Two new Radial Basis Functions

Symbolic Analysis Project Leader: Peter Borwein

Poster by Greg Fee

Simon Fraser University

\textbf{Abstract}

The 3 most common radial basis functions for two dimensional interpolation are:

1. the Gaussian $\exp\left(\frac{1}{2} \cdot r^2\right)$
2. the Multiquadric $\sqrt{1 + r^2}$
3. the Thin Plate Spline $r^2 \cdot \ln(r)$

We have discovered 2 others, which are:

4. the tanh–rule weight function $\text{sech}(r)^2$
5. the tanh–sinh–rule weight function $\text{sech}\left(\frac{\pi}{2} \cdot \sinh(r)\right)^2 \cdot \cosh(r)$
Introduction

The most common radial basis function is the Gaussian. One can view the Gaussian as the weight function for the erf-rule quadrature formula. The weight function is the derivative of the variable transformation function. We noticed that the weight functions for the tanh-rule and the tanh-sinh-rule quadrature formulas also look like Gaussian curves. We may introduce a scale parameter R by replacing r with $\frac{r}{R}$ in the above formulas. We have chosen scale parameters so all 3 functions have the same definite integral. The chosen values are: for the Gaussian $R = (2\cdot\pi)^{\left(\frac{-1}{2}\right)}$, for the tanh-rule $R = \frac{1}{2}$, for the tanh-sinh-rule $R = \frac{\pi}{4}$.
Interpolation Conditions

Given \(N \) distinct data points \((x[1], y[1]), (x[2], y[2]), \ldots, (x[N], y[N])\) in the plane and corresponding heights \(z[1], z[2], \ldots, z[N] \). Choose a radial basis function \(u(r) \). The form of the radial basis interpolator function is

\[
g(x, y) = \sum_{j=1}^{N} c[j] \cdot u\left(\left(\frac{(x-x[j])^2 + (y-y[j])^2}{2} \right)^{1/2} \right)
\]

The \(N \) interpolation conditions are:

\[
z[i] = \sum_{j=1}^{N} c[j] \cdot u\left(\left(\frac{(x[i]-x[j])^2 + (y[i]-y[j])^2}{2} \right)^{1/2} \right)
\]

for \(i \) from 1 to \(N \). We need solve a dense \(N \) by \(N \) symmetric linear system of equations.

Radial basis function procedures

We choose the global variable \(R \) as our scale parameter, and define global variables \(R1:=1/R; \) and \(R2:=R1^2; \)

\[
> \text{rbf[1]} := \text{proc}(r) \exp(-1/2*R2*r^2) \text{ end proc:\n}
> \text{rbf[2]} := \text{proc}(r) (1+R2*r^2)^{(1/2)} \text{ end proc:\n}
> \text{rbf[3]} := \text{proc}(r) \text{ local } R1r; \text{ if } r=0 \text{ then } 0 \text{ else } R1r := R1*r; R1r^2*ln(R1r) \text{ end if end proc:\n}
> \text{rbf[4]} := \text{proc}(r) \text{ sech}(R1*r)^2 \text{ end proc:\n}
> \text{rbf[5]} := \text{proc}(r) \text{ local } R1r; R1r := R1*r; \cosh(R1r)*\text{sech}(evalf(Pi)/2*\text{sinh}(R1r))^2 \text{ end proc:\n}
\]

Exact function

\[
> \text{exactf} := \text{proc}(x,y) \text{ local } x1,y1; x1:=x+1/4; y1:=y-1/6; \exp(-2*x1^2+3*x1*y1-3*y1^2)*(1+x1+x1^2+2*x1*y1+5*y1^2)^{(-3/4)} \text{ end proc:\n}
\]
exact function
512 uniformly random data points
Gaussian radial basis function, $R=0.125$
multiquadric radial basis function, $R=0.5$
thin plate spline radial basis function, $R=1$
tanh-rule radial basis function, $R=0.5$
tanh-sinh-rule radial basis function, $R=0.5$
tanh-sinh-rule RBF interpolation
rbf[1] interpolation error
rbf[4] interpolation error
rbf[5] interpolation error
Conclusions

Here is a table of the 2-norm of the interpolation error for each of the 5 choices of radial basis function.

\[
\begin{array}{c|c}
RBF & ||error|| \\
1 & 0.00184363 \\
2 & 0.00001448 \\
3 & 0.00218664 \\
4 & 0.00001266 \\
5 & 0.00001088 \\
\end{array}
\]

We can see from the above table that our two new radial basis functions had the least error.
References

Bengt Fornberg and Natasha Flyer, *Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids*, amath.colorado.edu/faculty/fornberg/Docs/RBF.pdf