( )cos k θ θ

with , , = k 0 1 2..., provided that these integrals exist, for which reason ( )f θ  must be piecewise 

continuous or square-integrable.  If the length of the interval of periodicity be L rather than 2 π 

rad, the corresponding functions become 
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2 k π x
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In either case the domain of integration must be one period, whether  .. 0 2 π or  .. −
π

2

π

2
 in radians, 

or  .. 0 L or  .. −
L

2

L

2
 otherwise.  Coefficient a0 might be evaluated also on application of l'Hopital's 

rule.  For an odd formula or function, the corresponding Fourier series comprises only the sine 

terms, whereas for an even function only cosine terms; for a general formula or function that is 

neither even nor odd, both cosine and sine terms appear in the sums.

     In exponential form, the expansion, 

 = ( )F x ∑
 = k −∞

∞

ck e











2 I k π x

L

and coefficients ck become evaluated with these integrals.

ck := d
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⌡
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2 k I π x
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x

The correlations between ck and ak or bk are  = ak  + c+k c-k and  = bk i ( ) − c+k c-k .  If periodic 

function ( )f x  have a bounded second derivative, its Fourier series converges absolutely.  

     For Fourier integrals in exponential form, the orthogonality is defined in terms of the complex 

conjugate of one of the two factors, with integer j and k,

d
⌠

⌡


0

2 π

( )e
( )j I x

e
( )k I x

x  = 2 π if  = j k, 0 otherwise

and analogously for integration over a domain of length L.  



     Extending the domain from one period over the entire real line implies conversion of Fourier 

sums into Fourier integrals, under appropriate conditions of convergence,

 = ( )f x d
⌠
⌡


0

∞

 + ( )a s ( )cos 2 π s x ( )b s ( )sin 2 π s x x

in which, providing that these integrals exist, 

( )a s   = d
⌠
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−∞

∞

( )f x ( )cos 2 π s x x  

and

( )b s   = d
⌠
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−∞

∞

( )f x ( )sin 2 π s x x

Each unique function or formula ( )f x , even if not periodic -- such as for a process occurring only 

once, that is partially monotonic and continuous is uniquely representable as a Fourier integral as a 

result of Fourier transformation, with a decomposition into a continuous spectrum of frequencies f 

in the infinite interval [ ,0 ∞].

     If a periodic function ( )f x  have a bounded second derivative, 
d

d
2

x
2

( )f x , its Fourier series 

converges absolutely, but the inverse statement is invalid.  If aj  and bj   <  j
( )−κ

  with 0 <  ≤ κ 1, 

convergence is at least conditional, and ( )f x  might have discontinuities; if κ > 1, there is absolute 

convergence.   For a Fourier series of ( )f x , 
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on integration, d
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0

which results in a divisor of each term by k so accelerating convergence.  A convergent Fourier 

series is invariably integrable term by term with the resulting series converging uniformly to the 

integral of the original function; such integration term by term might be valid even if the original 

series above be not convergent.  If  ≠ a0 0, the latter series is not a Fourier series, but from 

 − d
⌠
⌡


x
0

x

( )f x x
a0 x

2
  one still generates a Fourier series.  Differentiation of a Fourier series yields a 

Fourier series of uncertain properties of convergence that must be tested in each case.

     A great advantage of a Fourier representation over a representation of another kind, such as a 

Taylor series (cf. sections 2.404 and 3.306), is its ability to represent a discontinuous function, 



apart from its essential property of representing a periodic function.  Although a Taylor series, a 

Fourier sine series and a Fourier cosine series might prove valid in representing a formula within a 

particular interval, beyond that interval their behaviours differ markedly.  Apart from the 

representation of electronic density in crystals as Fourier series in three dimensions of which the 

importance is inestimable, the specifically chemical applications of these series are few:  the 

potential energy of internal rotation in molecules, or torsional vibrations and the spatial 

arrangement of nucleotides in deoxyribonucleic acid are well established, and some properties of 

chemical compounds with supposed additivity, such as mass density and enthalpy of formation, 

have been so treated.  In contrast, Fourier transforms, formally based on Fourier series, play a 

prominent role in measurements on chemical systems, as explained in chapter 14.

     Both Fourier series and Fourier transforms arise in the solution of both ordinary and 

partial-differential equations with periodic boundary conditions, as discussed in chapter 7.

integration and symbolic computation  

     Before programmes for symbolic computation, such as Maple, attained their current 

sophistication, a conventional approach to integration required an extensive knowledge of 

antiderivatives of common formulae and functions, in conjunction with standard methods to 

convert a given integral into a more manageable or standard form, using such techniques as partial 

fractions, substitution and integration by parts.  If such manual methods failed to yield rapidly a 

desired result, one had recourse to books containing tables of integrals, of which several major 

compilations are well known.  A problem with the latter approach is that, about year 1982, it was 

recognised that such tables of integrals contained errors, whether typographical or from other 

sources, or printed solutions that were inadequately specified, in significant proportions -- at least 

7 per cent in the best tables and even exceeding 20 per cent in other tables!  The corresponding 

tables in subsequently printed editions contain such misleading results in greatly diminished 

proportion largely because authors have since applied symbolic computation and because 

automatic rendering of results into typescript eliminates many such errors; such tables might 

nevertheless lack signs to indicate absolute values about arguments of logarithmic functions.  

Even a program for symbolic computation, such as Maple, is fallible, and might not only fail to 

provide an algebraic or symbolic antiderivative when one is known to exist, perhaps requiring 

explicit assumptions about parameters or variables, but also render incorrect results.  To assess the 

latter possibility, commendable practice is to use Maple to differentiate a supplied antiderivative, 

and to simplify a difference between that result and the original integrand to verify each 

integration.

     In this chapter we explain how to integrate formulae involving a single independent variable 

with Maple, for which a general command is Int or int; for this purpose we motivate a notion 

of integration on a geometric basis, and proceed to treat indefinite integration, improper integrals 

and numerical integration.  Integration involving multiple independent variables we consider in 

chapter 5.

  summary of chapter 4

     In this chapter we review or develop principles of definite and indefinite integration with 

integrals involving a single independent variable, for which animated plots prove illuminating, and 

demonstrate how with symbolic computation with Maple's functionality such tasks of calculus 

become reduced to routine use of practically a single command for an integral that has an 



algebraic solution and a related command for numerical integration.  Differentiation discussed in 

chapter 3 is related to integration discussed in this chapter through a fundamental theorem of 

calculus:  if a function ( )f x  that is continuous on an interval [ ,a b] and is a derivative of ( )F x  that 

is integrable, so that ( )F x  is an indefinite integral or antiderivative of ( )f x , 

d
⌠
⌡


a

b

( )f x x =  − ( )F b ( )F a  

Conversely, if ( )F x  be defined to be an integral of ( )f x  from a to x for all x in [ ,a b], f is a 

derivative of F at each point of that interval at which f is continuous.

     As applications of integrals definite or indefinite, Fourier series we discuss in detail, enabling 

their use to become a routine procedure.

 chapter 5   Calculus  with  multiple  independent  variables 

  5.0  overview and principles   

     The methods of differential and integral calculus that we explain in chapters 3 and 4 apply 

directly to functions of, or formulae involving, a single independent variable.  In many 

applications and uses of such functions that we describe in those chapters, we employ extensively 

command plot to generate a graphic depiction of a relation between the independent and 

dependent variables, as a line or curve in a space of two dimensions.  Many quantities in chemical 

experiments depend on multiple related variables; to treat these conditions, one must apply 

differential and integral calculus of multiple variables.  For functions of two or three variables, we 

in this chapter proceed to provide both algebraic and geometric explanations, accompanied 

naturally by appropriate plots; for functions of variables numbering four or more, direct plots are 

impracticable, but algebraic methods analogous to those verified with three variables enable us to 

treat the pertinent systems effectively.     

surfaces  

     In chemistry we work typically with formulae or functions of multiple variables, but we 

generate a plot of such expressions with at most two independent variables.  For instance, for an 

equation  = P
R T

Vm

 for an ideal gas in which appear three intensive variables pressure P, 

temperature T and molar volume Vm with gas constant R, we might form an adequate plot in three 

dimensions:  one spatial axis corresponds to each variable; the totality of all points in a plane 

containing axes T and Vm, which becomes the domain of  = P ( )f ,T Vm  when we consider pressure 

to be the dependent variable.  Because, for these physical variables, only positive values of each 

are possible, this domain corresponds to the first quadrant of that plane, and the first octant 

correspondingly represents a bulk region in which acceptable values of pressure are possible.  If 

we express this equation in an alternative form with a fourth variable n for amount of chemical 

substance, as  = P
n R T

V
, plotting a hypersurface in hyperspace that comprises four spatial 

dimensions is no longer practicable.  For expressions containing independent variables numbering 

more than two, three spatial dimensions that are available are hence generally insufficient to 



display a concurrent variation of all variables.  

     As another instance, in a plot of electronic density about some atomic nuclei, one requires four 

spatial variables to define such a function -- the value of density and three coordinates ( , ,x y z), 

such that a plot of this function requires four dimensions; three-dimensional plots of constant 

density as contours bear the same relation to such a function that a contour map of rolling 

countryside in two dimensions does to hills in three dimensions.  A further example provokes 

thought:  the motion, relative to a centre of mass, of an atomic nucleus in a molecule benzene 

requires specification of 30 vibrational coordinates and three rotational coordinates to describe its 

trajectory in a space comprising 33 formal physical dimensions, with the origin and coordinate 

axes fixed in the molecule.   On a basis of such considerations, to treat general functions that 

would require many dimensions to depict graphically, we must extend the mathematical tools that 

are provided in calculus -- differentiation and integration -- and linear algebra -- matrices and 

vectors.  The former tools we develop in the following sections; tools of linear algebra we discuss 

in chapter 6, with diverse chemical applications in part II.  In all these situations, Maple can render 

great service, because with its deployment one can thereby avoid much intricate manipulation 

associated with the details of mathematical analysis.

quadric surface  

     Among figures that one can plot in three spatial dimensions, of particular interest is a quadric 

surface, which is a graph of an equation of second degree in three variables ,x y and z.   Operations 

equivalent to rotation and translation on an equation in general form,

 =  +  +  +  +  +  +  +  +  + a x
2

b y
2

c z
2

d x y e y z f z x g x h y j z k 0 

  in which z is implicitly a function of x and y, and with parameters , , ,a b ... k, serve to eliminate 

linear terms and products of coordinates to yield one of two standard forms:

 =  +  +  + A x
2

B y
2

C z
2

K 0     

 or     

  =  +  + A x
2

B y
2

J z 0 ,

or the latter equation with , ,x y z interchanged; in these equations majuscules A .. K denote 

parameters when axes of symmetry coincide with cartesian coordinate axes.  Quadric surfaces are 

analogues in three dimensions of conic sections -- hyperbola, parabola and ellipse, of which a 

special case of the latter is a circle -- in two dimensions.  A curve that an intersection of a quadric 

surface makes with a plane parallel to a coordinate plane is called a trace or cross section of that 

surface.  Among quadric surfaces that are plotted in section 2.205, we elaborate here on the 

following selection.

• An ellipsoid, which is a graph of 

 =  +  + 
x

2

a
2

y
2

b
2

z
2

c
2

1 

is symmetric about each of three planes of coordinates x, y and z in various couples, and has 

intercepts (+a, 0, 0), (0, +b, 0) and (0, 0, +c) along the respective axes ,x y and z.  Each trace of 

this ellipsoid in a plane parallel to a coordinate plane is either a single point or an ellipse; an 

ellipsoid is accordingly a surface of revolution of an ellipse in a coordinate plane rotated about a 

coordinate axis in that plane.  A special case arises if  = a b = c, equal also to unity in standard 



form, which generates a sphere that is obviously a circle of revolution about any axis within a 

plane containing the centre of that circle.  

• An elliptic paraboloid that represents a parabola of revolution that produces a surface in three 

dimensions, for which a defining equation is 

 =  + 
x

2

a
2

y
2

b
2

2 c z 

has an ellipse as trace in a horizontal plane but parabola as trace in two perpendicular vertical 

planes, whereas for an elliptical cone, a defining equation is

 =  + 
x

2

a
2

y
2

b
2

z
2

c
2
 

• For an elliptic hyperboloid of one sheet, a defining equation is

 =  +  − 
x

2

a
2

y
2

b
2

z
2

c
2

1

whereas for an elliptic hyperboloid of two sheets, a defining equation is

 =  −  − 
z

2

c
2

x
2

a
2

y
2

b
2

1

When a right side of an equation defining either hyperboloid of one or two sheets is zero instead 

of unity or a constant, the resulting figure is a cone.  

• An hyperbolic paraboloid, with defining equation 

 =  − 
y

2

b
2

x
2

a
2

2 c z

and which has parabolic traces in two vertical coordinate planes but an hyperbolic trace in a 

horizontal coordinate plane, shows a well defined col:  a point that is a local maximum in one 

direction but a local minimum in another direction, also known as a saddle point, a term originated 

by G. N. Watson.  When an equation of a quadric surface lacks one variable x or y or z, the surface 

becomes an elliptic cylinder.  Just as one generates a circle or hyperbola with appropriate 

trigonometric functions in two dimensions, one likewise generates these quadric surfaces in three 

dimensions.   

partial, directional and total derivative 

     In a particular case of three variables to describe some surface, such as cartesian coordinates 

, ,x y z, we generally take z as the dependent variable and x and y as the independent variables, so 

( )z ,x y  or  = z ( )f ,x y ; all points in plane xy for which ( )f ,x y  is defined then become the domain of 

that formula ( )f ,x y .  If for each point ( ,x y) in plane xy we plot a point ( )f ,x y  units above that 

plane, we generate a surface, such as those depicted in section 2.205.  Each point on this surface 

has coordinates ( , ,x y z) that satisfy an equation  = z ( )f ,x y , which becomes the equation of that 

surface.  Just as a curve is a pictorial representation of a function or its formula ( )f x  in two spatial 

dimensions, a surface is a pictorial representation of a function ( )f ,x y  in three spatial dimensions.  

Although a function ( )f ,x y  of two independent variables ,x y has a geometric representation as a 

surface, not every surface represents a function ( )f ,x y ; if and only if every vertical line, i.e. in 



direction z, that intersects the surface intersects it at exactly one point, that surface represents that 

function ( )f ,x y . 

     In section 3.202, we describe a derivative 
dy

dx
 of a function y = f(x) of a single independent 

variable x at a point with abscissal coordinate x0 in terms of a limit of a quotient as ∆  → x 0.

   = lim
 → ∆ x 0

∆ y

∆ x
lim

 → ∆ x 0

 − ( )f  + x0 ∆ x ( )f x

∆ x

In this context, symbol ∆x in both denominator and numerator signifies an increment of variable x 

from its value at x0, and the entire numerator analogously represents a corresponding increment 

∆ y in dependent variable y in response to that increment ∆x in x, according to a functional relation 

in a formula f(x) named y.   As we recall from section 3.202, derivative 
dy

dx
 represents accordingly 

a limit of a ratio of increments as ∆x tends to zero, or

   = 
dy

dx
lim

 → ∆ x 0

∆ y

∆ x

We interpret 
dy

dx
  here as a single quantity representing an expression obtained from y on 

differentiation with respect to x; we recall also from section 3.501 that that quantity implies also a 

ratio of differentials dy and dx of which we might make separate use.  This exact derivative 
dy

dx
 is 

represented in Maple sometimes as 
dy

dx
, sometimes as 

∂

∂

x
y, somewhat unpredictably; the correct 

notation within such a derivative has 'd'  in roman font and 'x' and 'y' in italic font, but such 

notation is not generally implemented in Maple.  The slope or gradient of a curve pertaining to a 

formula ( )f x  at a particular point with abscissa  = x x0 is precisely a derivative of that formula 

evaluated at that abscissal value, which we write as ( )f ' x0   or 










d

d

x
( )f x

 = x x
0

.

     Just as for one independent variable, the concept of a limit is crucial for a definition of a 

derivative in multiple dimensions.  Function f with formula ( )f ,x y  and name z has limit L,

 = lim
 → x x[0],y -> y[0]

( )f ,x y L  

as x approaches x0 and y approaches y0 if for given ε > 0 there exist δ > 0 such that  <  − ( )f ,x y L ε 

when 

0  <   + ( ) − x x0

2
( ) − y y0

2
 <  δ 

and ( ,x y) is in the domain of ( )f ,x y .  Function f with formula ( )f ,x y  is continuous at point ( ,x0 y0) 

if 

 = lim
 → x x[0], y->y[0]

( )f ,x y ( )f ,x0 y0  .

Analogous to a derivative of a function of a single independent variable, of which a geometric 

interpretation is a slope of a line tangent to a curve in two spatial dimensions, we define formally a 



first partial derivative of a formula pertaining to a function ( )f ,x y  of two independent variables x 

and y with respect to x at a point ( ,a b) as a limiting rate of change of the value of this function in 

the direction of x as x is incremented from value a by amount ∆x, and y is kept constant at value b.  

( )fx ,a b   =  lim
 → ∆ x 0

 − ( )f , + a ∆ x b ( )f ,a b

∆ x
  

The corresponding partial derivative ( )fy ,a b  along a line parallel to axis y at  = x a is

     = ( )fy ,a b lim
 → ∆ y 0

 − ( )f ,a  + b ∆ y ( )f ,a b

∆ y
 

To evaluate the former partial derivative ( )fx ,a b  with respect to x, we differentiate function ( )f ,x b  

with respect to x and then evaluate this ordinary derivative at  = x a;  thus

 f ( ) x ,a b   = 










∂

∂

x
( )f ,x b

 = x a

.  

By either 
∂

∂

x
( )f ,x y  (preferably) or  f ( ) x ,x y , we denote a partial derivative of function ( )f ,x y  with 

respect to x, implying an ordinary derivative of ( )f ,x y  with respect to x with y treated as a 

constant; analogously, 
∂

∂

y
( )f ,x y  (preferably) or f y( ,x y) denotes a partial derivative of ( )f ,x y  with 

respect to y.  Just as, for functions of a single variable, we express a derivative as 
dy

dx
 in text form, 

or 
d

d

x
( )f x , in equivalent Maple form, with f '(x), we have a further notation to name partial 

derivatives. Following mathematical convention, if we designate by, and assign to, z the value 

( )f ,x y  at a location (x, y), the first partial derivative of ( )f ,x y  with respect to x takes a form  











∂

∂

x
z

y

, in which the variable in the subscript indicates that y is held constant during 

differentiation of the expression of z with respect to x.  Accordingly, the first partial derivative 

with respect to y, treating x as a constant, is given by f y( ,x y) or  
∂

∂

y
( )f ,x y  or 











∂

∂

y
z

x

.  As the latter 

notation is cumbersome in Maple, and as the same operator diff serves to differentiate functions of 

variables of any number, we prefer to use multivariate functions expressed in arrow form rather 

than a formula such as z.  Extension of these concepts to independent variables numbering more 

than two is analogous: the subscripts on 










∂

∂

y
z

x

 would  then accordingly number more than one, 

as in 








∂

∂

x1

z

, ,x
2

x
3

...

 et cetera.  Although a derivative, or differential quotient, of a formula 

involving one independent variable, such as 
∂

∂

x
y, is equally considered to be a ratio or quotient of 

two differential quantities dy and dx, the directly analogous situation with a multivariate formula 



is inapplicable.  The existence of partial derivatives of a formula or function with respect to the 

multiple independent variables at a particular point is a necessary condition for the differentiability 

of the formula at that point.  A formula or function of multiple variables is differentiable at a point 

when it has partial derivatives not only at that point but also in a neighbourhood of that point, and 

when these are continuous at the point itself.  Formulae and functions arising in applications are 

generally differentiable at every point of their domains, with possible limited exceptions.

     A directional derivative is precisely a partial derivative for which the direction of concern be 

parallel to an axis of the system of coordinates; in another direction this derivative is most readily 

calculated through a rotation of axes to make the desired direction coincide with that of one axis 

or other.

     When we evaluate a slope of a line along a surface corresponding to a gradient of a formula 

arising from an application of a function to two independent variables x and y at a point  = x a, 

 = y b, we calculate

    










∂

∂

x
( )f ,x y

 = x a, y = b

 =  f x( ,x y),

as above.  The corresponding slope f y(x, y) along a line parallel to axis y at  = x a is

   f y ( ) ,x y   = lim
 → ∆ y 0

 − ( )f ,a  + b ∆ y ( )f ,a b

∆ y
  =  











∂

∂

y
( )f ,x y

 = x a

 

We define the latter derivative also as a ratio of differential quantities as follows.  If we assign 

name z of our dependent variable to our formula ( )f ,x y  of two independent variables x and y, we 

increment one independent variable x an amount ∆ x from particular value a, hold another 

independent variable y constant at b, and find a corresponding response of dependent variable z 

according to this expression.

∆ z  =  [  − ( )f , + a ∆ x b ( )f ,a b ]

On dividing by increment ∆ x in x, we form a ratio:

 
∆ z

∆ x
   =   

 − ( )f , + a ∆ x b ( )f ,a b

∆ x
 

In the limit as ∆  → x 0,

∂

∂

x
z  =   lim

 → ∆ x 0

∆ z

∆ x
  =  

 − ( )f , + a ∆ x b ( )f ,a b

∆ x

we define a derivative 
∂

∂

x
z that we call a partial derivative because, in forming this derivative of z 

with respect to x, we hold constant another independent variable y at a value b; such a partial 

derivative signifies a derivative, or rate of change, of a dependent variable while one independent 

variable is incremented infinitesimally but while any other independent variable is held constant.  

According to mathematical convention, a partial derivative might be displayed as 

  










∂

∂

x
z

 = y b

 

in which a derivative of  z with respect to x is enclosed within parentheses; following the closing 

parenthesis, a subscripted expression consists of an equality to specify explicitly any independent 

variable, here only y, that is held constant, at its value b, while the particular partial derivative with 



respect to another independent variable x is being evaluated.  Such notation is cumbersome in 

Maple:  for this reason, in text mode we distinguish a total derivative 
dz

dx
  from a partial derivative 

∂

∂

x
z  for which any independent variable other than x is implicitly held constant.  In Maple an 

operator diff for differentiation, explained in chapter 3, generates directly a partial derivative, as 

we demonstrate with examples in succeeding sections, but, when there is only one independent 

variable, that partial derivative becomes a total derivative.

     The reciprocal identity states that reversal of dependent and independent variables yields a 

reciprocal derivative,

 = 










∂

∂

x
z

 = y b

1











∂

∂

z
x

 = y b

in which the same variables are held constant in both derivatives.  For second derivatives with 

respect to separate independent variables, for z as a function ( )z ,x y  varying smoothly the order of 

differentiation is immaterial, according to Euler's reciprocal relation,

 = 
∂ ∂

∂2

y x
z

∂ ∂

∂2

x y
z

The cyclic rule is expressed as 

 = 
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∂

x
y

z











∂
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z
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∂

∂

y
z

x

−1

The equivalent of the chain rule for an ordinary derivative is 

 = 










∂

∂

x
z

,w v











∂

∂

y
z

,w v











∂

∂

x
y

,w v

  

in which the same variables ,w v are held fixed in all three partial derivatives.  

     For the evaluation of definite integrals, a rule attributed to Leibnitz might be useful:

 = 
∂

∂

y













d

⌠
⌡


a

b

( )f ,x y x d

⌠

⌡





a

b

∂

∂

y
( )f ,x y x

for  < y1 y  <  y2 when the two real formulae ( )f ,x y  and 
∂

∂

x
( )f ,x y  are continuous in the closed 

interval [ ],a b  for x and [ ],y1 y2  for y.  This equation is valid also for improper integrals, such as 

for  = b ∞, as long as ( )f ,x y  and 
∂

∂

x
( )f ,x y  are continuous in the corresponding domain with extra 

conditions about the uniform convergence of the integral on the right side.   

geometric interpretation of partial derivative and stationary points  

    On a surface that is a graph of a formula  = z ( )f ,x y , partial derivatives f x( ,x y) and f y(x, y) are 

hence slopes of lines tangent to certain curves, specifically those curves that lie in planes parallel 

to planes containing axes y and z for derivative f x( ,x y), but containing axes y and z for derivative f



 y(x, y).  Provided that that formula, ( )f ,x y , has continuous partial derivatives on a rectangle in 

plane xy containing a point ( ,x0 y0) in its interior, these two tangent lines define a plane tangent to 

the surface at a point ( , ,x0 y0 ( )f ,x0 y0  ).  To find an equation of this tangent plane at that point, we 

recall that a typical plane non-vertical in space that passes that point has an equation of form

 =  +  + A ( ) − x x0 B ( ) − y y0 C ( ) − z ( )f ,x0 y0 0 .

For a plane to be tangent to a surface at a point ( , ,x y ( )f ,x0 y0  ), the values of coefficients A, B and 

C must conform to  

A =  f x( ,x y),  B = f y(x, y)  and   = C −1;

an equation for a tangent plane at that point on a surface is

 = z  +  + ( )f ,x0 y0 ( )fx ,x0 y0 ( ) − x x0 ( )fy ,x0 y0 ( ) − y y0  .

A line passing that point and normal to that plane lies at an intersection of two planes, defined 

according to these relations:

 = 
 − x x0

( )fx ,x0 y0

 − y y0

( )fy ,x0 y0

  =   − ( )f ,x0 y0 z  =  t 

For purpose of plotting that normal line, we use a parametric form in terms of a further variable t, 

to which each expression in the preceding line is equal; the corresponding equations defining that 

line are thus 

 = x  + x0 ( )fx ,x0 y0 t,  

   = y  + y0 ( )fy ,x0 y0 t    

and   

  = z  − ( )f ,x0 y0 t .

     Conditions follow according to which one can distinguish stationary points of a function ( )f ,x y  

evaluated at (a, b), thus 

  ( )f ,x y  = x a, y = b =  ( )f ,a b  , 

for which first partial derivatives are zero, i.e. f ( ) x ,a b   = 0  and  f  = ( ) y ,a b 0, and with second 

derivatives f ( ) xx ,a b  ,  f ( ) yy ,a b  and f ( ) xy ,a b  at that location:

• if  f  < ( ) xx ,a b 0  and  f  < ( ) yy ,a b 0,  ( ,a b) is a local maximum or col of formula ( )f ,x y ;

• if  f ( ) xx ,a b   > 0 and  f ( ) yy ,a b   > 0, ( ,a b) is a local minimum or col of formula ( )f ,x y ;

• if  f ( ) xx ,a b   =  0, ( ) ,a b  is a point of inflexion of function ( )f ,x y  in a profile of the surface at 

 = y b, or if  f ( ) yy ,a b   = 0, ( ,a b ) is a point of inflexion of formula ( )f ,x y  in a profile of the 

surface at  = x a, but further tests are required to indicate whether point (a, b) is a col for the 

surface; a point of inflexion is defined only for a curve in two dimensions, not for a surface in 

multiple dimensions;

• the value of a quantity that we might name  = coltest  − fxx fyy fxy

2
 with all second derivatives 

evaluated at stationary point ( ,a b) serves to confirm its nature; a negative value of coltest 

indicates a presence of a col at that point.

Hence, for a formula of two independent variables to have a minimum at some point ( ,a b), its first 

partial derivatives are zero there but the second partial derivatives are positive; for a maximum the 



first partial derivatives are zero but the second partial derivatives are negative, whereas for a col 

the first partial derivatives are zero but the value of a formula for coltest above, containing second 

partial derivatives, is negative.  In chapter 6, we recognize that combination of quantities in coltest 

to be characteristic of a determinant (section 6.101) of a particular symmetric matrix called a 

hessian (section 6.405), evaluated for a function with specified partial derivatives.  Among such 

extrema or stationary points on this surface pertaining to formula ( )f ,x y , there might be maxima, 

minima or cols that one can locate on finding points at which first derivatives are zero; in these 

circumstances, one explores the neighbourhood of each stationary point to deduce its characteristic 

features. 

     At such an extremum -- either a minimum or maximum value of a dependent variable in 

multidimensional space, its location is evaluated through a solution of simultaneous equations 

obtained on setting first derivatives equal to zero:  for an extremum of ( )z ,x y  in three dimensions, 

accordingly

 = 
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0   and     = 
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0  

The nature of that extremum is discovered through evaluation of coltest as specified above.

total differential  

     For a smooth function ( )f x , named z, of one variable, x, according to 3.501 we express a 

differential of the dependent variable as a function of the slope of the curve of ( )f x  at any point x0:  

dz = 










d

d

x
( )f x

x
0

dx, in which derivative 
d

d

x
( )f x  evaluates to precisely that slope 

∂

∂

x
z at any given 

point.  An important consideration in chemistry, in particular for thermodynamics, relates to 

properties of differentials of formulae or functions of multiple variables. For a function f with a 

formula named  = z ( )f ,x1 x2  of two independent variables ,x1 x2, we write a total differential 

analogously as a sum of products involving partial derivatives,

 = dz  + 
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dx2 ,

with an obvious extension for a formula pertaining to multiple independent variables 

 = z ( )f , , ,x1 x2 x3 ... .  As those two partial derivatives are, in general, functions of both independent 

variables, we rewrite the above expression in a form

  = dz  + ( )f ,x1 x2 dx1 ( )g ,x1 x2 dx2

in which ( )f ,x1 x2  and ( )g ,x1 x2  are functions of x1 and x2.  The chain rule applies for partial 

differentiation in a form analogous to that for differentiation of a single independent variable; for a 

function ( )f , ,x y z  of which arguments , ,x y z are functions of parameters ,u v, 

 = 
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u
( )f , ,x y z  +  + 
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     Because reversing this process does not necessarily result in function z, given an expression 

involving differentials of form

 = dz  + ( )p ,x1 x2 dx1 ( )q ,x1 q2 dx2

we require to discover whether z can be constructed from ( )p ,x1 x2  and ( )q ,x1 x2 :  if so, dz is 

termed an exact differential or total differential, otherwise, an inexact differential.  Comparing dz 

in its two forms above, we deduce that a requirement is that  

   = ( )p ,x1 x2
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On partial differentiation of these equations with respect to x2 and x1, respectively, we find that 

both left sides are equal to the mixed partial derivative of z of second order; a requirement that dz 

be an exact differential is hence

 = 
∂

∂

x2

( )p ,x1 x2 ∂

∂

x1

( )q ,x1 x2  .

On solving these equations ( )z ,x1 x2  might be found, even if a functional relation between x1 and 

x2 be unknown.

     For a positively homogeneous formula of degree n, for which, for all t > 0, 

 = ( )f , ,t x t y t z t
n

( )f , ,x y z , that has continuous first partial derivatives, this relation holds: 
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      Exact or total differentials are important because the integral of an exact differential between 

an initial condition (xi, yi), or a corresponding point on a surface of a property, and a final 

condition, corresponding to a point (xf,  yf), is independent of a path of integration; for an inexact 

differential, such an integral depends on a path.  Functions of a thermodynamic state, such as 

energy and entropy, produce exact differentials, unlike functions such as work or heat that 

correspond to operations to alter a thermodynamic state.  For an inexact differential, denoted δ z, 

we might express its relation to differentials dx and dy as

 = δ z  + ( )M ,x y dx ( )N ,x y dy

By finding an integrating factor one might in some cases make an inexact differential exact:  for 

instance, if some integrating factor ( )λ ,x y  exist, the above relation becomes 

d z  =  ( )λ ,x y   = δ z  + ( )λ ,x y ( )M ,x y dx ( )λ ,x y ( )N ,x y dy

An integrating factor in a particular case is not unique, but if one exist, alternative integrating 

factors of infinite number also exist; in practice the finding of such an integrating factor might be 

difficult because there is no general method for that purpose.  In thermodynamics, for a change δ q 

of thermal energy or heat, which is inexact, an integrating factor 
1

T
 makes a resulting formula 

δ q

T
 

become differential dS of state function entropy, S.  If in an application, such as in 



thermodynamics, an integral be taken around a closed loop, so that initial and final points be the 

same, the integral is zero if the differential involved be exact, and non-zero otherwise; in 

mechanics, such a zero value of integral can define a conservative system.  Integrating factors 

arise also in the solution of differential equations, as discussed in chapter 7.

     The tangent approximation, or incremental approximation, as discussed in section 3.501, is 

equally applicable to multiple independent variables -- but, as with one independent variable, 

direct differentiation and evaluation avoids errors of that approximation -- and to multiple 

differentiation.

partial derivatives in the complex plane

     A complex function with this property of differentiability throughout some domain D is called 

an analytic function in D; if that domain of differentiability extend throughout the finite complex 

plane, the function is called entire.  To assess the condition that this definition imposes on ( )u ,x y  

and ( )v ,x y  from  = w ( )f z  =  ( )f  + x i y   =   + u i v, we express the difference quotient in terms of u 

and v, setting  = z  + x i y and  = ∆ z  + α β i, in which α and β are real numbers:

 = 
 − ( )f  + z ∆ z ( )f z

∆ z

 +  −  − ( )u , + x α  + y β i ( )v , + x α  + y β ( )u ,x y ( )v ,x y

 + α i β
      *

We first let ∆  → z 0 through purely real values, so that  = β 0, yielding 

 = 
d w

d z
lim
 → α 0

 + 
 − ( )u , + x α y ( )u ,x y

α

i ( ) − ( )v , + x α y ( )v ,x y

α
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We proceed to deduce the form of 
d w

d z
 on letting ∆  → z 0 through purely imaginary values, so that 

 = α 0; an argument of the same form yields 

 = 
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If a limit of the difference quotient exist in the prepenultimate expression *, it must be unique, 

which requires the preceding two expressions on the right side to be the same result in alternative 

forms.  Equating real and imaginary parts, we then obtain two equations that must be satisfied 

simultaneously by the real and imaginary parts of ( )f z :
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A differentiable or analytic function  = w  + u i v must thus satisfy these relations attributed to 

Cauchy and Riemann; the converse is also true -- that, if a complex function satisfy these 

conditions, it has a unique derivative.  A point at which  = w ( )f z  is not analytic is called a 

singularity of ( )f z ; for example, for  = w
1

 − z 1
 , this ( )f z  is analytic everywhere except at a point 

 = z 1, which is hence a singularity.  If ( )f z  be an analytic function, when z is purely real, the forms 

of ( )f z  and ( )f x  become identical; we hence deduce the form of f when expressed as  = w ( )f z   =  

 + ( )u ,x y i ( )v ,x y  according to a rule that an analytic function  = w  + ( )u ,x y i ( )v ,x y  becomes 

expressible in terms of z on setting  = y 0 in the right side and then replacing x by z.  For this reason 



 = w z z is not an analytic function because application of that rule would yield  = w ( )f z   =  z
2
, 

which is incorrect for a formula comprising an imaginary part.  Analogous to the preceding rule, if 

 = ( )f z  + u i v satisfies the Cauchy-Riemann equations, the derivative f '(z) = 
∂

∂

z
f  is obtainable 

from the result
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on formally setting  = y 0 and replacing x by z.  If second mixed derivatives 
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exist and be continuous, partial differentiation of the Cauchy-Riemann equations above yields
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These equations have a form identical to Laplace's equation, which is an important 

partial-differential equation of which any solution in two dimensions is called a harmonic function

; harmonic functions u and v associated with an analytic function  = w ( )f z   =   + u i v are called 

conjugate harmonic functions.  For example,  = ( )sin z  + ( )sin x ( )cosh y ( )cos x ( )sinh y  is an 

analytic function, because, with  = u ( )sin x ( )cosh y  and  = v ( )cos x ( )sinh y  for which   = 
∂

∂

x
u

∂

∂

y
v 
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u −
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y x
v are continuous; these functions u and v are hence 

conjugate harmonic functions because they are the real and imaginary, respectively, parts of the 

same analytic function ( )f z .  Because a complex number  = z  + x i y is expressible in polar form 

 = z r e
( )i θ

, the Cauchy-Riemann equations in polar form become
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multiple integrals

     Because much of physical and theoretical chemistry, especially statistical thermodynamics, 

spectrometry and quantum theory, is concerned with functions of two or more variables, we must 

be able to apply methods of calculus within such areas to extract useful information about 

properties of a system of interest.  

     Whereas for a continuous function f with formula ( )f x  defined over an interval [ ],a b  of x, a 

definite integral is defined as a Rieman sum 

 = d
⌠
⌡


a

b

( )f x x lim
 → n ∞
∑
 = i 1

n

fi ∆ x

in which xi is a point in subdivision i of [ ,a b], provided that this limit exist, we extend this 

concept to a function f with formula ( )f ,x y  of two independent variables, defined over a 

rectangular region  ≤ a x < b and  ≤ c y < d, by subdividing this region into n subregions using lines 

parallel to axes x and y, so to divide the total region R into small portions of area ∆ A ,j k = ∆ xj ∆ yk.  

In each subdivision we select a point ( ,x ,j k y ,j k) and compute a Riemann sum,



Sn = ∑
 = j,k 1

n

( )f ,x ,j k y ,j k ∆ xj ∆ yk

We take a limit as  → n ∞ of this sum and with each ∆ xj --> 0 and each ∆ yk --> 0 ; if this limit 

exist, it constitutes a double integral of f over the region R, denoted as 
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( )f ,x ,j k y ,j k ∆ xj ∆ yk

so that geometrically this double integral represents a sum of products of the form ( )f x ,j k ∆ xj ∆ yk 

.  A triple integral over volume V with three independent variables , ,x y z is analogously defined:  
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The mean value <f> of a function ( )f ,x y  of two independent variables over an region R is 

 = <f>
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 x y

which is equivalent to a volume divided by an area.

     In a chemical context, an evaluation of definite integrals with multiple variables recurs, simply 

because ranges of integration variables are fixed for a particular system.  A conventional way to 

proceed in a manual calculation involves integrating sequentially over each variable, applying 

appropriate boundary conditions or limits at each stage. When a function to be integrated separates 

into a product of functions of a single variable, as with

 ( )h ,x y   =  ( )f x   ( )g y   ....., 

integration is straightforward, for example,

d
⌠
⌡
 ( )h ,x y x dy  =  d

⌠
⌡
 ( )f x x d

⌠
⌡
 ( )g y y

providing that each latter integral is tractable somehow -- algebraically or numerically.  In other 

cases, in which an integrand has a form ( )f ,x y  that fails so to factor, a standard method to proceed 

is to integrate first over one variable, either x or y, and then over a remaining variable to produce 

an ultimate result.  Although this result is independent of choice of which integrating variable we 

integrate first, when proceeding by hand one might find performing integrations using one choice 

for an initial integration easier than an alternative approach; when working with Maple, one must 

designate a particular sequence of integration.  When ( )h ,x y  or an analogous formula involving 

multiple variables appears in an integrand of an integral with only constants as bounds for each 

variable, the success of an integration might depend on the order of nested integrating variables. 

     For differentiation of an integral with multiple functions ( )f t , ( )u x  and ( )v x  as integrand and 

bounds of integration, respectively,
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analogous to formulae in overview 4.0.  The latter formulae are combined into a rule attributed to 

Leibnitz, for which if a partial derivative 
∂
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x
( )f ,x t  be continuous on an area bounded by curves 

, = y ( )u x  = y ( )v x ,  = x α and  = x β, 
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This rule is useful to manipulate solutions of differential equations that are represented as definite 

integrals.

     Just as a geometric interpretation of a definite integral of a formula or function with a single 

independent variable, or in general involving two variables as coordinates in space, is an area, a 

definite integral of a formula or function involving three variables as coordinates in space 

generates a volume.  For three dimensions ,x y and z, with  = z ( )f ,x y , a product dx dy  of 

differentials is equivalent to an element of area dA, and ( )f ,x y  is the corresponding integrand, 

yielding an integral

 d
⌠
⌡
 d
⌠
⌡
 ( )f ,x y y x;

for four dimensions , , ,x y z w and  = w ( )f , ,x y z , a product dx dy dz of differentials is equivalent to 

an element of volume dV and the corresponding integrand is ( )f , ,x y z :

 = V d
⌠
⌡
 d
⌠
⌡
 d
⌠
⌡
 ( )f , ,x y z z y x 

Rather than a volume, a double integral can yield an area if the integrand is unity; for instance for 

a right triangle with base along axis x and a line of formula  = y ( )f x  passing the origin as another 

side, the area of the triangle between  = x 0 and  = x a is

  = A d
⌠
⌡


0

a

d
⌠
⌡


0

( )f x

1 y x ,

and analogously for other planar geometrical situations; this situation is evidently a special case of 

an area of a body of unit stature or thickness being numerically equal to the volume of the same 

body.  Likewise, a volume can result from a constant integrand and integration for some formula 

( )f ,x y  with integrating element dx dy dz, with corresponding results for higher dimensions.   

     If the bounds of the region to be integrated to find the area be not segments of straight lines, the 

corresponding double integral for the area of a region in a plane might be more convenient in polar 



coordinates ( ,r θ), in which case the double integral has the form 

 = A d
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 ( )f ,r ( )cos θ r ( )sin θ r r θ

or with order of integration reversed as in 
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 ( )f ,r ( )cos θ r ( )sin θ r θ r

whichever be more convenient. 

     In cylindrical coordinates ( , ,r θ z), the volume is the result of this triple integral,

 = V d
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 ( )f ,r ( )cos θ r ( )sin θ r z r θ

with integrating element r dz dr d θ and with integrations implemented in the most convenient 

order, whereas in spherical polar coordinates ( , ,r θ φ) the volume is obtained from 

 = V d
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in which the integrating element is r
2

( )sin φ dr d θ d φ.

     According to a customary parametric representation with , ,( )x t ( )y t ( )z t , the length of an arc 

along a curve in space is 
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The area of a surface  = z ( )f ,x y  is 
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with appropriate bounds or end points for each integration variable; in the latter integral, the area 

of interest is taken to be projected onto plane xy.  Because the area of interest is equally well 

projected onto plane xz, in which case the area is derivable from this double integral,

 = A d
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or onto plane yz, in which case the area is derivable from this double integral,
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The latter three formulae are merely an extension of a formula for the length of an arc along a 

curve in a plane considered in section 4.106.

     Just as, according to section 4.105, one differentiates a definite integral involving a formula in 

terms of one independent variable as 
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which has the effect of interchanging the order of integration and differentiation, for a partial 

derivative 
∂
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x
( )f ,x y  of ( )f ,x y  that is continuous on a rectangle for x in [ ,a b] and y in [ ,c d], as 

presented above,
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The latter result is a particular case in which one or both bounds of integration might depend on x 

as in ( )c x  and ( )d x ; in that case, additional terms arise as follows, as presented in Leibnitz's rule 

above.
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     There exist a few theorems to convert single integrals to multiple integrals, and vice versa, that 

might serve to simplify a particular problem and that might be implemented with Maple.  Green's 

theorem converts a line integral over a closed curve into an area.  Stokes's theorem relates a 

surface integral to a line integral, whereas Gauss's theorem relates a triple integral extended over a 

solid to a surface integral taken over the boundary of this solid; we explain the latter two theorems 

in section group 6.4 on calculus with vectors.  

     The fundamental theorem of infinitesimal calculus, expressed as  = d

⌠

⌡





a
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d
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x
( )f x x  − ( )f b ( )f a , 

signifies that the integral, over interval  .. a b, of the derivative of a formula of a single variable as 

integrand is evaluated as a difference of the values of that formula at the bounds of that interval.  

As a version of that fundamental theorem in two dimensions, Green's theorem expresses the 

double integral of a particular derivative of a formula involving two independent variables; in that 

manner Green's theorem provides a means to convert a line integral along a curve constituting a 

closed contour to an integral of area within that region.  If smooth, simple, closed curve C in plane 

xy be continuous at least piecewise and if region R consist of C and its interior, an integral of two 

continuous functions m(x,y) and n(x,y) with also continuous first partial derivatives throughout an 

open region containing R as an integral, in two parts, along that curve 
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becomes a double integral
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as illustrated in the following example.  In a space of multiple dimensions, multiple paths might 

exist between two independent points.  A line integral or path integral involves definite integration 

of a differential according to a particular curve or path, which is performed with separate 

integration over independent variables expressed in terms of each other.  For instance, for ( )F ,x y  

an integral of ( )dF ,x y  over a path C with subsidiary functions ( )M ,x ( )y x  and ( )N ,( )x y y , yields 

a sum of integrals of only one variable,

 = d
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in which a specification of the path C implies not only initial ( ,x1 y1) and terminal ( ,x2 y2) points 

but also the functional relations ( )y x  in the integral with ( )M ,x ( )y x  and ( )x y  in the integral with 

( )N ,( )x y y .

     With a line integral involving an exact differential is associated an important theorem:  if a 

differential for integration is exact, the value of a line integral depends on only initial and terminal 

points or conditions, independent of a path between these points; a value of this integral is then 

equal to a difference of its values at final and initial points.   For example, to evaluate a curvilinear 

or line integral d
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dy  along a closed path P with piecewise continuous and smooth 

segments from the origin at  = x 0 horizontally with  = y 0 to  = x 2, then from  = y 0 vertically with 

 = x 2 to  = y 2, and returning to the origin diagonally along a segment of a line with  = y x, we apply 

the result of Green's theorem above to yield 
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to which we apply bounds to the ranges of integration,
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for which we evaluate the inner integral at its bounds,
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which leaves the outer integral, to be evaluated as follows.
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Hence the line integral d
⌠

⌡


P

 

y
2

x + x
2

dy along the specified path evaluates to 
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3
.

     Both Simpson's rule and gaussian quadrature are applicable in multiple dimensions.  For an 

integral 

 = I d
⌠
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d
⌠
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( )f ,x y x y

in two dimensions, we divide the range of x into n intervals each of width h and the range of y into 

m intervals each of width k, so that  = n h  − b a and  = m k  − d c.  Applying Simpson's rule, we form

 = I
h k

9
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w ,i n w ,j m ( )f , + a i h  + c j k

in which values of both w ,i n and w ,j m conform to a pattern , , , , , , , ,1 4 2 4 ... 4 2 4 1 with  + n 1 and 

 + m 1 members, respectively.  For gaussian quadrature with n points in direction x and m points in 

direction y, the integral is evaluated as

 = I ( ) − b a ( ) − d c












∑
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∑
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w ,i n w ,j m ( )f , + a k ,i n ( ) − b a  + c k ,j m ( ) − d c

in which values of k ,i n and k ,j m are abscissae of points along axes x and y respectively, and w ,i n 

and w ,j m are weights of those points.

     All these operations extend in an obvious way to functions of three or more independent 

variables.  In a chemical situation we encounter multiple integrals over numerous coordinates.  For 

example, in a problem to calculate an electronic energy of benzene, involving 42 electrons per 

molecule, we must integrate an energy function over 126 spatial and up to 84 spin coordinates, 

although the actual number depends upon a spin state of interest; this integral thus might involve 

integration over 210 variables.  For most real applications we forego a graphical depiction and 

work with only mathematical tools at our disposal.  

series in multiple dimensions   

     Both Taylor series and Fourier series have their counterparts in three or more dimensions.  For 

a Taylor series of ( )f ,x y  as a formula involving two variables expanded about ( , = x a  = y b), the 

result retaining terms to second order is  

( )f ,x y   =    +  + ( )f ,a b
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in which ( )f
'

x
  

(j)
 implies a derivative of order j with respect to x, with the corresponding terms for 



y and the mixed derivatives, in which terms have meaning obvious on comparison with a Taylor 

series in a single variable in section 3.306.  Extension to multiple independent variables is effected 

in an obvious manner.

     In section 2.412 we introduce Fourier series and in section group 4.5 discuss their applications 

as integrals of functions of a single variable.  Recall that orthogonal functions of variable x in a 

set,
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including a constant function, serve to expand a function with period L.  For a function of two 

independent variables x and y, we analogously construct a double Fourier series of orthogonal 

functions 
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in which ,m n = 1,2,3, ..., together with functions 
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in which , , = n 1 2 3, ..., and a constant function.  A linear region over which integration is taken 

becomes rectangular of area L1 L2.  An alternative formulation in terms of exponential functions 

rather than circular trigonometric functions is practicable, just as for a single variable.

optimization  

     Optimization implies an evaluation of optimal values of a formula or function, such as 

maximal or minimal; if conditions on optimization be set, these become constraints.  A method to 

reduce a problem of constrained optimization to an unconstrained problem, whereby one avoids 

substitution of constraint relations into the function, involves an addition of a sequence of 

products of real numbers λj and constraint formulae such that a point x0 that minimizes a formula 

( )f x  subject to n constraints , = ( )g1 x 0  = ( )g2 x 0, ..., ( )gn x  becomes a stationary point of a 

lagrangian ( )L ,x λ , 

 = ( )L ,x λ  + ( )f x












∑

 = j 1

n

λj ( )gj x

in which coefficients λj are called lagrangian multipliers.  This method is valid if the gradients of 

the constraints be linearly independent at x0.

     In this chapter we thus describe how to perform operations in differential and integral calculus 

on functions or their formulae of multiple independent variables, i.e. multivariate formulae or 

functions, with direct applications in thermodynamics among other chemical topics.  As a basis for 

that explanation we recall how to define a formula or function of several variables, and then 

proceed to differentiation and integration.  Maple's package Student[MultivariateCalculus] 

contains 18 commands and operators that complement or supplement material in section groups 

5.1, 5.3 and 5.4.



  summary of chapter 5

     Our concern in this chapter is to develop an infinitesimal calculus of formula expressing 

functions of more than one independent variable, with some illustrative applications.  We explain 

important concepts associated with stationary or critical points on a surface or hypersurface, 

located through use of derivatives and testing for cols, to prepare for chemical applications, 

particularly those involving chemical reactions, in which a pertinent hypersurface might represent 

internuclear potential energy.  Both differentiation and integration of functions of multiple 

variables provide important tools to develop and to understand principles of chemical 

thermodynamics; the idea of a function of a thermodynamic state becomes established through 

consideration of exact differentials.  We elaborate a link with Fourier series in section group 4.5 to 

demonstrate how one can construct expansion functions in sets as an initial step towards deriving 

Fourier series of functions of multiple variables:  in this context, a concept of an outer product of 

sets is a valuable aid.  Optimization of a formula involving multiple variables with constraints 

involves derivatives and solving simultaneous equations to locate maxima or minima satisfying 

both the formula and the constraint.  All these powerful commands and operations to treat 

multiple independent variables require only a few Maple commands additional to those already 

introduced essentially for a single independent variable.

 chapter 6   Linear  algebra 

  6.0  overview and principles    

     We present here a concise description of mathematical constructs pertaining to linear algebra, 

their properties and principal operations, and a summary of important definitions.  All these topics 

are discussed at length in succeeding sections grouped according to topic within linear algebra:  a 

reader who is previously unacquainted with linear algebra might find this terse description 

indigestible; such a reader might proceed directly to examine ensuing material in this chapter one 

section group at a time, and return subsequently to this overview.  Rigorously linear relations and 

systems are rare -- non-linear relations and their combinations abound.  Treatment of linear 

relations and systems is, if not invariably easy, at least subject to a systematic and highly 

developed scheme of algorithms and their implementation; treatment of non-linear relations and 

systems is almost invariably difficult, despite enormous effort devoted to that field.  Linear 

algebra, known formerly also as linear analysis, not only as a subject of study but also in 

application owes its importance not merely to those truly linear and rare relations and systems but 

especially to the ingenuity of mathematicians, scientists and engineers in discovering methods to 

find conditions under which non-linear systems are treatable with linear regions and 

approximations.  A study of linear algebra hence rewards a practitioner beyond all proportion to 

the prevalence of linear systems.

     Two approaches to the study of linear algebra include linear algebraic equations that become 

expressed in a matrix form and an initial discussion of a vector space; as the latter is more abstract 

than the former, we adopt the former approach.  

      From Maple release 9, a package Student[LinearAlgebra] contains many commands 

designed to assist one to understand concepts of linear algebra, through interactive operation with 



Maplets, graphic depictions and calculations; from Maple release 10, a package 

Student[VectorCalculus] contains analogously further commands that illuminate aspects 

of vector calculus.  The LinearAlgebra Computation Example Worksheet illustrates selected 

commands in the former package.

      A sequence, list or set comprises numeric or symbolic items collected in a linear order, or in 

one dimension, although for a set the order is immaterial; in chapter 1 we introduce their 

properties as data structures that can contain both numeric and algebraic quantities, but these 

collections possess intrinsically no particular mathematical properties.  To hold data, Maple 

provides other structures with dimension possibly greater than one, including a table, as 

introduced in section 1.120 and an array, in section 1.121.  A matrix and a vector are special cases 

of arrays for which various arithmetic operations are defined.  A matrix arises commonly in a 

mathematical description of a chemical or physical or engineering problem, and is typically 

applicable when data are presented in a tabular form.

     For a set of elements , , ,a ,1 1 a ,1 2 ... a ,m n numbering m n and which might be numerical or, as 

here, symbolic but typically representing numbers, a rectangular array A  =  (a ,i j), with 

, , , = i 1 2 ... m and  , , , = j 1 2 ... n, arranged in m rows and n columns as

a ,1 1   a ,1 2     ...     a ,1 n

a ,2 1   a ,2 2     ...     a ,2 n

.       .      .      .      .       .

   a ,m 1   a ,m 2    ...    a ,m n 

constitutes a matrix m x n; if  = m n, A is n-square.  As such a rectangular array, a matrix is 

amenable to established mathematical operations; a square matrix has a determinant that evaluates 

to a single expression or value, i.e. a scalar quantity.  Two further mathematical objects vector and 

tensor possess well developed mathematical properties, although each originated in a physical 

context; with their derivatives and integrals, these quantities have important applications in 

chemical and physical calculations.  A solution of an eigenvalue problem requires familiarity with 

at least three of these data structures.  An ordered n-tuple v = ( , , ,v1 v2 ... vn) of elements, also called 

components, constitutes an n-vector, formally implying an n-space or space of n dimensions; in 

general mathematical terms, a matrix m x 1 might be likewise called a column vector, whereas a 

matrix 1 x n is called a row vector; Maple objects Matrix and Vector are distinct entities.  Calculus 

with vectors involves differential operators with properties resembling those of a vector.  A 

spreadsheet provides a rectangular array, according to rows and columns, of elements, called cells, 

that not only facilitate viewing of abundant data but also simulate operations on lists, vectors and 

matrices; Maple's spreadsheet enables operations on fully symbolic content of cells.  

     The following paragraphs on topics of linear algebra contain condensed summaries of many 

important definitions and aspects of this major branch of mathematics.  The material that follows 

in these paragraphs might appear somewhat formidable at a first reading; for this reason we 

encourage a reader to browse through this material to acquire an overview of the chapter and its 

constituent section groups, and then to refer to it in conjunction with calculations and practical 

applications of these principles in the various sections of this chapter, as appropriate.  Upon 

completion of this chapter, a reader should be able to understand and to appreciate the terms and 

operations explained succinctly here. 



matrix and determinant  

     To acquire a notion of the nature of these linear algebraic structures and their expressions, we 

suppose that two simultaneous linear equations involve variables x and y corresponding to 

chemical or physical quantities that arise from the measurements of some chemical property, such 

as the concentrations of the solutes of a liquid solution that absorbs light at two wave lengths in 

the visible region; at each wave length there is a contribution to the total absorption from each 

solute, present at unknown concentration.  On a basis of those measurements we might seek to 

evaluate a concentration of each separate solute even though their broad absorption lines overlap, 

so that absorption by both solutes contributes to the total absorbance at each wave length.  

Absorption coefficients, such as a, b, d and e that might pertain to each component at each wave 

length, might be known independently through separate calibration with each single solute; with 

such information we solve simultaneously these two equations to evaluate these concentrations if 

we measure the total absorbances c and f at those two wave lengths for the same solution 

containing both solutes.  In these two algebraic equations, 

  =  + a x b y c , 

  =  + d x e y f ,

symbols , , , , ,a b c d e f take numerical values in practical conditions; mathematical solutions of 

these two equations apply to the same chemical system under the same experimental conditions, 

thus simultaneously, and both variables x and y and coefficients , , ,a b c d appear only to an 

implicit first power, thus linearly.  We express these two simultaneous linear equations in an 

alternative form as comprising three arrays, each demarcated by brackets [ ],









a b

d e
 








x

y
  =  









c

f
 

in which coefficients , , ,a b c d of variables x and y occupy the same relative positions as in the 

original equations, and c and f likewise; the orientation of x with respect to y differs between this 

-- vertical -- and the former -- horizontal alignment.  According to this notation, we multiply 

leftmost element a in the top row of the first quantity demarcated by brackets by the uppermost 

element x in the second quantity within brackets and add to that product a x a separate product of b 

with y to produce uppermost element c of the third quantity within brackets across the equality 

sign; an analogous sum of product d with x and of product e with y yields f.  As an ordered 

arrangement of symbols, such a collection of letters or names of quantities between brackets in 

each separate structure above is an array; as each letter or name therein we expect to denote a 

number or variable in a particular application, such an array might contain numeric entries, or 

symbolic and numeric entries in an appropriate combination.  Because we associate with such an 

array a possibility of involvement in well defined mathematical operations, such as the 

multiplication of the various quantities between two arrays as practised above, each array has 

significance beyond being an ordered arrangement of symbols in a space of two dimensions:  for 

this reason each such array constitutes a matrix, a term introduced by Cayley, that implies certain 

mathematical properties.  Such a matrix we treat as a single intrinsic entity, such as denoting a 

particular matrix by an informative name, rather than as a cluster of component parts.  The matrix 

containing only the coefficients of the variables in the two algebraic equations is called a 

coefficient matrix, as











a b

d e
 ; 

when we augment that coefficient matrix with a further column of which each entry or element is 

a quantity in the right side of a linear equation, or correspondingly what is expressed as an array 

on the right side of the above equality, we generate an augmented matrix, as









a b c

d e f
 .

We can solve the simultaneous linear equations merely through systematic operations on this 

augmented matrix. 

     An alternative view of a matrix is that it involves -- enables -- a linear transformation:  for 

instance, we apply 








a b

d e
 to transform 









x

y
 in the domain of the transformation into 









c

f
 in the 

codomain or range of that transformation, or we implement a linear mapping for the same 

purpose; the latter quantities 








x

y
 and 









c

f
 we might regard as column matrices or vectors or 

vector spaces.  

    To facilitate our exploitation of a mechanism to manipulate such a quantity as a matrix, we 

rewrite two equations in an alternative form:

  =  + A ,1 1 X1 A ,1 2 X2 C1 , 

  =  + A ,2 1 X1 A ,2 2 X2 C2 ,

Instead of distinct names for variables x and y, we use an indexed or subscripted name, in this case 

just X in form either X1 or X2, so that these equivalences , = X1 x  = X2 y show a correspondence 

with a preceding pair of linear equations.  Likewise, instead of distinct names for coefficients such 

as , , ,a b d e, we employ according to a more economical notation a doubly indexed or subscripted 

name, in this case A ,j k in which the first subscript j indicates either the order of the equation in a 

vertical list, such as that displayed above, or the row in the matrix to which those equations 

become translated, as displayed below; a second subscript k corresponds to a variable of which a 

particular coefficient is a multiplicand, such as  = A ,1 1 a as coefficient of X1 in equation 1,  = A ,1 2 b 

as coefficient of X2 in equation 1, et cetera, or a column of a resulting matrix.  We treat 

analogously quantities on the right side of equations above, so that c in the first equation becomes 

C1, f in the second equation becomes C2.  











A ,1 1 A ,1 2

A ,2 1 A ,2 2

 










X1

X2

  =  










C1

C2

The correspondence between the latter equation involving matrices and the preceding two 

simultaneous linear equations defines multiplication between matrices on the left side of the 

equality.  We hence write the latter equation in a compact form

 A . X = C 

in which A denotes a matrix with four elements , , ,A ,1 1 A ,1 2 A ,2 1 A ,2 2; here is an explicit 

correspondence between this square matrix in two notations,  

A  =  










A ,1 1 A ,1 2

A ,2 1 A ,2 2

  =  
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d e
 



and two column matrices in their analogous notations.

    X  =  = 
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y
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c

f

Operator . denotes multiplication between matrices.  These matrix forms in A . X = C across an 

equality sign imply only linear equations, whether involving conventional algebraic quantities or 

derivatives of only first order or other quantities, but a particular matrix has a significance apart 

from such an environment.  Not all sets of equations have solutions, if the equations be 

incompatible such as with  =  + x y 3 and  =  + x y 4, or solutions might number uncountably.  A set 

of equations with terms on the right side, such as c and f in the original equations, or such as C1 

and C2 in the matrix above, equal to zero is called homogeneous.   Equations in a set that are 

expressible in a form  A . X = C comprise a linear system, of which matrix A is called the 

coefficient matrix; the matrix formed on adjoining C to the right of A is called an augmented 

matrix, as explicitly follows.  











A ,1 1 A ,1 2 C1

A ,2 1 A ,2 2 C2

     A simple equation such as 

 =  + 2 3 5

is a particular arithmetical expression that indicates on the left of the equality a sum of two 

numbers and on the right another number.  When we replace the numbers by symbols,

 =  + x y z

we create an algebraic expression of general character in which symbols , ,x y z might represent 

either the particular numbers in the preceding displayed expression or any other numbers in an 

appropriate combination to maintain the equality.  The latter expression is an abstraction of the 

former.

     As an alternative introduction to a matrix as a prospective abstract entity, we consider these 

three simultaneous lnear equations in a compatible system.  Each equation might be plotted as a 

plane in a space having three spatial dimensions; any two such planes based on separate equations 

in this system might intersect at a particular line passing through the entire space, but all three 

such planes based on separate equations in this system might intersect at a single point, of which 

the solution of these equations might yield its coordinates.

 =  +  − 3 x 5 y 4 z 7

 =  −  + 2 x 2 y 3 z 4

 =  −  − 4 x 3 y 2 z 1

Here symbols  , ,x y z denote variables that are indeterminate quantities in each equation, but that 

might become determined or accorded numerical values from the simultaneous solution of these 

equations.  Each variable , ,x y z on the left side of each equation has a numerical coefficient or 

multiplicand, which in each case above is an integer in a range 1 .. 7 with positive or negative sign

.  The right side of each equality comprises also an integer.   

     We proceed to increasing abstraction by replacing each number with a symbol that might 



denote that number.

 =  +  + a x b y c z d

 =  +  + e x f y g z h

 =  +  + i x j y k z l

By comparison with the equations in the preceding set, we might make an identification  = a 3 or 

 = a 2 or  = a 4, and analogously for , ,b c d ...  In the next stage of abstraction, we replace 

coefficients on the left side and the right side of each equation with a subscripted variable, of 

which the subscript or index denotes the equation as being one of the preceding three.

 =  +  + a1 x b1 y c1 z d1

 =  +  + a2 x b2 y c2 z d2

 =  +  + a3 x b3 y c3 z d3

In a further stage of abstraction, we employ similarly only one symbol, x, as variable, and apply to 

it an index or subscript to distinguish the precursor, so x1 from x, x2 from y and x3 from z.

 =  +  + a1 x1 b1 x2 c1 x3 d1

 =  +  + a2 x1 b2 x2 c2 x3 d2

 =  +  + a3 x1 b3 x2 c3 x3 d3

In still another stage of abstraction for an economy of symbols, we employ only one symbol, a, as 

coefficient of variables , ,x1 x2 x3 and add a second index to distinguish the pertinent variable.  For 

subsequent convenience without loss of generality, we replace also d by b.

 =  +  + a ,1 1 x1 a ,1 2 x2 a ,1 3 x3 b1

 =  +  + a ,2 1 x1 a ,2 2 x2 a ,2 3 x3 b2

 =  +  + a ,3 1 x1 a ,3 2 x2 a ,3 3 x3 b3

In the penultimate stage, we invent a procedure for multiplication to express the preceding 

equations in an alternative manner comprising three arrays of the same symbols as above.

 = 



















a ,1 1 a ,1 2 a ,1 3

a ,2 1 a ,2 2 a ,2 3

a ,3 1 a ,3 2 a ,3 3



















x1

x2

x3



















b1

b2

b3

Here a ,1 1 might represent 3 in the original equations, a ,1 2 might represent 5, and so forth.  We read 

this notation as implying that a sum of binary products, such as a ,1 1 x1, on the left side of the 

equality equals the quantity on the right side thereof, for each row, such that an entry in the first 

column of the array containing a with various indices, which we call an element, is multiplied by 

the top element of the second array, containing x with various indices; that product is added to an 

element in the second column of the array containing a multiplied by the middle element of the 

second array, containing x, and then added to a product of an element in the third column of the 

array containing a multiplied by the bottom element of the second array, containing x, to equal the 

element of the third array, containing b with varied index in the same row.  Each such array that is 

subject to this rule of multiplication we call a matrix.  In the ultimate stage of abstraction we 

replace each explicit matrix with a corresponding symbol, printed in bold font, to denote that 

matrix, expecting that that same symbol implies the corresponding content of that symbolic 



matrix; to indicate analogously the multiplication of the particular kind, we employ . as the 

multiplication sign.

A  .  X  =  B

with 

A  =  



















a ,1 1 a ,1 2 a ,1 3

a ,2 1 a ,2 2 a ,2 3

a ,3 1 a ,3 2 a ,3 3

X  =  



















x1

x2

x3

B  =  



















b1

b2

b3

These matrices are general in that their elements might assume any appropriate values.  As 

instances of particular values, we might express also the original three equations containing 

numerical coefficients in matrix form.

A  =  

















3 5 −4

2 −2 3

4 −3 −2

X  =  

















x

y

z

B  =  
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With this ultimate abstract form A . X  =  B of our simultaneous linear equations, we have 

transcended their particular details:  the same latter symbolic representation might equally well 

express a system of simultaneous linear equations numbering two, or four, or ...   At this stage we 

can accept that these symbolic matrices might have an identity of their own:  for instance, we 

might add, or subtract, or multiply, two or more such symbolic matrices, providing that their 

dimensions conform; for instance, with three columns in matrix A in its penultimate explicit form, 

we must have three rows in matrices X and B.   As a trivial example, we can express the same 

equations in a form A . X  −   B  =  0, in which 0 denotes a column matrix having rows of a 

conforming number and in which each element is zero.   

0  =  

















0

0

0

We might consider a matrix comprising a single row or a single column to represent a vector.  

This notation to encompass matrix, vector and other quantities is hence the basis of linear algebra; 

its implementation in Maple includes commands to convert systems between linear equations and 

matrices, in both directions. 



     A matrix has its origin in a transformation of coordinates:  in two dimensions a particular point 

with coordinates ( ,x y) is transformed to another location with coordinates (x', y').  For instance, for 

a transformation of coordinates according to an anticlockwise rotation of axes by an angle θ about 

a common origin, the new coordinates become 

x'  =   − x ( )cos θ y ( )sin θ

y'  =   + x ( )sin θ y ( )cos θ

 which we express in matrix notation as









x'

y'
   =  









( )cos θ − ( )sin θ

( )sin θ ( )cos θ
  








x

y
 ;

each matrix might then be represented with a single symbol, as r'  =  M . r.  Two transformations 

of coordinates in sequence then become representable as a product of two matrices, one  for each 

transformation; if the first transformation be represented with a matrix M and the second 

transformation be represented with a matrix N, the total effect of both transformations is 

represented as r' =  N . M . r, in which successive operations are implemented in an order from 

right to left so that matrix N of the second transformation premultiplies matrix M of the first 

transformation.  The result of calculating M . r is a matrix; the succeeding product of N with that 

matrix yields r'. 

      The derivative of matrix A is formed on differentiation of each element of that matrix; the 

integral of A, either definite or indefinite is formed on integrating each element of that matrix. 

     An elementary matrix of order n results from these elementary operations on an identity matrix 

-- a square matrix with unity along the principal diagonal and zero elsewhere:

























1 0 0 0 ..

0 1 0 0 ..

0 0 1 0 ..

0 0 0 1 ..

.. .. .. .. ..

• interchanging any two rows of a unit matrix or identity matrix;

• multiplying a single row of an identity matrix by a scalar other than zero;

• replacing a particular row of an identity matrix by a sum of that row and another row multiplied 

by a scalar, which has the effect of inserting a scalar as an element off the principal diagonal.  

A non-singular matrix, possessing an inverse, is expressible as a product of elementary matrices.  

An elementary matrix has invariably an inverse.  Operation with such a non-singular matrix on 

another matrix effects a linear transformation that is applicable in solving linear simultaneous 

equations, for inversion of a matrix and for other purposes.  The determinant of a unit or identity 

matrix is unity.  

    A rectangular matrix A having m rows and n columns might have two particular diagonals, one 

leading from a ,1 1 to a ,m n and the other leading from a ,m 1 to a ,1 n; of these two, the former is 

typically called the principal or main diagonal.  The superdiagonal is the diagonal above the latter 

principal diagonal, and the subdiagonal is that diagonal below that principal diagonal.  A banded 

matrix has zero elements along a few diagonals and zero elements elsewhere; a sparse matrix has 

mostly zero elements, but not necessarily in any particular order.  A symmetric matrix is identical 



with its transpose, A = A 
t
 whereas for an antisymmetric or skew-symmetric matrix A  =  − A 

t
.  

The spectrum of a matrix constitutes its eigenvalues. 

    The permutation of the rows of a unit matrix in some order yields a permutation matrix, such as 

the following.   

     

















1 0 0

0 1 0

0 0 1

 ,   

















0 1 0

1 0 0

0 0 1

 ,   

















0 0 1

0 1 0

1 0 0

Such a matrix is orthogonal, such that each such matrix multiplied by its inverse in either order 

equals an identity matrix.  

     A determinant is a formally important scalar property of a square matrix of order n; that matrix 

hence constitutes an array comprising  n
2
 elements, and its determinant represents a defined 

alternating sum of all possible products, numbering !n , of elements, one from each column and 

each row of that matrix; each term in the sum has a positive or negative sign depending whether 

the number of permutation inversions is even or odd.  The order of a determinant is defined as the 

order of the square matrix from which it arises.  The algebraic sum is called the expansion or 

value of the determinant; each product in that expansion with its associated sign is called a term in 

the expansion of that determinant.  For instance for matrix A as formed above, 

A  =  










A ,1 1 A ,1 2

A ,2 1 A ,2 2

a determinant, hence of order two, is expanded for its evaluation as

| A |  =   − A ,1 1 A ,2 2 A ,1 2 A ,2 1

comprising two terms.  The determinant function has thus as domain a set of square matrices; the 

range of this function depends upon the nature of elements of a matrix that serves as argument:  

for a matrix with purely numeric elements, its determinant yields a number, whereas, for a matrix 

with other than numeric elements, an algebraic or other expression is a result.  Elements a ,1 1, a ,2 2, 

..., a ,n n form the principal diagonal, and elements , , ,a ,1 n a ,2  − n 1 ... a ,n 1 form the secondary 

diagonal; a product of the elements along the principal diagonal yields the principal member.   A 

determinant has these properties:

• if each element of a particular row, or a particular column, be multiplied by a scalar quantity c, 

the value of the determinant becomes multiplied by c; conversely, multiplying the entire 

determinant by a scalar quantity c is equivalent to multiplying all elements in any one column or 

any one row;

• a factor that is found in all elements of a particular row or a particular column can be factored 

out;

• a determinant has zero value  

-  if all elements of a particular row, or a particular column, be zero, or 

-  if two rows, or two columns, contain identical corresponding elements, or

-  if two rows, or two columns, contain proportional corresponding elements;

• if two rows, or two columns, be interchanged, the sign of the value of the determinant becomes 



reversed;

• transposing the determinant such that rows become columns leaves the value of the determinant 

unaltered;

• when a factor is removed from each element of one row, or column, to yield a new determinant, 

the value of that determinant multiplied by the factor removed is the same as the value of the 

original determinant;

• when a determinant is multiplied by a constant or scalar quantity, the latter quantity can be 

absorbed into the determinant by multiplying therewith by all elements of one row, or one 

column;

• augmenting a determinant by adding at the top a row 1  c0   c1   c2  ...  cn and adding 1  0  0  0  ...  

0 as a new first column leaves the value of the determinant unaltered; 

• a product of two determinants is equal to the determinant of the product of the two matrices that 

are the sources of the two determinants;

• the value of a determinant remains constant

-  if all rows and columns are interchanged,

-  if rows become written as columns, and columns as rows, 

-  if to each element of one row be added a scalar quantity multiplied by the corresponding 

element of another row, and analogously for elements of columns.

     For conforming square matrices of order n and non-zero scalar c,

| c A |   =  c
n
 | A | ,

| A . B |  =  | A |  | B |,

in which | c A | implies a multiplication of each element of the entire matrix by scalar c.  Notations 

for a determinant of matrix A include det(A) and |A|.  A square matrix of which the determinant 

evaluates to zero is called singular and has no inverse; a matrix other than square is also singular 

but might have a pseudo-inverse.  Although a determinant plays a central role in the theory of 

linear algebra and matrices, it serves generally no useful purpose in practical computation 

involving a matrix containing as elements real numbers because of prospectively severe loss of 

numerical precision when an alternating sum of products of elements be expressed as decimal 

numbers.  For equations in an homogeneous set, the non-trivial solutions are uncountable if the 

determinant of the coefficients be zero or if the only solution be that the matrix of variables 

constitutes a zero matrix.  

     A permutation inversion describes a couple of elements that become out of order when 

described by their indices; for instance, for four elements , , ,a1 a2 a3 a4 permutation a1 a2 a3 a4 has 

all elements in order of increasing index, but permutation a2 a4 a1 a3 contains permutation 

inversions a2 a1, a4 a2 and a4 a3.  

     For a square matrix A, the minor M ,i j of element A ,i j is the determinant of the matrix that 

remains after deleting row i and column j from A; the cofactor C ,i j of element A ,i j is the 



determinant of the matrix that remains after deleting row i and column j from A multiplied by 

( )−1
( ) + i j

:  the minor and cofactor hence differ only in sign:  C ,i j  = +  M ,i j.  The determinant of a 

square matrix becomes a sum of products of elements of any row or column with their cofactors.  

As an alternative definition, a determinant is a sum of product of elements with permutations of 

indices or subscripts

  | A |  = Σ (+ A ,1 j
1

A ,2 j
2

... A ,n j
n
)

in which ji is an index or subscript of numbers in the set {1, 2, ..., n}, and sign + or  −   is selected 

for each term depending whether the permutation is even or odd  -- i.e. whether an even or odd 

number of interchanges is required to yield a particular permutation from the order 1  2  3  4  ... n.

     According to a geometric interpretation of a determinant with real elements, the elements 

across each row of a matrix n x n become coordinates of a point in a space of n dimensions:  for a 

matrix for which  = n 1, which is just a number or scalar quantity, its determinant is interpreted as 

the signed length of a vector from the origin to this point along the single axis; for a matrix 2 x 2 

as 








a b

c d
, the determinant is the signed area of the parallelogram with four vertices that 

comprise the origin (0,0), two points (a,b) and (c,d) separately and their sum combinations in (

, + a c  + b d); for a matrix 3 x 3, the determinant is analogously the signed volume of the 

parallelepiped that includes the origin, each row as defining a vertex, and the sums of the rows in 

three-dimensional space defined by the matrix; the concept is extensible to space of n dimensions.   

     The wronskian of three functions ,u v and w in formulae ,( )u x ( )v x  and ( )w x  of the same 

independent variable x is a determinant of this matrix containing the formulae and their 

derivatives, also called a fundamental matrix, 
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d
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2

( )u x
d

d
2

x
2

( )v x
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d
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( )w x

or analogously for other functions numbering k that imply evaluation of derivatives up to order 

 − k 1.  If the functions , ,u v w be linearly dependent, the columns of the wronskian are likewise 

linearly dependent; as differentiation is a linear operation, the wronskian vanishes.  The wronskian 

can hence serve to show that differentiable functions in a set are linearly independent on an 

interval by determinng that it does not vanish identically.  If these formulae ,( )u x ( )v x  and ( )w x  

be analytic and have two continuous derivatives on an open interval and this determinant evaluate 

to zero for functions and derivatives evaluated at any value of x on that interval, these functions 

are linearly dependent.  If the wronskian be not equal to zero for at least one point x on an interval, 

the functions are linearly independent on that interval.

     A unit matrix, which might be rectangular or other than square, has elements unity along its 

principal diagonal, such as this one with three columns and two rows, or dimensions 3 x 2,









1 0 0

0 1 0



whereas an identity matrix, commonly denoted I by mathematicians but E by chemists, is a square 

identity matrix, such as this unit matrix of dimensions 2 x 2,









1 0

0 1

that might be denoted I[2] to indicate its order.  Because I has a defined meaning as −1  in Maple

, it might prove convenient to use E to denote a unit matrix in various contexts.  One might add, 

subtract or multiply two matrices of conformable dimensions, but division of one matrix by 

another matrix is undefined.  A matrix comprising a single column, such as X being   

  X  =  










X1

X2

  =  








x

y
 

or C being  

 C  =  










C1

C2

  =  








c

f
 

might also constitute a vector, specifically a column vector, of a particular kind, which has 

mathematical properties and physical applications; a row matrix can analogously constitute a row 

vector.  A vector might represent in turn a tensor of rank one (polar vector) or two (axial vector), 

whereas a matrix might represent a tensor of rank two; tensors of greater rank exist, as described 

below.  The rank of a matrix is describable as the order of the largest determinant, of value not 

zero, that might be formed from elements of a given matrix.  As our concern in this chapter, these 

quantities have properties and applications far beyond their apparently innocuous origin within 

compact notation to denote variables and coefficients in linear equations.    

     In its general form, a matrix comprises elements in a rectangular array with m columns and n 

rows, m and n being positive integers, that has well defined mathematical properties; in Maple 

numbering of rows and columns must begin at unity.  If  = m n, a matrix is square and has order n.  

A rectangular matrix m by n is characterized by its rank, which can be no larger than a minimum 

of m and n; rank signifies the maximum number of linearly independent equations that a particular 

matrix can represent.  The dimension of the row space and column space of a matrix A with m 

columns and n rows is equal to the rank of that matrix, and the null space or kernel of A, denoted 

( )null A , is thesubspace of dimension equal to that rank that comprises solutions of the 

homogeneous linear system A x = 0; the nullity, denoted ( )nullity A , of that matrix is the 

dimension of its null space, so that  =  + ( )rank A ( )nullity A n or the order of a square matrix.  An 

element of a matrix can be a real or imaginary or complex number, or an algebraic quantity that 

denotes such a number, or even another matrix; in our exploration in this chapter we employ only 

a number or variable or algebraic expression as such an element.  A matrix is considered to be an 

operator of a particular type in various circumstances, such as when it operates on an eigenvector 

to yield a product of that eigenvector with a scalar eigenvalue, or when it functions as a rotation 

matrix to rotate a point, line or vector.   

     Each element of a zero matrix is zero, but that zero matrix is distinct from scalar zero. For an 

identity or unit matrix, only elements along the principal diagonal of a unit matrix are not zero, but 

unity.  A scalar matrix is a unit matrix multiplied by a scalar quantity.  Addition or multiplication 

of three conformable matrices is associative, but multiplication of two distinct conformable 



matrices A and X is commutative, such that A . X = X . A, only when one matrix is a zero matrix, 

a unit matrix, a scalar matrix or the other matrix raised to a power.  Transposition of matrix A to 

generate transpose matrix A 
T
 involves making each row of elements of A into a column of 

elements of A 
T
.  For matrix A, 

A  =  










A ,1 1 A ,1 2

A ,2 1 A ,2 2

its transpose A 
T
 has a form

A 
T
  = 











A ,1 1 A ,2 1

A ,1 2 A ,2 2

The determinant of the transpose of a square matrix, obtained by interchanging rows and columns, 

is equal to the determinant of the same matrix, 

 | A 
T
 |  =   − A ,1 1 A ,2 2 A ,1 2 A ,2 1

but interchanging two columns, or two rows, of a matrix reverses the sign of the determinant.  If 

two rows, or two columns, of a matrix be identical, or alter only by a common factor, the value of 

the determinant is zero.  The rank of a given matrix is accordingly the largest integer r such that at 

least one determinant of order r, for a submatrix of that order formed from that matrix by deleting 

rows and columns, differs from zero.  

     If matrices A and B have each order n over the field of real or complex numbers, these 

properties of their determinants hold:

• det(A)  =  det(A 
T
) , in which A 

T
 is a transpose of A;

• det(A . B)  =  det(A)  det(B);

• det(A)  =  det(A*) in which A* is complex conjugate of A;

• if B result from A through interchange a pair of rows or columns, det(B)  = − det(A);

• if B result from A through multiplication of elements of a row or column by a scalar quantity k, 

det(B)  =  k det(A);

• if two rows, or two columns, of A be identical or a row, or column, comprise zeros, det(A)  = 0.

     Two matrices A and B are equal only if each element of one matrix is identically equal to the 

corresponding element in the other matrix:   = a ,i j b ,i j for all ,i j.  Multiplication of a matrix A = (aij

) by a constant or scalar quantity c yields another matrix B of the same dimensions of which the 

elements are b ,i j  =  c a ,i j.  A sum, not a direct sum, of two matrices A and B of conformable 

dimensions yields a matrix C of which each element is a sum of elements of the combining 

matrices,

 = c ,i j  + a ,i j b ,i j

for which purpose the number of rows of A and B must be equal and the number of columns of A 

and B must be equal:  such matrices conform for operation addition.  A product, not a direct 

product, of two matrices A and B of conformable dimensions yields a matrix C of which each 

element c ,i j is a sum of products of elements of the combining matrices,  



c ,i j  =  ∑
k

a ,i k b ,k j.  

for which purpose the number of columns of matrix A must equal the number of rows of matrix B:  

such matrices conform for operation multiplication.  If products A B and B A of two matrices A 

and B be equal, A and B commute, but this condition holds in only special cases.  A product of a 

square matrix A and its reciprocal A 
( )−1

 generates an identity matrix: A A 
( )−1

  =  A 
( )−1

 A  =  I or 

E.  

     The trace or spur of a square matrix of order n is a sum of elements along the principal 

diagonal:  

 trace(A)  =  ∑
 = j 1

n

a ,j j

this trace is invariant under cyclic permutation of matrices in a product.  For two matrices A and B 

conforming for the particular operations, their traces possess these properties:

• tr(A + B)  =  tr(A)  +  tr(B);

• tr(A B) = tr(B A) ; tr(A B C D) = tr(B C D A) = tr(C D A B) = tr(D A B C), a cyclic property;

• tr(c A)  =  c tr( A) ;

• tr(A 
T
 )  =  tr( A );

the second property reflects the statement about cyclic permutation above.  The trace of a matrix is 

also the sum of its eigenvalues.

     A square matrix has a reciprocal provided that its determinant is not zero:  a singular matrix 

has a zero determinant.  For a matrix A to be invertible -- so as to generate an inverse, which is 

unique, a criterion is that its determinant be not zero; both the matrix A and its inverse A 
( )−1

 have 

the same order that is equal to the rank.  For A an invertible matrix and n a positive integer, A 
( )−n

  

=  (A 
( )−1

) 
n
  =  (A 

n
) 

( )−1
.   The determinant of a non-singular matrix A is equal to the reciprocal of 

the determinant of its inverse matrix A 
( )−1

 :  | A |  =  1 / | A 
( )−1

|.  A square matrix has at most one 

inverse.

     A direct sum of two matrices, which are not necessarily conformable, represented with a 

symbol with + and O superimposed, yields a matrix with each addend as a block along the 

principal diagonal.  

A  = 










a ,1 1 a ,1 2

a ,2 1 a ,2 2

B  =  



















b ,1 1 b ,1 2 b ,1 3

b ,2 1 b ,2 2 b ,2 3

b ,3 1 b ,3 2 b ,3 3



A  +O  B  =  





























a ,1 1 a ,1 2 0 0 0

a ,2 1 a ,2 2 0 0 0

0 0 b ,1 1 b ,1 2 b ,1 3

0 0 b ,2 1 b ,2 2 b ,2 3

0 0 b ,3 1 b ,3 2 b ,3 3

A direct product or Kronecker product of two matrices, which likewise are not necessarily 

conformable and represented with a symbol with x and O superimposed, yields a matrix of which 

each element is a product of one element from each multiplicand matrix; for a matrix of 

dimensions m x n in a direct product with another matrix of dimensions p x q, the resulting matrix 

hence has dimensions mp x nq; such a direct product is associative but not commutative.  For two 

matrices 








a b

c d
 and 

















e f g

h i j

k l m

, their direct product is





























a e a f a g b e b f b g

a h a i a j b h b i b j

a k a l a m b k b l b m

c e c f c g d e d f d g

c h c i c j d h d i d j

c k c l c m d k d l d m

 .

     With conforming matrices A, B and C and scalar a and b,the laws that govern matrices of 

conformable dimensions and that are, for certain properties, not singular, are 

     (A + B) + C  =  A + (B + C)                 associative addition

     (A . B)  . C  =  A  . (B . C)            associative multiplication

            A  +  0   =  0   +  A   =   A                    0  is the zero matrix       

   a (A  +  B)   =  a A  +  a B     left distributive property of addition

     (a  +  b) A  =  a A  +  b A     right distributive property of addition 

           (a b) A  =  a (b A)           associative multiplication by scalars      

      A . (B + C)  =  A . B + A . C                             distributive 

       (A + B) . C  =  A . C + B . C                             distributive  

         A + B  =  B + A                                commutative addition    

     A  -  B   =  A  +  (−1) B                                      subtraction

                  A . B  <>  B . A                  non-commutative multiplication            

                             A . 1  =  1 . A  =  A    commutative multiplication with identity matrix 1        

    a (A . B)  =  (a A) . B  =  A . (a B)   distributive multiplication by scalars      

      A 
r
 . A 

s
   =  A 

( ) + r s
             for r, s non-negative integers 

         (A 
r
) 

s
  =  A 

( )r s
                for r, s non-negative integers

             A 
0
  =  1                                   with identity matrix 1  

                               A 
n
  =  A . A . A .... A          exponentiation of a matrix for an integer power 

                                                                             implies repeated multiplication

     (A + B) 
T
 =  A 

T
 + B 

T
                           sum of transposes



      (A 
T
) 

T
  =  A                                    transpose of transpose 

       (A . B) 
T
   =  B 

T
 . A 

T
                  distribution of transpose  

             (A 
( )−1

) 
( )−1

  =  A                                 inverse of inverse        

        (A . B ) 
( )−1

  =  B 
( )−1

 .  A 
( )−1

     distribution of inverse  

        (A 
( )−1

) 
T
   =  ( A 

T
) 

( )−1
                inverse and transpose 

Unlike scalar quantities, the product of two conforming non-zero matrices might yield a zero 

matrix.  For determinants of transpose and inverse matrices,

 | A 
T
 |  =  | A | ,

 | A 
( )−1

 |  =  
1

A
 .

A real matrix is orthogonal if its inverse equals its transpose,

A 
( )−1

  =  A 
T
   

and its determinant is +1.  For such a real symmetric square matrix A of order n there exists a real 

orthogonal matrix B such that B 
( )−1

 A B  or  B 
T
 A B  =  a diagonal matrix.

     For a particular square matrix A or B, conforming and in general complex but not singular, we 

define associated matrices, namely a complex conjugate matrix denoted A*, a  transpose matrix A

 
T
 and an hermitian conjugate or adjoint matrix A 

*
 
T
 and analogously for B, that imply the 

following properties:  

(A  +  B) *  =  A*  +  B*     complex conjugate of a sum;

              (z A)*  = z A*      complex conjugate of a scalar multiple;

        (A . B)*  =  B*. A*        complex conjugate of a product;

                 (A*)*   =  A     composition of complex conjugate operation;

if  A = A* ,  A is real; 

if  A =  −   A*,    A is imaginary;

if  A . A*  =  A* . A,   A is normal; 

if  A = A 
T
,  A is symmetric; 

if A and B be each symmetric,  the product is symmetric if A . B = B . A;

     if  A = −  A 
T
,  A is antisymmetric or skew (also called skew symmetric); 

if square matrix A = A 
*
 
T
  ,  A is hermitian conjugate or adjoint; 

if square matrix A = −  A 
*
 
T
 , A is antihermitian; 

if  A 
2
 = A,  A is idempotent;

if  A = A 
( )−1

,  A is self-reciprocal; 

if  A 
( )−1

 =  A 
T
,  matrix A and its transpose A 

T
  are orthogonal, 

                                                                      and their product  A  A 
T
  is a unit matrix, I or E; 

if   A 
( )−1

 =   A 
*
 
T
 ,   A is unitary ;

for a permutation matrix A,   A 
( )−1

  =  A 
T
.   

A complex conjugate matrix B of A* is formed from matrix A by taking the complex conjugate of 



each element in the latter matrix.  The transpose of B or A* becomes the complex conjugate 

transposed matrix, or adjoint matrix, of A.  The product A 
T
. A or A . A 

T
 of a general matrix A 

and its transpose A 
T
 is a symmetric matrix.  The determinant of a unitary matrix has value + 1.  

Hermitian and unitary matrices play the same roles for matrices with complex elements as 

symmetric and orthogonal matrices play for matrices with real elements.  An inverse matrix arises 

notably in the solution of simultaneous linear equations in sets and in deriving a concept of a 

group that is the basis of symmetry theory; because an inverse matrix of a matrix with real 

numbers as elements is greatly susceptible to rounding error, and because its determinant is 

involved in the production of an inverse matrix, efficient calculations avoid direct use of an 

inverse matrix when practicable.  The determinant of an orthogonal matrix A is equal to the 

determinant of its transpose A 
T
 ; the determinant of the product A A 

T
 is equal to the square of the 

determinant of matrix A; because that product is equal to a unit matrix, each determinant must 

evaluate to +1.  Such an orthogonal matrix plays an important role in transformations of 

coordinates that serve to characterize the symmetry properties of molecules. 

     For the derivative or differential quotient of a matrix, each element is differentiated 

individually to form a matrix of the derivatives of the elements provided that these elements are 

differentiable:  
∂

∂

t
 A(t)  =  ( 

∂

∂

t
a ,j k ) .  The elements are likewise integrated individually:  

d
⌠
⌡


a

b

( )A t t  = ( d
⌠

⌡


z

b

a ,j k t ). 

     A quantity e
A
 containing square matrix A is called an exponential matrix or matrix exponential, 

defined as  = e
A ∑

 = j 0

∞
A

j

!j
 ; this quantity with scalar k is expanded as 

 = e
( )k A ∑

 = j 0

∞
k

j
A

j

!j
  = I  + 

k A

!1
  +  

k
2

A
2

!2
  +  ... ;  

in which A
j
 implies multiplication of a matrix by itself j times, and for  = j 0 yields a unit matrix I; 

this exponential matrix is hence a matrix of the same order as A.  As both infinite series converge 

for every A and k, the matrix exponential is defined for all square matrices.  For a square matrix of 

order n, an alternative expansion that is computationally simpler is

 e
( )k A

 =  f0 I  + f1 k A  +  ...  + f  − n 2 k
( ) − n 2

 A 
( ) − n 2

  +  f  − n 1 k
( ) − n 1

 A 
( ) − n 1

in which fj are functions of k that are determined for each A.  The matrix exponential has these 

properties:  

• if matrices A and B commute such that A . B = B . A,  = e
( ) + A B

e
A

e
B
;

• for any A, the matrix e
A
 is invertible, and has an inverse  = ( )e

A
( )−1

e
( )−A

;

• for M any invertible matrix conforming with A,  = e
( )M

( )−1
A M

M
( )−1

e
A

M, and



• for eigenvectors v for which A v  =  λ v, e
A
 v  =  e

λ
 v , thus connecting the eigenvalues λ and 

eigenvectors v of A with those of e
A
.

An exponential matrix has application in the solution of ordinary differential equations in systems.

     Two square matrices A and B are classified as similar if some invertible matrix C over the field 

of real or complex numbers transforms one into another, such as in 

B  =  C 
( )−1

. A . C, 

or equivalently 

 A  =  C . B . C 
( )−1

; 

operation with C thus generates a similarity transformation of A to B, or the reverse; matrices A 

and B are then congruent.  Similar matrices have the same eigenvalues.  Two matrices A and B are 

similar if there exist an invertible transformation of the above type between them; A and B then 

represent the same linear transformation with respect to bases related by C.  A square matrix A is 

diagonalizable if there exist a matrix C such that 

D  =  C 
( )−1

 . A . C, 

with D a diagonal matrix.  A square matrix A is orthogonally diagonalizable if there exist a matrix 

C such that 

D  =  C 
T
 . A . C, 

with D a diagonal matrix, because C 
T
 =  C 

( )−1
 for an orthogonal matrix C.  The inverse of a 

diagonal matrix is also diagonal; each element is the reciprocal of the corresponding element in 

the original matrix.  If matrix A be symmetric, the result of  C 
T
 . A . C is also symmetric for any 

conforming C.    

     If C be a column matrix 























x1

x2

...

xn

 of variables and square matrix A be symmetric, C 
T
 . A . C 

constitutes a quadratic form that plays an important role in problems of optimization and in 

representing a tensor.     

     As illustrated above, a permutation matrix P has precisely one element unity in each row and in 

each column, all other entries being zero.   Matrix A of order n is decomposable, also called 

reducible, if there exist permutation matrix P such that 

P . A . P 
( )−1

  =  










A ,1 1 A ,1 2

O , − n k k A ,2 2

in which A ,1 1 is a square matrix of order k, A ,2 2 is a square matrix of order  − n k, and O , − n k k is a 

zero or null matrix (  − n k) x k, with  ≤ 1 k < n.  If no such P exist, A is indecomposable.  The 

methods of Gauss, Doolittle, Crout and Cholesky are particular algorithms to compute the 

decomposition of a matrix A to various products L . D . U of unique matrices such that L has 

elements zero above the principal diagonal, D is a diagonal matrix with non-zero elements only on 

its principal diagonal, U has elements zero below the principal diagonal, and matrices L and U 

might also have unity along their diagonals; then A  =  L . D . U.  If A be non-singular, a 



permutation of rows and columns brings A to a form that satisfies these conditions. 

     A rectangular matrix A might have a pseudo-inverse matrix A 
+
; if A be a square matrix and 

invertible, A 
+
  =  A 

( )−1
.  If a product A 

T
 . A  be invertible,

  A 
+
   =  ( A 

T
 . A ) 

( )−1
 A 

T
, 

and similarly if  A . A 
T
 be invertible,

 A 
+
   =  A 

T
 . (  A . A 

T
 ) 

( )−1
 .  

An application of pseudo-inverse matrices arises in solution of linear equations because a vector v 

= A 
+
 b is that solution of equations in a system A 

T
 . A  v  = A 

T
 b that has a minimal norm.  

These properties are associated with a pseudo-inverse matrix:

• for A having dimensions p x q, A 
+
 has dimensions q x p;

• the rank of A 
+
 equals the rank of A;

• ( A 
+
 ) 

+
  = A ;

• A  . A 
+
 . A  =  A ;

• A 
+
. A . A 

+
 =  A 

+
;

• (A  . A 
+
) 

T
  =  A  . A 

+
  and  (A 

+
 . A) 

T
  =   A 

+
 . A,  as A . A 

+
  and  A 

+
. A are symmetric. 

The most efficient method to form a pseudo-inverse matrix involves a singular-value 

decomposition. 

     For a matrix A containing symbolic elements in terms of variable t as parameter, which we 

express as A(t), we define a limit matrix as the matrix that results from the transition  → t t0 for 

each element such that  = lim
 → t t

0

( )A t lim
 → t t

0

( )a ,j k t .

For the derivative or differential quotient of a matrix the elements are differentiated individually, 

d

d

t
( )A t  = (

∂

∂

t
a ,j k), and for an integral the elements are integrated individually, d

⌠
⌡


a

b

( )A t t =  (

d
⌠

⌡


a

b

a ,j k t).

     A matrix of matrices is called a hypermatrix of which an element of an inner matrix is labeled 

a ,j k
,m n

. 

     Maple provides several operations on quantities of type Matrix in package LinearAlgebra, or of 

type matrix in package linalg; the latter package is obsolescent, becoming superseded by package 

LinearAlgebra and is retained only for applications that have been based on it:  it should not 

be generally used for new calculations.  For convenience we assign a name to represent a matrix 

that in text appears in bold font, such as A, except when limitations of Maple's notation preclude 

such usage in compound symbols within a worksheet.  All properties in the preceding summary 

are readily tested and verified on application of Maple commands explained in this chapter.  



vector  

     As the world that we inhabit has three spatial dimensions, fundamental physical laws and their 

applications in chemistry are expressed as mathematical relations that involve these three 

dimensions, or at most four dimensions when one ncludes time to produce a four-vector in a 

relativistic treatment; vector analysis is a branch of mathematics devised to express and to 

implement these relations, but is not limited to three or four dimensions.  We generally denote a 

vector in text with symbol v, i.e. an underscored minuscule italic letter; alternative traditional 

designations have an arrow placed above that symbol, or, in perhaps increasingly obsolescent 

usage, an arrow beneath that symbol, or more commonly a tilde "~" beneath that symbol; the latter 

is not realisable in a Maple worksheet.  In a cartesian space of three dimensions, vector v is 

definable abstractly as three numbers ( , ,vx vy vz), called components, in an ordered set, such that 

multiplication with a number or scalar quantity α yields a product 

α v  =  ( , ,α vx α vy α vz), 

and such that addition of two vectors u and v yields 

u  +  v  =  ( , , + ux vx  + uy vy  + uz vz)

     According to an algebraic mathematical point of view, a vector is merely a column matrix or a 

row matrix, whereas, according to a geometric point of view, a vector with real components is a 

difference between two points in an euclidean space as a displacement from one point to another; 

such a vector preserves no information about either the source or destination point but might have 

only a length, direction and a directional sense.  A vector might thus be represented as a directed 

segment of a line in space; if the origin be chosen as one point, the other point defining a directed 

segment of a line has coordinates ( , ,vx vy vz) in a cartesian system.  The magnitude |v| of vector v is 

defined as its length, calculated as

 |v|  =  ( v . v) 
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The scalar or dot or inner product u . v of two vectors u and v is a scalar quantity or number 

defined with

u . v  =  v . u =  |u| |v| ( )cos θ

in which θ denotes the angle between the two vectors; if  |u|  ≠  0 and |v|  ≠  0 and ( )cos θ  = 0 such 

that  = θ
π

2
 rad, u . v = 0:  the two vectors are mutually orthogonal or perpendicular.  This scalar 

product is expressed in terms of the components of the vectors as 

u . v =  +  + ux vx uy vy uz vz

If any component of these two vectors be complex, the scalar product must be calculated through 

the latter formula rather than that above containing ( )cos θ  because that angular quantity has no 

ordinary geometric meaning when one or more components of u and v are not real.  The 

component of  v in the direction u is the projection of v on u, such that 

 component of v on u  =  vu =  v . u / |u| 

 component of u on v  =  uv =  v . u / |v|

or  v . u  =  vu |u|  =  uv |v| .

For a vector v(t) that is a function of scalar variable t, its derivative is expressed in terms of its 



components as d v(t)/dt = ( , ,
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vz) and the corresponding differential is d v(t) = (dvx, dvy, 

dvz).  For a scalar function ( )α t  of t, d(α v) = α dv + v dα.  For u(t) and v(t) both functions of 

scalar variable t, d(u . v)  = u dv + v du.  

     A physical or chemical point of view of such a vectorial quantity is more complicated.  Many a 

quantity, such as temperature, volume, mass, concentration and frequency, of concern to a chemist 

we describe as having type scalar, which signifies that it has magnitude and generally also units 

appropriate for that quantity; for a particular measurement, its specification is independent of any 

system of coordinates and requires just one number, with its units. For each point in a region of 

space, a scalar function or field has a value expressed as a scalar quantity.  A quantity of another 

type, such as an electric dipolar moment of a molecule or of a macroscopic sample of substance, 

or the velocity of a molecule with respect to a system of coordinates, has associated with it both a 

magnitude and a direction with respect to some either internal or external axes of a system of 

coordinates; such a physical object has type vector, which according to a geometric definition 

involving a directed segment of a line generally implies magnitude, direction and sense, in 

addition to appropriate units, but not necessarily position.  A vector is classifiable according to 

three types:  a position vector or bound vector has a fixed point, typically the origin, as its base; a 

line vector can slide along its line of action without rotation, such as a mechanical force acting on 

a moving body; a free vector or general vector is unrestricted as to its location but defined 

completely according to its magnitude, direction and sense, representable graphically as any 

parallel line of equal length in a given set:  this property of a free vector with an unrestricted 

location makes it translationally invariant.  With an affine space that has no preferred origin are 

particularly associated free or general vectors.  Two directed line segments are equal if they have 

the same length, direction and sense.   A vector in two spatial dimensions has properties similar to 

those of a complex number; such a complex number implies two independent pieces of 

information -- its real and complex parts, whereas a vector in n dimensions implies as much 

information as n components.  A vector function or vector field is a vectorial quantity associated 

with each point in a region of space.  

     A linear vector space comprises vectors, or functions, in a set and standard operations addition 

and scalar multiplication.  For a conventional euclidean space of two dimensions, the vector space 

is just plane x y that has two standard vectors traditionally denoted i and  j; vector i lies along axis 

x and j along axis y.  Any point in plane xy is describable as a linear combination or superposition 

of those two standard vectors with appropriate coefficients:  those vectors span that space.  Only 

two vectors are required to span that space in two dimensions -- further vectors are redundant for 

that purpose, because these two vectors are linearly independent and thus inexpressible one as a 

multiple of the other.  Two vectors u and v in a two-dimensional space are linearly independent if 

the only solution of linear equation c1 u + c2 v = 0 be  = c1 c2 = 0, which implies geometrically that 

these vectors do not lie along the same direction but define a plane; these vectors u and v are 

otherwise linearly dependent.  A description of a plane has having two dimensions implies that 

only two linearly independent vectors are required to express any other vector in that plane.  Any 

two non-collinear vectors can likewise span the vector space in plane xy; such sets thus number 

uncountably, but any is reducible to a linear combination of unit vectors i and  j.  An euclidean 



space of n dimensions requires, in general, n vectors as the minimum number, which must be 

linearly independent, to span that space.  Linearly independent vectors in a set that span a space 

become a basis for that particular space, and their number defines the dimension of that space.  

Any vector in that space is expressible as a unique superposition of those basis vectors.     

      According to a conventional link between geometry and algebra, a point in a plane that 

requires for its location the specifications of abscissal and ordinate values of its cartesian 

coordinates, relative to coordinate axes in a fixed set, as an ordered list becomes a vector with the 

same ordered values as its components, and analogously for a point in a space of three or more 

dimensions.  In this way, a vector escapes from the limits imposed by three spatial dimensions of 

common experience.  A point becomes thereby represented as a set of numbers, and another 

geometric object as an equation.  

     A vector is further classified as being  polar or axial, depending on its behaviour under 

inversion of coordinates through the origin of coordinates in a cartesian system; for this operation 

of symmetry according to such a system, all coordinates become negated:  for a point with 

cartesian coordinates ( , ,x y z), inversion effects 

, , → x −x  → y −y  → z −z

On reflexion of a point in a plane containing the origin, coordinates along either axis within that 

plane are unaffected, but coordinates along an axis perpendicular to that plane have that sign 

altered:  for instance, for reflexion in plane xy, 

, , → x x  → y y  → z −z 

An axial or pseudovector arises as a vectorial product of two polar or true vectors.  On inversion 

through the origin of a system of cartesian coordinates, a polar vector p with its base at that origin 

is transformed into its inverse vector such that signs of its components become reversed -- i.e. its 

sense is reversed, whereas an axial vector a that results from a vectorial product of two such polar 

vectors is unaffected by such an operation: 

on inversion,   → p −p,  → a a

On reflexion in a plane through the origin of a system of cartesian coordinates, a polar vector p 

within that plane is not so inverted, but a polar vector perpendicular to that plane has its sense 

reversed.  An axial vector formed as a vectorial product of two polar vectors within a plane of 

reflexion has its sense reversed, but an axial vector formed as a vectorial product of a vector 

within that plane and another vector perpendicular to that plane is thus unaffected by such an 

operation:  treating that axial vector as a result of an appropriate vectorial product, we hence 

conclude that

on reflexion within a parallel plane,  , → p p  → a −a ; 

on reflexion perpendicular to a plane, , → p −p  → a a .

For a polar or axial vector parallel to but outside a plane of reflexion, this operation causes a 

translation across this plane, but does not alter the effect on the sense as specified above.  These 

properties showing the effect of an operation of symmetry clearly distinguish axial and polar 

vectors.  An axial vector hence transforms like a polar vector under a proper rotation, but has its 

sense reversed under an improper rotation that arises as a result of first inversion and then a proper 

rotation; an improper rotation thus occurs upon inversion of coordinates. 

     The direction cosines [ ], ,l m n  of a vector are the cosines of the angles between that vector and 



cartesian axes Ox, Oy and Oz respectively.  For a vector v = vx i + vy j + vz k , in which i, j and k 

are unit vectors along positive ,x y and z axes or Ox, Oy and Oz respectively,  = l
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 is the length of vector v.  Angle θ in range [0, π] between 

two non-zero vectors  u =  ux i + uy j + uz k  and v = vx i + vy j + vz k that are co-terminal -- having 

tails at a common point -- is defined through its cosine from the scalar product u . v = |u| |v| ( )cos θ  

as 

 = ( )cos θ  +  + l1 l2 m1 m2 n1 n2  =  
 +  + ux vx uy vy uz vz

u v

in which , ,l1 m1 n1 are the direction cosines of u with its length |u| and , ,l2 m2 n2 are the direction 

cosines of v with its length |v|.

     An equation for a plane through a point ( , ,x1 y1 z1) perpendicular to a vector v = vx i + vy j + vz k 

is

 =  +  + vx ( ) − x x1 vy ( ) − y y1 vz ( ) − z z1 0.

      If all vectors of a space except the null vector be normalized, such that their magnitude or 

length is unity but they retain their direction and sense, any one of these vectors can be 

transformed into any other by means of a rotation, possibly complex for complex vectors.  A 

matrix describing such a rotation is unitary.  

     Both linear momentum of a molecule and electric field are instances of polar vectors, whereas 

angular momentum and magnetic field are two instances of axial vectors. Angular momentum 

measures the extent to which a linear momentum is directed about a particular point, called the 

origin, and is thus a moment of momentum; as angular momentum depends upon a chosen origin, 

when working with angular momentum one must take care to specify the origin and not to 

combine angular momenta about separate origins.  Like electric field, magnetic field is a vector 

field:  with each point in space of three dimensions is associated a position vector that might vary 

temporally; a magnetic field is a physical entity produced by moving electric charges, hence 

constituting an electric current, that exert force on other moving charges.  The direction of this 

field is the equilibrium direction of the needle of a compass placed in that field.  The intrinsic 

angular momentum of an elementary particle such as an electron or proton produces a magnetic 

field and acts on that field as if it were an electric current; this interpretation is a basis of 

explanation of a ferromagnet or other solid material acting as a permanent magnet.  

     A vector in one spatial dimension differs from a scalar because its sense is retained.  A vector 

representing a chemical or physical quantity involves commonly three spatial dimensions:  its 

components in these directions correspond to elements of an array with one array dimension, or a 

matrix with only a single row or column.  In a context of a space having three dimensions, a vector 

comprises three entities in an ordered set that, under rotation of coordinates, transform as 

coordinates of a fixed point, i.e. as ( , ,x y z).  One must bear in mind a distinction between spatial 

dimension, here numbering three, and array dimension, here one; the latter resembles a 

significance of dimension in Basic or Fortran programming language.  In a general mathematical 

sense a vector comprises an ordered column or ordered row of n symbols of arbitrary dimensions 



that also number n.  A vector in Maple that implies n components is generated according to a basis 

with n basis vectors; a collection of all such vectors forms a vectorial space of dimension n:  such 

a space is defined in terms of mathematical requisites, details of which are of no concern here.  A 

vector in three spatial dimensions might be represented graphically as an arrow, of which the 

length is proportional to the magnitude of the vector, its orientation indicates the direction and the 

arrowhead the sense, or in a particular coordinate system by a triplet of real numbers; the vector is 

not that triplet of numbers, but has a representation as three numbers that varies in a systematic 

way as the coordinate system alters.  A polar vector in space of three dimensions has its origin in a 

quaternion -- cf chapter 12, but lacking a real component, and might be represented as a matrix 

comprising a single row or column; an axial vector might be represented as a tensor of second 

rank that has a form of an antisymmetric or skew-symmetric square matrix of order three.  The 

transpose of a column vector is a row vector, and vice versa.  A quaternion resembles a vector in a 

real vector space with four dimensions; one might also consider a quaternion to be a 

hypercomplex number, in terms of three separate imaginary components and one real component, 

or as a couple comprising a vector in three dimensions and a scalar.  Although there be similarities 

of a quaternion, which has common applications in computer animation, and a polar vector in 

three spatial dimensions, there are also important distinctions.  

     A polar or proper vector has all three attributes -- magnitude, direction and sense; an axial 

vector, also known as pseudovector, lacks sense, in a way that a polar vector possesses that 

attribute, and requires instead a direction of rotation to express its sense attribute.  A polar vector 

can represent a translation or a mechanical force; a position of an atomic nucleus in space relative 

to a system of axes, a translation, a mechanical force, an electric field and electric dipolar moment 

are all instances of a polar vector that arises in a chemical context.  The density of magnetic flux 

associated with a magnetic field and angular momentum are examples of an axial vector in that 

their context implies a sense -- clockwise or counterclockwise -- of rotation, or a screw sense, such 

as a current flowing in a loop, or a mass rotating in a closed circular path; a sense of this character 

differs from that indicated with an arrowhead that might serve to indicate the sense of a polar 

vector depicted as an arrow.  A sense of an axial vector is thus associated with physical attributes 

of a system, and provides an additional defining feature to a vector that represents a dynamic 

property.  Geometrically, a polar vector is represented with a displacement or a directed segment 

of a line that defines its magnitude; with an axial vector one associates an area, analogous to a 

length to depict a polar vector.  An axial vector in three dimensions is an antisymmetric tensor of 

rank two, for which reason its components might be denoted with two indices rather than one for a 

polar vector; an axial vector or pseudovector is meaningful only in a space of three dimensions, 

whereas a polar vector can be meaningful in a space with dimensions of arbitrary number.  

Whereas in three spatial dimensions a scalar function might depend on three spatial coordinates 

but have a single value at a given point ( , ,x y z), a vectorial function has both a value and a 

direction at such a point and thus requires three components to describe that function.  An axial 

vector arises from a vector product of two polar vectors in a space of three dimensions; an 

example is angular momentum of a mass moving on a circular path, which results from a product 

of polar vectors linear momentum and radius of curvature, for which reversing the direction of 

rotation reverses the sign of the angular momentum.  Whereas the strength of an electric field is a 

polar vectorial quantity that can result from static electric charges with a particular spatial 



distribution, as well as from moving electric charges or from an electromagnetic field, the density 

of magnetic flux is an axial vector that results from a vector product of one vector -- current 

density -- and another vector that specifies a spatial relation between a point of measurement and 

an element of current density.  

     A vector treated in Maple is implicitly a polar vector, and is a mathematical quantity rather than 

a physical quantity when any such distinction might arise; a vectorial product of two vectors in 

three spatial dimensions in Maple properly yields an axial vector, with a sense determined 

according to a right-hand rule.  Maple fails to distinguish, one should bear in mind, between an 

axial and a polar vector; the best way to generate an axial or pseudovector in Maple is as a 

vectorial or cross product between two polar or true vectors.  

     With scalar a and b and zero vector 0, vectors u, v and w in three spatial dimensions have these 

properties:

 u  +  v  =  v  +  u                   commutative addition

( u  +  v )   +  w  =   u  +  (v   +  w )         distributive addition               

 u  +  0  =  0  +  u  =  u               action of zero or null vector  

 u  +  (- u )  =  0               vector and negative vector

a (b u )  =  (a b) u              associative scalar multiplication

a ( u  +  v)  =  a u  +  a v   distributive scalar multiplication

 (a  +  b)  u   =  a u  +  b u   distributive scalar multiplication 

Vectors conforming to these rules form a linear vector space.  A commutative addition of two 

vectors yields another vector.  A difference of one vector with itself, which corresponds to a sum 

of one vector with another vector of the same length and direction but reverse sense, yields a zero 

vector.  Vectors in a set in a two-dimensional space added to yield a zero sum form a closed 

polygon.   

     A vector originated as a physical quantity; the concept of a vector became a mathematical 

abstraction, but it has numerous realizations in physical science.  In the most familiar applications 

of vectors, various physical quantities are represented with polar vectors in an euclidean space of 

three dimensions:  an euclidean space has an underlying euclidean geometry.  In other applications 

dimensions might number more than three.  For instance, according to a conventional treatment of 

vibrational motions of atomic nuclei within a polyatomic molecule, methane has nine 

characteristic molecular vibrational modes; each of these one can visualize in three dimensions of 

euclidean space:  thus a trajectory of a given nucleus is defined formally in terms of a space 

having nine dimensions, because an arbitrary motion of a nucleus is expressible as a linear 

combination of nine vibrational modes with symbolic coefficients.  For comparison with a scalar 

field that is a region of space in which with each point a scalar function, such as temperature, is 

associated, for a vectorial quantity, such as an electric field of which the strength is specified at 

each point, those points and associated vectors constitute a vector field:  a vector field is thus a 

function according to which a vector is assigned to each point in its domain; that domain might be 

a plane, a curve in space or a region in two or more dimensions.  A scalar field has no vectorial 

properties but is not necessarily a tensor of zero rank; a vector field might be invariant to rotations, 

but remains distinct from a scalar field.  A scalar product of a vector and a vector field is 

undefined.

     Vector analysis conventionally signifies the geometry and calculus of such vectors in a space of 



any dimension.  For one, two or three dimensions, we represent geometrically a polar vector as a 

directed segment of a line, with sense determined according to movement from an initial point to 

an end point of that segment; the magnitude or conventional norm or absolute value of a vector is 

the length of that segment.  For a null vector, the origin and end point are the same:  this vector 

has thus zero length or magnitude and no definite direction.  A vector in one spatial dimension 

remains distinct from a scalar because its sense is retained:  if a vector lie along the terrestrial 

equator, its direction is well defined; the sense of that vector specifies whether it points east or 

west from its base or origin.  The initial point of a position vector -- the tail of an arrow that might 

represent a vector -- coincides generally with the origin of a system of orthogonal coordinates; an 

alternative choice might be appropriate for a local or position vector, such as a force, that acts at a 

particular point.

> plots[arrow]([2,3], title="vector in two dimensions", 

axes=frame,  

   scaling=constrained, titlefont=[TIMES,BOLD,12], colour=red 

);



     For a vectorial space, multiplication of a vector by a scalar quantity, or addition of two vectors, 

generates another vector with components no more numerous than the original vector, or vectors, 

thus another vector in the same vectorial space.  Addition of vectors is commutative and 

associative.  A vectorial space of order n, represented as R 
n
, implies a vector in that space to have 

no more than n components; such a vectorial space comprises elements in a set, each element of 

which is a vector, and for a common physical space n =  2 for a plane in space or  = n 3 

corresponding to conventional dimensions of physical space.  Addition of two elements of  R 
n
 

generates another element of that space; likewise multiplication of an element by a scalar quantity 

generates another element of that space.  That space R 
n
 is closed under addition of vectors and 

scalar multiplication.  If a vectorial space R 
n
 contain vectors v1, v2, v3, ..., vn, a further vector v is 

expressible as a linear combination of those vectors if there exist scalar quantities -- numbers -- c1, 



c2, c3, ..., cn such that 

v  =  c1 v1  +  c2 v2  +  c3 v3  + ... +  cn vn .

Vectors v1, v2, v3, ... vn span a vectorial space R 
n
 if every vector in that space be expressible as a 

linear combination of these vectors; if vectors v1, v2, ..., vm be vectors in a vectorial space R 
n
 that 

span a subspace U, those vectors generate that subspace.   Vectors in a set { v1, v2, v3, ..., vn} are 

linearly dependent if there exist scalar quantities c1, c2, c3, ..., cn, not all zero, such that a sum  

 c1 v1  +  c2 v2  + c3 v3  + ... + cn vn  =  0, 

yields zero, whereas those vectors in a set { v1, v2, v3, ..., vn } are linearly independent if that 

above sum is satisfied only when , , = c1 0  = c2 0  = c3 0, ...  = cn 0.  This condition of linear 

independence is important because it is a necessary and sufficient condition for a solution of an 

equation 

v  =  c1 v1  +  c2 v2  + c3 v3  + ... + cn vn 

to be unique for all v that depend on v1, v2, v3, ..., vn; hence v1, v2, v3, ..., vn are linearly 

independent if and only if every vector v be expressible in one and only one way as a linear 

combination of v1, v2, v3, ..., vn, or not at all.  With {v1, v2, v3, ..., vn} as base vectors {e1, e2, e3

,.., en} or a basis, this formula provides an algebraic definition of a vector.

     A matrix operates on a vector to transform it into another vector.  A rotational matrix alters not 

the magnitude of a vector, only its orientation.  According to a composition law, for all 

conforming matrices A and B and column vector v, A .  (B . v) = (A . B) . v .  Quantity L is a linear 

operator if it conform to this property involving scalars a1 and a2 and  vectors  v 1 and v 2:

L ( a1 v 1  +  a2 v 2 )  =   a1 L v 1 +  a2 L v 2 

A matrix can represent an operator and obey this linear property; a matrix can thus represent a 

linear operator.    

     A linear transformation with a non-singular matrix A is a mapping τ R 
n
 --> R 

n
, with operator 

τ, that preserves the linearity of a vectorial space in that 

• a line is mapped into a line,

• a segment of a line is mapped into a segment of a line,

• parallel lines are mapped into parallel lines, and

• lines through the origin are mapped into lines through the origin.

A rotation, dilation, contraction or reflexion is a non-singular transformation because a 

corresponding matrix has an inverse.  An inverse of a dilation is obviously a contraction.  These 

operations are important in regard to molecular symmetry and vibrational modes.  

     As an orthogonal matrix A, for which  A 
( )−1

 = A 
T
, is non-singular, an orthogonal 

transformation with such a matrix preserves linearity, but also preserves the 2-norm or length, 

angle and distance of a vector.

     For a translation, a transformation slides a vector or point in a direction and through a distance 

defined with a vector t; such a translation preserves a line, angle and distance.  An affine 

transformation involves a linear transformation of a type such as one of the four named above, 



followed by a translation, or  τ R 
n
 --> R 

n
 followed with T (u1)  =  A u1 + t .  Neither a translation 

nor an affine transformation is a linear transformation.

     For a linear transformation τ that maps a vector u1 into another vector u2, or τ : u1 -> u2, the 

null space of τ is a subspace of u1 and the range of τ is a subspace of u2; the range of a 

transformation τ is the set of vectors in u2 that are the images of vectors in u1.  Two square 

matrices A and B produce the same linear transformation if and only if they be similar. 

     These transformations are important in relation to processes affecting a solid body, such as a 

crystal.  When such a body is subjected to application of a load or stress, deformation occurs, to an 

extent depending on elasticity and plasticity of that body.  A linear shear is a transformation in 

which all points in one line or in one plane remain fixed but all other points or lines translate 

parallel to the fixed line or plane through a distance proportional to their distance from that fixed 

line or plane; for instance, a linear shear applied to a rectangle parallel to one edge yields a 

parallelogram.  Scaling occurs when a diagonal matrix has unequal elements along the principal 

diagonal, which distorts a body upon its application thereto.  

     Multiplication of scalar quantities is an unambiguous operation well defined, whereas for 

vectors the situation is complicated -- there exist scalar, vectorial and direct products.  For two 

vectors u1 and u2, neither of which is zero, u2 is expressible in terms of its vector components 

along u1 or perpendicular to u1 just as it be expressible in terms of components along the unit or 

base vectors.  A matrix

 P  =  ( u1 . u1 
T
 ) / ( u1 

T
 . u1 ) 

that contains a dyadic in the numerator and a scalar in the denominator serves to project any vector 

onto vector u1 in the same vectorial space, of which further description appears below.  The 

projection of a vector onto a subspace involves a pseudo-inverse matrix that has as columns 

linearly independent vectors that generate that subspace.  A linear transformation and concepts of 

null space and range are important in an analysis of a system of linear equations.

     A binary multiplicative combination of two polar vectors R and S to form a scalar quantity is 

termed a scalar product, dot product or inner product that is a scalar quantity, according to a 

formula

  R . S  =  | R | | S | cos(θ)  =  S  . R 

in which | R | and | S | denote magnitudes of combining vectors and θ is the angle between them; 

this scalar product is commutative. The value of this scalar product is hence a measure of the 

coalignment of two vectors, and is independent of the system of coordinates.  The square root of a 

scalar product of a vector with itself R . R, for which  = θ 0 and  = ( )cos θ 1, yields the length of that 

vector, or the vector norm.  That an outcome of such a scalar product of these three scalar 

quantities -- |R |,  | S | and ( )cos θ   -- vindicates one name for combination of vectors in this 

manner; this scalar product thus yields a true scalar, the simplest invariant that one might form 

from two vectors.  If  = θ
π

2
 rad,  = ( )cos θ 0 and R and S are described as orthogonal -- their scalar 

product is zero, R . S  =  0; in three dimensions, an equivalent description is that these two vectors 

are oriented at right angles to one another, or perpendicular, whereas for dimensions of greater 

number a general term orthogonal is preferable.  A scalar or inner product of two vectors ( )f x  and 



( )g x  in a vector space that contains functions continuous over a finite closed interval [ ,a b], with 

respect to weight function ( )w x , is defined as integral d
⌠
⌡


a

b

( )f x ( )g x ( )w x x.  If that integral 

evaluate to zero, the vectors are orthogonal to each other.  The norm or length of vector ( )f x  

becomes  = ( )norm ( )f x d
⌠

⌡


a

b

( )f x
2

( )w x x .  Dividing a vector by its norm yields a normalized 

vector; vectors in a set that are both normalized and orthogonal comprise an orthonormal set, and 

a scalar or inner product of any two such vectors is either zero, if the vectors differ, or unity, if the 

vectors be alike, so being describable with Kronecker's delta function δ ,f g.  This scalar product of 

two vectors obeys also the distributive law,

 R . ( S  + T )  =   R . S   +  R . T 

The relation R . S   =  R . T  implies not that  S  = T but that R . ( S  − T )  =  0, so that R is 

perpendicular to the difference vector S  − T .  In manual calculations of a scalar product, the left 

side of the formula reduces to a weighted sum of scalar products involving all basis vectors i, j and 

k two at a time:  as angle θ between two unit (polar) vectors is either zero, if they be the same, or 

π

2
 rad, if they be distinct, we have i . i  = j . j  =  k . k  = 1 for  = θ 0, and i . j  =  j . k  =  k . i  =  0  

for  = θ
π

2
 ; this scalar product of two unit vectors is thus equal to the direction cosine relating the 

two directions.  The projection of a polar vector onto a coordinate axis, so defining its cartesian 

components, is a special case of a scalar product; for example R . i yields a projection of vector R 

along cartesian coordinate axis x.  A scalar product conforms to associative and distributive 

properties.  If a product of two basis vectors be either zero or unity, thus representable with 

Kronecker's δ function, these basis vectors form an orthonormal set.  Formation of n orthonormal 

vectors from n linearly independent vectors is known as Gram-Schmidt orthogonalization.   

Division by a vector is impracticable.  This application of a dot product becomes a basis of 

euclidean geometry; an alternative definition of an inner product, of which a dot or scalar product 

as defined above is a special case, enables one to work with more general, or non-euclidean, 

geometries, which have applications in special and general relativity.  This scalar product 

expresses many physical properties, such as work done in moving a body that is a scalar product 

of force and displacement.

     A scalar product of a general polar or proper vector, with initial point at the origin, and an axial 

vector or pseudovector is a pseudoscalar -- a quantity that is invariant under translation or rotation 

of coordinate axes, but that reverses its sign when the direction of each axis in a cartesian system 

is reversed -- inversion.  A scalar product of two vectors of the same type, either polar or axial, 

thus yields a scalar quantity, whereas a corresponding combination of a polar vector and axial 

vector yields a pseudoscalar quantity.

     In a space of three dimensions containing two polar vectors R and S in a plane at angle  ≠ θ 0 to 

each other -- hence not parallel, a vectorial product, also called a cross product or matrix product 

or skew product, and designated R x S, generates a further vector normal or perpendicular to that 



plane; that vector, of type axial vector or pseudovector, has accordingly magnitude |R| |S| sin θ, and 

direction and sense depending on order of multiplication or on left or right nature, or chirality, of 

the coordinate system; this product is anticommutative in that R x S = − S x R , but these vectors 

conform to the distributive law,  R x ( S + T )  = R x S  + R x T .  Thus R x S  = |R| |S| sin θ n, in 

which n is a unit vector normal to a plane defined by R and S .  An angle between R and S is 

definable in either clockwise or counterclockwise senses.  This product is expressible also as 

R x S  =  i (  − Ry Sz Rz Sy )  +  j (  − Rz Sx Rx Sz )  +  k (  − Rx Sy Ry Sx )

and in determinantal form as  

(R xS)  =  

















i_ j_ k_

rx ry rz

sx sy sz

A vectorial product of a vector with itself vanishes, R x R = 0 because  = ( )sin 0 0; hence for unit 

vectors, i x i  = j x j  =  k x k  = 0 for  = θ 0, and i x j  =   k ,   j x k  =   i ,  k x i  =  j , j x i  =  − k ,  

k x j  = − i and  i x k = − j .  Whereas a sum of two polar vectors not collinear corresponds to a 

diagonal of a parallelogram with these two vectors as adjacent sides, a vectorial product of two 

polar vectors corresponds to the area of that parallelogram; such an area is represented by its 

normal.  If we form a matrix 2 x 2 by incorporating two vectors each with two components as 

columns therein, the determinant of that matrix is equal to the area of that parallelogram, which in 

turn equals the length of a pseudovector resulting from the vector product.  Analogously for three 

dimensions, if we form a matrix 3 x 3 by incorporating three non-parallel vectors each with three 

components as columns therein, the determinant of that matrix is equal to the volume of a 

parallelepiped:  each face of that solid body is a parallelogram and each vector defines four 

parallel edges; the volume of this body is also equal to the magnitude of a scalar product of one 

vector with the cross product of the other two vectors.  Whereas a vectorial product of two vectors 

of the same type, either polar or axial, yields an axial vector, a vectorial product of two vectors of 

distinct types yields a polar vector.  Two vectors commonly represented as vector products are 

angular momentum of a particle, which arises as a cross product of its linear momentum and the 

radius vector from the origin to the particle, and torque, which forms as a cross product of force 

and a vector representing a lever arm.  A multiplicative combination R . ( S  x T ) is a triple scalar 

product, evaluated as this determinant of the components of the three vectors,

R . (S xT)  =  



















rx ry rz

sx sy sz

tx ty tz

that accordingly yields a scalar result with a geometric interpretation as the volume of a 

parallelepiped defined with those three vectors emanating from one vertex, whereas R x (S x T ) is 

a vector triple product. that accordingly yields a vectorial result; parentheses are required to 

specify the order of binary combination.  These two identities apply to such vector triple products:

R x (S xT)  =  ( R . T ) S  −  ( R . S ) T

( R x S ) x T  =  ( T . R ) S  −  ( T . S ) R

The definition of a vectorial or cross product applies to only three spatial dimensions.

     Although pseudovector R x S is orthogonal to both R and S, and therefore perpendicular to a 



plane containing R and S, two possible directions for this pseudovector are compatible with these 

requirements:  by convention, its sense is chosen so that R, S and R x S -- in that order -- follow a 

right-hand rule.  To see how this rule works, hold the right fist clenched in front of the body:   

initially direct the first finger, representing R, to the left, and the second finger, representing  S, 

toward the body; the thumb extended upward then indicates the direction of vectorial product R x 

S .  If to orient R and S in directions of the extended thumb and first finger, respectively, be easier, 

resultant R x S is directed downwards.   

     A vectorial product of vectors in a space of three dimensions enables one to define basis 

vectors for another space that is termed a dual or reciprocal space:  this space is clearly a 

mathematical construct, which one can not envisage using ordinary senses.  Whereas components 

of a vector in direct space might have dimensions of length, speed et cetera, those in a dual space 

have corresponding dimensions of  inverse length, inverse speed ...; for this reason the term 

reciprocal space is used.  A common use of a dual space in a chemical context occurs in 

construction of a model to interpret data from experiments involving diffraction of xrays from a 

crystalline sample.  For the most common space group of chemical compounds, monoclinic, and 

also for another space group triclinic, the unit cells lack mutually perpendicular axes; in such 

cases basis vectors are distinct from unit vectors in a cartesian system of coordinates.

     If basis vectors in direct space be , ,a1 a2 a3, basis vectors , ,b1 b2 b3 for its dual space are defined 

as follows:

  bi . ai = 1 ;     bi . aj = 0  (  ≠ i j)

Thus, for example b1 is orthogonal to both a2 and a3 and to each vector that lies in a plane 

containing a2 and a3:  as b1 has a direction parallel to a2 x a3 this requirement is expressible as 

  = b1 e (a2 x a3);

in which e is determined so that b1 . a1 =1.  For the remaining dual basis vectors, the analogous 

expressions are 

   = b2 f (a1 x a3) ;      = b3 g (a1 x a2)  .

Basis vectors ai and bi can thus serve to define a location of a point in direct and reciprocal space.  

For a system of orthogonal cartesian coordinates, the basis vectors for the dual space are the same 

as those for the direct space, and are hence just orthogonal unit vectors.  

         For a crystalline solid, we work with basis vectors ci that lie along edges of a unit cell and 

that are in the same directions as respective vectors ai:  thus, for a unit cell of class neither 

monoclinic nor triclinic, with edges described with vectors 

 = c1 3 i ,  c2 = i +2 j , c3 = i + j + k, 

basis vectors ai become i, j and k that are unit vectors in directions of ci.  A general lattice point in 

the direct lattice is therefore defined with a vector

  +  + n1 c1 n2 c2 n3 c3,  

in which , ,n1 n2 n3 are integers, whereas a general point in the lattice is defined by 

 +  + a1 x a2 y a3 z.  We first evaluate unit vectors ai; we then obtain basis vectors for a dual space 

on solving the defining equations above.  Dual vectors Bi, associated with ci, analogously define a 

unit cell in a reciprocal space, and take forms analogous to those involving ,bi ai:



  = B1 p (c2 x c3),     = B2 q (c1 x c3) ,     = B3 r (c1 x c2)  

thus facilitating evaluation of Bi.  

     A direct or outer product of two vectors each in three spatial dimensions, one u with 

components ,x1 x2 and x3 and another v with components ,y1 y2 and y3, is defined in terms of a 

following expression that treats basis vectors ei, with , , = i 1 2 3, and general components xi or yi as 

algebraic entities:

   u v = (  +  + x1 e1 x2 e2 x3 e3 )(  +  + y1 e1 y2 e2 y3 e3 )                                     

     =    +  +  +  + x1 y1 e1 e1 x2 y2 e2 e2 y3 y3 e3 e3 x1 y2 e1 e2 x2 y1 e2 e1

      +  +  +  + x1 y3 e1 e3 x3 y1 e3 e1 x2 y3 e2 e3 x3 y2 e3 e2                    

Each pair of vectors of form ei ej  is termed a dyad; expression u v is termed a dyadic, which is a 

sum of two or more dyads each with components xi yj as scalar coefficient and which is also a 

special tensor of second rank that resembles a matrix of order 3.  Any dyadic is representable with 

nine components a ,i j resulting from expansion of a dyadic in a form 

  u v = ∑ a ,i j ei ej,                       in which  = a ,i j xi yj ;

its components associated with each dyad bear the same relation to components xi of a vector x 

defined in terms of basis vectors ei.  These components are generally expressed in the form of a 

matrix so that methods of matrix algebra are applicable to the handling of dyadics. In the 

preceding discussion of vectors, we introduce a concept of a representative of a vector as a column 

vector formed from its components, but, as also observed, its transposed representative as a row 

vector is required in evaluating a scalar product of two vectors or the norm of a single vector.  

Unit basis vectors, such as are associated with cartesian axes in a system in three spatial 

dimensions, are represented in the same way with column vectors, with elements of which one is 

unity and another two are zero.  The sum of two dyadics is another dyadic of which each 

component is a sum of the corresponding components of the addend dyadics.  A product of a 

dyadic with a scalar quantity yields another dyadic of which each component is a product of the 

original component with the scalar quantity.  A scalar product of a dyadic with a vector generates 

another vector, whereas a scalar product of one dyadic with another, which is in general 

non-commutative, yields another dyadic.  A product comprising a dyadic between two vectors 

yields a scalar quantity as result.  A vectorial product of a dyadic with a vector yields another 

dyadic. 

    Premultiplying a column vector b with a row vector a generates a number n, or a symbolic 

quantity that, on evaluation, yields a number -- a scalar quantity -- according to a prescription to 

form a scalar or dot product a . b: 

 [ ]a1 a2 a3   .  



















b1

b2

b3

    =  n  

In contrast, pre-multiplication of a row vector with a column vector, indicated generally with no 



mark or punctuation between symbols for vectors as in a b, generates a dyadic with a 

representative in the form of a square matrix.  To illustrate this effect we take as a column vector 

the representative of unit vectors i, j and k, directed along axes x, y and z, respectively, and 

produce three dyads ii, ij and ik:

  ii = 

















1

0

0

  [ ]1 0 0   =   

















1 0 0

0 0 0

0 0 0

    

 ij = 

















1

0

0

  [ ]0 1 0   =  

















0 1 0

0 0 0

0 0 0

 

  ik  =   

















1

0

0

 [0   0   1]  =  

















0 0 1

0 0 0

0 0 0

  

     When a matrix represents a dyadic, that matrix can represent an operator in a particular system 

of coordinates, or a matrix can effect a change from one coordinate system to another, of which an 

orthogonal transformation is a special case.  As an operator L is linear if, as presented above, 

L (a1 v 1  +  a2 v 2)  =   a1 L v 1  +  a2 L v 2 

in which appear scalar coefficients ,a1 a2 and vectors (or functions) v 1,  v 2, the properties of a 

matrix imply that it conforms to this definition; a matrix can thus serve as a linear operator, even 

though a matrix is not intrinsically an operator.  A similarity transformation relies on this property, 

and an orthogonal matrix remains orthogonal after an orthogonal transformation of the 

coordinates.   

     Another operation involving a vector and a matrix -- or a matrix representative of a tensor of 

second rank as a dyadic -- allows resolution of a vector into orthogonal components.  For two 

vectors a and b, neither zero, we seek to express b in terms of its components along a and 

perpendicular to a; each such component constitutes a projection of one vector on the other.  A 

projection of b along a is given either by this ratio of scalar products of vectors as a factor of a,   

projection of b on a = ( ( b . a ) / ( a  
T
. a ) ) a   

or by a product of this ratio of matrices,

( a . a 
T
 ) / ( a 

T
 . a ) 

as a factor of b,  

( ( a . a 
T
 ) / ( a 

T
 . a ) )  b , 

in which superscript T denotes a transpose of a matrix.  In the latter case the numerator is a dyadic, 

or tensor, as described above, and the denominator is a scalar corresponding to a scalar product of 

a transpose of a vector with the original vector.  This projection is a more general case than simply 

projecting onto a unit vector, explained above, but is equivalent because for a unit vector the 

denominator is just unity.  A projection or component of b perpendicular to a is a difference of b 

with its projection along a.  



     The length of a vector, or the distance between two points defined by given position vectors, 

must be defined in a space of three dimensions.  For vector n r to be n times as long as r is readily 

measurable for distances along a given straight line, but a comparison of the lengths of vectors of 

disparate direction requires definition of a space that has defined lengths and angles, so possessing 

a metric, which implies a rule for comparison of the lengths of any two vectors and hence of 

assignment of a length to every vector by comparison with a unit vector.  For three vectors r, s and 

t in euclidean geometry, the scalar or dot product is symmetric, r . s = s . r ; the distributive law is 

satisfied, r . (s + t) = r . s + r . t ; the scalar product is proportional to the length of each vector, r . 

(c s ) = c (r . s), and the square of the length is positive but zero for only a zero vector, r . r > 0, for 

all r > 0, so (r . r) 











1

2
 > 0.  If two vectors be expressed in terms of basis vectors, r = ∑

 = j 1

3

rj e j and  s 

= ∑
 = j 1

3

sj e j , their product becomes expressible as  r . s = ∑
 = k 1

3 











∑

 = j 1

3

rj sk  e j  . e k; this scalar product 

is hence a bilinear form in the vector components and the coefficients are scalar products of the 

basis vectors.   

     According to Dirac's notation, a column vector v, with components vj, might be called a ket and 

represented as |v>; a particular component vj is generated according to <j|v>.  Transposition of a 

ket yields a bra, denoted <v|. These quantities arise in quantum mechanics.   

eigenvector and eigenvalue  

     Besides other mathematical operators such as difference operator  = ∆  − ( )f  + x h ( )f x  and 

differential operator D, both of which are discussed in relation to differentiation in chapter 3, sum 

operator Σ =  +  +  + x1 x2 x3 ... and product operator  = Π x1 x2 x3 ..., both of which are introduced in 

chapter 1, a square matrix A can act as an operator; it so acts on a vector v of the same number of 

components as its number of columns or its column dimension, A . v = u,  to generate another 

vector u of the same dimension, called an image vector.  The result of that operation yields a 

vector with the direction either the same as or different from that of v; if the direction be the same, 

whether or not with the same sense, that image vector is also a characteristic vector or eigenvector, 

and the ratio of the lengths of eigenvector and original vector is called a characteristic value or 

eigenvalue. 

     An important problem involving a square matrix relates to a condition whereby for a certain 

vector representative, called an eigenvector or proper vector or principal vector or characteristic 

vector, a product of that column vector premultiplied with a matrix yields the same column vector 

multiplied by a constant, a scalar quantity; for matrix A of order n, scalar λ and vector x with n 

components, we express this condition symbolically as   

A x = λ  x

For a square matrix A of order n, its characteristic matrix is λI − A in which I is an identity matrix 

also of order n; the characteristic polynomial of A is the determinant of λI − A.  The eigenvalues 

of A are the n complex roots of that characteristic polynomial; n numbers in this set, each counted 

with its proper multiplicity, are denoted ( )λ A , and any particular such number is ( )λi A .  If all 

eigenvalues be real, a conventional ordering is ( )λ1 A  > ( )λ2 A  >  ... > ( )λn A , hence in descending 



order, but for various purposes the reverse order might be preferable.  For real λ, the effect of A is 

to stretch -- for λ > 1, to shrink -- for 0 < λ < 1, to stretch or to shrink and to invert -- for  < λ 0, or 

to annihilate -- for  = λ 0, vector x.  Such an eigenvalue equation implies that

 (A - λ I ) x  =  0 ,  

in which 0 denotes a column vector with n components each of value zero.  From this product of 

two quantities that equals zero, a trivial solution is that x is a vector with each component of value 

zero, which lacks physical interest; a non-trivial solution requires a determinant of a matrix 

resulting from subtraction of λ I from A to be zero: 

det( A - λ I )  =   | A - λ I |  =  0  

This condition yields a polynomial in λ of which the roots become the eigenvalues of matrix A.  A 

symmetric square matrix has real eigenvalues, but an unsymmetric matrix might have complex 

eigenvalues.  An invertible matrix has no zero eigenvalue, and a real matrix with no zero 

eigenvalue is invertible.  If matrix A of order n have n linearly independent eigenvalues, it can be 

made diagonal, and vice versa.  The number of times that a particular eigenvalue of a matrix 

occurs is called its algebraic multiplicity.  Components xi of each eigenvector x are determined 

only within a multiplicative scalar quantity; to impose normalization,  = ∑
 = i 1

n

xi

2
1 suffices to fix the 

values of xi.  If a square matrix A have no eigenvalue equal to zero, that matrix is invertible; a zero 

vector can not be an eigenvector, but an eigenvalue can be zero.

     The signature of an hermitian matrix is the surplus of positive over negative coefficients in any 

real diagonal matrix similar to the given one; this number equals the excess of positive over 

negative eigenvalues.

     Each stochastic matrix has a unit eigenvalue.  

    A real symmetric matrix has these properties:

• the eigenvalues of a real symmetric matrix are real;

• the eigenvectors of a real symmetric matrix can invariably be chosen to be real;

• a real symmetric matrix is diagonalizable, such that it has eigenvalues that can form a similar 

matrix;      

• eigenvectors of a real symmetric matrix corresponding to distinct eigenvalues are orthogonal, 

and

• each real symmetric matrix possesses a complete orthonormal set of eigenvectors; a set of 

vectors is a complete orthonormal set for a square matrix of order n if the set be orthonormal, if 

each vector be an eigenvector of that matrix, and if the set contain exactly n vectors. 

     Applications exist for which a generalized problem of eigenvalues requires solution:  instead of 

an identity matrix I there appears another matrix B such that

A x = λ B x       and        | A - λ B | = 0 

To solve either equation, which arises in various physical and chemical applications, one might 

expand the latter determinant to yield a characteristic polynomial ( )p λ  of order n in λ; the solution 



of an equation of that polynomial set equal to zero, ( )p λ  =  0, produces up to n possible values of 

λ termed eigenvalues or proper values or characteristic values of matrix A.  If distinct 

eigenvalues number less than the degree of that polynomial, degeneracy exists.  For each value of 

λ, solution of linear equations A x = λ x or A x = λ B x yields an associated eigenvector.  If the 

eigenvalues of a square matrix be distinct, the corresponding eigenvectors are linearly independent

.  For a non-trivial solution, multiplication of x by an arbitrary constant N is also a solution of the 

eigenvalue problem; the direction of eigenvector x is hence well defined but not its magnitude; 

according to convention one might choose N to give a normalized eigenvector that has unit 

magnitude.  For a square invertible matrix A with eigenvalue λ, a corresponding eigenvector x and 

positive integer n, A 
n
 has eigenvalue λ

n
 and eigenvector x, and 

1

λ
 is an eigenvalue of A 

( )−1
 with 

corresponding eigenvector x.  The characteristic polynomials of similar matrices are identical, and 

hence likewise their eigenvalues. 

     We consider further an eigenvalue problem with B taken to be identity matrix I; we first 

pre-multiply matrix A by the inverse of a matrix V, to be determined,

V 
( )−1

  A x  =  λ V 
( )−1

 x 

and insert a unit matrix in a form I = V V 
( )−1

 to obtain

 V 
( )−1

 A V V 
( )−1

 x  =  λ V 
( )−1

 x 

If we let y = V 
( )−1

 x ,  y becomes an eigenvector of  V 
( )−1

 A V because

  V 
( )−1

 A V y = λ y  = λ I y  

The final step to construct V so that V 
( )−1

 A V is a diagonal matrix is termed matrix 

diagonalization, which is also an instance of a similarity transformation.  An important result of 

this process is that a sum of eigenvalues of square matrix A is equal to the trace of matrix A, 

which is just a sum of elements of A along its principal diagonal.  A square matrix A of order n is 

diagonalizable if A have n linearly independent eigenvectors and hence n distinct eigenvalues; 

there exist then an invertible matrix P and a diagonal matrix D such that P 
( )−1

 A P = D with the 

columns of P being n linearly independent eigenvectors of A and the diagonal elements of D being 

the corresponding eigenvalues of A in the same order. 

     For a case of a square matrix A of order 3 with these elements



















a ,1 1 a ,1 2 a ,1 3

a ,2 1 a ,2 2 a ,2 3

a ,3 1 a ,3 2 a ,3 3

and square matrix C that must have also order 3 of which the columns are the eigenvectors of A,



















c ,1 1 c ,1 2 c ,1 3

c ,2 1 c ,2 2 c ,2 3

c ,3 1 c ,3 2 c ,3 3

to form a diagonal matrix Λ  =  C 
T
 . A . C with elements





















λ1 0 0

0 λ2 0

0 0 λ3
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column n of product A . C must be 



















a ,1 1 a ,1 2 a ,1 3

a ,2 1 a ,2 2 a ,2 3

a ,3 1 a ,3 2 a ,3 3
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Product A . C must then be equal to 
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λ1 c ,2 1 λ2 c ,2 2 λ3 c ,2 3

λ1 c ,3 1 λ2 c ,3 2 λ3 c ,3 3
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c ,3 1 c ,3 2 c ,3 3

  



















λ1 0 0

0 λ2 0

0 0 λ3

  = C Λ 

The matrix to make A diagonal is thus C and the diagonal matrix that results is Λ.  

     Every square matrix is similar to an almost diagonal matrix, or precisely, a matrix in Jordan 

canonical form, hence having non-zero elements on only the main diagonal and the first diagonal 

above that principal diagonal called the superdiagonal; an element on that superdiagonal might be 

either zero or unity.  A diagonal matrix is a matrix in Jordan canonical form for which all elements 

on the superdiagonal equal zero.  For a general square matrix A of order n and I an identity matrix 

of the same order, we define a generalized problem of eigenvalues as 

  (A - λ I ) 
k
 x = 0 , 

which applies to every square matrix A; when a Jordan canonical form is diagonal, only case  = k 1 

matters, whereas, for a non-diagonal Jordan form, further exponents k must be used, with  ≤ k n for 

n as the order of the largest Jordan block or submatrix that contains off-diagonal elements.  

     A singular value of a matrix is a positive square root λ  of eigenvalue λ of a product of a 

transpose of a matrix with the original matrix, A 
T
  A; the eigenvalues of a symmetric matrix of 

form A 
T
  A  are invariably non-negative.     

     In a chemical context, modeling  − 3 n 6 vibrations of an angular molecule containing n atomic 

centres requires matrix A, and B if appropriate, to be specified in terms of data associated with 

motions involving displacements of lengths of chemical bonds and deformations of angles 

between chemical bonds.  Components of a given vector x then correspond to internal coordinates 

that define a collective vibrational motion of atomic centres in a normal mode such that all atomic 

nuclei move in phase with frequency λ .  Among other applications of a vector is a determination 

of electronic wave functions for atoms and molecules according to wave mechanics.  

calculus with vectors  

     For a scalar function ( )f , ,x y z  in three spatial dimensions, a variation in f when point ( , ,x y z) is 

altered to point (x+dx,  y+dy, z+dz) is expressed as 

df  =  
∂

∂

x
f dx  +  

∂

∂

y
f dy  +  

∂

∂

z
f dz

which, with dr  = (dx, dy, dz), is expressible as df  =  Del  f. dr with differential vectorial operator 



Del = ( , ,
∂

∂

x
 

∂
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y
 

∂

∂

z
 ).  With 

 Del =  i 
∂

∂

x
  +   j 

∂

∂

y
 +  k 

∂

∂

z
 

in terms of unit vectors i, j, k, vector 

Del  f = i 
∂

∂

x
f  +   j 

∂

∂

y
f  +  k 

∂

∂

z
f

becomes the gradient of ( )f , ,x y z , expressible also as grad f, which constitutes a vectorial field; 

such a vectorial field assigns a vector to each point in space. 

     For a real scalar variable t in interval [ ,t1 t2] to which we assign a vector R, for that vectorial 

function of variable t over that interval, we express the components of R(t) as

R(t)  =  i ( )Rx t   +  j ( )Ry t   +   k ( )Rz t  .

Differentiation of that vectorial function with respect to variable t yields

∂

∂

t
 R(t)  =  i 

d

d

t
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d

d

t
( )Ry t   +   k 

d

d
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( )Rz t ;

Because a ratio 
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t
( )Ry t  : 
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d

t
( )Rz t  differs in general from a ratio Rx : Ry : Rz , vector 

∂

∂

t
 R(

t) has a direction different from R .  If ( )f t , R(t) and S(t) be differentiable functions of t, 

•  
∂

∂

t
 ( R(t) + S(t) )  =  

∂

∂

t
 R(t)  +  

∂

∂

t
 S(t) ;
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∂

∂

t
 ( ( )f t  R(t))  =  ( )f t  

∂

∂

t
 R(t)  +  R(t) 

d

d

t
( )f t  ;

•  
∂

∂

t
 ( R(t) . S(t) )  =   R(t) .  

∂

∂

t
  S(t)   +  S(t) . 

∂

∂

t
 R(t) ,  and

•  
∂

∂

t
 ( R(t) x S(t) )  =   R(t) x 

∂

∂

t
  S(t)   +  S(t) x 

∂

∂

t
 R(t) .

A derivative of R(t) that has a constant magnitude but varying direction is a vector perpendicular 

to R(t).  A second derivative of R(t) is
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( )Rx t   +  j 
d
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( )Ry t   +   k 
d

d
2

t
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( )Rz t  , 

and higher derivatives analogously.  For a vectorial function that depends on both spatial and 

temporal variables,

R( , ,x y z, t)  =  i ( )Rx , , ,x y z t   +  j ( )Ry , , ,x y z t   +   k ( )Rz , , ,x y z t  .

     If each point ( )P , ,x y z  in a region R of space have associated with it a scalar quantity ( )f , ,x y z , 

which is a scalar function, and a scalar field exists in region R, for that scalar function ( )f , ,x y z , 

the change in f that results from a point ( , ,x y z) becoming a point ( , , + x dx  + y dy  + z dz) is 

expressed as



 = d ( )f , ,x y z  +  + 
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z
( )f , ,x y z dz

or 

 d ( )f , ,x y z  = Del ( )f , ,x y z  . dr  =  
∂

∂

x
( )f , ,x y z  . dx  +  

∂

∂

y
( )f , ,x y z  . dy  +  

∂

∂

z
( )f , ,x y z  . dz

in which dr = ( , ,dx dy dz); for applications involving scalar or vectorial quantities, we define again 

a differential vectorial operator Del in three spatial dimensions with cartesian coordinates:   

  Del = i 
d

dx
 + j 

d

dy
 + k 

d

dz
  

This operator has no practical use or value by itself, but, when it operates on a scalar function 

( )f , ,x y z , it yields a vectorial sum of gradients of f in the directions of unit basis vectors for the 

same system of cartesian coordinates; according to convention, this vectorial sum is called grad f : 

grad f  =  Del f  =  i 
∂

∂

x
f  +  j 

∂

∂

y
f  +  k 

∂

∂

z
f  

Thus grad f, but neither grad nor f separately, is a vector:  its components at a point are rates of 

change of scalar function f with distance along directions of coordinate axes at that point; its 

magnitude at that point is the maximum rate of change of that function with distance; its direction 

is that of a maximum rate of change of function f, and its sense is toward increasing values of 

function f.  These conditions characterize a vectorial field, according to which a vector becomes 

assigned to each point in space.  As a physical or geometrical interpretation of grad φ, we consider 

surfaces in a family over which φ has constant values, ( )f , ,x y z  = c; for displacement dr s on such 

a surface, grad ( )f , ,x y z  . dr s = 0 because ( )f , ,x y z  is constant on such a surface.  As that 

displacement dr s is parallel to that surface, provided that  ≠ ( )f , ,x y z 0,  vector grad ( )f , ,x y z  must 

be perpendicular to that surface at a point at which grad ( )f , ,x y z  is evaluated.  Moreover, 

d ( )f , ,x y z  = Del ( )f , ,x y z  . dr  = | Del ( )f , ,x y z  |  | dr | ( )cos θ  

in which θ is the angle subtended between the normal to the surface of constant ( )f , ,x y z  and 

displacement dr .  A maximum change in ( )f , ,x y z  per unit displacement occurs for  = θ 0, and 

thus in a direction that is normal to the surface of constant ( )f , ,x y z .  Magnitude | Del ( )f , ,x y z  | is 

equal to the normal derivative, 
∂

∂

n
( )f , ,x y z , in which dn is a displacement normal to the surface.

     Although we consider above only cartesian coordinates, this gradient operator in cylindrical 

and spherical coordinates has great importance; instances of its application appear in section 6.402   

     Vector grad f contains information necessary to calculate a rate of variation of ( )f , ,x y z  in any 

direction.  In a direction having direction cosines , ,( )cos α ( )cos β ( )cos χ , the directional 

derivative with respect to an element ds of distance such that  = ds  +  + dx
2

dy
2

dz
2
 is

 = 
∂

∂

s
f  +  + 
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z
f ( )cos χ .

In a direction of unit vector s, 
∂

∂

s
f  =  s . grad f, which is the component of grad f in direction s; 

hence



 
∂

∂

s
f  =  | grad f | ( )cos φ  

in which φ is the angle between grad f and unit direction vector s. 

     If a vectorial field F(x, y, z) be formed as a gradient of a scalar function, expressed as

F(x, y, z)  =  Del f(x, y, z) 

that vectorial field F is conservative, and f(x, y, z) is called a potential function for F.  Fields such 

as gravitational in mechanics and coulombic or electrostatic in electricity, for which, in either 

case, force varies as an inverse square of distance between appropriate points, are conservative.  

Here f(x, y, z) is a scalar potential function, but a vectorial potential function V(x, y, z) can also 

exist if 

  F(x, y, z)  =  Del  x V(x, y, z)  =  curl V(x,  y,  z) ,

involving a vectorial product, discussed below.  A vector field for which Del . R( , ,x y z) = 0 is 

called solenoidal. 

     Vectorial operator Del operates also on a vector, to form both a scalar, or dot, product and a 

vectorial, or cross, product.  For a vectorial field of formula F that we express in three dimensions 

as

F( , ,x y z)  =  ( )Q , ,x y z  i  +  ( )R , ,x y z   j  +  ( )S , ,x y z  k  

so that expressions Q, R and S, each with dependences on , ,x y z, have partial derivatives with 

respect to coordinates x, y and z, we define first a scalar product of Del operating on F as the 

divergence of F; the corresponding term in typical mathematical or physical parlance is just div. 

div F  =  Del . F  =  
∂

∂

x
Q  +  

∂

∂

y
R  +  

∂

∂

z
S   

A scalar or dot product of two vectors yields a result that is a scalar expression; if a quantity 

operating to the left of a vectorial quantity be differential operator Del, consistent with convention, 

a scalar product might result.  A physical interpretation of this divergence is that div . (ρ v)  might 

represent the net flow, per unit volume and per unit time, of a compressible fluid of density ρ and 

velocity v from a volume element dτ, which implies a decreased density of fluid inside that 

volume.  A calculation of this outgoing flux presents an application of divergence, amplified as 

follows:  if a vector V represent at each point in space the direction and magnitude of flow of a 

fluid of density ρ moving with velocity v, the product ρ v = V, which is called the flux density, 

represents the total flow of fluid per unit cross section and per unit time.  The outgoing flux or 

total loss of fluid per unit time from an elemental parallelepiped of volume dτ  is a product Del . V 

dτ, so that Del . V is the outgoing flux per unit volume.  

     For a vectorial field F( , ,x y z) and a path along curve c extending from point P 1 to point P 2, a 

line integral is the integral of the component of F( , ,x y z) along that path, which becomes 

d
⌠
⌡


c

 

( )F , ,x y z . l   

that, in cartesian components with F( , ,x y z) = i Fx  +  j Fy  +  k Fz and dl = i dx  +  j dy  +  k dz, 

becomes



d
⌠
⌡


c

 

( )F , ,x y z . l  =  d
⌠

⌡
Fx x  + d

⌠

⌡
Fy y  + d

⌠

⌡
Fz z 

For that vectorial field to be a gradient of a scalar function ( )f , ,x y z  such that F( , ,x y z) = Del f(x, y

, z), the path integral depends on only the bounds of the path and is independent of the path 

between those bounds: 

 d
⌠
⌡


c

 

( )F , ,x y z . l  =   − ( )f P2 ( )f P1  . 

For that reason, a path integral along a closed path for which P 2  is the same as P 1 is zero.  

     For a vectorial field F( , ,x y z) and a surface S divided into many infinitesimal surface elements 

each of area dsj,  ≤ 1 j  ≤  n, with each surface element dsj as a vector of magnitude dsj and direction 

perpendicular to the surface at a particular point, a surface integral of vectorial field F( , ,x y z) over 

surface S becomes 

d
⌠
⌡


S

 

( )F , ,x y z . s

implying a double integral, that in cartesian components with F( , ,x y z) = i Fx  +  j Fy  +  k Fz and d

s = i dsx  +  j dsy  +  k dsz becomes

d
⌠
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S

 

( )F , ,x y z . s  =  d
⌠

⌡
Fx sx  + d

⌠

⌡
Fy sy  + d

⌠

⌡
Fz sz 

in which each integral on the right side is likewise a double integral.  For closed surface S, that 

surface integral is denoted o d
⌠
⌡


S

 

( )F , ,x y z . s with ds is directed outward from that surface;  o 

should appear superimposed on the integral sign in d
⌠
⌡
  (ignore d), but that expression is 

impracticable in Maple text here. 

     For a vectorial field F( , ,x y z) and a volume V in three spatial dimensions with dv its element of 

volume, the volume integral of F( , ,x y z) over V is 

d
⌠
⌡


V

 

( )F , ,x y z v  =  i d
⌠

⌡


V

 

Fx v  + j d
⌠

⌡


V

 

Fy v  + k d
⌠

⌡


V

 

Fz v

in which all integrals are implicitly triple integrals, each evaluated on performing three ordinary 

integrations involving only scalar formulae.

     According to the divergence theorem or Gauss's theorem, we convert a volume integral over τ 

with integrand Del . V and integrating element d τ to a surface integral of V . dS over surface S, 

with τ being a total volume enclosed by S; the volume integral involves values of flux density V 

throughout a volume τ enclosed by S, whereas the surface integral involves values of V only on 

that surface S.  For the divergence of a sum of two vectors, 

Del . ( R( , ,x y z) + S( , ,x y z) )  =  Del . R( , ,x y z)  +  Del . S( , ,x y z )

and the divergence of a product of a scalar function and a vectorial function,

Del . ( ( )f , ,x y z  R( , ,x y z))  =  ( )f , ,x y z  Del . R( , ,x y z) + R( , ,x y z) . Del f(x, y, z) 



    This vectorial or cross product Del xFinvolving vectorial operator Del and vectorial function F 

defines curl F, or rot F, which is a vector function curl expressible as a tensor of second rank 

according to its nature as an axial-vectorial or pseudovectorial operator.  Operating on the left of a 

vector field F, we represent it from its definition of a vector product in determinantal form: 

                                                         |   i          j        k   |                         

curl F  =  Del  x F =  |  
d

dx
     

d

dy
     

d

dz
  |    

                                      |    Q       R       S    |     

In this determinant appear unit vectors in the first row, partial differential operators as components 

of Del in cartesian coordinates in the second row, and components of F -- scalar functions of 

coordinates , ,x y z -- in the third row, as F = Q  i  + R  j  + S k.  Here operator x connotes only a 

sense of a vectorial product, because Del is not a vector but merely a vectorial operator; although 

perhaps ambiguous, this determinantal notation is a useful mnemonic for a formula 

 curl F = Del x F = ( 
∂

∂

y
S  -  

∂

∂

z
R ) i  +  ( 

∂

∂

z
Q  -  

∂

∂

x
S  ) j  +  (  

∂

∂

x
R  -  

∂

∂

y
Q ) k

that serves as a vector function; with Maple's package VectorCalculus and cartesian 

coordinates, these unit vectors i, j and k are expressed as e x , e y and e z respectively.  

     For the flow of a fluid, a velocity field with curl v  ≠  0 has with it an associated rotational or 

whirling motion.  A vectorial field with zero curl is thus irrotational.  

    A vectorial product of Del with itself operating on scalar function f is Del x Del f  =  curl x 

grad f  =  0 for any f.  For any vector function F for which Del x F  =  0, which signifies that F is 

irrotational, F is therefore expressible as a gradient of a scalar function f, i.e. F  = grad f.  For any 

three vectorial functions F, G and H, because

 F x G . H  = G x H . F  =  H x F . G, 

for cyclic permutations,  F x G . H  =  − F x H . G  et cetera, with the above result

 Del . Del x F =  div curl F  =  0, 

and 

 Del x Del x F  =  curl curl F  = Del ( Del . F ) − Del 
2
 F. 

     The important result  curl grad f  =  0 is related directly to the independence of a value of a line 

integral on a path of integration between two points in pairs:  as the differential

 u . dr = ux dx + uy dy + uz dz

is exact and independent of that path of integration only if

 = 
∂
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y
ux ∂
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x
uy  ,    = 
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z
ux ∂

∂

x
uz  ,   = 
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z
uy ∂
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y
uz

which are precisely the conditions under which vector field u is irrotational.  

     For l a path that encloses a surface S, according to a theorem of Stokes, the integral of u . dr 

along that path equals a double integral of Del x u over that surface with differential dS  =  n dA; 

here n is the outward normal to the surface at a location of a surface element of area dA, and dS is 

called a vectorial element of surface.  From the result of that integral according to the theorem of 

Stokes, if Del x u = 0 for all points in space, the path integral on the left must be zero and u . dr  is 

exact.  The conditions expressed as three equalities of derivatives above constitute a special case 



of that theorem.

     According to the equation that governs the diffusion of a substance through an isotropic 

medium as specified by concentration c of that substance, 

∂

∂

t
c  =  D Del 

2
 c

net diffusion occurs perpendicular to a surface across which the concentration is constant, 

( )c , ,x y z  = constant, and in a direction of decreasing concentration such that diffusion occurs 

down a gradient of concentration; proportionality factor D is called the diffusion coefficient and 

Del 
2
 is the laplacian operator explained further below.  For values of c not too large, Fick's law 

expresses that a product of concentration c and a linear velocity v of diffusion is proportional to 

the negative gradient of that concentration; the proportionality factor is again D:

c v  =   −   D Del c

The loss of mass per unit volume is 
∂

∂

t
c  =  −    Del . (  −   D  Del c )  =  D Del . ( Del c ); with 

diffusion coefficient D independent of location, we hence obtain the diffusion equation above.       

    Among three further operators in package VectorCalculus, a jacobian is useful in 

transformations between systems of coordinates; if cartesian coordinates x and y be functions of 

other coordinates u and v through x = f(u, v) and y = g(u, v), a jacobian of x and y with respect to u 

and v, denoted 
( )d ,x y

( )d ,u v
 , is the determinant of a matrix, called a jacobian matrix, of partial 

derivatives of first order.
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Because of a property of a jacobian that
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for v held constant at value c, any partial derivative is expressible as a jacobian; an application of 

this result to chemical thermodynamics serves to extend the derivation of relations between state 

functions involved in Maxwell's relations, discussed in section 5.202.  

     As previewed in section 5.108, for function ( )f ,x y  of two variables, an hessian is a symmetric 

matrix of partial derivatives of second order with respect to variables x and y:
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    Operator laplacian, commonly written as Del
2
, is not a vectorial operator although it can be 



formed as Del . Del that is a scalar product of Del with itself; the latter form of a laplacian implies 

a compound operator div grad described above that acts in three dimensions, according to 

cartesian coordinates, on a scalar function ( )f , ,x y z  to yield
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( )f , ,x y z  .

tensor  

     In mathematics, a tensor is a geometric entity of a particular kind, or a generalized quantity; a 

tensor concept includes the ideas of scalar, vector and linear operator.  Tensors are expressible in 

terms of coordinate systems, as arrays of scalars, but are defined so as to be independent of a 

particular frame of reference.  Although tensors are represented as components in 

multi-dimensional arrays, the justification of a tensor theory is to explain the further implications 

of stating that a quantity is a tensor beyond that it comprises indexed components of some 

number. In particular, tensors behave in specific manners under transformations of coordinates; 

the abstract theory of tensors is a branch of linear algebra called multilinear algebra.  In a physical 

or chemical context, a tensorial property, unlike a scalar property, expresses a dependence on a 

direction of a response of molecules or solid samples to an external stress.  In an isotropic medium 

-- in which properties are independent of direction, a vector such as force F is related to another 

vector such as acceleration a through a formula involving a scalar quantity m as factor of 

proportionality, as in

 F  =  m a , 

with m denoting inertial mass.  For an anisotropic medium, the response of one vector to another 

vectorial property might depend strongly on direction; in this case, a scalar quantity is inadequate 

to describe the response relation, and a tensor must serve instead.  A tensorial property thus 

depends on the orientation of a system of interest.  A tensor that might represent a molecular 

property has generally multiple elements or components that depend on the orientation of that 

molecule with respect to axes in a system of coordinates, typically cartesian, although the 

molecular property is independent of coordinates according to a particular system.  What a 

chemist or physicist might generally call a tensor is a tensor field, such as a tensor for stress of a 

body to which a torque is applied or a tensor for moment of inertia.      

     A quantity a , , ,i j k ...

( ), , ,r s t ...
, having lower indices or subscripts , ,i j k, ... numbering p and upper 

indices or superscripts , ,r s t, ... numbering q, for which each index takes values , , , ,1 2 3 ... n, in a 

set, might represent a tensor of orders ( ,p q), or a component of such a tensor.  In a system of 

cartesian coordinates in three spatial dimensions, a polar vector is such a tensor; a vector v = vx i + 

vy j + vz k , in which i, j and k are unit vectors along positive ,x y and z axes or Ox, Oy and Oz 

respectively, is specifically a tensor of first rank, for which each component of the three carries an 

index for one of three directions in space.  A cartesian tensor of second rank requires two such 

indices for each component, hence amounting to nine components in total.  A scalar quantity, 

which is invariant to a transformation, is considered to constitute a tensor of rank zero, a (polar) 

vector a tensor of rank unity, an axial vector and a dyadic a representation of a tensor each of rank 



two, and a polyadic a representation of a tensor of rank greater than two.  A representation of a 

physical property, such as electric dipolar polarizability, as a tensor of second rank resembles a 

square matrix of order three; the mathematical operations involving such a tensor also resemble 

those of a matrix.  From an algebraic point of view, a tensor is an extension of a concept of vector 

and matrix to an array of higher order;  For cartesian tensors we devote attention to only tensors 

with indices appearing in subscript form, but in systems of other than orthogonal coordinates a 

more general tensorial form might be required.  

     A matrix, representing a tensor of rank two, serves as a means to effect a transformation or 

mapping.  For two vector spaces U and V, a transformation T of U into V, expressed as T:  → U V, 

is a rule that assigns to each vector u in U a unique vector v in V.  The domain of T is U; because T

(u) = v, the image of u under T is v.  For example, for a transformation T: R 
3
 -> R 

2
 defined by 

T( , ,x y z) = ( ,2 x  + y z),

for which the domain of T is R 
3
, the image of vector (1,2,−3) is (2,−1).  

     For a vector space two operations are defined -- addition and scalar multiplication.  The most 

important transformation between vector spaces preserves linear structures as follows:  for two 

vector spaces U and V with vectors u 1 and u 2 in U and scalar c, for a linear transformation T: 

 → U V,

T(u 1+ u 2)  =  T(u 1)  +  T(u 2)

T(c u 2)  =  c T(u 2)

Of these two conditions, the former implies that T maps a sum of two vectors into a sum of the 

images of those vectors, and the latter implies that T maps a scalar multiple of a vector into the 

same scalar multiple of the image; such a mapping preserves the operations addition and scalar 

multiplication.  For matrix M of dimensions m x n, and column matrix x (or vector) an element in 

R 
n
, a mapping T:  R 

n
 --> R 

m
 defined in T(x) = M . x is linear, and is called a matrix 

transformation.  For example, for matrix M  =  
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which according to the specified vector v = 








4

−2
 with  = vx 4 and  = vy −2 becomes 
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     A non-singular linear transformation is important because it preserves the linearity of a vector 

space in the sense that it transforms 

•  lines into lines,

• segments of lines into segments of lines,



• parallel lines into parallel lines, and

• lines through the origin into lines through the origin.

     Under an orthogonal transformation, which is a mapping with an orthogonal matrix that 

preserves linearity, a scalar conforms to a law

φ'  =  φ,

whereas a vector conforms to a law

v'  =  ∑
 = i 1

3

R ,i jvj

or, in matrix notation, 

v'  =  R . v

with components and elements explicitly expressed as
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R ,z x R ,z y R ,z z
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in which appears matrix R that rotates axes of coordinates in cartesian systems.  In a cartesian 

space of three dimensions, one defines a tensor of rank N as a quantity having 3
N
 components 

T , , ,i j k ... , with N subscripts, that transforms as

T , , ,i j k ...'  =  ∑
 = l 1

3 











∑

 = m 1

3 











∑

 = n 1

3

R ,i l R ,j m R ,k n ... T , , ,l m n ...

with accordingly N sums.  Consistent with this definition, a scalar is a tensor of rank zero and a 

vector is a tensor of rank one.  The most common for chemists, and most tractable, other case is a 

tensor of rank two:

T ,i j'  =  ∑
 = k 1

3 











∑

 = l 1

3

R ,i k R ,j l T ,k l  

A distinction between a tensor of rank two and a square matrix of order three is that a tensor is 

defined only in terms of its properties under transformation of coordinates, whereas a matrix can 

contain arbitrary elements.  A matrix restricted to undergo an orthogonal transformation is 

equivalent to, and serves as a representative of, a tensor; as an orthogonal matrix is non-singular, it 

preserves the linearity of a vector space, as described above.  Components of a tensor of rank two 

and elements of a matrix are manipulated in a similar fashion, and each equation for a tensor of 

rank two might correspond to a corresponding equation for a matrix.  All terminology and 

operations of matrix algebra, such as transpose, hermitian, antisymmetric et cetera, are applicable 

to these tensors without modification.  We express the latter equation in a matrix notation,

T'  =  R  T  R 
T
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in which R is again a rotation matrix and R 
T
 is its transpose.  As an example of such a rotation 

matrix, to effect rotation about axis z, i.e. within plane xy such that if we rotate axes x and y 

counterclockwise through angle θ about axis z, and if we label the transformed axes as X and Y, 

the following matrix operates on coordinates of a fixed point P in systems of coordinates to rotate 

( , ,x y z) into ( , ,X Y Z ), with  = z Z, as illustrated in section 5.109. 

  R  =   



















R ,x x R ,x y R ,x z

R ,y x R ,y y R ,y z

R ,z x R ,z y R ,z z
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( )cos θ ( )sin θ 0

− ( )sin θ ( )cos θ 0

0 0 1

 

For this matrix  = R
T

R
( )−1

.

     In euclidean geometry, a rotation is an instance of an isometry, which is a transformation that 

moves points without altering the distances between them.  Rotations are distinguished from other 

isometries according to properties that they leave at least one point fixed and that they leave 

chirality or handedness unaltered.  In contrast, a translation moves each point, a reflexion 

exchanges left-handed and right-handed ordering, and a glide reflexion effects both properties.  A 

rotation that alters handedness is an improper rotation or a rotoinversion, corresponding to a 

rotation and an inversion through a centre of symmetry; such an operation enters the discussion of 

the properties of unit cells of crystalline substances.  The product of two rotation matrices is 

likewise a rotation matrix because (R 1 R 2) 
t
 (R 1 R 2)  =  R 2 

t
 (R 1 

t
 R 1) R 2  =  I, the  identity 

matrix, and the determinant of the product of two matrices is equal to the product of the 

determinant of the separate matrices,  |R 1 R 2 | = |R 1| |R 2|.  For n > 2, a multiplication of rotation 

matrices of order n is not commutative, but a rotation matrix commutes with its transpose. 

    In a system of cartesian coordinates with spatial directions with labels , ,x y z, a vector such as 

electric dipolar moment p  =  i px + j py + k pz is a tensor of first rank, with each of its three 

components , ,px py pz indexed according to one of those spatial directions.  Like a vector, a tensor 

of rank greater than first is characterized by the way in which its components transform between 

coordinate systems.  A more typical tensorial quantity is a tensor of second rank, which requires 

two indices, only subscripts in our usage for a cartesian tensor, for each component; as each index 

runs over three spatial dimensions, there are thus nine components, and this tensor of second rank 

thus resembles, or is represented by, a square matrix of order three.  To convert such a tensor of 

second rank into its most meaningful form resembles working with a quadratic form that might 

likewise be converted into a form with fewest terms.  

     Quadratic form Q  in two dimensions ,x y is expressible compactly in matrix notation as

 Q = x 
T
 . A . x. 

We seek a transformation of axes that reduces A to diagonal form.  Thus, as

 U . U 
T
 = U 

T
 . U = I 

with I an identity matrix of order two, we have 



  Q = x 
T
 . U 

T
 . U . A . U 

T
 . U . x  =  X 

T
 . λ . X

in which λ is a diagonal matrix of eigenvalues; components of X yield new coordinates of P in a 

system of rotated axes.    As A is a symmetric matrix, we choose U such that U . A . U 
T
 is 

diagonal:  U 
T
 is a transposed matrix of eigenvectors of A.  A method to determine U and to effect 

transformation of principal axes becomes understood on considering a specific example, which 

concludes with a graphical realization of a transformation of axes. 

     A quadratic form is thus an expression of form x 
T
 . A . x in which appears square matrix A, 

column matrix x and its transpose x 
T
; this expression is a general extension of expressions in two 

dimensions of form 

 = ( )f ,x y a x
2
       or         +  + a x

2
b y

2
2 c x y 

et cetera.  Matrix A, the matrix of this quadratic form, is relatable to an hessian of ( )f ,x y .  A 

stationary point or critical point is classified as a maximum, minimum or col depending on 

whether the quadratic form is positive, negative or positive in some direction and negative in 

another direction.  On the basis of quadratic forms and eigenvalues of a matrix, the following 

classification of that matrix becomes feasible:  

     eigenvalues                      quadratic form                   description 

        all positive                               > 0                        positive definite

                         all negative                              < 0                        negative definite                

            non-negative                             > 0                      positive semidefinite

                 non-positive                             < 0                      negative semidefinite    

                   positive and negative          positive and negative                 indefinite                  

For a positive definite hessian, a stationary point is a minimum, or a maximum for a negative 

definite hessian.  For both positive and negative eigenvalues a critical point is a col.  With a zero 

eigenvalue, the point is a minimum for a positive semidefinite matrix or a maximum for a negative 

semidefinite matrix.  

     Components of a covariant tensor of rank two commonly satisfy a relation T ,m n = T ,n m whereby 

such a tensor is symmetric:  there exist only six independent components of this tensor for space 

of three dimensions.  Because specification of a quadric surface, introduced in section 5.102, 

requires, after linear terms are eliminated by a translation of axes, six independent parameters in a 

reduced form, such as coefficients a, b, ... f in

( )g , ,x y z   =   =  +  +  +  +  + a x
2

b y
2

c z
2

d x y e x z f y z 1 ,

a surface for which a defining equation is expressible equivalently as
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represents uniquely any symmetric tensor of rank two.  An example of a quantity that has a 

character of a symmetric tensor is the moment of inertia of a rotating body, even a rotating 



molecule. 

     A real symmetric tensor can provably be diagonalized with real eigenvalues; a procedure, 

called transformation to principal axes, for this purpose is identical to that of diagonalizing an 

hermitian or self-adjoint matrix.  If a tensor be neither symmetric nor skew symmetric, a given 

tensor can be invariably written as a sum of a symmetric tensor and a skew symmetric tensor.  A 

sum or difference of two or more tensors of the same rank and type is another tensor of the same 

rank and type. A tensor of second rank, possessing the form of a matrix, operates on a vector to 

yield another vector, such as is shown in the matrix of transformation above, whereas a tensor of 

third rank operates on a vector to yield a tensor of second rank. 

     As discussed above, a dyadic, which is a direct or outer product of two vectors, possesses 

elements the location of which within an array depends upon two indices that specify directions; 

such a mathematical object is an instance of a tensor of second rank that is represented by a matrix 

of third order.  A tensor is characterized by its rank or order, the latter of which is distinct from 

order of a matrix:  a tensor of which a matrix of order three is representative has rank two.  A 

tensor of rank r in a space of d dimensions has d
r
 elements.  A tensor of rank N having 

components along cartesian axes in three-dimensional space corresponds to an array containing 3
N
 

numbers, but this array implies extension in N dimensions.  An essential property of a tensor is a 

way that its components, referred to one system of coordinates, are related to its components in 

another system, according to a law of transformation, as distinct from an array or matrix of which 

elements might take arbitrary values.  Recalling a link between a tensor of rank two, that one can 

represent as a matrix of order three, and a dyadic, we describe a cartesian tensor T of  rank two 

with respect to a particular system of cartesian coordinates x, y, z, with unit vectors respectively i, j

, k, as follows,  

   T  =   



















t ,x x t ,x y t ,x z

t ,y x t ,y y t ,y z

t ,z x t ,z y t ,z z

or

      T  =        t ,x x i i  +  t ,x y i j   +   t ,x z i k

                     +  t ,y x j i   +  t ,y y j j   +   t ,y z j k    

                               +  t ,z x k i  +  t ,z y k j   +  t ,z z k k      

in which i i , i j et cetera are dyads corresponding to direct or outer products of unit vectors i, j et 

cetera.        

     A cartesian tensor T of rank three is expressible as three matrices in a stack; each matrix is 

square and of order three, and in each an element has three indices or subscripts, such as t , ,x x x; a 

corresponding expression in terms of unit vectors contains triadics i i i, i i j, i j k et cetera, with 

analogous expressions for tensors of greater order.  

     When a tensor represents a property of a system in which axes are not necessarily orthogonal, 

as occurs not only in relation to physical relativity, for instance, but also to crystals of monoclinic 

and triclinic classes, considerable complication arises because, although only two indices are 

required for a tensor of second rank, there are four combinations of their placement according to 

which a tensor can become subclassified as contravariant or covariant or mixed; here we avoid 



such complication. 

     Scalar products of basis vectors a i . a j occur in various formulae; for computational purposes 

these products have greater utility than either the vectors themselves or angles between them.  A 

scalar quantity g ,i j  =   a i . a j becomes a component of a metric tensor, of second rank, in which 

metric implies that this tensor pertains to properties of measurement of a space; these scalar 

quantities contain information about the lengths of basis vectors and the angles between them, and 

their description as a tensor element implies properties of transformation from basis vectors in one 

set to those in another.  This metric tensor is symmetric:  with three physical dimensions, only six 

independent components of this tensor exist. 

     When vectorial operator Del  is applied to a vectorial function in three spatial dimensions, the 

result is a tensor of second rank, as an axial or pseudovector.  For vector function F with cartesian 

components, an expression of vector product Del xF =  G as a tensor, alternative to that presented 

above in the material on vector calculus, is 

Del x F =  ( i 
∂

∂

x
 + j 

∂

∂

y
 + k 

∂

∂

z
 ) ( i Fx  +  j Fy + k Fz )

=  i i 
∂

∂

x
Fx  +  i j 

∂

∂

x
Fy  +  i k 

∂

∂

x
Fz  

+ j i 
∂

∂

y
Fx  +  j j 

∂

∂

y
Fy  +  j k 

∂

∂

y
Fz  

+ k i 
∂

∂

z
Fx  +  k j 

∂

∂

z
Fy  + k  k 

∂

∂

z
Fz

As a cartesian tensor of second rank, G has thus nine components:   = Gxx ∂

∂

x
Fx,  = Gxy ∂

∂

x
Fy, et 

cetera.  Operating twice with Del to the left of a vector,  Del x Del x F generates a tensor of third 

rank with 27 components as ,Gxxx Gxxy, et cetera to denote the corresponding third derivatives.

     In chemistry, calculations of moments of inertia, molecular electric polarisability or electric 

quadrupolar moment involve properties of type tensor of rank two that can be represented with a 

matrix of order three, the trace of which is invariant under rotation of axes; an inertial tensor 

expresses a response, to a torque, of a molecule that has access to discrete rotational states 

whereas a polarisability tensor expresses a response of a molecule to an applied electric field.  

Like operations with matrices, the sum or difference of two or more tensors of the same rank and 

type is a further tensor of the same rank and type.  A key problem is that a coordinate system that 

serves to define other molecular properties might yield a polarisability matrix of non-diagonal 

form:  conventional practice is to reorient axes, according to a linear transformation that yields a 

property matrix in diagonal form; such a transformation to principal axes is achieved on using 

eigenvectors of a property matrix to define coordinates according to a new system.  Electric 

dipolar moment behaves simply like a vector, which is a tensor of rank one as each component of 

dipolar moment involves only one direction, whereas electric octupolar moment or first electric 

hyperpolarisability, each of which is a property depending upon three directions, is defined in 

terms of a tensor of rank three that is represented by matrices in stacks or layers, with indices for 

row, column and layer; for completeness, a scalar is formally considered to be a tensor of rank 



zero, as it is represented by a matrix 1 x 1, involves zero indices, and is invariant under rotation of 

coordinates.  A molecular property of type tensor implies a multilinear function invariant to 

changes of coordinates; the most important property of a tensor is that its magnitude remains 

unaltered under some transformation of a measuring scale or frame, although its components vary 

with such a transformation.   Components of a tensor of rank two, such as an inertial tensor of a 

molecule or molecular dipolar electric polarizability, are commonly represented in matrix form.  

Whereas a tensor of rank two is invariably expressible in matrix form, the elements of a general 

matrix need not transform in the same way as the components of a tensor.  A cartesian tensor is 

based on coordinate axes in an orthonormal set.  As a tensor of rank zero, a scalar quantity has no 

subscript or superscript, whereas a component of a polar vector as a tensor of first rank requires 

one subscript, or, in a less common depiction, one superscript; an axial vector, which arises as a 

result of a vector or cross product of two polar vectors, is, however, an antisymmetric tensor of 

second rank, as explained below.  A component of a cartesian tensor of second rank requires in 

total two subscripts and is called covariant, or two superscripts and called contravariant, or one 

subscript and one superscript and called mixed, and can be represented with a matrix.  As, for 

instance, the non-linear optical properties of crystals depend on first electric hyperpolarizability, 

which is a tensor of rank three, such quantities have chemical relevance.  Among chemical and 

physical topics and properties of crystals susceptible to analysis according to tensor methods are 

diamagnetic and paramagnetic susceptibility, relative permittivity, double refraction, elasticity, 

electric conductivity, electric polarization, ferroelectricity, optical activity, photoelasticity, 

piezoelectricity and pyroelectricity, pyromagnetism, stress and strain, thermal conductivity and 

thermal expansion.  If the conductance tensor for a crystal were not symmetric, the electric 

conduction in crystals of low symmetry would follow a spiral path.  In analytical chemistry, an 

example of a tensor arises in the fluorescence spectrum of a sample comprising a mixture of 

emitting compounds, so that the measured intensity of fluorescent emission depends on the 

compound, the wave length of excitation and the wave length of emission, so represented with a 

tensor of order three; the chemical shift of a particular nucleus in a solid or oriented sample such 

as a liquid crystal is represented with a tensor of order two. 

     The electric dipolar moment p of a molecule in a space of three dimensions depends on 

strength of electric field; we write this moment as a sum of its contributions of various orders:

p   =   p 
(0)

  +   p 
(1)

  +  p 
(2)

  +  p 
(3)

  +   ...

in which p 
(0)

 is the permanent electric moment, a vector or a tensor of first rank.  We express 

further terms in a power series,

p   =   p 
(0)

  +  α . E   +  
1

2
  β : E E  +  

1

6
 γ :: E E E  +  ...

in which α that is a tensor of second rank and has the form of a matrix of order three is electric 

dipolar polarisability that produces a contribution to induced dipolar moment linear in strength E 

of electric field, β that is a tensor of third rank and has the form of three matrices, each of order 

three, in a stack is first electric dipolar hyperpolarisability that produces a contribution to induced 

dipolar moment quadratic in strength of electric field, γ that is a tensor of fourth rank is second 

electric dipolar hyperpolarisability that produces a contribution to induced dipolar moment cubic 

in strength of electric field, and so forth.  A quantity E E implies an outer product of vector E with 



itself, and E E E analogously.  We express explicitly the sums for each contribution, for each 

component:

p i 
(1)

   =  ∑
j

α ,i j Ej

 p i 
(2)

  =  ∑
j









∑

k

β , ,i j k Ej Ek

p i 
(3)

  =  ∑
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∑
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γ , , ,i j k l Ej Ek El

     In a particular case of a tensor α for electric polarisability that relates the electric dipolar 

moment p induced in a molecule to an externally applied electric field E as described above, we 

express that dipolar moment as  
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Ex
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  .

Knowing the values of the nine components of this tensor α, one can calculate the polarization in a 

particular direction when an electric field is applied in any direction.  The induced dipolar moment 

is exactly parallel to that applied field for a field applied along one of three directions that become 

the principal axes of the tensor.   The three components of α along these directions are the 

principal components of the polarisability tensor, and define radii of a polarisability ellipsoid that 

describes how the polarisability varies as the molecule rotates; the radius of this ellipsoid in any 

direction specifies the magnitude of the dipolar moment when an electric field is applied in that 

direction.  A tensor is decomposible into irreducible components according to their weights, which 

are orders of an associated Legendre polynomial in a spherical system.  The properties of a tensor 

of second rank, such as that for polarisabililty, in relation to symmetry are the isotropic 

polarisability, 

 +  + α ,x x α ,y y α ,z z

3
, 

three measures of anisotropy,

 
 − α ,x y α ,y x

2
,     

 − α ,x z α ,z x

2
    and    

 − α ,y z α ,z y

2
 

 and five symmetric components,

 
 + α ,x y α ,y x

2
, 

 + α ,x z α ,z x

2
, 

 + α ,y z α ,z y

2
, 

 − α ,x x α ,y y

2
 ,  − α ,z z

 +  + α ,x x α ,y y α ,z z

3
  ;

terms in these three sets or representations are hence a scalar, an axial vector and a traceless 

symmetric tensor of second rank, with weights  = j 0, 1 and 2 with  + 2 j 1 components respectively, 

corresponding to theory for angular momentum.  

     A linear molecule has only two principal components α|| and α_|_ that are respectively parallel 

and perpendicular to the internuclear axis and that in general depend on the quantum state of that 

molecule; the isotropic polarisability is accordingly



  = α
 + α|| 2 α_|_

3
 

and the anisotropy is 

 = ∆ α  − α|| α_|_

     If T ,m n =  −T ,n m, a tensor of rank two is skew, skew symmetric or antisymmetric; this condition 

implies that diagonal elements are zero and thus that only three independent components require 

evaluation.  An axial vector or pseudovector is hence describable as an antisymmetric tensor of 

rank two; an antisymmetric tensor can represent an axial or pseudovector in only three spatial 

dimensions, and then only in rectangular components.  An antisymmetric tensor of rank two is 

characterized by three independent quantities as components, such as , ,T ,x y T ,y z T ,z x; an axial 

vector or pseudovector A can be associated with such a tensor according to relations

Ax  =  −T ,y z  ,   = Ay −T ,x z  ,   = Az −T ,x y

or explicitly

 



















0 −Az Ay

Az 0 −Ax

−Ay Ax 0

 

A property of a tensor being symmetric or antisymmetric is unaltered upon transformation of that 

tensor from one system of coordinate axes to another.  

     A quantity that conforms to this description is density B of magnetic flux, with components (

, ,Bx By Bz), for which an explicit correspondence is  

  axial vector  B  =   



















Bx

By

Bz

      -->      B  =   



















0 −Bz By

Bz 0 −Bx

−By Bx 0

  skew symmetric tensor

or its transpose, which is equivalent to the preceding general case with particular values of 

components T ,i j.   Although this tensor of second rank for density of magnetic flux is evidently 

represented by a matrix of third order, one can represent a tensor, also of second rank and 

antisymmetric, for the electromagnetic field -- hence including both electric and magnetic 

components -- with a matrix of fourth order, 
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or its transpose, in which c denotes the speed of electromagnetic radiation in free space.  A tensor 

representing a real physical property need thus not necessarily be represented by only a vector in 



three dimensions or a matrix of third order.  

     A vectorial or cross product of two polar vectors is representable as a scalar product of an 

antisymmetric tensor of rank two and a polar vector; the result of such a cross product is an axial 

vector.  A distinction between polar and axial vector is important in relation to properties of 

transformation of these vectors; for instance, a polar vector changes sign upon inversion through 

the origin of coordinates in a cartesian system as the sign of each component is changed, whereas 

an axial vector remains unchanged upon such inversion, according to the property of the skew 

symmetric tensor shown above.  The cross product of two polar vectors is an axial vector, the 

cross product of an axial vector and a polar vector is a polar vector, and the cross product of two 

axial vectors is an axial vector.  The scalar product of a polar vector and an axial vector, which 

changes sign upon the same inversion, is called a pseudo scalar; a triple scalar product of polar 

vectors is an example of such a pseudo scalar.  In contrast, the scalar product of two axial vectors 

is a scalar that retains its sign under inversion, just as a scalar product of two polar vectors is a 

scalar quantity.  Axial vectors, in either vectorial or tensorial form, hence serve to represent 

quantities associated with rotation, for which purpose an axial vector has a screw sense with its 

magnitude and its direction according to the axis of rotation.

     For situations in which the interest lies in the transformation of a tensor under a rotation, one 

works preferably with spherical rather than cartesian tensors.  We denote a spherical tensor with 

two indices, but here one subscript and one superscript, as Tm

l
 in which index m adopts  + 2 l 1 

values from −l, −  + l 1, ... , +  − l 1, +l.  The components of a spherical tensor are simply the 

cartesian components in particular combinations.  For instance, for a tensor of first rank, or vector, 

with cartesian components , ,Tx Ty Tz, the components of the spherical tensor are conventionally 

  T1

1
  = −

1

2
 (  + Tx i Ty ) 

T0

1
  =  Tz

T−1

1
  = 

1

2
 (  − Tx i Ty )

in which direction z is taken as the special axis of rotation and  = i −1 .  For a cartesian tensor of 

second rank, the irreducible components of the spherical tensor have , , = l 0 1 2, of which each has 

 + 2 l 1 components, thus accounting for the nine components of the cartesian tensor.  One 

decomposes an arbitrary cartesian tensor T of second rank into these nine irreducible components 

of the corresponding spherical tensor:

T0

0
  =  −

1

3
  (  +  + T ,x x T ,y y T ,z z )

T0

1
  =  

i

2
  (  − T ,x y T ,y x )

T1

1
  =  

 −  + T ,z x T ,x z i ( ) − T ,x y T ,y x

2



     T−1

1
  =  

 −  − T ,z x T ,x z i ( ) − T ,x y T ,y x

2

T0

2
  =  

 −  − 2 T ,z z T ,x x T ,y y

6

T1

2
  =  

−( ) +  + T ,z x T ,x z i ( ) + T ,y z T ,z y

2

T−1

2
  =  

 +  − T ,z x T ,x z i ( ) + T ,y z T ,z y

2

T2

2
  =  

 −  + T ,x x T ,y y i ( ) + T ,x y T ,y x

2

T−2

2
  =  

 −  − T ,x x T ,y y i ( ) + T ,x y T ,y x

2

     A pseudo-tensor is an quantity of which formulae for transformation involve square roots of 

matrix determinants rather than the common rules; mathematical applications of these quantities 

exist in differential geometry, which is the study of geometry according to methods of calculus -- 

for instance to evaluate the area of a surface, and in connection with Fourier integral operators, 

and in physics in the properties of deformed solid objects or in general relativity. 

     Maple provides a specific package tensor to manipulate general tensorial quantities, designed 

to facilitate calculations in general relativity; for many chemical applications that involve typically 

tensors of rank two -- or less, we can instead, for simplicity, apply matrix, or vectorial, operations; 

another package physics provides further facilities to work with tensors.  An arbitrary square 

matrix of order three does not necessarily represent a tensor of rank two:  to be such an object, a 

matrix must have elements that are defined in terms of a relation with an underlying spatial 

geometry.  We employ Maple to construct a Matrix according to package LinearAlgebra to 

represent properties of a mathematical object that transforms as a tensor of rank two in chemical 

systems, whereas an Array according to package LinearAlgebra, or an array according to 

package linalg, might serve to represent a tensor of greater rank.   Many applications of tensors 

of rank two that pertain to systems of orthogonal coordinates can be implemented with commands 

involving operations on matrices. 

spreadsheet  

          As an invention that originates in this era of an electronic digital computer, a spreadsheet 

lacks a traditional arithmetical or mathematical counterpart, apart from resemblance to a static 

ledger or similar document for accounting.  On examining how a spreadsheet functions, one 

observes that many operations that it facilitates resemble those on a list, vector or a matrix, but 

one executes these operations without explicit reference to formal constructs of linear algebra.  A 

spreadsheet represents a convenient, if implicit, means to work with lists, arrays, vectors and 

matrices that might contain not only numeric quantities but also algebraic expressions, or their 

combinations, consistent with general symbolic capabilities of Maple.  

     Linear algebra is thus a branch of mathematics concerned with linear equations, matrices, 

determinants, vectors, vectorial spaces, eigenvectors, tensors, vector fields and related topics.  All 



these abstract mathematical objects have important roles in a chemical context:  for instance, in 

relation to absorption spectra of a liquid solution that becomes a problem central to analytical 

chemistry for quantitative characterization of that solution, matrix methods are efficient.  Building 

quantitative models in physical chemistry, such as a treatment of nuclear vibrations in relation to a 

discussion of infrared and Raman spectra or the motions of electrons in a molecule, likewise 

benefits from concise and powerful notation in terms of matrix, vectorial and tensorial quantities.  

An application of vectorial properties arises, for instance, in associating an electric dipolar 

moment with each conventional bond, or link between adjacent atoms, in a molecule; with vector 

summation of such postulated bond dipoles, one estimates a total molecular electric dipolar 

moment.    

     In discussing these topics we generally employ Maple's packages  LinearAlgebra and 

VectorCalculus that have features additional to obsolescent package linalg; extensions 

and additional features made available in LinearAlgebra affect no underlying principle but 

facilitate an application of matrices, vectors and tensors, especially for fully numerical operations 

through embedded procedures (supplied by Numerical Algorithms Group) and invoked within 

Maple transparently to a user.  As after Maple release 8, package capabilities of linalg  are 

essentially duplicated in packages  LinearAlgebra and VectorCalculus, we employ only 

the latter packages; for work with symbolic matrices and vectors, package linalg might provide 

advantages in some applications, because by default elements of a matrix or components of a 

vector are symbolic with package linalg but zero with package LinearAlgebra, but general 

use of obsolescent package linalg is otherwise deprecated.  Structures in package linalg are 

based on a table, whereas structures in these subsequent packages are based on rtable or 

rectangular table.  For calculations in general relativity, Maple package tensor still employs 

operations from package linalg.   These topics and their applications we treat in this chapter.  

references C. A. Hollingsworth, Vectors, Matrices and Group Theory for Scientists and Engineers

, McGraw-Hill, New York USA, 1967

                 D. D. Fitts, Vector Analysis in Chemistry, McGraw-Hill, New York USA

  summary of chapter 6

     In this chapter our concern is to establish key constructs of linear algebra -- matrix, 

determinant, vector, dyad, dyadic and tensor -- and the calculus of vectors.  Of special interest are 

ways to combine such objects of the same and other kinds, and how their associated properties 

relate to chemical applications.  In subsequent chapters we discern that the eigenvalue problem, 

which requires a detailed understanding of interlinked properties of vectors, determinants and 

matrices, forms a foundation to model electronic and vibrational processes of great importance in 

physical chemistry.  A concept of dual vectors, used to establish a concept of reciprocal space, 

underpins understanding of structure of a crystalline chemical compound.  A spreadsheet, which, 

apart from being a display of tabular matter of convenient format, is an array of special form, 

renders great service in many chemical applications through their structure and properties; we 

apply an unique feature of a Maple spreadsheet -- a capability of symbolic operations -- in 

subsequent chapters.

 chapter 7   Differential  and  integral  equations 



  7.0  overview and principles  

Science is a differential equation.

                             Alan Turing

      A differential equation is an equation that involves one or more independent variables, their 

known and unknown functions or formulae and their derivatives of finite number.  An ordinary 

differential equation is a differential equation in a single independent variable, such as this one 

with dependent variable y denoting distance as a function of time t as its only independent 

variable,

 = 
d

d
2

t
2

( )y t ( )y t ( )cos t

whereas a partial-differential equation involves multiple independent variables and partial 

derivatives of an unknown function or formula with respect to those variables, such as this one 

with a derivative of unknown formula ( )f ,x y  of spatial coordinates in two dimensions with 

respect to two spatial variables x and y,

 = 
∂ ∂

∂2

y x
( )f ,x y c ( )f ,x y

To solve a differential equation, we must find a formula or function for which the equation is true; 

we must thus manipulate the differential equation so as to eliminate all derivatives, leaving a 

relation between independent and dependent variables.  Differential equations have their origin in 

geometric and physical problems, and, just like other equations, they occur also in systems -- 

multiple equations involving the same independent and dependent variables and their derivatives; 

systems of ordinary differential equations have thus only a single independent variable and 

systems of partial-differential equations have multiple independent variables.  

     An integral equation likewise involves a solution for an unknown formula that occurs within an 

integrand, such as ( )x t  in this definite integral,

 = d
⌠

⌡


0

a

( )x t
2

t t

There exist also integro-differential equations that contain both derivatives and integrals.  All such 

equations are each a special case of an operator equation because it contains a differential operator 

or an integration.  A differential equation can be invariably reformulated as an integral equation, 

but the converse is not necessarily true.  Finding an exact algebraic solution to a differential or 

integral equation occurring in a chemical context is likely to be an exception rather than a rule, but 

a symbolic computation with Maple maximizes a chance of success with exact methods, and 

facilitates an application of approximate methods, apart from purely numeric approaches for 

which Maple also caters.  

differential equation  

     Poincare described the study of differential equations to have both qualitative and quantitative 

aspects; we here consider both, and naturally emphasize the latter in subsequent sections involving 

direct calculations.  We customarily consider a derivative in a context of calculus to be a 



differential operator 
∂

∂

x
 operating on a variable such as y that depends on variable x, rather than as 

a ratio of differential quantities, such as 
dy

dx
, also introduced in chapter 3.  According to an 

extended development of calculus, we separate numerator and denominator, to become differential 

quantities such as dy and dx, to opposite sides of an equality sign for instance, and handle each 

quantity separately; for this purpose we describe applications in chapters 3 and 5; in the same way, 

we employ properties of a differential to guide us to solve differential and integral equations that 

we treat in this chapter.  The order of a differential equation is that of the highest derivative 

appearing in that equation; the degree of the differential equation equals the greatest power of the 

function to be evaluated or its derivatives. 

To solve this differential equation, one looks at it until the solution occurs to one.

                                                      adapted from George Polya

     With advanced mathematical software such as Maple, no longer is Polya's dictum valid:  if no 

algebraic solution be found by Maple -- which is the likely case for a general differential equation 

because no such solution exist, a numerical solution is alternatively practicable, and this software 

caters for both possibilities.

ordinary differential equation 

     For a general ordinary differential equation of first order such as  = 
d

d

x
( )y x ( )f ,x y , or 

analogously for other order, a solution might exist providing that ( )f ,x y  is continuous and has a 

single value over a region of points ( ,x y), and that 
∂

∂

x
( )f ,x y  exists and is continuous at all points 

in that region.  The solution or integral of a differential equation is defined as a set of all formulae 

of which the derivatives satisfy identically that differential equation.  The general solution of a 

differential equation contains arbitrary constants, equivalent to constants of integration for an 

indefinite integral, that number the same as the order of that differential equation, but such a 

general solution might not contain all possible solutions. A particular solution contains no 

arbitrary constant, like the result of evaluating a definite integral, and might result from the 

application of initial values or boundary conditions of sufficient number, or under other 

conditions.  

     The general solution of a linear ordinary differential equation of order n having a form 

 = ( )Ln y ( )g x  is hence a sum of the homogeneous solution or complementary function ( )yh x  and 

any particular solution ( )yp x .  A solution of a differential equation is called singular if it be 

unobtainable from the general solution according to the choice of a particular parameter.  The 

graphical representation of a differential equation of order n comprises curves in a family with n 

parameters; each family of curves has, conversely, its differential equations.  A particular solution 

corresponds to one curve among the family of curves, which is described as the curve of a solution 

or an integral curve.  A differential equation of first order determines, at each point ( ,x y) of the 

domain of definition of the function, the direction  = 
d

d

x
( )y x ( )tan θ  of the curve through this point 



and included in a curve of the family of the general solution of the differential equation 

 = 








f , ,x y

d

d

x
( )y x 0 or  = 

d

d

x
( )y x ( )f ,x y .  Three values ( , ,x y

d

d

x
( )y x ) in a set define one line 

element of a curve of a solution set; all line elements produce a direction field according to the 

coordinates in a cartesian system.  The family of curves of a solution set includes all curves of 

which the directions at each point correspond to the direction field.  Lines connecting all points 

with the same direction of the line elements are called isoclines, for which  = 
d

d

x
( )y x constant; for 

the nullcline the slope is zero.  A differential equation of second order determines both the 

direction and the curvature of arc elements at each point of the domain of definition.  A trajectory 

is a curve that intersects each curve of a family exactly once; if the intersection occur at angle 
π

2
 

rad, the trajectory is orthogonal. 

     A differential equation contains a derivative of some order, for instance appearing in a form 
dy

dx
 

or 
∂

∂

x
y or even y' for a derivative of first order of dependent variable y with respect to independent 

variable x; a derivative with respect to time, such as a velocity or speed  = 
dx

dt ∂

∂

t
x, might 

alternatively be expressed as x
.
 as in Newton's own notation, with hence a point directly above the 

symbol (which is difficult to represent here).  Derivatives of greater order might accordingly be 

expressed as 
∂

∂2

x
2

y = y", or for acceleration as  
.
x

.
 with two points directly above the symbol to 

signify a second derivative with respect to time, or 
∂

∂3

x
3

y = y"' for a third derivative, 
∂

∂4

x
4

y = y
(4)

 for 

a fourth derivative, et cetera, but, for recognition in a Maple command for differential equations, 

the dependence on a particular independent variable must be explicit, as in 
d

d

x
( )y x , and 

analogously for other derivatives.  A standard form for a differential equation contains typically 

the derivatives of the dependent variable for an ordinary differential equation, or dependent 

variables in the case of a partial-differential equation, appearing on the left side of an equality in 

descending order of derivative from left to right, with any other terms containing the dependent 

variable and other terms of the differential equation containing only the independent variable and 

constants on the right side of that equality, such as in 

 −  + 












∂

∂2

x
2

y ( ) + x
2

5










∂

∂

x
y ( ) + x

4
( )sin 4 x ( )y x  = e

( )−7 x
( )cos 2 x

The corresponding homogeneous differential equation, for which the left side containing all 

derivatives equals zero, might be described as normal over some finite interval if the coefficient of 

the derivative of greatest order, here 
∂

∂2

x
2

y, is never zero over that interval.  The formula on the 



right side of the equality might be described as a driving term or external source.  At any point of 

a curve of that function, the second derivative of a function is a measure of that function's 

concavity, which is related to -- but not the same as -- the curvature, the first derivative is a 

measure of the slope, and the zero derivative -- the function itself -- is a measure of its magnitude; 

the solution of that homogeneous equation, called an homogeneous solution, is thus a function of 

which a sum of the concavity multiplied by its coefficient in the differential equation plus the 

slope multiplied by its coefficient plus the magnitude multiplied by its coefficient must be zero.  

On any interval on which the ordinary homogeneous differential equation of order n is normal, as 

defined above, the solution as a vector space has n dimensions, so is hence finite; there exist n 

linearly independent solution vectors , , ,( )y1 x ( )y2 x ... ( )yn x .  For these n solutions over interval I, 

if the wronskian, explained below, differ from zero everywhere within that interval, these n 

solutions are linearly independent and form a basis of that space. 

     For a differential equation of first order, a typical notation might alternatively be  = 
∂

∂

x
y ( )f ,x y  

or y' = ( )f ,x y .  For only a differential equation of first order, the descriptor homogeneous implies 

that, for each real number a,  = ( )f ,a x a y a ( )f ,x y , or even just ( )f ,a x a y  = ( )f ,x y , or 

alternatively  = 
∂

∂

x
y









f

y

x
. 

     Consider these steps, in which a derivative results from differentiation of function  = y ( )F x  of 

one independent variable x, such that ( )f x  = F'(x).  We begin with a differential equation of first 

order containing a derivative to the left of an equality operator;   

   
dy

dx
  =  f(x)        

we separate the differential quantities within that quotient, one to each side of that operator,

     dy  =  f(x)  dx  

and integrate both sides, 

 d
⌠
⌡
 y  =  d

⌠
⌡
 ( )f x x

        y  =  d
⌠
⌡
 ( )f x x 

neglecting the constant of integration required for an indefinite integral.  A result of these four 

steps is the production of a relation between variable y on the left, dependent on x, and an 

indefinite integral on the right that we might in principle evaluate fully to yield ( )F x , according to 

methods described in chapter 4.  What we achieve formally here is to demonstrate that a solution 

of a differential equation of first order, present in the first step, appears in the fourth step to 

involve an indefinite integration of ( )f x  -- the derivative function of ( )F x .  As we note in chapter 

4, the solution of an indefinite integral, as in this fourth step, involves inclusion of a constant of 

integration:  solution of the original differential equation, present in the first step, likewise 

necessitates inclusion of a constant, to be evaluated.  That solution on an interval is a function 

 = y ( )F x  that satisfies identically the differential equation for all x on that interval.  In a general 

solution of a single differential equation the arbitrary constants number the same as the order of 



that differential equation, and subsidiary conditions known as initial conditions or boundary 

conditions are applied to eliminate some or all such constants for a particular chemical or physical 

problem; a particular solution might contain no such arbitrary constant.  A particular solution of a 

differential equation is any one solution, or the solution of the non-homogeneous differential 

equation that contains, beside derivatives and expressions containing the dependent variable, also 

terms with only the independent variable; the general solution of a differential equation comprises 

all solutions in a set.  The resolution of a general solution into the homogeneous and the particular 

solutions is a characteristic of a linear equation, both algebraic and differential.  A differential 

equation might have solutions of uncountable number, or only one solution, or no solution; for 

instance, differential equation  =  + 2










∂

∂

x
y

4

3 y
2 −5 must have no real solution for real function 

( )y x  because, under such a condtion, the left side must evaluate to a positive quantity whereas the 

right side is a purely negative quantity, independent of the magnitudes of the numerical 

coefficients that appear in this equation.  To test whether a formula  = y ( )f x  for a dependent 

variable be a solution of a differential equation, or to confirm whether a solution proffered by 

software or a table in a book is correct, that formula is simply inserted into the pertinent 

differential equation and the result simplified.  A differential equation given without initial values 

of dependent variables or without boundary conditions has in general multiple solutions, related to 

the presence of an arbitrary parameter in those solutions equivalent to an integration constant, but 

a proper substitution of that proposed solution into the differential equation and evaluation of the 

resulting expressions must eliminate that parameter or constant. 

     In a chemical context one has generally information to evaluate this constant:  for example, if 

we record a concentration of a compound or species over time in a sequence of intervals, we 

typically know its initial concentration.  One generally refers to such information as an initial 

value for the solution.  If subsidiary conditions be provided at multiple values of an independent 

variable, these conditions constitute boundary conditions. 

     A simple approach to obtain an exact algebraic solution of a differential equation of first order 

of form described as standard,   

         
∂

∂

x
y  =  ( )h ,x y        

yields a solution through direct integration only if function ( )h ,x y  has a factorisable form 

( )f x ( )g y  that enables separation of variables, in which case a substitution  = ( )h ,x y ( )f x ( )g y  and 

subsequent rearrangement yield a form 

 = d

⌠

⌡





1

( )g y
y d

⌠
⌡
 ( )f x x

For instance, in this simple case,

 = 
d

d

x
( )y x x e

( )−y

rearrangement yields



 = d
⌠

⌡
e

y
y d

⌠
⌡
x x

which has an obvious solution.  In all other cases, in which variables are inseparable in this way, 

such an ordinary differential equation might in general be solved through another method.  We 

express such an ordinary differential equation of first order also even more generally as 









G , ,y x

∂

∂

x
y  = constant, and analogously with further derivatives for an ordinary differential 

equation of greater order.  

     Similarly, for a more general differential equation of first order in one independent variable,

 =  + ( )g1 x










d

d

x
( )y x ( )g2 x ( )y x ( )f x

the corresponding homogeneous equation, 

 =  + ( )g1 x










d

d

x
( )y x ( )g2 x ( )y x 0

has a general solution 

 = ( )y1 x c e





















d
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⌡







−

( )g
2

x

( )g
1

x
x

as a single basis vector; the solution of the homogeneous equation contains the arbitrary constant.  

To solve the non-homogeneous equation we assume the solution to be a non-linear product of this 

general solution with unknown variable function ( )u x , 

 = ( )y x ( )u x ( )y1 x

such that we force a condition of linear independence between ( )y x  and ( )y1 x .  Substitution of this 

assumed solution into the original differential equation yields

 =  +  + ( )g1 x










d

d

x
( )u x ( )y1 x ( )g1 x ( )u x











d

d

x
( )y1 x ( )g2 x ( )u x ( )y1 x ( )f x .

Because ( )y1 x  is a solution of the homogeneous equation, the latter two terms on the left side of 

the equality vanish, leaving an equation first order in ( )u x ,

 = ( )g1 x










d

d

x
( )u x ( )y1 x ( )f x

that has as solution 

 = ( )u x d

⌠

⌡





( )f x

( )g1 x ( )y1 x
x

A particular solution of the non-homogeneous differential equation is thus

 = ( )yp x ( )y1 x d

⌠

⌡





( )f x

( )g1 x ( )y1 x
x

Defining a Green's function of first order as



 = ( )G1 ,x s
( )y1 x

( )g1 x ( )y1 x

we express that particular solution as

 = ( )yp x d
⌠

⌡
 ( )G1 ,x s ( )f x x,

which possesses a general utility in that an evaluation of this Green's function for a particular 

differential equation provides a solution that accommodates a driving or source function ( )f x  of 

any type.  In evaluating the latter integral, one should perform integration first with respect to s 

and then substitute x for s in the solution of that integral. 

     Differential equations, each of first order, with multiple dependent variables for a single 

independent variable such as time, comprise a system of simultaneous equations, having a form

 = 
∂

∂

t
x1 ( )f1 , , , , ,t x1 x2 x3 ... xn

 = 
∂

∂

t
x2 ( )f2 , , , , ,t x1 x2 x3 ... xn

...

 = 
∂

∂

t
xn ( )fn , , , , ,t x1 x2 x3 ... xn

in which the number of equations equals the number of dependent variables x1 ... xn. 

     Another differential equation, of first order and first degree and of type described as being in 

differential form,

 =  + ( )M ,x y dx ( )N ,x y dy 0,

as opposed to a standard form of the same content,

 = 
∂

∂

x
y −

( )M ,x y

( )N ,x y

is directly integrable if the left side be an exact differential, or if an integrating factor be deducible, 

as discussed in section 5.113 with examples.  For a differential equation of first order, an 

integrating factor ( )λ ,x y  such that 

( )λ ,x y ( ) + ( )M ,x y dx ( )N ,x y dy

becomes an exact differential, even though  + ( )M ,x y dx ( )N ,x y dy is not, invariably exists, but a 

general procedure to evaluate that factor is unknown.  For these three particular cases, an 

integrating factor is readily found.  If 

1

( )N ,x y
  =  
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y
( )( )λ ,x y ( )M ,x y
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x
( )( )λ ,x y ( )N ,x y ( )g x

in which ( )g x  is a function of only x, the integrating factor is 

 = ( )λ ,x y e

( )d
⌠
⌡
 ( )g x x

or if

1

( )M ,x y
  =  
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( )( )λ ,x y ( )M ,x y
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x
( )( )λ ,x y ( )N ,x y ( )h x



in which ( )h y  is a function of only y, the integrating factor is

  = ( )λ ,x y e

( )d
⌠
⌡
 ( )h y y

If  = ( )M ,x y y ( )f x y  and  = ( )N ,x y x ( )g x y , the integrating factor is

 = ( )λ ,x y
1

 − x ( )M ,x y y ( )N ,x y
 .

If independent variables number more than one and with partial derivatives of dependent variable 

with respect to them, a partial-differential equation might be separable into ordinary differential 

equations each involving only a single independent variable as an approach to a solution.  

     If a differential equation be expressible in a form  =  + ( )f1 x ( )g1 y dy ( )f2 x ( )g2 y dx 0, an 

integrating factor 
1

( )f2 x ( )g2 y
 reduces the preceding equation to a form 

( )f1 x

( )f2 x
 dx + 

( )g1 y

( )g2 y
 dy = 0, 

from which a primitive is obtained on integrating each term separately.   

     Differential equations either ordinary or partial- can be classified further as to order, whether 

they are linear, homogeneous, exact or autonomous, and whether they have constant coefficients et 

cetera; as an example of a linear homogeneous ordinary differential equation with constant 

coefficients, 

 =  +  − 












d

d
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x
2

( )y x c










d

d

x
( )y x ( )y x 0,

and we provide other examples with their solutions in ensuing sections.  The descriptor linear in 

these cases refers to the dependent variable, y in the above case; a product of that dependent 

variable or its derivatives with the independent variable or formulae thereof does not affect that 

linearity, whereas any term in a differential equation such as y










d

d

x
( )y x  or ( )y x

2
 or 

d

d

x
( )y x  

would make a differential equation non-linear.  In a linear differential equation, there thus appears 

neither a product of derivatives nor a product of a derivative with the dependent variable, nor does 

a derivative appear as an argument of a transcendental function.  For a linear differential equation 

of first order such as  =  + 










d

d

x
( )y x

x

( )y x
0, with an initial condition  = y  = x x

0
y0, we rewrite the 

equation as  =  + x dx y dy 0, which upon direct integration yields  =  + x
2

y
2

a, a constant such that 

 =  + x0

2
y0

2
a .  This solution corresponds to concentric circles of radius a , which is variable, 

and is alternatively expressed explicitly as y = + ( ) − a x
2











1

2

, so that y is doubly valued and also a 

function of constant a of integration.  A linear differential equation of second order has two 

distinct or linearly independent solutions, not proportional to one another.  For instance, for 

 =  + 












d

d
2

t
2

( )y t ω
2

( )y t 0, the complete or general solution is  = ( )y t  + α1 ( )y1 t α2 ( )y2 t  in which α1 

and α2 are arbitrary constant multiplicands, not zero, and subject to evaluation according to an 

initial value or boundary condition; the values of these parameters have no effect on the period 



2 π

ω
 of the oscillation of the mechanical system to which that differential equation pertains.  If a 

term be added to this equation, to yield  =  +  + 












d

d
2

t
2

( )y t ω
2

( )y t β y
2

0 for instance, the general 

form of solution of that non-linear equation can not take the form of the general solution above 

because a non-linear differential equation can not have linearly independent solutions; the period 

corresponding to this differential equation is a function of initial conditions, such that that period 

decreases with increasing initial amplitude y0. 

     Dimensional analysis is useful in many applications in chemistry and physics, including 

differential equations.  Regarding variable x as having dimension L
1
 and y dimension L

k
 for some 

unit L that is immaterial for the purpose, we take the dimension of 
∂

∂

x
y to have a dimension L

( ) − k 1

; hence 
y

x
k
 and 

∂

∂

x
y

x
( ) − k 1

 are both dimensionless, or pure numbers.  A term x
m

y
n
 has dimension 

L
( ) + m k n

, which corresponds to a weight  + m k n of that term; formulae such as e
u
 or ( )sin u  have 

zero weight when the weight of u is zero, but a weight is not assignable otherwise.  A differential 

equation is described as isobaric when all terms therein have the same weight for appropriately 

chosen weights of variables.  For instance, for an equation  =  + 2 x y dx ( ) − 2 x
2

3 y dy 0, the 

weights of terms in an expanded form are , + 2 k  + 2 k and 2 k; when  = k 2 all terms have weight 4.  

Dividing the original equation by  =  + 2 x
2

y 2 y ( ) − 2 x
2

3 y 6 y ( ) − x
2

y  thus converts it into an 

exact equation  =  + 
2 x dx

 − x
2

y

( ) − 2 x
2

3 y dy

y ( ) − x
2

y
0, which we integrate as  =  + d

⌠

⌡
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2 x
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y
x 3 d
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1

y
y c, 

with constant c.  A differential equation of first order and of form  = 








f , ,x y

∂

∂

x
y 0 might be 

simplified according to a point transformation of variables on introducing new variables 

 = u ( )g ,x y  and  = v ( )h ,x y  such that a point ( ,x y) in plane xy becomes transformed to a point ( ,u v) 

in plane uv, assuming that a jacobian that is a determinant of the derivatives,  ≠ 























∂
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x
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y
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0.  

In either case of an isobaric equation or a point transformation, Maple undertakes the 

corresponding operations to solve the equation if practicable.

     If there be no function of independent variable apart from the derivatives thereof, as above, a 

linear differential equation is homogeneous, otherwise non-homogeneous.   A particular case of 

such a linear differential equation arises when the coefficients of derivatives or dependent variable 

are only constants -- hence a homogeneous linear differential equation with constant coefficients.  



A differential operator D implies 
∂

∂

x
 ; we apply this operator, that Heaviside originated, in the 

solution of differential equations as follows.  With each linear differential equation that has 

constant coefficients, of form  = ( )( )φ D y ( )f x , there is associated an auxiliary equation that is 

simpler to solve because it contains no derivatives; this auxiliary equation is formed on replacing, 

in the homogeneous equation  = ( )( )φ D y 0, a first derivative D by λ, a second derivative D
2
 by λ

2
, 

and so forth, to form a polynomial in λ, of which the roots obtained on solving that polynomial set 

equal to zero become coefficients λj of x in terms of form e

( )λ
j

x

, and a linear combination of these 

terms constitutes the general solution.  For an auxiliary equation  = ( )φ λ 0 associated with a 

homogeneous linear differential equation  = ( )( )φ D y 0 containing constant coefficients, if 

 = ( )φ λ 0 have a real root λj of multiplicity k, a solution of the differential equation is 

( ) +  +  + c0 c1 x ... c  − k 1 x
( ) − k 1

e

( )λ
j

x

 , or if ( )φ λ  = 0 have complex conjugate roots in a couple λj = a 

+ b i each of multiplicity k, a solution of the differential equation is obtained from expanding into 

trigonometric form the complex exponent as 

( ) +  +  + c0 c1 x ... c  − k 1 x
( ) − k 1

( )cos b x e

( )λ
j

x

  +  ( ) +  +  + d0 d1 x ... d  − k 1 x
( ) − k 1

( )sin b x e

( )λ
j

x

; 

superposing all such solutions in both cases yields a general solution of the differential equation, 

as elaborated below.  

     In a context of finding a particular solution of a differential equation with the use of operator D 

when ( )f x  has a polynomial or exponential or sine or cosine form and sums or products of such 

terms, we convert  = ( )( )φ D y ( )f x  into  = ( )y x
1

( )φ D
 ( )f x ; as ( )φ D  that is a linear operator might 

contain a sum of contributions of form D, D
2
, ..., we regard the application of 

1

( )φ D
 through an 

expansion of the denominator into the numerator and the subsequent application of the 

contributions in that sum to ( )f x .  If ( )φ D  be simply D, we regard 
1

D
 as implying an integration 

d
⌠
⌡
 ( )f x x, and 

1

D
2
 as implying two integrations in sequence d

⌠
⌡
 d
⌠
⌡
 ( )f x x x, and so forth:  for 

instance, if  = ( )φ D D
2

( ) +  − 1 3 D D
2

, after transfer to the right side of the equality factor D
2
 

remains in the denominator, and  +  − 1 3 D D
2
 becomes expanded in the numerator there to 

 −  +  −  + 1 3 D 10 D
2

33 x
3

...; first the latter operations are applied to ( )f x  and then the other factor 

D
2
 is taken into account with integration twice of the result of the preceding operations.

      An order of a differential equation signifies the greatest order of derivative that appears 

therein, after the equation has been rationalized; a degree of a differential equation is equal to the 

greatest exponent or power of a derivative of greatest order:  for instance, a differential equation of 

form



 = 










d ( )y x

dx

2

( )y x    

has first order but second degree.  A differential equation of form 

 =  +  + 
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y 0

has order third and degree second, because after rationalization it contains a term 
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.  The 

solutions of a differential equation of order n are represented by curves filling a space of  + n 1 

dimensions; to describe the shape of such curves is the qualitative nature of the problem.   In a 

linear equation, there are no squares or products involving an independent variable and its 

derivatives; an unknown function ( )y x  and its derivatives 
d

n
( )y x

dx
n

  appear with coefficients 

possibly containing a function of independent variable x but with no function of dependent 

variable y or its product except with a constant:  such an equation has thus first degree in ( )y x ; a 

function of independent variable x might include terms in x
2
 or x to other powers, but with y to 

only the first power.  The differential equations in a system are linear if each equation is linear in 

dependent variables.  A linear equation is homogeneous if one can express it in a form such that 

unknown function ( )y x  and all its derivatives appear on the left side of an equality sign but only 

zero appears on the right side; the equation is otherwise inhomogeneous.  For an homogeneous 

differential equation of order n greater than unity, or for a system of n linear homogeneous 

differential equations, n solutions in linear combination -- sum or difference with coefficients to 

be evaluated -- also constitute a solution.  For an non-homogeneous differential equation, the 

general solution is a sum of the general solution of the corresponding homogeneous equation -- 

the complementary function or homogeneous solution -- and any solution of the non-homogeneous 

equation -- a particular integral.  Explicitly, for a non-homogeneous linear differential equation 

 = ( )( )φ D y ( )f x  containing constant coefficients, the associated homogeneous equation 

 = ( )( )φ D y 0 is called a homogeneous or complementary or reduced equation; a general solution 

 = ( )y x  + ( )yh x ( )yp x  of that non-homogeneous equation contains ( )yh x  that is a general solution of 

the associated homogeneous equation and ( )yp x  that is any particular solution of the entire 

differential equation.   

     An ordinary differential equation of second order, such as  = 
∂

∂2

t
2

x
f

m
, is invariably expressible 

as a system of two differential equations of first order, through a transformation 

, = v
∂

∂

t
x  = 

∂

∂2

t
2

x
∂

∂

t
v,

so that the two equations become  = v
∂

∂

t
x and  = 

∂

∂

t
v

f

m
 .  The order of differential equations in a 

system is a sum of orders of equations in that system; according to the preceding method of a 

reduction of the order, the differential equations in an arbitrary system of order n are expressible as 



n differential equations of first order in a corresponding system.  One can in principle hence 

express all ordinary differential equations and systems thereof in exactly a form of simultaneous 

linear differential equations in a system displayed above.  By regarding , , , ,x1 x2 x3 ... xn as 

components of a vector, we might consider such a system to represent a single vectorial 

differential equation.  This reduction of order is practicable for any linear differential equation, 

which becomes thereby equivalent to multiple equations of first order in a matrix system; the 

linear differential equations in a set, and with initial conditions, are also reducible to a system of 

equations of first order.

     In an autonomous differential equation, such as  = 
∂

∂

x
y ( )f y , independent variable, such as x, 

appears explicitly only in a derivative.  Such autonomous differential equations have the following 

properties:  

• if ( )u x  be a solution of that equation, ( )u  + x c  with a constant c is also a solution; 

• if ( )u x  be a solution of that equation and if 










∂

∂

x
u

 = x x
0

=  0 for some x0, ( )u x  is a constant 

solution; 

• a solution of that autonomous differential equation must be either constant or monotonically 

increasing or decreasing with increasing x, hence possessing no relative maximum or minimum 

or oscillatory behaviour; 

• if a solution remains bounded, it must be asymptotic to a constant solution.  

In chemical or physical terms, a solution represents either a growth or decay, or a constant that 

corresponds to an equilibrium state.  Such an equilibrium is either stable or unstable:  if a small 

displacement from a state of equilibrium cause a return to that equilibrium state, the equilibrium is 

stable, whereas a displacement, no matter how slight, from a state of unstable equilibrium causes a 

large departure from that state and an approach to a state of stable equilibrium, perhaps leading to 

oscillatory motion about the latter state.

     A solution of an ordinary differential equation of order n requires an equivalent of n 

integrations, each of which generates a constant of integration; an evaluation of these constants 

requires further information about the system, such as initial conditions or boundary values of 

variables.  A linear differential equation of second order hence requires two integrations, each 

generating a constant; there are two linearly independent solutions of which a general solution is a 

linear combination thereof and that form a basis of solutions:  if ( )y1 x  and ( )y2 x  are the 

independent solutions of a differential equation of homogeneous linear type, a general solution is 

 + A ( )y1 x B ( )y2 x  in which A and B are arbitrary parameters or constants.  

     For this linear differential equation of order n, 

 =  +  +  +  + ( )an x
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x
y ( )a0 x y ( )f x   

( )f x  and coefficients ( )aj x , , , , , = j 0 1 2 ... n, depend only on independent variable x, hence on 

neither y nor a derivative of y.  If  = ( )f x 0, this differential equation is homogeneous, otherwise 



non-homogeneous.  If all ( )aj x  be constants -- i.e. containing neither x nor y, the differential 

equation has constant coefficients; otherwise it has variable coefficients.         

     For such a differential equation, there are typically initial conditions applicable to its solution.  

If there be n initial conditions of form such that values of the unknown formula or function ( )y x  

and its derivatives are given at point x0,

, , = ( )y x  = x x
0

c0  = 
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( )y x

 = x x
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c1  = 
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( )y x
 = x x

0

c2, ... ,  = 
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x
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( )y x
 = x x

0

c  − n 1

if ( )f x  and all coefficients ( )aj x , , , , = j 0 1 2 ... , be continuous on some interval containing x0, and 

if  ≠ ( )an x 0 on that interval, the initial-value problem specified by these relations has a single and 

unique solution defined throughout that interval.  When the above conditions hold, we reduce the 

differential equation by dividing by ( )an x  to obtain

 =  +  +  +  + 
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x
y ( )b0 x y ( )g x

in which  = 
( )aj x

( )an x
( )bj x , , , , = j 0 1 2 ... , and  = 

( )f x

( )an x
( )g x .  By defining a differential operator ( )Ln y  

such that 

( )Ln y  =  +  +  +  + 
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we express the linear differential equation of order n as  = ( )Ln ( )y x ( )g x  to exhibit the explicit 

dependent variable, with its corresponding linear homogeneous differential equation  = ( )Ln ( )y x 0 

that has invariably n linearly independent solutions.  Representing these solutions in a set as {

, , ,( )y1 x ( )y2 x ... ( )yn x }, the general solution of this homogeneous equation  = ( )Ln y 0 is

 = ( )yh x  +  +  + c1 ( )y1 x c2 ( )y2 x ... cn ( )yn x

in which coefficients , , ,c1 c2 ... cn denote arbitrary constants.   According to the principle of 

superposition, if , , ,( )y1 x ( )y2 x ... ( )yn x  be separately solutions of a homogeneous linear differential 

equation, any linear combination thereof is likewise a solution, because the differential operator 

( )Ln y  for such an equation is a linear operator.  If , , ,( )y1 x ( )y2 x ... ( )yn x  be, separately, both 

solutions of a homogeneous linear differential equation of number equal to the order of the 

equation and linearly independent, their linear combination constitutes a general solution of that 

equation. 

     The wronskian of formulae or functions in a set { }, , ,( )w1 x ( )w2 x ... ( )wn x  on an interval  ≤ x1 x 

<  x2, for which each ( )wj x  possesses  − n 1 derivatives on this interval, is a determinant



( )W , , ,w1 w2 ... wn   =  
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∂
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∂
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∂
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∂
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x
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with a property that, if  ≠ ( )W , , ,w1 w2 ... wn 0 for at least one point on that interval, the functions or 

formulae in that set are linearly independent there.  If the wronskian be identically zero and if 

formulae ( )wj x  be not known to be solutions of the same linear differential equation, one must test 

directly for linear dependence -- whether 

 +  +  + c1 ( )y1 x c2 ( )y2 x ... cn ( )yn x  = 0

is satisfied for constants cj in some set provided that not all  = cj 0.  For instance, for homogeneous 

linear differential equation  =  + 












d
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( )y x ( )y x 0, two solutions, or solution vectors, are 

 = ( )y1 x ( )cos x  and  = ( )y2 x ( )sin x ; the wronskian is

















( )cos x ( )sin x

d

d

x
( )cos x

d

d

x
( )sin x

which evaluates to  + ( )cos x
2

( )sin x
2
 that is nowhere zero.  For that reason and because the 

differential equation is normal because the coefficient of the second derivative is unity, the two 

functions considered as vectors form a basis for the solution space of that equation, according to a 

set { },( )cos x ( )sin x , and the general solution is  = ( )y x  + c1 ( )cos x c2 ( )sin x .  An alternative 

solution, proferred in Maple's output, is the basis { },e
( )i x

e
( )−i x

 of which the two functions as 

vectors are linearly independent, but the two basis sets are linearly dependent because each of 

( )sin x  or ( )cos x  is expressible according to Euler's relations.  

     For a general linear homogeneous differential equation of second order with non-constant 

coefficients,

 =  +  + 
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( )y x ( )q x ( )y x 0

the general solution is a sum of two linearly independent functions, such as ( )u x  and ( )v x , of 

form,

 = ( )y x  + c1 ( )u x c2 ( )v x .

The wronskian is the determinant of this matrix,

 = ( )W x
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d
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( )v x

which equals  − ( )u x










d

d

x
( )v x ( )v x











d

d

x
( )u x .  If we differentiate that wronskian, we obtain
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Substituting each solution separately into the original differential equation yields

 = 
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x
2

( )u x −  − ( )p x
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( )u x ( )q x ( )u x

and

 = 
d
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x
2

( )v x −  − ( )p x
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x
( )v x ( )q x ( )v x

Substituting those results into the derivative of the wronskian yields

 = 
d

d

x
( )W x ( )p x
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( )u x

of which the right side is just − ( )p x  multiplied by the wronskian.  The derivative of the wronskian 

is hence equal to − ( )p x  multiplied by the wronskian,

  = 
∂

∂

x
( )W ,x y − ( )p x ( )W ,x y  ;

of which the solution is

 = ( )W x c e

( )d
⌠
⌡
− ( )p x x

in which appears c as an arbitrary constant of integration as a pre-exponential factor coefficient of 

an exponential function of an indefinite integral.  If the original differential equation of second 

order lack a term in a first derivative, so that  = ( )p x 0, the wronskian hence takes a value zero, if 

the solutions ( )u x  and ( )v x  be linearly dependent, or a positive or negative constant, if those 

solutions be linearly independent.  If  ≠ ( )p x 0, the wronskian has a fixed sign for x between two 

adjacent singularities; for instance, if  = ( )p x −
1

x
,  = ( )W x c x that reverses sign across a 

singularity.

     As a special case of a linear homogeneous differential equation, we consider those equations 

with constant coefficients.  For such a differential equation of second order,

 =  +  + 
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( )y x c0 ( )y x 0

which becomes in operator form,

 =  +  + ( )( )D
2

y c1 ( )D y c0 D
0

( )y x 0

in which c1 and c0 are real constants and  = D
0

( )y x ( )y x , we write a corresponding algebraic 

equation on replacing operator D with a scalar quantity λ, 

 =  +  + λ
2

c1 λ c0 0  

which we either derive on substituting  = y e
( )λ x

 ,

> deq := diff(y(x),x$2) + c[1]*diff(y(x),x) + c[0]*y(x) = 0;



 := deq  =  +  + 
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( )y x c1











d

d

x
( )y x c0 ( )y x 0

> deq := simplify(eval(deq, y(x)=exp(lambda*x)));

 := deq  = e
( )λ x

( ) +  + λ
2

c1 λ c0 0

or simply replace D
2
 with λ

2
, D with λ, D

0
 with unity, yielding this quadratic equation, 

> deq := simplify(deq/exp(lambda*x));

 := deq  =  +  + λ
2

c1 λ c0 0

that has this solution for the roots.

> solve(deq, lambda);

,−  + 
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2
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2
 − c1

2
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2
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2
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2
4 c0

The roots thus become λ1 = −  + 
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2
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2
4 c0
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2
 and λ2 =  − 

c1

2

( ) − c1

2
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1

2

2
 .  In the solution 

of this quadratic equation, three possible cases hence arise.

• The two roots λ1and λ2 are both real and distinct; this case implies that  ≠ c1

2
4 c0 and c1

2
 > 4 c0.  

The two linearly independent solutions become e

( )λ
1

x

 and e

( )λ
2

x

, and the general solution is 

 = ( )y x  + A1 e

( )λ
1

x

A2 e

( )λ
2

x

 in which A1 and A2 are integration constants typically evaluated 

according to initial conditions.  If  = λ1 −λ2, implying that  = c1 0 and  < c0 0, the general solution 

is expressible as  = ( )y x  + B1 ( )cosh λ1 x B2 ( )sinh λ1 x .

• The two roots λ1and λ2 are complex conjugates of each other, expressed as  + α i β and  − α i β 

with  = i −1 , because, with real constants c0 and c1, if one root be complex, the other must be 

its conjugate.  The two linearly independent solutions become e
( )( ) + α i β x

 and e
( )( ) − α i β x

 and the 

general solution in complex form is ( )y x  = A1e
( )( ) + α i β x

 + A2 e
( )( ) − α i β x

 , or 

 = ( )y x e
( )α x

( ) + B1 ( )cos β x B2 ( )sin β x  in trigonometric form.

• The two roots λ1and λ2 are equal, λ1 = λ2, in which case the two linearly independent solutions 

become e

( )λ
1

x

 and x e

( )λ
1

x

; the general solution is thus  = ( )y x A1 e

( )λ
1

x

 + A2 x e

( )λ
1

x

.

     For a general linear homogeneous differential equation of order n but with constant 

coefficients, the characteristic equation is analogously derived on replacing a derivative 
d

d
j

x
j

( )y x  

with D
j
 and thence D

j
 with λ

j
,  ≤ 0 j < n, so generating a polynomial in λ of which the roots 

become the linearly independent solutions, and their sum becomes the general solution; for this 

purpose, a term ( )y x  that is deemed a derivative of order zero becomes replaced by D
0
, and that by 



unity accordingly at the next stage of replacement.  If these roots be distinct, the solution has a 

form   = ( )y x  +  +  + A1 e

( )λ
1

x

A2 e

( )λ
2

x

... An e

( )λ
n

x

 .  If root λj have multiplicity k, such that 

( ) − λ λj

k
 be a factor of the characteristic equation, but ( ) − λ λj

( ) + k 1
 not such a factor, the k 

linearly independent solutions e

( )λ
j

x

, x e

( )λ
j

x

, ..., x
k

e

( )λ
j

x

 are combined with the  − n k other linearly 

independent solutions e

( )λ
1

x

, ... to form the complete general solution.  For differential equations 

of large order n, factoring the characteristic equation might be difficult, requiring numerically 

imprecise roots, but with the employoment of sufficient digits the imprecision might be made as 

small as desired in a domain of interest.

     For a homogeneous linear differential equation of second order, 

 =  +  + 
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d

d

x
( )y x ( )Q x ( )y x ( )g x  with  = ( )g x 0 and for which  = x 0 is an ordinary 

point, the general solution on an interval containing this point is  = ( )y x  + a0 ( )y1 x a1 ( )y2 x , in 

which appear linearly independent functions ( )y1 x  and ( )y2 x  analytic at  = x 0 and their arbitrary 

constants a0 and a1 as coefficients.  A series ∑
 = j 0

∞

aj x
j
 in x to various powers is a trial solution of 

this differential equation, for which substitution into this equation and on collection of coefficients 

of x to each power yields an equation containing terms aj of finite number; solution of the latter 

equation for coefficient aj of greatest value of j produces a recurrence relation with which one 

determines sequentially aj,  = j 2, 3, 4, ..., in terms of a0 and a1.  Substitution of the latter values 

into the power series then yields a solution of form  = ( )y x  + a0 ( )y1 x a1 ( )y2 x .  This method of 

power series is applicable only when  = x 0 is an ordinary point.  For the homogeneous linear 

differential equation above, point x0 is a regular singular point if x0 be not an ordinary point but 

both ( ) − x x0 ( )P x  and ( ) − x x0

2
( )Q x  are analytic at x0.  For a regular singular point elsewhere 

than at  = x0 0, a translation  = u  − x x0 to the origin allows direct application of a solution in series, 

or, for a regular singular point at  = x0 ∞, independent variable x is replaced by  = χ
1

x
 so that the 

resulting equation becomes solved in series near  = χ 0, if practicable.

     When the origin is a regular singular point of a linear differential equation of order n, a solution 

in series invariably exists for  = ( )y x x
m












∑

 = j 0

∞

aj x
j

 in which  ≠ a0 0 and m and coefficients aj remain 

to be determined.  Substitution of this series into the differential equation yields a term in x
( ) − m 1

 

of least order, of which the coefficient is a product a0 with an expression in m; that expression set 

equal to zero is called an indicial equation.  Each root of that indicial equation corresponds to a 

separate particular solution; the general solution of the homogeneous equation is ∑
 = k 1

n

x

m
k

( )yk x  in 



which each ( )yk x  is a sum ∑
 = j 0

∞

aj x
j
, in which coefficients aj in each set correspond in turn to a 

particular value of mk.  If two roots of the indicial equation be equal, only one solution is 

obtainable; if the two roots differ by other than an integer, two solutions are obtainable.  If the two 

roots differ by an integer, the larger integer yields a solution but the smaller integer might or might 

not yield a solution; a test by inserting a trial solution into the original differential equation is 

required for a decision on this matter.

     For the non-homogeneous equation with  ≠ ( )g x 0, if ( )g x  have an expansion as a Maclaurin 

series, the preceding approach is modifiable to solve that non-homogeneous equation on 

expressing ( )g x  as a Maclaurin series and setting the coefficients of x to each power on the left 

side equal to their counterparts on the right side.  The general solution has a form 

 = ( )y x  +  + a0 ( )y1 x a1 ( )y2 x ( )y3 x  in which the former two terms constitute the general solution of 

the associated homogeneous differential equation and the latter term is a particular solution of the 

non-homogeneous equation.

     For a homogeneous or non-homogeneous linear differential equation for which initial values 

are given, this equation is solved first as above; the initial values then serve to enable an 

evaluation of the arbitrary constants ,a0 a1, ...   For the solution about an ordinary point x0 other 

than  = x 0, an altered variable  = u  − x x0 according to which the ordinary point is translated to the 

origin might simplify the algebra involved in application of the method of power series about 

 = u 0.  

     These solutions have little value in the context of an algebraic processor such as Maple with 

powerful facilities to solve differential equations both algebraically and numerically, and are thus 

of mostly heuristic interest and value; if an attempt to solve an ordinary differential equation fail 

to yield a solution in elementary or special functions, recourse to numerical methods to solve this 

equation is recommended. 

     For a non-homogeneous linear differential equation of order n as derived above to have a form 

 = ( )Ln ( )y x ( )g x , a particular solution might be found if ( )g x  have a form

• ( )g x  = polynomial of degree  ≤ m n, in which case a particular solution is 

 = ( )yp x e
( )α x

( ) +  +  + A1 x A2 x
2

... Am x
m

;

•  = ( )g x k e
( )q x

, in which case a particular solution might have a form ( )yp x  =  A e
( )α x

; 

•  = ( )g x  + q1 ( )cos α x q2 ( )sin α x  in which , ,q1 q2 α are known constants, in which case a 

particular solution might have a form ( )yp x  =  + A1 ( )cos α x A2 ( )sin α x ; even if one of q1 and 

q2 be zero -- i.e. ( )g x  lacks the corresponding term, both sine and cosine terms must be present 

in a particular solution until one might be proved to be redundant; 

• a product of these forms, in which case a particular solution might have a form of a 

corresponding product of the individual particular forms above. 

These prospective particular solutions contain arbitrary parameters , , , ,α A A1 A2 ..., to be evaluated 

on substitution of the particular solution into the non-homogeneous equation.  If ( )g x  and all its 



derivatives be expressible in terms of linearly independent functions in the same finite set, a 

method of undetermined coefficients is applicable; an assumed form ( )yp x  is thereby substituted 

into the differential equation, and the arbitrary parameters become evaluated again on substituting 

the prospective particular solution into the non-homogeneous equation and equating coefficients 

of like terms.  These and other appropriate operations are automatically undertaken in Maple's 

solution of a proffered ordinary differential equation.

     An ordinary differential equation for which initial conditions are specified is solvable on 

applying these conditions to the general solution of the non-homogeneous differential equation, 

which enables an evaluation of the arbitrary constants appearing in a solution as constants of 

integration.

     For a differential equation that is inseparable into a form directly integrable as indicated above, 

there exist two general methods of solution, either finding an integrating factor -- if practicable -- 

or a change of variables that maps one differential equation of which a solution is sought into 

another equation of which a solution is known.  For an equation of first order, a transformation 

resulting in an integral is a likely route to solution, whereas, for equations of order beyond first, to 

decrease that order by one unit is a likely intermediate objective.  Both these approaches are 

attempted automatically by Maple.  All ordinary differential equations of first order are integrable 

in that a solution is expressible in implicit form, with expressions involving algebraic operations, 

special functions and integrals.  A solution of an ordinary differential equation posed without 

initial condition or boundary value contains integration constants of number equal to the order of 

that equation:  an initial condition specifies the value of a dependent variable, or a value of a 

derivative if required, at zero value of independent variable; a  boundary condition specifies the 

value of a dependent variable at an end point of a particular region of interest, or at a point within 

such a region of interest, for the solution of a differential equation, for instance of second order for 

various cases of chemical and physical interest.  A solution to a differential equation for which are 

provided initial conditions or boundary conditions both solves that equation and satisfies all 

subsidiary conditions.  

     In mathematics, introducing a transformation of some kind proves a useful strategy when a 

problem of interest is more amenable to solution through deployment of a transformed variable.  

As a simple example, consider a problem of multiplying two positive numbers together:  if we 

transform each number into its logarithm and add the two logarithms, 

 = ( )log x y  + ( )log x ( )log y

the resulting number can be transformed through an inverse function -- an exponential function -- 

to yield an answer to the original problem, thus converting a multiplication into a sum, apart from 

transformations.  Although in this particular example this procedure seems cumbersome, the 

principle of using an isomorphism to transform between two distinct modes of calculation 

provides a useful tool.  As a second example involving vectors, as discussed in section 6.205, we 

can use an isomorphism between all vectors, as a set in three-dimensional space, and matrices, 

each comprising a single column, in a corresponding set; an addition of vectors thus becomes 

transformed from a geometric problem to a problem of matrix algebra:  we add, for instance, two 

vectors by evaluating sums of appropriate matrix representatives, followed by inverse 

transformation to produce a corresponding vector in space.  For a further and chemically important 

example, a model to interpret results obtained from measurements of diffraction of xrays from a 



crystal involves constructing a function for the electronic density from the structure factors defined 

through a transformation to reciprocal space.   Regardless what transformation we might 

undertake to reformulate a problem, on obtaining a solution of that reformulated problem, we 

subsequently generate an answer of interest by applying the inverse transformation.  

     For this non-homogeneous linear differential equation of second order, 

 =  +  + 
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for which ,( )p x ( )q x  and ( )f x  are continuous in a domain [ ,a b], these boundary conditions might 

be applicable,

 =  + α1 ( )y x  = x a β1











d

d

x
( )y x

 = x a

c1,          =  + α2 ( )y x  = x b β2
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x
( )y x

 = x b

c2

in which , , , , ,α1 α2 β1 β2 c1 c2 are all real constants, with α1 and β1 not both zero, and α2 and β2 not 

both zero.  If ,( )f x c1 and c2 all be zero, this problem is homogeneous, otherwise 

non-homogeneous.  To solve this problem, by standard methods one finds a solution to the general 

differential equation, and then applies the boundary conditions to evaluate the arbitrary constants 

in that solution.  For two linearly independent solutions ( )y1 x  and ( )y2 x , this problem has 

non-trivial solutions, in addition to the trivial solution  = ( )y x 0, only if the determinant of this 

matrix
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equal zero.  The non-homogeneous problem thus defined with these boundary values has a unique 

solution only if the associated homogeneous differential equation with  = ( )f x 0 have only trivial 

solution  = ( )y x 0, which is a unique solution.  

     For a more general homogeneous linear differential equation
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non-trivial solutions exist for only particular values of λ called eigenvalues, for which the 

corresponding solutions ( )y x  are called eigenfunctions.  As a simple case of such an equation, we 

take  = ( )p ,x λ 0 and  = ( )q ,x λ −λ, yielding  = 
d

d
2

x
2

( )y x λ ( )y x ; a general solution of this equation is 

 = ( )y x  + c1 e
( )− λ x

c2 e
( )λ x

This solution is consistent with the differential equation being linear with constant coefficients, for 

which an alternative expression is

  =  − ( )( )( )D
2

y x λ ( )y x 0; 

when we replace D with scalar quantity m to obtain  =  − m
2 λ 0 that has roots + λ , we proceed to 

the general solution as above.  If  = λ 0, the general solution of  = 
d

d
2

x
2

( )y x 0 is simply 



 = ( )y x  + c1 c2 x; when we apply boundary conditions  = ( )y x  = x 0 0 and  = ( )y x  = x L 0 to evaluate the 

arbitrary constants c1 and c2, we obtain  = c1 c2 = 0, which as a trivial solution  = ( )y x 0 precludes 

 = λ 0 from being an eigenvalue.  For  ≠ λ 0, the general solution containing exponential terms 

above likewise generates a trivial solution unless  = λ −
n

2 π
2

L
2

 with n integer, so that the general 

solution becomes  = ( )y x cn









sin

n π

L
; the set of these solutions in an infinite sequence constitutes 

a Fourier sine series with Fourier coefficients cn.  If, instead of boundary condition ( )y x  = x 0, we 

have 
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, the eigenfunctions become cosine instead of sine functions, so constituting a 

Fourier cosine series. 

     A differential equation of Sturm-Liouville form, which arises in many problems of 

mathematical physics and engineering and which is a homogeneous equation subject to boundary 

conditions, is written in standard form as

 =  + 
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or in expanded form, 
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in which , ,( )p x
d

d

x
( )p x ( )q x  and ( )w x  are continuous on interval [ ,a b] and also both ( )p x  and 

( )w x  are rigorously positive on that interval and for which apply these boundary conditions,
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or these periodic boundary conditions,
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and has eigenfunctions as solutions for which the eigenvalues are real and non-negative, in a 

rigorously increasing infinite sequence, analogously for the simple eigenvalue problem above; 

each eigenvalue has only one linearly independent eigenfunction.  The allowed values of λ for 

which the differential equation satisfies the boundary conditions are called eigenvalues and the 

corresponding solutions ( )y x  constitute the eigenfunctions.  The operator 

 + 










d

d

x









( )p x











d

d

x
( )y x ( )q x ( )y x

is self-adjoint if it be equal to its complex conjugate.  Any two eigenfunctions ( )yj x  and ( )yk x  in 

this set satisfy this relation,

 = d
⌠

⌡


a

b

( )w x ( )yj x ( )yk x x 0  

in which ( )w x  is called a weight function, called orthogonality; if furthermore each function ( )yj x  



satisfy this integral,

 = d
⌠
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( )w x ( )yj x ( )yj x x 1      

with the same weight function, called normalization, the two descriptors become merged into 

orthonormal.  For a function ( )f x  that is piecewise smooth on an open interval ] ,a b[ because both 

( )f x  and 
d

d

x
( )f x  are there piecewise continuous, and with { ( )yj x } as a set of all eigenfunctions 

that satisfy a particular differential equation of Sturm-Liouville form, one can form an expansion 

 = ( )f x ∑
 = j 1

∞

cj ( )yj x  

to represent ( )f x  on that open interval; coefficients cj are evaluated with this ratio of integrals,

 = cj
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     For regular Sturm-Liouville problems, 

• there exist uncountable eigenvalues of which the magnitudes can be ordered and that can hence 

be indexed with non-negative integers 0,1,2,3...; 

• all eigenvalues are real; 

• for each eigenvalue there corresponds a unique eigenfunction; these eigenfunctions form a 

complete set with respect to any piecewise smooth function over a finite interval; over such an 

interval the function is representable as a generalized Fourier expansion in terms of 

eigenfunctions ∑
 = j 0

∞

( )F j ( )φj x , in which coefficients ( )F j  are appropriately evaluated Fourier 

coefficients;

• the latter infinite series converges to the mean of the left and right limits of the function at any 

point in the interval;

• eigenfunctions having distinct eigenvalues are orthogonal relative to a weight function ( )w x  

over the interval; if, further, eigenfunctions be normalized, the statement of orthonormal 

functions makes the weighted inner or scalar product equal to Kronecker's δ function.

     A Sturm-Liouville system is one composed of a Sturm-Liouville equation and supplementary 

conditions, in a set, on , ,( )p x ( )q x ( )w x  and ( )y x  that satisfy certain limits; such conditions of an 

important system can include that ( )w x  be positive and ( )q x  be continuous over an interval [ ,a b].

     An integral transform converts a differential equation into an algebraic equation.  In the context 

of solving a differential equation -- especially one with boundary conditions specified, integral 

transforms associated with french mathematicians Laplace and Fourier are useful in transforming 



each term of a differential equation in an independent variable, such as t for time, into another 

function in a reciprocal space in which the independent variable is a frequency ν, with dimensions 

hence of inverse time.  For a Laplace transform in particular, two pertinent features ease the 

problem of obtaining a solution of an original differential equation with its appropriate boundary 

conditions:  application of a Laplace transform is naturally suited to those differential equations 

that involve initial values as boundary conditions, but a simple transformation of a variable might 

serve to convert a differential equation into one with initial conditions specified with respect to the 

new variable.  In either case, the boundary conditions become embedded in an algebraic equation 

produced through a Laplace transform; in this way one circumvents a search for a general solution.  

A Laplace transform is useful also to solve a  linear differential equation with constant 

coefficients, especially if there be a driving term defined piecewise, because a Laplace transform 

converts a differential equation into an algebraic equation, which might be solved more easily.  A 

Laplace transform F(s) of a function of time, ( )f t , defined on an interval 0 < t < ∞, is formed as an 

improper integral:

  F(s)  =  d
⌠

⌡


0

∞

e
( )−t s

( )f t t  

Here integration is along the positive real axis for t; a factor e
( )−t s

 in this integrand is a kernel of a 

Laplace transformation; variable s might be real or complex.  Because the upper end point is 

infinity, this integral defining F(s) is an improper integral, for which convergence is achieved on 

an imposition of two technical restrictions on f(t):  its domain [0, ∞] can be divided into intervals 

with f(t) continuous in the interior of each interval and approaching finite limits at each end point 

thereof, so that f(t) is at least piecewise continuous; f(t) is of exponential order, such that there 

exists a positive constant κ for which a product

 < e
( )−κ t

( )f t c 

remains bounded by finite constant c as  → t ∞.  The greatest smaller bound on the value of κ is 

called an abscissa of convergence of f(t).   In practice, to solve a differential equation arising from 

a chemical model, these technical details are of little or no concern.  

     Laplace transforms have these important properties:

• linearity --  if Laplace transforms of ( )f x  and ( )g x  exist and that of ( )f x  be ( )F s  and of ( )g x  be 

( )G s , the Laplace transform of the sum is the sum of the Laplace transforms, 

 = ( )L  + ( )f x ( )g x  + ( )L ( )f x ( )L ( )g x  =  + ( )F s ( )G s , in which ( )L    implies a Laplace 

transform; 

• distributivity -- for constant c, the Laplace transform of c ( )f x  is c ( )F s ;

• multiplication by e
( )α x

 --  if a Laplace transform of ( )f x  exist and be ( )F s , the Laplace 

transform of e
( )α x

( )f x  is ( )F  − s α , for α any constant;

• multiplication by x
n
 -- if a Laplace transform of ( )f x  exist and be ( )F s , the Laplace transform of 

x
n

( )f x  is ( )−1
n
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( )F s  for n any positive integer;



• division by x -- if a Laplace transform of ( )f x  exist and be ( )F s  and if lim
 → x 0

( )f x

x
 exist with x > 

0, the Laplace transform of 
( )f x

x
 is d
⌠
⌡


s

∞

( )F u u;

• integral -- if a Laplace transform of ( )f x  exist and be ( )F s , the Laplace transform of d
⌠
⌡


0

x

( )f u u 

is 
( )F s

s
 ;

• periodicity -- if ( )f x  be periodic with period a such that  = ( )f  + x a ( )f x , the Laplace transform 

of ( )f x  is 

1 d
⌠

⌡


0

∞

e
( )−s x

( )f x x

 − 1 e
( )−a s

 .

In these cases, if x be a distance or have a dimension length, corresponding variable s in the 

Laplace transform has dimension reciprocal length, or wavenumber. 

     Just as a derivative of a product differs from a product of derivatives of its factors, a Laplace 

transform of a product of two functions differs from a product of the individual transforms of 

those functions.   There exists instead a Laplace transform of a convolution of two functions -- 

multiplication of a special type -- that is a product of individual transforms; in this way one can 

invert some Laplace transforms and obtain convolutions without explicit evaluation of a 

convolution integral.

A convolution of two functions ( )f x  and ( )g x  is defined as ( )f x  * ( )g x  = d
⌠
⌡


0

x

( )f u ( )g  − x u t, in 

which  *  denotes a convolution operator, so that ( )f x  * ( )g x   =  ( )g x  * ( )f x ; the Laplace transform 

of that convolution is hence L( ( )f x  * ( )g x ) = ( )L ( )f x ( )L ( )g x   = ( )F s ( )G s , and the inverse 

Laplace transform of ( )F s ( )G s  is thus ( )f x  * ( )g x   =  ( )g x  * ( )f x .  An inverse Laplace transform 

of a product is computed with such a convolution.

    Five ordinary linear differential equations of second order with multiple parameters, attributed 

to Heun, include as particular cases the Lame, Mathieu, spheroidal-wave and hypergeometric 

equations -- and thereby most known equations of mathematical physics.  Five Heun functions are 

defined as the solutions to each of five Heun equations of which this be the most general,  
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containing variables x independent and y dependent with parameters , , , , ,α β γ δ ε a and q; four 

other equations are derivable from this equation on coalescing singularities.  A singularity of an 

ordinary differential equation is a singularity of a solution, such as a pole.  Kamke's book, 

Differential equations:  Methods of Solution and Solutions (Chelsea Publishing Co., New York, 

USA, 1959), which with its succeeding editions is regarded as a definitive, even if not 



comprehensive, compilation of differential equations that have known algebraic solutions, 

includes a collection of 446 linear ordinary differential equations of second order, all but four of 

them being of Heun type. All but those four are hence solvable merely through a single 

factorization of a polynomial of fourth degree; essentially all applications behind Kamke's linear 

examples are thereby formulated using Heun equations.  Developments in the algebraic solution of 

differential equations with software such as Maple expand the range of solvable equations based 

on this formalism, but at present only hybrid algebraic and numerical methods are applicable.

     Other strategies to solve ordinary differential equations, which are likely implemented in Maple

, include the following:

• if the dependent variable, such as y, be absent, let  = 
d

d

x
( )y x p become the dependent variable, 

hence diminishing the order of the equation by unity;

• if the independent variable, such as x, be absent, let y become the independent variable and 

 = 
d

d

x
( )y x p become the dependent variable, hence also diminishing the order of the equation by 

unity;

• if the differential equation be homogeneous in y, let  = v ( )ln y  become a dependent variable so 

that the resulting equation lacks v and a substitution  = 
d

d

x
( )v x p then diminishes the order by 

unity.

     For two unknown functions ( )f , ,t x y  and ( )g , ,t x y  in a system of differential equations of first 

order,

 = 
d

d

t
( )x t ( )f , ,t x y ,     = 

d

d

t
( )y t ( )g , ,t x y ,

numbers in an ordered pair ( ,x y) might be regarded as rectangular cartesian coordinates of a point 

in plane xy.  For functions ( )x t  and ( )y t  that constitute a solution of those differential equations, 

relations  = x ( )x t  and  = y ( )y t  become interpreted as parametric equations of a curve in plane xy, 

which is called a phase plane or a plane in phase space of two spatial dimensions.  That curve in 

this plane is called a trajectory of the system.  A point ( ,x0 y0) such that  = ( )f , ,t x0 y0 ( )g , ,t x0 y0  = 0 

is called a critical point of the system; for such a point, the system possesses a constant solution 

, = x x0  = y y0, and the trajectory of such a solution comprises that single point.  A trajectory might 

be a closed curve or an open curve. 

     Most ordinary differential equations that might arise or that one might devise have no direct 

algebraic solution, and even solution in terms of established special functions might not be 

practicable.  In such cases one must have recourse to numerical methods, for which one absolutely 

requires initial values or boundary conditions of number equal to the order of the differential 

equation, because a numerical approach inherently fails to cope with symbolic quantities.  Such a 

numerical method yields approximate solutions at particular points using only operations addition, 

subtraction, multiplication, division and functional evaluations.  Points are typically chosen as 

, , ,x0 x1 x2 ... with a constant increment  =  − xj x  − j 1 h.  For a general differential equation of first 



order written  = 
d

d

x
( )y x ( )f ,x y , with an initial value  = ( )y x0 y0, a curve of the solution ( )y x  must 

pass a point ( ,x0 y0).  For a point near x0, the corresponding value of  = y  + y0 d
⌠
⌡


x
0

x

( )f ,x y x.  

According to Picard's method, a first approximation of y in the integrand is y0, which generates a 

value y1 on the left side from the integration on the right side; replacing y in the integrand a second 

time with y1 and integrating again yields an improved value y2 on the left side, and continuing in 

an iterative manner yields a sequence of values of y, each a better approximation than the 

preceding one.  As a practical procedure, Picard's method suffers from the difficulty of performing 

the necessary integrations. 

     According to Euler's method, we calculate y  + j 1 =  =  + yj h ( )f ,x yj  + yj h
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j

, iteratively 

beginning at  = j 0, which corresponds to extrapolation along tangent lines; this process is 

continued until sufficient points to define a solution curve in a domain of interest are derived.  If h 

be chosen too large, error might be appreciable, whereas if h be chosen too small, numerical error 

with the arithmetic of real numbers with a finite precision might accumulate or the number of 

points to cover a particular domain of interest might be excessive. 

     To improve the accuracy of Euler's method that might rapidly become inaccurate, more 

sophisticated methods involving predictor and corrector have been devised, so that the result of a 

prediction, such as that tangential extrapolation in Euler's method, is subjected to correction; the 

corrector depends in general on the predictor.  Such a modification to Euler's method for which a 

predicted value is

 y , + j 1 p =  + yj h
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with increment h and predicted value y , + j 1 p might have as correction

 y  + j 1 =  + yj

h

2
 (
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 ).  

For a correction of increased accuracy, the methods of Runge and Kutta include further terms of a 

nature of those in Simpson's rule for a numerical integration; for their method of fourth order, such 

that

  = y  + j 1  + yj

 +  +  + g1 g2 g3 g4

6
 ,  = g1 h ( )f ,xj yy ,  = g2 h









f , + xj

h

2
 + yj
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2
,  = g3 h









f , + xj

h

2
 + yj

g2

2
, 

and  = g4 h ( )f , + xj h  + yj g3 , 

but this approach is formally not of type predictor and corrector.  Other methods, of type predictor 

and corrector, due to Adams, Bashford and Moulton and to Milne require four values yj,  = j  .. 0 3, 

as initial values, which are obtained according to the method of Runge and Kutta.  For a numerical 

solution of differential equations, Maple uses by default a method similar to that of Runge and 

Kutta but modified for enhanced accuracy.

partial-differential equation



     A partial-differential equation contains one or more partial derivatives and must hence involve 

at least two independent variables; with independent variables x and y and dependent variable z, its 

general form is hence 
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A linear partial-differential equation is linear with respect to quantities z, 
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z, ....  The order of a partial-differential equation equals the order of the 

highest partial derivative within it.  A partial-differential equation of first order is homogeneous in 

the absence of a term free of z and its derivatives;this equation is  otherwise non-homogeneous.  

The general solution of a partial-differential equation differs from that of an ordinary differential 

equation in that arbitrary formulae or functions of independent variables occur instead of arbitrary 

constants.

     Among partial-differential equations important in chemistry and physics are

• wave equation in one dimension x and with variable time t, of hyperbolic type,  

 = 
∂

∂2

t
2

( )u ,x t c
2
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x
2

( )u ,x t ;

• equation for diffusion of mass or heat in one dimension x and with variable time t, of parabolic 

type,  = 
∂

∂

t
( )u ,x t λ
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• Laplace's equation in three dimensions x, y, z, 
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( )u , ,x y z 0, which is a special case of 

• Poisson's equation in three dimensions x, y, z, of elliptic type, 
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• Schrodinger's equation in three spatial dimensions x, y, z and dependent on time t for a single 

particle of mass m subject to a potential energy ( )V , ,x y z  involving only spatial coordinates, 
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• For an isotropic body, the thermal conductivity at each point is independent of the direction of 

flow of thermal energy through that point; the temperature  = T ( )T , , ,x y z t  is obtained on 

solving this partial- differential equation, 
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    in which appear thermal conductivity k, specific heat c and density ρ; when the latter three 

parameters are constant, this equation is known as the heat equation in three dimensions, 
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   which is amenable to solution with Fourier series.

    An harmonic function in region R of plane xy satisfies Laplace's equation in two dimensions, 

     =  + 












∂

∂2

x
2

( )φ ,x y












∂

∂2

y
2

( )φ ,x y 0

If a complex function  = ( )φ z  + ( )u ,x y i ( )v ,x y  be analytic in region R, both ( )u ,x y  and ( )v ,x y  

are harmonic functions; these are also harmonic conjugates in that one is determinable from the 

other through integration and addition of an arbitrary constant according to the Cauchy-Riemann 

equations:
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If function ( )φ z  be analytic, it has no dependence on z; if these Cauchy-Riemann equations be 

satisfied, function ( )φ z  is analytic; ( )u ,x y  is then called the harmonic conjugate of ( )v ,x y , and 

vice versa.   

     The order of a partial-differential equation is that of the derivative of greatest order in that 

equation; for instance, as the order of the derivatives with respect to spatial variables in all above 

equations is second, and as a derivative with respect to no other variable exceeds second order, all 

these equations have second order.  These partial-differential equations are also all linear because 

the total degree of the dependent variable u and of each derivative thereof corresponds to the first 

power at most, but only the former three equations are homogeneous because each term in those 

equations contains only the dependent variable or its derivatives; the latter equation, Poisson's 

equation, is non-homogeneous.  A solution of a partial-differential equation in some region of 

space and time is a function of all spatial and temporal variables for which derivatives appear in 

that equation, and satisfies the equation throughout that region.  For instance, for Laplace's 

equation in two spatial dimensions, 

  =  + 












∂

∂2

x
2

( )u ,x y












∂

∂2

y
2

( )u ,x y 0

 = ( )u ,x y  − x
2

y
2
,  = ( )u ,x y ( )cos x e
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2
 are all 

solutions.  An application of initial conditions, such as for  = t 0 for the temporal variable, or 

boundary conditions, which define the dependent variable at particular points of the solution 

domain that form boundaries of that domain, of appropriate number, yield an unique solution to 

that differential equation; these conditions, which should number equal to the order of the highest 

partial derivative, enable the evaluation of arbitrary constants, or even arbitrary functions, that 

arise from the general solution of that differential equation.  

     For a partial-differential equation of form
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by analogy with profiles of quadric surfaces these conditions describe the nature of this equation:

•  =  − α γ β
2

0, parabolic, for the transfer of mass or heat for instance,

•  <  − α γ β
2

0, hyperbolic, for wave motion and vibrations for instance, and

•  − α γ β
2
 > 0, elliptical, for systems described with a potential energy or a steady state.  

     Unlike an ordinary differential equation for which the order is also the dimension of the 

solution space, the dimension of a partial-differential equation with spatial boundary conditions is 

infinite, and likewise the corresponding basis of the solutions as a vector space.  Other than 

originating in geometric and physical problems, a partial-differential equation is derivable on 

elimination of arbitrary constants from a given relation between the variables and on elimination 

of arbitrary functions of those variables.  Whereas a general solution of an ordinary differential 

equation involves arbitrary constants, a general solution of a partial-differential equation involves 

arbitrary functions.  To illustrate this occurrence of arbitrary functions, we consider the form 

 = ( )w ,x y  + y ( )f x x ( )g y .  

Forming partial derivatives with respect to x and y yields

  = 
∂

∂

x
( )w ,x y  + y
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( )g y  = q, 

with p and q introduced as symbols to represent the partial derivatives..  Because elimination of 

, ,( )f s ( )g y
d

d

x
( )f x  and 

d

d

y
( )g y  remains impracticable from these relations for ,p q and ( )w ,x y , we 

proceed to evaluate the second partial derivatives:  
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( )g y  = t.  

After algebraic manipulation, we obtain a partial-differential equation

 x y
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x
( )w ,x y  + y 
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y
( )w ,x y  − ( )w ,x y  

that contains none of ,( )f x ( )g y  and their derivatives.  

     As another example, taking  = p
∂

∂

x
z and  = q

∂

∂

y
z, we form two partial-differential equations 

from  = ( )f , , , ,x y z α β 0, in terms of independent variables x, y and z and two parameters α and β, 

on forming partial derivatives with respect to x and to y to obtain  + 
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of which the latter forms are partial-differential equations of order unity.



     For a differential equation of type  =  + ( )f ,x y










∂

∂

x
w ( )g ,x y











∂

∂

y
w 0, a geometric 

interpretation is that, at each point in plane xy, a vector ( )f ,x y  i + ( )g ,x y  j is orthogonal to a 

vector del w, in which i and j are unit vectors parallel to axes x and y and del is the differential 

vectorial operator i 
∂

∂

x
 + j 

∂

∂

y
 for a gradient.  For point P, we choose a number c so that P is in the 

graph  = ( )w ,x y c, which makes del w is perpendicular to this graph at point P.  The graph is thus 

tangent to vector ( )f ,x y  i + ( )g ,x y  j.  According to this reasoning, to find solutions of a given 

differential equation, we find first all curves with a property that, at each point, the tangent line is 

parallel to  ( )f ,x y  i + ( )g ,x y  j; in this way, we determine a function w such that it is constant 

along each curve.  For instance, to solve this differential equation,

 =  + 3
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x
( )w ,x y 5
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y
( )w ,x y 0,

we observe that curves with tangent lines parallel to to 3 i + 5 j are straight lines of equation 

 =  − 5 x 3 y c.  A function ( )w ,x y  that is constant along each such line is of type 

 = ( )w ,x y ( )f  − 5 x 3 y  for some function ( )f ,x y .  Such a differentiable function ( )f ,x y  thus 

constitutes a solution of the differential equation, as we verify: 

  = 
∂
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x
( )w ,x y 5 ( )f  − 5 x 3 y   and  = 
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y
( )w ,x y 3 ( )f  − 5 x 3 y  , 
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( )w ,x y  = 15 ( )f  − 5 x 3 y  −15 ( )f  − 5 x 3 y  = 0 .  

     Lagrange found a general solution to an equation involving two independent variables x and y 

and one dependent variable ( )w ,x y  of form 

  =  + ( )P , ,( )w ,x y x y
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with a reduction to an auxiliary system 

dx

( )P , ,( )w ,x y x y
  =   = 

dy

( )Q , ,( )w ,x y x y

dw

( )R , ,( )w ,x y x y

of ordinary differential equations by demonstrating that  = ( )φ ,u v 0, in which ( )φ ,u v  is an 

arbitrary function, is a general solution provided that ( )u , ,x y w  and ( )v , ,x y w  equal arbitrary 

constants.  For example, for

 =  + x
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the auxiliary system is
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dw
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From  = 
dx

x

dw

3 w
 we derive  = ( )u , ,x y w

w

x
3
 = arbitrary constant a, and from  = 
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y
 we derive 
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 = arbitrary constant b, so obtaining, as general solution, arbitrary function  = 









φ ,

w

x
3

y

x
0.  



With an alternative selection of equalities, we derive also  = 
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w

x
3

w
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3

0 and  = 








η ,

w

y
3

y

x
0, any of 

which is equivalent to the other two and acceptable as a general solution. 

      Among partial-differential equations of great importance in chemistry and physics are these 

linear partial-differential equations of second order, to which allusion is made above with 

derivatives in an explicit form,  

 diffusion equation κ del 
2
 ( )w , , ,x y z t   =   

∂

∂

t
( )w , , ,x y z t  

in three spatial dimensions in cartesian coordinates , ,x y z and time t with concentration w and 

diffusion coefficient κ,

 wave equation c
2
del 

2
 ( )w , , ,x y z t   =  

∂

∂2

t
2

( )w , , ,x y z t  

with speed c of propagation of the waves of amplitude w of whatever type, and 

 Laplace's equation del 
2
 ( )w , ,x y z  = 0, 

all containing laplacian operator

 del 
2
 =  

∂
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x
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2
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∂

∂2

z
2

 

likewise in cartesian coordinates.  Solutions of the diffusion equation are explained in sections 

7.404 and 7.405, and of the wave equation in section 7.403, in restricted spatial dimensions.  

Schrodinger's temporally dependent equation in wave mechanics has the form of a diffusion 

equation; instances of its solution appear in chapter 11 in part II of this book.  Laplace's equation 

has evidently a solution  = ( )w , ,x y z  +  +  + A x B y C z α for arbitrary values of constants , , ,A B C α

; a particular solution might be expressed in a form of product ( )X x ( )Y y ( )Z z , in which each 

multiplicand is a function of only the one specified coordinate variable.  The latter form, explicitly 

a product of functions of separate variables, is a standard fixture of an attack on a problem 

requiring the solution of a linear partial-differential equation.  The general solution of a 

non-homogeneous problem is a sum of any particular solution of the entire differential equation 

plus the general solution of the corresponding homogeneous equation provided that both the 

equation and the boundary conditions are homogeneous.  

     Of two important methods to obtain algebraic solutions of partial-differential equations, one is 

the separation of variables, which effectively converts the partial-differential equation into 

multiple ordinary differential equations that are solved independently and of which the solutions 

are combined in a solution of the partial-differential equation.  In some cases the solutions depend 

on the value of a parameter called an eigenvalue, in which case the solutions are called 

eigenfunctions; if that parameter appear in a sine or cosine formula, it might be called an 

eigenfrequency.  Another method involves the use of integral transforms; a partial-differential 

equation in n independent variables is thereby to an equation that has only  − n 1 independent 

variables..  For instance, such a reduction of a partial-differential equation with two independent 

variables yields an ordinary differential equation.         

     A transformation of variables is a prospective approach to solve a partial-differential equation, 

and Fourier series, Fourier transforms, Laplace transforms and Green's functions play important 



roles in the solution of various partial-differential equations with particular initial values and 

boundary conditions, as explained by Y. Abe in Essentials of Partial-differential Equations in 

Mathematical Physics.  Schrodinger's equation dependent on time has the same form as the 

diffusion equation above, whereas Schrodinger's equation independent of time resembles that for a 

standing wave; these equations arise in wave mechanics, which is one particular form of quantum 

mechanics that constitutes a collection of mathematical methods to treat problems in which the 

discreteness of various physical quantities, such as energy or angular momentum, is a 

distinguishing feature.  The chemical applications of quantum mechanics are discussed in chapter 

11 and elsewhere in part II of this book.  

     The methods of solution of partial-differential equations are in principle similar to those for 

ordinary differential equations, but the increased number of independent variables greatly 

increases the difficulty of finding a solution.  Efficient numerical methods have been devised 

involving finite differences or finite elements or boundary elements, but solutions in even two or 

three spatial dimensions typically require a mesh of many thousands of points, demanding 

efficient numerical processors, and might generally exceed the capabilities of a general algebraic 

processor such as Maple.  

     An advantage of the finite-element method over the finite-difference method is the ease with 

which boundary conditions are handled; for such conditions involving derivatives and irregularly 

shaped boundaries with the latter method, each boundary condition involving a derivative must be 

approximated with a difference quotient at the grid points; a boundary of irregular shape makes 

difficult the placing of the grid points.  Because the finite-element method includes the boundary 

conditions as integrals in a functional that is subject to minimization, the construction procedure is 

independent of the particular boundary conditions.

integral equation  

     An equation that serves to determine a formula or expression constitutes an integral equation if 

the required formula occur in an integrand of an integral.  Integral equations are complementary to 

differential equations in that for some chemical or physical problems, such as diffusion and 

transport phenomena, a representation by means of a differential equation is impracticable, but an 

integral equation is practicable; in other cases, a formulation as an integral equation might be 

convenient.  Whereas a differential equation to treat some chemical or physical system is typically 

subject to particular initial values or boundary conditions, an integral equation relates an unknown 

formula or function not only to its values at neighbouring points, through derivatives, but also to 

its values throughout a region, including its boundaries; such boundary conditions are hence 

intrinsic within an integral equation rather than becoming imposed at an ultimate stage of solution.  

Because mathematical ramifications such as existence, uniqueness and completeness might be 

managed more readily in integral form than in differential form, and because some physical 

problems are not readily expressible as differential equations, integral equations comprise part of 

an armoury of mathematical techniques that a student of chemistry should encounter and 

understand.   Like partial-differential equations, many integral equations that one encounters in 

practice lack an algebraic solution and are thus amenable to only numerical solution.

     A linear differential equation of first order,  = 
d

d

x
( )y x ( )f ,x ( )y x , is readily convertible to an 

integral equation, 



  = d
⌠
⌡


x
0

x

( )f ,x ( )y x x  − ( )y x ( )f x0   

for which ( )y x  is known and ( )f ,x ( )y x  unknown.  Even a linear differential equation of second 

order can be converted into an integral equation, involving integration by parts one time or more 

as follows in this instance in which ( )y x  might be an arbitrary function of x and y but must include 

no derivative 
d

d

x
( )y x , thus pertaining to both linear and non-linear differential equations of second 

order in a large class.
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d

d
2
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2

( )y x ( )f ,x ( )y x

 = 
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0

x

( )f ,x' ( )y x' x' c1

 = ( )y x  +  + d
⌠
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0

x

 x'' d
⌠
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0

x''

( )f ,x' ( )y x' x' c1 x c2

As long as we maintain constant the region in plane x' x'' over which the double integration is 

performed, the order of integrations is reversible; altering the bounds of integration accordingly, 

we obtain

 = ( )y x  +  + d
⌠
⌡


0

x

( )f ,x' ( )y x' x' d
⌠
⌡


x'

x

 x'' c1 x c2

and then combine the two integrals,

 = ( )y x  +  + d
⌠
⌡


0

x

( ) − x x' ( )f ,x' ( )y x' x' c1 x c2

into a non-linear integral equation of Volterra type because a bound of integration comprises a 

variable, as explained below.  Such initial values as  = ( )y x  = x 0 a and  = 










d

d

x
( )y x

 = x 0

b would set 

 = c2 a and  = c1 b. 

    A transformation from a differential equation bestows benefits such as that the existence of a 

solution is more readily ascertained and that an integral equation can incorporate automatically 

any boundary conditions applicable to a solution. From a numerical point of view, a linear integral 

equation, in which an unknown function involving a particular variable occurs separately from 

other variables, is tractable as a system of linear equations with uncountable unknowns; 

eigenvalues and eigenfunctions play a significant role in the theory and practice of integral 

equations.  Expansions in series, such as Fourier series or polynomials, are important aids in 

solution of integral equations.  A linear integral equation, in which unknown formula or function 

( )f y  occurs to only the first power in the integrand, or a corresponding expression ( )f x  outside the 

integrand analogously, is classifiable into these three types, 

d
⌠
⌡


a

x

( )k ,x y ( )f y y  = g(x)



( )f x   +   λ d
⌠
⌡


a

x

( )k ,x y ( )f y y  =  ( )g x

( )h x ( )f x   +   λ d
⌠
⌡


a

x

( )k ,x y ( )f y y  =  ( )g x

in which λ is a constant parameter; a multiplicand ( )k ,x y  of ( )f y  within an integrand here is 

called a kernel of an integral equation.  The former two integral equations arise as special cases of 

the latter with ( )h x  equal to zero or a constant; the latter equation involving a single unknown 

function ( )f x  becomes a general linear integral equation.  If in any case  = ( )g x 0, the equation is 

homogeneous.  An algebraic or symbolic approach to solution of such equations is applicable 

under certain conditions, such as those presented below.  To warrant a descriptor linear, we regard 

kernel ( )k ,x y  as an operator k such that  = k  f d
⌠
⌡


a

b

( )k ,x y ( )f y y, analogous to linear differential 

operator Ln defined above; just as eigenvalues and eigenfunctions play a role in the solution of 

those differential equations, constructs of linear algebra are applicable in the solution of integral 

equations.  One strategy is applicable only when the kernel, such as ( )k ,x y , is separable into 

functions of each variable, such as, in a degenerate case, into  = ( )k ,x y ∑
 = j 1

n

( )Pj x ( )Qj y ; 

Neumann's approach develops an unknown function ( )f y  as a power series in λ, which is formally 

a constant.  

      Equations of these three types are further classified into linear integral equations of kinds that 

Maple recognizes, in which ( )f x  or  ( )f y  is an unknown formula or expression.  For Fredholm's 

equations, end points of integration are constants, 

• Fredholm equation of first kind:          λ d
⌠
⌡


a

b

( )k ,x y ( )f y y  = g(x) 

• Fredholm equation of second kind:      ( )f x   +  λ d
⌠
⌡


a

b

( )k ,x y ( )f y y  =  g(x)                                 

• Fredholm equation of third and homogeneous kind:      ( )f x   +  λ d
⌠
⌡


a

b

( )k ,x y ( )f y y  =  0 

• Fredholm equation of fourth kind:       ( )h x ( )f x   +  λ d
⌠
⌡


a

b

( )k ,x y ( )f y y  =  g(x)

whereas for Volterra's equations one end point is a variable.

• Volterra equation of first kind:            λ d
⌠
⌡


a

x

( )k ,x y ( )f y y  =  ( )g x



• Volterra equation of second kind:       ( )f x   +   λ d
⌠
⌡


a

x

( )k ,x y ( )f y y  =  ( )g x

• Volterra equation of third and homogeneous kind:      ( )f x   +   λ d
⌠
⌡


a

x

( )k ,x y ( )f y y  =  0    

• Volterra equation of fourth kind:     ( )h x ( )f x   +  λ d
⌠
⌡


a

x

( )k ,x y ( )f y y  =  g(x)

If kernel ( )k ,x y  =  0 for y > x, a Fredholm equation reduces to the corresponding Volterra 

equation of the same kind.  If an integral equation belong explicitly to no type among these -- for 

instance if an upper end point be x
2
 instead of x, Maple might generate an erroneous solution, if 

any; verification of a prospective solution is invariably advisable on substitution of the result into 

the original integral equation and subsequent evaluation.  Likewise for either Fredholm or Volterra 

equations of the fourth kind, in which an additional function of independent variable multiplies the 

unknown function outside the integral, Maple is unlikely to yield an answer.  A numerical solution 

of an integral equation, involving the replacing of that integral equation by simultaneous algebraic 

equations in a set to which matrix techniques are applied, works well for Fredholm's equation of 

first kind, but poorly for Fredholm's equation of second kind.  If an integral in a Fredholm 

equation become replaced with a more general form d
⌠
⌡


a

b

( )k , ,x y ( )f x y, such as d
⌠

⌡


a

b

( )k ,x y ( )f y
2

y 

or d
⌠
⌡


a

b

( )k ,x y ( )cos ( )f y y, the equation is considered non-linear, and likely unsolvable directly 

with Maple.

     For example, for this integral equation,

 =  − ( )f x λ d
⌠

⌡


0

1

( ) + x y
2

x
2

y ( )f y y x
2

in which the kernel is 

> k(x,y) = - (x*y^2 + x^2*y);

 = ( )k ,x y −  − x y
2

x
2

y

we define 

 = A d
⌠

⌡


0

1

y
2

( )f y y        = B d
⌠
⌡


0

1

y ( )f y y

so that the equation above becomes 

> eq := f(x) =  x^2 - lambda*A*x - lambda*B*x^2;

 := eq  = ( )f x  −  − x
2 λ A x λ B x

2

On substituting this formula ( )f x  for ( )f y  into the defining equations above we obtain 

> fA := A = Int(y^2*subs(x=y, rhs(eq)), y=0..1); 

fA := A = int(y^2*subs(x=y, rhs(eq)), y=0..1);



 := fA  = A d
⌠

⌡


0

1

y
2

( ) −  − y
2 λ A y λ B y

2
y

 := fA  = A  −  − 
1

5

1

5
λ B

1

4
λ A

> fB := B =  Int(y*subs(x=y, rhs(eq)), y=0..1); 

fB := B =  int(y*subs(x=y, rhs(eq)), y=0..1);

 := fB  = B d
⌠

⌡


0

1

y ( ) −  − y
2 λ A y λ B y

2
y

 := fB  = B  −  − 
1

4

1

4
λ B

1

3
λ A

We solve these two simultaneous linear equations for A and B, 

> solve({fA,fB},{A,B});

{ }, = A −
48

 −  − λ
2

240 120 λ
 = B

−  + 60 λ

 −  − λ
2

240 120 λ

assign the solution,

> assign(%);

and evaluate the original equation.

> simplify(eval(eq)); 

 = ( )f x −
12 x ( ) +  − 20 x 5 λ x 4 λ

 −  − λ
2

240 120 λ

For these two values of λ, 

> lambda = solve(denom(rhs(%)), lambda);

 = λ ( ), + 60 16 15  − 60 16 15

the value of ( )f x  becomes undefined; these values of lambda are called eigenvalues of the integral 

equation:  the homogeneous equation, for which the term x
2
 is absent, has non-trivial solutions 

only if λ be one or other eigenvalue; these solutions become the eigenfunctions of kernel  

 = ( )k ,x y −  − x y
2

x
2

y.  If the kernel be degenerate so that a procedure like that above becomes 

applicable, the solution of an integral equation becomes reduced to a solution of algebraic 

equations, which might be readily effected.  On observing that a reasonably well behaved kernel is 

expressible as an infinite series of degenerate kernels, Fredholm deduced the following conditions 

that are applicable to real kernels.

• Either the inhomogeneous equation 

( )f x   +   λ d
⌠
⌡


a

x

( )k ,x y ( )f y y  =  ( )g x

    has a unique solution for an arbitrary function ( )g x , such that λ be not an eigenvalue, or the 

homogeneous equation, in which  = ( )g x 0, has at least one non-trivial solution, for which λ is an 

eigenvalue and the solution is an eigenfunction.



• If λ be not an eigenvalue, λ is also not an eigenvalue of the equation with a 'transposed' kernel,

( )f x   +   λ d
⌠
⌡


a

x

( )k ,y x ( )f y y  =  ( )g x

    whereas if λ be an eigenvalue, λ is also an eigenvalue of the transposed equation, such that the 

transposed homogeneous equation,

( )f x   +   λ d
⌠
⌡


a

x

( )k ,y x ( )f y y  =  0

     has at least one non-trivial solution.

• If λ be an eigenvalue, the inhomogeneous equation, as stated in the former condition above, has 

a solution if and only if 

 = d
⌠
⌡


a

b

( )α x ( )g x x 0

     for each function ( )α x  that obeys the transposed homogeneous equation just above.

     If one express the general linear integral equation in symbolic form  =  + h g λ k f g, in which k 

denotes an operator that implies multiplication by a kernel ( )k ,x y  and integration over y between 

bounds a and b, such a form is directly comparable with operator equations involving matrix or 

differential operators.

     In some cases, a solution of integral equations might be effected with integral transforms, in 

particular those of Fourier, Laplace, Mellin and Hankel, but more general approaches include 

solution in series, following Neumann, Liouville and Volterra, and numerical solution involving 

conversion of an integral equation into simultaneous algebraic solutions in a set, which invokes 

matrix operations.  Laplace transforms arise in a solution of differential equations in section 7.206 

and Fourier transforms in section 7.207; Fourier transforms are discussed at length in chapter 14 

with important applications to molecular and crystalline structure and to molecular spectra. 

     All these integral equations, and others, are analogues to equations involving matrices and 

vectors, and these integral equations have applications in a solution of problems in linear algebra.

     Differential equations serve to model situations in chemistry, biology, physics, engineering, 

economics and medicine, and those of first order have extensive applications in chemical kinetics; 

for various kinetic orders, we explore these solutions at some length in section group 7.3.  

Methods algebraic and numeric to solve differential and integral equations with Maple we 

consider in other succeeding sections within this chapter. Partial-differential equations, with 

applications in physical chemistry and chemical physics, we discuss in further sections of this 

chapter.  Further applications that require solution of differential or integral equations appear in 

chapters in part II, which includes a discussion of Fourier transforms and their applications in 

several important chemical experiments.   

  summary of chapter 7

    A solution of a differential equation or an integral equation to yield an algebraic or symbolic 

formula or function is in general difficult, for the same reason as an expression in one or several 

variables might be difficult to integrate symbolically; for just such reasons, many special functions 

have arisen, such as Bessel functions introduced in section 7.102.  According to the relative ease 



of solving mathematical quantities, conversion of an integral equation into a differential equation 

is preferable; in turn, conversion of a partial-differential equation into multiple ordinary 

differential equations facilitates the solution, and conversion of a differential equation into an 

integral is generally desirable, because methods of treating quantities of simpler  types are 

generally further developed and more reliable.  One can naturally adopt a numerical approach 

when an algebraic result is elusive, and Maple includes many methods for this purpose.  As 

differential equations and, to a lesser extent, integral equations are an active area of research, one 

expects that new algorithms and methods under current development will become implemented in 

forthcoming versions of software.    

 chapter 8   Probability,  statistics,  regression  and  

optimization 

  8.0  overview and principles  

    Although undoubtedly a physicist who anyhow became Nobel laureate for chemistry for 

achieving a transmutation of chemical elements, Lord Ernest Rutherford is reported to have 

asserted,

If your experiment needs statistics, then you ought to have done a better experiment.

Like the quotation of Auguste Comte that appears in the Preface, this idea appears simplistic, 

much as a practitioner of chemistry might wish to the contrary, but an appropriate design of an 

experiment might simplify greatly the subsequent analysis that must incorporate a proper 

statistical component.  As a scientific field of inquiry, mathematical statistics originated largely 

through the work initiated by Legendre and became much extended by Gauss in the early 

nineteenth century, but most significant advances occurred during the early twentieth century; with 

a computer as a powerful tool to treat numeric data in a comprehensive and competent fashion, a 

chemist must not shirk his duty to treat all numeric data in a proper statistical manner, at least 

associating explicitly an uncertainty with each and every numerical datum or result or derived 

parameter:  for many tasks in which a professional chemist is involved, such a statistical treatment 

is indeed a legal requirement.  Almost invariably, the data available to a chemist are fewer than all 

possible data that would represent a total population or universe, so that the available data 

constitute merely a sample that is a subset of that population.  A statistic is a value derived from a 

sample; such a statistic might serve as an estimate for a population, in which case it becomes an 

estimator.  An unbiased estimator is a statistic of which the expected value equals the population 

parameter being estimated, and an efficient estimator has a smaller standard error than a less 

efficient estimator.   Beyond an actual use or treatment of numbers in a statistical evaluation of 

data, a chemist must, in the face of uncertainty, make inferences; an inference is a generalization 

based on incomplete or imperfect information, i.e. that from a sample rather than an entire 

population, that produces an estimate, prediction or decision, and that involves a probability rather 

than a certainty.  Statistics constitutes the theory and procedures resulting therefrom that might be 

applied to numerical evidence for the purpose of an inference in the face of uncertainty.   

     A principal objective of this chapter is hence to present methods to treat numeric data, such as 

measurements resulting from chemical experiments, to yield both compact representations in a 



form of functional relation and significant chemical information through descriptive statistics.  We 

conduct our experimental measurements with the expectation of deriving therefrom the maximum 

amount of useful information from the collected data.  A practical scientific activity should have 

as an initial action the formulation of a hypothesis or multiple hypotheses about a defined 

scientific question or questions; on such a basis, the planning of experiments proceeds to ensure 

that any collected data are pertinent to the question, and that experimental variables are expected 

to influence the results of measurements.  Experiments that inevitably involve an element of 

chance yield data that require a statistical treatment to warrant any inferences or conclusions 

therefrom; to measure or to assess a degree of uncertainty in drawing an inference from that 

statistical treatment of experimental data is a general task for which we here consider some 

concepts and procedures.  A degree of uncertainty becomes subject to quantitative consideration 

on applying a concept probability.  We proceed from a point of view of a chemist or physicist 

rather than that of a mathematician:  the mathematician knows the parameters and the nature of the 

population, whereas, for an experimental scientist, an objective of a statistical analysis is to obtain 

values of pertinent parameters to describe adequately a population.  A population is a collection of 

objects that have at least one common attribute or characteristice.  Without a knowledge of an 

entire population, one can not describe quantitatively a distribution of that population, but might 

express such a description in terms of probabilities.  The most reliable results that one might 

derive from data in a particular set are those for which the estimated errors are the least; the 

techniques of analysis of data must hence include techniques of analysis of error:  even the best 

efforts yield only estimates of the quantities investigated.

     A prerequisite of the production of significant data in a chemical experiment is the planning of 

its conduct so that data collected therefrom are both sensitive -- to variables expected to be 

included in an objective formula or function that might serve to fit such data, and insensitive -- to 

extraneous factors, so that those data are optimally representative of a particular phenomenon that 

is being tested.  An ensuing treatment typically involves a description of those data according to 

their fit to a functional form, or formula, based either on a pre-existing theoretical model or purely 

empirically in a convenient form, and eventually drawing inferences from those data.  

Measurements within a chemical experiment suffer inevitably from inaccuracy or error:  a 

meaningful representation of those measurements must convey to a reader an indication, according 

to a standard criterion, of an extent of that inaccuracy and its propagation into derived parameters 

in some functional form, implying statistical considerations; a repeated sampling of observations 

on a continuous scale that yields results with some scatter of values implies an inevitable lack of 

precision such that a result is not exactly reproducible.  Of errors of three types, gross error might 

result from a failure of an instrument or a blunder in its use, systematic error arises from 

imperfection in a procedure that yields a bias in the data from either a constant offset or 

proportionality, and random error that causes results to be spread from, or scattered about, a mean 

value; an experimental procedure must be designed to be accurate through the avoidance of 

systematic error and precise through the avoidance of random error.  The repeatability of a result is 

a measure of the precision of measurements in a set made in the same laboratory with the same 

procedure; the reproducibility of a result is a measure of the precision of measurements in sets 

made in separate laboratories or with separate methods.

     Experimental measurements suffer inevitably also from their necessarily limited number:  for 



this reason, a conclusion from such evidence is hence an inference -- a generalisation from 

incomplete information -- rather than a deduction.  As a result of a sampling error, a sample of 

measurements might exhibit a bias that constitutes a systematic tendency to misrepresent the entire 

population, as a sample is a subset of that population that has at least one common characteristic 

or attribute; a non-sampling error results solely from the manner of undertaking an observation -- a 

recording of information about some characteristic of an object, such as with a systematically 

malfunctioning mass balance.  A measurement of an extent, intensity or size of a characteristic of 

an object constitutes such an observation.  A sample space includes as a set all possible outcomes 

of an experiment, or all measurements in a process that generates a datum. A random variable 

from that sample space assumes either only discrete -- isolated or in a finite set resulting from 

counting -- or continuous values resulting from measurements necessarily imperfect, but in either 

case functions to assign a real value to each outcome in a sample space.  A discrete variable has 

countable values, in a fixed set, and measurements involving the values of that variable between 

those countable values are impracticable; a continuous variable is measurable on a continuous 

scale, of which a result depends on the precision of the measuring instrument or on the accuracy of 

the observer.  The four stages of a statistical exercise comprise a collection of data by means of 

counting or measurement, an ordering, presentation and classification of those data in a 

convenient form, an analysis of those data according to statistical methods, and an interpretation 

of the results of that analysis and a formulation of conclusions.  A random sample is designed to 

avoid an interference of shared properties, and thus allows for an equal probability of each subject 

of an observation to achieve a freedom from a sampling bias; a random sample might be simple, 

on choosing subjects such that each unit in a population might equally be selected, or systematic, 

on choosing a subject on a random basis and then further subjects at evenly spaced intervals, or 

stratified, on selecting independently a separate simple random sample from each stratum of 

population.  The cumulative frequency is a sum of frequencies of all values less than, or equal to, a 

particular value.  

     Of an active group of British statisticians -- with Pearson and Galton, Fisher defined statistics 

to imply reduction of data; a broader definition entails quantitative data on any subject, the 

classification and interpretation of those data in accordance with a theory of probability and an 

application of methods to test hypotheses -- hence a mathematical treatment of a theory of such 

distributions and tests.  The concerns of statistics are hence the collection, ordering and analysis of 

data, which comprise recorded observations or values in ordered sets from counts or 

measurements, and a consequent interpretation of those data.   A quantity that can assume diverse 

values is a variable, which adopts either discrete or continuous values.  A discrete value arises 

from a count, or as one value in a fixed  and finite set, whereas, for a variable that is measured on 

a continuous or pseudo-continuous scale, the result depends on either the precision of a measuring 

instrument or the accuracy of an observer.  Many instruments that were formerly common in 

chemical laboratories presented abundant data in analogue form as a continuous curve, such as a 

spectrum printed on a paper chart, whether from nuclear magnetic resonance at radio frequencies 

or from optical absorption in the ultraviolet region, or from a chronopotentiometer or gas 

chromatograph, among many other possibilities; an analysis of such data with a computer requires 

prior conversion of those curves to digital form.  Most contemporarily manufactured instruments 

for chemical analysis and other measurements transfer data directly to a computer, even if those 



instruments are not controlled directly through a computer.  Just as econometrics evolved from 

various attempts to describe economic phenomena in a quantitative manner, chemometrics has 

evolved for an analogous purpose in relation to chemistry, with three principal thrusts:

• the control of instruments and experimental measurements thereon, 

• a transfer and analysis, especially including statistical aspects, of data from those instruments 

and measurements, and 

• a simulation of experimental data in the form of curves representing spectra or other 

instrumental observations in analogue form.  

In this chapter, our concern is the second aspect, namely quantitative analysis of chemical data 

according to statistical concepts to yield conclusions of maximal significance; in chapters in part II 

we present examples of simulation of chemical and physical measurements and phenomena.  

     The reproducibility or repeatability of observations is an essential property of scientific 

research and chemical practice, whether in a teaching laboratory or for industrial testing.  That 

repeatability implies that a particular experiment performed on similar systems should yield the 

same result, apart from chaotic systems that anyhow have consistent aspects.  A measurement of a 

chemical or physical quantity typically yields slightly varied values for similar systems; only the 

consistent part of those values is significant.  For several measurements that appear, a priori, to be 

equally valid, the best estimate of the result is the mean value; the extent of the deviations from 

that mean value, as a distribution of a particular width, and the number of measurements upon 

which that mean is based enable an estimate of the precision of the result.  Accuracy is a 

qualitative concept that denotes the proximity of agreement between a result of a measurement 

and a true value of a measurand, or particular quantity subject to measurement; a measure of 

accuracy might be a number of significant digits or decimal places, or a range of possible error 

stated in absolute or relative terms.  In contrast, precision implies the proximity of an agreement 

between the results of independent tests obtained under stipulated conditions; a precision depends 

on only a distribution of random errors, and does not relate to a true or specified value; such 

random errors tend to have a nearly symmetric distribution, such that approximately as many 

results exceed the mean as are less than the mean.  Systematic error, which arises from a 

miscalibration of an instrument involved in a measurement or from an ignored influence, affects 

not the precision but the accuracy, and tends to bias the result toward a mean of measurements that 

is greater or smaller than the true value.  Whereas random errors determine the precision of a 

result, systematic errors determine its accuracy; to recognise and to control systematic error 

require ingenuity and diligence.  

     Precision is commonly expressed in terms of imprecision or uncertainty, calculated as a 

standard deviation of results of multiple tests.  The results of tests are independent when they are 

obtained in a manner free from an influence of other results on the same or similar object of test; 

quantitative measures of a precision depend critically on the stipulated conditions, of which 

repeatability, when measurements are repeated under the same conditions of apparatus and 

operator, and reproducibility, when measurements are repeated in other laboratories and by other 

operators, are particular sets; reproducibility is typically poorer than repeatability.  By statistical 

methods only deviations are demonstrable:  similarities must be inferred from their absence.   In a 



context of numerical calculations on a computer, precision indicates a number of decimal digits 

with which a calculation is performed, depending ultimately on the computer's processor, such as 

single precision typically implying 6 -- 8 decimal digits or double precision implying 16 -- 18 

decimal digits, which obviously differs from precision in a context of uncertainty attached to a 

particular datum or result of an experiment or a theoretical calculation; in a context of working 

with Maple, the default setting Digits := 10; might be considered single precision, or 

somewhat better than single precision, whereas use of evalhf yielding 16 --  18 decimal digits 

might be considered double precision, and an appreciably greater setting of Digits would 

achieve multiple precision to a desired extent.

     A general dictum of science is that

 a quantity specified without an estimate of its reliability, or its uncertainty, is worthless.  

In this context a practical definition of uncertainty is a parameter associated with a result of a 

measurement that characterizes a dispersion, or spread or scatter, of values that one can reasonably 

attribute to a quantity being measured, or measurand.  Rather than the uncertainty of a 

measurement implying a doubt about its validity, a knowledge of that uncertainty implies an 

increased confidence in such validity.  If one make only a single measurement of some quantity, 

one must apply one's knowledge of experimental conditions as a basis of estimating an 

uncertainty; one's trust of such an uncertainty is greatly enhanced when one can apply a standard 

statistical treatment to the results of multiple measurements, so as to derive a standard deviation 

that constitutes a standard uncertainty.  Because probability as a notion logically underlies 

statistics, we begin with rudimentary definitions of probability of an event a priori in relation to 

permutations and combinations of possible outcomes. 

probability  

     An outcome of an event in a chemical context, like any other event, is subject to chance, to 

some extent; an experiment repeated under essentially the same conditions yields not precisely, 

but merely approximately to a greater or lesser extent, the same or identical results.  According to 

Laplace's theory of chance, one reduces all events of a particular kind to cases of a certain number 

equally possible, or such as about which we might be equally undecided with regard to their 

existence, and determines the number of cases favourable to the event of which one seeks a 

probability.  The ratio of this number to that of all possible cases is a measure of this probability, 

which is thus simply a fraction of which the numerator is the number of favourable cases and the 

denominator is the number of all possible cases.  A subjective element enters the assessment of 

equiprobability.  A probability is hence an estimate or a measure of a degree of confidence that 

one might have in an occurrence of an event in a particular trial or experiment, measured on a 

scale from zero -- impossibility -- to unity -- certainty.  Each separate possible result of a trial is an 

outcome.  According to this classical or theoretical probability, a measure of whether a particular 

outcome of an event occurs on an occasion of a trial is hence a probability:  probability p1 of a 

particular and fully characterized outcome of a single trial one estimates according to a ratio of 

number of trials that favour that outcome, or successful outcomes, to a total number of trials, 

 p1  =   
number of trials yielding a particular outcome

total number of trials
 

     The use of probabilities to evaluate the chance of a particular result of a trial is known as 



deductive or frequentist statistics.  A chemical application of the frequentist approach that is 

impracticable with the classical approach involves an estimate of the probability that a molecule of 

a particular compound under particular conditions of a sample of that compound decomposes 

within a given period; this estimate might be based on the known rate of decomposition under the 

same conditions.  According to an empirical or frequentist or objective probability, for a random 

experiment performed on numerous occasions numbering n that yields a particular outcome on n1 

occasions, the proportion of occasions on which outcome n1 occurs tends to the probability p1 of 

that event consistent with the law of large numbers:

n1

n
  --> p1   as  → n ∞  

This formula is valid provided that each possible distinct outcome of a trial is equally likely, and 

that events are uncorrelated:  an outcome of one trial has no effect on an outcome of another trial.  

Called a statistical probability, this ratio is, for each outcome, a positive number that lies 

necessarily in a domain [0, 1] with certain failure and certain success as respective limiting cases.  

An impossible outcome implies zero probability and a certain outcome unit probability.  The total 

probability of all outcomes of an event is unity.  A proportion of a particular condition to a total 

number of items in a sample is an empirical probability, which is formally a limit of this 

proportion as the size of a sample becomes indefinitely large; a smaller sample is subject to bias.  

From a practical point of view, this frequentist approach provides no probability of a particular 

outcome when the repetition of the experiment many times is physically impossible; to decide 

how many trials are required to produce a satisfactory estimate of the probability of an outcome is 

also difficult.  Moreover, a frequentist interpretation of the probability of an event that occurs only 

once under the same conditions, as commonly encountered in econometrics or for natural 

disasters, is impracticable.  The prospective confusion of an abstract mathematical object -- a 

theoretical probability -- with frequencies of events obtained directly from experiments is a 

significant criticism of this frequentist definition of probability.  We define a theoretical or 

classical probability p of a particular outcome or event as

 = p
number of ways in which a particular outcome can arise

total number of all possible outcomes
 

     Two contrasting approaches to a treatment of statistical data -- which are truly any data 

obtained in a chemical context -- are deductive and inductive statistics.  Deductive statistics is 

applicable when a theoretical basis is known or anticipated; a result of a particular event has a 

probability calculable on that theoretical basis.  Inductive statistics is applicable to the use of 

information about a sample to estimate the probability of an event in a population.  These two 

approaches are entirely complementary:  an assessment of samples requires an investigation of its 

generation before a generalization is practicable, but inductive statistics requires an assumption of 

a theoretical basis from which deductions might be drawn.

     A third approach is called a bayesian or subjective probability, according to which a probability 

is identified with a degree of a belief of a particular individual person; this approach is 

uncommonly applied in physical science.

     A classical probability reflects a theoretically possible number of outcomes of a particular 

event.  An empirical probability might also be based on previously obtained results; a relative 



frequency of a particular outcome for past events is taken as an indication of likely occurrences in 

future.  According to that law of large numbers that is a fundamental statistical result, the mean of 

n independent, identically distributed random variables in a sequence tends to their mean as 

 → n ∞, or, rather, that the difference between theoretical and experimental probabilities tends to 

zero as the number of tests becomes indefinitely large; the relative frequency of occurrence of an 

event in n independent repetitions of a test tends to its probability as n increases without limit.

     A combined probability of a particular outcome of one trial and another specific outcome of a 

second uncorrelated or independent trial is a product of separate probabilities, because a 

probability with respect to separate trials is multiplicative.  If we undertake  − n 2 additional trials, 

probability pn of that particular outcome of every uncorrelated trial is a probability p1 in each trial 

raised to a power equal to number n of these trials;

pn   =   p1

n

If a probability of a successful outcome of an event be p1, the probability of a corresponding 

failure is  = q  − 1 p1, because these outcomes are complementary.  An expectation of a particular 

outcome of any one of n trials is the number of trials multiplied by both the probability of that 

outcome of a single trial and the probability of  − n 1 failures.

expectation   =   n q
( ) − n 1

p1

In a case of a small probability of success, p1<<1, or q ~ 1, this expectation becomes 

approximately n p1.  An expectation of exactly r successes in n trials or independent events is 

expectation   =   
!n

!r !( ) − n r
 p

r
q

( ) − n r

that includes a binomial coefficient, nCr =  
!n

!r !( ) − n r
.  The probability of at least r successes in n 

trials is 

p
n
  +  nC1 p

( ) − n 1
q +  nC2 p

( ) − n 2
q

2
 + ... +  nCr p

r
q

( ) − n r

which is a sum of the first  −  + n r 1 terms of the binomial expansion of ( ) + p q
n
.  In a Bernoulli 

population, each element has one of two possibilities, described as success and failure; the 

outcome of a Bernoulli trial is one element of a Bernoulli population.  A population proportion is 

the proportion of successes, for which the sample proportion is a useful estimate if it be unbiased, 

if its standard error tend to zero with increasing size of population and if it be efficient through 

having a variance smaller than any other unbiased estimator of the population proportion.    

     Two events are independent if an outcome of one event has no effect on an outcome of a 

second event.  For a particular experimental outcome x, an outcome other than that x, which might 

be denoted x, is called the complementary outcome, or the complement, of x.  Two or more 

outcomes are mutually exclusive if an occurrence of any one such outcome preclude the 

occurrence of each and any other outcome; mutually non-exclusive events occur simultaneously.  

The probability of occurrence of outcome x, given that outcome y has occurred, is called the 

conditional probability of outcome x given outcome y, and is denoted P(x|y).  An outcome x is 

independent of outcome y if a probability of occurrence of outcome x be unaffected by the prior 



occurrence of outcome y, and vice versa, so that P(x|y) = P(x) and P(y|x) = P(y).  A collection of 

outcomes becomes exhaustive when that collection includes all possible outcomes of the 

experiment.  For two independent outcomes of events, a multiplicative law is applicable,

 = p  and x y px py

with a correspondingly extended product for multiple independent events.  If two events be 

mutually exclusive, such that an occurrence of one outcome of an event in a particular test 

precludes simultaneously an occurrence of another particular outcome, these probabilities are 

additive.

p  or x y   =   px  +   py  

For two events of which outcomes x and y are possible, the probability of at least one such 

outcome is

p  or x y =  +  − px py pxy

in which  = pxy px py.  For three possible outcomes , ,x y z of an event, the probability of at least one 

such outcome is

p  or  or x y z =   +  +  −  −  −  + px py pz pxy pxz pyz pxyz

The extents of dependence are variable, with mutually exclusive and certainly inclusive as limiting 

cases.  A conditional probability applies to dependent events:  for instance, if from n 

distinguishable objects one is randomly selected, the probability of a particular outcome to occur 

is 
1

n
 ; the conditional probability for that same object to be selected from the remaining objects is 

0.  The conditional probability of an event x, given that event y has occurred, is calculated as the 

quotient of a probability that both events occur and a probabiltiy that y occurs.  Events are 

independent when an occurrence of one event does not preclude another event, in which case the 

probability of two independent events is a product of the separate probabilities, whereas events are 

dependent when one event affects the probability of occurrence of a second event.  For a Bernoulli 

trial, only two outcomes -- success and failure  -- are possible, and they are complementary; the 

number of successes is a random variable conforming to a binomial distribution, according to the 

formula above for the expectation of a success.  A random variable conforms to a rule that 

represents the prospective numerical values associated with the outcomes of an experiment; a list 

of those values constitutes the range of that variable.  The expected value of a random variable is 

its average value, which balances the distribution.  

    For repeated trials, if the probability of an event in a particular trial be p and the probability of 

another and incompatible event be  = q  − 1 p, the probability of occurrence r times in n trials is 

 = ( )pn r
!n

!r !( ) − n r
 p

r
q

( ) − n r

as for the expectation above.

     Although chemical transformations, from reactants to products, appear generally to proceed 

smoothly, they are actually stochastic events in which an event at each microscopic centre is 

subject to laws of chance, for instance within a specified temporal interval.  In a stochastic 

process, an individual event might seem random, but in totality such events obey well defined 

probabilistic laws; a stochastic process thus involves the dynamics of probability functions, in 



which random variables enter probability distributions that depend on time.  As a typical chemical 

sample contains numerous molecules, for instance about 6 x10
17

 molecules even in a micromole, 

the fluctuations or deviations from a smooth course of reaction are difficultly detectable; the 

results of an exercise below confirm that such fluctuations from a mean are of order n  when the 

expected number is n.  When we can detect reactive events individually, as for instance hearing a 

click from a Geiger-Muller counter equipped with a loudspeaker in the case of a sample 

containing nuclides of a slowly decaying radioactive element, we should replace concentrations or 

numbers of reactants with their probabilities.  A radioactive decay according to the first kinetic 

order, for which a relation 

 = N N0 e

( )−k
1

t

with initial number N0 of radioactive nuclei of half life 
( )ln 2

k1

 and number N remaining at duration 

t of reaction might be an adequate expression with N large and many reactive events during a 

particular period of counting, becomes expressed, when N is small and few reactive events occur 

during a counting period, as 

 = p p0 e

( )−k
1

t

 ;

here appear probability p0 of an event within a small interval at the initial stage of a reaction, or of 

observation of a reaction, and corresponding probability p within an equal interval at a subsequent 

stage after a duration t.  Although N0 and N must clearly be integers, no such restriction applies to 

p0 and p.  Stochastic laws apply to events with discrete outcomes, such as a making and breaking 

of chemical bonds; only when these events are rare, either because participating entities are few or 

because events are strongly inhibited, do stochastic effects become discernible.  A stochastic 

process is describable with a random variable, called hence a stochastic variable, that depends on 

some parameter, which might be discrete or continuous, and which is commonly taken to be time. 

combination and permutation  

     If n distinct possibilities occur for one condition and m distinct possibilities occur for a separate 

condition, the two conditions together have m n possibilities; for instance, for a collection of three 

H atoms distinguished as H, D and T, and two Cl atoms, distinguished as  
35

Cl and  
37

Cl atoms, 

the number of possible HCl molecules distinguished according to the isotopic masses of the 

separate atoms is  = 3 ( )2 6. 

     A combination or unordered arrangement implies selection of a subset of objects, of specified 

number, from a set of equal or greater number without regard to an order, whereas a permutation 

is an ordered arrangement of objects, of specified number, selected from a set of equal or greater 

number.  A combination is an arrangement that contains elements of particular number r in an 

arbitrary order, chosen from n specified elements, but permutations are impermissible within this 

arrangement.  A permutation of n elements is an arrangement in a possible ordering of those 

elements; an interchange of two of n distinct elements in a permutation effects a transposition, and 

any permutation of n distinct elements becomes transformed into another permutation.  A number 

of ways to choose r distinguishable objects from n such objects in a set, thus with  ≤ r n and with 



no repetition, is hence a number of distinct combinations, expressed with factorials,

  C(n, r)  =  
!n

!r !( ) − n r
 ,

which is a binomial coefficient; an alternative symbol is  nCr; by definition, C(n, r) =  0 for all r > 

n.  The total number of combinations of n distinguishable objects taken 1, or 2, ... or n at a time is 

 − 2
n

1.The number of distinct permutations of r distinguishable objects is 

 P(n, r)  =   
!n

!( ) − n r
 ,

which is just a ratio of factorials; an alternative symbol is  nPr.  For a permutation of n objects n at 

a time, the number is hence !n ; any particular combination of r items is hence subject to 

rearrangement within itself to yield !n  distinct permutations.  If a permutation be circular such that 

no particular initial point of an arrangement be recognisable, a number of circular permutations is 

equal to a number of linear permutations divided by a number of objects, or 

 
( )P ,n r

n
  = 

!( ) − n 1

!( ) − n r

In a situation in which objects in k groups are involved, for which objects in each group are 

indistinguishable from each other but distinguishable from objects in any other group, the number 

of permutations of n objects, as a sum of n1 objects in group 1, n2 objects in group 2, ... nk objects 

in group k, taken n at a time is 

P(n; , , , ,n1 n2 n3 ... nk)  =  
!n

!n1 !n2 !n3 ... !nk

A permutation is even or odd according to a number of exchanges of elements that yield a 

particular result with reference to an original order.  

     The number of ways in which n distinguishable objects are divisible into k classes, with n1 in 

class 1, n2 in class 2, ..., with  = ∑
i

ni n is, like the number of permutations above, 

!n

!n1 !n2 ... !nk

The number of ways that m distinguishable objects might be placed into n identical compartments, 

with n > m, is 
!n

!( ) − n m
, because  − n m compartments, being empty, are indistinguishable among 

themselves.  If these objects be not distinguishable, the number is 
!n

!( ) − n m !m
  =  C(n, m), 

because the m occupied compartments are become indistinguishable among themselves; 

rearrangements of the order of occupied and empty compartments count as distinct ways.  The 

number of ways of placing m distinguishable objects into n ordered compartments is n
m
 when any 

number from 0 to m might enter each compartment.  The number of ways of placing m 

indistinguishable objects into n ordered compartments, with any number in each compartment, is 



( )C , +  − n m 1 m  = 
!( ) +  − n m 1

!m !( ) − n 1
 .

distributions and statistical indicators 

     Among many continuous distributions, we list the following [from Probability Distribution 

Relations, by Y. Abdelkader and Z. Al-Marzouk, Statistica, 70 (1), 41-51, 2010] with their 

parameters and domains, some of which are discussed further below.
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  ,  parameters α > 0, θ > 0,  domain [ ,0 ∞]  

 = ( )fKumaraswamy x a b x
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 ,  parameters a > 0, b > 0, domain [0, 1] 
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           I0  is a modified Bessel function of the first kind and order 0. 
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 ,   parameters α > 0, β > 0, domain [ ,0 ∞] 

     Among many discrete distributions, we list the following with their parameters, domains and 

probability mass functions; some distributions are discussed further below.  In probability theory 

and statistics, a probability mass function indicates a probability that a discrete random variable is 

exactly equal to some value; this probability mass function is commonly the primary means to 

define a discrete probability distribution, and such functions exist for either scalar or multivariate 

random variables, given that the distribution be discrete.

The Bernoulli distribution is a special case of a binomial distribution

 = ( )PBernoulli x p if  = x 1 or q =  − 1 p if  = x 0 ,  parameters  ≤ 0 p < 1, domain {0,1}

A variable with a β binomial distribution is distributed as a binomial distribution with parameter p

, such that p is a distribution according to a Β distribution with parameters α and β. For n trials, it 

has probability density function

 = ( )Pβ binomial x
( )Β , + x α  −  + n x β !n

( )Β ,α β !x !( ) − n x
 ,   parameters α > 0, β > 0, n posint, domain {0,1,2,...n}

The binomial distribution is a discrete probability distribution of the number of successes in a 

sequence of n independent trials yielding either success or failure, each of which yields a success 

with probability p. Such a trial is also called a Bernoulli experiment; when  = n 1, the binomial 

distribution is a Bernoulli distribution.



 = ( )Pbinomial x
!n p

x
( ) − 1 p

( ) − n x

!x !( ) − n x
 ,   parameter n posint, domain {0,1,2, ... n }

The discrete uniform distribution is a probability distribution whereby equally spaced values of 

finite number are equally likely to be observed; each value of n has equal probability 
1

n
 .

 = ( )Pdiscrete uniform x
1

n
 ,   parameter n posint, domain {0,1,2,...n }

The geometric distribution is the probability distribution of number  = y  − x 1 of failures before the 

first success, supported on the set {0, 1, 2, 3, ...}.

 = ( )Pgeometric x p ( ) − 1 p
x
,   parameter  ≤ 0 p < 1 domain {0, 1, 2, ... }

The hypergeometric distribution is a discrete probability distribution that describes the probability 

of x successes in n draws from a finite population of size N containing m successes without 

replacement.

 = ( )Phypergeometric x
!( )N p

!x !( ) − N p x
 

!( )N q

!( ) − n x !( ) −  + N q n x
!N

!n !( ) − N n

 ,   parameters k = 0, 1, 2, ... N

, n = 0, 1, 2, ...N,  = p
k

N
,  = q  − 1 p, domain {0, 1, ..., n}

The log-series distribution is a discrete probability distribution derived from the Maclaurin series 

expansion  = − ( )ln  − 1 p  +  +  + p
p

2

2

p
3

3
....

 = ( )Plog-series x −
θ

x

x ( )ln  − 1 θ
 ,   parameter  < 0 p < 1, domain {0, 1, 2, ...}

The Pascal distribution with parameters k and p arises in the scheme of the Bernoulli trial with 

probabilities p of success and  − 1 p of failure, as the distribution of the number of failures up to 

the occurrence of success k. 

 = ( )PPascal x
!( ) +  − x k 1

!( ) − k 1 !x
 p

k
( ) − 1 p

x
 ,    parameters  ≤ 0 p < 1, k = posint, domain {0, 1, 2, ...}

A discrete stochastic variable x has a Poisson distribution with parameter λ > 0 if, for x = 0, 1, 2, 

... the probability mass function of x is 

 = ( )PPoisson x
λ

x
e

( )−λ

!x
 ,   parameter λ > 0, domain {0, 1, 2, ...}

In probability theory and statistics, the Rademacher distribution is a discrete probability 

distribution that has chance 
1

2
 for either 1 or −1. 

( )PRademacher x  = if  = x −1 then 
1

2
 else if  = x 1 then 

1

2
  else 0 end if ,  domain {−1,  1}

A Skellam distribution is the discrete probability distribution of difference  − n1 n2 of two 

statistically independent random variables N1 and N2, each having Poisson distributions with 



distinct expected values µ1 and µ2; ( )I|x| z  is a modified Bessel function of the first kind.   

 = ( )PSkellam x e

( )−( ) + λ
1

λ
2 











λ1

λ2











x

2

( )I|x| 2 λ1 λ2 ,   parameters λ1 > 0, λ2 > 0, domain {..., ,−2 −1

,0,1,2,...}

      An application of statistical methods to analysis of experimental data requires an 

understanding of these data and their characteristics.  The descriptive statistics of the most 

common types applied to a data set are a measure of its central tendency and a measure of its 

variability or dispersion; the central tendency of data in a sample is an average value of a variable 

being observed, which might be taken to be typical of that variable, and the variability is a 

measure of the extent to which all data are near that typical value.  Among a few measures of the 

location of a data set, the most meaningful characteristics are, for a particular quantity, the mean; 

for the variation from that mean, a variance or standard deviation is a common statistic. According 

to statistical convention, greek letters denote parameters of a parent distribution, and latin letters 

denote their estimates; because of limitations of type and fonts available for a Maple worksheet, 

we refrain from rigorous conformity to this convention.

    Statistical methods are generally based on a theoretical distribution that approximates, 

according to an expectation of an applicability of the law of large numbers, an actual distribution.  

We treat here first a univariate distribution, applicable to a single random variable, directly 

measured on multiple occasions under otherwise nominally similar conditions; below, we discuss 

bivariate systems in which a response variable variable depends on a single factor as independent 

variable.  A distribution resulting from the measurements of an original population is called an 

underlying or parent distribution.  A distribution that is not symmetric with respect to its mode is 

skewed, to greater values than that mode in the distribution if the tail in that direction be greater 

than in the other direction from the mode, or positively skewed if frequencies greater than at the 

mode be favoured over frequencies less than at the mode, and negatively skewed otherwise; 

Pearson's measure of the skewness is 
 − mean mode

standard deviation
.   Whether a mean lie to the left or right 

of a median for a positively skewed distribution depends on the particular characteristics of that 

distribution, such as whether the areas to the right and left of the median are equal.  A distribution 

is bimodal if it have two maxima; a single maxima is called a mode; the existence of a bimodal 

distribution, if the difference between the modes be significant, might indicate some 

inhomogeneous factor to be present in the population.

      No measurement of a physical property of a chemical system on a continuous scale is perfect 

or exact, unless fortuitously so; apart from gross blunder, error random and systematic enters 

inevitably to some extent a measurement of a nominally continuously variable quantity.  Error is 

defined as a difference or deviation between a result of an individual measurement, or observation, 

and the true value of a measurand that might be obtained from a perfect measurement; because a 

true value is indeterminate in a practical case, error is an idealized concept, estimated according to 

a difference, called a residual, between an individual measurement and an expected result based 

on numerous tests under repeatable conditions.  A discrepancy is a difference betwee two 

measured values of the same quantity.  Apart from a measurement, an observation might also be 



an answer to a question -- affirmative or negative -- or a classification -- acceptable or 

unacceptable.  A known error is applicable to a result as a correction.  According to convention, an 

assigned or reference value is accepted as a true value.  For instance, with spectral measurements 

of rotational parameters of simple gaseous compounds based on both wave lengths and 

frequencies, one could formerly estimate the speed of light in vacuo through  = c λ ν, with an 

associated uncertainty comparable to that attached to another fundamental physical or chemical 

constant such as that of Planck h or Avogadro NA, but to this quantity is assigned a value c = 

299792458 m s 
( )−1

, without uncertainty.  Before that assignment, measurements of that speed in 

diverse experiments exhibited a central tendency, i.e. to occur within a small domain about some 

central value that might or might not have been an explicit experimental result; during the 

nineteenth and twentieth centuries, the range of values of c became progressively more narrow, as 

the dispersion of values about some central value decreased.  An eventual assignment of that 

stated value of c evades uncertainty, but that situation is rare:  measurements of other quantities, 

and thereby their consequent values, are inevitably subject to uncertainty.  Although an uncertainty 

might have a form of a range, such a value can not serve to correct a result of a measurement.  To 

estimate an uncertainty of a measurement, one must 

• state clearly what is being measured, including a relation between a measurand and input 

quantities, 

• identify sources of uncertainty, 

• measure or estimate the magnitude of each identified prospective component of uncertainty, and 

• calculate a combined uncertainty, which remains essentially qualitative even if expressed in 

numerical form.  

The fractional uncertainty of a measurement is the ratio of the uncertainty δx to the best estimate x 

of the value of the quantity, i.e. 
δ x

x
, in which the absolute value ensures a positive result.  For a 

result of a counting experiment, such as the number of radioactive decays per counting interval 

indicated with a Geiger-Mueller counter, the average number of events in that interval might be 

expressed as n + n .  The uncertainty δx in a quantity x taken to a power n, for  = f x
n
, produces 

fractional uncertainty   = 
δ f

f
n  

δ x

x
.  The uncertainty in a formula ( )f x  involving one variable is δf 

= 
∂

∂

x
f δ x, whereas the uncertainty in a formula ( )f , ,x ... z  involving multiple uncorrelated 

variables is

 = df  +  + 
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     To extract quantitative information about a chemical system that transcends random effects, 

one must apply statistical methods.  Summary measures of data correspond to either populations 

or samples; a summary measure from a sample constitutes a statistic.  In either case, one's 

objective is to express a result as (x + u ) units, in which x denotes the best or most representative 



value of a measured quantity and u denotes an uncertainty attributed to that measurement; a 

standard deviation u is a standard uncertainty and a measure of the dispersion of measurements of 

a property of a sample, and serves as a practical statistical indicator.  Although a variance has a 

greater significance in statistical theory, the standard deviation, or standard error in relation to a 

value of a parameter, has a direct relevance through its magnitude in relation to the mean, and has 

the same units as the quantity being measured.  Three criteria of the worth of a statistic to estimate 

a parameter are 

• that there is a tendency of the statistic to assume values near that parameter, 

• that the estimator is reliable, and 

• that this reliability improves with increasing size of the sample.  

A statistic becomes a consistent estimator of a parameter when the probability that its value is near 

the true value approaches unity with increasing size of the sample.    

     Two measures of the spread of a distribution of observations are a Q spread or the interquartile 

range, which is the distance between the first and third quartiles, and an E spread, which is the 

distance between the first and seventh eighths of samples. 

     Moment k of a set of values is a mean of those values each taken to power k:

( )µk x   =  < x
k
 >  = 

∑
 = j 1

n

xj

k

n

The first moment about zero is thus the arithmetic mean of a sample, but the first moment about 

the mean is zero as the average deviation from the mean is zero.  The mean or expected value x = 

( )µ1 x  = < x > of a discrete random variable x is

 x = ∑
 = j 1

n

xj pj , 

in which pj is the probability of occurrence of a particular value xj or the sample proportion, or

 x = 

∑
 = j 1

n

xj

n
, 

in which n denotes the number of observations or sample size, or

 x = 

∑
 = j 1

k

fj xj

n
 

in which fj is the frequency of particular class j in an interval represented with its midpoint xj for 

classes numbering k ; for a continuous random variable represented according to a formula ( )f x , 

the mean is 

x = d
⌠
⌡
x ( )f x x.  



The difference between the second moment, ( )µ2 x , and the first moment squared, ( )µ1 x
2
, is the 

variance; its positive square root is called standard deviation σx, for the sample:

 ( )µ2 x  − ( )µ1 x
2
 = σx

2

The variance of the mean is 
σx

2

n
 .  That standard deviation is a measure of the likely random error 

of any single measurement.  A function <e
( )t x

> generates moments for a continuous random 

variable x as a weighted sum of the moments upon substitution of a Taylor expansion of this 

exponential function:

<e
( )t x

>  =  d
⌠

⌡
e

( )t x
( )f x x =  1 +  t <x>  +  

t
2

!2
  < x

2
 >  +   ...

Because the sum of all deviations equals zero, we define the mean deviation in terms of the 

absolute values, or magnitudes, of the deviations  = ( )δ x ∑
 = j 1

n  − xj ( )µ1 x

n
.  This mean deviation is 

a measure of the dispersion of the observations about the mean, but its definition in terms of 

absolute values causes inconvenience in statistical analysis; for this reason the variance is a 

superior indicator of the dispersion.

     For a weighted mean, 

x  =  

∑
 = j 1

n

wj xj

∑
 = j 1

n

wj

with the weight typically taken as the reciprocal of the variance of the measurement,

 = wj

1

σj

2

for each measurement j in a set numbering n, such that the uncertainty in x is the reciprocal square 

root of the sum of individual weights.  The variance of the mean is accordingly 
1

∑
 = j 1

n

wj

 .

     Other than a mean, measures of the central tendency comprise a median, which is the central 

value of ordered data so with equal numbers of observations of greater or lesser values, and a 

mode, which is the most common value of a datum in a set of observations.  A median provides a 

superior measure of central tendency when data exhibit atypically large or small observations, or 

when the data exhibit an asymmetry between small and large values; the mean is much more 

strongly influenced by an outlying datum than the median.  When data are grouped into classes, 

the midpoint of the interval containing the greatest class frequency represents the mode.  For 

qualitative data, the proportion of a subset is the only available measure.   



    Apart from the central tendency described with a mean, median or mode, for a set of 

observations we require a measure of the dispersion of those data; as the range of the data, from 

the smallest to the largest values in the set, is sensitive to the extent of the data -- as a further point 

might lie outside the preceding range, other measures of dispersion are generally applicable, 

namely variance and its square root as a standard deviation.  Variances of a sum or difference of 

quantities , ,x1 x2 x3, ... are additive:   for this sum or difference,

  = y x1 + x2 + x3 +  ... 

providing that there be no correlation between x1 and x2, between x1 and x3 et cetera, with σ1

2
 

being the variance of x1, σ2

2
 being the variance of x2 and so forth, the variance of y is 

  = σy

2
 +  + σ1

2
σ2

2
σ3

2
 +  ...

For a product or quotient, squares of relative errors are additive:  for this product or quotient,

 = z
x y

w
 

providing that no correlation exist between x and y, between x and w, et cetera, the variance of z is 

calculated as its ratio with z
2
:

  = 
σz

2

z
2

 +  + 
σx

2

x
2

σy

2

y
2

σw

2

w
2

 

and analogously for other expressions involving multiplicands and divisors.  Tests for outliers 

applicable to data in a univariate set are attributed to Dixon and to Grubbs.  An estimate of a 

standard deviation based on a range is a quarter of that range.  

     Through an analysis of variance, one tests, for univariate data, whether samples in one group, 

such as from a batch, a method or a laboratory, differ from the population of subjects investigated, 

such as several batches of one product, varied methods for the same parameter, multiple 

laboratories participating in the testing.  To problems of the following type, testing according to 

analysis of variance is amenable:  measurements in several groups are available for a particular 

product, several repeated measurements were conducted on each batch, and the same analytical 

method was applied for all testing.   An analysis of variance according to a matrix generated to 

represent a table for a classification has a purpose to test the null hypothesis:  that the sample 

means of many populations are all equal; the alternative hypothesis is that they are not equal.  In 

general a test statistic must be chosen, and a level of significance must be specified, according to 

both of which a decision rule must be formulated.  On the basis of a calculated test statistic for the 

sample, a decision is made to accept or to reject the null hypothesis; in the latter case the 

alternative hypothesis becomes applicable. Such testing is susceptible to error of two types, I and 

II.

     A statistical population is a collection of all possible observations of a specific characteristic or 

property of interest, whereas a sample contains only some observations.  When a characteristic is 

not numerical, such as a composition in terms of chemical elements, the population is qualitative, 

whereas a  quantitative population is expressible numerically.  One might distinguish formally 

between estimates of characteristics for a total quantitative population and for a sample:  in 

statistical contexts, greek letters conventionally denote characteristics of a population, such as its 



mean µ and its standard deviation σ, and roman letters denote characteristics of a sample taken 

from that total population, such as estimate m or x of its mean and estimate s of its standard 

deviation.  Because in conditions typical of chemical experiments one makes finite measurements 

on only a sample rather than a total population, quantities derived from those measurements are 

merely estimates of what might be applicable for a total population; for such estimates roman 

letters are accordingly preferable.  A theoretical population is generally an idealization of an actual 

population from which one draws a sample.  As symbols for all chemical uses number finitely, we 

tend here to neglect that formal distinction between roman and greek letters, but endeavour to 

maintain consistency of usage with whatever letters seem appropriate in particular circumstances. 

     For a random variable, the numerical value assigned to it or its symbol is determined 

stochastically; whereas a continuous random variable might assume any numerical value on a 

continuous scale, a discrete random variable can assume a value among a countable number of 

such values.  The expected value of a discrete random variable is a mean of possible values of that 

variable weighted according to the respective probabilities.  The variance of a random variable is a 

mean of the squared deviations from the expected value calculated with probability weights.  A 

distribution is a set of possible values of a random variable, or a set of points in a sample space, 

considered in terms of their theoretical or observed frequency.  A probability distribution provides 

a probability for each possible value of a random variable.  Raw data become converted into 

values clustered into class intervals, each of which has a lower and an upper bound to demarcate 

the adjacent intervals; the width of a uniform class interval equals the difference between largest 

and smallest values in the sample divided by the number of class intervals.  The ratio of a number 

of observations in a particular class to the total number of observations becomes the relative 

frequency; a sum of frequencies for successively greater class intervals yields a cumulative 

frequency, a curve to depict which has typically the shape of an ogive.  The subpopulations of the 

class intevals in an ordered manner generate a frequency distribution of a sample.  Such a 

distribution might be depicted as an histogram or bar chart, or as a frequency polygon or curve.  

To plot an histogram for a single experimental factor, we partition the factor space into bins, so 

that a value of factors in any particular combination corresponds to a position in factor space and 

falls into only one bin.  

      For a distribution of arbitrary shape, Chebyshev's rule states that at least 
3

4
 of the observations 

fall within two standard deviations of the mean, or at least 
8

9
 within three standard deviations, but 

that rule is too general for practical application despite its implication that much information is 

imparted in that descriptor of a population.  To achieve a more concrete criterion, we require a 

knowledge of the distribution of frequencies associated with a measured quantity. 

     For any continuous distribution ( )f x  that might be considered to represent the limit of a 

histogram for many measurements of a continuous variable x and narrow class intervals, the 

probability that a single measurement yields a value between x and  + x dx is ( )f x dx; the 

probability that a single measurement yields a value between  = x a and  = x b is d
⌠
⌡


a

b

( )f x x, and the 



total probability of any value corresponds to the normalization condition,  = d
⌠
⌡


−∞

∞

( )f x x 1.

     A gaussian or normal distribution is important because, in statistical treatments of error 

associated with physical measurement in chemical or other experiments, one commonly assumes 

that such random error is normally distributed; many distributions of measured characteristics 

display such a form, but by no means all distributions have such a symmetric shape, others 

showing a skewed form.  Such an assumption of gaussian form might be justified upon neglect of 

systematic error, which is taken into account separately -- when detected, and in an absence of 

other bias of a measuring device; a systematic error can arise from a common offset of all 

measurements, whereas bias arises if large values of a measured quantity be significantly favoured 

or disfavoured relative to small values, i.e. on either side of an arithmetic mean, thus skewing a 

distribution.  A gaussian or normal distribution of x is unimodal, continuous and symmetric about 

its mean µ, which is also its median and its mode, according to this formula for the probability 

density with standard deviation σ:  

e

















−
( ) − x µ

2

2 σ
2

σ 2 π
According to the central-limit theorem, for a sum Y of n independent variables xi, i = 1 .. n, each 

with its own mean and variance, a distribution for Y becomes normally distributed as  → n ∞, 

because random errors from varied sources tend to compensate for one another; because the 

practical number of measurements of a quantity is limited, one must rely on this theorem in 

expecting that a few actual data behave in the same manner as many prospective but inaccessible 

data.  For a random sample with mean x and of size n taken from a normally distributed and large 

population with mean µ and standard deviation σ, the sampling distribution for mean x of that 

sample is also gaussian; its standard deviation is 
σ

n
 .  When the population N is small relative to 

the sample n, this quantity becomes  xxx

 
σ

n
 

 − N n

 − n 1
 . 

According to Winsor's principle, the variation of frequency near the centre of any distribution is 

typically approximated closely with a gaussian distribution, but one might argue that this approach  

by devoting too much attention to the centre of a distribution, becomes misleading.  For practical 

purposes, unless there be shown a manifest asymmetry or there is a knowledge a priori that 

another distribution is applicable, a distribution over less than 30 measurements must be regarded 

as belonging to a gaussian kind, even if small deviations be observed, because the contrary can not 

be proved.  In one sense, parametric statistics, for instance in terms of a mean and a standard 

deviation, are concerned with measurements that conform to a gaussian distribution, and 

non-parametric statistics to other distributions.    

     The important advantages of this gaussian distribution are its efficiency, its lack of bias, its 

wide acceptance and its incorporation into many tests and much software for analytical chemistry 



and elsewhere.  A gaussian or normal distribution serves as a basis upon which one compares 

other distributions.  When a plot of a distribution fails to exhibit a symmetric shape that might be 

approximately normal, a variant of a gaussian distribution, called a log-normal distribution and 

obtained on plotting the abscissal quantity on a logarithmic scale, might be appropriate; Maple 

provides a plot for this distribution in both old package stats and package Statistics that supersedes 

the former.  A highly skewed distribution, exponential, is typical of populations of which 

observations vary over time, such as the temporally decreasing concentration of a chemical 

reactant for which, for t > 0,  = c c0 e
( )−k t

, or the radioactive decay of unstable elements.  Other 

distributions might be positively or negatively skewed, in which case the median is a realistic 

measure of the location of data.  Distributions of still other shapes are encounted in chemical 

measurements, such as a bimodal distribution that exhibits two maxima, implying a 

non-homogeneous factor within the sample, and thereby defies direct description with standard 

measures.   For a normalized probability distribution or normalized probability density ( )p x  

governing a value of continuous variable x between a smallest value a and a largest value b, the 

probability of values between x and  + x dx is ( )p x dx, and

 = d
⌠
⌡


a

b

( )p x x 1.

With such a normalized distribution, the population mean is calculated as

 = µ d
⌠
⌡


a

b

x ( )p x x

One might generally take  = a −∞ and  = b ∞ without introducing significant error.  The variance of 

a probability distribution of that variable x is  − ( )x
2 µ2

 and the standard deviation is thus 

 = σ  − ( )x
2 µ2

  =  d
⌠

⌡


a

b

( ) − x µ 2
( )p x x   =   − d

⌠

⌡


a

b

x
2

( )p x x












d

⌠
⌡


a

b

x ( )p x x

2

If a raw distribution of numerous data have, like a Laplace distribution also known as a double 

exponential distribution, a symmetric shape and long tails, relative to a gaussian distribution, the 

mean is a poor estimator because it is sensitive to outliers; in this condition a trimmed mean is 

preferable, such that trimming, by 10 or 20 per cent of the data, eliminates the outliers.  For large 

samples the sample median has a standard error 
σ

2 n
, whereas the standard error of the mean is 

σ

n
 .

     Whereas that gaussian distribution is a continuous function, Poisson's distribution, 

e
( )−µ

µ
r

!r

is discrete in describing the probability of the number r of successes of an event according to a 

distribution with mean µ.  Inserting r with values of successive integers , , , = r 0 1 2 ..., we obtain a 

total probability,



e
( )−µ

µ
0

!0
  + 

e
( )−µ

µ
1

!1
  + 

e
( )−µ

µ
2

!2
  + 

e
( )−µ

µ
3

!3
  + ... = e

( )−µ 







 +  +  +  + 1 µ

µ
2

!2

µ
3

!3
...   =  e

( )−µ
e

µ
  =  1

which must be unity by definition.  This distribution is useful when a probability p of any 

particular outcome of a trial is small and the number n of trials is large; in that case, 
e

( )−µ
µ

r

!r
 

approaches closely the value of  C(n, r) q
( ) − n r

p
r
, so that this poissonian distribution approximates 

closely a binomial distribution, for instance for n > 50 and  < p
1

10
.

     The binomial distribution is typically applicable to experiments in which a result is one final 

state among a small number thereof.  Both the gaussian and Poisson's distribution might be 

considered to be limiting cases of a binomial distribution.

     For an approximately gaussian or normal distribution, approximately 68 per cent of 

observations fall within one standard deviation of the mean, and 95 per cent within two standard 

deviations.  

     As a robust alternative to regression based on a criterion of least squares of residuals, on which 

outliers tend to exert an undue influence, a resistant line might be formed from the use of medians 

of data divided into three or more sets; residuals should be investigated to detect patterns 

unexplained by the resistant line.  This use of medians should occur only when weighting of data, 

as explained below, is impracticable.  A plot of residuals shows whether there is a systematic trend 

of the scatter, an increasing or decreasing scatter with increasing independent variable -- which 

might indicate the necessity of a transformation of data, or a curvilinear pattern -- which indicates 

that an alternative model might be preferable.  For data that are collected sequentially during some 

temporal period, if these data or their residuals exhibit a dependence on time, a time factor should 

be included in the model.   

     For practical calculations involving statistical treatment of experimental results of univariate or 

multivariate systems, a spreadsheet is a useful tool.  

regression   

     Suppose that, in some experiment, we collect ten data points with one independent variable x 

and one dependent variable y, so ( ,xi yi) for  = i  .. 1 10; when we plot those points as cartesian 

coordinates, their locations appear to lie near a straight line, so to indicate a linear dependence of y 

on x.  We choose hence to represent these data compactly with a formula  = y  + m x b; the best 

linear approximation of the data in an absolute sense becomes the problem of minimizing 

( )max , − yi ( ) + m xi b  = i  .. 1 10 , which is called a minimax problem, but for which there is no 

solution according to elementary methods.  A second approach to determine the best linear 

approximation requires an evaluation of m and b to minimize ∑
 = i 1

10

 − yi ( ) + m xi b  that corresponds 

to the sum of the absolute deviations from the linear relation; such an approach entails the 

difficulties that the absolute-value function is not differentiable at zero and that solutions to the 

equations  = 
∂

∂

m








∑

i

 − yi ( ) + m xi b 0 and  = 
∂

∂

b








∑

i

 − yi ( ) + m xi b 0 cannot necessarily be 



obtained.  A third approach for this purpose requires an evaluation of m and b to minimize χ
2
  = 

∑
 = i 1

10

( ) − yi ( ) + m xi b
2
 that corresponds to the sum of the squared deviations from the linear 

relation.  The latter method of least squares is not only convenient but has advantages over the 

preceding methods as follows:  the minimax method typically assigns excessive weight to an item 

of data that is seriously erroneous; the method of absolute devation averages the error of each 

point and lacks sufficient weight for a point that deviates much from the apparent linear relation, 

whereas the method of least squares places much weight on a point that seems inconsistent with 

the other data, but prevents that point from dominating the approximation completely.  The 

method of least squares is not only computationally convenient but also favoured by theoretical 

considerations in relation to the statistical distribution of error.  If standard deviation σj  be known 

for each value of dependent variable, the corresponding expression to minimize is

      χ
2
  =  ∑

 = i 1

10 













 − yi ( ) + m xi b

σj

2

so that 
1

σj

2
  serves as a weight of each term in the sum.   In case of either weighted or unweighted 

data, the method of least squares involves minimizing simultaneously χ
2
 with respect to 

parameters m and b.

      The fitting of such a collection of data to a relation, linear or non-linear, is called regression if 

there be no constraint on the values of the fitting parameters, such as m and b in the preceding 

examples, or optimization if there exist one or more such constraints.  Regression is a 

mathematical method to relate one or more variables to another by means of a functional relation 

or formula, which is then amenable for a use to predict an unknown value of a variable from a 

known or given value, or multiple values, of other variables.  In an analysis of data to be subjected 

to regression, one must first select a model or objective function, which is really a formula 

represented in a geometric construction as a  straight line, a parabola or an exponential decay or 

other form; a plot of the data, if practicable in two or three dimensions, might provide an 

indication of a suitable form.  Any such form must contain variables -- indpendent and dependent 

-- that correspond to measurable quantities and are consequently known rather than unknown, and 

parameters as coefficients or addends of such variables; each such form has intrinsically a 

maximum number of such parameters, and the purpose of regression is to evaluate the extent of 

association, or correlation between or among these variables.  For data in a particular set and a 

selected model, the evaluation of the best fit requires a criterion.  If a selected model seem to be 

amenable to improvement, in that its parameters seem inadequate either to represent the data 

adequately or to be poorly defined, either a forward strategy, in which the model is expanded to 

encompass additional parameters, or a backward strategy, in which poorly defined parameters are 

eliminated, is commonly implemented.  For chemical and physical phenomena, a theory is 

commonly available to indicate a preliminary model that is subject to test for the particular data 

set; the failure of such a theoretical model to represent adequately -- i.e. within the expected error 

of measurement, according to measures of goodness of fit -- these experimental data might imply 



the development of a further theory.  Although, as a model, a straight line is prototypical for linear 

regression, the descriptor applies to the parameters, not to the variables; that a model is linear in 

parameters implies that a partial derivative of a dependent variable, or of a difference between 

expected and measured values of a dependent variable, with respect to any parameter in the model 

contains no parameter, whether the same or other.  For instance, for an electric circuit containing a 

resistor of known resistance R with the potential difference across the resistor depending on time 

according to  = V V0 ( )cos ω t  with known frequency ω, for the measurement of instantaneous 

current as a function of time parameter V0 occurs linearly, because  = 
∂

∂

V0

V ( )cos ω t , as the right 

side contains no parameter; in contrast, with known V0 for the measurement of instantaneous 

potential difference V as a function of time to evaluate parameter ω, that parameter occurs 

non-linearly because  = 
∂

∂

ω
V −t V0 ( )sin ω t  and the right side contains that same parameter ω.  In 

the former case, one can apply methods or algorithms of linear regression to evaluate the 

parameters, whereas in the latter case one should apply directly methods or algorithms of 

non-linear regression, rather than to reformulate the model into a pseudo-linear form; the latter 

procedure would yield a biased estimate of parameters unless the nature of that pseudo-linear 

transformation be taken into account through appropriate weighting of the data.  Such 

pseudo-linear regression might serve, however, to produce initial estimates of parameters for use 

in non-linear regression, for which purpose such estimates are typically required.

     The fitting of experimental data to an empirical model or a theoretical formula is a common 

computational operation in experimental science.  A primary objective of analysis with methods of 

linear or non-linear regression is to obtain predictions of one variable using known or set values of 

others.  In a case of a single independent variable for which a fit of experimental data ( ,xj yj) to a 

straight line is a typical exercise, a graphical fit that relies on visual judgment for an optimal 

quality might suffice, but any deductions about the precision of the parameters -- slope and either 

intercept -- must then be subjective.  When the variables or fitting parameters become numerous, 

numerical means of fitting are inescapable.  Although  computational procedures based on a 

criterion of the least squares of residuals, such as those in this chapter, available in spreadsheets or 

even those on a pocket calculator, relieve the burden of manual calculations, one must maintain a 

critical sense about the validity of the results obtained, for which statistical indicators provide 

essential tests.  The criterion of the least squares of residuals in a fit is based on a concept 

maximum likelihood:  the parameters in an optimal set yield a maximum probability function for 

all measurements.  For a single measurement of which the error is subject to a gaussian 

distribution, a probability of making at  = x xj a single measurement of y equal to yj is

 = Pj

e
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For all measurements, the total probability is a product of these individual probabilities,
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The variation of P with respect to a parameter βj involves only the sum in the exponent, so that a 

maximum of P corresponds to a minimum sum there.  The maximum likelihood of P becomes the 

principle of least squares according to the variation of the parameters, 

 = δβ
1

χ
2

δβ
2

χ
2
 = ... =  = δβ

n
χ

2
0

in which δ βj signifies a variation of χ
2
,

 = χ
2 ∑

j















 − yj ( )f , , , ,β1 β2 ... βn xj

σj

2

with respect to an infinitesimal and independent variation of parameter βj, provided that 

( )f , , , ,β1 β2 ... βn xj  possesses no discontinuity in either itself or its first derivative with respect to 

any βj.  The practice of regression according to a criterion of the least squares of residuals is 

applicable not only to cases in which the measurements of yj are known to conform to a gaussian 

distribution but even when these might be known not so to conform, because the central-limit 

theorem states that a sum or mean of many measurements approaches that of a gaussian 

distribution, irrespective of the distributions of individual measurements, unless a particular 

measurement contributes a large fraction of the sum or mean or there are excessive variations of 

the widths of individual distributions. 

     An alternative definition of χ
2
 has as basis   

 = χ
2 ∑

j

( ) − fo fe

2

fe

 ,

in which fo denotes the observed frequency of an event and fe denotes its expected frequency.  A 

large ratio 
( ) − fo fe

2

fe

 implies a large value of χ
2
 and hence that the deviation from an expected 

result is large.  This statistic has its associated distribution,

( )χ ν 2
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 ,

in which ν denotes the number of degrees of freedom, which is typically defined as the number of 

variables minus the number of parameters; for this χ
2
 distribution and others, ν is hence the only 

parameter.  

     For a bivariate system, a typical experiment in a chemical or physical laboratory involves 

measurement of some quantity according to set or accepted values of another quantity; for 



instance, one might measure the concentration of a product of a chemical reaction as a function of 

time or temperature or initial concentrations of reactants, which also imply the corresponding 

measurements or settings.  The former quantity is deemed a response variable, which might vary 

continuously, or might be a count or a proportion or a 'time at death' or a category; the latter 

quantity, known as a factor or explanatory variable because it serves to explain the response, 

might vary continuously, or be categorical, or both.  A common objective of such chemical or 

physical experiments involves seeking a quantitative relation between values of explanatory 

variables and the resulting values of response variables; the latter terms amount to statistical 

jargon that imply independent and dependent variables respectively.  An analysis of regression 

indicates how one variable, such as a factor, is related to another, such as a response, by yielding 

an equation according to which a known value of a factor serves to estimate the unknown value of 

the response variable.  In our discussion and statistical treatment of regression, we assume 

implicitly that a quantity that acts as a dependent variable varies continuously, although values of 

independent variables might vary continuously or adopt only discrete values, such as integer 

values of quantum numbers; other forms of variation, such as count or proportion, are less 

common in a chemical context.

      A functional relation, such as  = y ( )f x  between two variables x and y and function f, either is 

based on theory or might be expected to be amenable to such a theoretical basis; such a relation 

might be perfect if that theory be valid.  For a statistical relation, a theoretical justification is 

lacking; moreover, because there is only a partial dependence of y on x, an analysis can indicate an 

association or a correlation between independent variables, known as predictor variables or 

regressors, and a dependent variable or response variable.  A linear relation between two variables 

x and y is represented by a straight line in a plot in two dimensions, about which particular data 

points might be somewhat scattered.  One deduces a statistical relation by means of analysis of a 

kind called regression, which might be useful to reproduce data in a compact form, but such a 

statistical relation by no means implies a causal relation; in forming such a relation the values of 

independent and dependent variables are known from measurement, and other symbolic 

quantities, called parameters, within a relation are unknown but become subject to fitting as a 

result of that regression.  Before one undertakes such an analysis, plotting the data points in two 

spatial dimensions is helpful to ensure that a trend of correlation exists between values of the 

various variables; a large scatter of points about any possible direction might indicate either a 

weak correlation or a lack of correlation between variables.  If a theoretical relation be unknown 

or inapplicable to these data that still exhibit a correlating trend, the next step is to postulate some 

functional relation between the variables, of which a line be not necessarily linear but possibly 

curvilinear.  This regression might show either a direct or inverse relation between factors and 

response, depending whether the response increase or decrease when the factor increases. 

     For chemical and physical experiments involving numerous molecules in each trial and 

conditions that might be well defined or controlled, a causal relation, proposed as a working 

hypothesis, might be established more convincingly than in a biological or sociological system, 

according to these criteria:

• strength of association -- the stronger is the association, as indicated by coefficients of 

correlation of variables with magnitudes near unity and by other applicable statistical indicators, 



the more likely is the avoidance of a spurious association because of a bias;

• effect of predictor and response variables -- the value of the response variable alters in a 

meaningful manner with the predictor or causal agent being tested;

• temporal order -- the hypothetical cause precedes the occurrence of the effect;

• consistency of the findings -- tests repeated yield reproducible results;

• plausibility of the hypothesis -- the hypothetical causal relation is consistent with current 

theoretical knowledge, although the latter might be insufficient to explain further findings;

• coherence of the evidence -- there is no serious conflict of the findings with accepted 

knowledge of the response variable under test, and

• specificity of the association -- the suspected predictor variables are associated with only one 

response variable. 

Even if all these criteria be satisfied, a causal relation can not be claimed with complete certainty, 

because other pertinent factors or predictors might have been neglected. 

simple linear regression with weighting of data  

     In an experiment in which are collected n data points in a set that is randomly selected from the 

sets of infinite number from the parent population, and which data points are distributed according 

to that parent population, for a gaussian distribution of mean µ and variance σ
2
, the probability dPj 

of making a single observation xj within interval dx is dPj  =  pj dx according to probability 

function pj = ( )pg , ,xj µ σ .  For all n observations of a trial distribution of mean µ' and variance σ
2
, 

the probability of observing that particular set is calculated as the product of the individual 

probability functions, 

P(µ')  =  ∏
 = j 1

n

Pj(µ')

According to the principle of maximum likelihood, on comparison of probabilities P(µ') of 

obtaining that set of data from various parent populations with different mean µ' but the same 

variance σ
2
, the probability is greatest that the data were derived from a population with µ' = µ -- 

i.e. the most likely population as a source of these data is assumed to be the correct one.  If the 

probability of measuring a value xj conforms to the gaussian distribution,

Pj(µ')  =  
1

σ 2 π
 e
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the product of the probabilities becomes expressible as
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A maximum of that probability corresponds to a minimum of the expression in the exponent, 

which yields µ'  =  
1

n
 ∑

 = j 1

n

xj, so that, for this gaussian distribution, the most probable value of the 

mean is just the average as established above.  The method of least squares is a special case, 

highly practical and well established experimentally, of the more general method of maximum 

likelihood; we explain the former method in what follows, first for a simple case of one 

independent variable and then for multiple independent variables. 

     For two variables ,x y related according to  = y  + m x b, in which parameters m and b are 

constant in all experiments, the mean y of y is related to the mean of  + m x b, expressed as 

( ) + m x b , but, because evaluating a mean is a linear operation, the latter expression becomes 

 + m x b, so  = y  + m x b. 

     For analysis of data by means of methods of simple linear regression according to a criterion of 

least sum of squares of residuals to be valid, four criteria must apply.

•  Each value of dependent variable yi is related to an associated value of independent variable xi 

according to a simple linear relation of form

yi  =   =  + ( )η ,βj xi εi  +  + β0 β1 xi εi

    in which expectation function ( )η ,βj xi   = ηi of an independent variable x that takes a measured 

value xi yields an expected value of dependent variable y that differs from a measured value yi by 

εi; for linear regression, the derivative of dependent variable y with respect to any parameter βi 

must contain neither other parameter βj nor βi itself.

• A measurement of yi yields a response to an expectation function ( )η ,βj xi   =  + β0 β1 xi plus a 

disturbance εi.  All uncertainty εi of a measurement is associated with dependent variable yi:  

each value xi of independent variable is known exactly.  For any fixed value of that independent 

variable xi, there is a random component εi contributing to a value of dependent variable yi.  

• Each measurement of dependent variable yi has the same variance σ
2
 or standard deviation σ, 

associated with εi; these disturbances have zero mean and a common standard deviation σ.  If εi 

conform to a gaussian or normal distribution, various statistical treatments become applicable, 

specifically according to a criterion of least sum of their squares.  In practice, this criterion 

becomes relaxed upon inclusion of individual weighting of each measurement yi.

• Each error term εi is statistically independent of another error term εj; each measurement yi is 

hence independent of, and uncorrelated with, any other measurement yj.

The method of least squares hence provides an estimate of maximum likelihood when one might 

reasonably assume errors to be both independent and normally distributed with the same variance 

for each point; the latter criterion is relaxed with weighting methods.

     A criterion of applicability of methods of linear and non-linear regression as we practise them 

here is either that all error is associated with a dependent variable or that a contribution to error of 

a particular measurement from an independent variable is negligible.  Although some data sets 

adhere rigorously to the former criterion, in general some error, apart from gross blunder, might be 



associated with a controlled variable.  For total least squares or orthogonal least squares or 

generalized least squares to treat data in sets for which appreciable error is associated with both 

independent and dependent variables, methods are less well developed than conventional methods 

according to the above criteria, and generally involve iterative schemes that require initial 

estimates of parameters, but we outline one approach below.  For actual data for which an error of 

measurement of independent variables be non-negligible, known and appreciably inconstant 

among data sets, one might to some extent take account of this condition through modification of 

error formally associated with a dependent variable according to weighting of data sets included in 

an analysis; such a procedure introduces a bias into estimates of parameters of regression.  

    A minimum sum of squared residuals is an arbitrary criterion for use in fitting data:  a general 

criterion is a minimum sum of magnitudes of residuals to power p, as in 

 min ∑
 = i 1

n

 ( |  − yi ( )η ,βj xi  | 
p
) 

in which yi is measured value i of dependent variable y and ( )η ,βj xi  = ηi is a corresponding 

expected value calculated on a basis of measured values of independent variables xi as regressors 

and fitting parameters βj as their regression coefficients.  Special cases include 

• a method of least absolute values, for which  = p 1, 

• a method of least squares, for which  = p 2, and 

• a minimax method, for which  → p ∞.  

The mode of a distribution corresponds to a method of least number or least sum of zero powers, 

for which  = p 0, or the mode constitutes the most frequent result; the median corresponds to a 

method of least sum of magnitudes, with  = p 1; the mean corresponds to a method of least squares, 

so  = p 2, and the midrange to a least maximum or least sum of infinite powers, with  → p ∞.  

When errors conform to a symmetric exponential distribution of form  

  = ( )f εi
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the appropriate method is that of least sum of absolute values, according to this minimization, 
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the method of least sum of squares of errors, according to 
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is appropriate.  For a uniform or rectangular distribution of errors, the minimax method is 

appropriate:  according to the minimax method, the values of regression parameters are evaluated 

so as to minimize the largest deviation from regression, or the largest residual; the values of p 

practised for a minimax method lie typically in a range [6, 10].  One should not assume in general 

that the method of least squares, corresponding to  = p 2 in the above general criterion for a 

minimum, is the only, or even the correct, approach to a reduction of particular data according to 

variables with continuous distributions, but, when errors associated with those variables are 

known to be normally distributed, this method is an appropriate choice.

     To undertake linear regression according to a criterion of a least sum of squares of residuals in 

terms of constructs of linear algebra for a model that comprises a single independent variable and 

a single dependent variable with two parameters as coefficients of x
0
 and x

1
, we express the first of 

two normal equations (this name implies no connexion to a gaussian or normal distribution, but 

instead relates to a mathematic property of linear algebra),

 = ∑
j
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in compact form with matrices as 

y  =  x  β + ε  

in which  
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here β0 as a coefficient of x
0
 corresponds to b as intercept of a fitted straight line on the ordinate 

axis, and β1 as a coefficient of x corresponds to m as a slope of that fitted straight line; εi 

corresponds to a residual, that is a difference  − yi ηi, between yi, measured value, and expectation 

ηi, calculated through fitted values of parameters βi through  = ηi  + β0 β1 xi .  One can equally well 

consider  y, β and ε to be matrices having only one column or column vectors.  This notation 

facilitates extension to treatment of data for multiple independent variables with, accordingly, 

coefficients βi as parameters to be fitted numbering more than two; in that case, each set among n 

data includes values of k independent variables, requiring correspondingly fits to parameters up to 

βk.  If a fitted line be constrained to pass the origin, parameter β0 for an ordinate intercept is 

correspondingly absent; parameters are then numbered in a range 1 < i < k.  For that fitted line for 

which the sum of squares of residuals εi is made minimum, those residuals represent the vertical 

distance between a fitted point yi and its expectation ( )η ,βj xi  on that line.  

     In the case of fitting a quadratic model instead of a linear model, the normal equations become 
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If the values of xj span an interval  .. a b, the normal equations must be solved for parameters βj, 

 = j  .. 0 2, in this linear system.  The coefficients of these parameters have a form

 = d
⌠

⌡


a

b

x
( ) + j k

x
 +  +  − b

j
k 1 a

( ) +  + j k 1

 +  + j k 1
  

that resembles the elements in a Hilbert matrix, discussed in section 6.116; the latter is notoriously 

ill conditioned, causing severe difficulties with rounding error in calculations involving real 

numbers.   

     We apologize in advance for prospective confusion relating to notation involving these 

coefficients:  although a natural notation has numbering of coefficients β beginning at zero, so that 

β0 is the coefficient of  = x
0

1 and corresponds simply to a quantity denoted b in a standard linear 

representation as in an equation  = y  + m x b and as the ordinate intercept in a plot of a straight line, 

eventually in performing calculations involving linear-algebraic quantities matrix and vector we 

employ name β1 for this purpose, because in Maple numbering of elements in a matrix or 

components of a vector must begin at unity not zero.

      In rigorous statistical treatments many authors distinguish between true -- but unknowable -- 

quantities, denoted with greek letters such as β0 for ordinate intercept and applicable to an entire 

population, and their estimates, denoted with roman letters such as b0 correspondingly and 

applicable for a sample of a population; for practical purposes we try to employ symbols in a 

consistent manner but fail to conform totally to that convention.  The values of parameters 

deduced from regression according to a criterion of least squares of residuals are the most reliable, 

consistent and least biased estimators of the unknowable true values of these parameters; this 

method of least squares of residuals is hence the most efficient unbiased estimator of regression 

coefficients.  

     In terms of these quantities as matrix or vector, our objective is to evaluate a vector β of 

estimators to minimize a sum of n squared residuals named χ
2
 that is a function of the parameters 

βj,

χ
2
  =   = SSE ∑

 = i 1

n

εi

2
  =  ε

T
 ε  =  ( y  −   x β ) 

T
  ( y  −   x β )  

in which appended superscript T, as  
T
, denotes a transpose of a matrix quantity.  We employ χ

2
 as 

synonymous with a sum of squared errors, which in practice become residuals, but χ
2
  has another 

but related technical meaning in a statistical context.  Differentiating this expression with respect 

to β, we obtain a condition for a minimum that 

x 
T
 x β  −    x 

T
 y  = 0



or, providing that matrix product x 
T
  x be not singular, 

β = ( x 
T
 x ) 

( )−1
 x 

T
 y  

in which the first factor corresponds to an inverse of a product of matrices; x 
T
 is called a design 

matrix, and  
1

n
 x 

T
 x  is called an information matrix.  This formula provides a valid and practical 

means to evaluate estimators β as parameters of an optimal fit of a straight line to a given set of 

points, although practical methods avoid direct use of matrix inversion in favour of a numerically 

stable decomposition.  

     For a line constrained to pass the origin, such that intercepts on both abscissal and ordinate 

axes are zero, the uncertainty σy in a measurement of y is

 = σy

∑
 = j 1

n

( ) − yj β1 xj

2

 − n 1

and the corresponding uncertainty in parameter β1 as the only fitted parameter is

 = σ1

σy

∑
 = j 1

n

xj

2

     A robust method for regression is insensitive to extraneous factors not under test, but still 

powerful through being sensitive to factors under test.  A criterion involving a least sum of 

absolute values provides a more robust method than a least sum of squares of errors.  Whereas a 

minimax method is thus not robust, if a distribution of error be other than normal, a minimum sum 

of magnitudes of residuals to power p with 1<  < p 2 might provide an optimally robust line of 

regression to represent discrete data of a finite number.  An alternative approach involves 

interactive weighting of data in an iterative process with  = p 2 to yield estimates of the parameters; 

the customary indicators of goodness of fit might become unrealistic under these conditions.  

Another method of robust regression employs as criterion the least median of squares, but 

computations are intricate.  As a theory of regression with  = p 2 is well developed since the time 

of Legendre, and of Gauss who proposed a normal distribution as a means to justify this criterion 

and the method of least squares, this approach is conventional; with careful individual weighting 

of each data set, such as with  = wi

1

σ ,y i

2
 so that the relative weight of a particular datum is the 

reciprocal square of its standard deviation, one might improve the robustness of conventional 

fitting with retention of a scheme involving  = p 2, so to diminish the sensitivity of results to 

possible outliers.  According to a theorem attributed to Gauss and Markov, an unbiased estimator 

of a population parameter, based on sample observations in a linear combination, has minimum 

variance -- is thus best or optimal -- when the estimator is obtained according to a criterion of least 

sum of squares of errors or -- in practice -- residuals; this criterion hence yields the best linear 

unbiased estimates of parameters of a statistical population from ordered observations in a random 



sample.  Robust statistical procedures should be applied to only symmetrical distributions of εi or 

when severe outliers might occur infrequently, not to a bimodal or multimodal distribution of εi, or 

severely asymmetric such as log-normal.  A robust estimate of a quantity and its uncertainty, as a 

variance, arises through a median absolute deviation, defined as the median of the magnitude of 

deviations from the median; a related criterion for a rejection of a prospective discordant datum or 

outlier xo is a quantity 
 − xo ( )median xj

Mabsdev

 > 5, in which Mabsdev is the median absolute deviation.  

     One condition of applicability of regression analysis is stated to be that an error of each 

measurement conforms to a common standard deviation or variance.  As this condition is 

generally inapplicable to experimental measurements, we extend our analysis to take into account 

such variability of error by considering the significance of the input data.  In particular, is each 

measurement of variables (xi, yi) equally reliable?  We might acquire independent information on 

whether each measured value yi is equally reliable, for instance by making multiple measurements 

of yi for a particular and fixed value xi; in that case, we might associate with each measurement of 

dependent variable yi an uncertainty, best expressed in a form standard deviation σi, which can 

form a basis of an error bar for that point in a plot.  When such information be known, we ought to 

employ it in our fit of all available data, so that less reliable data that thus weigh less heavily 

influence its parameters less adversely than other data included within that fit.  The data in each 

set input into a procedure for regression should comprise accordingly three numbers (xi, yi, wi) 

with the latter quantity being a weight of that measurement with respect to the entire set of data; in 

practice, this weight wi is best taken simply as 
1

σi

2
 , or the reciprocal variance, of a particular 

measurement, as mentioned above.  There is no necessity, for instance, to normalize a sum of such 

weights wi to a number n of observations as we can compensate for an arbitrary value of this sum 

in subsequent formulae.  In the lack of a precise measurement of σi, we might estimate it for each 

individual yi; we otherwise take each weight wi as unity if there be no reason to expect that such 

weights be not constant for an entire set of data.  

     We assume a square, diagonal weight matrix w,  

  





























w1 0 0 0 0

0 w2 0 0 0

0 0 w3 0 0

0 0 0 w... 0

0 0 0 0 wn

 

of order n being the number of observations to be fitted, with non-zero entries accordingly along 

only the principal diagonal and numbering n, one such entry associated with each yi.  According to 

a criterion of least squares, on differentiation of 

χ
2
  =   = SSE ∑

 = i 1

n

εi

2
  =  ε 

T
 ε  =  ( y  −    x β ) 

T
 w ( y  −    x β ) 

                 =  y 
T
 w y  −   β 

T
 x 

T
 w y   



the normal equations in matrix form become 

( x 
T
 w x )  − β  x 

T
 w y  =  0

and weighted estimators become accordingly

β = ( x 
T
 w x ) 

( )−1
 x 

T
 w y  

extending and replacing matrix relations lacking w presented above; if weight matrix w be a unit 

matrix, these formulae become equivalent to those derived in section 8.304.   

     Under these conditions, the matrices that yield determinants to generate values of parameters m 

and b estimated for a simple linear relation with one regressor x become, 

md  =  



























∑
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∑
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n

wi xi ∑
 = i 1

n

wi xi
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with

   = m
md

∆x

      and    = b
bd

∆x

   .    

For such a weighted fit of a linear model, the uncertainties in the resulting parameters are, for md,

   = βm

∑
 = i 1

n

wi

∆x

 ,

and for bd,

   = βb

∑
 = i 1

n

wi xi

2

∆x

 .

For cases in which weights of values of dependent variable are lacking, all wi become unity.

     Some relations between the independent and dependent variables that are non-linear in 

parameters to be evaluated through regression involving numerous data might be converted into a 

pseudo-linear form.  For instance, a formula that arises in chemical kinetics for exponential decay 



of first kinetic order has a form 

  = c c0 e
( )−k t

  

that is readily transformed to 

  = ( )ln c  − ( )ln c0 k t 

By analogy with standard linear form  = y  + m x b, y corresponds to ( )ln c , x corresponds to t, b 

corresponds to ( )ln c0  and m corresponds to −k; fitting ( )ln c  as a function of t thus yields a straight 

line with slope −k and ordinate intercept ( )ln c0 :  this process constitutes pseudo-linear regression.  

If data -- measured values of c -- be imperfect -- as is inevitably the case, and if standard 

deviations of those measured values be roughly independent of c, fitting according to a 

pseudo-linear model without taking into account the effect of transformation on those errors in c 

introduces a distortion or bias of evaluated parameters.  For this reason, further weighting of data 

becomes necessary to compensate for this transformation.   

     Either as a result of such a transformation or when a linear model involves variables not in 

direct proportionality, such as y being proportional to x in a standard linear form y = m x + b, a 

proper weighting of data is necessary to achieve the utmost significance of evaluated parameters 

and an absence of bias in their evaluation.  For instance, when parameters occur linearly whereas 

variables occur in other than simple proportional form, such as with a model  = 
1

y
 + m x b, an error 

in y, measured according to a standard deviation of each point yi, is not equivalent to the same 

standard deviation applied to 
1

y
.  If one take into account transformation of a formula from a form 

( )f Y  =  + m ( )f X b to a form pseudo-linear in variables x and y, as in  = y  + m x b, a proper 

weighting of each data item thus becomes its weight, according to the reciprocal variance of Y, 

divided by a derivative 
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∂
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( )f Y
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 evaluated for each value of y, or 

  = wi

1

σ ,Y i

2
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( )f Y

2

 = Y Y
i

 

No corresponding account of a relation between f(X ) and x arises because a fundamental 

assumption of regression, as customarily applied and as reflected in our treatment here, is that all 

error is associated with a measurement of dependent variable y or Y.   

     Such pseudo-linear, or transformable linear, regression is an alternative procedure to non-linear 

regression, but procedures present in section group 8.4 enable one to perform directly non-linear 

regression practically as readily as linear regression.  A disadvantage of pseudo-linear regression 

is that a standard error in a parameter of a transformed fitting equation bears no simple relation to 

original parameters.  For instance, a standard error of  ( )ln c0  in a case discussed above has no 

direct interpretation in terms of c0, and becomes asymmetric for c0.

     Although a basic premise of regression is that the measurements of a dependent variable be 

entirely uncorrelated, a weight matrix can take into account such correlation if it exist; under these 



conditions, the elements of this weight matrix off the principal diagonal might assume non-zero 

values, but the matrix remains symmetric.  The planning and conduct of experiments to preclude 

such correlated measurements are recommended.

     As a practical approach to the practice of total least squares, we consider fitting of n 

unweighted data in a set supposed to obey approximately a linear dependence of variable y on 

independent variable x of which both variables are subject to error of measurement; for this 

purpose we assume a fitting equation  = y  + m x b, as above, and calculate the following sums, first 

for the means of the measured values of xj and yj separately,

 = xmean

1

n
 ∑

 = j 1

n
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 = ymean

1

n
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then for their variances,
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and their covariance,
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n

yj

n
   =  ∑

 = j 1

n

xj yj  −n xmean ymean  

and Pearson's coefficient of linear correlation for a sample,

 = r
Sxy

Sxx Syy

The coefficient of linear correlation for a population is denoted ρ, and the square of the correlation 

coefficient for a sample is called the coefficient of determination, so

 = r
2

Sxy

2

Sxx Syy

.  

For data with negligible error in measurement of independent variable x, these formulae are based 

on a minimum of a sum of squared residuals, ∑
 = j 1

n

εj

2
, in which  = εj  − yj ( ) + m xj b  with values for 

the slope of the best fitting straight line as simply 



 = m
Sxy

Sxx

and the ordinate intercept as

 = b  − ymean m xmean

     For variable w dependent on independent variables , , ,x y z ..., the variance of w becomes 

approximately

σw
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in which appear variances σx

2
, σy

2
, ... and covariances σxy

2
, ...  This relation is called the equation 

of propagation of error.  

     For data of which both variables are subject to experimental error, εj for yj and δj for xj, the 

criterion for a best fit according to the least squares of errors involves the square of the statistical 

distance of the point ( , + xj δj  + yj εj) from the point on the line associated with xj.  In that case but 

still on assumptions that the population variances of the errors σδ δ and σε εare equal and that their 

covariance  = σδ ε 0, we define an additional statistical quantity,

 = τ
 − Sxx Syy

2 Sxy

with which we calculate the slope as

 = m −  + τ  + 1 τ
2
.

The value of the ordinate intercept b remains according to the formula above to calculate this new 

value of m. The population variance is the mean squared distance of all measurements from the 

population mean, so

 = σδ δ

1

n
∑
 = j 1

n

( ) − xj xmean

2

 = σε ε

1

n
 ∑

 = j 1

n

( ) − yj ymean

2

 = σδ ε

1

n
 ∑

 = j 1

n

( ) − yj ymean ( ) − xj xmean

     If  ≠ σδ δ σε ε, so that  = 
σδ δ

σε ε

υ, but  = σδ ε 0, the slope becomes 

 = m
−  + τ  + υ τ

2

υ
with 

 = τ
 − Sxx υ Syy

2 Sxy

     If in addition  ≠ σδ ε 0, the slope becomes



 = m
 − Sxy λ σδ ε

 − Sxx λ σδ δ

in which λ is the least root of the determinantal equation
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σδ δ σδ ε

σδ ε δε ε

  =  0

For this purpose σδ δ, δε ε and σδ ε for the population errors must be known.

     Because the neglect of an error in the independent variable causes a significant distortion of 

coefficient m -- generally to increase its value -- and correspondingly b, one must establish, before 

undertaking a fit of experimental data, whether error is significant in both variables, so that a 

treatment such as that above is practised when required.  The extent of distortion increases with 

increasing ratio 
Syy

Sxx

 and for r decreasing from unity.      

multiple linear regression  

     To treat cases of multiple independent variables, or a single independent variable in a model 

containing distinguishable terms such as those with various exponents as in a polynomial, or a 

combination of these, in all cases we require that a model be linear in parameters to be fitted; an 

explicit specification of that linear condition is that a derivative of the dependent variable with 

respect to a parameter, or, more precisely, of a residual between a measured value and a calculated 

value of that dependent variable with respect to a parameter, involve no parameter to be fitted.  In 

a matrix form, the regressor matrix x for multiple linear regression simply has multiple columns, 

one for each regressor, plus a column for unity if a constant term be required, and other matrices 

or vectors have corresponding dimensions, but the relations have the same form as those derived 

above for simple weighted linear regression with only one regressor; for this reason we refrain 

from repeating these relations here.  In a case of two independent variables a plot of the derived 

regression equation exhibits a plane, the sum of squares of vertical deviations from the surface of 

which are minimized, but more numerous independent variables preclude such a plot or direct 

geometric interpretation; a plot of residuals versus some characteristic of a data set, such as the 

number of the data point in the list of input, is, however, invariably practicable.

     Our task is to investigate a single functional dependence of the results of experiments on 

multiple controlled factors x1, x2, .. xk as regressors, factors or predictor variables of 

predetermined number that are adjustable at varied levels within an experimental region or sample 

space of an euclidean space of dimension  + k 1; each xi here denotes a separate quantity of a 

distinct kind, such as pressure or temperature, not a separate measurement of the same quantity.  

For each measurement, a result is a value of dependent variable  = y ( )η , .. β0 βk  .. x1 xk  + ε, or 

response variable or uncontrolled factor, containing a non-stochastic part ( )η ,β x  involving each 

independent variable xi, 1 < i < k, as a regressor and its coefficient βi, 0 < i < k, as a parameter, and 

a random or stochastic part ε that entails a disturbance to a response for each measurement, for 

measurements numbering 1 .. n.  Parameters βi are coefficients of regressors, numbering k, in an 

objective function, or model, of form



  = y  + β0













∑

 = i 1

k

βi xi  

for each value of dependent variable y.  Among  + k 1 parameters, one parameter β0 might be 

simply a coefficient of unity, corresponding in geometric terms to an intercept on the axis for the 

dependent variable in a two-dimensional plot in simple linear univariate regression; if the surface, 

or hypersurface, as a graph of the objective function be constrained to pass the origin, β0 becomes 

eliminated from the set of parameters, leaving k regressors.  With only a single variable, x1, we 

revert to simple linear regression.  With n experimental measurements, n >  + k 1,  there are thus 

 −  − n k 1 degrees of freedom.  For a purpose of undertaking analysis of regression, the values of 

regressors are known and the values of regression coefficients or parameters are unknown; for that 

reason, we express an expectation function in terms of the parameters as ( )η  .. β0 βk , with the 

regressors apparently neglected, or alternatively as η(  .. β0 βk;  .. x1 xk) to indicate a parametric 

relation.  The square of a difference between a measurement yi and that value expected from the 

non-stochastic part ( )η  .. β1 βk  is a square of a vertical distance between a data vector and a 

corresponding point on a response surface, or hypersurface which is a surface in hyperspace for k 

> 2; in this way linear regression becomes linked to euclidean geometry and to linear algebra.  If 

for each regressor  = xi x1

i
 for i > 1, this multivariate linear regression becomes a special case -- 

polynomial regression; combinations of separate regressors xi, xj and these quantities to various 

powers are naturally practicable through an appropriate construction of a design matrix, but the 

coefficients of such regressors as fitting parameters become highly correlated unless orthogonal 

functions are constructed to serve as these polynomials.  

     For n measurements of which we observe value oj with standard deviation σj and expect value 

ej , we define a quantity χ
2
,

χ
2
  =  ∑

 = j 1

n 











 − oj ej

σj

2

;

for a satisfactory agreement between the observed and the expected values, χ
2
 ~ n.  For f degrees 

of freedom and c constraints,  = f  − n c, and the expected order of χ
2
 is f.  If the measurements be 

the numbers of events in each of multiple bins, the standard deviation is just ej , and 

χ
2
  =  ∑

 = j 1

n ( ) − oj ej

2

ej

 .

The reduced χ
2
 for f degrees of freedom is  = χr

2 χ
2

f
 .

     The normal equations for multiple linear regression are generated in an obvious way from those 

for single linear regression, for instance with two independent variables similarly as indicated 

above for the fitting of a quadratic model,
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but a matrix formulation is preferable.  According to a criterion of a least sum of squared weighted 

residuals, we form this quantity directly from its definition in which χ
2
 is a function of all 

parameters βj. 

( )χ βj

2
  =   = SSE ∑

 = j 1

n

wj













 − yj













 + β0
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 = i 1

k

βi x ,i j

2

  

Although, for a purpose of applying this criterion to data in one or other set, one might compose a 

procedure on a basis of exactly those formulae in terms of only matrix x and vectors y and w 

presented above, such a procedure can yield poor results.  A source of this problem is explicit 

inversion of matrix product x 
T
 w x, which is proportional to the information matrix; in a case of a 

design matrix x for polynomial regression, the particular matrix to be inverted strongly resembles 

an Hilbert matrix with a large condition number, of which a determinant can evaluate to a minute 

magnitude, as explained in section 6.116:  during such inversion of a matrix containing real 

numbers as floats as its elements, arithmetical operations produce a serious loss of precision.  To 

circumvent such problems of an ill conditioned matrix or system, either an alternative 

mathematical approach might be sought, or the precision of the calculation might be increased 

through increasing the number of decimal digits. 

     An alternative approach to multiple linear regression that is amenable to implementation on a 

computer is stepwise multiple regression in which, from a set of data and the corresponding 

factors or regressors or predictor variables, a selection at each step or stage of the analysis is made 

of the independent variables of the one that produces the greatest decrease of the unexplained 

variation in the dependent or response variable; this process continues until every variable has 

become included in the multiple regression or until no further decrease of the unexplained 

variation is discernible.  A complementary approach involves inclusion of every feasible variable 

at the beginning of an analysis and the successive elimination of that variable for which indicators 

of goodness of fit show a lack of significance.  With the duration of computation for data sets of at 

least moderate size becoming almost negligibly small, the latter approach is highly practical.

criteria of goodness of fit for linear regression  

     Among quantities to evaluate a goodness of fit, the primary quantity is the sum of weighted 

squared errors, or in practice a sum of weighted squared residuals, denoted SSE here and 

commonly χ
2
 elsewhere, that we employ to derive the normal equations.  Rather than the mean 

weighted squared error 
SSE

n
 or 

χ
2

n
, or an estimate of this quantity, a more statistically meaningful 

quantity, the square of the standard error of the estimate about the regression relation, is denoted 

σ
2
 and is related to SSE through a formula 



σ
2
 =  

SSE

 − n f
  

in which sets of data number n and the number of components in vector β for the fitted parameters 

is f; the number of degrees of freedom is thus  − n f.  This effective mean weighted squared error is 

also the variance of a fit; the magnitude of its square root σ is the standard deviation of a fit and 

represents an expected error of any measured value of dependent variable yi, or its counterpart for 

a weighted fit, or a value of y predicted with the equation of best fit for any value x.  We calculate 

this variance of a fit in terms of explicit algebraic quantities,  

  σ
2
 =  

n

( ) − n 2
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n
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   ∑
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n

wi ( ) −  − yi m xi b
2
  

in which appears a factor 
n

∑
 = i 1

n

wi

  to take into account that weights might not be normalized (to 

sum to n).  A weighted fit yields a normalized variance or normalized standard deviation.  

     The usage of χ
2
 is this context differs from that associated with Pearson's test statistic 

according to which χ
2
 is a sum of ratios of squared deviations -- i.e., squares of differences 

observed − calculated values -- and calculated values,

 = χ
2 ∑

 = j 1

n ( ) − x ,o j x ,c j

2

x ,c j

over the range of the data.  

     For an unweighted fit, either quantity variance σ
2
 or standard deviation σ  is a measure of the 

overall success of that fit.  In contrast, for a weighted fit such a variance or standard deviation is 

instead a measure of the care in assigning weights:  if weights be correctly assigned, the weighted 

standard deviation or variance is exactly unity.  With such a standard deviation σ of a weighted fit 

in a range [0.9, 1.1], the consequences are likely negligible; if one obtain from a fit of weighted 

data a value of σ much outside that range, one should reassess input data, especially standard 

deviations of each individual datum.  The variance is also expressible as 

 = s
2

1

 − n 1
 ∑

 = i 1

n

( ) − xi ( )xi

2

in which ( )xj  denotes the mean of those values for a particular factor or independent variable and 

the sum runs over all values of that particular factor; the covariance arising from two separate 

factors j and k is analogously expressible as

 = cov ,j k

1

 − n 1
 ∑

 = i 1

n

( ) − x ,i j ( )xi ( ) − x ,i k ( )xk

with  ≠ j k.  The standard deviation s for factor x is thus  = s s
2
, the positive square root of the 



variance.

     As an outcome of regression analysis, we clearly require other indications, or indicators, of a 

quality of the fit, such as statistical significance of derived values of individual parameters βi.  For 

this purpose we form a dispersion matrix v as the product of σ
2
 with a matrix containing as 

elements the coefficients of βi, which is proportional to an inverse of the information matrix. 

  v  =  σ
2
 ( x 

T
  w  x ) 

( )−1
  

The variances of parameters βj are the diagonal elements of this dispersion matrix.  

     For simple linear regression, estimated variances of parameters are, for  = β1 m as slope, 

 σm

2
 = 

∑
 = i 1

n

wi

∆x

          

 and  for  = β0 b as intercept on the ordinate axis,

  σb

2
  =  

∑
 = i 1

n

wi xi

2

∆x

 ;   

the positive square roots of these variances are the respective estimated standard errors of these 

parameters.  

     Correlations arise both between variables, here x and y, and between parameters, here β0 = b 

corresponding to β1 in the vector of parameters and β1= m corresponding to β2 in that vector.  To 

indicate an extent of correlation between these parameters, we define a covariance, which is a 

measure of the way in which two observable quantities vary together,

 σm b

2
 =  −    

∑
 = i 1

n

wi xi

∆x

  

When the error in one quantity or parameter is positive, for the error in another quantity or 

parameter to be likely also positive implies a positive covariance.  In terms of matrices, the 

variances of parameters lie along the principal diagonal of dispersion matrix v, whereas the 

off-diagonal elements are covariances:  explicitly v ,i j is a measure of linear association of βi and βj

; if βi and βj be independent,  = v ,i j 0, but the converse is not necessarily true; in a case of a single 

regressor, v ,i j =  σm b

2
.  

     Although we might compare a covariance with associated variances, we form another useful 

matrix c of which each element off the principal diagonal becomes a coefficient of correlation 

between parameters, indicating an extent to which two errors are correlated.  For a general case of 

simple linear regression, there are two parameters, m and b; their product-moment coefficient of 

correlation conforms to this relation:  



  cmb =   
σmb

2

( )σm

2
σb

2











1

2

  

The range of such a correlation coefficient is [ ,−1 1]; a positive value of correlation coefficient 

indicates that a positive error in one parameter is likely to be accompanied by a a positive value of 

another parameter, just as for a positive covariance.  For a corresponding matrix of correlation 

coefficients for multiple regressors, we form its elements on dividing covariance  = cov ,i j v ,i j,  ≠ i j, 

by the square root of a corresponding product of variances:

 c ,i j  =  
v ,i j

v ,i i v ,j j

   =  c ,j i  

For single or multiple linear regression, unity, according to 
v ,i i

v ,i i v ,i i

 , appears along the principal 

diagonal because each coefficient is perfectly correlated with itself; for simple linear regression, 

the value cmb appears in either off-diagonal position, because this matrix of order 2 is symmetric.  

We form a further matrix u with reciprocal square root of elements of matrix v along the diagonal, 

defined as

  u ,i j  = 
δ ,i j

v ,i i

  

with  = δ ,i j 1 if  = i j, and 0 otherwise.  In matrix notation, 

 u = diag( 
1

v ,i i

 ,  = i  .. 1 f) 

The correlation matrix becomes   

c  =   u v u .

     Element c ,i j  of that matrix that represents a coefficient of correlation between parameters i and 

j is sensitive to the mean of values of the independent variable:  for example, for data comprising 

these four values yi = 2.3, 2.8, 7.9 and 11 and four corresponding values  = xi i, 1 < i < 4,   = c ,m b −0

.913; with the same values of yi but with xi shifted to 101 < i < 104, c ,m n becomes −0.99994, and 

with xi shifted to 1001 < i < 1004, c ,m b becomes −.9999994.  For this reason, this statistic seems to 

be a reliable indicator of goodness of fit only when the standard deviation of values of an 

independent variable is comparable with their mean.

     Two other indicators of goodness of a linear fit are correlation coefficient of a sample and F 

statistic.  The former indicates whether increasing values of xi are likely to be associated with 

increasing or decreasing values of yi; a preferable symbol for this correlation might be rxy but, to 

avoid a complication of notation when this quantity appears in the right side of an equation or an 

assignment, we use simply r.  The quantity r
2
, called a sample squared correlation or sample 

coefficient of determination, measures the strength of association between variables and expresses 

the proportion of total variation in the levels of dependent variable y that is explained through a 



variation of x for the particular sample on which measurements are made, and is thus an estimate 

of the coefficient of determination of an entire population; being such a proportion, the range of its 

values is [0, 1], between limits of entire lack of association between variables and a perfect 

association, but the latter value still implies no causal relation.  To evaluate the correlation 

coefficient r that is r
2
, we define a further determinant, of form equivalent to that of ∆x but with 

xi replaced with yi:

  ∆y   =  



























∑
 = i 1

n

wi ∑
 = i 1

n

wi yi

∑
 = i 1

n

wi yi ∑
 = i 1

n

wi yi

2

The coefficient of linear correlation of a sample or distribution, which measures correlation 

between variables, is then
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∑
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which simplifies to

r   =  
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or succinctly,

r  =   
md

∆x ∆y

  . 



Expressed in terms of means of particular factors and neglecting here the weighting coefficients wi

, this correlation coefficient r ,j k between two separate factors xj and xk, with  ≠ j k, becomes

 = r ,j k

( )cov ,j k

sj

2
sk

2
  =  

∑
 = i 1

n

( ) − x ,i j ( )xj ( ) − x ,i k ( )xk













∑
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n

( ) − x ,i j ( )xj
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∑

 = i 1

n

( ) − x ,i k ( )xk

2

with the sums running over all values of xj and xk.  The correlation matrix has accordingly values 

unity along the principal diagonal and elsewhere values r ,j k according to that formula.  

     The factors within the square root in the denominators of both formulae are proportional to 

variances of weighted values of the independent and dependent variables, respectively; the 

quantity in the numerator is proportional to a corresponding covariance.  Including the weights, we 

express this in matrix form as 

 r
2
 =  ( x 

T
 w y ) 

T
 ( ( x 

T
 w x) ( y 

T
 w y )) 

( )−1
 ( x 

T
 w y ) 

or alternatively for unweighted data as

 r
2
 =  ( β 

T
 x 

T
 y  −   n y 

2
 )  ( y 

T
 y   −   n y 

2
  ) 

( )−1
 

in which y  is the mean of yi;  y  =  

∑
 = i 1

n

yi

n
  for unweighted data or  y  =  

∑
 = i 1

n

wi yi

∑
 = i 1

n

wi

  for weighted 

data.  An interpretation of r is the fraction of the total variance that the model explains.  In some 

cases r
2
, also known as coefficient of determination, might assume even a negative value, such as 

when an objective formula fits the data worse than a horizontal line at y, which is the mean value 

of y.  For almost all data collected in chemical or physical experiments involving large samples, |r| 

has a value near unity, and is practically useless as a direct measure of goodness of fit of these data 

to a linear relation. 

     This sample correlation coefficient r, or its square r
2
, is neither a measure of the slope of a 

regression line nor a measure of the appropriateness of a linear model.

     For a straight line as model, r takes positive values if m > 0, i.e. for a positive slope, and 

negative values if m < 0, thus for a negative slope.  The range of values of r is [-1, 1], each 

extreme implying perfect correlation, whereas with r = 0 there is no correlation between the 

variables; magnitudes of r near unity hence indicate that a model might be satisfactory.  As 

specific cases to exemplify the limiting cases of this indicator, with all points exactly on a fitted 

straight line, if the line have a positive slope, r = 1, or if the line have a negative slope,  = r −1.  In 

contrast, for four points at respective corners of a square and fitted to a straight line, r = 0.   

According to a method to calculate r given above from r
2
, only the magnitude of r, in a range [0, 

1], becomes evaluated:  one loses information about its sign.  

     In general, statistical parameters gain enhanced accuracy through use of  x and y, hence with 



centred data, relative to directly calculated sums of values of variables, because the latter sums 

tend to involve only positive quantities and thus lead to comparably large magnitudes that might 

cause loss of precision on subtraction of large positive quantities.  A disadvantage of a use of  x 

and y is either that all data must be collected before a mean of xi and yi can be calculated or that a 

running mean must be calculated throughout a collection of data with constant upgrading.  A line 

fitted according to a least sum of squares of errors contains a centre of gravity (x , y)  of fitted data.   

     The F statistic is related to a F distribution, but, for practical purposes, we can view it as a 

further test of significance of one model for comparison with another model; if we assume only 

one model, such as a straight line, to be pertinent for a particular set of data, this quantity has 

limited use, but, in view of subsequent applications with multiple independent variables or 

polynomial functions, we define it here as

 F  =  
r

2
( ) − n f

f ( ) − 1 r
2

 ,

in which r
2
 is again the coefficient of determination and  − n f  is the number of degrees of 

freedom.  The F distribution is formally applicable to data provided that the residuals conform to a 

gaussian distribution and that all sample observations are independent.  Even with a straight line 

as a fitting model or objective function, one might wonder whether one should include a 

possibility of a non-zero value of constant term b in a fitting model, pertaining to a finite intercept 

on the ordinate axis for a plot of that line; if σb were comparable with the magnitude of b, fits of 

the same data with and without b as a fitted parameter would yield disparate values of F, the larger 

of which would indicate a statistically preferable model.  In matrix notation a formula for the F 

statistic is

             (                                        y 
T
  . w . y   −1                                              )          

                    F   =   
 − n f

n
    (       _____________________________________________              )                                        

                            (       y 
T
 . w . y - ((x 

T
 . w . x) 

( )−1
 . x 

T
 . w . y) 

T
 . x 

T
 . w . y           )                       

in terms of the same matrices as defined above.

     With a division of the variance between explained and unexplained components, this F statistic 

represents a ratio,

 = F
variance explained by regression

variance unexplained

In terms of a null hypothesis, according to which the observed data are characteristic of a merely 

random occurrence, and an alternative hypothesis, according to which the data are uncharacteristic 

of a merely random occurrence, under the null hypothesis one expects values of F near unity; 

typical values of F for fits of precise chemical or physical data with a theoretically appropriate 

objective function attain large magnitudes, consistent with strongly correlated independent and 

dependent variables:  under these conditions r
2
 approaches unity, hence (  − 1 r

2
) approaches zero, 

and the expression defining F above clearly attains large magnitudes.

      Another approach to testing the significance of a parameter obtained from replicate 

observations is called analysis of variance, according to which means are compared through their 



corresponding sample variances; in Maple's superseded package stats and its replacement package 

Statistics that is a collection of tools for mathematical statistics and analysis of data, there are 

provided a few commands related to analysis of variance, for which there are three assumptions:

• the observations are independent,

• the sample data conform to a gaussian distribution, and

• scores in separate groups have homogeneous variances.   

     Various other indicators of goodness of fit are available, with varied ease of use or 

applicability.  Among these is Akaike's criterion of information [K. P. Burnham and D. R. 

Anderson, Model Selection and Multimodel Inference, second edition, Springer, New York, USA, 

2002], corrected to take into account a number of data sets in a sample; this quantity is defined as 

 = AIC  + ( )ln SSE
2 p

n

or in related forms, in which parameters number p and data or observations number n; by means of 

this criterion that is a compromise between the number of parameters and the fit of a model or 

objective function, one might select among various models.  For a single objective formula this 

statistic is not highly meaningful or descriptive, but it is useful to rank competitive models, in 

which case a larger value of −AIC is preferable; small differences of AIC between such models are 

not necessarily crucial.  Unlike most indicators described above, this criterion is applicable to both 

linear and non-linear regression in various forms. 

     In summary, the optimal conditions for the results of a fit to a straight line, of form y = m x + b 

with parameters m and b, follow.  F has a large value; σm and σb are small, meaning that ratios 

σm

m
  and 

σb

b
  have small magnitudes, except with  m ~ 0 or b ~ 0; in the latter case an 

alternative objective function or model is likely indicated.  For a fit of unweighted data, a ratio 

σ

 − ( )max y ( )min y
  between standard deviation σ of the fit and the magnitude of a difference 

between largest and smallest values of yi is small.  Sample correlation coefficient |r| is near unity 

whereas parameter correlation coefficient cmb is near zero, signifying that variables x and y are 

strongly correlated whereas parameters m and b are weakly correlated.  For |cmb| < 0.9 one can 

generally ignore a mutual dependence of parameters, except for calculation of the effects of 

propagation of error from fitted parameters to predicted variables, whereas for |cmb| > 0.97 one 

ought to scrutinize both data and fitting model to discover whether an alternative treatment might 

be preferable.  For a fit of weighted data in which each weight wi is an inverse of a properly 

evaluated standard deviation of corresponding yi, a value of standard deviation σ of the fit near 

unity is preferable; for a weighted fit, a value of σ much greater than unity indicates a possible 

presence of a gross outlier or discordant values, arising from blunder, or that weights are ineptly 

assigned, whereas a value of σ much less than unity indicates strongly that weights are assigned 

too conservatively.  If these desirable conditions apply to results of a particular regression, one 

accepts that a fitting model might be satisfactory and that parameters are well evaluated, with 



satisfactory statistical significance.  Even when all these criteria hold, one can not distinguish 

between a merely empirical correlation and a causal relation.  If not all these desirable conditions 

be applicable, either the data or the model requires reassessment.  If all error be not associated 

with only a dependent variable, values of parameters m and b become distorted because of a 

neglect of the error in the independent variable.  For a comparison of multiple possible linear 

models or objective formulae used for fitting, a model with maximum F statistic has maximal 

statistical significance.  An iterative regression with a re-weighting of data based on results of a 

preceding iteration might increase the robustness of the method but is susceptible to bias.

     Although much discussion above applies specifically to simple linear regression, involving 

only a single independent variable, the beauty of a formulation in terms of matrices enables a 

direct extension to multiple linear regression. 

propagation of error

     To calculate the error propagated to a dependent w variable from uncorrelated independent 

variables x, y, z with known standard deviations or errors σx, ,σy σz and the corresponding 

variances of variables of both types as the squares of those standard errors, we apply the following 

formulae,  in which a, b, c denotes precisely known constant parameters.

• proportionality                --     = w c x                         = σw c σx

• addition or subtraction    --     = w  +  − a x b y c z        = σw  +  + a
2 σx

2
b

2 σy

2
c

2 σz

2

• multiplication or division  --    = w
x y

z
                         = 

σw

w
 +  + 
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• exponential                     --   = w a x
b
                         = 

σw

w

b σx

x
 

• exponential                     --   = w a
( )b x

                     = 
σw

w
b ( )ln a σx

• logarithmic                     --   = w a ( )ln b x                     = σw

a σx

x
 

These formulae are usable in combinations as appropriate.

non-linear regression   

     In contrast with linear regression, parameters in non-linear regression might appear in various 

products and to various powers, such that a derivative of a residual with respect to some particular 

parameter depends on that or other parameter.  Non-linear regression is then fraught with all 

complications associated with any non-linear problem:  both the uniqueness of the solution that 

must be a concern and the non-linear propagation of error might cause difficulty with any solution.  

A standard strategy for a solution is to make linear the non-linear equations of the conditions in 

the vicinity of a solution, and then to solve them iteratively to improve the values of the fitted 

parameters for an improved fit, until the iterations terminate on achievement of a criterion that 

defines an acceptable accuracy.   For a regression calculation under these conditions, some initial 

values of parameters must be provided, even if zero for instance, which might be default initial 



values; even if a fit converge, there is no assurance that a global minimum of a sum SSE or χ
2
 of 

squared residuals is obtained:  a derived solution depends in general on the initial values of 

parameters that a user provides.  Such a fitting procedure is analogous to seeking the deepest 

valley on a mountainous landscape in multiple dimensions:  depending on a particular starting 

point, the result of a fit might attain not the deepest valley but a subsidiary valley or even just a 

pass or col between two valleys.  The theoretical disadvantages of non-linear regression are that 

one can not state rigorous expressions for estimates according to a criterion of a least sum of 

squares of residuals, corresponding to the normal equations for linear regression, and that, in 

general, estimators as parameters lack exact distributional properties.  The former factor leads to 

iterative methods that might succeed satisfactorily when a functional form for fitting is sensitive to 

data and when initial estimates of parameters are properly selected; the derived values of estimates 

of uncertainties of parameters might be based on a linear approximation in the region of a 

minimum of χ
2
.  The latter disadvantage implies that indicators of goodness of fit might be 

unreliable.  Despite these disadvantages, a necessity exists to fit the data with parameters of 

specified uncertainties, even if these uncertainties fail to correspond exactly to the standard errors 

that would prevail in a linear regression; an imperfect knowledge of these uncertainties is superior 

and preferable to no knowledge, but one must take care not to attach a full quantitative 

significance to the particular values of the parameters so derived. For these reasons considerable 

care in application of non-linear regression is recommended, as is testing of results with disparate 

initial estimates of parameters. 

     If a well defined theoretical functional relation be unavailable for a particular data set, care 

must be taken in the selection of a model or objective formula; for instance, curves of  = y b x , 

 = y a ( ) − 1 e
( )b ( ) + x c

 and  = y a








 − 1

1

 + x b
 for appropriate values of parameters , ,a b c have 

similar shapes within a limited domain of x, or perhaps merely a polynomial of sufficient terms 

serves the purpose of finding a model to which data conform.  An arbitrary choice of one such 

formula might produce a subsequent deficient interpretation of the results.

     An algorithm associated with Newton and Gauss embodies a method to minimize a sum of 

squared residuals χ
2
 or χ

T
χ, in which  = χ  − y ( )η ,βi xi  is typically a vector of residuals; if a 

response involve multiple dependent variables, a minimum of a determinant from the matrix is 

applicable instead.  According to this approach, one expands an expectation function ( )η ,βi xi  in a 

multivariate Taylor series, as discussed in section 5.401, and retains terms to only first order.  

According to a geometric interpretation, beginning at some point on a response surface ( )y ,βi xi  

defined with initial estimates of parameters βi, this procedure uses first derivatives, which are the 

coefficients of linear terms in that expansion and which thus become approximate first derivatives 

of an objective function, to generate improved values of the parameters; these derivatives imply 

slopes of a surface in various directions, and become elements of a gradient matrix.  These values 

can become further improved in an iterative manner until convergence to a minimum is attained, if 

initial estimates be not too remote from correct values.  According to a particular criterion for 

convergence, this process is most rapid, or takes fewest iterations, when the direction from the 

initial point on the surface or hypersurface of χ
2
 is that of a steepest descent, but finding that 



direction on a hypersurface is difficult.  

     According to an alternative procedure due to Levenberg and Marquardt, a compromise between 

a direction of a Newton-Gauss increment and a direction of steepest descent tends to avoid 

problems due to a nearly singular matrix of derivatives caused by collinearity of its columns.  For 

both procedures, the derivatives of an expectation function ( )η ,βi xi , or residual   − y ( )η ,βi xi , 

with respect to parameters are required, but, for an objective function of a continuous algebraic 

form in a context of symbolic computation, this condition is generally trivial.  Convergence is 

expedited with an hessian matrix -- second derivatives of an expectation function with respect to 

the parameters -- particularly when residuals are relatively large.  Such an hessian matrix might 

not be positive definite, particularly when a starting point is not near a solution, or this hessian 

matrix might be nearly singular.  In both procedures nonlinfit and mnlfit to follow, such an hessian 

is approximated rather than calculated directly.  Although, with linear regression, the standard 

errors of parameters are well defined through their direct relation to the information matrix, for 

non-linear regression, only estimates of standard errors of the parameters are practicable; in some 

cases these values might be unreliable.  

linear programming  

     Linear programming is an optimization of a type in which a model or objective function is a 

linear function or formula and the constraints are linear equations or inequalities.  An optimization 

differs from a regression in accommodating in its procedure constraints in the fits.  In a design of 

experiments, we seek to optimize the conditions to yield the best or most meaningful outcome, for 

instance the conditions to investigate the kinetics of a chemical reaction to obtain the most 

significant values of rate coefficients; one might, for instance, seek to identify the likely dominant 

source of error in an experiment, and then to minimize that source by experimental design.  Such 

optimization involves either a maximum or minimum of some function, generally subject to 

certain constraints:  if that function be linear in its parameters, this problem is susceptible to attack 

with linear programming in standard form.  A slack variable is a non-negative variable added to, 

or subtracted from, a linear inequality to attain a linear equation. A standard method of solving a 

problem in linear programming involves the use of a simplex; this term has multiple definitions 

even in a mathematical context.  In geometry, a simplex is the most elementary geometric figure 

of a given dimension -- a point in zero dimension, a line in one dimension, a triangle -- not 

necessarily equilateral -- in two dimensions, a tetrahedron in three dimensions, and so forth for 

hyperspace; a face of a simplex is a simplex of lower dimension.  Such a geometric simplex can 

serve as a basis of design of a simplex lattice in planning an experiment.  A simplex can also 

imply an abstract topological space.   A simplex search is a method to maximize, or to minimize, a 

function of several variables that proceeds through a choice of a direction of descent, or ascent, 

with an ordered sorting of vertices of an admissible polyhedral set; an idea of a simplex method is 

to proceed from one feasible solution, which represents an extreme point or vertex of a simplex, of 

a constrained set of a problem in standard form to another solution in such a way that the value of 

an objective function continually decreases until a minimum is attained, or increases toward a 

maximum.  A feasible solution constitutes the variables in a set that satisfies all specified 

constraints.  A minimum of a function for parameters in one set implies a maximum in another 

set, according to the duality theory of linear programming.  A simplex method of sequential 

optimization implies an approach to solve equations, in an over-determined system and involving 



non-linear parameters, and is an alternative to non-linear regression, as discussed below.  Each 

such application of this name simplex implies a geometric relation or an interpretation of the 

properties of a geometric figure.  For problems in linear programming or optimization involving 

numerous variables and conditions, matrix or array forms -- hence linear algebra -- provide an 

elegant and efficient means to specify the conditions and to test the results.   

     Further information, general and specific,on linear programming and a simplex algorithm is 

available in books such as by

          V. Chvatal, Linear Programming  (Freeman, New York, USA, 1983), or by

          R. J. Vanderbei, Linear Programming:  Foundations and Extensions (Kluwer, Boston, 

USA, 1996), or by

          S. Venit and W. Bishop, Elementary Linear Algebra (Prindle, Weber and Schmidt, Boston, 

USA, 1982), especially chapter 9.  

Another book by

          R. Fletcher, Practical methods of Optimization  (Wiley, Chichester, UK, second edition, 

1987) 

contains helpful information related to section groups 8.3 - 8.6.  To solve problems in linear 

programming one can alternatively apply methods based on an ellipsoid or an interior point, also 

discussed in these books. 

optimization  

     An optimization implies a determination of an optimal value, typically minimal or maximal, of 

a model or objective function subject to constraints.  A problem in an optimization has a general 

form,

( )min ( )f x   or  ( )max ( )f x   for which x is in R 
n

subject to  ≤ ( )ci x 0 with i in Z  or  = ( )ci x 0 with i in Z.

The former line here implies that one seeks to find a minimum or maximum value of an objective 

formula or function, with its variables numbering n, hence associated with a space of variables 

having n dimensions.  The latter line implies that this minimum or maximum must be satisfied 

subject to constraints having the forms of inequalities or equalities.  Procedures wmlinfit for linear 

regression and mnlfit for non-linear regression, to be presented in succeeding sections for those 

purposes, enable an optimization with no constraints.  In sections 5.403 and 5.404 we present 

methods of constrained optimization involving linear or non-linear constraints and Lagrange 

multipliers, but these methods are applicable to perfect data and hence yield no estimate of 

uncertainties.  Linear programming allows an evaluation of linear parameters with linear 

constraints.  Maple includes a package for constrained optimization that extends a scope of 

problem that might be solved to include quadratic parameters with linear constraints and a general 

case of non-linear parameters and non-linear constraints; a worksheet contains examples of use of 

procedures provided for these purposes, but commands therein provide no direct measure of 

goodness of fit of individual parameters.  The approaches to optimization thus include 

unconstrained linear and non-linear regression, in which a typical criterion is a least sum of 

squared residuals.  An optimization  involving constraints based on unrigorous inequalities 

involves linear and non-linear programming.  Maple contains a package for optimization, 

> ?Optimization



> 

including interactive approaches, but the procedures therein provide also no explicit measure of 

the goodness of fit or the uncertainties of the parameters.  

     As an alternative to methods of linear and non-linear regression explained in section groups 8.3 

and 8.4, a simplex method is applicable to an estimation of non-linear parameters.  A simplex is 

here a geometrical object with vertices and faces numbering one greater than the number of 

parameters to be evaluated, hence a triangle for a case of two parameters or a tetrahedron for a 

case of three parameters.  Inclusion of weights into a formula or function χ
2
 poses no problem; a 

derivation of the estimated standard errors is practicable through a matrix formulation [G. R. 

Phillips and E. M. Eyring, Analytical Chemistry, 60, 738--741 and 2656, 1988].  A simplex 

procedure for non-linear optimization requires no derivatives; with a careful control of the 

contraction of a simplex toward convergence and re-expansion to double the value of χ
2
 at 

convergence, reliable estimates of the parameters might be obtained.

     Maple 10 and beyond contains a package Statistics that is a collection of functions and 

interactive tools for mathematical statistics and data analysis; this package supports diverse 

common statistical tasks such as quantitative and graphical data analysis, symbolic manipulation 

of random variables, simulation and curve fitting, but procedures provided for the fitting of data 

yield no estimates of goodness of fitted parameters.  Much  functionality in this package is 

accessible through context menus.

     In the preceding chapters we treat mostly continuous variables and functions, which we can 

generally differentiate and integrate one way or another with normally no concern for an uncertain 

value apart from numerical rounding when working with numbers of type float; we typically 

diminish such inaccuracy to a negligible extent by setting appropriately a number of decimal digits 

to be carried through a calculation.  Mathematics possesses other aspects according to which one 

treats both discrete variables and continuous distributions in which a primary interest lies in the 

nature of the uncertainty of a value.  In this chapter we investigate how an uncertainty can arise 

and how to cope with such a condition to obtain a result that we might, according to an 

appropriate criterion, consider optimal.  We consider these statistical aspects beginning with 

probability, discovering how combination and permutation of objects produce varied prospective 

outcomes of an event.  After discussion of the nature of a statistical distribution, which implies a 

set of possible values of a random variable or points in a sample space considered in terms of their 

theoretical or observed frequency, we examine how to evaluate significantly a few parameters that 

can represent compactly numerous experimental measurements, with models in which parameters 

appear either linearly or non-linearly.  In a design of experiments to yield cogent information in 

general, or optimal values of parameters in particular, one might encounter issues of efficiency or 

of economy of the conduct of those experiments, which might imply some compromise between 

competing objectives; as a prelude to statistical analysis of experiment results, to plan the 

experimental conditions such as the concentrations of reactants, temperature et cetera is advisable 

on the grounds of efficiency, involving optimization and linear or non-linear programming so as 

ultimately to produce values of the parameters with maximal significance.  Other methods to treat 

data susceptible to uncertainty to derive the value of an optimum descriptor or parameter might 

mimic natural processes, such as neural networks and simulated annealing.  Analysis through a 



selection of principal components and through partial least squares employs predictor variables in 

linear combination, rather than the original variables.  All these methods have important 

applications in the conduct and analysis of chemical experiments.

reference  The Advanced Theory of Statistics, M. G. Kendall and A. Stuart, Griffin, London UK, 

1973 

  summary of chapter 8

     A quantity specified without an estimate of its reliability, or its uncertainty, is worthless. 

     A principal objective of this chapter is to facilitate a solution of problems involving 

reproducing numerical data through models and their parameters, so that each evaluated numerical 

quantity possesses an associated indicator of its quality.  A basis of the presented methods is 

generally statistical in nature, involving applications of probability that we introduce in section 

8.101, with its relation to combination and permutation.  Unlike purely mathematical methods, for 

which a number might be meaningful in isolation, in a statistical context, a number -- whether for 

a quantity or for its uncertainty -- is never meaningful in isolation; in considering such numbers 

one must invariably bear in mind that other measurements yield other values of data, from which 

accordingly result other values of parameters and their estimates.  To make such estimates, one 

has invariably to work, implicitly or explicitly, within some framework of a distribution of errors; 

although, particularly in chemical and physical sciences involving numerous molecular entities 

within a particular sample, one tends to assume a gaussian distribution and correspondingly a 

criterion of least squares of residuals -- weighted if practicable, each such assumption should be 

considered and tested for each method and sequence of measurements.   

     For data involving a single variable in section 8.201, only two parameters -- mean and variance 

-- provide a summary of those data according to a distribution of specified kind.  For data 

involving single or multiple independent variables that appear in a linear or pseudo-linear form in 

an objective formula in section 8.307, or involving single or multiple independent variables that 

appear in an arbitrary algebraic formula or function -- even defined in an extensive external 

procedure, in section 8.410, statistically based methods yield useful estimates of numerous 

parameters:  these parameters are over-determined, because data outnumber parameters, but they 

can optimally reproduce the fitted data according to the errors in a well defined distribution.  A 

formula or procedure that serves as a model or objective function in these cases might have either 

a theoretical basis or a purely empirical or intuitive origin.  An analysis of data is a process during 

which we learn what effects the data and the degree of complexity of a usable approximating 

model support.  A theory of information provides applicable approaches because an aim of this 

analysis is to separate information from accompanying disturbance called noise:  information 

involves a structure of relations, estimates of parameters of an objective function or model, and 

components of variance, whereas noise or disturbance pertains to residuals or variation left 

unexplained.  In seeking a model or objective function that describes data satisfactorily, we try 

optimally to separate noise, which constitutes non-information or entropy, from structural 

information, or negentropy, so as to minimize a loss of information from data through their 

reduction to parameters according to indicators of goodness of fit.  

     We discuss in section 8.501 further optimization involving evaluation of quantities to yield 

extreme properties -- a maximum or minimum -- of an objective function that is linear in form.  

Because procedures wmlinfit for linear regression, present in section 8.306, and mnlfit for 



non-linear regression, present in section 8.410, provide indicators of goodness of fit of parameters 

and model, we recommend that these procedures be a primary method of attack whenever 

applicable to problems arising from modeling of chemical data.  A capability of procedure 

nonlinfit, in section 8.402, to fit simultaneously parameters to two objective formulae makes this 

procedure applicable also to optimization in favourable circumstances; the methods of linear or 

non-linear programming present in section groups 8.5 or 8.6, respectively, might otherwise serve 

to achieve optimization in chemical problems.  Although methods of linear and non-linear 

regression, and their implementation in procedures wmlinfit and mnlfit, constitute powerful 

approaches to optimization in a sense of fitting and representing data, there is no provision for 

constraints, such as that a particular parameter have a positive sign or a value within a specified 

range; if error propagated into parameters from imperfect data yield such undesired or physically 

unrealistic results, either improved data or selection and improved treatment of weights might 

relieve these conditions.  In contrast, the methods of linear and non-linear programming include 

provision for constraints of various kinds; one must be aware that, if one makes recourse to these 

approaches to compensate for imperfect data, the values of retained parameters might exhibit a 

bias and are unlikely to be as significant as one might hope.  Despite the power of all present 

algorithms and their implementations, data of an exceptional nature might require other 

approaches and their respective algorithms; an implementation involving symbolic computation, 

with graphical display, remains however a formidable approach to an analysis and a solution of 

chemical problems involving fitting of numerical data of any kind.  

     In an application of statistical tests as a basis of a decision of significance, or hypothesis testing

, one must be aware of the following aspects.

• For a particular level of confidence, most statistical tests provide only clues whether one or 

more elements or samples differs from others.

• Statistical tests incorporate mathematical models against which reality might be compared, for 

instance Student's t test and analysis of variance for univariate data, or linear or non-linear 

regression for bivariate or multivariate data.

• As functional relations, appropriate mathematical models must become specifically 

incorporated into a test, or data must be transformed to become testable according to standard 

procedures.

• A decision based on purely statistical evidence is inferior to one supported by chemical or 

physical experience; a statistical correlation implies no causal relation.

• A comparison of samples or models is appropriate only if no disparity is evident or plausible.

• Incomplete models and uncertain parameters derived from statistical tests provide no basis for a 

significant decision.    

     Analogously to other branches of applied statistics such as psychometrics, biometry and 

econometrics, chemometrics is concerned with an application of mathematical and statistical 

methods to aid an acquisition and interpretation of chemical data.   Aspects of chemometrics 

include pattern recognition in chemistry, a development of clustering methods in clinical 

analytical chemistry, a use of simplex optimization to improve instrumental performance and a 



development of rapid filters to process spectra; linear or non-linear regression is conducive to at 

least some attack on pattern recognition, and filters of a type to which allusion is just made are 

susceptible to methods of regression, to spline fitting as discussed in section 2.410 et cetera.  Most 

applications associated explicitly with chemometrics are found in analytical chemistry, and relate 

to a multivariate nature of chemical data, measurable experimental error and signal processing; 

many methods and procedures discussed in this present chapter have thus direct application for 

these purposes.  Like Moliere's character M. Jourdain who discovered that "I have been speaking 

prose all my life, and didn't even know it", a chemist who, after assimilation of this chapter, 

consults a book on chemometrics can discover that he or she has already encountered here many 

pertinent concepts and methods, which play a major role in a contemporary practice of analytical 

chemistry.  A design of experiments for a particular application in analytical chemistry must 

involve consideration of a statistical significance of the eventual data and their interpretation, and 

mathematical tools for this purpose can usefully include both symbolic and numeric computation. 

end of part I

II   Applications  of  Mathematics  --  Mathematics  of  

Chemistry
with contributions from  G. J. Fee and  others

chapter  9   Chemical  equilibrium 

  9.0   overview and principles

     A state of equilibrium describes a condition of a system in which all forces or other influences 

acting thereon are cancelled, on average, by others for a net vector sum zero, resulting in a stable, 

balanced or constant system.  In nature, one can identify equilibria of three basic types -- mechanical 

equilibrium, which characterizes a state of a body or a physical system at rest or in unaccelerated 

motion in which the resultant of all forces acting thereon is zero and the sum of all torques about any 

axis is zero, thermal equilibrium, which characterizes a state in which two physical bodies in contact 

have zero net exchange of energy so that their temperatures are equal -- in accordance with law zero 

of thermodynamics, and chemical equilibrium, which characterizes a chemical system in which the 

concentrations of all species present -- reactants, products and other compounds -- remain constant 

at a constant temperature and pressure.  Phase equilibrium exists at a particular temperature and 

pressure whereby a single chemical compound or multiple chemical substances in a mixture coexist 

in two or more states of aggregation with a dynamic conversion between phases, such as evaporation 

of a liquid and concurrent condensation of its vapour, but a net alteration neither of the quantity of 

each phase nor of the chemical composition of each phase is present in the system.  True chemical 

equilibrium is also not static but dynamic:  although the individual concentrations of distinct 

chemical elements or compounds are invariant, on a molecular scale there is great activity such that 



reactants are converted into products, and vice versa; as these two processes occur at the same rate, 

there is no net change in the system.  An homogeneous chemical equilibrium applies to a system in 

which all chemical species involved in the equilibrium are in the same phase or state of aggregation, 

such as a single gaseous or a single liquid phase, whereas an heterogeneous chemical equilibrium 

pertains to a system in which the chemical species involved in the equilibrium occupy multiple 

phases or states of aggregation, such as exists between a crystalline salt and its aqueous solution 

with which it is in intimate contact.  True or absolute chemical equilibrium exists only in a 

laboratory within a controlled setting; the significance of equilibrium, and of the approach to an 

unattainable equilibrium that drives every chemical reaction or other natural or humanly instigated 

process, is an essential component of the study of chemistry and science at all levels.

     Chemical equilibrium is a fundamental concept of chemistry that has profound implications also 

in biochemistry, biology, geology and physiology, and enormous significance in all contexts of 

natural and human processes in atmospheric, aquatic or marine and terrestrial media.  For many 

chemical reactions of great relevance to contemporary chemical applications such as in industrial 

and environmental chemistry, in the application of analytical methods and even in the use of 

pharmaceutical products, its proper comprehension plays a crucial role.  Here we illuminate the use 

of mathematical software for symbolic computation to solve prototypical problems in chemical 

equilibrium; we illustrate the principal concepts and calculations initially at a level of general 

chemistry.  In this way, a focus on chemical phenomena, which is what matters in the teaching of 

chemistry, is achieved; the mathematical concepts are important as a basis to approach and to solve 

the problems, but the tedious mathematical manipulation is effected with a computer program under 

a direct and interactive control by a user, so that that user can concentrate on the chemical 

phenomena without undue distraction by superfluous details of mathematical operations.  Our 

purpose here is not to duplicate the extensive discussion of chemical equilibrium that is available in 

textbooks of general, analytical and physical chemistry and in monographs devoted to the subject, 

but rather to emphasize how chosen mathematical software with a symbolic capacity to prepare for 

and to implement the inevitably succeeding numerical calculations, of which the results are 

generally plotted in a vivid figure, produces a powerful edifying effect on a student through its 

algebraic, numerical and graphical capabilities; an essential component of that explanation is the 

limitation of accuracy imposed by assumptions and neglected effects.  Our treatment is intended to 

be illustrative rather than exhaustive.  We emphasize that the results of these calculations are 

approximate, and even subject to gross error, because almost all calculations are based on 

concentration or partial pressure instead of thermodynamic activity.  At various points within the 

sections and examples, we mention briefly the nature and extent of these approximations, and the 

neglect of further reactions; in section 9.22, we expound at some length the meaning and 

significance of a standard chemical term pH, despite having employed this quantity in an 

approximate -- or even erroneous -- manner in the preceding sections and examples.  In sections 

9.51 and 9.52, with accompanying examples, we explain cursorily the nature of thermodynamic 

activity, a quantity devised to retain the concept of an equilibrium constant despite the actual 

variability of such a quantity when expressed in terms of concentrations without activity 

coefficients; this material, like the preceding material, is intended to be illustrative rather than 

exhaustive.

     After an example of equilibrium between gaseous substances to establish the principles of 



chemical equilibrium, we devote most succeeding sections to equilibria in aqueous solution that 

have a direct application or analogy not only to natural and industrial processes but even to any 

biochemical system such as a living organism.

     The content of the calculations within this worksheet is adapted, with permission, largely from 

work of Ricardo Hidalgo.  
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  summary of chapter 9

     In this chapter we illustrate how to attack calculations related to the properties of chemical 

systems supposed to be in a state of dynamic chemical equilibrium involving the reactants and 

products of formal chemical reactions or phase reactions.  The examples of systems of chemical 

equilibrium in this worksheet include an homogeneous gaseous system, homogeneous aqueous 

systems and heterogeneous systems in which a crystalline salt is in intimate contact with its 

aqueous solution.  These calculations should be understood to be merely illustrative, and to yield 

necessarily inaccurate answers because of the severe approximation involved in the use of partial 

pressure or concentration instead of thermodynamic activity of fugacity; these and other 

approximations are discussed also at points within these preceding sections and examples.  In this 

sense, the calculations, despite their necessarily quantitative form, are essentially qualitative, and 

the corresponding plots must be understood to simulate the trends of chemical behaviour, rather 

than to replicate experiment exactly.  The fact that students of general chemistry might never 

subsequently use these calculations is irrelevant:  their purpose is both to impress the quantitative 

principles that underpin chemistry and to encourage students to become accustomed to formulate 

and to use proportional relations.  The final sections introduce thermodynamic activity that is 

readily understood to serve instead of concentration to preserve the notion of constant quantities 

such as an equilibrium quotient, at the cost of greater complication in the practice of calculations 

of chemical systems at equilibrium derived from the imposition of activity coefficients. 

     The literature cited in the bibliography presents extensive information pertinent to these issues, 

including much quantitative treatment of prototypical systems.  The objective of this worksheet is 

to demonstrate that, with comprehensive symbolic mathematical software, one can undertake 

calculations to simulate the results of experiments commonly conducted in a chemical laboratory; 

in so doing, especially after a comparison of the results of approximate calculations with the 

corresponding experimental data that are necessarily subject to experimental error of random or 



systematic origin, one can derive an enhanced and profound understanding of the pertinent 

chemical phenomena.  

chapter  10   Group theory

  10.0  overview and principles 

     A mathematical theory of a group, one of many mathematical quantities of which such others 

as sequence, set, array and matrix are discussed in preceding chapters, provides a basis to treat 

symmetry and other molecular and crystalline properties of a chemical element or compound.  The 

symmetry of a body is classified in terms of symmetry elements and symmetry operation; a 

symmetry operation is a movement of a body that leaves it in an identical condition, and such an 

operation, such as rotation through a particular angle, is performed with respect to a symmetry 

element, such as the corresponding axis about which rotation is performed:  in that case the 

symmetry element is the axis and the symmetry operation is rotation about that axis..  A collection 

of those symmetry elements, or symmetry operations, defines a point group; an inclusion of 

translations and other operations defines a space group.  The effect of performing a symmetry 

operation is expressed mathematically with a transformation matrix or with a permutation scheme 

or with generators and relations, or with quaternions.  Group theory hence becomes the algebra of 

geometry.  Sir William R. Hamilton developed the icosahedral group with quaternions in 1868.

     To a molecule might be attributed a shape or geometric structure, defined by the positions of 

atomic nuclei at equilibrium relative to a fixed centre of mass and fixed orientation of internal 

coordinates, whereby the energy of the system of electrons and atomic nuclei corresponds to at 

least a local minimum with respect to displacements small with respect to the smallest internuclear 

distances.  According to a chemical application of graph theory, as discussed in chapter 11, these 

positions of atomic nuclei of bodies in two or three dimensions constitute critical points or nodes 

or vertices and the vectors between them constitute edges; such a structure provides a basis for a 

qualitative explanation of many features of both properties of chemical substances and their 

reactions.  A concept of a geometric structure of an individual molecule and of content of a unit 

cell of a crystalline substance is an innate component of chemistry as practised since the time of 

Couper (1858), and comprises many aspects ranging from molecular topology --  the order of 

connexion between atomic centres -- which suffices for many purposes of organic chemistry and 

biochemistry, to the most quantitative evaluation of the lengths of purported chemical bonds and 

the angles between them in small free molecules, with relative accuracies ~ 10
( )−6

.  Not only these 

positions of atomic nuclei at an hypothetical equilibrium but also their displacements according to 

vibrations in normal modes, or the distribution of electronic charge about the nuclear frame, can 

benefit from a description in terms of the properties of mathematical groups.  In this chapter, we 

explain an approach to an explanation of tables of characters that describe a result of an 

application of operations commonly viewed by chemists as implying a spatial symmetry in terms 

of rotations, reflexions in a plane, inversion at a centre of symmetry and so forth, but that are 

equally valid from an abstract mathematical point of view, such as permutations and generator 

relations, hence lacking any such physical depiction.

     Like other branches of mathematics, group theory constitutes a collection of definitions, which 



one might apply to either abstract quantities or, for chemical applications, to chemical entities 

such as symmetry properties of purported molecular or crystalline structures.  These definitions 

include even and odd permutations, symmetry groups and subgroups, irreducible and reducible 

representations, character tables, homomorphism and isomorphism, reduction and generation of a 

representation, projection operators, symmetry of a product and symmetrization of coordinates and 

other molecular properties, and correlations of the irreducible representations between a group and 

its subgroup.  A group is a collection of objects, or elements, with a rule for the combination of 

any two elements to produce another element of the same group; these elements and the operation 

of their combinatiion together satisfy particular axioms listed below. These definitions are 

introduced and applied to molecular and crystalline structures and properties in succeeding 

sections.

     The formal mathematical rules or laws that define a group number four:

• a combination of any two elements, including one element applied twice, according to a 

combining rule must generate an element of that group, implying closure;

• an associative law must hold such that, for a combination of three elements, an element 

resulting from combining the former two, and then that element with a third, must be the same 

as that resulting from combining the first with that resulting from the latter two; if we express a 

rule of combination multiplicatively with elements ,A B and C, we can write this associative law 

in a customary form (A B) C  =  A (B C);

• one element of a group, called an identity element, must combine with each other element in an 

arbitrary order to leave the latter element unaltered;

• each element of a group must have an inverse or reciprocal element, such that a combination of 

an element with its reciprocal yields the identity element.

Another property of a group, which one can readily derive from these laws, is that a reciprocal of a 

combination of two, or more, elements is equal to the combination of the reciprocals, in the 

reverse order.  That an order of combination of elements be immaterial, or that multiplication be 

commutative, defines an abelian group.  These four laws evidently apply for a group of all 

integers, for instance, for which under addition the identity element is zero and a reciprocal of a 

positive integer becomes a negative integer of the same magnitude, and vice versa, whereas for 

four roots of unity (1, −1, i, −i) under multiplication an identity element is unity and a reciprocal 

of an element corresponds to a quotient unity with that element as divisor; hence both all integers 

and the fourth roots of unity form abelian groups. For a vector r =  a i  +  b j  + c k, of which i, j 

and k are non-coplanar vectors and , ,a b c are integers including zero; the combining rule is vector 

addition and the identity element is the null vector with a = b = c = 0.  The number 2 to all powers 

-- ..., , , , ,2
( )−2

2
( )−1

2
0

2
1

2
2
, ... -- form an infiinite group with the combining rule being algebraic 

multiplication.  One readily verifies that all other laws apply to these particular groups.  

     A symmetry operation on a molecule relative to a frame of reference in the laboratory produces 

an orientation equivalent to the original one; the effect of the operation is discernible only through 

some artefactual, imposed labeling of the atomic centres, not an isotopic substitution.   A 

symmetry element is a point, line or plane with respect to which a symmetry operation is 



performed:  these operations include identity, denoted E, which is likely best considered to involve 

a rotation by 2 π radians about any axis through the centre of mass of the molecule, inversion 

through a point at the centre of the molecule, denoted i, rotation by 
2 π

n
  with  n > 1 about a line as 

an axis, denoted Cn with C implying cyclic, reflexion through a plane, denoted σ, which acts like a 

mirror, and rotation by 
2 π

n
 radians about an axis followed by reflexion in a plane perpendicular to 

that axis, called improper rotation or rotation-reflexion and denoted Sn.  A symmetry element with 

respect to which a symmetry operation is performed remains fixed in space; for internal axes in a 

fixed set, these symmetry operations are defined with respect to those axes.  Any label attached to 

one of otherwise identical multiple sites in a set has no physical significance, but serves merely for 

convenience in identifying which symmetry operation has been performed.   For a particular 

molecule, the pertinent elements might include multiple axes of rotation or of improper rotation in 

a molecule, and multiple planes of reflexion, but only one identity operation and only one 

inversion centre.  A plane of symmetry that bisects angles between other planes that pass through 

atomic centres is a dihedral plane.  Applied to a particular molecule, these symmetry operations  

possess collectively the properties of a mathematical group that conforms to the four laws 

specified above.  The order of a group is the number of its elements.  A subgroup is a subset 

within a group, or essentially a group within a group; the order of a subgroup must be an integer 

divisor of the order of the group.  For three operations X, Y and Z with its inverse Z
( )−1

 within a 

particular group such that the consecutive operations first of Z, then X, and finally Z
( )−1

 generate a 

result indistinguishable from that of a separate operation Y, or  = Z
( )−1

X Z Y, X and Y that are 

related according to a similarity transformation are conjugate to one another.  A class comprises 

symmetry elements in a complete set that are conjugate to one another; the identity operator is 

invariably in a class by itself.  The combination law is in general non-commutative, but the 

identity operation commutes with each other operation.  A matrix might serve to represent these 

symmetry operations and their combinations, as expained in section 10.103, as implied in the 

preceding specification of the similarity transformation, but at least two other mathematical 

structures -- permutations, cf section 10.104, and generators and relations, cf section 10.206 -- 

might also provide the necessary tools for chemical applications.

     A primary feature of group theory is that a symmetry operation becomes replaced with a 

number or matrix, called a symmetry species or representation, that multiplies in the same way as 

an operation.  The most fundamental and useful representations are called irreducible, and they 

number the same as the classes.  

     A point group, the most important for chemical applications possibly apart from crystal 

structures, comprises all symmetry operations pertaining to a molecular structure; point groups of 

crystallographic interest number 32, involving operations reflexion plane, rotations about two-, 

three-, four- and six-fold axes and inversion.  Each symmetry operation must leave at least one 

point unmoved; as all symmetry elements of a molecular symmetry group must hence intersect at a 

point, that group is thus called a point group.   A point group is a group of symmetry operations 

about a point, for instance, rotations of which the axes intersect at a point.  For such a group, the 



rule of combination is one operation after another.  As an application of any symmetry operation 

for a point group must leave a molecule physically unaltered and with the same spatial orientation, 

the molecular centre of mass must remain fixed in space under each symmetry operation.  All axes 

and planes of symmetry of a molecule must hence intersect at at least one common point.  

     For a crystalline substance that has a well defined microscopic repeating unit in a lattice in 

three spatial dimensions, and formally an infinite extent in each dimension, a translation, for 

instance by a length of the unit cell in one direction, as a symmetry operation might leave no point 

fixed in space but still produce a structure indistinguishable from the original; the combination of 

all such symmetry elements including translations thus generates a space group, which number 

230.  A combination of those operations specified for the 32 point groups, involving a rotation 

only through 
2 π

n
 rad with , , , = n 1 2 3 4 and 6 that is  feasible so as to retain a property of 

repetition of content of a unit cell through translation in three spatial directions leaving no gap, 

such as a reflexion plus a translation parallel to a crystal axis of a unit cell, a or b or c, or to a body 

or face diagonal that becomes a glide plane, or a rotation plus a translation a fraction , , ,
1

2

1

3

1

4

1

6
  

of an appropriate repeating distance along some such axis that becomes a screw axis, or a rotation 

plus inversion, generates from those point groups the 230 space groups.  A five-fold axis, or axis 

of order greater than six, is incompatible with a necessity to fill space, because such an ordering 

lacks translational symmetry, but such an axis might be found in a quasi-periodic crystal, or 

quasicrystal.  In a free molecule rotations to attain an indistinguishable conformation through 
2 π

5
 

rad are feasible, and molecules possessing such an element of symmetry are known.  Such 

rotations through 
2 π

5
 rad occur also in quasiperiodic crystals, of which the structure is ordered 

but not periodic; a quasicrystalline pattern can fill all available space, but lacks translational 

symmetry.  A definition of a crystal hence involves a production of a clear pattern of diffraction 

with xrays, electrons or neutrons, with an ordering either periodic or aperiodic; only periodic 

crystals are amenable to analysis with group theory, but quasiperiodic crystals with category 

theory.  In general, the point group of a molecular species can not be inferred from the space group 

of a crystal containing that molecular species; the same molecular structure, and hence its intrinsic 

point group, might be found in varied space groups; an organic instance is glycine in monoclinic 

and hexagonal crystals.  For molecules with a collinear nuclear arrangement, rotation through an 

infinitesimal angle yields an indistinguishable conformation; this condition produces an infinite 

group, which implies symmetry operations of uncountable number and to which belongs also a 

single atom that displays spherical symmetry.  Neither linear molecules nor icosahedral molecules 

can have a space group that retains the full molecular symmetry -- rotation about an axis of order 

∞ or five, respectively.    Finite point groups of practical chemical interest hence comprise those 

32 point groups feasible in a crystalline environment plus special point groups for tetrahedral, 

octahedral and icosahedral symmetry and a few others.

     Apart from point groups C1 for which only the identity operation pertains, Cs for which only a 

plane of reflexion exists beyond the trivial identity operation and Ci that has an inversion centre, a 



cyclic group Cn with n > 1 has an axis of rotatiion n fold; cyclic group Cn v involves a rotational 

axis n fold and a plane σv containing that axis; cyclic group Cn h involves a rotational axis n fold 

and a plane σh perpendicular to that axis of greatest order; dihedral group Dn has a principal axis 

Cn of order n with another axis C2 perpendicular thereto; dihedral group Dn d has a principal axis 

Cn, a perpendicular axis C2 and a dihedral plane σd that contains the principal axis but bisects the 

perpendicular axes C2; dihedral group Dn h has a principal axis Cn, n perpendicular axes C2 and a 

mirror plane σh; rotation-reflexion group Sn has an improper axis, but only , ,S4 S6 S8 ... matter 

because S2 is equivalent to Ci and because  Sn with n odd is equivalent to Cn h and are so 

designated; special groups have either complete spherical symmetry, Kh, such as for a separate 

atom, or axis C∞ with only planes σv containing that axis for point group C∞ v or with a 

perpendicular plane σh that imposes an inversion centre for point group D∞ h, and other 

combinations of axes that generate tetrahedral Td, octahedral Oh, icosahedral Ih, ... point groups.   

In this chapter, we consider a rotation in a clockwise sense.  The point groups are thereby 

classifiable as having

• no rotational axis -- no symmetry element C1, only an inversion centre Ci, only one reflexion 

plane Cs,

• only one rotational axis -- only that axis of order n to produce Cn, axis Cn and perpendicular 

plane σh to produce C ,n h, axis Cn and n vertical planes to produce C ,n v for which  = n ∞ for a 

linear molecule, and improper axis S2 n with , , , = n 2 3 4 ... to produce S2 n,

• only one axis Cn with n > 2 and n distinct axes C2 perpendicular to Cn -- axis Cn with n axes C2 

to produce Dn, axis Cn with n axes C2 and n planes σd to produce Dn d, axis Cn with n axes C2 

and plane σh to produce Dn h, for which an inversion centre exists for n even, and  = n ∞ for a 

linear molecule to produce D∞ h,

• multiple axes Cn with n > 2 -- four axes C3 with other axes and planes to produce tetrahedral 

point group Td, three axes C4 and other planes, axes and an inversion centre to produce 

octahedral point group Oh, axes C5 and C3 and other planes and axes and an inversion centre to 

produce icosahedral point group Ih, and an inversion centre and ∞ axes C∞ and ∞ planes σ 

through that centre to produce spherical point group Kh.  

     For an individual molecule as an object or body of matter in a particular conformation, such as 

its structure at equilibrium in three spatial dimensions as explained above, various operations 

might be performed that pertain to the symmetry of that molecular body:  such an operation leaves 

that body in a conformation indistinguishable from its original condition.  If that molecule in its 

hypothetical equilibrium structure is simply rotatable about an axis through some finite angle to a 

conformation indistinguishable from the original conformation, the molecule possesses a 

rotational axis of symmetry, and that axis becomes an element of symmetry.  For instance, if one 

rotate, through an angle  = φ
2 π

3
 rad either clockwise or counterclockwise, a molecule 

chloromethane of formula H 3CCl  about an axis containing the internuclear vector joining atomic 



centres carbon and chlorine, the positions of atomic centres carbon and chlorine at equilibrium are 

unaffected by this operation but one hydrogenic atomic centre becomes rotated into another; as 

one hydrogenic atomic centre is indistinguishable from another in this context, this operation 

evinces a property of the molecular body described as symmetry.  If some plane divide a molecular 

body in its conformation at equilibrium into two parts of which each is an image of the other as if 

viewed in a mirror, that plane constitutes a plane of symmetry.  If, on a straight line drawn from 

each atomic centre of a molecular body through a particular point, indistinguishable atomic 

centres occur equidistant from that point on either side for an arbitrary orientation of that straight 

line, that point constitutes a centre of symmetry; if that centre coincide with an atomic nucleus the 

atomic centres of the molecule number odd, whereas if that centre be situated away from an 

atomic nucleus the atomic centres number even.  A combination of a rotation about an axis and a 

reflexion in a plane perpendicular to that axis yields an element of symmetry called an improper 

rotation, or rotation-reflexion.  Properties of these operations of symmetry in relation to a theory of 

a group require existence of a further operation, identity, that trivially leaves any object unaltered 

in orientation. 

     For molecules such as ethane and but-2-yne, a particular condition arises in which one mode of 

vibration resembles the motion involved in rotation of a methyl moiety about an axis coinciding 

with the C-C internuclear vector for atomic centres in their equilibrium positions, according to a 

classical description of such molecules; this motion called torsion corresponds to a vibration, but 

not of infinitesimal amplitude, when the energy in that mode is much smaller than a threshold 

called a barrier to internal rotation, whereas to a rotation when the energy exceeds that barrier.  

For an energy somewhat smaller than that threshold, the possibility of tunneling through the 

barrier exists.  With atomic centres numbering  = N 8, ethane has three modes of external 

translation, three modes of external rotation,  − 3 N 7 = 17 modes of internal vibrations and one 

torsional mode; but-2-yne has analogouslly 23 modes of internal vibrations with one torsional 

mode.  Because of ambiguities in angular coordinates, a thorough description of these molecules 

requires a group that is twice the size of the molecular symmetry group of a molecule lacking 

these torsional modes; the resulting group is called a double group or extended 

molecular-symmetry group, so that, instead of point group D3 d  for but-2-yne without torsional 

tunneling, the double group is denoted G36 
(2)

 (or alternative notation).   

   In the following description of symmetry operations and their applications, we employ the 

notation of Schoenflies that is common in practice of analysis of molecular spectra, rather than 

that of Hermann and Mauguin that crystallographers generally employ; a correlation appears in 

section 10.201.

     Apart from information extracted from various sources through internet, the following books 

provide information about topics germane to group theory, which served as reference for the 

material in this chapter.

-  Group Theory and Chemistry, D. M. Bishop, Dover, Mineola, NY USA, 1993 

-  Chemical Applications of Group Theory, F. A. Cotton, edition 3, Wiley, New York, NY USA, 

1990

-  Symmetry and Spectroscopy, D. C. Harris and M. D. Bertolucci, Dover, Mineola, NY USA, 



1989

-  Group Theory in Quantum Mechanics, V. Heine, Dover, Mineola, NY USA, 1993 

-  Group Theory and Symmetry in Chemistry, L. H. Hall, McGraw-Hill, New York NY USA, 1969

-  Vectors, Matrices and Group Theory for Scientists and Engineers, C. A. Hollingsworth, 

McGraw-Hill, New York, NY USA, 1967

-  Symmetry and Group Theory in Chemistry, M. Ladd, Horwood, Chichester, UK, 1998

-  Applications of Group Theory to Quantum Mechanics, I. V. Schensted, Neo, Peaks Island, ME 

USA, 1976

-  Group Representation Theory for Physicists, J.-Q. Chen, J. Ping and F. Wang, edition 2, World 

Scientific, Singapore, 2002

-  For further information about double groups see Molecular Symmetry and Spectroscopy, P. R. 

Bunker and P. Jensen, NRC Research Press, Ottawa Canada 1998. 

  summary of chapter 10

     In this chapter, we present an introduction to the essential mathematical concepts of group 

theory, which chemists apply in their consideration of the symmetry properties of molecules and 

crystals.  There are few applications of group theory in chemistry and physics within this chapter, 

but applications arise in other chapters, for instance in graph theory in chapter 11, in quantum 

chemistry in chapter 12 and in spectrometry in chapter 13, that are based on the concepts and 

procedures in this chapter.

chapter  11   Graph theory  

  11.0  overview and principles 

     Of two distinct meanings of a graph, that implying plots of data as points and lines in, for 

instance, cartesian coordinates is separate from that in graph theory, from which an association of 

points with specific coordinates is entirely absent.  Graph theory originated with Leonhard Euler's 

investigation of networks in 1736; according to graph theory, a graph is formally an abstract 

mathematical entity that might be represented pictorially.  As Euler's locale for his origination, a 

city formerly named Koenigsberg in Prussia, on both sides of the Pregel River, included two large 

islands that were connected to each other and the mainland with seven bridges, as shown in these 

diagrams extracted from an internet site.



The problem was to walk through the city according to a path that crosses each bridge only once, 

but in either sense. The islands were accessible only via the bridges, and every bridge must have 

been crossed completely each time; walking halfway onto the bridge and then turning and 

subsequently crossing the other half from the other side is prohibited, but the walk need not begin 

and end at the same spot.  Euler proved that the problem has no solution by representing the 

problem in this form,  



in which each blue disk, called a  node, represents a part of the city, such as either one or other 

island or a separate bank of the river, and each black line, called an edge, represents a bridge.  

Euler showed that the possibility of a walk through a graph, traversing each edge exactly once, 

depends on the degrees of the nodes; the degree of a node is the number of edges touching it.  

According to Euler's argument, a necessary condition for a successful walk of the desired form is 

that the graph be connected and have exactly zero or two nodes of odd degree, or have every 

vertex of even degree. This condition becomes also sufficient -- a result stated by Euler and later 

proved by Carl Hierholzer.

     A diagram composed of points and lines might hence represent a graph, a name proposed by J. 

J. Sylvester in 1878; as a diagram of a graph entirely describes that graph, reference to the diagram 

of a graph as the graph itself is convenient.  



The above diagram contains two simple graphs, one of type undirected at the left and another of 

type directed at the right.  Each graph comprises four vertices or nodes, with labels 1,2,3,4 at the 

left and a,b,c,d at the right, and four lines, called edges, connecting these vertices in each case; the 

small arrows along the four edges in the right graph are called directed edges or arcs.  The directed 

edges in the right drawing might represent water pipes in a city, of which the arrows indicate the 

direction of flow of the water.

     A chemist is familiar with a graph that corresponds to a constitutional formula of a molecule of 

a chemical compound as a topological depiction of the arrangement of its atomic centres, in which 

a point at an end of a line segment or at an intersection of two line segments typically represents 

an atomic centre and an intervening line segment represents a chemical bond, whatever that might 

be.  



The above diagram depicts, in two spatial dimensions, a molecule C 60, called 

buckminsterfullerene, that has, in three dimensions, the shape of a truncated icosahedron; the 

numbered yellow vertices represent atomic centres and blue lines connecting them represent 

chemical bonds, with three bonds from each carbon atom at a vertex to adjacent carbon atoms at 

their respective vertices. 



For the same molecule and the same molecular structure, in the above diagram no edge crosses 

another edge; this drawing, called a planar graph, evidently greatly distorts the relative 

internuclear separations between adjacent atomic centres in comparison with the actual molecule 

C 60 that has nearly -- but not exactly -- equal lengths of bonds as indicated in the preceding 

drawing, but these drawings are equivalent for purposes of graph theory because only information 

about the connexions -- the topology -- is pertinent.

     According to graph theory in a chemical context, such a point representing an atomic centre is 

hence called a vertex, node or point, and their link is called an edge or a line, or, when directed -- 

as indicated with an arrow instead of a segment of a line, an arc, as in a figure above.  A structure 

mathematically defined as a graph hence comprises entities in two sets -- vertices and edges; an 

element of an edge set represents a relation between a pair or couple of vertices as elements in a 

vertex set.  The theory of graphs is a branch of mathematics that thus treats the manner in which 

objects are connected:  the order of connexions is a fundamental quality of graph theory.  As we 

might consider a chemical bond to be a connexion or binary relation between two atomic centres 

of a particular chemical element as for fullerene, or between two atomic centres of distinct 

elements as in 1,3,5-triazine, graph theory provides a mathematical model for an abstract or real 



chemical system on a molecular level in terms of such atoms -- really, atomic centres -- that are 

central to contemporary thinking about the chemical structure of matter in its diverse forms.  In 

1857, about the same time as the first proposal of enduring notions about chemical structure by A. 

S. Couper, Cayley in Cambridge treated chemical constitution by means of graph theory, in a 

purely topological manner as geometric details of molecular structure were then unknown.  

Because the shape of a graph or length of lines between points is generally immaterial, graphs are 

topological rather than geometric objects.     

     As an abstract mathematical concept, a graph is formally a combinatorial structure; a simple 

graph G is defined as an ordered couple, or duple, [V(G), E(G)] that comprises vertices V in a 

non-empty set and, optionally, unordered pairs of distinct elements of V called edges E.  The 

number of elements in V defines the order of G and the number of elements in E defines the size of 

G.  In a general graph are allowed loops, according to which a particular edge connects one vertex 

to itself, and multiple edges, according to which between two vertices there might exist two or 

more edges.  A graph is commonly depicted as a collection of points and lines drawn so that, with 

those lines, points are connected in pairs or couples; not all points are necessarily joined with 

lines.  

     Between terms within graph theory as a mathematical model and conventional chemical terms, 

there exists a correspondence as follows:

• a chemical graph comprises sites or nodes and connexions between them, and a molecular or 

constitutional graph represents a structural formula with atomic centres as sites or vertices and 

putative chemical bonds as connexions or edges;

• a vertex of a graph denotes an atomic centre as a site;

• a weighted vertex denotes an atom of a particular chemical element;

• an edge of a graph, between two vertices, denotes a chemical bond as a connexion;

• an edge is incident to two vertices between which it is located;

• a walk is a sequence of adjacent edges, with a vertex between each two adjacent edges, leading 

from one vertex to another;

• the length of a walk is the number of occurrences of edges therein between two ultimate vertices 

as termini;

• a trail is a walk in which a given edge is traversed only once, or in which all edges are distinct; 

• a path is a walk in which each vertex, except possibly the first, occurs only once, or in which all 

vertices are distinct;   

• a weighted edge of a graph, between atomic centres of a particular chemical element -- or 

separate elements, represents a chemical bond between atomic centres of those elements, of a 

particular putative order or multiplicity;

• the degree of a vertex denotes the valence of an atomic centre, or the number of chemical bonds 

to that atomic centre with account taken of putative multiplicity.



     Other significant terms in graph theory follow, including some with chemical relevance:

• a vertex is isolated if its degree be zero, or is an end point or terminal if its degree be unity;

• a graph of which, between each couple of vertices, at least one path exists is called connected, 

otherwise disconnected;  

• a wreath of edges about a particular vertex comprises that vertex and all incident edges;

• a tree graph represents a molecular entity having an acyclic structure, hence containing no ring, 

and is a connected graph containing no cycle;

• a rooted tree has one distinct vertex, known as a root vertex or root; a free radical, as a vertex 

with fewer edges than for its typical presence, might be represented as such a root vertex;

• a branched tree contains a vertex of degree greater than two;  

• a tree must have, at its terminals, vertices of degree unity;

• a tree with terminals of minimum number, two, is called a chain;

• a tree with terminals of maximal number, one less than the number of vertices, is called a star;

• a path that returns to the original vertex, or a trail with a simple closed path, thus no terminal, is 

called a cycle;

• a cycle that visits each vertex exactly once is called an hamiltonian cycle;

• a cycle that visits each edge exactly once is called an Euler path, cf. above diagrams;

• the number of independent cycles in a graph equals the number of edges that must be eliminated 

to form a tree;

• the cyclomatic number of a graph defines the possible number of independent cycles in terms of 

the numbers of edges, ne, and of vertices, nv, and generally equals  −  + ne nv 1, but exceptions 

exist in the case of multigraphs;

• a loop is an edge of a graph that connects a vertex to itself;

• a multigraph is a graph that contains multiple edges between vertices of a particular pair or 

couple;

• a graph is planar when it can be embedded in a plane or on the surface of a sphere in three 

dimensions such that no edge intersects another edge, and non-planar otherwise;

• in incidence matrix I, the rows are assigned to vertices and the columns to edges, and elements 

are either unity when an edge is incident to a vertex or zero otherwise;  

• degree matrix G is a diagonal matrix of order the number of vertices in the graph, and each 

diagonal element specifies the degree of the corresponding vertex; 

• adjacency matrix A, which is symmetric, denotes the adjacent sites or connectivity associated 

with a graph; a non-zero matrix element A ,j k indicates an edge between vertices numbered 



according to indices  ,j k of that element; in relation to incidence and degree matrices, A = I  I 
t
 

 −   G ;

• an adjacency matrix might represent either vertices or edges, with a correspondingly distinct 

content in terms of non-zero matrix elements; the vertex adjacency matrix is the most important 

representation of a graph as a matrix, whereas the edge adjacency matrix is rarely used;;

• in a distance matrix, each element specifies the smallest number of edges between two vertices 

according to the respective column and row; 

• the characteristic polynomial of a graph is the characteristic polynomial of its vertex adjacency 

matrix;  

• eigenvalues of the vertex adjacency matrix in a set constitute the spectrum of a graph, and 

• a digraph contains at least one directed edge between connected vertices, such that that directed 

edge points from one vertex to another and adjacent vertex.

     Two vertices might be coupled or paired, if an edge or arc exist between them, or not coupled 

or unpaired, if no edge or arc exist between them; two coupled vertices have as link an edge if 

unordered or an arc if ordered such that that edge be denoted with a directed line, such as an arrow 

from a source to a sink.  Two graphs G and G' are isomorphic if there exist a correspondence one 

to one between their sets V(G) and V(G') of vertices that induces a parallel correspondence one to 

one between their sets V(E) and V(E') of edges.  An invariant of a graph G is a quantity, including 

the number of vertices and the number of edges, that has the same value for any graph isomorphic 

to G, because only graphs of the same order and size can be isomorphic. The total sum of degrees 

or valences of all vertices equals twice the number of edges because in the summation each edge 

is counted twice; the number of vertices with an odd degree or valency must be even. A walk of a 

graph is a rigorously alternating sequence of vertices and edges, with origin and terminus at 

vertices for which each edge is incident with two vertices immediately following and preceding it, 

respectively; a walk is a trail if all edges be distinct and a path if all vertices be distinct.  The 

length of a walk is the minimum number of occurrences of edges therein.  A subgraph of a graph 

constitutes a subset of the vertices and edges of a graph; a spanning subgraph is a subgraph that 

contains all vertices of the entire graph, and a spanning tree is an acyclic subgraph containing all 

vertices of the entire graph, whereas a spanning cycle is a cyclic subgraph containing all vertices.  

A component of a graph is a maximum connected subgraph, so that a disconnected graph has at 

least two components.  Two vertices are adjacent if connected with an edge or arc; the edge and 

these two vertices are incident to one another; a half edge comprises an edge and one incident 

vertex.  The number of edges incident with a particular vertex is the degree of that vertex; in a 

directed graph, a vertex has both an indegree, counting the arcs terminating on that vertex, and an 

outdegree, counting the arcs originating at that vertex.  A graph is represented not only by a 

diagram but also by a matrix of various types -- incidence, degree and adjacency; for a simple 

graph, an element of an adjacency matrix is unity,  = aij 1, if an edge exist between two numbered 

vertices or zero otherwise, whereas for a directed graph with an arc from vextex i to vertex j 

element  = aij 1 but element  = aji 0:  the adjacency matrix becomes hence not symmetric.  

Characteristic of a graph are the characteristic polynomial of its adjacency matrix, and the 



associated eigenvalues, either of which might not be unique to that graph.  Working with graph 

theory thus involves use of constructs of linear algebra -- matrix and vector, group theory, 

topology, set theory, probability, combinatorial and numerical analysis, discussed in various 

chapters of parts I and II of this book.  

     The most obvious application of graph theory to chemistry is for the enumeration of isomers; 

these might be classified as constitutional, depending on the order of connexion of the atomic 

centres by chemical bonds, or steric, that depends on the spatial arrangement of bonds about 

particular atomic centres; steric isomers include enantiomers and diastereoisomers.  Chemical 

graph theory has been applied to not only molecular structure but also the kinetics of 

heterogeneous catalytic reactions, other mechanisms and quantitative relations between structure 

and activity (cf. Bonchev and Rouvray), and to molecular energies of which an energy value 

constitutes a vertex and a possible optical transition constitutes an edge.  A graph might represent 

various chemical objects -- molecule, reaction, crystal, polymer, cluster et cetera; a chemical site -- 

atom, electron, molecule, molecular diagram, molecular fragment, assemblies of atomic centres, 

isomers, functional moieties -- becomes a vertex, and a connexion -- chemical bond, non-bonded 

interaction, elementary reaction step, rearrangement, transition -- between such sites becomes an 

edge.
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  summary of chapter 11

     Graph theory provides clearly a powerful tool not only to enumerate constitutional isomers of 

hydrocarbon molecules but also for other aspects of chemistry; likely the most immediate impact 

of graph theory arises from these applications to isomers, as demonstrated in section 11.33.  

Graphs are particularly convenient for the representation of organic molecules, or, more generally, 

any molecular species involving covalent binding and integer valences; in this regard, the 

depictions are called chemical graphs, but such graphs might take no account of varied bond 

lengths or interbond angles.  For boron hydrides, even though conventionally considered to 

involve rigorously covalent binding, difficulties arise because neither B nor H atomic centres 

appear to possess fixed integer valences -- B appears to have three, four or five valences and H 



appears to have one or two.  

     An application of such enumeration of constitutional isomers is the identification of benzenoid 

hydrocarbons, many of which exhibit strong carcinogenic activity.  The distribution of such 

hydrocarbons formed in a smouldering flame might contain some stochastic element, and the 

carcenogenic potential of the resulting mixture might be predictable.

     Apart from enumeration of isomers, the modeling of boiling points, and even melting points, of 

alkanes has been a popular pursuit; as expected, the success of the models is strongly directly 

correlated with the number of parameters.

chapter  12a   The quantum and chemistry --

                  introduction to quantum mechanics 

   12a.0  overview  

     The material present in this chapter is the first part of a more extensive chapter, in preparation.

     To introduce quantum mechanics in the context of chemistry, we first distinguish between 

quantum laws, or the laws of discreteness, and quantum theories, which have been devised to 

reproduce, approximately, various experimental observations.  Most calculations based on theories 

such as quantum mechanics, which is essentially a collection of algorithms for such calculations 

as discussed in section 12a.s5, have a numerical nature or component; there is an inevitable and 

unavoidable error in such calculations, apart from any approximations involved in the theory that 

require the intervention of still further theories, that arises through the finite precision of not only 

the calculations but also the parameters, such as h, e ... that are known to only finite precision.  All 

theories are inadequate to some extent; even Dirac's treatment of atom H fails to yield perfect 

agreement with experimental measurements of the hyperfine structure of spectral lines, and any 

experiment on other than H, among species of prospective chemical interest, yields data that are 

imperfectly reproduced, even apart from the precision of the calculations and the parameters.  The 

most accurate theories are applicable to only the simplest systems, and become absolutely 

intractable for application much beyond those simple or prototypical systems.  The most sensitive 

and crucial experiments to precede the development of those theories involved the measurements 

of optical spectra, in which discrete lines appeared and of which the wave lengths or their inverses 

were fitted to simple formulae, such as the Balmer series in atomic spectra and the Deslandres 

table in molecular spectra, both reported in 1885; for this reason it is appropriate that the 

prototypical calculations in this chapter have a close connexion with spectrometric aspects, and, at 

various points in the derivation or interpretation of the results, we mention these pertinent aspects.  

All quantum mechanics is based on a postulate of a commutator -- a term originated by Dirac, 

namely a commutator of position and momentum variables that Heisenberg deduced and that 

Dirac directly recognised to be the key to quantum mechanics; on this basis, we undertake 

calculations according to various algorithms of quantum mechanics -- which is intrinsically a 

collection of mathematical methods to treat systems on an atomic scale, as opposed to quantum 



physics that is a branch of physics that is concerned with experiments on matter and energy at the 

atomic level, because the laws that are deduced from the behaviour of macroscopic objects fail to 

operate adequately in an atomic realm.  The canonical linear harmonic oscillator is a system that is 

amenable to treatment with several methods or algorithms of quantum mechanics; we treat this 

system according to rigorous matrix mechanics with explicit matrices to represent physical 

quantities, then according to rigorous wave mechanics in both coordinate and momentum 

representations, and eventually with Dirac's operators for creation and destruction.  After a 

comparison of those results and a short analysis of their significance, we treat again the canonical 

linear harmonic oscillator according to wave mechanics in the coordinate representation and with 

spectral parameters, for comparison with another harmonic oscillator; we generate the 

characteristic parameters of the putative vibrational and rotational spectra of these two oscillators 

for their comparison.  As an exact application of pioneer wave mechanics in the coordinate 

representation to an atomic system comprising one atomic nucleus and one electron, we treat the 

hydrogen atom, generating accurately the atomic energies, amplitude functions and absorption 

spectrum within the limitations of a non-relativistic approach and neglecting the nuclear motion.  

As an accurate application of wave mechanics in the coordinate representation to a molecular 

system comprising two atomic nuclei and one electron, we treat the dihydrogen molecular cation, 

calculating in an approximate manner the energy of the system as a function of internuclear 

distance.  On the basis of these direct calculations and the deductions therefrom, we discuss the 

relation between quantum mechanics and molecular structure, concluding with some pedagogical 

ramifications. 

     An important conclusion of these calculations and their explanation is that quantum mechanics 

is not a chemical theory, not even a physical theory, but a collection of mathematical procedures 

or algorithms that one might apply to solve problems on an atomic scale.  For this reason, the 

exploration, with mathematical software, of quantum mechanics applied to prototypical systems is 

particularly appropriate.   

  summary of chapter 12a

     The most important idea about quantum mechanics to be acquired in this chapter, at least in a 

context of chemistry, is that quantum mechanics is not a chemical theory, not even a physical 

theory, but rather a collection of mathematical methods or algorithms that one might apply to 

undertake calculations pertaining to microscopic systems -- atoms and molecules and their 

interaction with radiation; all these methods, including others not discussed within this 

introductory chapter, have a common basis in the commutation formula that Heisenberg deduced 

and that Dirac recognised to be the fundamental postulate of quantum mechanics.  We here 

introduce these ideas with an application of three distinct methods -- matrix mechanics, wave 

mechanics and Dirac's operators -- to a prototypical system, namely a canonical harmonic 

oscillator, for which these methods prove tractable to yield equivalent results for the energy and 

matrix elements of this system.  An harmonic oscillator is a purely hypothetical entity, but might 

serve not only as a basis of introducing quantum mechanics but also as a model of a diatomic 

molecule even though this model is remote from the reality of dissociation energy and number of 

vibrational states of finite number.  We nevertheless pursue this model in two, of uncountably 

many, forms to illustrate both the mathematical methods and the limitations of general 



mathematical software to treat comprehensively even these simple systems.

     Chemistry is the study of chemical change, which involves reactants and products of chemical 

and physical transformations.  The simplest such chemical species are atomic hydrogen, H, as the 

simplest atom and dihydrogen molecular cation, H 2 
+
, as the simplest molecule, even if not 

electrically neutral.  The limitations of mathematical software for an algebraic, rather than a 

merely numerical, treatment of these simplest systems are abundantly clear, not least because only 

wave mechanics has so far proved tractable for this purpose.  We nevertheless attack these two -- 

atomic and molecular -- problems as directly as practicable to obtain maximal accuracy within the 

limitations of the wave-mechanical approach.  A corollary of this practical restriction to 

wave-mechanical methods is that any quantity arising in such treatments other than an 

experimentally observable property, in principle, is an artefact of those wave-mechanical methods, 

not a fundamental truth.  Comprising mathematical methods, quantum mechanics maintains its 

place within a chemical curriculum only as a basis of subsequent calculations of chemical 

properties under esoteric conditions -- isolated molecule, no interaction with electromagnetic or 

other fields and so forth; the results are necessarily approximate, because the theories underlying 

the calculations neglect various conditions, but might be sufficiently accurate in the best cases for 

comparison with experimental data.  A primary concept of chemistry is that a molecular structure 

implies a relative arrangement of atomic centres in three-dimensional space, with definite 

internuclear distances and angles between internuclear vectors; as rigorous quantum mechanics is 

formally incompatible with such a molecular structure, these mathematical operations are clearly 

subsidiary to the evolution of an understanding of chemical phenomena, although such 

calculations might be judiciously applied for practical purposes under well defined conditions of 

approximation.  What should be abundantly clear is that, if there be no intention of a student 

undertaking such quantum-mechanical calculations, there is no advantage to be gained by teaching 

and learning quantum mechanics; the time and energy of instructor and student would be better 

devoted to other topics, such as graph theory in chapter 11 that is, ironically, applicable to an 

understanding of molecular structure and related properties even though a chemical graph implies 

only topological attributes, not structure.  

chapter 13a   Introduction  to  optical  molecular  

spectrometry 
  13a.0  overview

     This content of this chapter is intended as an introduction to spectrometry; the preparation of 

further material is in progress.

     Spectrometry implies the quantitative measurement of an interaction between electromagnetic 

radiation and materials or molecules; optical spectrometry implies the use of mirrors or lenses, 

slits and a dispersing element such as a prism or diffraction grating.  English philosopher Roger 

Bacon (1214 – 1294) was the first person to recognize that sunlight passing through a drop of 

water could be split into colours, as a source of a rainbow.  Sir Isaac Newton (Cambridge) is 

viewed as the founder of spectroscopy, which implies qualitative aspects, because he showed in 

year 1666 that the spectral colours of sunlight dispersed with a prism originated not in the prism 



but in the light itself.  William Herschel (London) discovered the infrared extension of the visible 

spectrum in 1800 and William Wollaston (Cambridge, discoverer of elements Pd, Rh) the 

ultraviolet extension in 1802.  Under the conditions of Newton's experiment, the intensity of that 

light seemed to vary continuously with the colour, but in 1802 Wollaston, applying a slit as the 

entrance element of his prism spectroscope, discerned dark lines in the solar spectrum that implied 

the existence of chemical elements in that astronomical body; these lines are generally associated 

with Joseph Fraunhofer (Bavaria) who in 1814 named eight prominent lines A, B, C, ... K, ; line C 

is atomic absorption, H α of the Balmer series, some other lines have a molecular origin.  In 1835 

Fraunhofer introduced the diffraction grating into a spectroscopic experiment, and Sir Charles 

Wheatstone (London) distinguished metallic elements according to the bright lines in their spectra 

of flames.  In Cambridge from 1878, Sir James Dewar and George Liveing identified series of 

lines in atomic emission spectra, denoted sharp S, principal P and diffuse D.  In 1881, Edward 

Abney and Sir William Festing (London) recorded absorption spectra in the near infrared region 

(prism for dispersion, thermopile for detector) for 52 organic compounds and correlated 

absorption lines with the presence of  'functional moieties' in the molecule.  Knut Angstrom 

(Stockholm) recorded the first mid infrared spectra of gaseous samples, CO and CO 2 in 1889, 

HCl and Cl 2 in 1893; contrast of the spectra of CO and CO 2 indicated that spectra in the mid 

infrared region reflected molecular, not atomic, properties, whereas the presence of absorption in 

the spectra of HCl but not in the spectra of Cl 2 was taken to imply that heteronuclear but not 

homonuclear diatomic molecules absorbed in the mid infrared region.  Thomas Young's 

demonstration in 1803 of interference effects resulting from the propagation of light in wave form 

provided a basis for interferometry, which became implemented in Albert Michelson's instrument 

in 1887; Heinrich Rubens and Robert Wood produced the first true interferogram in 1911, but 

Peter Fellgett (π Φ) in Cambridge achieved only in 1949 the first use of Fourier transformation to 

produce therefrom a spectrum.   Either a direct production of a spectrum recorded with a 

dispersive optical instrument or an indirect production through the Fourier transformation of a 

directly recorded interferogram provides a basis for quantitative measurement of data of type 

intensity versus wave length or frequency that define an optical spectrum.  The wave length of 

light scattered from a substance might differ from the incident light, and the difference of energy 

between incident and scattered light is characteristic of the difference of energies of the scattering 

substance; such a signal was observed for gaseous HCl by R. W. Wood with sophisticated 

apparatus, but not interpreted, whereas Sir Chandrasekhar Ventaka Raman measured and 

understood that scattering on the basis of experiments with liquid samples in 1928 under primitive 

conditions of apparatus.

   Why is molecular spectrometry important for chemists?  The reason is that applications abound 

in analytical chemistry, for the qualitative and quantitative analysis of the nature and extent of 

elements and compounds, and in every branch of chemistry that employs spectral measurements 

for analysis of molecules and materials.  In its various applications and complementary forms 

atomic and molecular spectrometry, optical spectrometry involves radiation from the far infrared 

region to the xray region, as absorbed, emitted, reflected, refracted or scattered light.

     Why is molecular spectrometry fascinating for chemists?  The details of narrow features in the 

spectra convey information about significant molecular and material properties and chemical 



reactions, and their temporal variation, that one might deduce by means of spectral analysis.  The 

objective of this worksheet is to introduce molecular spectrometry not as a consequence of some 

theory or other, which is invariably inadequate, but from the point of view of spectra recorded, and 

here simulated based on real data, for samples under varied conditions that can yield both 

qualitative and quantitative information about the properties of a sample subjected to 

spectrometric examination.  For this purpose we employ only the simplest pertinent molecular 

species, specifically two gaseous substances containing diatomic molecules for which many 

spectral data have been acquired quantitatively and for which the analyses of these spectra enable 

a profound understanding of the physical and chemical principles underlying molecular 

spectrometry.  For both carbon oxide CO and hydrogen chloride HCl in isotopic variants, optical 

spectra have been recorded from the microwave region to the vacuum ultraviolet region, between 

which occur the infrared and visible regions for which measurement of optical spectra is most 

convenient, and beyond to the xray region, but such large energies relative to the energy of a 

chemical bond are not of general chemical interest.  To illustrate the nature of optical spectra in 

absorption across the entire accessible range from the far infrared region to the vacuum ultraviolet 

region, we simulate, based entirely on information deduced from experiment, spectra of  12
C 

16
O, 

 
1
H 

35
Cl and  

2
H 

35
Cl, for which abundant spectral data are available; some spectra of these two 

gaseous compounds commonly appear, and are discussed, in textbooks of physical chemistry.

  summary of chapter 13a

     Optical spectra are measurable with similar experimental instruments and techniques from the 

far infrared region to the far ultraviolet region, with either dispersive or interferometric strategies; 

in the latter indirect case, a Fourier transformation is necessary to obtain a spectrum from the 

directly measured interferogram, but the preparations of samples are similar in either condition.  

We have described exclusively absorption spectra in preceding sections, but emission spectra of 

appropriately stimulated samples can provide similar information in a perhaps more complicated 

form because of the overlapping bands.   The emission of gaseous samples in a furnace at 1000 -- 

2000 K has proved useful in extending the range of quantum numbers of vibration and rotation 

beyond those of absorption spectra of samples near 300 K.  The detailed analysis of molecular 

spectra comprising narrow lines provides information about the properties of molecules, not only 

the particular sequence of discrete energies but also their structural parameters and other 

characteristics.

    Optical lasers can operate on rotational and vibration-rotational transitions.  A laser implies 

amplification of light by means of stimulated emission of radiation; the process for CO is 

represented as  

CO 
*
  + h ν -->  CO  + 2 h ν, 

in which CO 
*
  represents a molecule in a vibrationally excited state that can undergo a radiative 

transition to a state of less vibrational energy, with concomitant change of rotational energy; the 

transition must involve an incident photon of the same energy as the energy difference between 

the two states of the molecule.  The emitted radiation is coherent, having the same direction and in 

phase.  CO is formed in excited states, up to v = 40, as a result of collisions with electrons in an 

electric discharge of a gaseous sample of CO, such that the kinetic energy of an electron becomes 



partially converted to vibrational and rotational energy of a CO molecule.  The best condition of a 

sample for this purpose is a mixture of composition He : N 2 : CO : 'air' :: 10 : 2 : 0.1 -- 2 : 0.2 

cooled with liquid dinitrogen, that causes vibrationally excited states to become populated; the 

vestigial presence of air containing dioxygen is essential to prevent the rapid dissociation of CO in 

the conditions of the discharge, the presence of He is essential to maintain the electric discharge, 

and cooling with liquid N 2 maintains a small rotational temperature.  The laser emissions on 

transitions with ∆ v = −1  and  = ∆ J −1 in branches P are the most intense, but some laser 

transitions with ∆ v = −2 and in branch R with ∆ J  = + 1 have been observed; laser emissions 

with  = ∆ v −1 are observed from v = 1 --> 0 up to v = 37  --> 36, for   = ∆ v −2 from v = 13 --> 11 

up to v = 37 -- 35, but for J only from 5 to 16.  The CO vibration-rotational laser has industrial 

applications, with total continuous power up to 40 W on many spectral lines simultaneously being 

applied in cutting devices.  When such an apparatus to generate laser emission from CO is 

operated without mirrors to form a laser cavity, the same apparatus becomes useful as a source of 

emission spectra from highly excited vibrational and rotational states, up to v = 41, of which is 

about two thirds of the dissociation energy of CO in the electronic ground state.

     For HCl, excited vibration-rotational states become populated as a result of an exothermic 

chemical reaction, such as 

H + Cl 2O  -->  HCl 
*
  + ClO     

or     

Cl + HI -->  HCl 
*
  +  I ; 

the reactant atoms H or Cl are formed in an electric discharge of H 2 or Cl 2 respectively.  The 

chemical reactions yield product highly excited molecules possessing the energy of the reaction in 

their rotational and vibrational degrees of freedom.  Generally, but not invariably, the population 

of the excited state of the laser transition must exceed that of the terminal state of less energy; 

otherwise absorption rather than emission is favoured. 

     In summary, according to these spectra of diatomic molecules CO and HCl that are here 

simulated, we associate the absorption of radiation with increased energy in rotational and 

vibrational degrees of freedom of atomic nuclei and their accompanying electrons in atomic 

centres, and in electronic degrees of freedom; in these spectra we observe no effect directly 

attributable to translational energy or its changes except the widths of spectral lines.  Although this 

spectral analysis has an essentially qualitative nature as an introduction, it provides a foundation 

upon which to develop a quantitative treatment such as that founded on Dunham's theory and its 

extension [J. F. Ogilvie, The Vibrational and Rotational Spectrometry of Diatomic Molecules, 

Academic Press, London UK, 1998], in which we derive and explain formulae and methods of 

analysis for the purpose of evaluating parameters that characterize the structure and properties of 

these diatomic molecules.  Thereafter we introduce a necessary complication of further atomic 

centres within a polyatomic molecule.  

end of part II
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