Computing Characteristic Polynomials over \(\mathbb{Z} \)

Simon Lo Michael Monagan Allan Wittkopf

Introduction

We present a modular algorithm for computing the characteristic polynomial of an integer matrix. The computation modulo each prime is done using the Hessenberg algorithm. It is implemented in C and the rest of the algorithm is implemented in Maple. We compare three implementations for arithmetic over \(\mathbb{Z}_p \): 32-bit integers, 64-bit integers, and also double precision floats. The best results use floats!

Modular Algorithm

Input: Matrix \(A \in \mathbb{Z}^{m \times n}

Output: Characteristic polynomial \(c(x) = \det(xI - A) \in \mathbb{Z}[x]

1. Compute a bound \(S \) larger than the largest coefficient of \(c(x) \).
2. Choose \(t \) machine primes \(p_1, p_2, \ldots, p_t \) such that \(\prod_{i=1}^t p_i > 2S.
3. for \(i = 1 \) to \(t \) do
 (a) \(A_i \leftarrow A \mod p_i \).
 (b) Compute \(c(x) \leftarrow \) the characteristic polynomial of \(A_i \) over \(\mathbb{Z}_p \), via the Hessenberg algorithm.
4. Apply the Chinese remainder theorem:
 \[\text{Solve } c(x) \equiv c(x) \mod p_i \text{ for } c(x). \]

Hessenberg Algorithm

Recall that a square matrix \(M = (m_{ij}) \) is in upper Hessenberg form if \(m_{i,j} = 0 \) for all \(i \geq j + 2 \), in other words, the entries below the first subdiagonal are zero.

\[
\begin{pmatrix}
m_{11} & m_{12} & m_{13} & \cdots & m_{1,n-2} & m_{1,n-1} & m_{1,n} \\
m_{21} & m_{22} & m_{23} & \cdots & m_{2,n-2} & m_{2,n-1} & 0 \\
0 & m_{32} & m_{33} & \cdots & m_{3,n-2} & 0 & 0 \\
0 & 0 & m_{43} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & m_{n-1,n-2} & m_{n-1,n-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & m_{n,n-1} & m_{n,n} \\
\end{pmatrix}
\]

The Hessenberg algorithm consists of the following two parts:

1. Reduce the matrix \(M \in \mathbb{Z}^{n \times n} \) into the upper Hessenberg form using a series of row and column operations in \(\mathbb{Z}_p \), while preserving the characteristic polynomial (known as similarity transformations.) Below, \(R_i \) denotes the \(i \)-th row of \(M \) and \(C_i \) the \(j \)-th column of \(M \).
 - for \(j = 1 \) to \(n - 2 \) do
 - search for a nonzero entry \(m_{kj} \) where \(j + 2 \leq i \leq n
 - if found then
 - do \(R_i \leftarrow R_{j+1} \) and \(C_i \leftarrow C_{j+1} \) if \(m_{j+1,j} = 0 \)
 - for \(k = j + 2 \) to \(n \) do
 - (reduce using \(m_{j+1,j+1} \) as pivot)
 - \(u \leftarrow m_{j+1,j+1} \)
 - \(R_i \leftarrow R_{j+1} + uR_{j+2} \)
 - \(C_i \leftarrow C_{j+1} + uC_{j+2} \)
 - else
 - first \(j \) columns of \(M \) is already in upper Hessenberg form
 - 2. The characteristic polynomial \(c(x) = p_n(x) \in \mathbb{Z}_n[x] \) of the upper Hessenberg form can be efficiently computed from the following recurrence for \(p_k(x) \) using computations in \(\mathbb{Z}_n[x] \):
 \[
p_k(x) = \begin{cases}
1 & k = 1 \\
x - m_{n,k}p_{k-1}(x) - \sum_{j=1}^{k-1} \prod_{i=1}^j m_{k-j+1,i}m_{j,k}p_{j-1}(x) & 1 < k \leq n + 1
\end{cases}
\]

Complexity

Suppose that \(A = (a_{ij}) \) is a \(n \times n \) integer matrix and \(|a_{ij}| < B^m \). A bound for \(S \) is \(n!B^m \) therefore, under reasonable assumptions, length of the determinant of \(A \) is \(O(nm) \) base \(B \) digits, so we’ll need \(O(nm) \) machine primes. We have:

- Cost of reducing the \(n^2 \) entries in \(A \) modulo one prime is \(O(nm^2) \).
- Cost of computing the characteristic polynomial modulo each prime \(p \) via the Hessenberg method is \(O(n^3) \).
- Cost of a classical method for the Chinese remainder algorithm is \(O(n(nm)^2) \).

In contrast, the Berkowitz algorithm, the algorithm that Maple uses, has complexity \(O(n^3(mn)^2) \), which reduces to \(O(n^3m^2) \) if the FFT is used.

Timings

The following is a set of timings (in seconds) for a 364 by 364 sparse matrix arising from a combinatorial construction. Rows 1-8 below are for the modular algorithm using different implementations of arithmetic for \(Z \). The accelerated floating point versions using 25-bit primes generally give the best times.

<table>
<thead>
<tr>
<th>Versions</th>
<th>Xeon 2.8 GHz</th>
<th>Opteron 2.0 GHz</th>
<th>AXP280 2.08 GHz</th>
<th>Pentium M 2.00 GHz</th>
<th>Pentium 4 2.80 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>64int</td>
<td>100.7</td>
<td>107.4</td>
<td>~ ~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>32int</td>
<td>66.3</td>
<td>73.0</td>
<td>76.8</td>
<td>35.6</td>
<td>57.4</td>
</tr>
<tr>
<td>new 32int</td>
<td>49.7</td>
<td>54.7</td>
<td>56.3</td>
<td>25.5</td>
<td>39.6</td>
</tr>
<tr>
<td>fmod</td>
<td>29.5</td>
<td>32.1</td>
<td>33.0</td>
<td>35.8</td>
<td>81.1</td>
</tr>
<tr>
<td>trunc</td>
<td>67.8</td>
<td>73.7</td>
<td>69.6</td>
<td>88.5</td>
<td>110.6</td>
</tr>
<tr>
<td>modtr</td>
<td>56.3</td>
<td>62.5</td>
<td>59.5</td>
<td>81.0</td>
<td>82.6</td>
</tr>
<tr>
<td>new fmod</td>
<td>11.0</td>
<td>11.6</td>
<td>14.5</td>
<td>15.2</td>
<td>28.8</td>
</tr>
<tr>
<td>ILA</td>
<td>17.6</td>
<td>19.9</td>
<td>21.9</td>
<td>26.2</td>
<td>27.3</td>
</tr>
<tr>
<td>Berkowitz</td>
<td>2035.6</td>
<td>2262.6</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
</tbody>
</table>

Explanations of the different versions:

- **64int** The 64-bit integer version is implemented using the long long int datatype in C, or equivalently the integer[8] datatype in Maple. All modular arithmetic first executes the corresponding 64-bit integer machine instruction, then reduces the result modulo \(p \) since we work in \(\mathbb{Z}_p \). We allow both positive and negative integers of magnitude less than \(p \).
- **32int** The 32-bit integer version is similar, but implemented using the long int datatype in C, or equivalently the integer[4] datatype in Maple.
- **new 32int** This is an improved 32bit version, with various hand/compiler optimizations.
- **fmod** This 64-bit float version is implemented using the double datatype in C, or equivalently the float[8] datatype in Maple. 64-bit float operations are used to simulate integer operations. Operations such as additions, subtractions, multiplications are followed by a call to fmod() to reduce the results modulo \(p \), since we are working in \(\mathbb{Z}_p \). We allow both positive and negative floating point representations of integers with magnitude less than \(p \).
- **trunc** This 64-bit float version is similar to above, but uses trunc() instead of fmod(). To compute \(b \rightarrow a/p \), we first compute \(c \rightarrow a - p \times \text{trunc}(a/p) \), then \(b \rightarrow c \) if \(c \neq \pm b \), \(b \rightarrow 0 \) otherwise. The trunc function rounds towards zero to the nearest integer.
- **modtr** A modified trunc version, where we do not do the extra check for equality to \(\pm b \) at the end. So to compute \(b \rightarrow a/p \), we actually compute \(c \rightarrow a - p \times \text{trunc}(a/p) \), which results in \(c \in [-p, p] \).
- **new fmod** An improved fmod version, where we have reduced the number of times fmod() is called. In other words, we reduce the result modulo \(p \) only when the number of accumulated arithmetic operations on an entry exceeds a certain threshold. In order to allow this, we are restricted to use 25-bit primes. We call this the operation count acceleration.
- **ILA** An improved trunc version using operation count acceleration. It is the default used in Maple’s LA:Modular routines.