Introduction

Maple’s normal command simplifies rational expressions
by placing the expression over a common denominator and
cancelling a gcd. The first step 1s done by the kernel, which
recognizes common factors by their address in memory.

1 1

| . TTY
riy+1) yly+1) zyly+1)

Maple deals with factored forms efficiently, but 1t does not
compute gcds so the common denominator it uses may not
be the Icm. For the large multivariate examples considered
here this leads to blowup.

However the approach works well 1n most cases, including
small problems, univariate problems, and expressions with
functions. Maple’s gcd code 1s interpreted, so the overhead
of calling it many times could easily outweigh the savings.

In the end, we decided to augment the existing code with a
preprocessing step for large problems. This approach has a
lot of flexibility if something turns out to be inetficient.

The Fermat Benchmarks

The Fermat tests are a set of problems posted online by the
author of Fermat [1]. The first one substitutes multivariate
rational expressions into a multivariate polynomial and the
result simplifies to zero. A smaller version of the problem
removes some variables by evaluation first.

Maple 1s slow on both problems because the denominators
have a non-trivial multivariate gcd. The large version has a
gcd with 12 variables and 840 terms. Because Maple does
not compute Icms, 1t multiplies by extra powers of the gcd
before combining like terms. These polynomials are huge.

This example shows how to get an extra factor of g° in the
numerator (assuming bg and dg are expanded).

() () ~ e

NSERC
CRSNG

Factoring Subexpressions

Our first 1dea was to convert expanded polynomials to factored form since Maple
1s efficient 1n that case. The subsindet s command transforms expressions of
a given type (expanded sums) using a procedure (factor).

> f := subsindets(f, And(‘'+‘',expanded), factor):

> normal (f) ;

This change alone produced competitive timings (see benchmark table) although
we observe high memory usage on the large Fermat test. We tried replacing each
factor by a new variable. This simplifies quickly, and the challenge 1s to evaluate
the numerator at a set of multivariate polynomials and expand the result.

Maple expands most objects recursively, which causes two problems 1n our case.
The terms in a sum like *g? or f?g° are expanded separately and merged, which
uses a lot of temporary space, and powers are expanded first, so f*¢” is computed
as (f?) - (¢g°). For sparse polynomials it is much faster to multiply ((f - f) - g) - g.

Substitution by Division

To address these inefficiencies we wrote a C routine to divide sparse multivariate
polynomials by a set of sparse multivariate polynomials. If {c, as, ... } are new
variables representing the factors { f1, fo, ... }, then we can divide the numerator
by {a1 — fi,a — f5, ...} to substitute for the «;’s and expand. This algorithm is
equivalent to expanding by repeated multiplication.

We can implement the division efficiently by using a heap of pointers as follows.
For each term 1n a divisor, we store the product of that term with the next term of
the quotient. Products are compared 1n the heap and merged 1n descending order.
After a product 1s merged, the pointer for that divisor term increments to the next
term of the quotient. The setup 1s shown below for one divisor.

Dividend
2x9 | 3x8 10X 119 %6 4x> |40 x4 21 x3| 8x2|28x | f

/ \ Divisor
x° | & 02 2x4|3x3] 4x | ¢

= =]

x° | |01

Heap O(#Q)

X 2

5x3

Manlé‘s'cy)ft“

Mathematics ¢ Modeling = Simulation

OL

otient

Fermat Benchmarks For Rational Expressions in Maple
SF U Michael Monagan Roman Pearce

Benchmarks

We compared our approach (factor + rem) running on Maple 2016
to Maple’s normal command, Magma 2.21-12, and Fermat 5.21 on
a Core 17 3930k 3.2 GHz with 64 GB of RAM with 64-bit Linux.
Factoring produces acceptable performance, but our division with
remainder 1s worth another order magnitude on the large problem.
Our division routine can expand the numerator even if factoring 1s
not performed, even though it suffers from blowup.

Fermat Test #1 Large =~ Fermat Test #1 Small
time memory time memory
normal >10 hours >64.0GB 131.400s 3.8 GB
remonly, 80.550 s 2.5 GB 2900s 145.0 MB
factor only 4.700 s 0.9 GB 0.152 s 37.9 MB
factor + rem 0.213 s 11.5 MB 0.058 s 4.3 MB
Magma 9.130s 223.0 MB 0.750 s 64.1 MB
Fermat 3.980s 260.0 MB 0.380 s 30.6 MB

Conclusion

This code should be integrated into Maple’s normal command 1n a
future release. We also developed a heuristic to anticipate blowup
so that Maple can call our code. Factoring univariate polynomials
was found to be inefficient at present. We plan to use our division
routine to improve Maple’s expand command 1n the future.

Reterences

[1] Robert H. Lewis. Take The Fermat Tests.
http://home.bway.net/lewis/termat/FerTest.html

[2] M. Monagan, R. Pearce. Sparse Polynomial Division Using a
Heap. Journal of Symbolic Computation, 46 (7), 807-922, 2011.

