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FOREWORD

The Kenzo program implements the general ideas of the second author
about Effective Homology', mainly around the Serre and Eilenberg-Moore
spectral sequences. The first author (re-) discovered the importance of
the Basic Perturbation Lemma in these questions, already noted by Vic-
tor Gugenheim? and this program directly implements and directly uses
this “lemma” which should be called the Fundamental Theorem of Alge-
braic Topology. The first version of the program, called EAT, was writ-
ten in 1989-90 by the first and the second authors. It has been demon-
strated in several universities: France: Grenoble and Montpellier, Belgium:
Louvain-la-Neuve, Italy: Genoa and Pisa, Sweden: Stockolm, Japan: Sap-
poro, Morioka, Urawa, Tokyo, Kyoto, Nara, Osaka and Hiroshima.

In this Kenzo version, numerous improvements have been integrated in
comparison with EAT.

1. Standard CLOS (Common Lisp Object System) techniques.

2. Use of the Zermelo theorem about ordered sets (!): any set can be
well ordered and this remark gives important new ideas to improve
execution speed.

3. Better memory management.

4. Use of Szczarba’s formulas instead of Shih’s for implementing the
twisted Eilenberg—Zilber theorem.

5. New mathematical objects:

e Serre spectral sequences.
¢ Differentials algebras.

e Simplicial morphisms.

e Kan simplicial sets.

e Simplicial groups.

!Francis Sergeraert. The computability problem in algebraic topology. Advances in
Mathematics, 1994, vol. 104, pp 1-29.

2V.K.A.M. Gugenheim. On a perturbation theory for the homology of the loop space.
Journal of Pure and Applied Algebra, 1982, vol. 25, pp 197-205.
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e Fibrations.

e (Classifying spaces.

In particular, using these tools, the first homotopy groups of arbitrary
simplicial sets with effective homology, are now reachable.

The present documentation is a joint work between the second and third
authors.



Chapter 0

Overview

In this overview we try to show, without entering in detailed explanations,
various possibilities of Kenzo in algebraic topology. The lines ended by the
symbol ==> are the commands typed by the user (don’t type this symbol!).
They are followed by the answer of the program. We have suppressed some
extra informations, in particular the ones printed during the computation
of homology groups.

Let us begin by the space Moore(Z /2Z,3) described as a simplicial set having
only three non—degenerate simplices, namely in dimension 0, 3 and 4. In
the representation created by the software, the 0—simplex (base point), the
3—simplex and the 4—simplex are respectively labelled “*”, M3 and N4. Two
faces of the 4-simplex N4 are identified with the 3-simplex M3, the others
being contracted on the base point. To create the simplicial set one types
simply:

(setf m23 (moore 2 3)) ==>

The system answers that a Kenzo object has been created, with number 1
and type SIMPLICIAL SET. This object may be referenced by the symbol
m23.

[K1 Simplicial-Set]

We may compute the homology groups of this space, using the underlying
chain complex induced by the simplicial set description. Here we compute
the H; from 0 to 4 included. When in the answer the component part is
void, it means that the corresponding homology group is null.

(homology m23 0 5) ==>

Homology in dimension O :

iii
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Component Z

--done——

Homology in dimension 1 :
--done--

Homology in dimension 2 :
--done——

Homology in dimension 3 :
Component Z/2Z

--done--

Homology in dimension 4 :

---done---

As m23 is a simplicial set, it is possible to create the cartesian product
m23 x m23 by the function crts-prdc. This is a new simplicial set.

(setf m23xm23 (crts-prdc m23 m23)) ==
[K10 Simplicial-Set]

Being a simplicial set, m23xm23 is also a chain complex object and we may
for instance ask for the basis in dimension 6

(basis m23xm23 6) ==

(<CrPr 1-0 N4 3-2 N4> <CrPr 1-0 N4 4-2 N4> <CrPr 1-0 N4 4-3 N4>

<CrPr 1-0 N4 4-3-2 M3> <CrPr 1-0 N4 5-2 N4> <CrPr 1-0 N4 5-3 N4>
<CrPr 1-0 N4 5-3-2 M3> <CrPr 1-0 N4 5-4 N4>

<CrPr 4-1 N4 5-3-2 M3> <CrPr 4-1-0 M3 3-2 N4> <CrPr 4-1-0 M3 5-2 N4>
<CrPr 4-1-0 M3 5-3 N4> <CrPr 4-1-0 M3 5-3-2 M3> ... ... ...)

(length *) ==

230

As shown by the last command (* means the previous result), the number of
elements of the basis is quite large (230). The user will note that the basis
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elements are formed by cartesian products of degenerated simplices. In the

list, an element like <CrPr 1-0 N4 5-3-2 M3> means 1119/N4 X n5n31n2M 3.
We may construct also the tensor product m23 ® m23 from the underlying
chain complex of the simplicial set m23. This tensor product is a new chain
complex and we see that the basis in dimension 6 has only one element:

(setf t2m23 (tnsr-prdc m23 m23)) ==
[K3 Chain-Complex]
(basis t2m23 6) ==>

(<TnPr M3 M3>)

The Eilenberg-Zilber theorem is used to compute the homology groups of
the cartesian product space: as chain complexes, m23xm23 and t2m23 have
the same homology groups, but the computations using the tensor product
are considerably faster.

(homology m23xm23 0 8) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 : (meaning: Group null)
Homology in dimension 2 :
Homology in dimension 3 :
Component Z/2Z

Component Z/2Z

Homology in dimension 4 :
Homology in dimension 5 :
Homology in dimension 6 :
Component Z/2Z

Homology in dimension 7 :
Component Z/2Z

---done---
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Let us consider now the space K(Z,1). This is an Abelian simplicial group
created in Kenzo by the function k-z. In this simplicial group, a simplex in
dimension n is mathematically represented by a sequence of integers, known
as a bar object:

[al\ a2|...| an]

In Kenzo, a non-degenerate simplex of K(Z, 1) in dimension n will be simply
a list of n non-null integers, for instance: (2 3 4 5). In dimension 0, the
only simplex is NIL (the base point).

(setf kzl (k-z 1)) ==>

[K38 Abelian-Simplicial-Group]

But this object is also a coalgebra and an algebra, and we may see the effect
of the respective induced coproduct and product:

(cprd kz1 4 (2 3 4 5)) ==>

- -— et {CMBN 4}
<1 * <TnPr NIL (2 3 4 5)>>
<1 * <TnPr (2) (3 4 5)>>
<1 * <TnPr (2 3) (4 5)>>
<1 * <TnPr (2 3 4) (5)>>
<1 * <TnPr (2 3 4 5) NIL>>
(aprd kz1 6 (tnpr 2 (1 2) 4 (345 6))) ==>
-— T {CMBN 6}

<1 * (12345 6)>
<-1 % (13245 6)>
<1 * (13425 6)>
<-1 % (1345 26)>
<1 *x (13456 2)>
<1 * (31245 6)>
<-1 * (314265 86)>
<1 * (3145 26)>
<-1 * (31456 2)>
<1 * (34125 6)>
<-1 * (3415 26)>
<1 * (34156 2)>
<1 * (34512 6)>
<-1 ¥ (34516 2)>
<1 *x (345612)>

The printed results are the printed representation of combinations, i.e. in-
teger linear combinations of generators resulting from the application of the
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morphisms. The degree of the combination is indicated by the information:

CMBN n.
On the same way, we may create the Abelian simplicial groups K (Z/2Z,n):

(setf k-z2-2 (k-z2 2)) ==
[K488 Abelian-Simplicial-Groupl
(homology k-z2-2 4) ==>
Homology in dimension 4 :
Component Z/4Z

-—--done—--

Let us play now with the sphere S3 and its loop spaces. S® and 9252 are
created by respective calls to the functions sphere and loop-space. Then

we compute the H, and Hs of Q253:

(setf s3 (sphere 3)) ==>
[K52 Simplicial-Set]
(setf 02s3 (loop-space s3 2)) ==>
[K69 Simplicial-Group]
(homology 02s3 4 6) ==>
Homology in dimension 4 :
Component Z/3Z

Component Z/2Z

Homology in dimension 5 :
Component Z/3Z

Component Z/2Z

---done---
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Let us take now the first loop space Q'3

(setf s3 (sphere 3)) ==>
[K94 Simplicial-Set]
(setf o0s3 (loop-space s3)) ==>

[K99 Simplicial-Groupl

In the following instruction, we locate in the symbol L1 the canonical gener-
ator of mo(Q15%), that is the 2-simplex coming from the original sphere. In
fact, the object created by the command (loop3 0 ’s3 1) is the “word”

S3! belonging to the Kan simplicial version G(S?) (a simplicial group) of
the loop space Q52.

(setf L1 (loop3 0 ’s3 1)) ==>

<AbSm - <<Loop[S3]1>>>

Let us consider also the 2—degeneracy of the base point of the loop space.
In the printed result, the user will recognize the degeneracy 1179 of the null
loop, base point of Q'S3:

(setf null-simp (absm 3 +null-loop+)) ==>
<AbSm 1-0 <<Loop>>>

We may build now a new space by pasting a disk D3 as indicated by the
following call. It means that we “paste” to the space 0s3 a 3—simplex named
D3, the attaching map being described by the list of its faces in dimension
2.

(setf dos3 (disk-pasting os3 3 ’<D3>
(list L1 null-simp L1 null-simp))) ==>

[K212 Simplicial-Set]

Let us compute a few homology groups of the new space dos3:

(homology dos3 2 4) ==>
Homology in dimension 2 :
Component Z/2Z

Homology in dimension 3 :

---done---
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But more interesting, let us build the loop space of the object dos3 and let
us compute the homology in dimension 5:

(setf odos3 (loop-space dos3)) ==>
[K230 Simplicial-Group]
(homology odos3 5) ==>
Homology in dimension 5 :
Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z

--done--

Let us continue with the Kan theory. First, we check that S° is not of type
Kan and that Q52 is indeed of type Kan and a non-Abelian simplicial group.

(typep s3 ’kan) ==

NIL

(typep os3 ’kan) ==>

T

(typep os3 ’simplicial-group) ==>

T

(typep os3 ’ab-simplicial-group) ==>

NIL
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Let us create the word L2 = (53)2, i.e an object belonging to 5% and let
us apply the product of the underlying algebra upon L2 ® L2:

(setf L2 (loop3 0 ’s3 2)) ==>
<<Loop[S3\2]>>

(setf square (aprd os3 4 (tnpr 2 L2 2 L2))) ==>

- — o {CMBN 4}
<1 # <<Loop[1-0 S3\2] [3-2 S3\2]>>>

<-1 * <<Loop[2-0 S3\2][3-1 S3\2]>>> <—————

<1 * <<Loop[2-1 S3\2]1[3-0 S$3\2]>>>

<1 * <<Loop[3-0 S3\2][2-1 S3\2]1>>>

<-1 * <<Loop[3-1 S3\2][2-0 S3\2]>>>

<1 * <<Loop[3-2 S3\2]1[1-0 S$3\2]>>>

We see that the result is a linear combination of words composed from
degeneracies of L2. The following instruction selects the generator part of
the second element of the previous combination (noted by the reverse arrow).

(setf L4 (gnrt (second (cmbn-list square)))) ==>

<<Loop[2-0 $3\2][3-1 S3\2]>>

Let us use the lisp function mapcar (one among the various iteration func-
tions of Lisp) to create the list of the faces 1, 2, 3 and 4 of the object L4,
this list is a “Kan hat”.

(setf hat (mapcar #’(lambda (i) (face o0s3 i 4 14)) (1 2 3 4))) ==>

(<AbSm - <<Loop[1 S3\2]1[2 S3\2]1>>> <AbSm - <<Loop[0 S3\2]1[2 S3\2]>>>
<AbSm - <<Loop[0 S3\2][1 S3\2]>>> <AbSm 1 <<Loop[S3\2]>>>)

The function kf11 tries to find a filling of this “Kan hat”, and we see that
the face 2 of the resulting simplex (which is very different from L4) is the
same as the face 2 of L4.

(setf kan-simplex (kfll os3 0 4 hat)) ==>

<AbSm - <<Loop[3-1 S3\2][2-1 S3\-2]1[2-0 S3\2] [1-0 S3\-2][2-1 S3\2] [3-1 S3\-2]
[1-0 S3\2]1[3-1 S3\2]1[3-0 S3\-2]1[1-0 S3\-2][3-0 S3\2][2-0 S3\-2]
[1-0 83\2] [3-0 S3\-2][2-0 S3\2][3-0 S3\2]1>>>

(face 0s3 2 4 kan-simplex) ==>

<AbSm - <<Loop[0 S3\2][2 S3\2]>>>
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(second hat) ==>

<AbSm - <<Loop[0 S3\2][2 S3\2]>>>

Let G be a simplicial group 0-reduced. 25 is such a group. The software
Kenzo allows the construction of the universal bundle WG, i.e. the classifying
space of G. In our case, as Q252 in non—Abelian, the result is not a simplicial
group but only a simplicial set. We verify that the Hy is null.

(setf cls-o0s3 (classifying-space o0s3)) ==>
[K598 Simplicial-Set]

(typep cls-o0s3 ’simplicial-group) ==>

NIL

(homology cls-o0s3 4) ==>

Homology in dimension 4 :

---done---

Let us end this short overview with an example of computation of homotopy
groups. The method used in Kenzo is the Whitehead tower. In this current
version only the case where the first non-null homology group (in non-null
dimension) is Z or Z/2Z can be processed; however if this homology group
is a direct sum of several copies of Z or Z/2Z, then the corresponding stage
of the Whitehead tower may also be constructed step by step.

We take again Moore(Z/2Z,3) whose Hj is Z/2Z. First the fundamental
cohomology class is constructed:

(setf ch3 (chml-clss m23 3)) ==>

[K729 Cohomology-Class on K1 of degree 3]

Then the function z2-whitehead is called to build a fibration over the sim-
plicial set m23 canonically associated to the cohomology class ch3.

(setf f3 (z2-whitehead m23 ch3)) ==>

[K730 Fibration K1 -> K488]
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Then the total space of the fibration is built:

(setf x4 (fibration-total £3)) ==>

[K736 Simplicial-Set]

The H, of this total space is the w4 of Moore(Z/2Z):

(homology x4 3 5) ==>
Homology in dimension 3 :
---done---

Homology in dimension 4 :
Component Z/2Z

--—done-—-
We may now iterate the process, to compute the 75 of Moore(Z/2Z):

(setf ch4 (chml-clss x4 4)) ==>
[K817 Cohomology-Class on K802 of degree 4]
(setf f4 (z2-whitehead x4 ch4)) ==
[K832 Fibration K736 -> K818]

(setf x5 (fibration-total f4)) ==>
[K838 Simplicial-Set]

(homology x5 4 6) ==>

Homology in dimension 4 :
---done---

Homology in dimension 5 :

Component Z/4Z

---done---

So ms(Moore(Z[2Z)) is Z/AZ.
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Chapter 1

Chain Complexes

1.1 Introduction

A chain complez' (Cp,d,) is a collection of free Z-modules (C,), one for
each p € Z, together with a homomorphism d,, : C;, — Cp_1, such that, for
all p, dy,_10d, =0.

In the Kenzo program, a morphism f = (fp), of degree k, from a chain
complex (Cp, dy) to another (C},d;,) is a collection of homomorphisms

fp : Cp — C]’)+k'

This is expressed by the following diagram, generally not assumed com-
mutative.

d dpi1
— Cp1 < C & Cpy

fp—l‘ fph fp+1J

, ,
dp+k ! dp+k+1 !

!
— Cup1 — G — Pkl

'P.J. Giblin in Graph, Surface and Homology, Chapman and Hall Math. series, 1981.
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Three types of morphisms are most generally considered.

1. k = 0. If the commutativity relation d;, o fp = fp—10dp holds for every
p, then the morphism f is an ordinary chain complex morphism or
chain map.

2. k=—1.If (Cy,dp) = (C},d,) and f, = dp, then f is the differential of
the chain complex (C,, dp) and, in fact, this differential is implemented
in the Kenzo program as a morphism of degree —1.

3. k = +1. In this case, f is usually a homotopy operator, that is, some
relation
dyi10 fp+ fo-10dp = gp — g,

is satisfied for two (ordinary) chain complex morphisms g and ¢'.

For technical reasons, these three types of morphisms have been imple-
mented in the Kenzo program in a unique type.

1.2 Generators, terms and combinations

To become familiar to the lisp functions implementing the chain complexes,
the best is to begin by an example of chain complex. The simplicial com-
plezes are good candidates for this purpose and we shall take as typical
example the following simplicial complex.

S1 s4

S12

S23

s S35

Diabolo
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In this simplicial complex, called here diabolo, there are 3 associated chain
groups.

e (), the free Z—module on the set of vertices {sq, s1, $2, $3, 84, S5}
e (1, the free Z—module on the set of edges {01, S02, S12, $23, 34, S35, S45 } -
e (9, the free Z—module on the set of triangles (here a singleton) {s345}.

The elements of either of those groups C), are linear integer combinations of
the corresponding basis (set of ¢;’s), i.e. elements of the form:

Z)\ZUZ‘, i € 7.

An element o; of any basis is also called generator and in our specific case
this generator will be represented by a lisp symbol. For instance, s45 will be
translated in s45. But, the user must know from now, that in the realistic
usage of the software, generators may be of any type. A product such as
Aio; is called a term and a sum of terms, a combination.

1.2.1 Representation of a combination

A combination is represented internally in the system by a list having the
general following form:

(:cmbn degree (A.01) ... (Ag.0k))
and containing

1. The degree of the combination corresponding to the index p € Z of the
group Cp to which this combination belongs.

2. The list of the internal representation of the terms, namely the list of
pairs ()\ZO'Z)

This choice of representation implies that only homogeneous combinations
will be considered. A type CMBN and a printing method have been associated
to this internal representation. The external form of a combination is shown
in the examples.
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1.2.2 Ordering the generators

In order to speed up the execution of algorithms involving combinations,
the list of pairs ()A;.0;) is ordered by an adequate ordering function (ex: the
lexicographical ordering on the symbols). For programming convenience, an
enumerated type CMPR has been defined:

(deftype cmpr() ’(member :less :equal :greater))

A number of macros, functions and methods have been defined on usual sets
(symbols, numbers, lists, ...) taking their value in the set [:1less, :equal,
:greater]. Of course, the user may define its own function for a particular
case. There exists functions to compare various couples of usual items:

f-cmpr nl n2 [Function]
Return :less, :equal, :greater, according to the result of the
canonical comparison of both integers nl and n2.

s—cmpr symboll symbol2 [Function]
Return :less, :equal, :greater, according to the result of the lisp
comparison functions on the strings (symbol-name symboll) and
(symbol-name symbol2)

1-cmpr list! list2 [Function]
Return :less, :equal, :greater, according to the lexicographical
ordering of the two lists list! and list2 representing legal generators
in this implementation.

Examples

(f-cmpr 123 789) ==>

:LESS

(s-cmpr ’circulation ’circular) ==>
:GREATER

(s-cmpr ’qwerty ’querty) ==>

:EQUAL

(l1-cmpr (1 a b) (1 a)) ==>

:GREATER
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1.2.3 Functions handling combinations

The software provides a set of functions, methods or macros to create or
modify combinations.

term-cmbn dgr cf gnr [Macro]
Construct the combination of degree dgr with unique term cf x gnr
cmbn dgr cfl gnrl cf2 gnr2 ... ¢fn gnrn [Function]

Construct a combination of degree dgr, sum of the terms cf; x gnr;.
The sequence of pairs {cf; gnr;} has an undefinite length and may
be void. In this case, the combination is a null combination of

degree dgr.

cmbn-p object [Function]
Test is object is a legal combination.

cmbn-degr cmbn [Macro]
Get the degree (an integer) of the combination cmbn.

cmbn-list cmbn [Macro]

Get the list of the terms of the combination ¢mbn. Beware: a term
is not a Kenzo object. One may select the coefficient (an integer) or
the generator — a Kenzo object — respectively by the macros cffc

and gnrt.

zero-cmbn dgr [Function]
Create an instance of a null combination in the degree dgr.

zero-pure-dffr cmbn [Function]
Create a null combination of degree degr(cmbn) — 1.

cmbn-zero-p cmbn [Macro]
Test if cmbn is a null combination in any degree.

cmbn-non-zero-p cmbn [Macro]
Test if cmbn is a non-null combination in any degree.

cmbn-opps cmbn [Function]
Create a combination opposite to cmbn.

n-cmbn n cmbn [Function]
Create a combination multiple of cmbn by the factor n.

2cmbn-add cmpr cmbnl cmbn2 [Function]

Create a combination, sum of both combinations cmbn! and cmbn?2.
The first argument, cmpr, must be a function or macro relevant to
compare the generators of the involved combinations, in order to
return an ordered combination.
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ncmbn-add cmpr cmbnl cmbn? ... cmbnk [Function]
Create a combination, sum of the indefinite number of combinations
cmbn;. As to the first argument, cmpr, see the function 2cmbn-add.

2n-2cmbn cmpr nl cmbnl n2 cmbn2 [Function]
Build the combination nl * cmbnl 4+ n2 x cmbn2. Both integers nl
and n2 must be non null. As to the first argument, cmpr, see the
function 2cmbn-add.

2cmbn-sbtr cmpr cmbnl cmbn2 [Function]
Create a combination, difference of ecmbnl and cmbn2. As to the
first argument, cmpr, see the function 2cmbn-add.

Examples

(setf combl (cmbn 1 1 ’u 2 ’v 3 ’w 4 ’z)) ==>
—————————— {CMB 1}

<1
<2
<3
<4

>
b2
w>
z>

* ¥ ¥ ¥

(cmbn-non-zero-p combl) ==>
T
(cmbn-list combl) ==>

(1.0 @.wv @3.wW 4.12)

(setf term3 (third *)) ==> ;; not a Kenzo object!
3. W

(cffc term3) ==>

3

(gnrt term3) ==>

W
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(setf mcombl (cmbn-opps combl))  ==>

- - e e e {CMB 1}
<-1 x U>

<-2 x V>

<=3 * W>

<-4 x 7>

(setf comb2 (n-cmbn 10 combl)) ==>

-- - T {CMB 1}
<10 * U>

<20 * V>

<30 * W>

<40 * Z>

(setf cmbl2 (2cmbn-add #’s-cmpr combl comb2)) ==>

-- e et {CMBN 1}
<11 * U>

<22 * >

<33 * W>

<44 * 7>

(2cmbn-sbtr #’s-cmpr combl cmbl2) ==>

- o {CMBN 1}
<-10 * U>

<-20 * V>

<-30 * W>

<-40 * Z>

(ncmbn-add #’s-cmpr
combl comb2 combl comb2 combl comb2 combl comb2 combl comb2) ==

- e {CMBN 1}
<55 * U>
<110 * V>
<165 * W>
<220 * 7>
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1.3 Representation of a chain complex

A chain complex is implemented as an instance of a CLOS class, the class
CHAIN-COMPLEX, whose definition is

(DEFCLASS CHAIN-COMPLEX ()
((cmpr :type cmprf :initarg :cmpr :reader cmprl)
(basis :type basis :initarg :basis :reader basisl)
;; BaSe GeNerator
(bsgn :type gnrt :initarg :bsgn :reader bsgn)
;3 DiFFeRential
(dffr :type morphism :initarg :dffr :reader dffri)
;3 GRound MoDule
(grmd :type chain-complex :initarg :grmd :reader grmd)
;3 EFfective HoMology
(efhm :type homotopy-equivalence :initarg :efhm :reader efhm)
;3 IDentification NuMber
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
;3 ORiGiN
(orgn :type list :initarg :orgn :reader orgn)))

This class has 8 slots:

1. cmpr, a comparison function or method for generators with a range in
the set [:less, :equal, :greater].

It is very important to note that the generators to be compared are
assumed to be of the same degree, i.e. they must belong to the same
group C,. As an exception with the general policy of the software,
this degree is not explicitly precised. The implementor has chosen to
avoid additional tests because in real problems the program spends a
lot of time comparing generators.

2. basis, a lisp function giving the distinguished ordered basis of the
free Z-modules? (Cp). When some components of the chain complex
are not finitely generated, we say that the chain complex is locally
effective. In this case the value of this slot must be the keyword
locally-effective.

3. bsgn, a lisp object of any type representing a distinguished generator
in dimension 0, the base generator.

4. dffr, the differential morphism, instance of the class MORPHISM, de-
fined hereafter. The pure lisp function corresponding to the differential

2Recall that in the software, only free chain complexes are considered.
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homomorphism for each p (d, : Cp — Cp—_1) is defined in the instance
morphism object and not directly in the instance chain complex object.

5. idnm, an integer, number plate for this object. This is generated by the
system in a sequential way, each time a new Kenzo object is created.

6. orgn, a list containing a comment to recall to the user the origin of
the object. This comment must be chosen with care because, when
the user creates a new chain complex instance, the system Kenzo
uses the comment list information to search in a specific list (here
*chcm-1ist*) if the object has not been already built. So, one avoids
the duplication of instances of the same object.

The two slots grmd and efhm will be explained later. The accessors of the
slots are the functions whose name appears after the specifier :reader in
the class definition. A printing method has been associated to the class
CHAIN-COMPLEX and the external representation of a chain complex instance
is a string like [Kn Chain-Complex], where n is the number plate of this
Kenzo object.

1.3.1 The function build-chcm

To facilitate the construction of instances of the class CHAIN-COMPLEX and to
free the user to call the standard constructor make-instance, the software
provides the function

build-chcm :cmpr cmpr :basis basis :bsgn bsgn :intr-dffr intr-dffr
:strt strt :orgn orgn

defined with keyword parameters. The returned value is an instance of the
class CHAIN-COMPLEX. In particular, this function frees the user to build
himself the instance of the class MORPHISM corresponding to the differential
homomorphism. The keyword arguments of build-chcm are:

— cmpr, the comparison function for generators.

— basis, the function defining the distinguished basis of the free Z—modules
Cp or the keyword :locally-effective.

bsgn, a generator, the base point of the underlying set.

intr-dffr, a lisp function defining the differential homomorphism for
each p (dp : Cp = Cp_1).
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— strt, one of the two values: :gnrt or :cmbn, defining the mapping
strategy of the differential homomorphism, either by generator or by
combination. The default is :gnrt. The real connection between the
arguments intr-dffr and strt will be detailed hereafter through typical
examples. The general idea is the following: if the strategy is :gnrt,
the :intr-dffr argument function uses two arguments, namely a de-
gree and a generator of this degree and computes the boundary com-
bination of this generator. If the strategy is :cmbn, the :intr-dffr
argument function uses a combination as argument and computes the
boundary combination of this argument. We recall that a combination
contains its own degree.

— orgn, a list containing a relevant and carefully chosen comment about
the origin of the chain complex. If, during a Lisp session, the user
wishes to modify any slot of an existing chain complex, by calling
again build-chcm, he must change also the comment, otherwise the
new version of the object will not be created. This remark is valid
for any kind of instantiation of Kenzo objects. For avoiding such a
constraint, one may use the function cat-init, before the redefinition.

After creation of an instance of chain complex, the function build-chcm
pushes this object in the list of already created chain complexes *chcm-1istx*.

A first example of chain complex

Let us consider our small example diabolo. We shall give the same name to
the corresponding chain complex instance. Let us define, one by one, the
values of the key parameters, though it is possible to put them directly in
the build-chcm call. First, the function s-cmpr, already seen above, is the
natural choice to compare generators, which are here, lisp symbols:

(setf diabolo-cmpr #’s-cmpr)

The function for the basis consists in enumerating the distinguished basis
as lisp lists according to the degree:

(setf diabolo-basis #’(lambda (dmn)
(case dmn
(0 ’(s0 s1 s2 s3 s4 sb))
(1 ’(s01 s02 s12 s23 s34 s35 s45))
(2 ’(s345))
(otherwise nil ))))

For the base point, we may choose any vertex:
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(setf diabolo-bspn ’s0)

The lisp function for the differential homomorphism, also called boundary
homomorphism, computes the boundary of each generator, in this case,
according to the classical (simplicial) rule:

n

d[sos1...8p] = z (=1)'5081...5;... 5n.
i=0

It must be noted that our differential uses a predefined choice for the order
of the vertices.

(setf diabolo-pure-dffr
#’ (lambda (dmn gnr)
(unless (<= 0 dmn 2)
(error "Non-correct dimension for diabolo-dp."))
(case dmn
(0 (cmbn -1)) ; Note the null combination of degree -1
(1 (case gnr

(s01 (cmbn 0 -1 °’s0 1 ’s1))
(s02 (cmbn 0 -1 ’s0 1 ’s2))
(s12 (cmbn 0 -1 ’s1 1 ’s2))
(s23 (cmbn 0 -1 ’s2 1 ’s3))
(s34 (cmbn 0 -1 ’s3 1 ’s4))
(s35 (cmbn 0 -1 °’s3 1 ’s5))
(s45 (cmbn 0 -1 ’s4 1 ’sb))))

(2 (case gnr
(s345 (cmbn 1 1 ’s34 -1 ’s35 1 ’s45))))
(otherwise (error "Bad generator for complex diabolo")))

))

The strategy is by generator and the comment recalls the name of the prob-
lem:

(setf diabolo-strt :GNRT)

(setf diabolo-orgn ’(diabolo-for-example))
The effective call to build-chcm is now reduced to:

(setf diabolo (build-chcm :cmpr diabolo-cmpr :basis diabolo-basis
:bsgn diabolo-bspn :intr-dffr diabolo-pure-dffr
:strt diabolo-strt :orgn diabolo-orgn)) ==>

[K1 Chain-Complex]

The value of the symbol diabolo is the CHAIN-COMPLEX instance which is
here the first created Kenzo object. The string [K1 Chain-Complex] is
printed by the printing method associated to the class.
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1.3.2 Simple functions handling chain complexes

cat-init [Function]
Clear among others, the list *chcm-1ist#*, list of user created chain
complexes and reset the global counter to 1. The existing objects
and in particular here the chain complexes, are not destroyed but
they will not enter any more in account during the search process
for duplicated objects. This remark is general for the other types
of objects saved in specific lists.

chem n [Function]
Return from the list *chcm-1ist* the chain complex instance whose
the Kenzo identification is n; if it does not exist, return NIL.

cmpr object item! item?2 [Macro]
Apply the comparison function associated to the chain complex
object to the two generators item1 and item2.

basis object n :dgnr [Macro]
With only one argument (object), get the function attached to the
slot basis of the chain complex object. With two arguments, get
the distinguished basis of the group of degree n in the chain com-
plex object. If the chain complex is locally effective, this function
returns an error because, in some degrees, the corresponding set of
generators is probably infinite. With a third argument, the key-
word :dgnr, get also the degenerate elements of the basis in degree
n.

dffr chem &rest [Macro]
Versatile macro to apply the differential morphism of the chain
complex chem either to a combination or a generator with a degree,
respectively (dffr chem cmbn) or (dffr chcm degr gnrt). The
macro 7, described later, may be used for the same purpose.

z-chcm [Function]
Build the unit chain complex (see hereafter).

Examples

Let us apply some accessors functions and the simple functions above to the
chain complex diabolo. First, we see that the list *chcm-1list* contains
only one element, namely the chain complex just created.

*chcm-list* ==>

([X1 Chain-Complex])
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(chem 1) ==

[K1 Chain-Complex]
(orgn diabolo) ==>
(DIABOLO-FOR-EXAMPLE)

(idnm diabolo) ==>

(basis diabolo 0) ==

(S0 S1 S2 S3 S4 Sb5)

(basis diabolo 1) ==>

(S01 S02 S12 S23 S34 S35 S$45)
(basis diabolo 2) ==

(5345)

(basis diabolo 10) ==

NIL

(dffr diabolo 2 ’s345) ==>

<1 * S34>
<-1 % 535>
<1 * 545>

13

{CMBN 1}

(dffr diabolo *) == ;53 (* means the previous result, a combination)

{CMBN 0}
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An
The

important trivial case: the unit chain complex, Z

unit chain complex, has a unique non null component, namely a Z-

module of degree 0 generated by a unique generator, called here :Z-gnrt.
It is defined by the following call to build-chcm:

(setf ZCC

(the chain-complex
(build-chcm
tcmpr #’(lambda (gnrtl gnrt2) (the cmpr :equal))
:basis #’(lambda (n)
(the list
(if (zerop n) ’(:Z-gnrt) +empty-list+)))
:bsgn :Z-gnrt
:intr-dffr #’(lambda (cmbn)
(the cmbn (zero-cmbn (1- (cmbn-degr cmbn)))))

:strt :cmbn
rorgn ’(zcc-constant))))

In this definition,

1.

5.
6.

The :cmpr keyword argument is a function returning :equal on any
pair on generators (because there is a unique generator!).

. The :basis keyword argument is a lisp function returning the null ba-

sis (the constant +empty-list+ = ()) for p # 0 and the list (:Z-gnrt),
for p=0.

The base generator is of course Z-gnrt.

The :intr-dffr keyword argument is a lisp function defining the dif-
ferential which, to any combination of degre p of the chain complex,
returns a null combination of degree p — 1. This simple lisp function
is also provided in Kenzo and is called zero-intr-dffr.

The :strt keyword argument is the combination strategy (:cmbn).

The :orgn keyword argument is the comment list (zcc-constant).

In the software Kenzo, the chain complex instance ZCC may be built, when
needed, by the lisp statement: (z-chcm). This statement may be used freely
each time one needs this chain complex, since the system recognizes if it has
already been created.
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The chain complex circle

On the model of the previous chain complex, one may define a function
circle for building a chain complex having the same homology as the circle.

(defun CIRCLE ()
(the chain-complex
(build-chcm
:cmpr #’(lambda (gnrtl gnrt2) (the cmpr :equal))
:basis #’(lambda (dmns)
(the list
(case dmns (0 ’(*)) (1 ’(s1))
(otherwise +empty-list+))))

:bsgn *
:intr-dffr #’zero-intr-dffr
:strt :cmbn
torgn ’(circle))))
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1.4 Morphisms

Algebraic Topology uses morphisms between chain complexes and the dif-
ferential homomorphism may be considered as a particular case of mor-
phism. A morphism is implemented in the system as an instance of the
class MORPHISM, whose definition is:

(DEFCLASS MORPHISM ()

;3 SOuRCe

((sorc :type chain-complex :initarg :sorc :reader sorc)
;3 TaRGeT

(trgt :type chain-complex :initarg :trgt :reader trgt)
;3 DEGRee

(degr :type fixnum :initarg :degr :reader degr)

;3 INTeRnal

(intr :type intr-mrph :initarg :intr :reader intr)

;3 STRaTegy

(strt :type strt :initarg :strt :reader strt)

;3 CaLl NuMber

(??7-clnm :type fixnum :initform O :accessor ?77-clnm)

(?7-clnm :type fixnum :initform O :accessor 7-clnm)

;3 ReSuLTS

(rslts :type simple-vector :reader rslts)

;3 IDentification NuMber

(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
;3 ORiGiN

(orgn :type list :initarg :orgn :reader orgn)))

This class has 10 slots:

1. sorc, an object of the class CHAIN-COMPLEX, namely the source chain
complex of this morphism.

2. trgt, an object of the class CHAIN-COMPLEX, namely the target chain
complex of this morphism.

3. degr, an integer, the degree of the morphism. A morphism is supposed
to associate to any element of degree k of the source chain complex, an
element of degree k + degr of the target chain complex. For instance,
the differential homomorphism is of degree —1.

4. intr, a pure lisp function implementing the mathematical algorithm
of the morphism and taking in account the strategy (strt).

5. strt, one of the two symbols :gnrt, :cmbn. What has already been
said about the strategy of the differential morphism is generalized
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to any morphism: according to the value of the argument, :gnrt or
:cmbn, the lisp function attached to the keyword just above, works
respectively with 2 arguments (a degree and a generator) or only one
(a combination) and must return a combination, image of the generator
or the combination argument.

6. 7?77-clnm, an integer updated by the system for statistics (number of
times the morphism has been called on combinations — Internal use)

7. ?-clnm, analogous to the previous field, but for generators.

8. rslts, an array of dimension *maxdim#* reserved by the system to
save computed results in order to avoid re-computing, for instance,
the differential of the same generator. — Internal use.

9. idnm, an integer, number plate for this object. This is generated by
the system.

10. orgn, a relevant comment list.

The accessors of the slots are the functions whose name appears after the
specifier :reader or after the specifier :accessor in the class definition. A
printing method has been associated to the class MORPHISM and the external
representation of an instance is a string like [Kn Morphism (degree d):
Kp -> Kq] or [Kn Cohomology-Class (degree d)] when the chain com-
plex target is the unit Z. In this string, n is the number plate of the Kenzo
object, d is the degree of the morphism, Kp is the Kenzo object source of the
morphism and Kq the target. In all the examples of this manual, the last
part of the string will not be necessarily printed.

1.4.1 The function build-mrph

To facilitate the construction of instances of the class MORPHISM and to
free the user to call the standard constructor make-instance, the software
provides the function

build-mrph :sorc sorc :trgt trgt :degr degr :intr intr :strt sirt
:orgn orgn

defined with keyword parameters. The returned value is an instance of the
class MORPHISM. The keyword arguments of build-mrph are:



CHAPTER 1. CHAIN COMPLEXES 18

— sore, the source object, a CHAIN-COMPLEX type object.

— trgt, the target object, a CHAIN-COMPLEX type object.

— degr, the degree of the morphism, an integer.

— 4ntr, the pure lisp function defining the effective mapping.
— strt, the strategy, i.e. :gnrt or :cmbn.

— orgn, a relevant comment list.

After a call to build-mrph, the morphism instance is added to a list of
previously constructed ones (*mrph-listx).

The differential homomorphism in a chain complex instance

In a chain complex instance, the differential homomorphism is defined as a
morphism with identical source and target, and degree —1. The user must
know that the function build-chcm calls internally the function build-mrph
and passes it the keyword argument pure-dffr. The function build-mrph
builds the morphism instance which will be then inserted into the slot :dffr
of the chain complex instance to be constructed.

Examples

Let us define respectively a zero-morphism of degree —1 and an identity—
morphism (degree 0) between the unit chain complez ZCC and itself.

(setf ZCC (z-chem)) ==>
[K1 Chain-Complex]

(setf zero-morphism (build-mrph :sorc ZCC
:trgt ZCC
:degr -1
rintr #° (lambda(comb)
(cmbn (1- (degr comb))))
:strt :cmbn
torgn ’(zero morphism on ZCC) ))

[K3 Cohomology-Class (degree 1)]
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(setf id-morphism  (build-mrph :sorc ZCC
:trgt ZCC
:degr 0
rintr #’identity
:strt :cmbn
torgn °’(identity morphism on ZCC) ))

[K4 Cohomology-Class (degree 0)]

On the first morphism, we see that the :intr keyword argument is a lisp
function taking any combination of degree p of the unit chain complex and
generating a null combination of degree p — 1 of the same chain complex.
The second morphism uses the lisp function identity.

1.4.2 Applying morphisms

To apply an already constructed morphism on a generator, one uses the
function gnrt-?, the usage of which is described hereafter. On a similar
way, to apply a morphism on a combination, one uses the function cmbn-7.
It is very important to note that these functions can be used with the un-
derlying morphism, whatever strategy had been decided at creation
time by the user for the morphism mapping. In other words, a mor-
phism defined with the strategy :gnrt (resp. :cmbn) may be applied to a
combination (resp. generator). These functions are mainly used inside the
software. For a practical usage, one may use the versatile macro 7.

gnrt-? mrph degr gnrt [Function]
Apply the morphism mrph on the generator gnrt of degree degr.

cmbn-? mrph cmbn [Function]
Apply the morphism mrph on the combination cmbn.

? &rest args [Macro]

Versatile macro for applying a morphism in both cases above, i.e.
indifferently as (? mrph degr gnrt) or (? mrph cmbn). If the
first argument is a chain complex object, as in (?  chcm degr gnrt)
orin (? chem cmbn), then the differential morphism of the chain
complex chcem is applied to the arguments.
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1.4.3 Functions defining morphisms

The following functions are useful to work on morphisms, particularly to
define new morphisms from already defined ones.

cat-init [Function]
Clear in particular *mrph-1ist*, the list of user created morphisms
and reset the global counter to 1.

mrph n [Function]
Retrieve in the list *mrph-list* the morphism instance whose
identification is n. If it does not exist, return NIL.

zero-mrph cheml! &optional (chem?2 cheml) (degr 0) [Function]
Construct the null morphism between the chain complexes chcml
and chem? of degree degr. The parameters chcm2 and degr are
optional and if omitted the default values (respectively chem! and
0) are taken.

idnt-mrph chem [Function]
Construct the identity morphism (degree 0) between the chain com-
plex chem and itself.

opps mrp [Function]
Construct the opposite morphism of mrph, i.e. —1 X mrp; such a
function, as well as the following ones, installs the right source and
target.

cmps mrphl mrph2 &optional strt [Method]
Construct the composite of the morphisms, i.e. mrph; o mrpho.
Of course, the target of mrpho must be the same as the source of
mrphy, otherwise the system signals an error. The new instance
inherits its source slot from mrphsy and its target slot from mrph;.
This function optimizes the compositions in which appear zero mor-
phisms or identity morphisms. Unless the user gives explicitly the
strategy (strt), the resulting strategy is determined by the respec-
tive strategy of the two morphisms.

cmps cheml1 chem@ &optional strt [Method]
Construct the composite of the differential of the chain complexes
cheml1 and chem?2, i.e. di o ds.

cmps cheml1 mrph2 &optional strt [Method]
Construct the composite of the differential of the chain complex
cheml1 and the morphism mrph2, i.e. dy o mrphs.



CHAPTER 1. CHAIN COMPLEXES 21

cmps mrphl chem?2 &optional strt [Method]
Construct the composite of the morphism mrphl and the differen-
tial of the chain complex chcm2, i.e. mrphy o do.

i-cmps mrphl mrph2 ... mrphk [Macro]
Construct the composite of the morphisms, i.e. mrph; o mrph2 o

- o mrphy. Of course, the target of mrph; must be the same as

the source of mrph;_1, otherwise the system signals an error. The
new instance inherits its source slot from mrph and its target slot
from mrphi. This function optimizes the compositions in which
appear zero morphisms or identity morphisms.

add mrphl mrph2 &optional strt [Method]
Construct a morphism, sum of the morphisms mrph; and mrphs.
The result of the mapping of the morphism sum is the sum of the
results of the mappings of the morphisms. The respective defini-
tions of the morphisms mrph; and mrphs must be coherent, in
particular they must have the same source, target and degree. The
user may impose its strategy, otherwise it is defined in the program
according to the respective strategy of the arguments.

i-add mrphl mrph2 ... mrphk [Macro]
Construct a morphism, sum of the morphism mrphi, mrpho, ...,
mrphyg. The result of the mapping of the morphism sum is the sum
of the results of the mappings of the mrph;. The respective defini-
tions of mrph; must be coherent, in particular they must have the
same source, target and degree. The macro i-add has an undefi-
nite number of arguments. With one argument, the macro returns
that argument.

sbtr mrphl mrph2 &optional strt [Method]
Construct a morphism, difference of the morphisms mrph; and
mrphsy. The conditions of validity are similar to those of the method

add.

i-sbtr mrphl mrph2 ... mrphk [Macro]
Construct a morphism, difference of the morphisms mrph1, mrpho,
..., mrphyg, in the sense mrph; — mrphy — - -- — mrphy. The con-

ditions of validity are similar to those of the method add for the
morphisms. The macro i-sbtr must have at least 2 arguments.
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change-sorc-trgt mrph &key sorc trgt [Function]

dstr-

Build from the morphism mrph a new morphism inheriting from
mrph the slots :degr (degree), :intr (mapping) and :strt (strat-
egy). The source and target slots of this new morphism are given by
the key parameters sorc and trgt. If any key parameter is omitted,
the corresponding slot is inherited from mrph (default value).
change-sorc-trgt mrph &key sorc trgt [Function]
Modify destructively the morphism mrph. The source and target
slots of the first argument are replaced respectively by the key
parameters sorc and trgt.

add chcm perturbation &optional strt [Method]

Create from the chain complex chem a new chain complex inherit-
ing from chcem the slots cmpr and basis. The boundary morphism
attached to this new chain complex is the sum of the boundary
morphism d of chem (slot dffr) and a perturbation morphism ¢
represented by the MORPHISM instance perturbation. Of course, the
new boundary operator must verify (d+ ) o (d + &) = 0. The user
will note that this method does not create a morphism but a chain
complex.
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Examples

In the following examples, we first construct a chain complex instance ccn
where the groups C), are freely generated by numerical basis taken formally.
These basis are sets of 10 numbers or decades produced by the fonction
<a-b<. For instance, in dimension 0, the basis is {0,1,2,3,4,5,6,7,8,9},
in dimension 1, {10,11,...,19} and so on. The differential is defined as
follows: for an even dimension p of the group, a generator k is sent to the
combination embn(p — 1,1,k — 10) if k£ is even and to the null combination
of degree p — 1 if k is odd. The reverse action is taken if p is odd. So, from

the programming point of view, it is sufficient to test the parity of p + k.
Then, we construct two simple morphisms upper-shift and lower-shift
which respectively apply bijectively a decade on the following one and on
the previous one. The generators being integers, the comparative function
is of course f-cmpr.

(setf ccn-boundary #°’(lambda (dgr gnr)
(if (evenp (+ dgr gnr))
(cmbn (1- dgr) 1 (- gnr 10))
(cmbn (1- dgr)))))

(setf ccn (build-chem :cmpr #’f-cmpr
:basis #’(lambda (n) (<a-b< (* 10 n) (* 10 (1+ n))))

:bsgn 0

:intr-dffr ccn-boundary
:strt :gnrt

torgn ’(ccn) )) ==>

[K3 Chain-Complex]

(setf upper-shift (build-mrph
isorc ccn :trgt cen :strt :gnrt :degr +1
tintr #’ (lambda(d gn) (cmbn (1+ d) 1 (+ gn 10)))
:orgn ’(ccn shift +10) )) ==>

[K5 Morphism (degree 1)]

(setf lower-shift (build-mrph
isorc ccn :trgt cen :strt :gnrt :degr -1
tintr #’(lambda(d gn) (cmbn (1- d) 1 (- gn 10)))
:orgn ’(ccn shift -10) )) ==>

[K6 Morphism (degree -1)]
First, let us test the differential (in particular d o d = 0).

(? cen 2 22) ==>



CHAPTER 1. CHAIN COMPLEXES 24
- e {CMB 1}
<1 % 12>

(7 ccn *) ==> ; (¥ means the result of the previous command)
ittt {CMB 0}
(setf combn (cmbn 5 1 50 5 55 9 59)) ==>

-- e {cMB 5}
<1 * 50>

<6 * 55>

<9 * 59>

(? ccn combn) ==>
e {CMB 4}
<5 * 45>

<9 * 49>

(? ccn *) ==>

-- T {CMB 3}
Then, let us test the morphisms on generators and combinations.

(? upper-shift 0 6) ==>

- e {CMB 1}
<1 * 16>

(? lower-shift 5 51) ==>

- -——- e {CMB 4}

<1 * 41>

We may iterate the mapping upon the previous result (symbol *). Note that
now, though lower-shift has been constructed with the strategy :gnrt,

its works also on a combination.

(? lower-shift *) ==>
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- e {cHB 3}
<1 * 31>

Let us construct new morphisms from upper-shift and lower-shift. The
tests are made upon the degree 1 combination 1% 10+2x11+3%12+4+4x13.

(setf combl (cmbn 1 1 10 2 11 3 12 4 13)) ==>

-- e {CMB 1}
<1 * 10>
<2 * 11>
<3 * 12>
<4 * 13>

The composition of the two morphisms must be an identity operation. The
degree of identity? is in the degr slot of the morphism object instance
and may be read by the function degr:

(setf identity? (cmps upper-shift lower-shift)) ==>
[K7 Morphism (degree 0)]
(degr identity?) ==>

0

We see now that identity? applied on combl returns a combination ma-
thematically equal to combl. No simple lisp comparison can prove this,
nevertheless, their mathematical difference is the null combination, as shown
by a call to the function 2cmbn-sbtr applied to two combinations. Note
that the function 2cmbn-sbtr needs the comparison function of the chain
complex ccn.

(7 identity? combl) ==>

-- e {cMB 1}
<1 10>
<2 11>
<3 12>
<4 13>

* K K K

(2cmbr-sbtr (cmpr ccn) combl *) ==>
- ittt {CMB 1}

We may compose upper-shift with itself:
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(setf upper2-shift (cmps upper-shift upper-shift)) ==>
[K8 Morphism (degree 2)]

(degr upper2-shift) ==>

2

(7 upper2-shift combl) ==>

- e e e {cuB 3}

<1
<2
<3
<4

30>
31>
32>
33>

* ¥ ¥ ¥

Adding upper-shift with itself gives a very different result:

(setf twice-up-shift (add upper-shift upper-shift)) ==>
[K9 Morphism (degree 1)]

(degr twice-up-shift) ==>

1

(? twice-up-shift combl) ==>

- - e {cuB 2}

<2
<4
<6
<8

20>
21>
22>
23>

* K K ¥

Let us compose upper-shift and the differential in both ways. Recall
that the differential is a morphism structure, and may be obtained from
the dffr slot of the chain complex ccn by the reader accessor function
dffri. This morphism has been built by build-chcm from the lisp function
ccn-boundary. One can see that the operators do not commute.

(setf up-d (cmps upper-shift (dffrl ccn))) ==>
[K10 Morphism (degree 1)]
(setf d-up (cmps (dffrl ccn) upper-shift)) ==>

[K11 Morphism (degree 1)]



CHAPTER 1.

(setf comb3 (cmbn
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? up-d 1 11) ==>
* 11>
? d-up 1 11) ==>

* 10>
* 11>
* 12>
* 13>
* 14>
* 15>
? up-d comb3) ==
* 11>
* 13>
* 15>
? d-up comb3) ==

* 10>
* 12>
* 14>

27

{CMB 1}

{CMB 1}

{CMB 1}
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1.4.4 Accessing Kenzo objects

Up to now, we have seen two kinds of Kenzo objects stored in specific lists
and retrievable by a number, namely the chain complexes and the mor-
phisms. The retrieval functions are specific to the object: chcm for a chain
complex, mrph for a morphism. The same scheme will be applied for others
kinds of objects: reductions, homotopy equivalences, coalgebras, algebras,
simplicial morphism, etc, each having its specific list. But, in fact the num-
bering is independent of the type of the object and is incremented each time
an object is created. Three general functions are at the disposal of the user
to get information about the n—th Kenzo object: k, kd and kd2. They may
be useful for debugging purpose.

kn [Function]
Get the n—th Kenzo object.

kd n [Function]
Give the type of the Kenzo objet number n and print the comment
list (slot :orgn) of the object.

kd2 n [Function]
Give the type of the Kenzo objet number n, print the comment
list (slot :orgn) of the object and recursively, give the same kind
of informations about all the Kenzo objects of the same type in
relation with this n—th object. Return the list of numbers of all
those objects. See in the following example, the case of composition
of morphisms.

Examples

k 1) ==>

[K1 Chain-Complex]

Object: [K1 Chain-Complex]
Origin: (Z-CHCM)

(k 3) ==>

[K3 Chain-Complex]
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Object: [K3 Chain-Complex]
Origin: (CIRCLE)

Object: [K8 Morphism (degree -1): K5 -> K5]
Origin: (CCN SHIFT -10)

Object: [K5 Chain-Complex]
Origin: (CCN)

Object: [K9 Morphism (degree 0): K5 -> K5]
Origin: (2MRPH-CMPS [K7 Morphism (degree 1): K5 -> K5]
[K8 Morphism (degree -1): K5 -> K5] GNRT)
(kd2 9) ==>
Object: [K9 Morphism (degree 0): K5 -> K5]

Origin: (2MRPH-CMPS [K7 Morphism (degree 1): K5 -> K5]
[K8 Morphism (degree -1): K5 -> K5] GNRT)

Object: [K8 Morphism (degree -1): K5 -> K5]
Origin: (CCN SHIFT -10)

Object: [K7 Morphism (degree 1): K5 -> K5]
Origin: (CCN SHIFT 10)

987

Lisp files concerned in this chapter

combinations.lisp, chain-complexes.lisp, chcm-elementary-op.lisp.
[classes.lisp , macros.lisp, various.lisp|.



Chapter 2

Objects with effective
homology

2.1 Introduction

The present chapter describes the set of programming tools for handling
objects with effective homology. The theoretical material may be found in the
paper Constructive Algebraic Topology by Julio Rubio Garcia and Francis
Sergeraert!. The terminology used in this chapter is compatible with this
reference.

2.2 Reduction
A reduction is a 5-tuple (C,C, f, g, h):

h A
— C

F3Tg

Qs

where €' and C are chain complexes, f and g chain complex morphisms
and h a homotopy operator. Hereafter, C is called the top chain complex
and C the bottom chain complez. sCis C shifted, i.e. h has degree 1. The
mappings f, g, h, together with the differential operator d on C , must verify
the following relations:

! Available at the web site http://www-fourier.ujf.grenoble.fr/~ sergerar/

30
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feog
hod+doh
foh
hog
hoh

lc
la—gof
0

0

0

31

The morphisms f and g and the homotopy operator h describe the (big)

chain complex C as the direct sum

(§===(§1€B CE

where C; = I'm(g) ~ C and Cy = Ker(f) (Cs is acyclic).

2.2.1 Representation of a reduction

A reduction is implemented as an instance of the CLOS class REDUCTION,

whose definition is:

(DEFCLASS REDUCTION ()
;3 Top Chain Complex

((tcc :type chain-complex :initarg :tcc :reader tccl)

;3 Bottom Chain Complex

(bcc :type chain-complex :initarg :bcc :reader bccl)
(f :type morphism :initarg :f :reader f1)
(g :type morphism :initarg :g :reader gi)
(h :type morphism :initarg :h :reader hi)

;3 IDentification NuMber

(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)

;3 ORiGiN

(orgn :type list :initarg :orgn :reader orgn)))

This class has 7 slots:

1. tcc, the object of type chain-complex representing the chain complex

~

C (top chain complex).

2. bee, the object of type chain-complex representing the chain complex

C (bottom chain complex).

3. £, the object of type morphism representing the morphism f.

4. g, the object of type morphism representing the morphism g.
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5. h, the object of type morphism representing the morphism h.
6. idmn, an integer, number plate for the object.
7. orgn, a comment list carefully chosen.

The accessors of the slots are the functions whose name appears after the
specifier :reader in the class definition. A printing method has been asso-
ciated to the class REDUCTION and the external representation of an instance
is a string like [Kn Reduction], where n is the number plate of the Kenzo
object.

2.2.2 The function build-rdct

To facilitate the construction of instances of the REDUCTION class, the soft-
ware provides the function build-rdct.

build-rdct :f f:g g :h h :orgn orgn

defined with keyword parameters. The returned value is an instance of the
class REDUCTION. The keyword arguments are:

f, the object of type morphism representing the morphism f.
— g, the object of type morphism representing the morphism g.
— h, the object of type morphism representing the morphism h.

— orgn, the comment list carefully chosen since the system does not build
a new instance of the class if it finds in the list of already built reduc-
tions, *rdct-1list*, a reduction with the same comment list.

The tcc slot and the bec slot of the instance are taken respectively from the
sorc slot (source slot) and the trgt slot (target slot) of the morphism f.
The function build-rdc controls the validity of the degrees of the morphisms
and pushes the new created instance on the list *rdct-1istx*.
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2.2.3 Useful macros and functions

cat-init [Function]
Clear among others, the list *rdct-1ist*, list of user created re-
ductions and reset the global counter to 1. See also the description
of this function in chapter 1.

rdct n [Function]
Retrieve in the list *rdct-1ist* the reduction instance whose iden-
tification (as Kenzo object) is n. If it does not exist, return NIL.

bee rdct &rest args [Macro]
With only one argument (a reduction rdct) this macro selects the
bottom chain complex of the reduction. Otherwise, it applies the
differential of the bottom chain complex of the reduction rdc on the
arguments args, (either degree generator or cmb).

tcc rdct &rest args [Macro]
With only one argument (a reduction rdct) this macro selects the
top chain complex of the reduction. Otherwise, it applies the dif-
ferential of the top chain complex of the reduction rdc on the ar-
guments args, (either degree generator or cmb).

f rdct &rest args [Macro]
With only one argument (a reduction rdct) this macro selects the
morphism f of the reduction. Otherwise, it applies the morphism f
of the reduction rdc on the arguments args, (either degree generator
or c¢mb).

g rdct &rest args [Macro]
With only one argument (a reduction rdct) this macro selects the
morphism g of the reduction. Otherwise, it applies the morphism g
of the reduction rdc on the arguments args, (either degree generator
or cmb).

h rdct &rest args [Macro]
With only one argument (a reduction rdct) this macro selects the
morphism h of the reduction. Otherwise, it applies the morphism A
of the reduction rdc on the arguments args, (either degree generator
or cmb).
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trivial-rdct chem [Function]

cmps

224

Build the trivial reduction involving only the chain complex chem,
as shown in the following diagram,

Id |1 1d

where the morphism Zero is the zero morphism of degree 1 in the
chain complex C and Id is the identity morphism in that chain
complex (see the functions zero-mrph and idnt-mrph in the chain
complex chapter).

brdct trdct [Method]
Build a new reduction from the two reductions r1 and r2 (here,
respectively brdct and trdct). This is done by a call to build-rdct
with the following parameters:

f = frl o fr23
g = Gr2°0Gri1,
h = hyo+gra0hp10 fra.

The compositions and additions of morphisms are realized respec-
tively by the methods cmps, i-cmps and add (see chapter 1). We
recall that the tcc and the bcc slots of this new created reduction
are respectively the source and target slots of the new morphim f.

Verification functions

The two following functions are very helpful to verify the coherence of the
the various mappings involved in a reduction. Let us recall the diagram of
a reduction:

h A
Ly ¢

4Ty

Qs o
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pre-check-rdct rdct [Function]
Assign to the following lisp global variables, the morphism instances
computed from the morphisms of the reduction rdct, according to
the formulas:

*tdd*x = dé o dé,

*bdd* = dc o dc,

vid-tgx = fog— Ido,

*id-gf-dh-hd* = Idé —go f— (dcﬂ oh+ho dé),

xhh* = h o h,
xfhx = foh,
*hgx = hog,

*df-fd*x = dco f — fodg,
*xdg-gd* = déog—godc-

In these formulas d¢ and d are the respective boundary operators
of the chain complexes C and C. Idc and I de are the identity
morphisms on the chain complexes C' and C built by the function
idnt-mrph

check-rdct [Function]
Map all the morphisms prepared by the function pre-check-rdct
on chosen combinations. This function having no parameters, the
user must assign to the two lisp global variables: *tc* and *bcx,
valid combinations belonging respectively to C and C. The call to
this function is simply (check-rdct). This function knows what
morphism to apply to the combinations and pauses after each eval-
uation to allow the user to inspect each result. To resume the
execution, the user must enter a blank character. If the morphisms
are coherent, the result of each mapping is a null combination.



CHAPTER 2. OBJECTS WITH EFFECTIVE HOMOLOGY 36

Example

To show an example about the verification functions, we first define a locally
effective version of the standard simplex A™. The following function cdelta
builds the standard simplex in dimension dmns. In using the created chain
complex, the user must bear in mind that the only valid vertices are the
vertices numbered from (0) to (dmns).

(defun cdelta (dmns)
(build-checm
:cmpr #’1-cmpr
:basis :locally-effective

tbsgn ’ (0)
rintr-dffr
#’ (lambda (degr gmsm)
(make-cmbn
tdegr (1- degr)
:list (do ((rslt +empty-list+
(cons (cons sign
(append
(subseq gmsm O nark)
(subseq gmsm (1+ nark))))
rslt))
(sign 1 (- sign))
(nark 0 (1+ nark)))
((> nark degr) rslt))))
:strt :gnrt

torgn ‘(locally effective version of C_% delta ,dmns)))

Now, let us define 3 functions make-f, make-g and make-h which build the
following respective morphisms between A™ and A™:

e (make-f tdms bdms) builds a projection morphism f from A7 to
Ab™S tdms >= bdms, where the vertices (0) to (dms) of A¥™S are
applied on the vertices of the same number in A%¥™$ and the vertices
(bdms + 1) to (tdms) are applied on the vertex (bdms) of Abdms,

e (make-g tdms bdms) builds the injection morphism g from A%¥™s to
A!ms (the slot :intr is the identity function).

e (make-h tdms bdms) builds a homotopy morphism of degree 1, h, from
AM™S t4 itself, connecting w.r.t. the homotopy relation, the chain map
g o f with the identity morphism Id.
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(defun make-f (tdmns bdmns)
(build-mrph
:sorc (cdelta tdmns) :trgt (cdelta bdmns) :degr O
rintr #’(lambda (degr gmsm)
(let ((pos (position-if #’(lambda (vertex) (>= vertex bdmns))
gmsm) ))
(if pos
(if (< pos degr)
(zero-cmbn degr)
(cmbn degr 1 (nconc (butlast gmsm) (list bdmns))))
(cmbn degr 1 gmsm))))
istrt :gnrt
torgn ‘(projection delta ,tdmns => delta ,bdmns)))

(defun make-g (tdmns bdmns)
(build-mrph
:sorc (cdelta bdmns) :trgt (cdelta tdmns) :degr O
rintr #’identity
:strt :cmbn
torgn ‘(injection delta ,bdmns => delta ,tdmns)))

(defun make-h (tdmns bdmns)
(build-mrph
:sorc (cdelta tdmns) :trgt (cdelta tdmns) :degr +1
rintr #’(lambda (degr gmsm)
(let ((pos (position-if #’(lambda (vertex) (>= vertex bdmnms))
gmsm) ) )
(if pos
(if (member bdmns gmsm)
(zero-cmbn (1+ degr))
(cmbn (1+ degr) (-1-expt-n pos)
(append (subseq gmsm O pos) (list bdmns)
(subseq gmsm pos))))
(zero-cmbn (1+ degr)))))
istrt :gnrt
torgn ¢ (homotopy for delta ,tdmns => ,bdmns)))

We may now define a function to build a reduction. One has not to define a
priori the standard simplices: this is done in all the functions and we know
that there is no duplication, because before creation, the system checks,
owing to the comment list, if the instance of a class (here a chain complex)
already exists.

(defun make-rdct (tdmns bdmns)
(setf rdct (build-rdct
:f (make-f tdmns bdmns)
:g (make-g tdmns bdmns)
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:h (make-h tdmns bdmns)
:orgn ‘(reduction delta ,tdmns ,bdmns))))

We now build with a simple call to the function make-rdct the chain com-
plexes corresponding to A% and A3, the 3 morphisms f, g, h and the reduc-
tion. The lisp utility function inspect gives an idea of the organisation of
the class instance. Then we verify the coherency of the reduction with the
functions pre-check-rdct and check-rdct.

(setf rdct (make-rdct 6 3)) ==>

[K8 Reduction]

(inspect rdct) ==>

REDUCTION @ #x498342 = [K8 Reduction]

0 Class --—---——- > #<STANDARD-CLASS REDUCTION>
1 ORGN --—----——- > (REDUCTION ...), a proper list with 4 elements
2 IDNM --------- > fixnum 8 [#x00000020]
3 H —————-————- > [K7 Morphism (degree 1)]
4 G ———————————— > [K6 Morphism (degree 0)]
5 F ———————-———- > [K6 Morphism (degree 0)]
6 BCC ——-——--—--——- > [K3 Chain Complex]
7 TCC —--——-————- > [K1 Chain Complex]
(orgn rdct) ==>

(REDUCTION DELTA 6 3)
(pre-check-rdct rdct) ==
---done---

(setf *tcx (cmbn 2 1 °(0 1 2) 10 *(1 2 3) 100 °(1 2 4) 1000 ’(2 3 4))) ==>

__ N e {CMBN 2}
<1 % (01 2)>

<10 * (1 2 3)>

<100 * (1 2 4)>

<1000 * (2 3 4)>

(setf *bc*x (cmbn 3 4 °(0 1 2 3))) ==>

__ e e —————— - {CMBN 3}

<4 x (012 3)>
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(check-rdct) ==

*TC* =>

<1 * (01 2)>
<10 * (1 2 3)>
<100 * (1 2 4)>
<1000 * (2 3 4)>

*BC* =>

<4 % (012 3)>

Checking *TDD* = 0
Result:
Checking *BDD* = 0

Result:

Checking *DF-FD* = 0
Result:

Checking *DG-GD* = 0
Result:

Checking *ID-FG* = 0
Result:

Checking *ID-GF-DH-HD*
Result:

39

{CMBN 2}
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Checking *HH*
Result:
- -—— Ittt {CMBN 4}

]
o

Checking *FH* = 0
Result:
e {CMBN 3}

1]
o

Checking *HG*
Result:
- e {CMBN 4}

---done—--

We do now the same thing with a more complicated reduction which is the
composition of the two following reductions:

(setf trdct (make-rdct 6 4)) ==>
[K40 Reduction]

(setf brdct (make-rdct 4 3)) ==
[K44 Reduction]

(setf rdct (cmps brdct trdct)) ==>
[K50 Reduction]

(pre-check-rdct rdct) ==>
---done---

(check-rdct) ==

*TCx =>

- e {CMBN 2}
<1 * (01 2)>

<10 * (1 2 3)>

<100 * (1 2 4)>
<1000 * (2 3 4)>
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*BC* =>

<4 x (0123)>

Checking *TDD* = 0
Result:

Checking *BDD* = 0
Result:
- e {CMBN 1}

Checking *DF-FD* = 0
Result:
- e {CMBN 1}

Checking *DG-GD* = 0
Result:

Checking *ID-FG* = 0
Result:
__ e {CMBN 3}

Checking *ID-GF-DH-HD* 0
Result:

- e {CMBN 2}

Checking *HH*
Result:

[}
o

Checking *FH*
Result:
_ e {CMBN 3}

1]
o
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Checking *HG* = 0
Result:

42

---done---
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2.3 Homotopy equivalence

A homotopy equivalence between two chain complexes C and EC is a pair
of reductions:

C
pr N\ P2
C EC

If C and EC are free Z-chain complexes, a usual chain equivalence between
them can be organized in this way. Frequently the chain complexes C' and C
are locally effective and on the contrary, the chain complex EC is effective,
so that EC' can be understood as a description of the homology of C. More
precisely, EC is a tool allowing one to compute the homology of C'. The
chain complexe C is only an intermediate object.

2.3.1 Representation of a homotopy equivalence

A homotopy equivalence is implemented as an instance of the CLOS class
HOMOTOPY-EQUIVALENCE, whose definition is

(DEFCLASS HOMOTOPY-EQUIVALENCE ()
;3 Left Bottom Chain Complex
((1bcc :type chain-complex :initarg :1lbcc :reader lbccl)
;3 Top Chain Complex
(tcc :type chain-complex :initarg :tcc :reader tccl)
;3 Bottom Right Chain Complex
(rbcc :type chain-complex :initarg :rbcc :reader rbccl)

;3 Left f

(1f  :type morphism tinitarg :1f  :reader 1f1)
;; Left g

(l1g  :type morphism rinitarg :1g  :reader 1gl)
;; Left h

(Ih  :type morphism rinitarg :1h  :reader 1hl)
;5 Right f

(rf  :type morphism tinitarg :rf  :reader rfl)
;; Right g

(rg  :type morphism rinitarg :rg  :reader rgl)
;5 Right h

(rh  :type morphism rinitarg :rh  :reader rhil)

;3 Left ReDuCTion
(lrdct :type reduction :initarg :lrdct :reader 1lrdct)
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;3 Right ReDuCTion

(rrdct :type reduction rinitarg :rrdct :reader rrdct)

;3 IDentification NuMber

(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
(orgn :type list :initarg :orgn :reader orgn)))

This class has 13 slots:

1.

10.

11.

12.
13.

1bcc, the object of type chain complex representing the chain com-
plex C (left bottom chain complex on the diagram).

tcc, the object of type chain complex representing the chain complex

~

C (top chain complex).

rbee, the object of type chain complex representing the chain com-
plex EC (right bottom chain complex on the diagram).

1f, the object of type morphism representing the morphism f of the
(left) reduction p;.

1g, the object of type morphism representing the morphism g of the
(left) reduction p;.

1h, the object of type morphism representing the morphism h of the
(left) reduction p;.

rf, the object of type morphism representing the morphism f of the
(right) reduction ps.

rg, the object of type morphism representing the morphism g of the
(right) reduction po.

rh, the object of type morphism representing the morphism h of the
(right) reduction po.

1rdc, the object of type reduction representing the (left) reduction
p1-

rrdc, the object of type reduction representing the (right) reduction
p2-

idn, an integer, number plate for the object, set by the system.

orgn, an adequate comment list.
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When an instance is created, the printing method associated to the class
HOMOTOPY EQUIVALENCE prints a string like [Kn Homotopy-Equivalence],
where n is the number plate of the Kenzo object.

2.3.2 The function build-hmeq

To facilitate the construction of instances of the HOMOTOPY-EQUIVALENCE
class, the software provides the function, (in fact a method), build-hmeq
which may be used in the following ways: either with the two reductions
p1 and po or explicitly with the morphisms. The selection of the adequate
method is done by inspecting the first keyword, which is :1rdct in the first
case and :1f in the second one. In both cases the returned value is an
instance of the class HOMOTOPY-EQUIVALENCE.

1) build-hmeq :1lrdct Irdct :rrdct rrdc :orgn orgn [Method]
The keyword arguments are:

— lIrdct, the object of type reduction representing the reduction p;.

— rrdct, the object of type reduction representing the reduction po.

— org, the comment list.

The function build-heq-from-rdc calls internally the standard construc-
tor make-instance. All the needed information is contained in the two
reductions.

2) build-hmeq :1f If :1g lg:1h lh:xf rf :xg rg:rh rh :orgn orgn [Method]
The keyword arguments are:

— If, the object of type morphism representing the morphism f of the
reduction p;.

— lg, the object of type morphism representing the morphism g of the
reduction p;.

— Ih, the object of type morphism representing the morphism A of the
reduction p;.

— rf, the object of type morphism representing the morphism f of the
reduction ps.
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— 19, the object of type morphism representing the morphism g of the
reduction ps.

— rh, the object of type morphism representing the morphism A of the
reduction ps.

— org, the comment list.

All the needed information is contained in the morphism structures. In both
cases, the method pushes the created instance onto the list *hmeq-1ist*.

2.3.3 Useful macros and functions

cat-init [Function]
Clear among others, the list *hmeq-1ist*, list of user created ho-
motopy equivalences and reset the global counter to 1.

hmeq n [Function]
Retrieve in the list *hmeg-1ist* the homotopy equivalence instance
whose identification is n. If it does not exist, return NIL.

lbcc hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeg) this macro
selects the left bottom chain complex of the homotopy equivalence.
Otherwise, it applies the differential of the left bottom chain com-
plex of hmeg on the arguments args, (either degree generator or
cmb).

rbcc hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeq) this macro
selects the right bottom chain complex of the homotopy equiva-
lence. Otherwise, it applies the differential of the right bottom
chain complex of Ameq on the arguments args, (either degree gen-
erator or cmb).

1f hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeq) this macro
selects the morphism f of the left reduction of Ameq. Otherwise,
it applies the morphism f of the left reduction of hAmeq on the
arguments args, (either degree generator or cmb).

lg hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeg) this macro
selects the morphism g of the left reduction of hmeq. Otherwise,
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it applies the morphism ¢ of the left reduction of Ameq on the
arguments args, (either degree generator or cmb).

1h hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeq) this macro
selects the morphism h of the left reduction of Ameq. Otherwise,
it applies the morphism A of the left reduction of hmeg on the
arguments args, (either degree generator or cmb).

rf hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeg) this macro
selects the morphism f of the right reduction of hmeq. Otherwise,
it applies the morphism f of the right reduction of hAmeq on the
arguments args, (either degree generator or cmb).

rg hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeg) this macro
selects the morphism g of the right reduction of hmeg. Otherwise,
it applies the morphism g of the right reduction of hmeq on the
arguments args, (either degree generator or cmb).

th hmeq &rest args [Macro]
With only one argument (a homotopy equivalence hmeg) this macro
selects the morphism h of the right reduction of hmeq. Otherwise,
it applies the morphism h of the right reduction of Ameg on the
arguments args, (either degree generator or cmb).

trivial-hmeq chem [Function]
Build the trivial homotopy equivalence involving only the chain
complex chcm. In that case, the 3 chain complexes C, EC and C
are the chain complex chem itself and the reductions p; and p, are,
of course, the trivial reductions on chcem built by the statement
(trivial-rdct chcm).

2.4 The perturbation lemma machinery

For a good understanding of the lisp functions involved in the machinery in
question, we recall the perturbation lemma?®. In the basic (resp. trivial) per-
turbation lemma, the given perturbation concerns the top (resp. bottom)
chain complex.

Ronald Brown. The twisted Eilenberg—Zilber theorem. Celebrazioni Arch. Secolo
XX Simp. Top., 1967, pp 34-37.
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Theorem 1 (Basic perturbation lemma) — Let p = (C’, C,f,g,h) a

~

reduction and & a perturbation of ds, that is, an operator defined on C
of degree -1 satisfying the relation (dgs + $) o o(ds + ) = 0. Furthermore,
the composite function h o § is assumed locally nilpotent, that is, Vz €
C (ho 5) z = 0, for n sufficiently large. Then a new reduction p'
(C',C',f’,g ,h') can be constructed where:

1) C' is the chain complex obtained from C by replacing the old
differential dg by (dg + 8),

2) the new chain complex C' is obtained from the chain complex
C only by replacing the old differential dc by (d¢ + 6), with
§=fobopog=fotpodog,

3) f'=fop=fo(ld—bogoh),

4) g =¢dog,

5) W =doh="ho1,

with
o
o= (-
=0
and
w A~
= (~1)'(doh)i=Id—bo¢oh,
1=0

the convergence being ensured by the locally nilpotency of h 0d and o h.

Theorem 2 (Trivial perturbation lemma) — Let p = (C‘, C,f,g,h) a

reduction and 0 a perturbation of d¢, that is, an operator defined on C of

degree -1 satisfying the relation (dg+6)o(dc+0) = 0. Then a new reduction
= (C",C", f',¢', W) can be constructed where:

1) C' is the chain complez obtained from C' by replacing the old
differential ds by (ds + g o dof),

2) the new chain complex C' is obtained from the chain complex
C only by replacing the old differential dc by (do + 5),

3) f'=f

4) 9 =g,

5)h =h
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2.4.1 Useful functions related to the pertubation lemma

The functions implementing the perturbation-lemma are actually the heart
of the program. They allow us to implement the effective versions of the
classical spectral sequences (Serre, Eilenberg-Moore, ...).

add rdct perturbation [Method]
Build a new reduction from the object of type reduction, rdct and
the object of type morphism, perturbation, applying the formulas
given in the perturbation lemma. In fact, this method calls one or
the other of the two following functions according as the perturba-
tion is on the top or on the bottom chain complex and returns the
values of the called function.

basic-perturbation-lemma reduction top-perturbation [Function]
Return a double value: the perturbed reduction and the computed
bottom-perturbation (a morphism) f o §o ¢ o g. Of course, to
avoid unuseful computations when the morphisms are effectively
applied, the function takes in account the simplifications involved
for instance when some morphisms are the null morphism.

easy-perturbation-lemma reduction bottom-perturbation  [Function]
Return a double value: the perturbed reduction and the computed
top-perturbation (a morphism) god o f. Of course, to avoid unuse-
ful computation when the morphisms will be applied, the function
takes in account the simplifications involved for instance when some
morphisms are the null morphism.

special-bpl reduction top-perturbation [Function]
This function is analogous to basic-perturbation-lemma and is
used in some special cases when the morphism g is invariant.

bpl-*-sigma homotopy perturbation [Function]
Construct the principal series ¢ = Y (—1)i(h 0 §)" of the basic
perturbation lemma.

add hmeq lb-perturbation [Method]
Build a homotopy equivalence from the homotopy-equivalence
hmegq and the morphism lb-perturbation, a perturbation of the dif-
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ferential of the left bottom chain complex of hmeg. From hmegq:

¢
pr N\ P2
C EC

the method add builds the new homotopy equivalence:

~

Cl
% N\ P
c' EC'

where the construction steps are the following:

— The reduction p} is computed with the method add for a re-
duction with arguments: the left reduction of hmeq and the
perturbation lb-perturbation. The trivial perturbation lemma is
applied. As a bonus, this returns also the top perturbation, say
é to be applied to C.

— The reduction pf is computed with the previous method add
with arguments: the right reduction of Ameq and the top per-
turbation § just computed. That time, the basic perturbation
lemma is applied.

— The function build-hmeq is called with parameters p} and pb.

Example

We shall apply these methods and functions in the following chapters. Let
us show on a trivial example how this machinery works. First, we build a

trivial homotopy equivalence on A*. Then we build a new one by perturbing
the differential of the left bottom chain complex with its opposite. The last
call shows how this perturbation has been propagated.

(setf hmeq (trivial-hmeq (cdelta 4))) ==>

[K6 Homotopy-Equivalencel
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(setf hmeq (add hmeq (opps (dffr (cdelta 4))))) ==>
[K14 Homotopy-Equivalence]

(gnrt-7 (dffr (rbcc hmeq)) 3 (01 2 3))) ==>

51
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2.5 Bicones

Given 3 chain complexes B, C' and D, together with 2 chain homomorphisms
f1 and fo of degree 0 (commuting with the differentials), as shown in the
following diagram, a bicone on these chain complexes is a chain complex,
BCN(f1, f2) where the n-th chain group [BCN(f1, f2)] is Bp ® Cpt1 @ Dy,

B D
i, o P2
C

2.5.1 Representation of a combination in a bicone.

To distinguish to which chain complex belongs a generator in a combination
of a bicone, the following convention has been adopted: if gb is a generator
of any degree of B, it will be represented in the bicone by the list (:BcnB
gb) and printed as <BcnB gb>. The symbols for C' and D are respectively
:BcnC and :BcenD. The 3 macros benb, bene and bend may be used to build
such a generator. The building function for combinations, cmbn, may be
used in the following way:

(setf comb-bic (cmbn 3 2 (bcnb ’bl) 4 (benb ’b2) 6 (becnb ’b3)
3 (becnc ’cl) 5 (becnc °c2) 7 (bend °d1)))

__ e o {CMBN 3}
<2 * <BcnB B1>>

<4 * <BcnB B2>>

<6 * <BcnB B3>>

<3 * <BcnC C1>>

<5 * <BcnC C2>>

<7 * <BcnD D1>>

(cmbn-list comb-bic) ==>

((2 :BCNB . B1) (4 :BCNB . B2) (6 :BCNB . B3)
(3 :BCNC . C1) (5 :BCNC . C2) (7 :BCND . D1))
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2.5.2 Useful functions and macros for bicones

benb gnrt [Macro]
Build the representation of the generator gnrt belonging to the
chain complex B.

bene gnrt [Macro]
Build the representation of the generator gnrt belonging to the
chain complex C.

bend gnrt [Macro]
Build the representation of the generator gnrt belonging to the
chain complex D.

make-bicn-cmbn cmbnb cmbne cmbnd [Function]
Build a bicone combination from the 3 combinations cmbnb, cmbnc
and cmbnd belonging respectively and in that order to B, C and
D. The degrees of the combinations cmbnb and cmbnd must be the
same, say n. The degree of cmbnc must be n + 1. The degree of
the new created combination is n.

bicn-cmbn-cmbnb cmbn [Function]
Extract from the bicone combination of degree n, cmbn, the com-
bination relative to B as a legal combination of degree n in B. If
there is no B-component, return the null combination of degree n.

bicn-cmbn-cmbne cmbn [Function]
Extract from the bicone combination of degree n, cmbn, the com-
bination relative to C' as a legal combination of degree n+ 1 in C.
If there is no C-component, return the null combination of degree
n+ 1.

bicn-cmbn-cmbnd cmbn [Function]
Extract from the bicone combination of degree n, cmbn, the com-
bination relative to D as a legal combination of degree n in D. If
there is no D-component, return the null combination of degree n.

dispatch-bicn-cmbn cmbn [Function]
Give the 3-values result constitued by the 3 combinations compo-
nents of the bicone combination ¢mbn. These combinations are
valid combinations in their respective chain complexes.
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Examples

(setf comb-b (cmbn 3 2 bl 4 ’b2 6 ’b3)) ==

54

<2 * B1>
<4 * B2>
<6 * B2>

{CMBN 3}

(setf comb-c (cmbn 4 3 ’cl 5 ’c2)) ==

<3 * C1>
<5 * C2>

{CMBN 4}

(setf comb-d (cmbn 3 7 ’dl)) ==

<7 * D1>

(setf comb-bic (make-bicn-cmbn comb-b comb-c comb-d)) ==>

<2 <BcnB B1>>
<4 <BcnB B2>>
<6 <BcnB B3>>
<3 <BcnC C1>>
<5 <BcnC C2>>
<7 <BcnD D1>>

* K K X ¥ ¥

{CMBN 3}

(bicn-cmbn-cmbnb comb-bic) ==>

<2 * B1>
<4 * B2>
<6 * B2>

{CMBN 3}

(bicn-cmbn-cmbnc comb-bic) ==

<3 * C1>
<5 * C2>
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(bicn-cmbn-cmbnd comb-bic) ==>

<7

——- T {CMBN 3}

* D1>

(dispatch-bicn-cmbn comb-bic) ==>

<2
<4
<6

-—- e {cMBN 3}

* B1>
* B2>
* B2>

-—- e {CMBN 4}

* C1>
* C2>

-—- e {CMBN 3}

* D1>

2.6 Construction of a bicone from 2 reductions.

From the slots of the respective chain complexes B, C and D, it is possible to
build the bicone chain complex. The 3 essential functions are the following:

bicone-cmpr cmprb cmprc cmprd [Function]
From the 3 comparison functions cmprb, cmprc and cmprd, build a
comparison function adequate to compare the generators as repre-
sented in the bicone.

bicone-basis basish basisc basisd [Function]
From the 3 basis function basisb, basisc and basisd, build a basis
function for the bicone. If at least one of the chain complex com-
ponent of the bicone is locally effective, the function returns the
symbol :locally-effective.

bicone-intr-dffr cmprc dffrb dffrc dffrd f1 2 [Function]
Define the differential in the bicone according to the formula:

d(cb, cc,cd) = (dp(cb), f1(cb) + fa(ed) — dc(cc), dp(cd)),
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where the notation is self explanatory. One sees that one needs
the comparison operator cmprc of C, to order correctly the second
combination of the resulting triple.

Let us consider now 2 reductions (Cy, Cy, f1, g1, k1) and (Cy, Cs, 2, 2, h2)
in which C; = (5. It is possible to define a bicone, with the identification
C1 =B,C; =0y =C,Cy = D. This is realised by the following function:

bicone rdctl rdct2 [Function]
Build the bicone chain complex from the objects ot type reduction
rdctl and rdct2. The bicone is built with the following identifi-
cation: B is the top chain complex of rdctl, D is the top chain
complex of rdct2. The bottom chain complexes of both rdct! and
rdct2 must be the same and C is that chain complex. Of course,
both chain morphisms f; and f, are respectively the morphism f
of the reductions. The construction of the bicone is realised by
a call to the building function build-chcm using the 3 functions
bicone-cmpr, bicone-basis and bicone-intr-dffr with argu-
ments coming from rdct! an rdct2. The slot bsgn (base point) is
let undefined and the strategy is by combination.

Example

Let us take again the example with the standard simplex A™. The following
function defines an effective version of C,(A™), so we may ask for the basis
in some dimensions.

(defun cdelta (dmns)
(build-chcm
:cmpr #’1-cmpr
:basis #’(lambda (n)
(mapcar #’dlop-int-ext (funcall (delta-n-basis dmns) n)))
:bsgn ’(0)
:intr-dffr #’(lambda (degr gmsm)
(make-cmbn
:degr (1- degr)
:list (do ((rslt +empty-list+
(cons (cons sign
(append
(subseq gmsm O nark)
(subseq gmsm (1+ nark))))
rslt))
(sign 1 (- sign))
(nark 0 (1+ nark)))
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:strt :gnrt

((> nark degr) rslt))))

torgn ‘(Effective version of C_* delta ,dmns)))

(setf delta3 (cdelta 3)) ==>

[K1 Chain-Complex]

(basis

1]
U
v

delta3 0)

() (1) (2 @)

(basis

delta3 1) ==>

((0 1) (02) (12) (03) (13) (23))

(basis

delta3 2) ==>

((012) (013) (023) (123)

(basis delta3 3) ==>
((0123)

(basis delta3 4) ==>
NIL

Using the function make-rdct defined in previous example which builds a
reduction between A™ and A", we may create a bicone chain complex with
the function bicone and ask for basis in some dimensions.

(setf bic (bicone (make-rdct 3 2) (make-rdct 4 2))) ==>

[K15 Chain-Complex]

(basis

(<BcnB
<BcnC
<BcnD

(basis
(<BcnB

<BcnC
<BcnD

bic 0) ==>

(0)> <BcnB (1)>
(0 1)> <BcnC (0
(0)> <BcnD (1)>

bic 1) ==>
(0 1)> <BenB (0

01 2)>
(0 1)> <BcnD (0

<BcnB (2)> <BcnB (3)>
2)> <BenC (1 2)>
<BcnD (2)> <BcnD (3)> <BcnD (4)>)

2)> <BcnB (1 2)> <BcnB (0 3)> <BcnB (1 3)> <BcnB (2 3)>

2)> <BenD (1 2)> <BenD (0 3)> <BcnD (1 3)> <BenD (2 3)>
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<BcnD (0 4)> <BcnD (1 4)> <BcnD (2 4)> <BcmD (3 4)>)
(basis bic 4) ==>

(<BecnD (0 1 2 3 4)>)

We verify the validity of the differential in the bicone bic.

(? bic (cmbn 2 3 (becnb (0 1 3)) 4 (bcnc (0 1 2 3)) 5 (bend ’(0 1 4)))) ==>

—————————— {CMBN 1}

<3 * <BcnB (0 1)>>
<-3 % <BcnB (0 3)>>
<3 * <BcnB (1 3)>>
<12 * <BenC (0 1 2)>>
<-4 * <BcnC (0 1 3)>>
<4 * <BcnC (0 2 3)>>
<-4 * <BcnC (1 2 3)>>
<5 * <BcnD (0 1)>>
<-5 % <BcnD (0 4)>>
<5 * <BcnD (1 4)>>

- -—- e {CMBN 0}

2.7 Composition of homotopy equivalences.

Let us consider 2 homotopy equivalences, as in the following diagram.

p1 v/ \N\p2 P N\ P
A C C E

where the right bottom complex of the first one is the same as the left
bottom reduction of the second. We may use then the bicone concept to
build a bicone chain complex with B, C and D, say BCN, and finally build
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a new homotopy equivalence between A, BCN and E.

BCN
YA N\ P
A E

This is realized by the method cmps.

cmps hmegl hmeg?2 [Method]
Build a homotopy equivalence by composition of both homotopy
equivalences hmeql, hmeg2. The system controls the validity of the
composition.

Example

Starting with a very simple chain complex and the trivial homotopy equiva-
lence on the chain complex, we verify the correctness of various compositions.
The chain complex ¢ has only one vertex (a) in every dimension and the
differential is the null morphism.

(setf ¢ (build-chcm
:cmpr #’s-cmpr
:basis #’(lambda (dmns) ’(a))
:bsgn ’a
rintr-dffr #’zero-intr-dffr
:strt :cmbn
torgn ’(c))) ==>

[K1 Chain-Complex]

We build the trivial homotopy equivalence on ¢ and we compose it with
itself.

(setf hl (trivial-hmeq c)) ==>
[K6 Homotopy-Equivalencel
(setf h2 (cmps hil h1l)) ==>

[K17 Homotopy-Equivalencel

We verify the coherency of the morphisms in the left and right reduction of
h2. The combination *tc* must belong to a bicone whereas *bc* belongs
to c.
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(pre-check-rdct (lrdct h2))

---done---

(setf *tc* (cmbn 3 1 (bcnB ’a) 10 (bcnC ’a) 100 (bcnD ’a)))

==>

<1 * <BcnB A>>
<10 * <BcnC A>>
<100 * <BcnD A>>

(setf *bc* (cmbn 3 1 ’a))

==>

<1 *x A>
(check-rdct) ==>
*TC* =>

<1 * <BcnB A>>
<10 * <BcnC A>>
<100 * <BcnD A>>

*BCx =>
<1 * A>

Checking *TDD* = 0
Result:
Checking *BDD* = 0
Result:

Checking *DF-FD* = 0O
Result:

==>

60

{CMBN 3}

{CMBN 3}
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Checking *DG-GD* = 0

Result:

Checking *ID-FG* = 0

Result:

Checking *ID-GF-DH-HD* = 0
Result:

Checking *HH* = 0

Result:

Checking *FH* = 0

Result:

Checking *HG* = 0

Result:

---done---

(pre-check-rdct (rrdct h2)) ==>

---done—--

(check-rdct) ==

*TCx =>

<1 * <BcnB A>>
<10 * <BcnC A>>
<100 * <BcnD A>>

61

{CMBN 3}
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*BC*x =>

- - ST {CMBN 3}
<1 * A>

Checking *TDD* = 0

- - it {CMBN 2}
............ all results NULL...........

Checking *HG* = 0

Result:

- - it ity {CMBN 4}
---done---

We compose now h2 with itself. We let *bc* unchanged, but *tc* is a little
more complicated because the chain complexes B and D are themselves
bicones.

(setf h3 (cmps h2 h2)) ==>
[K65 Homotopy-Equivalence]

(setf *tc* (cmbn 3 1 (bcnB (bcnB ’a)) 10 (bcnB (benC ’a)) 100 (benB (benD ‘a))
1000 (benC ’a)
10000 (bcnD (bcnB ’a)) 5234 (bcnD (benC ’a))
223 (benD (benD ’a)))) ==>
- I T T T T T T T T T T T T T s e {CMBN 3}
<1 * <BcnB <BcnB A>>>
<10 * <BcnB <BcnC A>>>
<100 * <BcnB <BcnD A>>>
<1000 * <BcnC A>>
<10000 * <BcnD <BcnB A>>>
<5234 * <BcnD <BcnC A>>>
<223 * <BcnD <BcnD A>>>

(pre-check-rdct (lrdct h3)) ==>
---done---
(check-rdct) ==>

*TCx =>
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<1 * <BcnB <BcnB A>>>

<10 * <BcnB <BcnC A>>>
<100 * <BcnB <BcnD A>>>
<1000 * <BcnC A>>

<10000 * <BcnD <BcnB A>>>
<5234 * <BcnD <BcnC A>>>
<223 * <BcnD <BcnD A>>>

Checking *TDD* = 0
Result:

............ all results NULL...........

Checking *HG* = 0
Result:

---done---
(pre-check-rdct (rrdct h3))
---done---

(check-rdct) ==

*TCx =>

<1 * <BcnB <BcnB A>>>

<10 * <BcnB <BcnC A>>>
<100 * <BcnB <BcnD A>>>
<1000 * <BcnC A>>

<10000 * <BcnD <BcnB A>>>
<5234 * <BcnD <BcnC A>>>
<223 * <BcnD <BcnD A>>>
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*BC* =>

__ R Sy {CMBN 3}
<1 * A>

Checking *TDD* = 0

Result:

__ R Sy {CMBN 1}
............ all results NULL...........

Checking *HG* = 0

Result:

__ ——— - {CMBN 4}
---done---

Lisp files concerned in this chapter

effective-homology.lisp, cones.lisp.
[classes.lisp , macros.lisp, various.lisp|.



Chapter 3

The Homology module

This chapter is devoted to the description of the functions for computing
the homology groups of a chain complex.

3.1 List of functions

chcm-homology chem dim [Function]
Return a description of the homology group in dimension dim of
the chain complex chem in terms of components of the form Z or
Z/nZ. The desired homology group is the direct sum of these
components. No canonical presentation is looked for, so that, if
for instance, a homology group is Z/6Z, it can be displayed as
one component Z /6 Z or two components Z/2Z and Z /3 Z. On the
other hand, if the component part is void, this means the homology
group is the null group. The function chcm-homology implements
the usual algorithms to compute the homology group associated to
two integer matrices, the composite of which is null. The current
version is verbose: for each group asked for, the program displays
the rank of each integer matrix and each generator of the source
module. Timing indications are also given. In the examples, only
the components are printed.

chcm-homology-gen chem n [Function]
This function computes the homology group in dimension 7 of the
chain complex chem and prints a generator of degree n in chem for
each component of the group (in general a combination of the basis
elements of degree n of the chain complex).
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chcm-mat chem n [Function]
Return the the matrix of the linear homomorphism d, : C,, —
Cr—1, where C,, is the n—th chain group of the chain complex chcm.
More precisely, each column of this matrix contains the integer
coefficients in the basis of C,_; of the image by d, of each basis
element of Cy,. So the number of lines (resp. columns) of the matrix
is the number of elements of the basis of C,_1 (resp. Cy). The
homology group H, = Z,/B, is computed from the two matrices
MZ = chcm-mat (chem,n) and NB = chcm-mat (chem, n+1). By
well known algorithms on matrix reduction’, the matrix MZ is used
to find a basis for the kernel Z, and the matrix NB, to find in Z,, a
presentation of the group H,, = Z,,/B,, by generators and relations.
This is performed by the internal function homologie (beware: not
homology!).

homology chcm degrl &optional (degr?2 (1+ degrl)) [Method]
Compute the homology groups from degr; to degro — 1 (default:
only degry, if degr2 is omitted) of the right chain complex of the
homotopy equivalence contained in the slot : efhm of the chain com-
plex instance chcm. At the creation of the chain complex, this
slot is unbound and is set during execution by an adequate CLOS
method. If this slot cannot be bound, an error is returned and the
homology groups cannot be computed. A more elaborated expla-
nation of the mechanism used by the function homology is given in
the section: The general method for computing homology
groups.

Example

Let us get the homology groups for the example diabolo of the chapter 1.
(chcm-homology diabolo 0)  ==>

Computing boundary-matrix in dimension O.

Rank of the source-module : 6.

Homology in dimension O :

Component Z

1S. MacLane & G. Birkhoff, Algebra, The MacMillan Company, 1967
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(chcm-homology diabolo 1)  ==>
Computing boundary-matrix in dimension 1.
Rank of the source-module : 7.

Homology in dimension 1 :

Component Z

(chcm-homology diabolo 2) ==

Computing boundary-matrix in dimension 2.
Rank of the source-module : 1.

Homology in dimension 2 :

—---done-——

Another simple example is the following 2—chain complex corresponding to
the well known dunce hat. We shall see later in the chapter Simplicial
Sets a much more elegant method to describe this object.

0
a a
a
2 2
3 4
6
1 5 1
7
0 1 2 0
The dunce hat

The diagram shows a permissible triangulation. For the generators, we have
chosen lists rather symbols: a vertex s; is represented as (i), an edge s;s; as
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(i j) and a triangle s;s;s; as (i j k). The enumeration of the elements of
the basis is a little cuambersome but defining the boundary homomorphism
is very easy, bearing in mind the boundary rule:

n

d[sos1...5p] = Z (=1)%s081...55... sp.

=0

As for diabolo, the vertices are implicitly ordered.

(setf duncehat-basis #’(lambda(dmn)

(case dmn

(0 > (0 1)

(1 7
(0
(0
¢!
a
(2
3
(5
(2 ° (0
(0
(0
a
(1
(4

(0
4) (0
A
91
7) (2
6) (2
5) (4
6) (5

(2)

2) (0
5) (0
2) (1
51
3)(2
7) @3
5) (4
7) (6

1501
23)(0
34)(

4 6)(2
5 6)(5
(otherwise nil)

2
5
24)(1 2
6
6
)

(3) (4 B & (M N

3)

6)

3)

6)

4)

4)

6)

7))
6)(0 17)
4)(0 2 6)
7@ 2 3)
7)(1 3 5)
7)(3 4 5)
7))

))

(setf duncehat-df #’(lambda(dmn gnr)

(case dmn

(0 (cmbn -1))
(1 (cmbn O
(2 (cmbn 1 1 (list(first gnr) (second gnr))
-1 (list(first gnr) (third gnr))

-1 (

list(first gnr)) 1 (rest gnr)))

1 (rest gnr) ))

(otherwise (error "bad generator for dunce hat")))))

(setf duncehat (build-chcm :cmpr #’1l-cmpr

:basis duncehat-basis
:bsgn ’(0)

rintr-dffr duncehat-df
istrt :gnrt

torgn ’(dunce hat)))



CHAPTER 3. THE HOMOLOGY MODULE 69

(chcm-homology duncehat 0) ==>

Computing boundary-matrix in dimension O.
Rank of the source-module : 9.

Homology in dimension O :
Component Z

---done---

(chcm-homology duncehat 1) ==>

Computing boundary-matrix in dimension 1.
Rank of the source-module : 27.

Homology in dimension 1 :
---done---
(chcm-homology duncehat 2) ==

Computing boundary-matrix in dimension 2.
Rank of the source-module : 19.

Homology in dimension 2 :

---done—--

Let us take again the chain complex duncehat. The two matrices of the
homomorphisms d; : C1 — Cy and do : Co — C are obtained by calling
chcm-mat.

(setf mz (chcm-mat duncehat 1)) ==>

========== MATRIX 8 lines + 24 columns =====

Li1=[C1=-1] [C2=-1] [C3=-1] [C4=-1] [C5=-1] [C6=-1] [C7=-1]
L2=[C1=1] [C8=-1] [C9=-1] [C10=-1] [C11=-1] [C12=-1] [C13=-1]
L3=[C2=1][C8=1] [C14=-1] [C15=-1] [C16=-1] [C17=-1]
L4=[C3=1] [C9=1] [C14=1] [C18=-1] [C19=-1]

L5=[C4=1]1 [C10=1] [C15=1] [C18=1] [C20=-1] [C21=-1]
L6=[C5=1] [C11=1] [C19=1] [C20=1] [C22=-1] [C23=-1]
L7=[C6=1] [C12=1] [C16=1] [C21=1] [C22=1] [C24=-1]

L8=[C7=1] [C13=1] [C17=1] [C23=1] [C24=1]

========== END-MATRIX
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(setf nb (chcm-mat duncehat 2)) ==>

========== MATRIX 24 lines + 17 columns =====
L1=[C1=1] [C2=1] [C3=1]
L2=[C4=1] [C5=1] [C6=1]
L3=[C4=-1] [C7=1]
L4=[C5=-1] [C7=-1]
L5=[C1=-1] [C8=1]
L6=[C2=-1] [C6=-1]
L7=[C3=-1] [C8=-1]
L8=[C9=1] [C10=1] [C11=1]
L9=[C9=-1] [C12=1]
L10=[C10=-1] [C13=1]
L11=[C1=1] [C12=-1]
L12=[C2=1] [C13=-1]
L13=[C3=1] [C11=-1]
L14=[C4=1] [C9=1]
L15=[C5=1] [C10=1]
L16=[C6=1] [C14=1]
L17=[C11=1] [C14=-1]
L18=[C7=1] [C15=1]
L19=[C12=1] [C15=-1]
L20=[C15=1] [C16=1]
L21=[C13=1] [C16=-1]
L22=[C16=1] [C17=1]
L23=[C8=1] [C17=-1]
L24=[C14=1] [C17=1]
========== END-MATRIX

(homologie mz nb) ==>

NIL
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3.2 The general method for computing homology

Among the slots of the instance of an object inheriting the CHAIN COMPLEX
class, a slot efhm has been reserved to point (possibly) to a homotopy e-
quivalence where the right bottom chain complex is effective. The function
homology is designed to get the right bottom chain complex of the homo-
topy equivalence value of the slot. If the slot has been bound, then the
homology groups are computed by the function chcm-homology as shown in
the following definition:

(DEFMETHOD HOMOLOGY ((chcm chain-complex) degrl &optional (degr2 (1+ degril)))
(do ((degr degrl (1+ degr)))
((>= degr degr2))
-->  (chcm-homology (rbcc (efhm chcm)) degr)
(terpri) (clock) (terpri)))

But, at the creation of the object, the slot efhm is unbound and as soon as
the homology function tries to get the content of the slot efhm via the call
(efchm chcm), the slot-unbound mechanism of CLOS is triggered, calling at
its turn a method search-efhm depending on the object. If no method is
available for this object, NIL is returned. In the following chapters, we shall
see that cases have been written for cartesian products, tensor products,
suspensions, disk pasting, fibrations, loop spaces, and classifying spaces.
The selection of the case is done thanks to the information contained in
the comment list of the object (slot orgn). In each case, the search-efhm
method builds — in general with a complex machinery, including a possible
recursivity — a homotopy equivalence where the right bottom chain complex
is effective. The slot efhm of the object is then settled and the homology
group computation may begin. If NIL is returned, then and only at this
moment, the slot-unbound mechanism looks if the chain complex is finite
(checking if a basis function exists). If this is the case, then the trivial
homotopy equivalence is built upon the chain complex and this gives the
value of the slot efhm. If there is no basis function, meaning that probably
the chain complex is locally effective, an error is returned.

Remark. The user may wonder why one does not look first if the given
object is effective. We recall simply that even in the case of an effective
chain complex, it is sometimes possible to find another effective chain com-
plex, homotopic to the first and whose number of basis elements, in any
dimensions, is considerably smaller in comparison with the first one. A
striking case will be shown in a further chapter, showing the application of
the Eilenberg-Zilber theorem to a cartesian product.
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Example

The reading of this subsection may be postponed until a full read-
ing of this user’s guide. The following examples show how are filled the
slots efhm of the various objects. Starting from the sphere S2%, we verify
first that the efhm slot is unbound. Then we ask for #; and verify that,
though there is a finite basis, Kenzo has nevertheless built a trivial homotopy
equivalence on this object.

(setf s2 (sphere 2)) ==
[K1 Simplicial-Set]
(inspect s2) ==>

SIMPLICIAL-SET @ #x39ale2 = [K1 Simplicial-Set]

0 Class ——-----—- > #<STANDARD-CLASS SIMPLICIAL-SET>
1 ORGN --—----——- > (SPHERE 2), a proper list with 2 elements
2 IDNM -------——- > fixnum 1 [#x00000004]
-->3 EFHM --—-—---—-—- > The symbol :--UNBOUND--
4 GRMD --——————— > [K1 Simplicial-Set]
5 DFFR —-—-———-———- > [K2 Morphism (degree -1)]
6 BSGN --—----—--— > The symbol *
-->7 BASIS ————-——- > #<Closure (FLET SPHERE-BASIS RSLT) @ #x39al4da>
8 CMPR --——————-- > #<Function SPHERE-CMPR>
9 CPRD - -———————- > [K5 Morphism (degree 0)]
10 FACE --—--——-- > #<Closure (FLET SPHERE-FACE RSLT) @ #x39a172>

(homology s2 1) ==>
Homology in dimension 1 :
---done---

(inspect s2) ==>

SIMPLICIAL-SET @ #x410372 = [K1 Simplicial-Set]

(orgn (hmeq 9)) ==>

(TRIVIAL-HMEQ [K1 Simplicial-Set])

Now, we create Q(S?). Getting the value of the slot efhm by a call to the
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accessor function efhm, triggers the search-efhm method for a loop space. A
homotopy equivalence is built and the slot is set.

(setf os2 (loop-space s2)) ==

[K10 Simplicial-Groupl

(inspect os2) ==>

SIMPLICIAL-GROUP @ #x4a208a = [K10 Simplicial-Group]
-->3 EFHM ----—---—-—- > The symbol :--UNBOUND--

(orgn o0s2) ==>

(LOOP-SPACE [K1 Simplicial-Set])

(efhm o0s2) ==>

[K118 Homotopy-Equivalence]

(inspect os2) ==>

SIMPLICIAL-GROUP @ #x30943a = [K10 Simplicial-Group]

The following example shows the recursion mechanism when one wants to
get the value of the slot efhm of an iterated loop space, namely 23(S5%).
(setf s4 (sphere 4)) ==>

[K119 Simplicial-Set]

(inspect s4) ==

SIMPLICIAL-SET @ #x38647a = [K119 Simplicial-Set]
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3 EFHM --———---- > The symbol :--UNBOUND--

(setf ooos4 (loop-space (loop-space (loop-space s4))))

[K148 Simplicial-Group]

(orgn ooos4) ==>

(LOOP-SPACE [K136 Simplicial-Group])

(orgn (second *)) ==

(LOOP-SPACE [K124 Simplicial-Groupl)

(orgn (second *)) ==>

(LOOP-SPACE [K119 Simplicial-Set])

(orgn (second *)) ==

(SPHERE 4)

(inspect (smgr 136)) ==

SIMPLICIAL-GROUP @ #x463312 = [K136 Simplicial-Group]
3 EFHM --———---- > The symbol :--UNBOUND--

(inspect (smgr 124)) ==>

SIMPLICIAL-GROUP @ #x460efa = [K124 Simplicial-Group]
3 EFHM --——————- > The symbol :--UNBOUND--

(inspect (smst 119)) ==

==>
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SIMPLICIAL-SET @ #x4102fa = [K119 Simplicial-Set]

0 Class -————-—-—- > #<STANDARD-CLASS SIMPLICIAL-SET>
1 ORGN --------- > (SPHERE 4), a proper list with 2 elements
3 EFHM ------——- > The symbol :--UNBOUND--

(efhm ooos4) ==
[K522 Homotopy-Equivalencel]
(inspect (smgr 136)) ==>

SIMPLICIAL-GROUP @ #x410e62 = [K136 Simplicial-Group]

(inspect (smgr 124)) ==>

SIMPLICIAL-GROUP @ #x41066a = [K124 Simplicial-Group]

(inspect (smst 119)) ==>

SIMPLICIAL-SET @ #x4191d2 = [K119 Simplicial-Set]

(inspect s4) ==>

SIMPLICIAL-SET @ #x4191d2 = [K119 Simplicial-Set]
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Lisp files concerned in this chapter

homology-groups.lisp, searching-homology
and files containing a search-efhm method.
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Chapter 4

Tensor product of chain
complexes

4.1 Introduction

One knows that the homology groups of a cartesian product of two spaces
K and L may be obtained by considering a chain complex derived from
respective chain complexes of K and L by taking their tensor product. But
this is only one of the numerous uses of tensor products of chain complexes
in algebraic topology, so the Kenzo software provides the handling of such
an important tool.

Let us recall that chain complexes are free Z—modules with distinguished
basis. A tensor product of chain complexes is itself a free Z-module with
a natural basis formed by the tensor product of the generators of the chain
complex factors. The program conforms to that rule.

4.2 Tensor product of generators and combina-
tions

An elementary tensor product of two generators is represented, in the soft-

ware, by a structured list in which we may find 4 items for the description

of the two generators together with their respective degree. The internal
representation of gnrtl ® gnrt2 has the form:

(:tnpr (degri.gnril) . (degr2.gnrt2))

where,

7
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—_

. degrl is an integer, the degree of the generator gnrtl.

N

. gnrtl is the first generator of the pair.

w

. degr2 is an integer, the degree of the generator gnrt2.

W

. gnrt2 is the second generator of the pair.

78

To construct such an object, one may use the macro tnpr. The correspon-
ding type is TNPR. The printing method prints the tensor product under the

form:

<TnPr gnrtl gnrt2> or <TnPr degrl gnrtl degr?2 gnrt2>

according to the boolean value, NIL (default) or T of the system variable

*tnpr-with-degreesx* (see the examples).

4.2.1 Simple functions for the tensor product

topr degrl gnrtl degr2 gnrt2 [Macro]
Build a tensor product gnritl ® gnrt2.

tnpr-p object [Predicate]
Test if object is of type TNPR.

degri tnpr [Macro]
Select the degree of the first generator in the tensor product tnpr.

gnrtl tnpr [Macro]
Select the first generator from the object tnpr.

degr2 tnpr [Macro]
Select the degree of the second generator in the tensor product
tnpr.

gnrt2 tnpr [Macro]
Select the second generator from the object tnpr.

2cmbn-tnpr cmbnl cmbn2 [Function]

Create, from two combinations ¢mbnl and cmbn2 with respective
degree degrl and degr2, a combination of degree dgrl + dgr2 by
applying the tensorial distributive law on the two sums of terms of
the combinations.
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Example

(tnpr 1 ’a 2 ’b) ==

<TnPr A B>

(tnpr-p *) ==>

T

(tnpr-p (cmbn 0 1 ’a 2 ’b)) ==>
NIL

(setf *tnpr-with-degrees* t) ==>
T

(2cmbn-tnpr (cmbn 2 3 ’a 4 ’b -5 ’c) (cmbn 3 4 ’x -3 ’y 2 ’z)) ==>

79

<12 * <TnPr 2 A 3 X>>
<-9 * <TnPr 2 A 3 Y>>
<6 * <TnPr 2 A 3 Z>>

<16 * <TnPr 2 B 3 X>>
<-12 * <TnPr 2 B 3 Y>>
<8 * <TnPr 2 B 3 Z>>

<-20 * <TnPr 2 C 3 X>>
<15 * <TnPr 2 C 3 Y>>
<-10 * <TnPr 2 C 3 Z>>

{CMBN 5}

(setf *tnpr-with-degrees* nil) ==
NIL

**  ==> ;33 **% is the last but one result

<12 * <TnPr A X>>
<-9 % <TnPr A Y>>
<6 * <TnPr A Z>>

<16 * <TnPr B X>>
<-12 * <TnPr B Y>>
<8 * <TnPr B Z>>

<-20 * <TnPr C X>>
<15 * <TnPr C Y>>
<-10 * <TnPr C Z>>

{CMBN 5}
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4.3 Tensor product of chain complexes

The software implements the tensor product of chain complexes according
to the classical following definition. Let C' and C’ two chain complexes. The
tensor product C' ® C’ is the chain complex D such that:

D,= P CneC,

m+n=p

Cm ® C}, being the tensor product of the two modules Cy,, and CJ,. A basis
for D, is the union of the basis of Cp, ® C},, with m +n = p.
The boundary operator d® is defined, according to the Koszul rule, by:

d®(cm ® ) = d(cp) @ ¢y + (—1)"cy, @ d' (),

with ¢, € Cp,, ¢}, € C} and d, d' being the respective boundary operators
of C and C".
In the software, this is realized by the function tnsr-prdc.

tnsr-prdc cheml chem?2 [Method]
Build a chain complex, tensor product of the two chain complexes
chem1 and chem2. The elements of this new chain complex are in-
teger combinations of generators of TNPR type. The creation of this
new chain complex is done by a call to the function build-chcm
with actual parameters defined from the constituting elements of
cheml1 and chem?, according to the mathematical definitions above.
If both arguments are effective, the function constructs an effective
chain complex. On the other hand, if at least one of the chain com-
plex is locally effective, the tensor product is also locally effective.
In fact, the construction is correct only if both chain complexes are
null in negative degrees, otherwise the result is undefined.

Examples

Let us take the standard 2-simplex, A2 and let us build C,(A?)®C, (A?). To
build the corresponding chain complex, we use the function cdelta, defined
in a previous chapter.

(setf triangle (cdelta 2)) ==>

[K1 Chain-Complex]
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(basis triangle 1) ==>

((0 1) (02) (12)

(setf tpr-triangles (tnsr-prdc triangle triangle)) ==>

[K3 Chain-Complex]

Let us inspect some basis of this newly created chain complex.
(basis tpr-triangles 0) ==>

(<TnPr (0) (0)> <TnPr (0) (1)> <TnPr (0) (2)> <TnPr (1) (0)> <TnPr (1) (1)>
<TnPr (1) (2)> <TnPr (2) (0)> <TnPr (2) (1)> <TnPr (2) (2)>)

(basis tpr-triangles 1) ==>

(KTnPr (0) (0 1)> <TnPr (0) (0 2)> <TnPr (0) (1 2)> <TnPr (1) (0 1)>
<TnPr (1) (0 2)> <TnPr (1) (1 2)> <TnPr (2) (0 1)> <TnPr (2) (0 2)>
<TnPr (2) (1 2)> <TnPr (0 1) (0)> <TnPr (0 1) (1)> <TnPr (0 1) (2)>
<TnPr (0 2) (0)> <TnPr (0 2) (1)> <TnPr (0 2) (2)> <TnPr (1 2) (0)>
<TnPr (1 2) (1)> <TnPr (1 2) (2)>)

(basis tpr-triangles 2) ==>
(<TnPr (0) (0 1 2)> <TonPr (1) (0 1 2)> <TnPr (2) (0 1 2)> <TnPr (0 1) (0 1)>
<TnPr (0 1) (0 2)> <TnPr (0 1) (1 2)> <TnPr (0 2) (0 1)> <TnPr (0 2) (0 2)>

<TnPr (0 2) (1 2)> <TnPr (1 2) (0 1)> <TnPr (1 2) (0 2)> <TnPr (1 2) (1 2)>
<TnPr (0 1 2) (0)> <TnPr (0 1 2) (1)> <TnPr (0 1 2) (2)>)

(basis tpr-triangles 3) ==>

(<TnPr (0 1) (0 1 2)> <TnPr (0 2) (0 1 2)> <TnPr (1 2) (0 1 2)>
<TnPr (0 1 2) (0 1)> <TnPr (0 1 2) (0 2)> <TnPr (0 1 2) (1 2)>)

(basis tpr-triangles 4) ==>
(KTonPr (0 1 2) (0 1 2)>)

Let us consider now the chain complex, ccn, that we used in the chain
complex chapter. The basis in any degree are decades produced by the
function <a-b<. We build ccn ® cen and we verify the fundamental property
of the associated boundary operator:

d® o d® = 0.
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(setf ccn-boundary #°’(lambda (dgr gnr)
(if (evenp (+ dgr gnr))
(cmbn (1- dgr) 1 (- gnr 10))
(cmbn (1- dgr)))))

(setf ccn (build-chem :cmpr #’f-cmpr
:basis #’(lambda (n) (<a-b< (* 10 n) (* 10 (1+ n))))
:intr-dffr ccn-boundary

:strt :gnrt
torgn ’(cecn) )) ==>

[K6 Chain-Complex]

(basis ccn 3) ==

(30 31 32 33 34 35 36 37 38 39)

(setf tpr-ccn-ccn (tnsr-prdc ccn ccn)) — ==>

[K7 Chain-Complex]

(setf comb2 (cmbn 2 1 21 5 25 9 29)) ==

-- e e {CMBN 2}
<1 * 21>

<6 * 25>
<9 * 29>

(setf comb3 (cmbn 3 2 32 3 33 -4 34 -6 36)) ==>

- e e e e e e {CMBN 3}
<2 * 32>
<3 * 33>
<-4 x 34>
<-6 * 36>

(setf tcmb (2cmbn-tnpr comb2 comb3)) ==

- -—- e {CMBN 5}
<2 * <TnPr 21 32>>
<3 * <TnPr 21 33>>
<-4 * <TnPr 21 34>>
<-6 * <TnPr 21 36>>
<10 * <TnPr 25 32>>
<15 * <TnPr 25 33>>
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<-20 * <TnPr 25 34>>
<-30 * <TnPr 25 36>>
<18 * <TnPr 29 32>>
<27 * <TnPr 29 33>>
<-36 * <TnPr 29 34>>
<-54 * <TnPr 29 36>>

(7 tpr-ccn-ccn *) ==

<3 * <TnPr 21 23>>
<15 * <TnPr 25 23>>
<27 * <TnPr 29 23>>

(? tpr-ccn-ccn ¥) ==>

83

{CMBN 4}
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4.4 Tensor product of morphisms, reductions, ho-
motopy equivalences.

Let f: Ay — Ay and g : By — Bs two morphisms between two chain
complexes. The tensor product f ® ¢ is the morphism

f®g: A ®B; — Ay ® By
defined by the following formula respecting the Koszul rule:
(f ®g)(a1 ® by) = (—1)%0r sl (1) @ g(by).

The method tnsr-prdc already defined for chain complexes, may be also
used for that purpose.

tnsr-prdc mrphl mrph2 [Method]
Return the morphism, tensor product of the two morphisms mrphi
and mrph2. The source and target of this new morphism are respec-
tively the tensor product of the chain complexes source and target
of mrphl and mrph2. The degree is the sum of the degrees of the
parameters and the lisp function (the :pure keyword argument of
the function build-mrph) conforms to the mathematical definition
above. The strategy is by generator, i.e. the morphism is designed
to work with 2 arguments: a degree and a generator which must
be an object of type TNPR.

tnsr-prdc rdct! rdct2 [Method]
Return the reduction, tensor product of the two reductions rdct!
and rdct2. The algorithm consists essentially in defining

[=f1®f2,9g=91®g2, h=h1Q (920 g2) + Idic1 ® h2,

where Idiec1 is the identity morphism in the top chain complex
of the reduction rdctl. The returned reduction is then built by a
call to the method build-rdct. This defines completely the chain
complexes involved in the reduction.

tnsr-prdc hmegql hmeg2 [Method]
Return the homotopy equivalence, tensor product of the two homo-
topy equivalence hegm1 and hegm2. This is a homotopy equivalence
where the new reductions are the tensor products of the arguments
reductions (See the lisp definition just below).
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4.4.1 Searching homology for tensor products

The comment list of a tensor product of two chain complexes has the form
(TNSR-PRDC checml chem2). The search-efhm method applied to a tensor
product, looks for the value of the respective efhm slots of the chain com-
plexes chem1 and chem?2, (i.e. two homotopy equivalences) or tries to settle
these slots if they are still unbound. Then it builds the tensor product of
both homotopy equivalences, as shown in the following lisp listing. At its
turn, the resulting homotopy equivalence will become the value of the efhm
slot of the initial tensor product chain complex.

(defmethod SEARCH-EFHM (chcm (orgn (eql ’tnsr-prdc)))
(declare (type chain-complex chcm))
(the homotopy-equivalence
(tnsr-prdc (efhm (second (orgn chcm)))
(efhm (third (orgn chcm))))))

(defmethod TNSR-PRDC ((hmeql homotopy-equivalence)
(hmeq2 homotopy-equivalence))
(the homotopy-equivalence
(build-hmeq
:1rdct (tnsr-prdc (lrdct hmeql) (lrdct hmeq2))
:rrdct (tnsr-prdc (rrdct hmeql) (rrdct hmeq2))
rorgn ‘(tnsr-prdc ,hmeql ,hmeq2))))

Lisp file concerned in this chapter

tensor-products.lisp, searching-homology.lisp.



Chapter 5

Coalgebras and cobars

5.1 Introduction

The implementation of coalgebras and cobars follows closely the section 6
of the paper Effective Homology: a survey'.

5.2 Coalgebras

A coalgebra is a pair (C, x) where
1. C is a chain complex.

2. x (the coproduct) is a chain complex morphism
x:C—->CxC.

These components must satisfy the usual structural properties of the coalgebras?.

5.2.1 Implementation of a coalgebra

A coalgebra is represented as an instance of the CLOS class COALGEBRA,
subclass of the CHAIN COMPLEX class. The definition of this new class is
simply:

(DEFCLASS COALGEBRA (chain-complex)
((cprd :type morphism :initarg :cprd :reader cprdl))) ;3 coproduct

! Available at the web site http://www-fourier.ujf.grenoble.fr/~ sergerar/
?Mac Lane, Homology, section VI-9. Springer 1970.

86
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So, this new class inherits the slots of the CHAIN COMPLEX class and has a
slot of its own, namely cprd, a morphism object representing the coproduct.
The user will note the important following fact that, once a coalgebra has
been defined, one may use on it any function or method applicable
to a chain complex.

5.2.2 The function build-clgb

To facilitate the construction of instances of the COALGEBRA class, the soft-
ware provides the function build-clgb,

build-clgb :cmpr cmpr :basis basis :bsgn bsgn :intr-dffr intr-dffr
:dffr-strt dffr-strt : intr-cprd intr-cprd
:cprd-strt cprd-strt :orgn orgn

defined with keyword parameters. The returned value is an instance of type
COALGEBRA. The keyword arguments are:

— cmpr, a comparison function for generators.

basis, the basis function for the underlying chain complex.

— bsgn, the base point, a generator of any type.

— ntr-dffr, the differential lisp function for the chain complex.
— dffr-strt, the strategy (:gnrt or :cmbn) for the differential.

— 4ntr-cprd, the lisp function for the coproduct of the coalgebra.
— cprd-strt, the strategy (:gnrt or :cmbn) for the coproduct.

— orgn, an adequate comment list.

The function build-clgb calls the function build-chcm and with the help of
the function build-mrph builds the coproduct morphism of degree 0, to set-
tle the slot crpd of the instance. According to the definition, the source slot
of the coproduct morphism is the underlying chain complex and the target
slot is the tensor product of this chain complex with itself. As to the other
objects, an identification number n (slot idnm) is assigned to this Kenzo ob-
ject and the COALGEBRA instance is pushed onto the list *c1lgb-1ist*. The
associated printing method prints a string like [Kn Coalgebral].
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5.2.3 Miscellaneous functions and macros for coalgebras

cat-init [Function]
Clear among others, the list *c1gb-1ist*, list of user created coal-
gebras and reset the global counter to 1.

clgb n [Function]
Retrieve in the list *c1gb-1ist* the coalgebra instance whose iden-
tification is n. If it does not exist, return NIL.

cprd clgb &rest [Macro]
Versatile macro relative to the coproduct of a coalgebra. The first
argument is a COALGEBRA instance. With only one argument, this
macro returns the coproduct morphism of the coalgebra. With
more arguments, it applies the coproduct morphism on a combi-
nation ((cprd clgb ¢mbn)) or on a pair degree, generator ((cprd
clgb degr gnrt)).

change-chcm-to-clgb chem :intr-cprd intr-cprd :cprd-strt cprd-strt
zorgn orgn
Build a coalgebra instance from the already created chain complex
chem. The user must give via key parameters a lisp function for
the coproduct, the strategy and a comment list.

5.3 Cobar of a coalgebra

Let A be a coalgebra, M a right A-comodule, A" a left A-comodule. It
means that there exist coproducts xas and x:

XM:M—MRA, xv:N—AQN.
It is possible to build a chain complex denoted Cobar(M,N),
Cobar*(M,N) = PMe A RN.
P

This section is devoted to the particular case M = N = Z.

So, let A be a coalgebra , assumed 1-connected, i.e. A; =0 and Ay ~ Z,
we consider the chain complex, Cobar*(Z, Z), noted more simply Cobar(.A),
whose n-th component is:

[Cobar(A)ln = P(An®@--- @ Ay), i;>0, il+---+ik=n+k.

A tensor product g; ® --- ® gg, where g; is a generator of A; is called,
in the software Kenzo, an algebraic loop. The reason is the following:
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if X is a 1-connected simplicial set, we shall see in a next chapter that
the program Kenzo constructs a homotopy equivalence between the chain
complex of the loop space Cy(GX) and Cobar(C.(X)) = Cobar®X)(z,17),
so that a generator of the last chain complex is a kind of “algebraic” version
of a generator of a loop space. The definition of differential of the Cobar is
recalled hereafter.

5.3.1 Representation of an algebraic loop

An algebraic loop is represented by a lisp object of the form:
(:ALLP (41.91) ...(QGg.gx))

where the i; are the degrees in the cobar chain complex of the generators
gj- In the original coalgebra A, the generators g; had the degree i; +1. The
corresponding type is ALLP. The function to build such an object is also
called allp

allp degrl gnrl degr2 gnr2 ... degrk gnrk [Function]
Construct an algebraic loop, i.e. a tensorial product of degree
> degr;. The sequence of pairs {degr;, gnr;} has an undefinite
length and may be void. In this case, the algebraic loop is the null
algebraic loop, identified in the system by the constant +null-allp+.
The function allp accepts also as unique argument a list of the form
(degrl gnrl degr2 gnr2 ... degrk gnrk)

allp-p object [Function]
Test if object is an algebraic loop.

The associated printing method prints the object under the form:

<<A1Lp [Zl 91] PPN [Zk gk] >>
The user will have noted that in the Cobar, each generator g; appears with
its own degree in the underlying chain complex, lowered by 1.

5.3.2 Definition of the chain complex Cobar

The definition of the differential in the Cobar, will be done in three steps.
This is better understood, if we consider the following diagram. We recall
that the elements of (AS?” )q are by convention of degree ¢ —p in the Cobar.
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e A chain complex called vertical-cobar is defined with the wvertical
differential d,. In this case, only the underlying chain complex struc-
ture is used.

e A horizontal differential dj, is defined. This uses the coproduct struc-
ture.

e The final chain complex cobar is created with differential d, + dj,.

\ 1

o (A%, Iy %Y, o
ddy ddy

S (APP)l Iy (APPh L o
{ l

Definition of the vertical cobar

To define the vertical cobar chain complex from a chain complex C, the
following functions are provided:

cobar-cmpr cmpr [Function]
From the comparison function ¢mpr, build a comparison function
for objects of algebraic loop type.

cobar-basis basis [Function]
From the function basis of a chain complex C, build a basis func-
tion for the vertical cobar chain complex defined on C. In dimen-
sion 0, there is only one basis element, namely the null algebraic
loop. If C is locally effective, this function returns the symbol
:locally-effective.

cobar-intr-vrtc-dffr dffr [Function]
From the lisp function dffr of a chain complex C, build a lisp
function for the differential of the vertical cobar chain complex,
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according to the formula

n i1 -1,
dy(91®+-®gn) = Y ("t REE |g]‘91 Q- ®gi-1Q9dgi ® gi+1 Q- ® gn,
i=1

where dg; is the differential of the generator g; in the original chain
complex (function dffr) and | g; | is the degree of the generator
gi in the cobar chain complex. In general, the differential dg; is a
sum of tensor products. So, applying the distribution law, the right
member is a sum of tensor products, represented by a combination.

vrtc-cobar chem [Method]
Build the vertical cobar chain complex with underlying chain com-
plex chem. This is simply done by the following call to build-chcm:

(build-chcm
:cmpr (cobar-cmpr cmpr)
:basis (cobar-basis basis)
:bsgn +null-allp+
:intr-dffr (cobar-intr-vrtc-dffr dffr)
istrt :gnrt
rorgn ‘¢ (vrtc-cobar ,chcm))

where, cmpr, basis and dffr are extracted from the chain complex
checm. Note that the base generator is the null algebraic loop.

Example

We are going to build a coalgebra which will be reconsidered in a next
chapter (Simplicial sets). It is the coalgebra canonicaly associated to the
simplicial set A5. This simplicial set is the quotient of AN — the standard
simplex spanned by the non—negative integers — by the relation identifying,
firstly all the vertices with a unique one and then any 1-simplex of AN
with the unique degeneracy of this unique vertex. In other words, A} is
1-reduced: 1 vertex, no edges.

Our implementation represents any non—degenerate n—simplex as an integer
increasing list of length n + 1. In dimension 0, for every non—negative m
and n, the vertices (m) and (n) are identified; in dimension 1, the list (mn)
is always an illegal 1-simplex. This coalgebra will be located through the
symbol smp-deltab2. The lisp definition uses the function build-smst
that will be described in the simplicial set chapter. For the moment, it
is sufficient to know, that the function build-smst allows us to create a
coalgebra suitable for the tests. The definition of A} given here, is only for



CHAPTER 5. COALGEBRAS AND COBARS 92

pedagogical purpose, an efficient definition using another representation for
the simplices is provided in the software Kenzo.

(setf smp-deltab2
(build-smst
:cmpr #’ (lambda(gsml gsm2)
(if (rest gsml) (l-cmpr gsml gsm2) :equal))
:basis :locally-effective
:bspn ’(0)
:face #’(lambda (i dmn gsm)
(case dmn
(0 (error ‘‘No face in dimension 07’))
(1 (error ‘‘No non-degenerate simplex in dimension 1°’))
(2 (absm 1 °(0)))
(otherwise (absm O (append (subseq gsm O i)
(subseq gsm (1+ i))))) ))
rorgn ’(simple-deltab2)))

The following statements show the identification of vertices and that the
boundary of a 2-simplex is null.

(cmpr smp-deltab2 ’(5) ’(0)) ==>
:EQUAL
(? smp-deltab2 2 (0 1 2)) ==>

(? smp-deltab2 3 (0 1 2 3)) ==>

- -—— R e {CMBN 2}
<-1 x (01 2)>
<1 * (01 3)>
<-1 % (0 2 3)>
<1 * (1 2 3)>

Let us build the vertical cobar on the coalgebra smp-deltab2 and apply the
comparison function and the differential on some algebraic loops.

(setf precobar (vrtc-cobar smp-deltab2)) ==>
[K6 Chain-Complex]

(bsgn precobar) ==>
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(<<A1Lp>>)
(setf loop-1 (allp 2 (0 1 2 3))) ==>

<<AlLp[2 (0 1 2 3)1>>

n
I
v

(setf loop-2 (allp ’(2 (1 2 3 4))))
<<Allp[2 (1 2 3 4)I>»

(cmpr precobar loop-1 loop-2) ==>
:LESS

(? precobar 2 loop-1) ==>

<1 * <<AlLp[1 (0 1 2)1>>>
<-1 * <<AlLp[1 (0 1 3)I>>>
<1 * <<AlLp[1 (0 2 3)I>>>
<-1 * <<AlLp[1 (1 2 3)1>>>

93

{CMBN 1}

(7 precobar *) ==>

(setf loop-3 (allp 3 ’(01234) 3°(13579)))
<<AlLp[3 (0 1 23 4)1[3 (1 357 9NI>

(7 precobar 6 loop-3) ==>

<1 * <<Al1Lp[2 (0 1 2 3)I[3 (1 357 9I>>
<-1 * <<AlLp[2 (0 1 2 4)]J[3 (1 357 9)I>>
<1 * <<AlLp[2 (0 1 3 4)][3 (1357 91>>
<-1 * <<AlLp[2 (0 2 3 4)][3 (1 357 9I>>>
<1 * <<AlLp[2 (1 2 3 4)][3 (1357 91>>
<1 * <<Al1Lp[3 (0 1 23 4][2 (1 35 7)I>>
<-1 *% <<AlLp[3 (0 1 2 3 4)]J[2 (1 35 9I>>>
<1 * <<A1Lp[3 (0 1 23 4)]J[2 (1 37 9I>>>
<-1 * <<AlLp[3 (0 1 2 3 4)J[2 (1 57 9)I>>>
<1 * <<Al1Lp[3 (0 1 2 3 4)][2 (357 9)I>>>

==>

{CMBN 5}
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(? precobar *) ==>

94

{CMBN 4}

(setf loop-4 (allp 3 (0 1 456) 4 °(234568) 4°(04567 8)))

<<AlLp[3 (0 1 456)1[4 (23 45628)1[4 (04567 81>

(7 precobar 11 loop-4) ==>

<-1 * <<AlLp[2 (0 1 4 5)][4 (23 4568)][4 (04567 8)I>>
<1 % <<AlLp[2 (0 1 4 6)I[4 (23456 8)]1[4 (04567 8I>>
<-1 % <<AlLp[2 (0 1 5 6)]1[4 (23456 8)]1[4 (04567 8)]>>>
<1 * <<AlLp[2 (0 4 5 6)1[4 (2 3456 8)1[4 (04567 8I>>
<-1 * <<AlLp[2 (1 4 5 6)]J[4 (23456 8)]J[4 (04567 8)I>>
<1 * <<Al1Lp[3 (01 4 5 6)][3 (2345 6)I[4 (04567 8)I>>
<-1 * <<AlLp[3 (0 1 4 5 6)J[3 (2 3458)][4 (04567 8)I>>
<1 * <<A1Lp[3 (0 1 4 5 6)1[3 (2346 8)][4 (04567 8)I>>
<-1 * <<AlLp[3 (0 145 6)1[3 (2356 8]1[4 (04567 8I>>
<1 * <<AlLp[3 (0 1 45 6)1[3 (2456 8)]1[4 (04567 8I>>
<-1 * <<AlLp[3 (0 1 45 6)1[3 (3456 8)1[4 (04567 8I>»>
<-1 % <<AlLp[3 (0 1 45 6)1[4 (23456 8)][3 (0456 7)I>>
<1 * <<AlLp[3 (0 1 45 6)]J[4 (23456 8)][3 (0456 8)]I>»>>
<-1 * <<AlLp[3 (0 1 4 5 6)I[4 (23456 8)1[3 (0457 8)I>»>
<1 * <<A1Lp[3 (0 1 4 5 6)1[4 (23456 8)]I[3 (0467 8)I>»>
<-1 % <<AlLp[3 (0 1 45 6)]1[4 (23 4568)][3 (0567 8)I>>>
<1 * <<A1Lp[3 (0 1 45 6)]1[4 (23 4568)][3 (4567 8)I>>

(? precobar *) ==>

{CMBN 10}
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Definition of the horizontal differential

So far, the coalgebra structure has not been used but now it will be the
main ingredient. If we make the convention that the elements of (.A?p )q are

of degree ¢ — p, we know that exists a canonical “horizontal” differential dp,

dp : (ADP)g — (ADPH),,

dh(gl@"'@gp) = (_1)pAgl ®92®"'®gp
+H(-1)P g @A ® - ® g,y

—01 00 ®gp—1 ® Agp,

where A is the coproduct of the coalgebra. Two functions are designed for
that:

cobar-intr-hrzn-dffr cprd [Function]
From the coproduct morphism cprd, build the lisp function with
2 arguments: a degree and an algebraic loop (i.e. a generator)
implementing the algorithm for dj,.

cobar-hrzn-dffr clbg [Function]
Build the horizontal differential morphism, using the slot copro-
duct cprd of the coalgebra clbg and the previous function. Note
that when called, this function creates, if not already created, the
vertical cobar chain complex on clbg:

(build-mrph
:sorc (vrtc-cobar clgb)
itrgt (vrtc-cobar clgb)
:degr -1
:intr (cobar-intr-hrzn-dffr cprd)
istrt :gnrt
torgn ‘(cobar-hrzn-dffr ,clgb))

Example

We still use our simple coalgebra smp-deltab2. The horizontal differential
uses the coproduct of the coalgebra. The following examples show the ap-
plication of the coproduct (note that there are no 1-simplices in the tensor
products). We verify also the property of the horizontal differential.

(cprd smp-deltab2 2 ’(0 1 2)) ==>
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-- -—— et e e {CMBN 2}
<1 * <TnPr (0) (0 1 2)>>
<1 * <TnPr (0 1 2) (0)>>

(cprd smp-deltab2 3 (1 2 3 4)) ==>

- -——- B et {CMBN 3}
<1 * <TnPr (0) (1 2 3 4)>>
<1 % <TnPr (1 2 3 4) (0)>>

(cprd smp-deltab2 4 (0 1 2 3 4)) ==>

-- -—— et {CMBN 4}
<1 * <TnPr (0) (0 1 2 3 4)>>
<1 * <TnPr (0 1 2) (2 3 4)>>
<1 * <TnPr (0 1 2 3 4) (0)>

(setf dh-mrph (cobar-hrzn-dffr smp-deltab2)) ==>

[K8 Morphism (degree -1)]

<<AlLp[2 (0 1 2 3)1>>

(? dh-mrph 2 loop-1) ==

-- -_—— et {CMBN 1}

loop-3 ==>
<<AlLp[3 (0123 4)]I[3 (1357 9N]>»

(? dh-mrph 6 loop-3) ==

-- — o {CMBN 5}
<1 # <<AlLp[1 (0 1 2)I[1 (2 3 4)1[3 (1 35 7 9)I>>>
<-1 * <<AlLp[3 (0 1 2 3 4)]J[1 (1 3 B)I[1 (B 7 9)I>>>
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(? dh-mrph *) ==>

- I T TS m s {CMBN 4}
loop-4 ==>

<<AlLp[3 (01 456)][4 (23 45628)]1[4 (04567 81>

(? dh-mrph 11 loop-4) ==>

- I T TS T T e e e {CMBN 10}

<-1 * <<AlLp[1 (0 1 4)]1[1 (4 56)][4 (23 456 8)][4 (04567 8)]I>>
<1 * <<AlLp[3 (0 1 45 6)I1[1 (2 3 4)I[2 (456 8)1[4 (04567 8)I>>
<1 * <<A1Lp[3 (0 1 4 5 6)1[2 (234 5)I[1 (568)]I[4 (04567 8)I>>
<-1 % <<A1Lp[3 (0 1 45 6)I[4 (23456 8)]1[1 (045)]1[2 (567 8I>>
<-1 % <<AlLp[3 (0 1 456)I[4 (234568)]1[2(04586)I[1 (67 8I>>

(? dh-mrph #*) ==>

Final definition of the cobar of a coalgebra

To define completely the cobar chain complex, we have to provide the lisp
function for the differential d, +d;, and, once created the vertical cobar chain
complex, to call the building function build-chcm with adequate arguments.

cobar-intr-dffr vric-dffr hrzn-dffr [Function]
Define the lisp function for the differential d, + dj from the two
morphisms vrtc-dffr and hrzn-dffr. For efficiency reasons, the im-
plementor has chosen to define this new function rather than to use
simply the addition of two morphisms.

cobar coalgebra [Method]
Build first the vertical cobar chain complex on the coalgebra. Then
return a chain complex with the same slots as the vertical cobar
chain complex but with new :intr-dffr and :orgn slots, as shown
in the following definition:
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(defmethod COBAR ((coalgebra coalgebra))
(let ((vrtc-cobar (vrtc-cobar coalgebra))
(cobar-hrzn-dffr (cobar-hrzn-dffr coalgebra)))
(declare (type chain-complex vrtc-coabr hrzn-cobar))
(the chain-complex
(build-chem
:cmpr (cmpr vrtc-cobar)
:basis (basis vrtc-cobar)
:bsgn +null-allp+
rintr-dffr (cobar-intr-dffr (dffr vrtc-cobar)
cobar-hrzn-dffr)
istrt :gnrt
torgn ‘(add ,vrtc-cobar ,cobar-hrzn-dffr)))))

Example
We may now build the cobar of smp-deltab2 and test the differential.

(setf cobar-deltab2 (cobar smp-deltab2)) ==>

[K9 Chain-Complex]

<<AlLp[3 (0123 I (1357 9NI>»

(? cobar-deltab2 6 loop-3) ==>

- — S {CMBN 5}
<1 * <<Al1Lp[2 (0 1 2 3)I[3 (1 357 9I>>>

<-1 % <<AlLp[2 (0 1 2 4)I[3 (1 357 9I>>>

<1 * <<AlLp[2 (0 1 3 4)1[3 (1 357 9I>>

<-1 * <<AlLp[2 (0 2 3 4)]1[3 (1 357 9AI>>>

<1 * <<AlLp[2 (1 2 3 4)1[3 (1 357 9I>»>

<1 * <<Al1Lp[3 (0 1 2 3 4)]J[2 (1 3 5 7)I>>>

<-1 % <<A1Lp[3 (0 1 2 3 4)][2 (1 3 5 9I>>>

<1 * <<AlLp[3 (0 1 2 3 4)I[2 (1 37 NI>>

<-1 * <<A1Lp[3 (01 2 3 4)I[2 (1 57 9I>>>

<1 * <<AlLp[3 (0 1 2 3 4)I[2 (B35 7 9I>>

<1 * <<AlLp[1 (0 1 2)IJ[1 (2 3 4)I[3 (1 357 9I>>>
<-1 % <<AlLp[3 (0 1 23 I (1 35)I[1 (57 9I>>>

(? cobar-deltab2 *) ==>

- -—- S {CMBN 4}
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loop-4 ==>
<<A1Lp[3 (0 1 456)]1[4 (234568)][4 (04567 8)]I>»
(7 cobar-deltab2 11 loop-4) ==>

-- — e {CMBN 10}
<-1 % <<AlLp[2 (0 1 4 5)][4 (23 4568)]1[4 (04567 8)I>>

<1 * <<AlLp[2 (0 1 4 6)][4 (23456 8)][4 (04567 8)I>>

<-1 % <<AlLp[2 (0 1 5 6)I[4 (23456 8)]1[4 (04567 8)I>>

<1 * <<AlLp[2 (0 4 5 6)][4 (2 3 45 68)][4 (04567 8)I>>

<-1 % <<AlLp[2 (1 4 56)]1[4 (23456 8)1[4 (04567 81>

<1 * <<A1Lp[3 (0 1 45 6)]1[3 (2345 6)I[4 (04567 8)I>>

<-1 * <<AlLp[3 (01 45 6)I[3 (23458)][4 (04567 8)I>>>

<1 * <<AlLp[3 (0 1 45 6)1[3 (2346 8)1[4 (04567 8)I>>

<-1 % <<Al1Lp[3 (0 1 45 6)I[3 (2356 8)1[4 (04567 8I1>>>

<1 * <<A1Lp[3 (0 1 4 5 6)][3 (2456 8)][4 (04567 8)I>>

<-1 * <<AlLp[3 (0 1 45 6)J[3 (3456 8)]I[4 (04567 8)I>»>

<-1 % <<AlLp[3 (0 1 45 6)]1[4 (23 45628)][3 (0456 7)I>>>

<1 * <<AlLp[3 (0 1 45 6)1[4 (234568)]I[3 (0456 8)I>>

<-1 * <<AlLp[3 (0 1 45 6)I[4 (23456 8)1[3 (0457 8)I>»>

<1 * <<AlLp[3 (0 1 45 6)1[4 (234568)I[3 (0467 81>

<-1 % <<AlLp[3 (0 1 45 6)1[4 (2345 68)][3 (0567 8)I>>

<1 * <<AlLp[3 (0 1 45 6)]J[4 (23456 8)][3 (4567 8)]I>»>

<-1 * <<AlLp[1 (0 1 4)I[1 (4 5 6)][4 (23 456 8)]1[4 (04567 8)I>>
<1 * <<AlLp[3 (0 1 45 6)]J[1 (23 4)]I[2 (456 8][4 (04567 8)I>>
<1 * <<A1Lp[3 (0 1 4 5 6)1[2 (234 5)I[1 (568)I[4 (04567 8)]I>»>
<-1 % <<AlLp[3 (0 1 45 6)J[4 (2 34568)]I[1 (045I1[2 (567 8)I>>
<-1 % <<A1Lp[3 (0 1 45 6)][4 (23 4568)][2(0456)I[1 (67 8)I>>

(? cobar-deltab2 *) ==>

-- R e {CMBN 9}
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5.4 Other functions for the cobar construction

The vertical cobar construction is natural and therefore defines a functor.
Consequently, the Kenzo program contains the following methods.

vrtc-cobar mrph [Method]
From the morphism mrph, build a new morphism between the
vertical-cobar of the source of mrph and the vertical cobar of the
target of mrph, the morphism itself being induced in a natural way
by the underlying morphism.

vrtc-cobar rdct [Method]
From the reduction rdct, build a new reduction, by applying the
vertical cobar method to the functions f and g. The new homotopy
cannot be obtained so simply, being a function of the f, g and h of
rdct. Nevertheless, the source and target of the new homotopy are
the vertical cobar of the underlying homotopy.

vrtc-cobar hmeq [Method]
Build a homotopy equivalence by applying the vertical cobar cons-
truction to the left and right reductions of the homotopy equiva-
lence hmeg.

cobar hmegq [Method]
Build a homotopy equivalence where the cobar construction is ap-
plied to the underlying homotopy equivalence in the following way.
First this construction is limited to the case where the left bottom
chain complex of hmeq is a coalgebra. Then the vertical cobar
construction is applied to hmeq and the horizontal differential of
the left bottom chain complex is propagated upon the new homo-
topy equivalence with the help of the method add. In other words,
starting from the left bottom chain complex, firstly the easy per-
tubation lemma is applied to obtain a new differential on the top
chain complex; then the basic perturbation lemma is applied to
the right reduction. If hmeq is a trivial homotopy equivalence, this
function returns a trivial one, built on the cobar of the left bottom
chain complex of hmeg.

Lisp files concerned in this chapter

coalgebras.lisp, cobar.lisp.
[classes.lisp, macros.lisp, various.lisp].



Chapter 6

Algebras and Bars

6.1 Algebra
An algebra is a pair (A, w) where
1. A is a chain complex.

2. w (the product) is a chain complex morphism

w:AQ A — A.

These components must satisfy the usual structural properties of the alge-
bras.

6.1.1 Implementation of an algebra

An algebra is represented as an instance of the CLOS class ALGEBRA, subclass
of the CHAIN COMPLEX class. The definition of this new class is simply:

(DEFCLASS ALGEBRA (chain-complex)
((aprd :type morphism :initarg :aprd :reader aprdil))) ;3 product

So, this new class inherits the slots of the CHAIN COMPLEX class and has a
slot of its own, namely aprd, an object of type MORPHISM representing the
product. Like in a coalgebra, the user will note the important following
fact that, once an algebra has been defined, one may use on it any
function or method applicable to a chain complex.

101
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6.1.2 The function build-algb

To facilitate the construction of instances of the ALGEBRA class, the software
Kenzo provides the function build-algb:

build-algb :cmpr cmpr :basis basis :bsgn bsgn :intr-dffr intr-dffr
:dffr-strt dffr-strt :intr-aprd intr-aprd
:aprd-strt aprd-strt :orgn orgn

defined with keyword parameters. The returned value is an instance of type
ALGEBRA. The keyword arguments are:

— cmpr, a comparison function for generators.

— basis, the basis function for the underlying chain complex.
— bsgn, the base point, a generator of any type.

— 4ntr-dffr, the differential lisp function for the chain complex.
— dffr-strt, the strategy (:gnrt or :cmbn) for the differential.
— 4ntr-aprd, the lisp function for the product of the algebra.

— aprd-strt, the strategy (:gnrt or :cmbn) for the coproduct.
— orgn, an adequate comment list.

The function build-algb calls the function build-chcm and with the help
of the function build-mrph builds the product morphism of degree 0 to set-
tle the slot aprd of the instance. According to the definition, the source slot
of the product morphism is the tensor product of this chain complex with
itself and the target slot is the underlying chain complex. An identification
number n (slot idnm) is assigned to this Kenzo object and the ALGEBRA in-
stance is pushed onto the list *algb-1ist*. The associated printing method
prints a string like [Kn Algebral].
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6.1.3 Miscellaneous functions and macros for algebras

cat-init [Function]
Clear among others, the list *algb-1list*, list of user created al-
gebras and reset the global counter to 1.

algb n [Function]
Retrieve in the list *algb-1ist* the algebra instance whose iden-
tification is n. If it does not exist, return NIL.

aprd algh &rest [Macro]
Versatile macro relative to the product of an algebra. The first
argument is an ALGEBRA instance. With only one argument, this
macro returns the product morphism of the algebra. With more ar-
guments, it applies the product morphism on a combination ( (aprd
algb ¢cmbn)) or on a pair degree, tensor-product ((aprd algh degr
tensor-product)).

change-chcm-to-algb chem :intr-aprd intr-aprd :aprd-strt aprd-strt
:orgn orgn [Function]
Build an algebra instance from the already created chain complex
chem. The user must give via key parameters a lisp function for
the product, its strategy and a comment list.

6.2 Hopf Algebra

In Kenzo, a Hopf Algebra is an instance of the class HOPF-ALGEBRA, the
definition of which being simply:

(DEFCLASS HOPF-ALGEBRA (coalgebra algebra)
0)

So, this class (multi-) inherits the slots of the COALGEBRA and ALGEBRA
classes.

The associated printing method prints a string like [Kn Hopf-Algebral,
and the function hopf may be used to retrieve the Hopf instance, in the list
*hopf-list*.

6.2.1 Example of algebra

We shall see later important examples of algebras. Let us content ourself for
the moment to define the trivial algebra on a given chain complex having only
one generator in degree 0. If this chain complex chem already exists, we use
simply the function change-chcm-to-algb and we have to provide for the
keyword :intr-aprd, a lisp function for the product morphism. We recall
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that the argument of the product in the algebra is a tensor product. This
function must obey the rule of the multiplication by the unit and otherwise
will return a null combination of degree the sum of the two degrees in the
tensor product.

(defun trivial-algebra (chcm)
(change-chcm-to-algb
chcm
tintr-aprd #’(lambda (degr tnpr)
(with-tnpr (degrl gnrtl degr2 gnrt2) tnpr
(if (zerop degril)
(cmbn degr2 1 gnrt2)
(if (zerop degr2)
(cmbn degrl 1 gnrtl)
(zero-cmbn (+ degrl degr2))))))
raprd-strt :gnrt
torgn ‘(trivial-algebra ,chcm)))

A good example of a chain complex to be given as argument to the previous
function, is the simplicial set smp-deltab2 that we used as simple example
in the coalgebra chapter:

(setf smp-deltab2
(build-smst
:cmpr #’ (lambda(gsml gsm2)
(if (rest gsml) (l-cmpr gsml gsm2) :equal))
:basis :locally-effective
:bspn ’(0)
:face #’(lambda (i dmn gsm)
(case dmn
(0 (error "No face in dimension 0"))
(1 (error "No non-degenerate simplex in dimension 1"))
(2 (absm 1 ’(0)))
(otherwise (absm O (append (subseq gsm O i)
(subseq gsm (1+ i))))) ))

:orgn ’(simple-deltab2)))
[K1 Simplicial-Set]

(trivial-algebra smp-deltab2) ==>

[K1 Algebral

Note that now smp-deltab2 is of type ALGEBRA and has kept its Kenzo
numbering.

smp-deltab2 ==>

[K1 Algebral
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(inspect smp-deltab2)

ALGEBRA @ #x306bea =

0 Class —-———-—--— >
1 ORGN ------—-- >
2 IDNM --------- >
3 EFHM ------—-- >
4 GRMD --------- >
5 DFFR --------- >
6 BSGN --——------ >
7 BASIS ——--———- >
8 CMPR --------- >
9 APRD --------- >

==>

[K1 Algebra]

#<STANDARD-CLASS ALGEBRA>

(SIMPLE-DELTAB2), a proper list with 1 element
fixnum 1 [#x00000004]

The symbol :--UNBOUND--

[K1 Algebral

[K2 Morphism (degree -1)]

(0), a proper list with 1 element

The symbol :LOCALLY-EFFECTIVE

#<Interpreted Function (unnamed) @ #x306652>
[K6 Morphism (degree 0)]

Let us test now the product in this trivial algebra:

(aprd smp-deltab2 3 (tnpr O ’(0) 3 (1 2 3 4))) ==>

105
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<1 % (123 4)>

(aprd smp-deltab2 3 (tnpr 3 ’(1 2 3 4) 0 ’(0)))

<1 % (123 4)>

(aprd smp-deltab2 5 (tnpr 2 (0 1 2) 3 °(67 89))) ==>

6.3 The Bar

construction

Let A be an associative algebra, assumed connected and Ay ~ Z. Further-
more let us suppose that A is a free Z—module. Then it is possible to define
a chain complex, Bar“(Z, Z) — simply denoted here by Bar(A) — whose n-th
component is the free Z—module generated by the “bars”:

k
[Bar(A)ln ={lg1 | g2 | --- | gel}, D _ldeglg;) +1] = n.
7=1
The object noted [g1 | g2 | -.- | gk] with E?Zl[deg(gj) + 1] = n, is traditio-

nally called a bar and is in fact, an element of the n—th iterated suspension
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of A®". The integer n is the total degree. The structure of the bar of
the algebra A is recalled in the following figure, where A is A without its
component of degree 0. In the vertical sense, we have the tensorial degree,
whereas in the horizontal one, we have the simplicial degree. The total degree
n is the sum of both degrees.

0 A (AeA); (AA®A);
0 ./_12 (.A ® .A)z 0
0 A 0 0
Z 0 0 0
A®0 g®l A®2 A®3

6.3.1 Representation of a bar object

An elementary bar object — not to be confused with the chain complex
Bar(A) — is represented in Kenzo by a lisp object of the form:

(:ABAR (i1.a1) ...(QGg.ax))

where the i; are the degrees in the bar chain complex of the generators
a;. In the original algebra A, the generators a; had the degree i; — 1. The
corresponding type is ABAR. The function building such an object is also
called abar

abar degrl gnrl degr2 gnr2 ... degrk gnrk [Function]
Construct an elementary bar object, i.e. a “suspended tensorial
product” of degree ) degr;. The sequence of pairs {degr;, gnr;}
has an undefinite length and may be void. In this case, the bar is
the null bar object, also located in the system through the constant
+null-abar+. The function abar accepts also as unique argument
a list of the form (degr! gnrl degr2 gnr2 ... degrk gnrk).

abar-p object [Function]
Test if object is an elementary bar object.

The associated printing method prints the object under the form:

<<Abar [‘ll al] [Zk ak] >>
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Examples

These simple commands show the two different ways to create bar objects
from elements of an algebra (or a chain complex).

(abar 2 ’a 3 ’b 5 ’c) ==>
<<Abar[2 A][3 BI[5 CI>>
(abar (2 a3 b 5 c¢)) ==>
<<Abar[2 A][3 BI[5 CI>>
(abar) ==>

<<Abar>>

6.3.2 Definition of the chain complex Bar

The definition of the differential in the bar chain complex, will be done in
three steps. This is better understood, if we consider the following diagram.

\ \
(A%, & ABrth,
4 dy 4 dy
— (APP)_ & (AP«
\ 1

e A chain complex called vertical-bar is defined with the vertical dif-
ferential d,,. In this case, only the underlying chain complex structure
is used.

e A horizontal differential dj, is defined. This uses the product structure.

e The final chain complex bar is created with differential d, + dj,.
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Definition of the vertical bar

To define the vertical bar chain complex from the chain complex A, the
following functions are provided:

bar-cmpr cmpr [Function]
From the comparison function c¢mpr, build a comparison function
for objects of type abar.

bar-basis basis [Function]
From the function basis of a chain complex A, build a basis func-
tion for the vertical bar chain complex defined on A. In dimen-
sion 0, there is only one basis element, namely the null abar ob-
ject. If A is locally effective, this function returns the symbol
:locally-effective.

bar-intr-vrtc-dffr dffr [Function]
From the 1isp function dffr of a chain complex A, build a lisp func-
tion for the differential of the vertical bar chain complex, according
to the formula:

i—1 |l1|
(—1)Z:J'=1 May |-+ | ai—1|daj | a1 |-+ | an),
1

dv[al ‘ "'|an]:_

n
1=
where da; is the differential of the generator a; in the original chain
complex (function dffr) and | a; | is the degree of the generator a;
in the bar chain complex. In general, the differential da; is a sum
of objects. So, applying the distributive law, the right member is
a sum of bar objects, represented by a combination.

vrtc-bar chem [Method]
Build the vertical bar chain complex from the underlying chain
complex chem. This is simply done by the call to build-chcm:

(build-chem
:cmpr  (bar-cmpr cmpr)
:basis (bar-basis basis)
:bsgn +null-abar+
:intr-dffr (bar-intr-vrtc-dffr dffr)
:strt :gnrt
torgn ‘(vrtc-bar ,chcm))

where, cmpr, basis and dffr are extracted from the chain complex
chcm. Note that the base generator is the null bar object.
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Examples

First, let us test the functions bar-cmpr and bar-basis. With the first
one, applied to the elementary comparison function s-cmpr, we create a
comparison function suitable for algebras where the generators are symbols.

(setf cmpr-for-bar (bar-cmpr #’s-cmpr))

(funcall cmpr-for-bar (abar) (abar)) ==>

:EQUAL

(funcall cmpr-for-bar (abar 3 ’a 7 ’q) (abar)) ==>

:GREATER

(funcall cmpr-for-bar (abar (1 x 2 y 3 z) )(abar 1 ’x 2 ’y 3 ’z)) ==>
:EQUAL

Let us suppose now that the function simple-basis is the basis function
for a certain algebra (chain complex): in degree i, the basis is only the list

(i)

(setf simple-basis #’(lambda(degr)
(list (intern(format nil "A~D" degr)))))

(funcall simple-basis 5) ==>

(A5)

The function bar-basis creates the function for the basis of the correspon-
ding bar chain complex. Note that when this new function is applied, it
returns a priori the null abar in dimension 0 and a null basis in dimension
1. Note also that the basis elements of the underlying algebra (the a;’s) are
suspended.

(setf basis-for-bar (bar-basis simple-basis))

(dotimes (i 7)
(format t "~%~D “A" i (funcall basis-for-bar i))) ==>

0 (<<Abar>>)

1 NIL

2 (<<Abar[2 A1]>>)

3 (<<Abar[3 A2]>>)

4 (<<Abar[4 A3]>> <<Abar[2 A1][2 A11>>)

5 (<<Abar[5 A4]1>> <<Abar[2 A1][3 A2]>> <<Abar[3 A2][2 A1]>>)
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6 (<<Abar[6 A5]>> <<Abar[2 A1][4 A3]1>> <<Abar[3 A2][3 A2]>>
<<Abar[4 A3][2 A1]>> <<Abar[2 A1][2 A1]1[2 A1]>>)

To test the vertical differential, let us take the simplicial set smp-deltab2
which is also a chain complex. We may use it for testing the function
vrtc-bar which defines a chain complex independently of the product of
the algebra. We recall that, in dimension n, the elements of the chain
complex smp-deltab2 are represented by lists of increasing n + 1 integers.
So, in the abar objects, the degree of such elements are n + 1.

(setf vrt-bar (vrtc-bar smp-deltab2)) ==>
[K6 Chain-Complex]
(? vrt-bar 9 (abar 4 (01 23) 5°(45678))) ==>

__ —_—— P {CMBN 8}
<-1 * <<Abar[3 (0 1 2)]1[56 (456 7 8)]>>

<1 * <<Abar[3 (0 1 3)J[5 (456 7 8)1>>>

<-1 * <<Abar[3 (0 2 3)][5 (4 5 6 7 8)]1>>

<1 * <<Abar[3 (1 2 3)1[56 (456 7 8)1>>

<-1 * <<Abar[4 (0 1 2 3)][4 (456 7)]>>>

<1 * <<Abar[4 (0 1 2 3)]1[4 (4 5 6 8)]>>

<-1 * <<Abar[4 (0 1 2 3)]J[4 (4 57 8)I>>

<1 * <<Abar[4 (01 2 3)]1[4 (4 6 7 8)]>>

<-1 * <<Abar[4 (0 1 2 3)]J[4 (6 6 7 8)I>>

(? vrt-bar *) ==>

- e e {CMBN T}

Definition of the horizontal differential

So far, the algebra structure has not been used but now it will be the main
ingredient. The canonical “horizontal” differential dj, is defined as follows:

dp : (»’Zl?p)q — (A§p71)q=

n i1
dafar -+ [ = - (=12 lay |- [ aia | a5 185 aze |-+ | o]
=2
where the product in the algebra is noted simply by the concatenation and
| a; | is the degree of a; in Bar(.A). In Kenzo, two functions are designed for
building the horizontal differential:
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bar-intr-hrzn-dffr aprd [Function]
From the product morphism aprd, build the lisp function with 2
arguments: a degree and an abar object (i.e. a generator) realizing
the algorithm for d,.

bar-hrzn-dffr algh [Function]
Build the horizontal differential morphism, using the slot product
aprd of the algebra algb and the previous function. Note that when
called, this function creates, if not already created, the vertical bar
chain complex on algb:

(build-mrph
:sorc (vrtc-bar algb)
:trgt (vrtc-bar algb)
:degr -1
:intr (bar-intr-hrzn-dffr aprd)
:strt :gnrt
rorgn ¢ (bar-hrzn-dffr ,algb))

Final definition of the bar of an algebra

To define completely the bar chain complex, we have to provide the lisp
function for the differential d, + dj, and, once created the vertical bar chain
complex, we have to call the building function build-chcm with adequate
arguments.

bar-intr-dffr vric-dffr hrzn-dffr [Function]
Define the lisp function for the differential d, + dj, from the two
morphisms vrtc-dffr and hrzn-dffr. For efficiency reasons, the im-
plementor has chosen to define this new function rather than to use
simply the addition of two morphisms.

bar algebra [Method]
Build first the vertical bar chain complex on the algebra. Then
return a chain complex with the same slots as the vertical bar chain
complex but with new :intr-dffr and :orgn slots, as shown in
the following definition:

(defmethod BAR ((algebra algebra))
(let ((vrtc-bar (vrtc-bar algebra))
(bar-hrzn-dffr (bar-hrzn-dffr algebra)))
(declare (type chain-complex vrtc-abr hrzn-bar))
(the chain-complex
(build-chcm
:cmpr (cmpr vrtc-bar)
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:basis (basis vrtc-bar)

:bsgn +null-abar+

rintr-dffr (bar-intr-dffr (dffr vrtc-bar)
bar-hrzn-dffr)

istrt :gnrt

torgn ‘(add ,vrtc-bar ,bar-hrzn-dffr)))))

We postpone the examples for the bar of an algebra, up to the chapter on
simplicial groups where we shall build interesting examples of algebras.
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6.4 Other functions for the bar construction

The vertical bar construction is natural and therefore defines a functor.
Consequently, the Kenzo program contains the following methods.

vrtc-bar mrph [Method]
From the morphism mrph, build a new morphism between the
vertical-bar of the source of mrph and the vertical bar of the target
of mrph, the morphism itself being induced in a natural way by the
underlying morphism.

vrtc-bar rdct [Method]
From the reduction rdct, build a new reduction, by applying the
vertical bar method to the functions f and g. The new homotopy
cannot be obtained so simply, being a function of the f, g and h of
rdct. Nevertheless, the source and target of the new homotopy are
the vertical bar of the underlying homotopy.

vrtc-bar hmeq [Method]
Build a homotopy equivalence by applying the vertical bar cons-
truction to the left and right reductions of the homotopy equiva-
lence hmeg.

bar hmeq [Method]
Build a homotopy equivalence where the bar construction is applied
to the underlying homotopy equivalence in the following way. First
this construction is limited to the case where the left bottom chain
complex of hmeq is an algebra. Then the vertical bar construction
is applied to hmeq and the horizontal differential of the left bottom
chain complex is propagated upon the new homotopy equivalence
with the help of the method add. In other words, starting from
the left bottom chain complex, firstly the easy pertubation lemma
is applied to obtain a new differential on the top chain complex;
then the basic perturbation lemma is applied to the right reduction.
If hmeq is a trivial homotopy equivalence, this function returns a
trivial one, built on the bar of the left bottom chain complex of
hmeg.

Lisp files concerned in this chapter

algebras.lisp, bar.lisp.
[classes.lisp, macros.lisp, various.lisp].



Chapter 7

Simplicial Sets

7.1 Introduction

A simplicial set' K is a union K = U K, where the KY are disjoints sets,
q>0
together with functions

o K1 — KT ¢>0, i=0,...,q,
ng:Kq—>Kq+1, qg>0, 1=0,...,q,

subject to the relations

ol = oo, i<y
nftal = gl i
oyt = gitiof, i<
8;1“773 = ;-’Ifn;’ Identity,
ortln? = 7oL, >+l

An element of K7 is an (abstract) g-simplex of K and the functions 0 and 7
are respectively the face operators and the degeneracy operators. Formally,

'Hilton & Wylie, Homology theory, Cambridge University Press, 1967

114
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their action on a simplex is very simple. For instance, if a g—simplex is an
ordered set of vertices, like {vg,v1,...,v;,...,v4}, the rules are the following
(we omit the indication of the dimension of the simplex):

ai{IUOavla sy Uy e ’vq} = {’l)(), U1y---5Vi-1,Vit1,--- avq}a

Ni{vo,v1, .., Viy. ., 0 = {V0,01,..., Vi, Vi, ..., Vg )
The operators 9] will be used hereafter to define the boundary operator d¢
for the g—component of the associated chain complex:

q

d?="> (1)1

=0
The image of a simplex under some 7 is called degenerate, because it is not
directly implied in the realization of the simplicial set.

Example

Let us take the small example diabolo from the chapter 1. For a better
understanding, it is convenient to use a list representation for the simplices.
So the set K° of 0-simplices (vertices) is:

{(0), (1), ... (3)}-
The set K! of 1-simplices contains the set of regular simplices:

{(01),(02),(12),(23),(34),(35),(45)},

but also the degenerate 1- simplices:

{(00),(11),(22),...,(55)}

The set K2 of 2-simplices contains the regular singleton:
{345)}
but also the degenerate 2—simplices:
{(000),...,(655),(001),(002),(112),...,(455)}.

The sets K? (g > 2) contain only degenerate simplices. With this naming of
the elements of a g—simplex, the action of 3 and 7 is now clear. For instance

(0 1) = (1), 0:(0 1) = (0),
no(01)=(001), nm(12)=(122), 72(345)=(34505).

By the way, we see that a simplex is non-degenerate if the list is strictly
increasing.
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7.2 Notion of abstract simplex in this Lisp imple-
mentation

In this implementation, on account of the essential following property: any
simplexr may be expressed in an unique way as a possibly iterated degeneracy
of a non—degenerate simplex, we call an abstract simplex, (in short absm),
a pair consisting of:

e a (possibly iterated) degeneracy operator,

e a “geometric” simplex, i.e. a non-degenerate simplex.

For instance, if o is a non-degenerate simplex, and ¢’ is the degenerate
simplex 73m10, the corresponding abstract simplices are respectively {0, o}
and {n3n1,0}.

An abstract simplex is represented internally in the system by the following
lisp object:

(:absm dgop . gmsm)
where,

1. dgop is a non-negative integer coding a strictly decreasing integer list.
This strictly decreasing list of integers represents a sequence of 7 ope-
rators and is coded as a unique integer with the following convention:
a number i in the sequence is the 7 + 1-th binary bit of a machine
word. The null list is coded as the number 0 whereas the list (0),
i.e. the ny operator, is coded as the integer 1, etc. Two functions are
provided to help the user for the transformation in both directions.

2. gmsm is a geometric simplex, i.e. any kind lisp object modelizing a
non—degenerate simplex. For practical reason, a type GMSM, (any kind
of lisp object), has been defined.

The simplest constructor is the macro (absm (dgop-ext-int dgop-list)
gmsm), where dgop-list is a strictly decreasing integer list. A type ABSM
has been defined. The associated printing method prints such an object
under the form:

<AbSm ezi-dgop gmsm>

where ezt-dgop shows clearly the sequence of the operators 7); (see the exam-
ples). The accessor functions for the components are the macros dgop and

gmsm.
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7.2.1 Simple functions for abstract simplices

dgop-ext-int ezxi-dgop [Function]
Code on an integer the valid list representing the degeneracy ope-
rator ezxt-dgop.

dgop-int-ext dgop [Function]
Give the list representing a degeneracy operator from the integer
dgop.

absm dgop gmsm [Macro]

Create an abstract simplex, using directly the coded representation,
dgop, of the degeneracy operator.

dgop absm [Macro]
Get the integer code of the internal representation of the degeneracy
operator of the abstract simplex absm.

gmsm absm [Macro]
Get the basic non-degenerate simplex part of the abstract simplex
absm.

absm-p object [Predicate]

Test if object is an abstract simplex.

Examples

Let us suppose that :sigma “is” a geometric simplex, we may construct the
abstract simplices of the beginning of the section.

(dgop-ext-int ’(0) ) ==>

1

(dgop-ext-int ’(4 0) ) ==>

17

(dgop-int-ext 63) ==>

(643210

(dgop-ext-int (2 2)) ==>

Error: In DGOP-EXT-INT, the external dgop (2 2) is not decreasing.

(setf asigma (absm O :sigma)) ==>

<AbSm - SIGMA>
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(setf asigma-prime (absm (dgop-ext-int °(3 1)) :sigma)) ==>
<AbSm 3-1 SIGMA>
(absm-p asigma-prime) ==>

T

The following command gives the sixth degeneracy of the vertex 0 repre-
sented as (0).

(setf deg-6 (absm (dgop-ext-int (5 4 3 2 1 0)) ’(0))) ==>
<AbSm 5-4-3-2-1-0 (0)>

(dgop deg-6) ==>

63

(gmsm deg-6) ==>

(0)

7.3 Representation of a simplicial set

A simplicial set is implemented as an instance of the class STMPLICIAL-SET,
subclass of the class COALGEBRA.

(DEFCLASS SIMPLICIAL-SET (coalgebra)
((face :type face :initarg :face :reader facel)))

This class inherits also from the class CHAIN-COMPLEX and has one slot of
its own:

face, a lisp function computing any face of any geometric simplex of the
simplicial set. This is a function with 3 arguments: a face index (a
non-negative integer, indx), a simplex dimension (a positive integer,
dmns) and a geometric simplex (gmsm), the indx—th face of which is
looked for. Whatever the face simplex is, degenerate or not, the sim-
plex returned by this function must be an abstract simplex, i.e. an
ABSM object.

A printing method has been associated to the class SIMPLICIAL-SET and the
external representation of an instance is a string like [Kn Simplicial-Set],
where n is the number plate of the Kenzo object.
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7.4 The function build-smst

To facilitate the construction of instances of the class SIMPLICIAL-SET, the
software Kenzo provides the function build-smst defined with keyword pa-
rameters:

build-smst
:cmpr cmpr basis basis :bspn bspn :face face
:face* face* :intr-bndr intr-bndr :bndr-strt bndr-strt
:intr-dgnl intr-dgnl :dgnl-strt dgnl-strt :orgn orgn

The returned value is an object of type SIMPLICIAL-SET. This function
assigns an identification number idnm to the Kenzo object instance in a
sequential way and pushes this object on the list of already created simplicial
sets instances, *smst-1istx*.

The keywords parameters are:

— cmpr, a comparison function for generators.

— basis, if the simplicial set is effective, this argument must be the lisp
function returning the list of non-degenerate simplices of the simplicial
set, in a given dimension; if the simplicial set is locally effective, this
argument must be the keyword :locally-effective.

— bspn, the lisp representation of the base point (an item of type GMSM).
This is in fact the slot bsgn of the associated chain complex.

— face, a lisp function for the face operators.

— face*, a lisp function for the face operators, returning the symbol
:degenerate if the corresponding face is degenerate.

— 4ntr-bndr, a lisp function for the differential of the associated chain
complex.

— bndr-strt, the strategy (:cmbn or :gnrt) for the function intr-bndr.
— intr-dgnl, a lisp function for the coproduct of the coalgebra.
— dngl-strt, the strategy (:cmbn or :gnrt) for the function intr-dgnl.

— org, the comment list, adequately chosen.
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The three arguments face*, intr-bndr and intr-dgnl are not mandatory. Only
the function face is necessary to define precisely the simplicial set. From the
function face, we know that we may construct:

e The differential for the associated chain complex, according to the
formula :

q
d?=>"(-1)'d%.
1=0

e The coproduct of the underlying coalgebra (the Alexander-Whitney
diagonal, A) according to the formula:

Ao) = 2 9o @ 5(()i)0,
=0

where the power (i) denotes the i-th composition of the operator and
¢ is the last face operator, so that

6(1) = n—i+1 Q== O&n—l Odn-

But, as the differential ignore degenerate faces, it may be interesting for the
user to provide a face function, weaker than the function face but sufficient
and more efficient to compute the boundary of a simplex. It is the raison
d’étre of the parameter face* which may be used as an alternative to face.
In both cases, the strategy is set to :gnrt by the system. It may also arrive
that the user knows a particularly simple form for the differential, he may
then use the parameter intr-bndr. In the computation of differentials in the
associated chain complex, this function will be used instead of the canonical
differential computed from the face function. In this last case, the user is
required to provide the strategy. Same remark for the parameter intr-dgnl.

Examples

As first example, we give the construction of the simplicial set A™ correspon-
ding to the standard n-simplex. This is given only as example. The program
Kenzo provides a function for the same purpose which will be described later.
For every simplex, we shall use a list representation as in our first example
diabolo. The various keyword arguments for the call to build-smst, are:
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5.

. bspn, the list (0), i.e. the representation of the vertex 0.

cmpr, the lisp function #’1-cmpr, since this function is adequate to
compare the lists representing the simplices.

basis, the lisp function returning the list of all possible non—degenerate
simplices in some dimension. Here, this is the combinatory function
returning the set of all the lists of p + 1 objects taken among n + 1.
Such a function is for instance the function (delta-inj p n) whose
definition is given hereafter. So, the :basis keyword argument is
simply:

#’ (lambda(dmn) (delta-inj dmn n)).
Note that here, n is a global parameter.
face, the lisp function for the face operators (face-delta-n). It con-

sists simply in removing the i—th element of the list describing a sim-
plex (i starting at 0).

org will be a comment.

(defun delta-inj (m n)
(declare (type fixnum m n))
(cond ((> m n) +empty-list+)

((zerop m) (mapcar #’list (<a-b> 0 n)))
(t (mapcan #’(lambda (list)
(declare (type list list))
(mapcar #’(lambda (k)
(declare (type fixnum k))
(cons k list))
(<a-b< 0 (first list))))
(delta-inj (1- m) n)))))

(delta-inj 0 3) ==>

((0) (1) (2) 3N

(delta-inj 1 3) ==>

((0 1) (02) (03) (12) (13 (23))

(delta-inj 3 3) ==>

((0123))
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(setf face-delta-n
#’ (lambda(i dmn gsm)
(declare(ignore dmn))
(absm 0 (append (subseq gsm O i)
(subseq gsm (1+ i))) )))

To create A™ for any order n, we embed the call of build-smst in a function
having n as parameter.

(defun delta-n(n)
(declare (type fixnum n))
(build-smst :cmpr #’1l-cmpr
:basis #’ (lambda(dmn) (delta-inj dmn n))
:bspn ’ (0)
:face face-delta-n
rorgn ‘(delta-n ,n))) ==>

DELTA-N

(setf deltad (delta-n 4)) ==>

[K3 Simplicial-Set]

(bspn deltad) ==>

(0)

(basis delta4 0) ==>

(0 @1 (@2 3 @)

(basis deltad 3) ==>

((0123) (0124) (0134) (0234) (1234))

A second example is the contruction of the simplicial complex AN freely gen-
erated by the positive integers. The construction of the SIMPLICIAL-SET
instance to implement this simplicial set is quite similar to that of A™, but in

this case the :basis keyword argument is the keyword :locally-effective,
since the sets K¢ are infinite. Whence, the definition of AN:

(setf delta-infty
(build-smst :cmpr #’l-cmpr
:basis :locally-effective
:bspn ° (0)
:face face-delta-n
rorgn ‘(delta-infinity)))
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A third example is the construction of the simplicial set corresponding to
diabolo. This simplicial set is a sub-complex of A2, The :face function is
exactly the same as in the examples above and the :basis function returns
the sub—simplices of diabolo, by enumeration.

(setf diabolo-ss
(build-smst :cmpr #’l-cmpr
:basis #’(lambda (dmn)
(case dmn

(0 > ((0) (1) (2) (3) () (5)))
(1 (00 1) 2)1 2)(2 3)(3 4(3 5)(4 5)))
(2 ((3 4 5)))))

:bspn ’ (0)

:face face-delta-n

torgn ’(simplicial set for diabolo)))
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7.5 A first set of helpful functions on simplicial
sets

We give now a first set of functions, methods or macros acting on simplicial
set instances.

cat-init [Function]

smst

cmpr

bspn

bndr

dgnl

face

Clear in particular *smst-1ist*, the list of user created simplicial
sets and reset the global counter to 1.

n [Function]
Retrieve in the list *smst-1ist* the simplicial set instance whose
the Kenzo identification is n. If it does not exist, return NIL.

smst absml1 absm?2 [Macro]
Compare the abstract simplices absm! and absm2 with the com-
parison function associated with the simplicial set smst.

smst [Macro]
Return the base point of the simplicial set smst.

smst &rest [Macro]
Identical to the macro dffr (see the chain complex chapter). For
simplicial sets, it is more traditional to use the term boundary.
smst &rest [Macro]

Identical to the macro cprd (see the coalgebra chapter). For sim-
plicial sets, this recalls the Alexander-Witney diagonal.

smst i k gmsm-or-absm [Macro]
Versatile macro to apply the face operator Gf on the simplex gmsm-
or-absm of the simplicial set smst. The name of the simplex pa-
rameter shows clearly that it may be either a geometric simplex or
an abstract simplex. With only one argument (smst), return the
function face. In any other case, we recall that this application
returns always an object of type ABSM.

degenerate-p absm [Macro]

Return t if the abstract simplex asm is degenerate, nil otherwise.

non-degenerate-p absm [Macro]

Return t if the abstract simplex asm is non-degenerate, nil other-
wise.

check-smst smst dmnsl &optional dmns2 (1+ dmnsi) [Function]

Return t if the fundamental relations between the face operators 8{“
with k = dmnsl,...,dmns2 — 1, applied on the effective simplicial
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set smst, are satisfied, otherwise nil. If the optional parameter
dmns?2 is omitted, the test is done only for k = dmnsl.

Examples

After having created instances of the standard simplicial sets A% and A3
(AN has been defined previously), let us test some simple functions. Note
that, since the class of simplicial sets is a sub-class of the class of coalgebras,
itself subclass of chain complexes, the functions defined on these classes are
available.

(setf delta2 (delta-n 2)) ==>

[K8 Simplicial-Set]

(setf delta3 (delta-n 3)) ==>

[K9 Simplicial-Set]

(degenerate-p (absm 0 ’(1 2 3))) ==>

NIL

(degenerate-p (absm 5 (0 1 2 3 4))) ==>

T

(basis delta3 2) ==>

(012 (013) (023 (123))

(basis delta2 0) ==>

) 1 @)

The set of simplices in any dimension for the simplicial set A" is infinite:
(basis delta-infty 1) ==>

Error: The object [K3 Simplicial-Set] is locally-effective.

Let us test the face function. We see that, though delta-infty is locally
effective, nevertheless, we may work with its simplices:

(face delta-infty 2 4 (0 1 2 3 4)) ==>

<AbSm - (0 1 3 4)>
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(face delta-infty 2 4 (absm 0 (0 1 2 3 4))) ==>

<AbSm - (0 1 3 4)>

(face delta-infty 2 5 (absm (dgop-ext-int ’(1)) (0 1 2 3 4))) ==>
<AbSm - (0 1 2 3 4)>

(face delta-infty 2 5 (absm (dgop-ext-int ’(3)) (0 1 2 3 4))) ==>
<AbSm 2 (0 1 3 4)>

(bspn delta-infty) ==>

0)

The two following statement show that delta-infty may be considered also
as a coalgebra and a chain complex.

(cprd delta-infty 4 °(0 1 2 3 4)) ==>

-- -— e {CMBN 4}
<1 * <TnPr (0) (0 1 2 3 4)>>

<1 * <TnPr (0 1) (1 2 3 4)>>

<1 * <TnPr (0 1 2) (2 3 4)>>

<1 % <TnPr (0 1 2 3) (3 4)>>

<1 * <TnPr (0 1 2 3 4) (4)>

(? delta-infty 4 (0 1 2 3 4)) ==>

- — . {CMBN 3}

<1 * (012 3)>
<-1 % (012 4)>
<1 * (013 4)>
<-1 % (0 2 3 4)>
<1 * (1 23 4)>

The simplicial set diabolo-ss, has also all the properties of a coalgebra and
of a chain complex.

(basis diabolo-ss 1) ==>
((01) (02) (1 2) (23) (34) (35) (45)

(basis diabolo-ss 2) ==>
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((3 4 5))

(? diabolo-ss 2 (first *)) ==>

<1 * (3 4)>
<-1 * (3 5)>
<1 * (4 5)>

(? diabolo-ss *) ==>

(dgnl diabolo-ss **) ==>

<1 * <TnPr (3) (3 4)>>
<-1 * <TnPr (3) (3 5)>>
<1 * <TnPr (4) (4 5)>>
<1 * <TnPr (3 4) (4)>>
<-1 * <TnPr (3 5) (5)>>
<1 * <TnPr (4 5) (5)>>

127

{CMB 1}

{CMBN 1}
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7.6 The function build-finite-ss

The function build-finite-ss is a powerful function simplifying the cre-
ation of a finite simplicial set. From the lisp point of view, it accepts only
one argument, the structured list of the simplices and their faces. In this
list, every non—degenerate simplex must be coded as a symbol given by the
user. The structure of the list is the following:

e 0 (in fact, optional)

<Sequence of the vertices, the first item being the base point>,

o1

<Sequence of description of simplices in dimension 1>,
° 2

e <Sequence of description of simplices in dimension 2>,

en
e <Sequence of description of simplices in dimension n>.

where <Sequence of description of simplices in dimension k> is a sequence
of the following items:

1. A symbol, the symbolic name of the simplex.

2. A list of faces of this simplex, describing the faces of the simplex. A
face can be described in two ways:

— a symbol, the symbolic name of a non-degenerate simplex com-
posing itself the face.

— or a list of the form (ig 451 ... 71 9o symbol) meaning that the de-
generacy 1;,7i,_, - - - i, M, 15 to be applied to the non-degenerate
simplex of name symbol to produce the actual (possibly degen-
erate) face. If the simplex face has dimension 0 (a vertex), the
name of this vertex is sufficient in the face description because
the program computes itself the unique possible degeneracy of
the vertex, i.e. ng_o...170-
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Examples

Let us give some examples to clarify the use of build-finite-ss. In the first
example, we use build-finite-ss to create a simplicial complex, corres-
ponding to a triangulation of the torus. As the faces are never degenerated,
the description of the faces is of simplified form.

0 1 2 0
4 4
5
6
3 3
0 1 2 0

The vertices will be named v0, v1, ..., v6, vO being the base point. The
edges will be named e01, €02, ..., e56, the list of faces of the edge ¢;; being
(vj ;). The triangles will be named t013, t015, ..., t456, the list of faces of
the triangle ¢;;, being (ejx e;; €;;). With this convention of describing the
simplices, the call to build-finite-ss is in simplified form:

(setf torus2
(build-finite-ss
’(vO vl v2 v3 v4 v5 v6

1 e01 (vl v0) e02 (v2 v0) e03 (v3 v0)
e04 (v4 v0) e05 (v5 v0) e06 (v6 v0)
e12 (v2 v1) el3 (v3 vi) eld (v4 vi)
el5 (v5 vl) el6 (v6 vl) e23 (v3 v2)
e24 (v4 v2) e25 (vb v2) e26 (v6 v2)
e34 (v4d v3) e35 (v5 v3) e36 (v6 v3)
e45 (v5 v4) ed6 (v6 v4) e56 (v6 vb)

2 t013 (el3 €03 e01) t015 (el5 e05 e01) 1024 (e24 e04 e02)
t026 (e26 e06 e02) t036 (e36 e06 e03) t045 (e45 e05 e04)
t125 (e25 el5 el2) 126 (e26 el6 el12) +134 (e34 eld el3)
t146 (ed6 el6 el4) t234 (e34 e24 e23) t235 (e35 e25 e23)
t356 (e56 e36 e35) t456 (e56 e46 e45) )))
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Checking the O-simplices...
Checking the 1-simplices...
Checking the 2-simplices...
[K1 Simplicial-Set]

After verification of the coherence of the description of the faces, the function
build-finite-ss calls adequately the function build-smst to create an
instance of the class SIMPLICIAL SET subclass of the class CHAIN COMPLEX.
So that, it is easy for the user to obtain the homology groups of the torus,
for instance in dimension 1:

(chcm-homology torus2 1) ==>
Homology in dimension 1:
Component Z

Component Z

The function build-finite-ss calls internally some verification functions
mentioned above to verify the coherence of the description of the simplicial
set and gives an error message if the description of the simplicial set is
incorrect. For instance:

(setf mm (build-finite-ss
’(s0 s1 s2 s3
1 0-1 (s1 s0) 1-2 (s2 s1) 2-3 (s3 s2)
2 0-1-2 (2-3 1-2 0-1))
)

Checking the O-simplices...

Checking the 1-simplices...

Checking the 2-simplices...

Error: Noncoherent boundary operators detected by CHECK-FACES :
Simplex => <AbSm - 0-1-2>

del_O0 o del_O => <AbSm - S3>

del_O o del_1 => <AbSm - S2>

In the following examples, we show the power of build-finite-ss for the
description of classical surfaces as simplicial sets, and in each case we verify
the well known homology groups of those surfaces. The examples of the torus
or the dunce-hat must be compared, as to the simplicity of the definition,
to the respective ones in the previous page and in the Homology chapter.
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vl el vl
1 2
to 3
e0 A A e0
t1
0 0 . 1
vO e2 v0
Cylinder

(setf cylinss (build-finite-ss

’(v0 vi

1 e0 (vl v0) el (vl v1) e2 (vO v0) e3 (vi v0)

2 t0 (el e3 e0) t1 (el e3 e2)) ))

[K2 Simplicial-Set]

==>

(dotimes (i 3) (chcm-homology cylinss i)) ==>

Homology in dimension O :

Component Z

Homology in dimension 1 :

Component Z

Homology in dimension 2 :

---done---

131
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vl el vO0
1 2
1
to 3
eO‘\ e0
t1

0 0 . 2

vO e2 vl
Moebius band

(setf moebiuss (build-finite-ss
> (vO vi
1 e0 (vl v0) el (vO v1) e2 (vl v0) e3 (vO vO)
2 t0 (el e3 e0) t1 (e0 e2 e3)) )) ==>
[K3 Simplicial-Set]
(dotimes (i 3) (chcm-homology moebiuss i)) ==>
Homology in dimension O :
Component Z
Homology in dimension 1 :
Component Z

Homology in dimension 2 :

---done---
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v0 el v0
>
1 2 5
to 02
e0 A A e0
[
0 1
0 -
vO el v0
Torus

(setf toruss (build-finite-ss
?(v0

1 e0 (vO v0) el (vO v0) e2 (vO vO)

2 t0 (el e2 e0) t1 (el e2 el)) )) ==
[K4 Simplicial-Set]
(dotimes (i 3) (chcm-homology toruss i)) ==>
Homology in dimension O :
Component Z
Homology in dimension 1 :
Component Z
Component Z
Homology in dimension 2 :

Component Z

---done---
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vO el vO
—
1 2
t0 02
eOA e0
t1l
0
0 -
vO el vO
KLEIN Bottle
(setf bottless (build-finite-ss
’ (vO
1 e0 (vO v0) el (vO v0) e2 (vO vO0)
2 t0 (el e2 e0) t1 (e0 el e2)) )) ==
[K5 Simplicial-Set]
(dotimes (i 3) (chcm-homology bottless i)) ==>

Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z/2Z

Component Z

Homology in dimension 2 :

—-—--done-——

134
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Projective Plane

(setf ppss (build-finite-ss
7( *
1 e (x %)
2t (e *e)))) ==>
[K6 Simplicial-Set]
(dotimes (i 3) (chcm-homology ppss i)) ==>
Homology in dimension O :
Component Z
Homology in dimension 1 :
Component Z/2Z

Homology in dimension 2 :

---done---

The user will note that the list of faces for the 2-simplex t, is in simplified
form. In particular, as the face 1 of t is the O—degeneracy of the base point
“x” it is sufficient to code the face 1 of t by “*” instead of the complete
form (0 *).
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oY

Dunce Hat

(setf duncess (build-finite-ss
2( %
1 e (x %)
2t (eee)))) ==
[K7 Simplicial-Set]
(dotimes (i 3) (chcm-homology duncess i))
Homology in dimension O :
Component Z
Homology in dimension 1 :

Homology in dimension 2 :

---done---

==>

136
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7.7 Special simplicial sets

The system provides useful functions to create interesting simplicial sets
of constant usage. In particular, the user is advised from now to use the
following version of the standard simplex implemented in Kenzo and not the
one given previously for simplicity reason.

7.7.1 The standard simplex

delta dmns [Function]
Create the standard simplex A™ with vertices 0,1,...,n, where
dmns is the parameter for n. This simplicial set is so important
in the applications that the implementor has decided to code the
simplices in a way similar to the coding of the degeneracy opera-
tors. An increasing sequence of non-negative integers describing a
simplex, is coded on a binary integer with the following convention:
a number ¢ representing the vertex 7 is the (¢ + 1)—th binary bit of
a machine word. The base point 0 is the bit 1 in position 1 of the
word. This representation is very efficient for saving memory space
but somehow awkward to read.

delta-infinity [Function]
Create the locally effective standard simplex AN freely generated
by the positive integers.

deltab [Function]
Create the locally effective reduced simplicial set A, built from
AN by identifying all the vertices to the base point.

deltab2 [Function]
Create the locally effective 1-reduced simplicial set A, obtained
from the above A, by identification of all the edges with the base
point. This is the efficient version of the coalgebra that is used as
example in the cobar chapter.

dlop-ext-int ext-dlop [Function]
Code on an integer the valid list (increasing order) representing the
simplex ext-dlop of the standard simplex.

dlop-int-ext dgop [Function]
Give the list representing a simplex of the standard simplex from
the integer dgop.
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vertex-i absm i [Function]
Give the i-th vertex of the (coded, degenerate or not) abstract
simplex absm belonging to a simplicial set of the A family.

absm-ext-int vlist [Function]
Create a valid abstract simplex of the A family from the simplex
vlist written as a non-decreasing list of non—negative integers (i.e
coding of any degenerate or non—degenerate simplex of the A fa-
mily).

absm-int-ext absm [Function]
From an internal coded form of an abstract simplex of the A family,
create the non-decreasing list of non—negative integers representing
the canonical external form of such a simplex.

soft-delta dmns [Function]
Create another version of the standard simplex A™ designed for a
better clarity in the printing of the results at testing time. More
precisely, the simplices are represented internally by a list of the
form (:delt binary-code). With this representation, the system is
able to recognize a coded simplex and to print it in a readable form.
For the user, the only requirement is to write a simplex coded n as
(d n), where d is the macro building the internal representation
(see the examples). Attention: the above conversion functions do
not work with this representation.

soft-delta-infinity [Function]
Create another version of the locally effective standard simplex AN
(see the function soft-delta above).

Examples

(setf d3 (delta 3)) ==>
[K8 Simplicial-Set]

The simplices 2, 4 and 8 are the coded representation of the vertices 1, 2
and 3:

(cmpr d3 2 4)

n
I
v

:LESS
(cmpr d3 4 4) ==>

:EQUAL
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(cmpr d3 8 4) ==>

:GREATER

The list returned by the following statement getting the basis of A® in
dimension 2, namely (7 11 13 14) is in fact the coded list of the following
simplices ((0 1 2) (01 3) (02 3) (1 2 3)).

(basis d3 2) ==>
(7 11 13 14)

In the following statement, the integer 21 represents the simplex in dimen-
sion 2, (0 1 4), 1 represents the operator 0; and the face is therefore (0
4) represented as the integer 17.

(face d3 1 2 21) ==>

<AbSm - 17>

We may obtain the same result, using:
(face d3 1 2 (dlop-ext-int (0 1 4))) ==>
<AbSm - 17>

Let us test the conversion functions.

(vertex-i (absm 0 1) 0) ==>
0
(vertex-i (absm 1 1) 0) ==>
0
(vertex-i (absm 1 1) 1) ==>
0

(vertex-i (absm 0 7) 2) ==>

2

(absm-ext-int (0 0 01 2 3 3 3)) ==>

<AbSm 6-5-1-0 15>

(absm-ext-int (0 1 11 2)) ==>
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<AbSm 2-1 7>
(absm-int-ext (absm-ext-int (0 0 0 1 2 3 3 3))) ==>

(00012333

The following call to the macro ? returns the boundary of the simplex (0 2
3) of A3, the integers 5, 9 and 12 representing respectively the simplices (0
2), (0 3) and (2 3). The application of the coproduct dgnl to the simplex
(0 1 2 3), coded 15, is also easily interpreted:

(7 43 2 13)

- e {CMB 1}
<1 * 5>
<-1 * 9>
<1 % 12>

(dgnl d3 3 15) ==>

- e e {CMBN 3}
<1 <TnPr 1 15>>
<1 <TnPr 3 14>>
<1 <TnPr 7 12>>
<1 <TnPr 15 8>>

* K K *

We may show now some examples with the soft version of the standard
simplex. Using the macro d and the function dlop-ext-int the user may
work with a readable form of the simplices and the degeneracy operators.

(setf d3 (soft-delta 3)) ==>
[K10 Simplicial-Set]

(cmpr d3 (d 2) (d 4)) ==>
:LESS

(basis d3 1) ==>

(0-1 0-2 1-2 0-3 1-3 2-3)
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(dgnl d3 3 (d (dlop-ext-int (0 1 2 3))))

141

<1 * <TnPr 0 0-1-2-3>>
<1 * <TnPr 0-1 1-2-3>>
<1 * <TnPr 0-1-2 2-3>>
<1 * <TnPr 0-1-2-3 3>>

(face d3 1 2 (d (dlop-ext-int (0 2 4))))

<AbSm - 0-4>

(? d3 2 (d (dlop-ext-int (0 2 3))))

<1 * 0-2>
<-1 * 0-3>
<1 * 2-3>

{CMBN 3}

{CMBN 1}
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7.7.2 Spheres, Moore spaces and projectives spaces

sphere n [Function]
Create a simplicial set, a model for the sphere of dimension n,
(n > 0). This is a typical example where the differential is known
a priori to be null, so the : intr-bndr keyword parameter is set to
function zero-pure-dffr. This function generates a name Sn for
the unique simplex of dimension n whose faces are the degeneracies
of the base point labelled “*”.

sphere-wedge dmnsl ... dmnsn [Function]
Create a simplicial set for the wedge of spheres. Here, the dmns; are
integers, namely the dimensions of the spheres to be wedged. The
differential is null. In the representation created by the software,
the O—simplex (base point) is labelled “¥” and in dimension p the

simplexes are labelled Sp-1, ..., Sp-s, where s is the number of
spheres of dimension p in the wedge. (See the example).
moore p n [Function]

Construct a simplicial set, a model for Moore(Z /pZ,n). The inte-
gers p and n must satisfy the conditions p > 1, n > 2p—4, otherwise
the result is undefined. Moore(Z /pZ,n) is a space, whose the only
non-null homology groups are Hy = Z and H,, = Z/pZ. A Moore
space has only three non—degenerate simplices, namely in dimen-
sion 0, n and n+ 1. A number p of faces of the (n + 1)-simplex are
identified with the n—simplex, the others faces being contracted on
the base point. In the representation created by the software, the
O-simplex (base point), the n—simplex and the (n + 1)-simplex are
respectively labelled “*”, Mn and Nn', where n’ = n + 1.

R-proj-space &optional k [ [Function]
If £ = 1 or omitted, build a simplicial set model of K (Z9,1) = P°R.
In dimension n, this simplicial set has only one non-degenerate
simplex, namely the integer n. The faces of this non-degenerate
simplex n are given by the following formulas: dyn = d,n =n —1
and for 7 # 0 and i # n, On = ni—1(n —2). If £ > 1, build an
analogous simplicial set but with no simplices in dimensions 1 <
m < k. If in addition to k the argument I, (I > k), is provided, build
an analogous simplicial set but with no simplices in dimensions
m > 1.



CHAPTER 7. SIMPLICIAL SETS 143

Examples

Let us define first, an auxiliary function show-structure with 2 arguments
ss and dmn, to show the structure (i.e. generators and faces) of the simplicial
set ss, from the dimension 0 up to the dimension dmn included.

(defun show-structure (ss dmn)
(dotimes (i (1+ dmmn))

(format t "~2YDimension = "D :" i)

(case i
(0 (format t "~2)~8TVertices : ~8T~A" (basis ss 0)))
(otherwise

(dolist (s (basis ss 1i))
(format t "~2%~8TSimplex : ~A"2/"16TFaces : ~A"
s (mapcar #’(lambda (j) (face ss j i s))
(<a-b> 0 i)))))
»)

In these elementary examples, we show the structure of some simplicial sets
built from the functions above. Let us begin with S2.

(setf s2 (sphere 2)) ==>
[K11 Simplicial-Set]
(bspn s2) ==>

*

Applying the function basis, we see that the only non-null simplices are in
dimension 0 and 2.

(dotimes (i 4) (print (basis s2 i))) ==>

(*)
NIL
(s2)
NIL

In dimension 2, the 3 faces of the simplicial set are all the degeneracy 79 of
the base point.

(mapcar #’(lambda(i)(face s2 i 2 ’s2)) (01 2)) ==>
(<AbSm 0 *> <AbSm O *> <AbSm 0 *>)
(face s2 5 7 (absm (dgop-ext-int (5 3 1 0)) ’s2)) ==>

<AbSm 3-1-0 S2>
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(face s2 2 7 (absm (dgop-ext-int °(5 3 1 0)) ’s2)) ==

<AbSm 4-2-0 S2>

The differential of the simplex s2 in dimension 2 is of course the null com-
bination of degree 1:

(? s2 2 ’s2) ==

Now, let us see the stucture of S, using our auxiliary function show-structure.
(setf s3 (sphere 3)) ==>

[K12 Simplicial-Set]

(show-structure s3 3) ==

Dimension = 0 :

Vertices : (%)

n
[

Dimension

]
N

Dimension

1]
w

Dimension
Simplex : S3
Faces : (<AbSm 1-0 *> <AbSm 1-0 *> <AbSm 1-0 *> <AbSm 1-0 *>)

The space Moore(2,1) is the projective plane:

n
1l
v

(setf p2 (moore 2 1))
[K13 Simplicial-Set]
(show-structure p2 2) ==
Dimension = 0 :

Vertices : (%)
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Dimension = 1 :
Simplex : M1
Faces : (<AbSm - *> <AbSm - *>)
Dimension = 2 :
Simplex : N2
Faces : (<AbSm - M1> <AbSm O *> <AbSm - M1>)

In the following example, note the identification of p faces of the (n + 1)
simplex with the n—simplex.

(setf sp2r (moore 2 2)) ==
[K15 Simplicial-Set]
(show-structure sp2r 3) ==>
Dimension = 0 :

Vertices : (%)

n
[

Dimension

1]
N

Dimension
Simplex : M2
Faces : (<AbSm O *> <AbSm 0 *> <AbSm 0 *>)
Dimension = 3 :
Simplex : N3

Faces : (<AbSm - M2> <AbSm 1-0 *> <AbSm - M2>
<AbSm 1-0 *>)

Let us see an example of a wedge of spheres:

(setf w (sphere-wedge 3 2 3)) ==>
[K16 Simplicial-Set]

(show-structure w 5) ==
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Dimension = 0 :

Vertices : (%)
Dimension = 1 :
Dimension = 2 :

Simplex : S2-1
Faces : (<AbSm 0 *> <AbSm 0 *> <AbSm 0 *>)
Dimension = 3 :
Simplex : S3-1

Faces : (<AbSm

-0 *> <AbSm 1-0 *> <AbSm 1-0 *>
<AbSm 0

*>)
Simplex : S3-2

Faces : (<AbSm
<AbSm

*> <AbSm 1-0 *> <AbSm 1-0 *>
*>)

1
IS

Dimension

n
(3]

Dimension
(cmpr w ’s3-1 ’s3-2) ==
:LESS

(face w 2 3 ’s3-1) ==>
<AbSm 1-0 *>

(? w 3 ’s3-2) ==
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Let us show now some examples with the simplicial sets generated by the

function R-proj-space.
(setf pl (R-proj-space)) ==

[K20 Simplicial-Set]

(dotimes (i 7) (print(basis pl i)))

()]
6]
(2)
3)
4
(5)
(6)
(show-structure pl 5) ==>
Dimension = 0 :
Vertices : (0)
Dimension = 1 :
Simplex : 1
Faces : (<AbSm
Dimension = 2 :
Simplex : 2
Faces : (<AbSm
Dimension = 3 :
Simplex : 3
Faces : (<AbSm
Dimension = 4 :
Simplex : 4
Faces : (<AbSm

Dimension = 5 :

==>

0> <AbSm

1> <AbSm

2> <AbSm

3> <AbSm

- 0>)

0 0> <AbSm - 1>)

0 1> <AbSm 1 1> <AbSm - 2>)

0 2> <AbSm 1 2> <AbSm 2 2> <AbSm - 3>)
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Simplex : b

Faces : (<AbSm - 4> <AbSm 0 3> <AbSm 1 3> <AbSm 2 3> <AbSm 3 3>
<AbSm - 4>)

(dotimes (i 5) (chcm-homology pl i)) ==
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z/2Z

Homology in dimension 2 :
---done——-—

Homology in dimension 3 :
Component Z/2Z

Homology in dimension 4 :
---done——-—

(setf p2 (R-proj-space 2)) ==
[K21 Simplicial-Set]
(show-structure p2 5) ==>
Dimension = 0 :

Vertices : (0)

]
[

Dimension

1]
N

Dimension
Simplex : 2
Faces : (<AbSm O 0> <AbSm O 0> <AbSm O 0>)

Dimension = 3 :
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Simplex : 3
Faces : (<AbSm - 2> <AbSm 1-0 0> <AbSm 1-0 0> <AbSm - 2>)
Dimension = 4 :
Simplex : 4
Faces : (<AbSm - 3> <AbSm 0 2> <AbSm 1 2> <AbSm 2 2> <AbSm - 3>)
Dimension = 5 :
Simplex : b
Faces : (<AbSm - 4> <AbSm 0 3> <AbSm 1 3> <AbSm 2 3> <AbSm 3 3>
<AbSm - 4>)

(dotimes (i 5) (chcm-homology p2 i)) ==>

Homology in dimension O :
Component Z
Homology in dimension 1 :
---done---
Homology in dimension 2 :
Component Z
Homology in dimension 3 :
Component Z/2Z

Homology in dimension 4 :
---done---

(setf pr3 (R-proj-space 3)) ==>
[K22 Simplicial-Set]

==>

(show-structure pr3 4)

Dimension = 0 :
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Vertices : (0)

n
Jury

Dimension

n
N

Dimension

1]
w

Dimension
Simplex : 3
Faces : (<AbSm 1-0 0> <AbSm 1-0 0> <AbSm 1-0 0> <AbSm 1-0 0>)
Dimension = 4 :
Simplex : 4

Faces : (<AbSm - 3> <AbSm 2-1-0 0> <AbSm 2-1-0 0>
<AbSm 2-1-0 0> <AbSm - 3>)

(dotimes (i 7) (print (7 pr3 i i))) ==>

- -— e {CMBN -1}
N T g
- ——— e {CMBN 1}
- ——e e {CMBN 2}
- e R {CMBN 3}
<2 * 3>

- ——e e {CMBN 4}
- e o {CMBN 5}
<2 * 5>

Let us use now the parameter /, allowing the truncation in the upper dimen-
sions.

(setf p12 (R-proj-space 1 2)) ==>
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[K23 Simplicial-Set]
(show-structure p12 2) ==>
Dimension = 0 :

Vertices : (0)
Dimension = 1 :

Simplex : 1

Faces : (<AbSm - 0> <AbSm - 0>)

Dimension = 2 :

Setting k = [ does not creates something amazing!

(setf p22 (R-proj-space 2 2)) ==>
[K28 Simplicial-Set]
(show-structure p22 2) ==

Dimension = 0 :

Vertices : (0)
Dimension = 1 :
Dimension = 2 :

(setf p47 (R-proj-space 4 7)) ==
[K33 Simplicial-Set]
(show-structure p47 8) ==>

Dimension = 0 :

Vertices : (0)
Dimension = 1 :
Dimension = 2 :
Dimension = 3 :

151
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Dimension = 4 :

Simplex : 4

Faces :

Dimension = 5 :

Simplex : b

Faces :

Dimension = 6 :

Simplex : 6
Faces :
Dimension = 7 :
Dimension = 8 :

(<AbSm
<AbSm

(<AbSm
<AbSm

(<AbSm
<AbSm

2-1-0 0> <AbSm 2-1-0 0> <AbSm 2-1-0 0>
2-1-0 0> <AbSm 2-1-0 0>)

- 4> <AbSm 3-2-1-0 0> <AbSm 3-2-1-0 0>
3-2-1-0 0> <AbSm 3-2-1-0 0> <AbSm - 4>)

- 5> <AbSm 0 4> <AbSm 1 4> <AbSm 2 4>
3 4> <AbSm 4 4> <AbSm - 5>)
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7.8 Cartesian product of simplicials sets

Let X and Y be two simplicial sets, the construction of X x Y is based on
the very definition (X xY),, = X,, xY,, where X,,, Y, and (X xY'),, are the
possibly degenerate simplices of X, Y and X x Y respectively. A simplex of
the product X x Y is characterized by its projections on the factors X and
Y.

The non-degenerate simplices of X X Y are represented internally in the
system by a lisp object of the form:

(:crpr (dgopl.gmsmli) . (dgop2.gmsm2))
where,
1. dgopl is an integer representing a coded degeneracy operator.

2. gmsmi is a non-degenerate simplex of X, to which is applied the de-
generacy operator dgopl.

3. dgop?2 is an integer representing a coded degeneracy operator.

4. gmsm?2 is a non-degenerate simplex of Y, to which is applied the de-
generacy operator dgop2.

This object must be a non—degenerate simplex of X x Y, that is to say,
the degeneracy operators dgopl and dgop2 must not have a common 7;,
and therefore their list representations must have a void intersection. The
coded representation by binary bit positions, has the same property. The
corresponding type is CRPR. To construct such an object, one may use the
macro crpr. As usual, a printing method has been defined to reflect the
structure of the product under the form:

<CrPr ext-dgopl gmsml ext-dgop2 gmsm2>

where the sequence of the operators 7); is printed in explicit form (this is the
meaning of ext-dgop). If this sequence of 7; is void, i.e. if the simplex gmsm
is not degenerate, the symbol - is printed instead.
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7.8.1 Functions and macros for the product of simplicial sets

crpr dgopl gmsml dgop2 gmsm2 [Macro]
Build an object of type CRPR, using directly the integer coding for
the degeneracy operators. The arguments gmsm1 and gmsm?2 are
non-degenerate simplices.

crpr absml absm2 [Macro]
Build an object of type CRPR, using two abstract simplices absm1
and absm2. If these abstract simplices are degenerate, the degene-
racy operators must verify the condition of the definition, i.e. no
common 7);.

2absm-acrpr absm1 absm?2 [Function]
Build an abstract simplex, i.e. object of type ABSM, cartesian pro-
duct of both abstract simplices absmI and absm2. In contrast with
the previous function, there is no condition upon the degenera-
cy operators of the abstract simplices. Of course, the function
2absm-acrpr returns a legal abstract simplex.

crpr-p object [Predicate]
Test if object is of type CRPR.

dgopl crpr [Macro]
Select the degeneracy operator dgop! from the object crpr.

gmsml crpr [Macro]
Select the geometric simplex gmsmI from the object crpr.

dgop?2 crpr [Macro]
Select the degeneracy operator dgop2 from the object crpr.

gmsm2 crpr [Macro]
Select the geometric simplex gmsm2 from the object crpr.

absml crpr [Macro]
Build the abstract simplex (absm dgopl gmsm1) from crpr.

absm2 crpr [Macro]
Build the abstract simplex (absm dgop2 gmsm2) from crpr.

crts-prdc smstl smst2 [Function]

Build the simplicial set, cartesian product smstl x smis2.

Examples

In the first example, note that the coded representations of n; and 72 are
respectively 2 and 4, but these degeneracy operators appear clearly as 1 and
2 in the printed result. In the second statement, the integer 28 is the coded
representation of the degeneracy (4 3 2).
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(crpr 2 ’a 4 ’b) ==>
<CrPr 1 A 2 B>
(crpr 0 (01 23 45) 28 (01 2)) ==>

<CrPr - (01 234 5) 4-3-2 (0 1 2)>
For more clarity, one may also write:

(crpr 0 (0 1 2 3 4 5) (dgop-ext-int ’(4 3 2)) (0 1 2)) ==>

<CrPr - (01 2345) 4-3-2 (01 2)>

In the following example, we see that both functions crpr and 2absm-acrpr
return the same geometric simplex,

(crpr (absm 4 ’a)(absm 3 ’b)) ==>
<CrPr 2 A 1-0 B>
(2absm-acrpr (absm 4 ’a)(absm 3 ’b)) ==>

<AbSm - <CrPr 2 A 1-0 B>>

whereas, in the following call to crpr, the condition upon the degeneracy
operator is not respected and the result is an illegal cartesian product. The
function 2absm-acrpr returns the correct answer.

(crpr (absm 5 ’a)(absm 3 ’b)) ==>
<CrPr 2-0 A 1-0 B> ;33 ILLEGAL!
(2absm-acrpr (absm 5 ’a) (absm 3 ’b)) ==>

<AbSm 0 <CrPr 1 A 0 B>>

The following example is particularly instructive. The simplicial set whose
the realization is homeomorphic to the square is built by using the product
of two segments. A call like (delta n) builds the standard n—simplex. So
first, we generate two copies X and Y of the standard 1-simplex and we list
the abstract simplices up to dimension 2 for a better understanding of the
components of the product XY.

(setf X (delta 1)) ==>
[K4 Simplicial-Set]
(setf Y X) ==>

[K4 Simplicial-Set]
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[0(0), (0 1)]
(0(n))
(0.1] [1.1]
\,s @ [(0 1), 0(1)] [(01),(01)]
@y | |
L [0(0 1), 1(0 1)]
. o on [0(2), (0 1)]
00 v [1(0 1), 0(0 1)]
/ 0 [0.0]  [(01),00) el
(0 (0y)
©) (01) )
P —
O R (0(1))
(0 (oy X
©(©1) @O
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In list representation (non-coded simplices), the abstract simplices of X up
to the dimension 2, including the degenerate ones are:

e Dimension 0: <AbSm - (0)>, <AbSm - (1)>.

e Dimension 1: <AbSm 0 (0)>, <AbSm 0 (1)>, <AbSm - (0 1)>.

e Dimension 2: <AbSm 1-0 (0)>, <AbSm 1-0 (1)>, <AbSm 0 (0 1)>,

<AbSm 1 (0 1)>.

Let us look first at the non-degenerate simplices of the simplicial set X x Y.
Those simplices are objects of type CRPR. In dimension 1, we see that some
projections are degeneracies of vertices and, in dimension 2, the projections
are all degeneracies of the 1-simplex (0 1) coded as 3. Nevertheless, all
the listed simplices are geometric simplices (i.e. non-degenerate ones) of
the product XY. The diagram above shows the relationship between the 3

simplicial sets.

(setf XY (crts-prdc X Y))

[K6 Simplicial-Set]

==>
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(show-structure

Dimension = 0 :

Vertices :

Dimension = 1 :

Simplex :

Simplex :

Simplex :

Simplex :

Simplex :

Dimension = 2 :

Simplex :

Simplex :

XY 2)

(<C
<C

<CrPr

Faces :

<CrPr

Faces :

<CrPr

Faces :

<CrPr

Faces :

<CrPr

Faces :

<CrPr

Faces :

<CrPr

Faces :

rPr - 1 -
rPr - 2 -

-3 - 3>

(<AbSm -
<AbSm -

- 30 1>

(<AbSm -
<AbSm -

-30 2>

(<AbSm -
<AbSm -

01-23

(<AbSm -
<AbSm -

02-23>

(<AbSm -
<AbSm -

0313

(<AbSm -
<AbSm -
<AbSm -

1303
(<AbSm -

<AbSm -
<AbSm -

1> <CrPr - 1 - 2> <CrPr - 2 - 1>

2>)

<CrPr
<CrPr

<CrPr
<CrPr

<CrPr
<CrPr

<CrPr
<CrPr

<CrPr
<CrPr

<CrPr
<CrPr
<CrPr

<CrPr
<CrPr
<CrPr

w

w

2>>
1>>)

1>>
1>>)

2>>
2>>)

2>>
1>>)

2>>
1>>)

2>>
3>
3>>)

3>>
3>>
1>>)
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To be more readable we may translate the coded representations of the
degeneracy operators and of the simplices in the list representation:

Dimension O :

Vertices : (KCrPr - (0) - (0)>
<CrPr - (0) - (1)>
<CrPr - (1) - (0)>
<CrPr - (1) 1>

Dimension 1 :
Simplex : <CrPr 0 (0) - (0 1)>

Faces : (<AbSm - <CrPr - (0) - (1)> >
<AbSm - <CrPr - (0) - (0)> >)

Simplex : <CrPr 0 (1) - (0 1)>

Faces : (<AbSm - <CrPr - (1) - (1)> >
<AbSm - <CrPr - (1) - (0)> >)

Simplex : <CrPr - (0 1) 0 (0)>

Faces : (<AbSm - <CrPr - (1) - (0)> >
<AbSm - <CrPr - (0) - (0)> >)

Simplex : <CrPr - (0 1) 0 (1)>

Faces : (<AbSm - <CrPr - (1) - (1)> >
<AbSm - <CrPr - (0) - (1)> >)

Simplex : <CrPr - (0 1) - (0 1)>

Faces : (<AbSm - <CrPr - (1) - (1)> >
<AbSm - <CrPr - (0) - (0)> >)

Dimension 2 :
Simplex : <CrPr 0 (0 1) 1 (0 1)>
Faces : (<AbSm - <CrPr - (0 1) 0 (1)> >
<AbSm - <CrPr - (0 1) - (0 1)> >

<AbSm - <CrPr 0 (0) - (0 1)> >)

Simplex : <CrPr 1 (0 1) 0 (0 1)>
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Faces : (<AbSm - <CrPr 0 (1) - (0 1)> >
<AbSm - <CrPr - (0 1) - (0 1)> >
<AbSm - <CrPr - (0 1) 0 (0)> >)

In an analogous way, let us build the torus as the cartesian product of two
1-spheres. We recall that the base point of the sphere is named *.

(setf silxsl (crts-prdc (sphere 1) (sphere 1))) ==
[K15 Simplicial-Set]
(show-structure sixsl 2) ==>
Dimension = 0 :
Vertices : (<KCrPr - * - *>)
Dimension = 1 :
Simplex : <CrPr - S1 - S1>

Faces : (<AbSm - <CrPr - * - *>>
<AbSm - <CrPr - * — *>>)

Simplex : <CrPr - S1 0 *>

Faces : (<AbSm - <CrPr - * - *>>
<AbSm - <CrPr - * — *>>)

Simplex : <CrPr 0 * - S1>

Faces : (<KAbSm - <CrPr - * — *>>
<AbSm - <CrPr - * — *>>)

Dimension = 2 :
Simplex : <CrPr 0 S1 1 51>
Faces : (<AbSm - <CrPr - S1 0 *>>
<AbSm - <CrPr - S1 - Si1>>
<AbSm - <CrPr 0 * - S1>>)
Simplex : <CrPr 1 S1 0 S1>
Faces : (<AbSm - <CrPr 0 * - Si>>

<AbSm - <CrPr - S1 - Si1>>
<AbSm - <CrPr - S1 0 *>>)

Let us verify that S' x S has the same homology groups as the torus.
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(dotimes (i 3) (chcm-homology sixsl i)) ==>
Homology in dimension O :

Component Z

Homology in dimension 1 :

Component Z

Component Z

Homology in dimension 2 :

Component Z

Of course, we may generate more complex products, whose basis are com-
posed of rather long lists of simplices as shown below. The user will also
pay attention to the fact that the composition of the macro crpr is not as-
sociative. In the following example, the simplicial sets located respectively
by pl and p2 are different objects, though being canonically isomorphic.

(setf pl (crts-prdc (sphere 2) (crts-prdc (sphere 2) (sphere 3)))) ==>
[K20 Simplicial-Set]
(setf p2 (crts-prdc (crts-prdc (sphere 2) (sphere 2)) (sphere 3))) ==>

[K21 Simplicial-Set]

(dotimes (i 8) (print (length (basis pl i)))) ==>

N WO

2

138
390
480
210

Lisp files concerned in this chapter

simplicial-sets.lisp, delta.lisp, specials-smsts.lisp,
cartesian-products.lisp.
[classes.lisp, macros.lisp, various.lisp].



Chapter 8
Simplicial morphisms

The software Kenzo implements simplicial morphisms in a way analogous to
chain complex morphisms.

8.1 Representation of a simplicial morphism

A simplicial morphism is an instance of the class SIMPLICIAL-MRPH, subclass
of the class MORPHISM.

(DEFCLASS SIMPLICIAL-MRPH (morphism)
((sintr :type sintr :initarg :sintr :reader sintr)))

It has one slot of its own:

sintr, an object of type SINTR, in fact a lisp function defining the mor-
phism between the source and target simplicial sets. It must have
2 parameters: a dimension (an integer) and a geometric simplex of
this dimension (a generator of any type) . It must return an abstract
simplex, image in the target simplicial set of this geometric simplex.

A printing method has been associated to the class SIMPLICIAL-MRPH. A
string like [Kn Simplicial-Morphism] is the external representation of an
instance of such a class, where n is the number plate of the Kenzo object.

8.2 The function build-smmr

To facilitate the construction of instances of the class SIMPLICIAL-MRPH
and to free the user to call the standard constructor make-instance, the
software provides the function

161
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build-smmr :sorc sorc :trgt trgt :degr degr :sintr sintr :intr intr
:strt strt :orgn orgn

defined with keyword parameters and returning an instance of the class
SIMPLICIAL-MRPH. The keyword arguments of build-smmr are:

— sorc, the source object, an object of type SIMPLICIAL-SET.
— trgt, the target object, an object of type SIMPLICIAL-SET.

— degr, the degree of the morphism, an integer. In this chapter, we con-
sider only the 0 degree case (the usual one). The case —1 is particu-
larly important: it allows to implement the notion of twisting operator
defining a fibration (See the chapter Fibration).

— sintr, the internal lisp function defining the effective mapping between
simplicial sets. If the integer degr is 0 and if the following keyword
argument intr is omitted, then the function build-smmr builds a lisp
function implementing the induced mapping between the underlying
source and target chain complexes. This function is installed in the
slot intr. The strategy is then set to :gnrt.

— 4ntr, a user defined morphism for the underlying chain complexes. This
argument is optional and taken in account only if the degree is 0 and
in this case, supersedes the previous derived mapping. The strategy is
then mandatory. If the degree is not null, the implementor has decided
to set the corresponding slot to NIL.

— strt, the strategy, i.e. :gnrt or :cmbn attached to the previous func-
tion.

— orgn, a relevant comment list.

After a call to build-smmr, the simplicial morphism instance is added to
a list of previously constructed ones (*smmr-1list*). As the other similar
lists, the list *smmr-1ist* may be cleared by the function cat-init.

The effective application of a simplicial morphism upon arguments, is reali-
zed with the macro ? which calls the adequate method defined for this kind
of objects.
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? &rest args

163

[Macro]

Versatile macro for applying a simplicial morphism indifferently as
(?  smmr dmns absm-or-gmsm) or (7
case, the third argument is either an abstract simplex or a geometric
one. In the second case, if the second argument is a combination,
smmr is then considered as a chain complex morphism and it is the
function in the slot intr which is applied, so that it makes sense
only if the degree of the mapping is 0.

Examples

smmr cmbn). In the first

In the following examples, we work with A3. We define three simplicial
morphisms, sm1, sm2 and sm3. In smi1, the mapping is the identity mapping
and we can see that this identity mapping has been propagated on the

underlying chain complex.
(setf d3 (delta 3)) ==>
[K1 Simplicial-Set]
(setf sml (build-smmr
:sorc d3 :trgt d3 :degr O
:sintr #’(lambda (dmns gmsm)
(absm 0 gmsm))
:orgn ’(identity delta-3))) ==>
[K6 Simplicial-Morphism]

(? sm1 27) ==>

<AbSm - 7>

n
1l
v

(? sm1 1 (absm 1 1))
<AbSm 0 1>

(? sm1 (cmbn 2 1 7)) ==>

<1 * 7>

In the simplicial morphism sm2, the mapping is the “null” mapping. In fact,
it consists in applying any abstract simplex in dimension n upon the n—
degenerate base point. Of course, in terms of chain complex, the correspon-
ding mapping applies any chain complex element upon the null combination

of same degree.
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(setf sm2 (build-smmr
:sorc d3 :trgt d3 :degr O
:sintr #’(lambda (dmns gmsm)

(absm (mask dmns) 1))

rorgn ’(null delta-3))) ==>

[K7 Simplicial-Morphism]

(? sm2 0 4) ==

<AbSm - 1>

(? sm2 2 7) ==>

<AbSm 1-0 1>

(? sm2 1 (absm 1 1)) ==>

<AbSm 0 1>

(? sm2 3 15) ==>

<AbSm 2-1-0 1>

(? sm2 (cmbn 3 2 15)) ==>

164

;33 mask(n)=2"n - 1

In the simplicial morphism sm3, we keep the same “null” mapping as in sm2
but we choose as mapping for the underlying chain complex the opposite of

any chain complex element.

(setf sm3 (build-smmr
:sorc d3 :trgt d3 :degr O
:sintr #’(lambda (dmns gmsm)
(absm (mask dmns) 1))
:intr #’cmbn-opps
:strt :cmbn
torgn ’(null and opposite delta-3)))

[K8 Simplicial-Morphism]
(? sm3 3 156) ==
<AbSm 2-1-0 1>

(7 sm3 (cmbn 3 7 15)) ==

==>
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<=7 * 15>

(? sm3 (cmbn 3 11 (dlop-ext-int (0 1 2 3)))) ==>

<-11 * 15>

Lisp files concerned in this chapter

simplicial-mrphs.lisp.
[classes.lisp, macros.lisp, various.lisp].




Chapter 9

The Eilenberg-Zilber module

The functions of this module are related to the chain complex of the product
of two simplicial sets. They implement the Eilenberg-Mac Lane homomor-
phism (function eml) and the Alexander-Whitney homomorphism (function
aw).

eml ssz ssy [Function]
build the Eilenberg-Mac Lane homomorphism EML, also called
the shuffle homomorphism!'. The arguments ssz and ssy represent
some simplicial sets X and Y. The homomorphism

EML:Ci(X)RCu(Y) — C(X XY)
is defined by:
5M£(OA ® ﬁ) = Z E(ﬁw) (’fqu s T Oy Ty e 7]2'15)’

where X xY is the simplicial cartesian product of the two simplicial
sets X and Y, « (resp. () is a geometric simplex of X (resp. Y),
7y, is the k** degeneracy operator, the sum is over all permutations
@ = (i1...0pj1...Jg) of (0...p+ g — 1) such that

1< < <y, N<fp<-<ljgy pPtg=n

and e(w) is the signature of the corresponding permutation. The
sum at the right hand part determines a decomposition of the geo-
metric product a X 3 into a combination of generators of the sim-
plicial cartesian product (see the simplicial sets chapter). The com-
bination takes in account the orientation of every simplex. These

!Marvin Greenberg, Lectures on Algebraic Topology, W.A. Benjamin Inc, 1967.

166
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generators are non-degenerate simplices of the cartesian product
but their projections are in general degenerate simplices of X and
Y (see the examples).

aw $ST Ssy [Function]
build the Alexander-Whitney chain homomorphism. The argu-
ments ssz and ssy represent some simplicial sets X and Y. The
homomorphism

AW : G (X X Y) — Cu(X) ® C(Y)

is defined by the following rule: let ¢ be an n-simplex and let us
define two operators, A, and pgy:

>\p : Cn(X) — Cn—p(X)’ (n > p),

Pq: Cn(Y) — Cryg(X), (n29q),
respectively by
Ap(0) = Opt1...0n0
and
pg(0) =0y . ..0n—q0.

Now, for the generator («, 3) of degree n in C,(X xY’), the Alexander-
Whitney homomorphism is defined by:

n

AW(@,8) = 3" Apl(@) ® pu(B)-

p=0

This sum can be interpreted as a decomposition, up to a homotopy,
of the simplex a x 8 (o and ( can be degenerate even if a x 3 is
not) in terms of (tensor) products of non-degenerate simplices.

phi ssz ssy [Function]
build the homotopy chain morphism

satisfying the formula

do®+Pod=Id—EMLo AW.
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ez SST SSY [Function]
build the Eilenberg—Zilber reduction as shown by the following dia-
gram, where X = ssz and Y = ssy.

C(X xY) I ¢ (X xY)

AW LT eEML
C.(X)®C(Y)
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Examples
3 (01) X (23)
777777 0,3 ,
&
<) // :
o
@
by (qV) :
/! N
5 0,2 1,2
. (001) -
011) |
0 1

As simplicial sets X and Y, let us use two copies of AN, that we may
build by the lisp statement (soft-delta-infinity) (Though we repeat this
statement in the following line, there will be only a simplicial set created).
We have chosen the soft version, to inspect the results more easily.

(setf eml-mrp (eml (soft-delta-infinity) (soft-delta-infinity))) ==>

[K11 Morphism (degree 0)]

Let us apply the Eilenberg-Mac Lane homomorphism to the tensor product
(01) ® (23):

(7 eml-mrp 2 (tnpr 1 (d(dlop-ext-int ’(0 1)))
1 (d(dlop-ext-int ’(2 3))))) ==>

<-1 * <CrPr 0 0-1 1 2-3>>
<1 * <CrPr 1 0-1 0 2-3>>
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The decomposition is illustrated by the previous geometric diagram, where
for instance a degenerate simplex like 71 (01) is noted (011).
For the tensor product (012)®(34), an intuitive description is still possible,

as shown in the following diagram, but not in higher dimensions.
As the input of simplices is sometimes cumbersome, we have defined a macro
called code to facilitate the input of the simplices.

(defmacro code (arg) ‘(d (dlop-ext-int ,arg))) ==
CODE

(7 eml-mrp 3 (tnpr 2 (code (0 1 2)) 1 (code ’(3 4)) )) ==>

- —— {CMBN 3}
<1 * <CrPr 0 0-1-2 2-1 3-4>>

<-1 * <CrPr 1 0-1-2 2-0 3-4>>

<1 * <CrPr 2 0-1-2 1-0 3-4>>

(? eml-mrp 6 (tnpr 2 (code ’(0 3 5)) 4 (code (0 1 24 5)) )) ==

- —— {CMBN 6}

<1 * <CrPr 3-2-1-0 0-3-5 5-4 0-1-2-4-5>>
<-1 * <CrPr 4-2-1-0 0-3-5 5-3 0-1-2-4-5>>
<1 * <CrPr 4-3-1-0 0-3-5 5-2 0-1-2-4-5>>
<-1 * <CrPr 4-3-2-0 0-3-5 5-1 0-1-2-4-5>>
<1 * <CrPr 4-3-2-1 0-3-5 5-0 0-1-2-4-5>>
<1 * <CrPr 5-2-1-0 0-3-5 4-3 0-1-2-4-5>>
<-1 * <CrPr 5-3-1-0 0-3-5 4-2 0-1-2-4-5>>
<1 * <CrPr 5-3-2-0 0-3-5 4-1 0-1-2-4-5>>
<-1 * <CrPr 5-3-2-1 0-3-5 4-0 0-1-2-4-5>>
<1 * <CrPr 5-4-1-0 0-3-5 3-2 0-1-2-4-5>>
<-1 * <CrPr 5-4-2-0 0-3-5 3-1 0-1-2-4-5>>
<1 * <CrPr 5-4-2-1 0-3-5 3-0 0-1-2-4-5>>
<1 * <CrPr 5-4-3-0 0-3-5 2-1 0-1-2-4-5>>
<-1 * <CrPr 5-4-3-1 0-3-5 2-0 0-1-2-4-5>>
<1 * <CrPr 5-4-3-2 0-3-5 1-0 0-1-2-4-5>>
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The Alexander-Whitney homomorphism works in the reverse sense:
(setf aw-mrp (aw (soft-delta-infinity) (soft-delta-infinity))) ==>

[K12 Morphism (degree 0)]
The 2-simplices of the cartesian product (012) x (34) are (here, the degen-

eracy operators are in clear):

<CrPr 0 (0 1) 1 (3 4)>
<CrPr 1 (0 1) 0 (3 4)>
<CrPr 0 (0 2) 1 (3 4)>
<CrPr 1 (0 2) 0 (3 4)>
<CrPr 0 (1 2) 1 (3 4)>
<CrPr 1 (1 2) 0 (3 4)>
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<CrPr * (0 1 2) 1-0 (3)>
<CrPr * (01 2) 1-0 (4)>
--> <CrPr * (01 2) 0 (3 4)>
<CrPr * (01 2) 1 (3 4)>

The last but one line of this list describes the triangle shown in dashed lines
in the prism in the previous picture, joining the points (0, 3), (1, 3), (2,4).
Let us apply the homomorphism AW:

(7 aw-mrp 2 (crpr O (code (0 1 2)) 1 (code ’(3 4)) )) ==>

-— e {CMBN 2}
<1 * <TnPr 0-1 3-4>>
<1 * <TnPr 0-1-2 4>>

We see that we obtain a kind of decomposition, up to a homotopy, of this
triangle in terms of the two tensor products (012)®(4) (the “upper” triangle
of the prism) and (01) ® (34) (the “front” rectangle of the prism).

The composition AW o EML is the identity in the tensor product of the
two chain complexes.

(setf g (tnpr 2 (code ’(0 1 2)) 3 (code (2 3 45)) )) ==>
<TnPr 0-1-2 2-3-4-5>
(? eml-mrp 5 g) ==>

- B {CMBN 5}
<1 * <CrPr 2-1-0 0-1-2 4-3 2-3-4-5>>
<-1 * <CrPr 3-1-0 0-1-2 4-2 2-3-4-5>>
<1 * <CrPr 3-2-0 0-1-2 4-1 2-3-4-5>>
<-1 * <CrPr 3-2-1 0-1-2 4-0 2-3-4-5>>
<1 * <CrPr 4-1-0 0-1-2 3-2 2-3-4-5>>
<-1 * <CrPr 4-2-0 0-1-2 3-1 2-3-4-5>>
<1 * <CrPr 4-2-1 0-1-2 3-0 2-3-4-5>>
<1 * <CrPr 4-3-0 0-1-2 2-1 2-3-4-5>>
<-1 * <CrPr 4-3-1 0-1-2 2-0 2-3-4-5>>
<1 * <CrPr 4-3-2 0-1-2 1-0 2-3-4-5>>

(7 aw-mrp *)

<1 * <TnPr 0-1-2 2-3-4-5>>
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(setf *tnpr-with-degrees* t) ==>

T

*k

- — - {CMBN 5}

<1 * <TnPr 2 0-1-2 3 2-3-4-5>>

But the composition EML o AW is by no means the identity. This com-
position is related to the identity via the homotopy morphism ®. Let us
consider the two following simple simplicial sets delta-0-1 and delta-2-3,
where the second is the simplicial set, model of the segment [2, 3]. To build
delta-2-3, we have just changed the basis function, the base point and the

comment in the system function soft-delta.
(setf delta-0-1 (soft—-delta 1))
[K13 Simplicial-Set]
(setf delta-2-3 (build-smst
:cmpr #’soft-delta-cmpr
:basis #’(lambda(dmn)
(case dmn
(0 (list (4 4)(d 8)))
(1 (1ist(d 12)))))
:bspn (d 4)
:face #’soft-delta-face
:intr-dgnl #’soft-delta-dgnl :dgnl-strt
:intr-bndr #’soft-delta-bndr :bndr-strt
torgn ’ (my-soft-delta-2-3)))
[K18 Simplicial-Set]
(show-structure delta-0-1 1) ==>
Dimension = 0 :
Vertices : (0 1)
Dimension = 1 :
Simplex : 0-1
Faces : (<AbSm - 1> <AbSm - 0>)

(show-structure delta-2-3 1) ==>

:gnrt
:gnrt
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Dimension = 0 :
Vertices : (2 3)
Dimension = 1 :
Simplex : 2-3
Faces : (<AbSm - 3> <AbSm - 2>)

Let us build the cartesian product of these two simplicial sets and let us list,
in particular the 0-simplices and the 1-simplices of this new simplicial set:

(setf carre (crts-prdc delta-0-1 delta-2-3)) ==>
[K23 Simplicial-Set]

(show-structure carre 2) ==

Dimension = 0 :

Vertices : (KCrPr - 0 - 2> <CrPr - 0 - 3> <CrPr - 1 - 2>
<CrPr - 1 - 3>)

Dimension = 1 :

Simplex : <CrPr - 0-1 - 2-3>

Faces : (<AbSm - <CrPr - 1 - 3>> <AbSm - <CrPr - 0 - 2>>)
Simplex : <CrPr - 0-1 0 2>

Faces : (<AbSm - <CrPr - 1 - 2>> <AbSm - <CrPr - 0 - 2>>)
Simplex : <CrPr - 0-1 0 3>

Faces : (<AbSm - <CrPr - 1 - 3>> <AbSm - <CrPr - 0 - 3>>)
Simplex : <CrPr 0 0 - 2-3>

Faces : (<AbSm - <CrPr - 0 - 3>> <AbSm - <CrPr - 0 - 2>>)
Simplex : <CrPr 0 1 - 2-3>

Faces : (<AbSm - <CrPr - 1 - 3>> <AbSm - <CrPr - 1 - 2>>)
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Dimension = 2 :
Simplex : <CrPr 0 0-1 1 2-3>
Faces : (<AbSm - <CrPr - 0-1 0 3>>
<AbSm - <CrPr - 0-1 - 2-3>>
<AbSm - <CrPr 0 0 - 2-3>>)
Simplex : <CrPr 1 0-1 0 2-3>
Faces : (<AbSm - <CrPr 0 1 - 2-3>>

<AbSm - <CrPr - 0-1 - 2-3>>
<AbSm - <CrPr - 0-1 0 2>>)

Let us take the first 1-simplex which corresponds to the diagonal of the
square (realisation of the cartesian product) and let us build the three ho-
momorphisms AW, EML and &:

(setf diagonal (crpr O (code (0 1)) 0 (code ’(2 3)))) ==>
<CrPr - 0-1 - 2-3>

(setf aw-mrp (aw delta-0-1 delta-2-3)) ==>

[K30 Morphism (degree 0)]

(setf eml-mrp (eml delta-0-1 delta-2-3)) ==>

[K31 Morphism (degree 0)]

(setf phi-hmy (phi delta-0-1 delta-2-3)) ==>

[K32 Morphism (degree 1)]

We see that
AW((01),(23)) =(01) ®(3) + (0) ® (23),

EML((01) @ (3) + (0) ® (23)) = ((01),7m0(3)) + (10(0),(23))

and that ® applied to the diagonal returns the 2-simplex compatible with
the homotopy.

®((01),(23)) = (m(23),m0(01)).

This is illustrated by the following diagram (the 2-simplex is the shaded
triangle).
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3 ((01),(33))

((00), (23))

(? awv-mrp 1 diagonal) ==>

—————————— {CMBN 1}

<1 * <TnPr 0 0 1 2-3>>
<1 * <TnPr 1 0-1 0 3>>

__________ {CMBN 1}

<1 * <CrPr - 0-1 0 3>>
<1 * <CrPr 0 0 - 2-3>>

(? phi-hmy 1 diagonal) ==>

<-1 * <CrPr 0 0-1 1 2-3>>

Let us inspect now the reduction generated by the function ez and verify on
reasonably general combinations that the involved morphisms are coherent.

(setf ez-rdc (ez (soft-delta-infinity) (soft-delta-infinity))) ==>
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[K34 Reduction]
(inspect *) ==>

REDUCTION @ #x36abb5a = [K34 Reduction]

0 Class -----——-— > #<STANDARD-CLASS REDUCTION>

1 ORGN ---—---—- > <...>, a proper list with 3 elements
2 IDNM --------- > fixnum 34 [#x00000088]

3 H - > [K33 Morphism (degree 1)]

4 G ——————-————- > [K11 Morphism (degree 0)]

5F ———— > [K12 Morphism (degree 0)]

6 BCC ——-——-—--——- > [K3 Chain-Complex]

7 TCC —-———-———- > [K6é Simplicial-Set]

With the comment slots we see that the morphism f, g and h are respectively
aw, eml and phi:

(orgn ez-rdc) ==
(EILENBERG-ZILBER [K1 Simplicial-Set][K1 Simplicial-Set])
(orgn (f ez-rdc)) ==>
(AW [K1 Simplicial-Set][K1 Simplicial-Set])
(orgn (g ez-rdc)) ==>
(EML [K1 Simplicial-Set] [K1 Simplicial-Set])
(orgn (h ez-rdc)) ==>
(PHI [K1 Simplicial-Set][K1 Simplicial-Set])
(setf *bc* (cmbn 3 1 (tnpr O (code ’(0)) 3 (code (1 2 3 4)))
10 (tnpr 1 (code (5 6)) 2 (code ’(7 8 9)))

100 (tnpr 2 (code ’(10 11 12)) 1 (code ’(13 14)))

1000 (tnpr 3 (code ’(15 16 17 18)) 0 (code ’(19))))) ==>
- -— e {CMBN 3}
<1 * <TnPr 0 1-2-3-4>>
<10 * <TnPr 5-6 7-8-9>>

<100 * <TnPr 10-11-12 13-14>>
<1000 * <TnPr 15-16-17-18 19>>
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(setf *tc*
(cmbn 3 1 (crpr O (code (0 1 2 3)) 0 (code ’(5 6 7 8)))
10 (crpr O (code (0 1 2 3)) (dgop-ext-int ’(2 0)) (code ’(5 6)))
100 (crpr (dgop-ext-int ’(2 1)) (code ’(0 1)) O (code °(5 6 7 8)))
1000 (crpr (dgop-ext-int ’(2 1)) (code ’(0 1)) 1 (code ’(5 6 7)))))

- -—- et {CMBN 3}
<1 * <CrPr - 0-1-2-3 - 5-6-7-8>>

<10 * <CrPr - 0-1-2-3 2-0 5-6>>

<100 * <CrPr 2-1 0-1 - 5-6-7-8>>

<1000 * <CrPr 2-1 0-1 0 5-6-7>>

(pre-check-rdct ez-rdc) ==

---done---

(check-rdct) ==>

*TCx =>

- e {CMBN 3}
<1 * <CrPr - 0-1-2-3 - 5-6-7-8>>

<10 * <CrPr - 0-1-2-3 2-0 5-6>>

<100 * <CrPr 2-1 0-1 - 5-6-7-8>>

<1000 * <CrPr 2-1 0-1 0 5-6-7>>

*BCx =>

- o {CMBN 3}
<1 * <TnPr 0 1-2-3-4>>

<10 * <TnPr 5-6 7-8-9>>

<100 * <TnPr 10-11-12 13-14>>

<1000 * <TnPr 15-16-17-18 19>>

Checking *TDD* = 0

Result:

-= ST m o {CMBN 1}
Checking *BDD* = 0

Result:

-= ittt {CMBN 1}

Checking *DF-FD* = 0
Result:
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. o e {CMBN 2}

Checking *DG-GD* = 0O

Result:
__ I g {CMBN 2}

Checking *ID-FG* = 0

Result:
- -——- m {CMBN 3}

Checking *ID-GF-DH-HD* = 0

Result:
- -———- It {CMBN 3}

Checking *HH* = 0
Result:
- -——- It {CMBN 5}

Checking *FH* = 0
Result:
- -——- m {CMBN 4}

Checking *HG* = 0

Result:

- -———- Ittt {CMBN 4}
-—--done---

9.1 Application to Homology

Let us illustrate the Eilenberg-Zilber theorem by the following example. Let
us consider the manifold P?R x §2. The theorem says that

H,(C.(P?’R x 8%)) = H,(C.(P’R) ® C,(5%)).
(setf p2 (moore 2 1)) ==> ;3 Moore(2,1)  generates the projectif plame.

[K1 Simplicial-Set]
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(setf s3 (sphere 3)) ==>
[K6 Simplicial-Set]

The simplicial set p2-X-s3 is obtained from the cartesian product of the
two simplicial sets p2 and s3.

(setf p2-X-s3 (crts-prdc p2 s3)) ==>

[K11 Simplicial-Set]

Now, the chain complex p2-T-s3 is obtained from the tensor product of the
two chain complexes associated to both simplicial sets p2 and s3 (don’t for-
get that the class SIMPLICIAL SET is a subclass of the class CHAIN COMPLEX).

(setf p2-T-s3 (tnsr-prdc p2 s3)) ==>

[K16 Chain-Complex]

Applying successively the function chcm-homology (which computes directly
the homology groups without using a homotopy equivalence) on these chain
complexes, shows that the homology groups are effectively isomorphic, but
the method of the tensor product is much faster than the method of the sim-
ple cartesian product, the number of generators being much more smaller.

(time (dotimes (i 6) (chcm-homology p2-X-s3 i))) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z/2Z

Homology in dimension 2 :
Homology in dimension 3 :
Component Z

Homology in dimension 4 :
Component Z/2Z

Homology in dimension 5 :

---done---



CHAPTER 9. THE EILENBERG-ZILBER MODULE 181

; cpu time (non-gc) 880 msec user, 170 msec system
; cpu time (gc) 250 msec user, 0 msec system

; cpu time (total) 1,130 msec user, 170 msec system
; real time 2,563 msec

; space allocation:

; 43,812 cons cells, 64 symbols, 162,904 other bytes
(time(dotimes (i 6) (chcm-homology p2-T-s3 i))) ==
Homology in dimension O :

Component Z

Homology in dimension 1 :

Component Z/2Z

Homology in dimension 2 :

Homology in dimension 3 :

Component Z

Homology in dimension 4 :

Component Z/2Z

Homology in dimension 5 :

---done---

; cpu time (non-gc) 130 msec user, 20 msec system
; cpu time (gc) 0 msec user, 0 msec system

; cpu time (total) 130 msec user, 20 msec system
; real time 326 msec

; space allocation:
; 1,897 cons cells, 0 symbols, 11,232 other bytes

The following example shows clearly the discrepancy between the length of
the basis of two objects built respectively by cartesian product and tensor
product and having the same homology groups.

(setf s2 (sphere 2)) ==>
[K1 Simplicial-Set]

(setf s3 (sphere 3)) ==
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[K6 Simplicial-Set]

(setf s2Xs2Xs3 (crts-prdc (crts-prdc s2 s2) s3)) ==>
[K16 Simplicial-Set]

(orgn s2Xs2Xs3) ==>

(CRTS-PRDC [K23 Simplicial-Set] [K6 Simplicial-Set])
(setf s2Ts2Ts3 (tnsr-prdc (tnsr-prdc s2 s2) s3)) ==

[K21 Chain-Complex]

n
Il
\%

(dotimes (i 7) (print(length(basis s2Xs2Xs3 1i))))

w o =

22

138
390
480

(dotimes (i 7) (print(length(basis s2Ts2Ts3 i)))) ==>

ON K NO =

182
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9.1.1 Searching homology process for cartesian products

When the search-efhm method recognizes a cartesian product, by means of
the comment list (slot orgn) of the object, it builds a homotopy equivalence
where the right bottom chain complex is created by the function ez. The
process may be recursif as shown by the very definition of the method:

(defun LEFT-CRTS-PRDC-EFHM (smstl smst2)
(declare (type simplicial-set smstl smst2))
(the homotopy-equivalence
(build-hmeq
:1rdct (trivial-rdct (crts-prdc smstl smst2))
:rrdct (ez smstl smst2))))

(defmethod SEARCH-EFHM (smst (orgn (eql ’crts-prdc)))
(declare (type simplicial-set smst))
(the homotopy-equivalence
(cmps
(left-crts-prdc-efhm (second (orgn smst))
(third (orgn smst)))
(tnsr-prdc (efhm (second (orgn smst)))
(efhm (third (orgn smst)))))))

Lisp files concerned in this chapter

eilenberg-zilber.lisp, searching-homology.lisp.



Chapter 10

Programming the Kan
theory

10.1 Introduction
Let us recall some definitions in relation with the Kan simplicial sets.

Definition 1. A Kan “hat” of dimension n and index i is a collection of n
simplices of dimension (n — 1), noted (oy,...,0i—1,0i+1,---,0n), such that
the following conditions are fulfilled:

Ojox = Okojr1, k#4, j+1#i, 0<j<n-1, 0<k<n-1, k<j

Note that there is no ¢; term in the list above; in a sense, the Kan process
consists in constructing the missing o; to be considered as a “composition”
of the given o;’s.

Example

We are going to work with the simplices of AN. The set (o1,02) = ((0 2),
(0 1)) is a Kan hat of dimension 2 and index 0. In effect, d;01 = d109 = (0).
Likewise, the two sets ((1 2), (0 1)) and ((1 2), (0 2)) are Kan hats
of dimension 2 and of respective index 1 and 2. Of course, this definition
applies equally if the simplices are degenerate.

Definition 2. A filling of a Kan hat, (oq,...,0i-1,0i41,...,00), IS an
n-simplex &, such that for every j # i, 0;0 = o;.

184
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Example

A filling of ((0 2), (0 1)) is the 2-simplex (0 1 2). A filling of the Kan
hat ((1 1), (0 1)) is the degenerate 2-simplex (0 1 1). A filling of the
vertex (0) is the degenerate 1-simplex (0 0).

Definition 3. A simplicial set is a Kan simplicial set if for every hat there
exists a filling.

10.1.1 Representation of a Kan simplicial set
A Kan simplicial set is implemented as an instance of the class KAN, subclass
of the class SIMPLICIAL-SET.
(DEFCLASS KAN (simplicial-set)

((kf1l :type kfll :initarg :kfll :reader kf111)))
We recall that this new class inherits also from the class CHAIN-COMPLEX. It
has one slot of its own:

kf1ll, an object of type KFLL, in fact a lisp function with 3 parameters
describing a Kan hat: an index (an integer), a dimension (an integer)
and the Kan hat (a list of abstract simplices). This function must
return a filling of the Kan hat argument, i.e. an abstract simplex
satisfying the theoritical definition.

A printing method has been associated to the class KAN and the external
representation of an instance is a string like [Kn Kan-Simplicial-Set],
where n is the number plate of the Kenzo object.

10.1.2 Helpful functions on Kan simplicial sets

cat-init [Function]
Clear in particular *Kan-1ist*, the list of user created Kan sim-
plicial sets and reset the global counter to 1.

Kan n [Function]
Retrieve in the list *Kan-1ist* the Kan object instance whose the
Kenzo identification is n. If it does not exist, return NIL.

kfll &rest args [Macro]
With only one argument (a Kan instance) return the slot kf11 of
this instance. With 4 arguments like (kf11 kan indz dmns hat),
return a filling of the Kan hat hat, of dimension dmns and of index
indz by applying the filling function value of the slot kf11 of the
Kan instance kan.
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smst-kan smst kfll [Function]
With the filling lisp function kfll, transform the simplicial set smst
in an object of type KAN (in other word, smst is modified). This
is the easiest way to build a Kan simplicial set.

check-hat kan indz dmns hat [Function]
Useful verification function to check if the collection of simplices
hat is a valid Kan hat of dimension dmns and of index indz in the
Kan simplicial set kan. In fact this works equally if kan is a general
simplicial set.

check-kan kan indz dmns hat [Function]
Useful verification function to check if the collection of simplices
hat is a valid Kan hat of dimension dmns and of index indz in the
Kan simplicial set kan. This verification function applies the filling
function of the instance kan to the argument hat and perform the
verification of the faces relations upon the resulting dmns—simplex.

Examples

Let us take again the small examples of the introduction. First we define
a function dkf11, a filling function suitable for a Kan hat in AN. The user
will note that in the abstract simplices the degeneracy operators and the
geometric simplices are coded in binary.

(defun dkfll (indx dmns hat)
(cond ((= 1 dmns)
(absm 1 (gmsm (first hat))))
((= 0 indx)
(let ((del-1 (absm-int-ext (first hat)))
(del-2 (absm-int-ext (second hat))))
(absm-ext-int
(cons (first del-1)
(cons (second del-2) (rest del-1))))))
((= 1 indx)
(let ((del-0 (absm-int-ext (first hat)))
(del-2 (absm-int-ext (second hat))))
(absm-ext-int
(cons (first del-2) del-0))))
(t
(let ((del-0 (absm-int-ext (first hat)))
(del-1 (absm-int-ext (second hat))))
(absm-ext-int
(cons (first del-1) del-0))))))

DKFLL
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(setf

d (delta-infinity)) ==>

[K6 Simplicial-Set]

(smst-kan d #’dkfll) ==>

[K5 Kan-Simplicial-Set]

(kf11

<AbSm

(kfll

<AbSm

(kf11

<AbSm

(kf11

<AbSm

(kfll

<AbSm

(kf11

<AbSm

d 01 (list (absm 0 1))) ==>

0 1>

d 0 2 (1ist (absm 0 5)

-7

d 12 (list (absm 0 6)

- 7>

d 2 2 (l1ist (absm 0 6)

-7

d 0 2 (1ist (absm 0 3)

13>

d 12 (list (absm 1 2)

13>

(check-hat d 1 2 (list (absm

T

(check-hat d 0 1 (list (absm

T

(check-kan d 0 1 (list (absm

---done---

(absm

(absm

(absm

(absm

(absm

0 3)))

0 3)))

0 5)))

0 3)))

0 3)))

==>

1 2) (absm 0 3)))

0 1))

0 1))

==>

187

More elaborate examples with Kan simplicial sets will be given later in the

loop spaces chapter.
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Lisp files concerned in this chapter

kan.lisp.
[classes.lisp , macros.lisp, various.lisp|.



Chapter 11

Simplicial Groups

11.1 Representation of a simplicial group

A simplicial group is an instance of the class SIMPLICIAL-GROUP, subclass
of the classes KAN and HOPF-ALGEBRA.

(DEFCLASS SIMPLICIAL-GROUP (kan hopf-algebra)
((grml :type simplicial-mrph :initarg :grml :reader grmll)
(grin :type simplicial-mrph :initarg :grin :reader grinl)))

We recall that this new class (multi-) inherits from the following classes:
KAN, STMPLICIAL-SET, COALGEBRA, ALGEBRA and CHAIN-COMPLEX. It has two

slots of its own:

grml, an object of type SIMPLICIAL-MRPH, defining in the underlying sim-
plicial set S, the group operation as a simplicial morphism from S x S
onto S, compatible with the face and degeneracy operators in S, i.e.
the @’s and 7’s operators are also group morphisms. In dimension n,
the neutral element is assumed to be the n—th degeneracy of the base
point of the underlying simplicial set.

grin, an object of type SIMPLICIAL-MRPH, defining the inverse of an ele-
ment of the Kan simplicial set w.r.t. the preceding group law.

A printing method has been associated to the class SIMPLICIAL GROUP and
the external representation of an instance is a string like [Kn Simplicial-Group],
where n is the number plate of the Kenzo object.

189
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11.2 Representation of an Abelian simplicial group

The class of Abelian simplicial group, AB-SIMPLICIAL-GROUP, inherits all
the properties of the class SIMPLICIAL-GROUP and has not slots of its own,
as shown by:

(DEFCLASS AB-SIMPLICIAL-GROUP (simplicial-group) ())

The difference is purely mathematical: it is up to the user to provide as
slot grml, a simplicial morphism which is commutative. As expected,
the external representation of an instance of this class, is a string like [Kn
Abelian-Simplicial-Group], where n is the number plate of the Kenzo
object.

11.3 The functions build-smgr and build-ab-smrg

To facilitate the construction of instances of the classes SIMPLICIAL-GROUP
and AB-SIMPLICIAL-GROUP and to free the user to call the standard con-
structor make-instance, the software provides the functions build-smrg and
build-ab-smryg.

build-smgr
:cmpr cmpr basis basis :bspn bspn :face face :face* face*
rintr-bndr intr-bndr :bndr-strt bndr-strt :intr-dgnl intr-dgnl
:dgnl-strt dgnl-strt :sintr-grml sintr-grml :sintr-grin sintr-grin
zorgn orgn

defined with keyword parameters and returning an instance of the class
SIMPLICIAL-GROUP. The keyword arguments cmpr, basis, bspn, face, face*,
intr-bndr, bndr-strt, intr-dgnl and dgnl-strt are the arguments provided to
build the underlying simplicial set using the function build-smst. Let us
call it S. As usual, an adequate comment list must be provided for the
parameter :orgn. The only two new arguments are:

— sintr-grml, a lisp function defining the group operation S x S — S.
The function build-smgr uses this lisp function to build a simplicial
morphism of degree 0 between the cartesian product of the newly
created simplicial set S and itself. This new simplicial morphism is
the value of the slot grml of the simplicial group instance.

— sintr-grin, a lisp function defining the inverse w.r.t the preceding group
law of an element of S. The function build-smgr uses this lisp function
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to build a simplicial morphism of degree 0 between S and itself. This
new simplicial morphism is the value of the slot grin of the simplicial
group instance.

After a call to build-smgr, the simplicial group instance is pushed onto
the list of previously constructed ones (*smgr-1list*). The simplicial group
with Kenzo identification n, may be retrieved in the *smgr-1ist*, by a call
to the function sgmr as (sgmr n). The list *smgr-1ist* may be cleared by
the function cat-init.

Up to now the slot kf11 has not been filled. As long as the user does
not make use of the filling function, directly or indirectly, this slot remains
unbound. But as soon as it is needed, the slot-unbound mecanism of CLOS
enters in action and the filling function is defined by the system with the help
of the functions face, sintr-grml and sintr-grin. The automatic creation
of the filling function is possible because mathematically, a simplicial group
is always a Kan simplicial set. This is realized by the internal function
smgr-kfll-intr.

For the user, the two simplicial morphisms, values of the specific slots of a
SIMPLICIAL-GROUP are applied via the two following macros:

grml smgr dmns crpr [Macro]
Apply the simplicial morphism, value of the slot grml of the simpli-
cial group instance smgr to the cartesian product crpr in dimension
dmns. Mathematically, this realizes the group operation. In prin-
ciple, the simplicial morphism must accept the crpr argument on
both forms: either a geometric cartesian product or an abstract
simplex, the geometric part of which is a geometric cartesian pro-
duct (see the examples). With only one argument (smgr) the macro
selects the simplicial morphism instance.

grin smgr dmns absm-or-gsm [Macro]
Apply the simplicial morphism, value of the slot grin of the simpli-
cial group instance smgr to the element absm-or-gsm in dimension
dmns. Mathematically this gives the inverse in the group of the ele-
ment. As suggested by the name of the parameter, this must work
with geometric simplices as well as abstract simplices. With only
one argument (smgr) the macro selects the simplicial morphism.
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build-ab-smgr
:cmpr cmpr basis basis :bspn bspn :face face :facex face*
:intr-bndr inir-bndr :bndr-strt bndr-sirt :intr-dgnl intr-dgnl
:dgnl-strt dgnl-strt :sintr-grml sintr-grml :sintr-grin sintr-grin
zorgn orgn

The description of the parameters is exactly the same as in the previous
function, but in this case, the group operation given by the user, (argument
sintr-grml), must be commutative. The lisp definition of build-ab-smgr is
simply:

(DEFMACRO BUILD-AB-SMGR (&rest rest)
‘(change-class (build-smgr ,Q@rest) ’ab-simplicial-group))

11.4 Two important Abelian simplicial groups: K(z, 1)
and K (zy,1)

Let us recall the notion of classifying space in the framework of simplicial
sets and in the particular case of discrete groups. Given a discrete group
G, we know that we may build a simplicial set K(G,1); in dimension 7,
we have (K(G,1)), = G", the simplices or bar objects being conventionally
represented as sequences of elements of G:

91192 | --- | gn]-

The base point is the void bar object [ ]. Let us note the group law multi-
plicatively.
The face operators are defined as follows:

Aolgi lg2l---1gal = lo2lg3l---|gnl,

Algi|g2|.--1gn] = [g182195]---19nl;

Dl 92| 1gn] = lg118283]---19nl;

On-1lg1 |92 |---19n] = l91|92]---|9n—2|8n-18n],
Onlgr [ g2]---1gn] = lo1lg2]---|gn]-

The degeneracy operators are defined as follows:

nilgr |-~ 1 gi—1 1 gilgiva |- lgnl=lg1 |- |gi—1 1 gile|git1|--.|gnl

where e is the neutral element of G.
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If, in addition G is abelian, then K(G,1) is itself a simplicial group, with the
following group law, in dimension n:

[av |-~ [ an][br | --- | ba] = [a1 + b1 | -+ | an + ba],

a1 [+ Jan] ™" =[~a1 |-+ | —an], a,b€EG

In dimension n, the neutral element is the bar object constitued by a se-
quence of n times the neutral e of G; this is also the n—th degeneracy of the
base point [ | of K(G,1).

The two important simplicial groups K(Z, 1) and K(Zs2,1) may be construc-
ted in Kenzo.

k-z-1 [Function]
Build the simplicial group K(Z, 1). In this simplicial group, a sim-
plex in dimension n is mathematically represented by a sequence
of integers, known as a bar object:

[a1 ‘ a9 | | an].
The group operation inherits the additive law of Z:
[ay [+ |an]+[b1 |-+ | bp] =[a1 +b1 |- | an + by

and the inverse of [a1 | ... | ap] is [—a1 | ... | —ap]. In Kenzo, a
non-degenerate simplex of K(Z, 1) in dimension n will be simply a
list of » non-null integers. The underlying simplicial set is locally
effective and its base point is NIL, i.e the void bar object [ ]. To be
coeherent with the general policy of Kenzo, a degenerate simplex
must be represented by an abstract simplex of the form (:absm
dgop . gmsm) where gmsm is a non-degenerate simplex, here a
list of non-null integers. But, for the computations in the simplicial
group, the general form of a bar object, including 0, is more natural
and more convenient. Consequently, two conversion functions are
provided (see below).

k-z2-1 [Function]
Build the simplicial group K (Zs,1). Mathematically, in dimension
n, the only non-degenerate simplex is a sequence of n 1’s. But one
may show that as simplicial set, K(Z9,1) is isomorphic to P*°R
which may be built by the statement (R-proj-space). This is the
representation adopted in Kenzo. In dimension n, this simplicial set
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has only one non-degenerate simplex, namely the integer n. The
formulas for the faces of this non-degenerate simplex n collapse to:

on = n-—1,
on = ni—1(n—2), i#0,i#n,
Oy,n = n-—1.

As a group, in dimension n, the non—degenerate element 7 is its own
inverse and the neutral is the n-th degeneracy of 0. As in K(Z,1) a
degenerate simplex must be represented by a valid abstract simplex,
but as the computations are more convenient if the general bar
objects are represented by a sequence of mixed 0’s and 1’s, two
conversion functions are provided.

z-bar-absm bar [Function]
Transform a general mathematical bar object bar of K(Z,1), rep-
resented by a list of integers (including 0’s), into a valid abstract
simplex (an object of type ABSM), (:absm dgop . gmsm), where
gmsm is a sequence of non-null integers representing a non-degene-
rate bar object of K(Z,1) and dgop a coded sequence of degeneracy
operators 7);’s.

z-absm-bar absm [Function]
Transform the abstract simplex absm, (:absm dgop . gmsm),
where gmsm is a sequence of non-null integers representing a non-
degenerate bar object of K(Z,1) and dgop a coded sequence of de-
generacy operators, into a list of integers representing a bar object,
degenerate or not, of K(Z, 1), for more convenience in the internal
computations or for more clarity in external printing.

z2-bar-absm bar [Function]
Function analogous to z-bar-absm but for K (Zs, 1).
z2-absm-bar absm [Function]

Function analogous to z-absm-bar but for K(Zo, 1).
Examples
(setf KZ1 (k-z-1)) ==>
[K10 Abelian-Simplicial-Group]

(setf simplex ’(1 10 100)) ==>
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(1 10 100)

(face KZ1 0 3 simplex) ==>

<AbSm - (10 100)>

Let us build the list of the four faces and by suppressing successively, each
face one after the other in this list, let us verify that we have always a Kan
hat (we recall that the lisp function remove, works on a copy of the list, i.e.
the argument hat is not modified). In the forth statement, we verify the
property of minimality of this special simplicial group.

(setf hat (mapcar #’(lambda (i) (face KZ1 i 3 simplex)) (<a-b> 0 3))) ==>

(<AbSm - (10 100)> <AbSm - (11 100)> <AbSm - (1 110)> <AbSm - (1 10)>)

(dotimes (i 4)
(check-kan k i 3 (remove (nth i hat) hat))) ==>

-—--done---

—-—-—-done-——

---done---

---done---

(setf hatl (remove (nth 1 hat) hat)) ==>

(<AbSm - (10 100)> <AbSm - (1 110)> <AbSm - (1 10)>)
(kf11 KZ1 1 3 hatl)

<AbSm - (1 10 100)>

We test now the two macros grml and grin related to the group operation.

(grml KZ1 3 (crpr O simplex O simplex)) ==>
<AbSm - (2 20 200)>

(setf invsimplex (grin KZ1 3 simplex)) ==>
<Absm - (-1 -10 -100)>

(grin KZ1 3 %) ==>

<Absm - (1 10 100)>

(grml KZ1 3 (crpr O simplex O (gmsm invsimplex)))) ==>
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<AbSm 2-1-0 NIL>

(2absm-acrpr (absm O simplex ) (grin KZ1 3 simplex)) ==
<AbSm - <CrPr - (1 10 100) - (-1 -10 -100)>>

(grml KZ1 3 %) ==>

<AbSm 2-1-0 NIL>

(setf KZ2 (k-z2-1)) ==>

[K22 Abelian-Simplicial-Group]

(grml KZ2 3 (crpr 0 3 0 3)) ==>
<AbSm 2-1-0 0>

(grin KZ2 4 4) ==>

<AbSm - 4>

(grml KZ2 4 (crpr 0 * 0 *)) ==>

<AbSm 3-2-1-0 0>

Let us show some examples of conversions, between general bar objects and
valid abstract simplices:

(z-absm-bar (absm 0 ’())) ==>
NIL

(z-absm-bar (absm 1 ’())) ==
(0)

(z-absm-bar (absm 0 ’(2))) ==>
(2)

(z2-absm-bar (absm 7 7)) ==>
(0001111111)
(z2-absm-bar (absm 0 7)) ==>

(1111111
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Let us suppose that the value of the symbol labsms is a list of abstract
simplices built from the simplex (3 6)) in dimension 1 of K(Z,1). The
application of the function z-absm-bar on this list gives the representation
of the simplices under the classical mathematical representation. Applying
then z-bar-absm returns the original list. A similar example is given with
the symbol 1absm2 in dimension 0.

labsms ==>

(<AbSm - (3 6)> <AbSm 0 (3 6)> <AbSm 1 (3 6)>
<AbSm 1-0 (3 6)> <AbSm 2 (3 6)> <AbSm 2-0 (3 6)>
<AbSm 2-1 (3 6)> <AbSm 2-1-0 (3 6)>)

(mapcar #’z-absm-bar labsms) ==>

((36) (036) (306) (0036) (360) (0306) (3006) (000 36))
(mapcar #’z-bar-absm *) ==>

(<AbSm - (3 6)> <AbSm 0 (3 6)> <AbSm 1 (3 6)>

<AbSm 1-0 (3 6)> <AbSm 2 (3 6)> <AbSm 2-0 (3 6)>

<AbSm 2-1 (3 6)> <AbSm 2-1-0 (3 6)>)

labsms2 ==>

(<AbSm - 0> <AbSm - 1> <AbSm - 2> <AbSm - 3>
<AbSm 0 0> <AbSm O 1> <AbSm 0 2> <AbSm 0 3>
<AbSm 1-0 0> <AbSm 1-0 1> <AbSm 1-0 2> <AbSm 1-0 3>)

(mapcar #’z2-absm-bar labsms2) ==>

(NIL (1) (1 1) (111) (0) (01) (011) (0111) (00) (001) (0011)
(00111))

(mapcar #’z2-bar-absm *) ==>
(<AbSm - 0> <AbSm - 1> <AbSm - 2> <AbSm - 3>

<AbSm O 0> <AbSm O 1> <AbSm 0 2> <AbSm 0 3>
<AbSm 1-0 0> <AbSm 1-0 1> <AbSm 1-0 2> <AbSm 1-0 3>)
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11.5 Simplicial Groups as Algebras

If we consider a simplicial group G, with group operation 7, there is a cano-
nical product for the algebra

w : Cy(G) @ Cx(G) — C(9),

defined as the composition 7 0 EML, where EML is the Eilenberg-Mac
Lane homomorphism or the shuffle homomorphism (see the Eilenberg-Zilber
chapter):

C.(9) ® C(G) 5 C.(G x G) > Cu(9).

For instance let us look at the simplicial group K(Z,1):
(setf kzl (k-z-1)) ==>

[K10 Abelian-Simplicial-Group]

(inspect kzl) ==>

AB-SIMPLICIAL-GROUP @ #x38c902 = [K10 Abelian-Simplicial-Group]

0 Class -----——-— > #<STANDARD-CLASS AB-SIMPLICIAL-GROUP>
1 ORGN --—----—- > (K-Z-1), a proper list with 1 element
2 IDNM --——--———- > fixnum 10 [#x00000028]
3 EFHM --—-——-——- > The symbol :--UNBOUND--
4 GRMD --------- > [K10 Abelian-Simplicial-Groupl
5 DFFR --——--—-—- > [K11 Morphism (degree -1)]
6 BSGN --——--—--— > The symbol NIL
7 BASIS ---—---—-—- > The symbol :LOCALLY-EFFECTIVE
8 CMPR --———-——- > #<Function K-Z-1-CMPR>
-->9 APRD ---—--—-——- > The symbol :--UNBOUND--
10 CPRD --------- > [K14 Morphism (degree 0)]
11 FACE -————-——- > #<Function K-Z-1-FACE>
12 KFLL —-------—-- > The symbol :--UNBOUND--
13 GRIN -------—-- > [K21 Simplicial-Morphism]
14 GRML --------- > [K20 Simplicial-Morphism]

We see that the slot aprd has not been filled. As long as the user does
not need, directly or indirectly, the product of the algebra, this slot remains
unbound. But as soon as it is needed, the slot-unbound mecanism of CLOS
enters in action, the canonical algebra product morphism is defined by the

system, and the slot aprd is set.
For instance, let us take the tensor product of two elements of K(Z,1) and
apply the product in the algebra:
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(setf tnsrp (tnpr 2 °(1 2) 3 ’(7 8 9))) ==>
<TnPr (1 2) (7 8 9)>
(aprd kzl 5 tnsrp) ==>

- -—— Rt et {CMBN 5}
<1 * (127 89>
<-1 % (17289
<1 % (17829)>
<-1 % (1789 2)>
<1 * (7128 9)>
<-1 % (7182 9)>
<1 * (7189 2)>
<1 * (78129)>
<-1 * (7819 2)>
<1 *x (7891 2)>

The system Kenzo has automatically created the needed algebra product
morphism and this is shown in the slot instance aprd:

(inspect kzl) ==>

AB-SIMPLICIAL-GROUP @ #x419422 = [K10 Abelian-Simplicial-Group]

0 Class ——-—-—----—- > #<STANDARD-CLASS AB-SIMPLICIAL-GROUP>
1 ORGN ————————- > (K-Z-1), a proper list with 1 element
2 IDNM ---—---—- > fixnum 10 [#x00000028]
3 EFHM —————-——- > The symbol :--UNBOUND--
4 GRMD --——————- > [K10 Abelian-Simplicial-Group]
5 DFFR —--——--—-- > [K11 Morphism (degree -1)]
6 BSGN —------——- > The symbol NIL
7 BASIS -——————- > The symbol :LOCALLY-EFFECTIVE
8 CMPR - ———————- > #<Function K-Z-1-CMPR>
-->9 APRD ————--——- > [K35 Morphism (degree 0)]
10 CPRD —--—----- > [K14 Morphism (degree 0)]
11 FACE ———————— > #<Function K-Z-1-FACE>
12 KFLL —------—-- > The symbol :--UNBOUND--
13 GRIN —---——---——- > [K21 Simplicial-Morphism]
14 GRML -----—--—-- > [K20 Simplicial-Morphism]

An interesting example is to show the associativity of the canonical product
of an algebra, by defining in Kenzo the morphisms of the following dia-
gram and verifying that this diagram is commutative. In the diagram, V is
the algebra product of A, 1 is the identity morphism on A and assoc, the
morphism

assoc: (AQA) @A — AR (AR A),
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with:
assoc((a®b) ®@c) =a® (b c).

ARA @A % AR (AR .A)

vel ) 1 1ev

AR A AR A

v N N
A

Let us define two chain complexes with the two ways to compose two ten-
sorial products:

(setf kzl (k-z-1)) ==

[K10 Abelian-Simplicial-Group]

(setf 3-left (tnsr-prdc (tnsr-prdc kzl kzl) kzl)) ==
[K13 Chain-Complex]

(setf 3-right (tnsr-prdc kzl (tnsr-prdc kzl kzl))) ==>
[K15 Chain Complex]

Then we define the morphism assoc and test it:

(setf assoc (build-mrph
:sorc 3-left
:trgt 3-right
:degr O
tintr #’(lambda (degr a2-a)
(with-tnpr (degra2 gnrta2 degra gnrta) a2-a
(with-tnpr (degrl gnrtl degr2 gnrt2) gnrta2
(cmbn (+ degrl degr2 degra)
1 (tnpr degril
gnrtl
(+ degr2 degra)
(tnpr degr2 gnrt2 degra gnrta))))))
istrt :gnrt
torgn ’ (assoc-double-tensor-product))) ==>
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[K17 Morphism (degree 0)]

(setf *tnpr-with-degrees* t) ==>

T

(7 assoc 7 (tnpr 4 (tnpr 2 (1 2) 2 °(23)) 3 (45 6))) ==>

- -— e {CMBN 7}
<1 % <TnPr 2 (1 2) 5 <TnPr 2 (2 3) 3 (4 5 6)>>

We define now the other morphisms shown in the diagram:

(setf nabla (aprd kzl)) ==>

[K35 Morphism (degree 0)]

(setf idnt (idnt-mrph kzl) ==>

[K36 Morphism (degree 0)]

(setf 1-t-nabla (tnsr-prdc idnt nabla)) ==>
[K39 Morphism (degree 0)]

(setf nabla-t-1 (tnsr-prdc nabla idnt)) ==>

[K42 Morphism (degree 0)]

Now, if the diagram is commutative, the difference morphism, noted zero,
between the following morphisms right and left, must give the null com-
bination if applied to an element of (K(Z,1)® K(Z,1))® K(Z,1).

(setf left (cmps nabla nabla-t-1)) ==>

[K43 Morphism (degree 0)]

(setf right (i-cmps nabla 1-t-nabla assoc)) ==>

[K45 Morphism (degree 0)]
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(setf zero (sbtr left right)) ==>
[K46 Morphism (degree 0)]

(? zero 7 (tnpr 4 (tnpr 2 ’(1 2) 2 °(23)) 3 (45 6))) ==>

-- -_—— et {CMBN 7}

(7 zero 9 (tnpr 7 (tnpr 3 (2 3 4) 4 (5667 8)) 2 °(11 12)))

The resulting combination of the rather simple double tensor product has
yet 140 terms:

(7 right 7 (tnpr 4 (tnpr 2 ’(1 2) 2 ’(2 3)) 3 (4 5 6))) ==>

—————————— {CMBN 7}

<1 * (123245 86)>
<-1 % (1234256)>
<1 * (1234526)>
<-1 * (123456 2)>
<1 * (1243256)>
<-1 * (1243526)>
<1 * (124356 2)>
<1 * (1245326)>
<-1 * (124536 2)>
<1 * (124563 2)>
<-1 % (1423256)>
<1 * (14235286)>
<-1 * (142356 2)>
<-1 % (1425326)>

(length (cmbn-list *)) ==>

140
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11.6 Coming back to the Bar of an algebra

203

The existence of a canonical product for the underlying algebra of a sim-
plicial group allows us now to generate the bar of this algebra. Let us use
again K(Z,1). We begin to test separately the vertical and the horizontal

differential.

(setf kzl (k-z-1)) ==>

[K10 Abelian-Simplicial-Group]

(setf d-vert (bar-intr-vrtc-dffr (dffr kz1)))

(funcall d-vert 0 (abar))

(setf abar0Q (abar 3 (1 2) 3 ’(-1 -2) 3 ’(3 4)))
<<Abar[3 (1 2)1[3 (-1 -2)]1[3 (3 4)]I>»

(funcall d-vert 9 abar(0) ==>

<-1 * <<Abar[2 (1)J[3 (-1 -2)1[3 (3 4)]1>>>
<-1 * <<Abar[2 (2)][3 (-1 -2)1[3 (3 4)I>>>
<1 * <<Abar[2 (3)][3 (-1 -2)]J[3 (3 4)]1>>>
<1 * <<Abar[3 (1 2)1[2 (-3)]1[3 (3 H)I>>>

<-1 * <<Abar[3 (1 2)]1[2 (-2)]1[3 (3 4)1>>>
<-1 * <<Abar[3 (1 2)I[2 (-1)1[3 (3 4)I>>>
<-1 % <<Abar[3 (1 2)I[3 (-1 -2)1[2 (3)]>>>
<-1 * <<Abar[3 (1 2)]1[3 (-1 -2)1[2 (4)]>>>
<1 * <<Abar[3 (1 2)][3 (-1 -2)1[2 (7)]>>>

(setf d-hrz (bar-intr-hrzn-dffr (aprd kz1)))

(funcall d-hrz 9 abar0) ==>

<-1 * <<Abar[3 (1 2)][5 (-1 -2 3 4)1>>>
<1 * <<Abar[3 (1 2)][56 (-1 3 -2 4)I>>>
<-1 * <<Abar[3 (1 2)]1[5 (-1 3 4 -2)1>>>
<-1 * <<Abar[3 (1 2)I1[5 (3 -1 -2 4)]>>>
<1 * <<Abar[3 (1 2)]1[56 (3 -1 4 -2)]1>>>
<-1 * <<Abar[3 (1 2)][56 (3 4 -1 -2)1>>>
<1 * <<Abar[5 (-1 -2 1 2)][3 (3 4)]>>>

{CMBN 8}

{CMBN 8}
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<-1 * <<Abar[56 (-1 1 -2 2)]1[3 (3 4)I>>>
<1 * <<Abar[56 (-1 1 2 -2)]J[3 (3 4)]I>>>
<1 * <<Abar[5 (1 -1 -2 2)1[3 (3 4)I>>>
<-1 * <<Abar[5 (1 -1 2 -2)][3 (3 4)]>>>
<1 * <<Abar[5 (1 2 -1 -2)]J[3 (3 4)I>>>

204

We may now construct the bar chain complex of the algebra kz1 and test

the differential, sum of both previous ones:

(setf bara (bar kzl)) ==>
[K18 Chain-Complex]

(? bara 9 abar0)

<-1 * <<Abar[3 (1 2)1[5 (-1 -2 3 4)I>>>

<1 * <<Abar[3 (1 2)1[6 (-1 3 -2 4)I>>>

<-1 * <<Abar[3 (1 2)1[5 (-1 3 4 -2)1>>>
<-1 * <<Abar[3 (1 2)]1[5 (3 -1 -2 4)]>>>

<1 * <<Abar[3 (1 2)1[56 (3 -1 4 -2)]1>>>

<-1 * <<Abar[3 (1 2)]1[5 (3 4 -1 -2)I>>>

<1 * <<Abar[5 (-1 -2 1 2)][3 (3 4)]>>»>
<-1 * <<Abar[56 (-1 1 -2 2)]1[3 (3 4)I>>>

<1 * <<Abar[56 (-1 1 2 -2)]J[3 (3 4)]I>>>

<1 * <<Abar[5 (1 -1 -2 2)]1[3 (3 4)]>>>

<-1 * <<Abar[5 (1 -1 2 -2)][3 (3 4)]>>>

<1 * <<Abar[5 (1 2 -1 -2)]J[3 (3 4)I>>>

<-1 * <<Abar[2 (1)][3 (-1 -2)1[3 (3 4)I>>>
<-1 * <<Abar[2 (2)]1[3 (-1 -2)1[3 (3 4)I>>>
<1 * <<Abar[2 (3)][3 (-1 -2)1[3 (3 4)I>>>
<1 * <<Abar[3 (1 2)1[2 (-3)]1[3 (3 D)I>>>
<-1 * <<Abar[3 (1 2)]1[2 (-2)][3 (3 4)]>>>
<-1 % <<Abar[3 (1 2)]1[2 (-1)1[3 (3 4)I>>>
<-1 * <<Abar[3 (1 2)]1[3 (-1 -2)1[2 (3)]>>>
<-1 * <<Abar[3 (1 2)]1[3 (-1 -2)1[2 (4)]>>>
<1 * <<Abar[3 (1 2)1[3 (-1 -2)][2 (7T)I>>>

(? bara *) ==>

{CMBN 8}

(setf abarl (abar ’(5 (7 11 4 -9) 4 (8 3 2) 5 (-1 -2 -3 -4))))

==>
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<<Abar[5 (7 11 4 -9)1[4 (8 3 2)1[6 (-1 -2 -3 -4)1>>

(? bara 14 abarl) ==>
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<-1 * <<Abar[5 (7 11 4 -9)1[8 (-1 -2 -3 -4 8 3 2)I>>>
<1 * <<Abar[5 (7 11 4 -9)]1[8 (-1 -2 -3 8 -4 3 2)I>>>
<-1 % <<Abar[5 (7 11 4 -9)][8 (-1 -2 -3 8 3 -4 2)I>>>
<1 * <<Abar[5 (7 11 4 -9)][8 (-1 -2 -3 8 3 2 -4)]>>>
<-1 * <<Abar[5 (7 11 4 -9)][8 (-1 -2 8 -3 -4 3 2)I>>>
<1 * <<Abar[6 (7 11 4 -9)]1[8 (-1 -2 8 -3 3 -4 2)1>>>
<-1 * <<Abar[5 (7 11 4 -9)]J[8 (-1 -2 8 -3 3 2 -4)]>>>
<-1 * <<Abar[5 (7 11 4 -9)]1[8 (-1 -2 8 3 -3 -4 2)I>>>
<1 * <<Abar[6 (7 11 4 -9)]1[8 (-1 -2 8 3 -3 2 -4)]1>>>
<-1 * <<Abar[5 (7 11 4 -9)][8 (-1 -2 8 3 2 -3 -4)]>>>
<1 * <<Abar[5 (7 11 4 -9)][8 (-1 8 -2 -3 -4 3 2)1>>>
<-1 * <<Abar[5 (7 11 4 -9)]J[8 (-1 8 -2 -3 3 -4 2)]>>>
<1 * <<Abar[5 (7 11 4 -9)]1[8 (-1 8 -2 -3 3 2 -4)1>>>
<1 * <<Abar[5 (7 11 4 -9)]J[8 (-1 8 -2 3 -3 -4 2)]>>>
<-1 * <<Abar[5 (7 11 4 -9)]J[8 (-1 8 -2 3 -3 2 -4)]>>>
<1 * <<Abar[5 (7 11 4 -9)]1[8 (-1 8 -2 3 2 -3 -4)1>>>
<-1 * <<Abar[5 (7 11 4 -9)]1[8 (-1 8 3 -2 -3 -4 2)I>>>
<1 * <<Abar[56 (7 11 4 -9)]1[8 (-1 8 3 -2 -3 2 -4)1>>>
<-1 * <<Abar([5 (7 11 4 -9)]1[8 (-1 8 3 -2 2 -3 -4)1>>>
<1 * <<Abar[5 (7 11 4 -9)]J[8 (-1 8 3 2 -2 -3 -4)]>>>
<-1 * <<Abar[5 (7 11 4 -9)][8 (8 -1 -2 -3 -4 3 2)I>>>
<1 * <<Abar[5 (7 11 4 -9)][8 (8 -1 -2 -3 3 -4 2)]>>>
<-1 * <<Abar[5 (7 11 4 -9)]J[8 (8 -1 -2 -3 3 2 -4)]>>>
<-1 * <<Abar[5 (7 11 4 -9)]1[8 (8 -1 -2 3 -3 -4 2)I>>>
<1 * <<Abar[5 (7 11 4 -9)]1[8 (8 -1 -2 3 -3 2 -4)]1>>>
<-1 % <<Abar[5 (7 11 4 -9)]J[8 (8 -1 -2 3 2 -3 -4)]>>>
<1 * <<Abar[5 (7 11 4 -9)]J[8 (8 -1 3 -2 -3 -4 2)]>>>
<-1 * <<Abar[5 (7 11 4 -9)][8 (8 -1 3 -2 -3 2 -4)]>>>
<1 * <<Abar[56 (7 11 4 -9)]1[8 (8 -1 3 -2 2 -3 -4)I>>>
<-1 * <<Abar[5 (7 11 4 -9)]J[8 (8 -1 3 2 -2 -3 -4)]>>>
<-1 * <<Abar[5 (7 11 4 -9)1[8 (8 3 -1 -2 -3 -4 2)I>>>
<1 * <<Abar[56 (7 11 4 -9)]1[8 (8 3 -1 -2 -3 2 -4)]1>>>
<-1 % <<Abar[5 (7 11 4 -9)][8 (8 3 -1 -2 2 -3 -4)]>>>
<1 * <<Abar[5 (7 11 4 -9)][8 (8 3 -1 2 -2 -3 -4)]>>>
<-1 * <<Abar[5 (7 11 4 -9)]J[8 (8 3 2 -1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (7 8 3 2 11 4 -9)]1[5 (-1 -2 -3 -4)]I>>>
<1 * <<Abar[8 (7 8 3 11 2 4 -9)]1[56 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (7 8 3 11 4 -9 2)][56 (-1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (7 8 3 11 4 2 -9)]1[5 (-1 -2 -3 -4)]I>>>
<-1 * <<Abar[8 (7 8 11 3 2 4 -9)][56 (-1 -2 -3 -4)1>>>
<-1 * <<Abar[8 (7 8 11 3 4 -9 2)]1[56 (-1 -2 -3 -4)1>>>
<1 * <<Abar[8 (7 8 11 3 4 2 -9)][56 (-1 -2 -3 -4)]>>>

{CMBN 13}
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<-1 * <<Abar[8 (7 8 11 4 -9 3 2)]1[56 (-1 -2 -3 -4)1>>>
<1 * <<Abar[8 (7 8 11 4 3 -9 2)][6 (-1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (7 8 11 4 3 2 -9)]1[5 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (7 11 4 -9 8 3 2)]1[6 (-1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (7 11 4 8 -9 3 2)][5 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (7 11 4 8 3 -9 2)]J[56 (-1 -2 -3 -4)1>>>
<-1 * <<Abar[8 (7 11 4 8 3 2 -9)]1[56 (-1 -2 -3 -4)1>>>
<1 * <<Abar[8 (7 11 8 3 2 4 -9)1[5 (-1 -2 -3 -4)I>>>
<1 * <<Abar[8 (7 11 8 3 4 -9 2)]1[6 (-1 -2 -3 -4)1>>>
<-1 * <<Abar[8 (7 11 8 3 4 2 -9)]1[5 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (7 11 8 4 -9 3 2)]1[56 (-1 -2 -3 -4)1>>>
<-1 * <<Abar[8 (7 11 8 4 3 -9 2)][5 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (7 11 8 4 3 2 -9)]1[5 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (8 3 27 11 4 -9)]1[5 (-1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (8 3 7 2 11 4 -9)]1[5 (-1 -2 -3 -4)1>>>
<1 * <<Abar[8 (8 3 7 11 2 4 -9)1[5 (-1 -2 -3 -4)]1>>>
<1 * <<Abar[8 (8 3 7 11 4 -9 2)][56 (-1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (8 3 7 11 4 2 -9)]1[5 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (8 7 3 2 11 4 -9)]1[56 (-1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (8 7 3 11 2 4 -9)]1[56 (-1 -2 -3 -4)]>>>
<-1 * <<Abar[8 (8 7 3 11 4 -9 2)]1[5 (-1 -2 -3 -4)1>>>
<1 * <<Abar[8 (8 7 3 11 4 2 -9)]1[5 (-1 -2 -3 -4)]1>>>
<1 * <<Abar[8 (8 7 11 3 2 4 -9)]1[5 (-1 -2 -3 -4)]1>>>
<1 * <<Abar[8 (8 7 11 3 4 -9 2)]1[56 (-1 -2 -3 -4)1>>>
<-1 * <<Abar[8 (8 7 11 3 4 2 -9)]1[56 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (8 7 11 4 -9 3 2)]1[6 (-1 -2 -3 -4)1>>>
<-1 * <<Abar[8 (8 7 11 4 3 -9 2)]1[5 (-1 -2 -3 -4)]>>>
<1 * <<Abar[8 (8 7 11 4 3 2 -9)]1[56 (-1 -2 -3 -4)]>>>

<1 * <<Abar[4 (7 11 -5)]1[4 (8 3 2)]1[5 (-1 -2 -3 -4)I>>>
<-1 * <<Abar[4 (7 11 4)]1[4 (8 3 2)]1[6 (-1 -2 -3 -4)]1>>>
<-1 * <<Abar[4 (7 15 -9)1[4 (8 3 2)][56 (-1 -2 -3 -4)1>>>
<-1 * <<Abar[4 (11 4 -9)]1[4 (8 3 2)][56 (-1 -2 -3 -4)]>>>
<1 * <<Abar[4 (18 4 -9)]1[4 (8 3 2)]1[6 (-1 -2 -3 -4)]1>>>
<-1 * <<Abar[5 (7 11 4 -9)1[3 (3 2)I1[56 (-1 -2 -3 -4)1>>>
<1 * <<Abar[5 (7 11 4 -9)]1[3 (8 3)][5 (-1 -2 -3 -4)]>>>
<-1 * <<Abar([5 (7 11 4 -9)]1[3 (8 5)][56 (-1 -2 -3 -4)I>>>
<1 * <<Abar[5 (7 11 4 -9)]1[3 (11 2)1[5 (-1 -2 -3 -4)I>>>
<-1 % <<Abar[5 (7 11 4 -9)1[4 (8 3 2)1[4 (-3 -3 -4)1>>>

<1 * <<Abar[5 (7 11 4 -9)1[4 (8 3 2)1[4 (-2 -3 -4)I>>>
<1 * <<Abar[5 (7 11 4 -9)J[4 (8 3 2)1[4 (-1 -5 -4)]I>>>

<-1 * <<Abar[5 (7 11 4 -9)1[4 (8 3 2)]1[4 (-1 -2 -7)]I>>>

<1 * <<Abar[5 (7 11 4 -9)][4 (8 3 2)]1[4 (-1 -2 -3)I>>>

206
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(? bara *) ==>

Lisp files concerned in this chapter

simplicial-groups.lisp, k-pi-n.lisp.

[classes.lisp , macros.lisp, various.lisp|.
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Chapter 12

Fibrations

In tt Kenzo, the fibration theory is applied in the simplicial frame and limited
to the simplicial principal fiber spaces.

12.1 Notion of fibration

Let B a simplicial set and G a simplicial group. A (right-hand) simplicial
fibration is defined by a twisting operator, 7 : B — G, of degree —1.
For any dimension n and for any element b € B,,, the face and degeneracy
operators must satisfy the following relations:

oi(tb) = 7(9;b), i<n-—1,
On—1(th) = [1(0nb)] " .7(Bn_1),
ni(tb) = T(n;b), i<n-—1,
en = T(1nb).

where e, is the neutral element of G,,.

Now, the twisting operator 7 defines a fibration of base space B, of fiber
space G and of total space B X, G, whose simplicial components are:

(BXx;G)n=(BxG),=(Bn XGn),

and whose face operators are defined, in any dimension n and for any pair
(b,9), b € By, g € Gn by:

di(b,g) = (0:b,0i9), i<nm,
an(bag) = (anbaT(b)-ang)'

208
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As it is well known, there are 4 natural choices for such a definition. The
action of the group can be from the right or from the left and the critical
index can be the last one (n) or the first one (0). In Kenzo, the implementor
has chosen the non—usual one (i.e. action on the right hand and critical
index, the last one), leading to the Szczarba formulas, the best choice in the
case of the loop spaces.

12.2 Building a twisting operator

To build a twisting operator, one uses the function build-smmr designed
as a convenient tool to build a simplicial morphism. The source (keyword
:sorc) is the base space, a reduced simplicial set, the target (keyword
:trgt) is the fiber space, a simplicial group. The degree is —1 and the
morphism (keyword :sintr) is the internal lisp function implementing 7.
See the example below, where 7 is a simple twisting operator, applying in
particular the only (geometrical) simplex of degree 2 of S? upon the bar
object [1] € (K (Z2,1))1.

In Kenzo, the type FIBRATION is defined. An object of this type must be
of type SIMPLICIAL-MRPH, the degree of the corresponding morphism being
—1. To apply the morphism, one uses the well known macro ? or the special
macro tw-a-sintra3.

? twop dmns gmsm [Macro]
Apply the twisting operator twop to the geometrical simplex gmsm
in dimension dmns. Of course, ? works as well with a combination
of geometric simplices as in (? twop cmbn).

tw-a-sintr3 sintr dmns absm bspn [Macro]
Apply the internal lisp function sintr implementing a twisting o-
perator to the abstract simplex absm in dimension dmns. The
base point bspn of the target simplicial set (a simplicial group)
must be given, since the function may return the neutral element
in dimension dmns — 1.
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12.3 Constructing the total space

The total space associated to a twisting operator is constructed by the func-
tion fibration-total.

fibration-total fibration [Function]
Build the simplicial set, total space of the fibration. This function
extracts from the simplicial morphism fibration (a previously de-
fined twisting operator), the base space (a simplicial set) and the
fiber space (a simplicial group) and constructs the twisted carte-
sian product of these simplicial sets. The face function is built using
the internal function fibration-total-face. The non—degenerate
simplices of the total space are coded exactly as those of the non—
twisted product (B x G) obtained by the lisp call (crts-prdc base
fiber). This non-twisted cartesian product is saved into the slot
grmd (graded module) of the instance object. If the base space and
the fiber space are both of type KAN, then the filling function is com-
puted by the internal function fibration-kf11l and the function
fibration-total returns an object of type KAN.

Examples

(setf s2 (sphere 2)) ==>
[K1 Simplicial-Set]

(setf kz2 (k-z2-1)) ==>

[K6 Abelian-Simplicial-Group]

(setf tw2 (build-smmr

:sorc s2

rtrgt kz2

idegr -1

:sintr #’(lambda (dmns gmsm) (absm O 1))
rorgn °’ (s2-tw-kz2))) ==>

[K18 Fibration]
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(inspect tw2) ==>

SIMPLICIAL-MRPH @ #x4a54c2 = [K18 Fibration]

0 Class -——————- > #<STANDARD-CLASS SIMPLICIAL-MRPH>

1 ORGN -———————- > (82-TW-KZ2), a proper list with 1 element
2 IDNM --------- > fixnum 18 [#x00000048]

3 RSLTS ————-——- > simple T vector (15) = #(#() #() #(0O ...)
4 ?-CLNM -----—-- > fixnum O [#x00000000]

5 ??7-CLNM ----- > fixnum 0 [#x00000000]

6 STRT ------——- > The symbol :GNRT

7 INTR --———-———- > The symbol NIL

8 DEGR ———————— > fixnum -1 [#xfffffffc]

9 TRGT --—------ > [K6 Abelian-Simplicial-Group]

10 SORC ---—----- > [K1 Simplicial-Set]

11 SINTR -------- > #<Interpreted Function (unnamed) @ #x4ab4ba>

The following statement show how to apply the twisting operator to a ge-
ometrical simplex. But if we have an abstract simplex, one must use the
special function tw-a-sintr3.

(7 tw2 2 ’s2) ==>

<AbSm - 1>

(tw-a-sintr3 (sintr tw2) 3 (absm 1 ’s2) nil) ==

<AbSm 0 1>

(tw-a-sintr3 (sintr tw2) 3 (absm 7 ’*) nil) ==>

<AbSm 1-0 NIL>

(dotimes (i 3) (print (tw-a-sintr3 (sintr tw2) 3
(absm i ’s2) nil))) ==>

<AbSm - 1>
<AbSm 0 1>
<AbSm 1 1>

Let us build the total space of the fibration (a simplicial set). We show
some basis and compute some homology groups. The method to compute
the homology groups will be explained in a following chapter.

(setf tot-spc2 (fibration-total tw2)) ==>

[K24 Simplicial-Set]

(inspect tot-spc2) ==
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SIMPLICIAL-SET @ #x4a87f2 = [K24 Simplicial-Set]

0 Class -----——- > #<STANDARD-CLASS SIMPLICIAL-SET>

1 ORGN -———————— > <...>, a proper list with 2 elements

2 IDNM --——--———- > fixnum 24 [#x00000060]

3 EFHM --—-——-——- > The symbol :--UNBOUND--

4 GRMD --——---——- > [K19 Simplicial-Set]

5 DFFR --------- > [K25 Morphism (degree -1)]

6 BSGN --———————- > <CrPr - * - 0>, a dotted list with 3 elements

7 BASIS ------——- > #<Closure (FLET CRTS-PRDC-BASIS RSLT) @ #x4a735a>

8 CMPR --———-—--— > #<Closure (FLET CRTS-PRDC-CMPR RSLT) [#’SPHERE-CMPR] @ #x4a732a>
9 CPRD ————————— > [K28 Morphism (degree 0)]

10 FACE --—------ > #<Closure (FLET FIBRATION-TQTAL-FACE RSLT) @ #x4a8752>

(basis tot-spc2 0) ==>
(<CrPr - * - 0>)
(basis tot-spc2 1) ==>
(KCrPr 0 * - 1>)
(basis tot-spc2 2) ==

(KCrPr - S2 - 2> <CrPr - S2 0 1> <CrPr - S2 1 1> <CrPr - S2 1-0 0> <CrPr 1-0 * - 2>)

(basis tot-spc2 3) ==>

(KCrPr 0 S2 - 3> <CrPr 0 S2 1 2> <CrPr 0 S2 2 2> <CrPr 0 S2 2-1 1> <CrPr 1 52 - 3>
<CrPr 1 S2 0 2> <CrPr 1 S2 2 2> <CrPr 1 S2 2-0 1> <CrPr 2 S2 - 3> <CrPr 2 S2 0 2>
<CrPr 2 S2 1 2> <CrPr 2 S2 1-0 1> <CrPr 2-1-0 * - 3>)

(homology tot-spc2 0 8) ==
Homology in dimension O :
Component Z

Homology in dimension 1 :
---done---

Homology in dimension 2 :
Component Z

Homology in dimension 3 :
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Component Z/4Z

Homology in dimension 4 :

---done---

Homology in dimension 5 :

Component Z/4Z

Homology in dimension 6 :

---done---

Homology in dimension 7 :

Component Z/4Z

In the following example, we take K(Z,1) and build a similar twisting o-

perator. Note that in (K(Z,1));, the bar object [1] is represented as (1)
whereas in K(Zo,1) it is 1. In this case, it is known that the total space is

a model of the sphere S® (Hopf fibration - see below).
(setf s2 (sphere 2)) ==>
[K1 Simplicial-Set]
(setf kzl (k-z-1)) ==
[K6 Abelian-Simplicial-Group]
(setf twl (build-smmr
isorc s2
rtrgt kzi
idegr -1
:sintr #’(lambda (dmns gmsm) (absm 0 (list 1)))
torgn °(s2-tw-kzl))) ==>
[K18 Fibration]
(setf tot-spcl (fibration-total twl)) ==>
[K24 Simplicial-Set]

(homology tot-spcl 0 6) ==>

Homology in dimension O :
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Component Z

Homology in dimension 1 :
---done---

Homology in dimension 2 :
---done---

Homology in dimension 3 :
Component Z

Homology in dimension 4 :
---done---

Homology in dimension 5 :

--—-done-—-
We may also obtain the boundary and faces of elements of the total space:
(setf elem (crpr 0 ’s2 0 ’(1 2))) ==>

<CrPr - 82 - (1 2)>

(? tot-spcl 2 elem) ==>

- e {cMBN 1}
<2 ¥ <CrPr 0 * - (2)>>

<-1 * <CrPr 0 * - (3)>

(? tot-spcl *) ==>

- e {CMBN 0}

(dotimes (i 3) (print (face tot-spcl i 2 elem))) ==

<AbSm - <CrPr 0 * - (2)>>
<AbSm - <CrPr 0 * - (3)>>
<AbSm - <CrPr 0 * - (2)>>
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The system Kenzo provides the function hopf to build Hopf fibrations. The
lisp definition is the following:

(defun HOPF (n)
(declare (fixnum n))
(the simplicial-mrph
(build-smmr

:sorc (sphere 2)
:trgt (k-z-1)
:degr -1
:sintr (hopf-sintr n)
rorgn ‘(hopf ,n))))

(defun HOPF-SINTR (n)
(declare (fixnum n))
(flet ((rslt (dmns gmsm)
(declare (ignore dmns gmsm))
(if (zerop n)
(absm 1 +empty-list+)
(absm 0 (list n)))))
(the sintr #’rslt)))

In the definition of the lisp function for the slot sintr, we see that the
simplicial morphism applies in particular the only geometric simplex in di-
mension 2 of S? onto the bar object [n] € (K(Z,1));. If n = 0, this is
no| ], i.e. the O—degeneracy of the base point NIL. We give some examples
of some fibrations and of the corresponding total spaces in function of the
parameter n. First we generate 4 fibrations and apply the twisting operator
on the geometrical simplex s2.

(setf hl (hopf 1) h2 (hopf 2) h3 (hopf 3) h10 (hopf 10))
(mapcar #’(lambda (h) (funcall (sintr (eval h)) 2 ’s2)) ’(h1 h2 h3 h10)) ==>

(<AbSm - (1)> <AbSm - (2)> <AbSm - (3)> <AbSm - (10)>)

Then we generate the corresponding total space and get some homology
groups.

(setf t1 (fibration-total hl) t2 (fibration-total h2)
t3 (fibration—-total h3) t10 (fibration-total h10))

(homology t1 0 10) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
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---done---

Homology in dimension 2
---done---

Homology in dimension 3 :
Component Z

Homology in dimension 4 :

---done---

......... all next groups null .....

(homology t2 0 10) ==>
Homology in dimension O :
Component Z

Homology in dimension 1
Component Z/2Z

Homology in dimension 2
---done---

Homology in dimension 3 :
Component Z

---done---

......... all next groups null .....

(homology t3 0 4) ==
Homology in dimension O :
Component Z

Homology in dimension 1

216



CHAPTER 12. FIBRATIONS 217

Component Z/3Z

Homology in dimension 2 :
---done---

Homology in dimension 3 :
Component Z

(homology t10 1) ==
Homology in dimension 1 :

Component Z/10Z

Lisp file concerned in this chapter

fibrations.lisp.



Chapter 13

Loop Spaces

13.1 Introduction

Let us recall the definition of the free group generated by a set A. Con-
sider the set A x {+1,—1} and make, as long as there is no ambiguity, the
identification a; = (a;,1) and a; ! = (a;,—1) for all a; € A.

1

Definition. a; and its formal inverse a; = are letters.

Definition. A word is a finite sequence of letters, possibly repeated, with-
out any pair of the form ajaj_1 and alzlak. The word is said reduced.

Now, let Z*A the set of words on A. It is easy to show that if we define
in Z*A an internal law of composition as the formal concatenation of two
words, on which the cancelation rule is applied, i.e. any pair of the form
ajaj_l and a,?lak is replaced by the wvoid sequence, then Z*4 is a group (non-
commutative in general). The void word is the neutral element for that law.
If we consider the concatenation as a product, then, as usual in group theory,
a sequence of k times the same letter ¢ will be written a* and a sequence
of k times the same letter a= !, a=*. So a word formed from letters by the
concatenation product together with the cancellation rule, will be written
under the reduced form:

niy n2 Nk *
atray’...ak, ng €LY, a; € A, a; # aijqq

and its inverse is

—Ng —n2 _—Ni
ak .. a2 all .

218
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After this résumé, let X be a reduced simplicial set (i.e. having only one
0-simplex, namely its base point). The Kan simplicial version GX of the
loop space (| X|) is defined as follows. The set of n—simplices GX, is the
free group generated by the (n + 1)-simplices o € X,, 1 except those which
are n—degenerate. In other words:

+
GXn — Z*X"+17 X,';:_l e XTL+1 — ’I']an
In fact, from a strictly mathematical point of view, the right definition is
GXn = Z*X;—"'l/"]ana

i.e. the quotient group of Z*X:H, the free group generated by all the n+ 1-
simplices, the n—degenerate included, by the normal subgroup 7,X, gen-
erated by the n—degenerate simplices. Both definitions are equivalent, the
second is mathematicaly correct but only the first one is visible in the pro-

gram.

For a better understanding, we may distinguish carefully a generator o be-
longing to X, ;1 and the corresponding letter 7(0) € GX,. So a word,
element of GX,, will be written

T(o1)" 7(02)? ... T(0p)?.
Now, let us define two homomorphisms:
3, :GX, — GXpoy, T : GXyy — GXpy1,

by the following relations, keeping in mind that 9; and 7); are respectively
the face and degeneracy operators acting on the simplices of X:

_5,‘(7‘(0’)) = 7(00), 0<i<mn,
On(1(0)) = T(On410)"'7(Bn0),
mi(1(0)) = 7(mo), 0<Zi<n.

When applied to words, the two homomorphisms, d and 7, satisfy (for cla-
rity, we omit here the operator 7):

F@h .. a%) = (B(ay))™ ...
m(ar .. ap*) = (@(a)™ ... (7@(ax))".

—
Ql
~—~
S
=
N—
SN
S
ol
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It is known that the 0; and the 7; satisfy the fundamental relations between
face and degeneracy operators (see the chapter on simplicial sets). So, GX is
itself a simplicial set; each GX,, is a group, each face and degeneracy opera-
tor is an homomorphism, so that GX is a simplicial group. The importance
of the simplicial group GX is emphasized by the Kan theorem, stating that
if we consider the realization |X| of X and the loop space Q(|X|,zo) at the
base point zo € |X|, then Q(|X|,zo) and the realization |GX| of GX have
the same homotopy type.

13.2 Representation of letters and words

In the system, the chosen representation for letters and words follows the

+ .
very definition of the free group Z*%n+1. Here, a letter is a generator of

GX, i.e. an abstract simplex o of X: +1- A word will be implemented

as a sequence of such letters to a certain power (including 1). The chosen
terminology is the following;:

e A term like o? is a power.
o A word 0,402 ...0, is a loop.

Note that, in this framework the operator 7 is not visible.

13.2.1 Representation of a power

A power is internally represented by lisp object of type apowr. This has the
form:

(dgop gmsm . expn)
in which we may recognize:
1. the components of the abstract simplex: dgop and gmsm,
2. the exponent of the letter: ezpn, an integer.
The associated constructor is the macro apowr.
apowr dgop gmsm erpn [Macro]
Build an object of type apowr. The accessor macros are respectively
apdgop, apgmsm and apexpn. There is no special printing function

since the real object interesting for the user is not the power but
rather the loop.
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13.2.2 Representation of a loop
A loop is represented by a lisp object of the form:
(:loop apowery ... apowery)

The corresponding type is LOOP. The constructor is the macro make-loop
but the pratical one is 1oop3 and the associated printing function prints the
object under the form:

<<Loop [ezxt-dgopl gmsml expnl] ... Lezt-dgopk gmsmk expnk]>>

where the ezt-dgop’s are under the form of a readable sequence of 77 operators.

Notion of normalized loop

Normalizing a loop is a matter of factoring the degeneracy operators com-
ponents (the dgop’s) of the apowr’s and building an object of type ABSM
belonging to the simplicial set GX. For instance, the normalized null-loop
in dimension 5 is <AbSm 4-3-2-1-0 <<Loop>>>. For non-null loops, the fol-
lowing examples show the transformation. We have written the loops under
the form printed by the system.

<<Loop [1-0 A\2]>> ===> <AbSm 1-0 <<Loop [A\2]>>>
<<Loop [3-2-1 A\2] [4-2 B\3]>> ===> <AbSm 2 <<Loop [2-1 A\2] [3 B\3]1>>>.
<<Loop [2-1 A\2] [2-0 B\2] [1-0 A\31>> ===>
<AbSm - <<Loop [2-1 A\2] [2-0 B\2] [1-0 A\3]>>>
<<Loop [2-1-0 A\2] [2-1-0 B\2] [2-1-0 A\3]>> ===>

<AbSm 2-1-0 <<Loop [A\2] [B\2] [A\3]>>>

13.3 A set of functions for loops

To facilitate the construction of objects of LOOP type, a set of useful functions
is provided by the system.

loop3 dgopl gmsml pwrl ... dgopk gmsmk pwrk [Function]
Construct a loop (a word) corresponding to the product of the ab-
stract simplices asm;, the components of which being dgop; and
gmsm;, to the power pwr;. The function constructs itself the ob-
jects of type apowr from the arguments. It accepts an indefinite
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number of arguments, including none. If there is no argument, the
null loop is created. It exists in fact in the system the constant
+null-loop+ which is the base point of the underlying simplicial
group. Warning: the function loop3 does return neither a nor-
malized loop nor a reduced word (no automatic simplification), so
it is up to the user to give a correct sequence of arguments corres-
ponding to a reduced word.

loop-space-cmpr cmpr [Function]
From the comparison function ¢mpr suitable for comparing the ge-
ometrical simplices belonging to the underlying simplicial set, build
a comparison function for objects of type LOOP.

loop-space-face cmpr face [Function]
From the comparison function c¢mpr and the face function face,
build a face function for an object of type LOOP returning the face
of such an object as an ABSM type object (a normalized loop).

loop-space-face* cmpr face [Function]
From the comparison function c¢mpr and the face function face,
build a face* function. See the description of the slot face* in the
simplicial sets chapter.

loop-space-grml-sintr cmpr [Function]
From the comparison function c¢mpr, build a function for the group
operation of the loop space (a simplicial group).

loop-space-grin-sintr dmns loop [Function]
Build the inverse of the object loop in the simplicial group. The
first argument dmns is mandatory but ignored.

loop-space smst &optional (n 1) [Function]
If the second argument is 1 or omitted, construct, from the re-
duced simplicial set X, here the argument smst, the corresponding
simplicial group GX. The new created simplicial set is of course
locally effective and its base point is the null loop. For any other
positive integer value n of the second argument, build the n-th i-
terated loop space of X. The basic construction is given by the
following call to the function build-smgr:

(build-smgr  :cmpr (loop-space-cmpr cmpr)
:basis :locally-effective
:bspn +null-loop+
:face (loop-space-face cmpr face)
:face* (loop-space-face* cmpr face)
:sintr-grml (loop-space-grml-sintr cmpr)
:sintr-grin #’loop-space-grin-sintr
torgn ‘(loop-space ,smst))
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gdeltab [Function]

Build Q!(A). This is simply (loop-space(deltab)). We recall
that A is the reduced and locally effective simplicial set obtained
from AN, by identifying all the vertices to the base point. AN is
the locally effective simplicial set freely generated by the positive
integers.

Examples

(loop3) ==>

<<Loop>>

(loop3 0 ’a 2 20 ’b -3 12 ’c 1) ==>

<<Loop [A\2] [4-2 B\-3] [3-2 C]>>

(loop3 0 ’a 2 20 ’b -3 12 ¢ 1 0 ’a 3) ==>
<<Loop [A\2] [4-2 B\-3] [3-2 C] [A\3]>>

(loop3 (dgop-ext-int ’(2 1 0)) ’p 2
(dgop-ext-int (56 4 3 2 1)) ’q 5) ==>

<<Loop [2

-1-0 P\2] [5-4-3-2-1 Q\5]>>

Let us consider now a true reduced simplicial set, namely Moore(Z/2Z,3),
whose structure is shown using the function show-structure defined in the
Simplicial Sets chapter.

(setf moore23 (moore 2 3)) ==>

[K7 Simplicial-Set]

(show-structure moore23 4) ==>
Dimension = 0 :

Vertices : (%)
Dimension = 1 :
Dimension = 2 :
Dimension = 3 :
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Simplex : M3

Faces : (<AbSm
<AbSm

Dimension = 4 :
Simplex : N4

Faces : (<AbSm
<AbSm

1-0 *> <AbSm 1-0 *>
1-0 *> <AbSm 1-0 *>)

- M3> <AbSm 2-1-0 *>
- M3> <AbSm 2-1-0 *> <AbSm 2-1-0 *>)

Let us build now Q'(Moore(Z/2Z,3)) and ask for faces of some loops. The
user will note that the function face admits either LOOP type objects or ABSM
type objects (normalized loop) but always returns normalized loops, i.e. an
abstract simplex, according to the normal behaviour of the face function in

a simplicial set.

(setf o-moore23 (loop-space moore23)) ==>

[K11 Simplicial-Group]

(face o-moore23 0 4 +null-loop+) ==>

<AbSm 2-1-0 <<Loop>>>

(face o-moore23 0 3 (loop3 0 ’N4 2)) ==>

<AbSm - <<Loop [M3\2]>>>

(face o-moore23 1 3 (loop3 0 ’N4 2)) ==>

<AbSm 1-0 <<Loop>>>

(face o-moore23 1 4 (loop3 1 ’N4 2)) ==

<AbSm - <<Loop [N4\2]>>>

(face o-moore23 0 2 (loop3 0 M3 2)) ==>

<AbSm O <<Loop>>>
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Let us do the same with the following reduced simplicial set (ss2) and with
QL(A).

(setf ss2 (build-finite-ss ’( *
2 s2 (* * *)
3 s3 (s2 s2 s2 s2)))) ==>
Checking the O-simplices...
Checking the 1-simplices...
Checking the 2-simplices...
Checking the 3-simplices...
[K18 Simplicial-Set]
(setf o-ss2 (loop-space ss2)) ==>
[K23 Simplicial-Group]
(face o-ss2 0 1 (loop3 0 ’s2 1)) ==>
<AbSm - <<Loop>>>
(face o-ss2 0 2 (loop3 0 ’s3 2)) ==>
<AbSm - <<Loop [S2\2]>>>
(face o-ss2 1 2 (loop3 0 ’s3 2)) ==>
<AbSm - <<Loop [S2\2]>>>
(face o-ss2 1 2 (loop3 0 ’s3 2)) ==>
<AbSm - <<Loop [S2\2]>>>
(setf db (gdeltab)) ==>
[K40 Simplicial-Group]
(face db 3 3 (loop3 12 7 3)) ==
<AbSm 1-0 <<Loop>>>
(face db 3 3 (loop3 5 7 3)) ==>
<AbSm 0 <<Loop [7\3]>>>

(face db 3 3 (loop3 6 7 357 337 3)) ==>

<AbSm - <<Loop [1 7\3] [0 7\3] [1-0 3\-1]1 [1-0 5] [1-0 3\-1]
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[1-0 5] [1-0 3\-1] [1-0 51>>>
(face db 3 2 *) ==>

<AbSm - <<Loop [7\3] [0 3\-1] [0 5] [0 3\-1] [0 5] [0 3\-1]
[0 51 [0 3\-11 [0 5] [0 3\-11 [0 5] [0 3\-1]1 [0 51>>>

The last statement shows that the boundary operator attached to the chain
complex derived from all this machinery satisfies its fundamental property
(dod=0).

(? db (? db 3 (loop3 (dgop-ext-int ’(3 2)) (dlop-ext-int (0 1 2)) 3
(dgop-ext-int ’(3 1)) (dlop-ext-int (0 1 2)) 3
(dgop-ext-int ’(2 1)) (dlop-ext-int (0 1 2)) 3))) ==>

-- -—- et {CMBN 1}

The loop spaces of reduced simplicial sets, provide us with new examples of
algebras. So, we may apply the functor bar.

(setf moore-22 (moore 2 2)) ==>

[K1 Simplicial-Set]

(dotimes (i 4) (print (basis moore-22 i :dgnr))) ==>
(<AbSm - *>)

(<AbSm 0 *>)

(<AbSm - M2> <AbSm 1-0 *>)
(<AbSm - N3> <AbSm O M2> <AbSm 1 M2> <AbSm 2 M2> <AbSm 2-1-0 *>)

(setf o-moore-22 (loop-space moore-22)) ==>

[K6 Simplicial-Group]

(aprd o-moore-22 3 (tnpr 1 (loop3 0 ’'m2 1) 2 (loop3 O ’n3 1))) ==>

-- - e {CMBN 3}
<1 * <<Loop[1-0 M2][2 N3]>>>

<-1 * <<Loop[2-0 M2][1 N3]>>>
<1 * <<Loop[2-1 M2] [0 N3]>>>

(setf bar-om (bar o-moore-22)) ==>

[K36 Chain-Complex]



CHAPTER 13. LOOP SPACES 227

(? bar-om 5 (abar 2 (loop3 0 'm2 1) 3 (loop3 0 ’n3 1))) ==>

- - {CMBN 4}
<1 * <<Abar[4 <<Loop[1-0 M2][2 N3]>>]>>>

<-1 * <<Abar[4 <<Loop[2-0 M2][1 N3]>>]1>>>

<1 * <<Abar[4 <<Loop[2-1 M2] [0 N3]>>]>>>

<-2 * <<Abar[2 <<Loop[M2]>>][2 <<Loop[M2]>>]>>>

Lisp file concerned in this chapter

loop-spaces.lisp.



Chapter 14

Disk pasting and suspension

14.1 Introduction

Let us recall the technique of space construction by attaching maps'. Let A
be a subspace of a space X and a map f of A into a space Y. In the space
X [1Y, let us identify each z in A with its image f(z) in Y. The quotient
space Z = X J; Y of the space X [[Y by the equivalence relation that the
identification above determines, is called the adjunction space of the system
(X D A),(Y D f(A)). The quotient map g : X [[Y — Z sends Y onto a
subspace of Z.

In this section, we shall take as pair (X, A) the pair (D", S" 1), where D"
is the unit disc of R” and S™~! is the sphere of dimension n — 1, boundary
of D™. In this case, the space Z = D" J;Y is said to be obtained from Y
by attaching an n—disc via f, or disk pasting.

14.2 The functions for disk pasting

The Kenzo program implements the previous technique of space construc-
tion, via simplicial sets. We know that D™ is homeomorphic to the standard
simplex A™. The method used by the implementor is the following:
Starting from a simplicial set ss representing Y, build a new one having the
same simplices as ss and in dimension 72, a new added simplex described by
the user. This description consists of:

— a name (a symbol) for this new generator,

— the list of all its n + 1 faces.

!Marvin Greenberg in Lectures on Algebraic Topology. Benjamin Inc, 1967.

228
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disk-pasting smst dmns new faces [Function]
Construct, from the simplicial set smst, a new simplicial set by at-
taching the unit disc of dimension dmns. The argument faces is the
list of dmn + 1 simplices corresponding to the faces of the new sim-
plex attached to smst. These simplices are, in principle, written as
abstract simplices (absm), nevertheless it is possible to write them
as geometric simplices (gmsm). In this case, the corresponding ge-
ometric simplices must have the correct dimension. The program
will transform the list of gmsm’s into a list of absm’s. The argu-
ment new allows the user to name this new added simplex. The
program verifies the coherence of the addition of the new simplex
by calling internally the function check-faces.

chcm-disk-pasting chem dmns new bndr [Function]
Construct, from the chain complex chem (chain groups Cy), a new
chain complex (chain groups C.), where:

CZ', = Cp, Vp#dmn,

Clin = Cmn ® Znew.

The symbol new is the name given by the user to a new generator
in dimension dmns and bndr is a combination of degree dmns — 1
representing the boundary of the generator new. Of course, one
must have dgp,ns—1(bndr) = 0.

hmeq-disk-pasting hmeg dmns new bndr &key new-lbcc [Function]
Construct a homotopy equivalence by attaching the generator new
of dimension dmns with boundary bndr to the left bottom chain
complex of the homotopy equivalence hmeq. This modification of
the left bottom chain complex is propagated along the whole new
homotopy equivalence. The key parameter new-lbcc is for internal
use.
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Example

Let us begin by a trivial example corresponding to the well known following
result: if f maps S”! onto a point Y, then by disk pasting we obtain a
space homeomorphic to S™. Here, the point Y will be represented by the
trivial simplicial set:

(setf sO (build-finite-ss ’(%*))) ==>

Checking the O-simplices...
[K1 Simplicial-Set]

In the identification process, the 1-simplices boundaries of the 2-simplex A2
are applied on the O—degeneracy of the base point .

(setf s2 (disk-pasting sO

2

’s2

(1ist (absm 1 ’*) (absm 1 ’*) (absm 1 ’%)) ))
[K6 Simplicial-Set]
(show-structure s2 2) ==>

Dimension = 0 :

Vertices : (%)

Dimension 1:

Dimension 2

Simplex : S2
Faces : (<AbSm O *> <AbSm O *> <AbSm 0 *>)

More interesting is the construction of the successive projectives spaces P'R.
Let us begin by P!R. We start from a point (the simplicial set s0) and

we identify the two boundary points of Al to the base point of s0. The
new simplex to be added to sO is of dimension 1 and its 2 faces are the
base point itself. It is well known that the resulting corresponding space is
homeomorphic to the circle S'.

(setf plr (disk-pasting sO 1 ’dl (list (absm O ’*)(absm 0 ’%)))) ==>

[K34 Simplicial-Set]
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(show-structure pir 1) ==>
Dimension = 0 :

Vertices : (%)
Dimension = 1 :

Simplex : D1

Faces : (<AbSm - *> <AbSm - *>)

(dotimes (i 3) (homology plr i)) ==>
Homology in dimension O :
Component Z
Homology in dimension 1 :
Component Z
Homology in dimension 2 :

---done—--

231

The projective spaces P"R of higher degree may be constructed by the
following iterative rule. Suppose we have built a simplicial set corresponding
to P""IR and that we have named the additional simplex d,_1. Suppose
also that d,,_o has been previously defined. (dy is the base point). Then
the simplicial set corresponding to P"R is obtained by pasting A™ with the

following description of the additional simplex:
e the name of the new simplex is d,,,

e the faces of d, are:

aﬂdn = dn—la
od, = nodn—2,
Oodp, = md, 2,
an—ldn = nn—an—Qa
6ndn = dn—l-
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So, applying this rule, we may construct a model for P'R, i = 2,3,4 and
verify the well known results about their respective homology groups.

(setf p2r (disk-pasting plr 2 ’d2
(list (absm 0 ’d1)
(absm 1 ’*)
(absm 0 ’d1)) )) ==
[K42 Simplicial-Set]
(show-structure p2r 2) ==>
Dimension = 0 :
Vertices : (*)
Dimension = 1 :
Simplex : D1
Faces : (<AbSm - #*> <AbSm - *>)
Dimension = 2 :
Simplex : D2
Faces : (<AbSm - D1> <AbSm 0 *> <AbSm - D1>)
(dotimes (i 3) (homology p2r i)) ==>
Homology in dimension O :
Component Z
Homology in dimension 1 :
Component Z/2Z
Homology in dimension 2 :
---done---
(setf p3r (disk-pasting p2r 3 ’d3
(list (absm
(absm

(absm
(absm

’d2)
’d1)
’d1)
°d2)))) ==>

O N H+—= O



CHAPTER 14. DISK PASTING AND SUSPENSION

[K56 Simplicial-Set]
(show-structure p3r 3)
Dimension = 0 :
Vertices : (%)
Dimension = 1 :
Simplex : D1
Faces :
Dimension = 2 :
Simplex : D2
Faces :
Dimension = 3 :
Simplex : D3
Faces :

(dotimes (i 4) (homology

D2> <AbSm 0 D1> <AbSm 1 D1> <AbSm - D2>)

==>

(<AbSm - *> <AbSm - *>)

(<AbSm - D1> <AbSm 0 *> <AbSm - D1>)
(<AbSm -

p3r i)) ==>

Homology in dimension O :

Component Z

Homology in dimension 1 :

Component Z/2Z

Homology in dimension 2 :

Homology in dimension 3 :

Component Z

(setf pdr (disk-pasting p3r 4 ’d4

(list (absm 0 ’d3)
(absm 1 ’d2)
(absm 2 ’d2)

233



CHAPTER 14. DISK PASTING AND SUSPENSION 234

(absm 4 °d2)
(absm 0 ’d3)))) ==>

[K70 Simplicial-Set]

(dotimes (i 5) (homology p4r i)) ==>
Homology in dimension O :

Component Z

Homology in dimension 1 :

Component Z/2Z

Homology in dimension 2 :

Homology in dimension 3 :

Component Z/2Z

Homology in dimension 4 :

---done---

Let us give now some examples with the function chcm-disk-pasting. We
are going to work with the unit chain complex (obtained by the function
z-chcm, see chapter 1), having a unique non null component, namely a Z—
module of degree 0 generated by the unique generator :Z-gnrt.

(setf *ccz* (z-chcm)) ==

[K84 Chain-Complex]

Using the function chcm-disk-pasting, let us construct from *ccz* a new
chain complex having in dimension 1 a unique new generator gen-1 whose
boundary is 5 times the unique generator in dimension (. In this new chain
complex the homology group in dimension 0 is Z /5 Z.

(setf newcc-0 (chcm-disk-pasting *ccz* 1 ’gen-1 (cmbn O 5 :Z-gnrt))) ==>
[K86 Chain-Complex]

(chcm—homology—gen newcc-0 0) ==>

Homology in dimension O :

Component Z/5Z
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Generator :

1 * :Z-GNRT
(chcm-homology-gen newcc-0 1) ==>
Homology in dimension 1 :

---done---

Let us do the same with a generator whose boundary is 165 times the gene-
rator :Z-gnrt:

(setf newcc-1 (chcm-disk-pasting *ccz* 1 ’gen-1 (cmbn 0 165 :Z-gnrt))) ==>
[K88 Chain-Complex]

(chcm-homology-gen newcc-1 0) ==>

Homology in dimension O :

Component Z/165Z

Generator :

1 * :Z-GNRT

Now from the chain complex newcc-1, let us build a new one, newcc-2, by
adding in dimension 1 a second generator whose boundary is 182 times the
generator :Z-gnrt. The homology group in dimension 0 of this new chain
complex is the null group, since 165 and 182 are relatively prime integers.

(setf newcc-2 (chcm-disk-pasting newcc-1 1 ’gen-2 (cmbn 0 182 :Z-gnrt))) ==
[K92 Chain-Complex]

(chcm-homology-gen newcc-2 0) ==>

Homology in dimension O :

---done---

(chcm-homology-gen newcc-2 1) ==>

Homology in dimension 1 :

Component Z

Generator :
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-165 * GEN-2
182 * GEN-1

As a second example, let us start from Q(S3).
(setf s3 (sphere 3)) ==>

[K94 Simplicial-Set]

(setf o0s3 (loop-space s3)) ==>

[K99 Simplicial-Group]

In the following instruction, we locate in the symbol fund-simp the canonical
generator of m2(21.93), that is the 2-simplex coming from the original sphere:

(setf fund-simp (absm O (loop3 0 ’s3 1))) ==>

<AbSm - <<Loop[S3]1>>>

We need also the 2-degeneracy of the base point of the loop space:
(setf null-simp (absm 3 +null-loop+)) ==>

<AbSm 1-0 <<Loop>>>

We may build now a new object by pasting a disk D? as indicated by the
following call:

(setf dos3 (disk-pasting os3 3 ’<D3>
(list fund-simp null-simp fund-simp null-simp))) ==>

[K212 Simplicial-Set]
(homology dos3 2) ==>
Homology in dimension 2 :
Component Z/2Z

(homology dos3 3) ==>
Homology in dimension 3 :

---done—--

Then, let us build the loop space of the object dos3 and show the homology
in dimension 5:
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(setf odos3 (loop-space dos3)) ==>
[K230 Simplicial-Group]
(homology odos3 5) ==>
Homology in dimension 5 :
Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z

14.2.1 Searching Homology for objects created by disk past-
ing

The comment list of an object created by disk pasting contains various
informations as shown by the simple following example

(setf sO (build-finite-ss ’(¥))) ==>
Checking the O-simplices...
[K1 Simplicial-Set]
(setf s2 (disk-pasting sO
2

’s2
(list (absm 1 ’*) (absm 1 ’*) (absm 1 ’*)) )) ==>

[K6 Simplicial-Set]
(orgn s2) ==>

(DISK-PASTING [K1 Simplicial-Set] 2 S2 (<AbSm O *> <AbSm O *> <AbSm 0 *>))

In fact, the comment list contains the very arguments used to realize the
attaching. The method retrieves those arguments, gets the homotopy equiv-
alence value of the efhm slot of the old object —creating it if necessary — then
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build a new homotopy equivalence, by calling the function hmeq-disk-pasting
hmeg which takes in account the attaching.

(DEFMETHOD SEARCH-EFHM (smst (orgn (eql ’disk-pasting)))
(declare (type simplicial-set smst))
(the homotopy-equivalence
(destructuring-bind (old-smst dmns new faces) (rest (orgn smst))
(declare
(type simplicial-set old-smst)
(fixnum dmns)
(symbol new)
(ignore faces))
(hmeq-disk-pasting
(efhm old-smst)
dmns new (? smst dmns new)
:new-lbcc smst))))
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14.3 The functions for the suspension

In Kenzo the suspension process is realized by the function suspension.
This function has one argument, a reduced object (chain complex, simplicial
set, etc.). If the object is not reduced, the result is undefined. The
CLOS mechanism is used to apply an adequate method for building the
suspension of the object. For a chain complex, a new base point is created
with name :s-bsgn and the degree of the generators is increased by 1. If
the suspension process is applied to a homotopy equivalence, then firstly,
the left bottom chain complex is suspended and secondly, the modification
is propagated along the whole homotopy equivalence.

suspension-cmpr cmpr [Function]
From the comparison function cmpr, build a comparison function
to compare two generators of a suspension.

suspension-basis basis [Function]
From the function basis of a chain complex, build a basis function
for the suspension of this chain complex. In degree 0, the only
generator is :s-bsgn, in degree 1, the basis is void and in degree
k, k > 2, the elements of the basis of the suspension are the ele-
ments of the initial chain complex in degree k& — 1.

suspension-intr-dffr dffr [Function]
From the lisp differential function dffr of a chain complex, build the
lisp differential function for the suspension of this chain complex.

suspension-intr-cprd cmbn [Function]
Return the result of the application of the coproduct of a suspen-
sion (considered as a coalgebra) upon the combination embn. Note
that this function does not need any other argument than the com-
bination.

suspension-face face [Function]
From the function face of a simplicial set, build the face function
for the suspension of this simplicial set.

suspension-intr mrph [Function]
From a Kenzo morphism mrph, build an internal function corres-
ponding to the suspension of the initial morphism. This function
will be applied to a combination assumed to belong to a suspension
of a chain complex.
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suspension 0bj &optional (n 1) [Function]
Construct a new object, the suspension of the reduced object 0bj.
The (geometrical) base point of the suspension of a chain complex
(or simplicial set) is named :s-bsgn. The optional parameter n
(default: 1) allows to create in one instruction iterated suspensions.
This function calls the adequate method (suspension-1) for the
object obj.

suspension-1 chem [Method]
Build the chain complex suspension of the chain complex chem,

using the basic functions above, as shown in the following call to
build-chcm:

(build-chcm
:cmpr (suspension-cmpr cmpr)
:basis (suspension-basis basis)
:bsgn :s-bsgn
:intr-dffr (suspension-intr-dffr dffr)
:strt :cmbn
torgn ‘(suspension ,chcm))

suspension-1 clbg [Method]
Return the coalgebra associated to the suspension of the coalgebra
clbg. This calls internally the method for the suspension of the chain
complex clbg then assigns the function suspension-intr-cprd to
the value of the slot cprd.

suspension-1 smst [Method]
Return the simplicial set, suspension of the simplicial set smst. This
function uses the previous basic function suspension-face. The
resulting object is also a coalgebra with a coproduct defined by the
function suspension-intr-cprd.

suspension-1 mrph [Method]
Build the suspension of the morphism mrph. This is a morphism
of the same degree as mrph. If mrph is the zero morphism, return
the zero morphism between the suspensions of the source and tar-
get of mrph. If mrph is the identity morphim, return the identity

morphism upon the suspension of the source of mrph. Otherwise,
return the morphism built by the following call to build-mrph:

(build-mrph
:sorc (suspension (sorc mrph))
:trgt (suspension (trgt mrph))
:degr (degr mrph)
:intr (suspension-intr mrph)
:strt :cmbn
torgn ‘(suspension ,mrph))
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suspension-1 rdct

[Method]

Build the suspension of the reduction rdct. If rdct is the trivial
reduction upon a chain complex C, return the trivial reduction upon
the suspension of C. Otherwise, return the reduction built by the
following call to the function build-rdct:

(build-rdct

:f (suspension (f rdct))
:g (suspension (g rdct))
:h (suspension (h rdct))
:orgn ‘(suspension ,rdct))

suspension-1 hmeq

[Method]

Build the suspension of the homotopy equivalence hmeg. If hmeg is
the trivial homotopy equivalence upon a chain complex C, return
the trivial homotopy equivalence upon the suspension of C. Other-
wise, return the homotopy equivalence built by the following call

to the function build-hmeq:

(build-hmeq

:1rdct (suspension (lrdct hmeq))
:rrdct (suspension (rrdct hmeq))

:orgn ‘(suspension ,hmeq))

Examples

Firstly we test the coproduct of the suspension of A. In the third statement,
the generators 7 and 11 are the binary coded representation of the simplices
(01 2) and (0 1 3) in dimension 3 of SA,

(suspension-intr-cprd (cmbn 0)) ==>

—————————— {CMBN 0}

(suspension-intr-cprd (cmbn O 5 :s-bsgn))

<6 * <TnPr S-BSGN S-BSGN>>

(suspension-intr-cprd (cmbn 3 4 7 5 11))

__________ {CMBN 3}

<4 * <TnPr S-BSGN 7>>
<6 * <TnPr S-BSGN 11>>
<4 * <TnPr 7 S-BSGN>>
<6 * <TnPr 11 S-BSGN>>
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Let us verify now the classical result S(S™) = S™*.

(setf s1 (sphere 1)) ==>

[K1 Simplicial-Set]

(setf ss1 (suspension s1)) ==
[K6 Simplicial-Set]

(orgn ss1) ==>

(SUSPENSION [K1 Simplicial-Set])
(show-structure ssl 2) ==
Dimension = 0 :

Vertices : (S-BSGN)

Dimension = 1 :
Dimension = 2 :
Simplex : S1

Faces : (<AbSm 0 S-BSGN> <AbSm O S-BSGN> <AbSm O S-BSGN>)

For comparison, let us recall the simplicial set model of S

(show-structure (sphere 2) 2) ==>

Dimension = 0 :

Vertices : (%)
Dimension = 1 :
Dimension = 2 :

Simplex : 52

Faces : (<AbSm 0 *> <AbSm O *> <AbSm 0 *>)
Let us iterate twice the operation of suspension on S?:

(setf ss22 (suspension (sphere 2) 2)) ==>

[K21 Simplicial-Set]

242
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(show-structure ss22 4) ==
Dimension = 0 :

Vertices : (S-BSGN)

Dimension = 1 :
Dimension = 2 :
Dimension = 3 :
Dimension = 4 :
Simplex : 52

Faces : (<AbSm 2-1-0 S-BSGN> <AbSm 2-1-0 S-BSGN>

<AbSm 2-1-0 S-BSGN> <AbSm 2-1-0 S-BSGN>

<AbSm 2-1-0 S-BSGN>)
To test the suspension of a less simple chain complex, let us take a Moore
space that we have seen in the simplicial set chapter. We know that the cor-

responding chain complex is connected. Let us compare the basis elements,
in various degrees, of this chain complex and its suspension:

(setf m23 (moore 2 3)) ==>
[K26 Simplicial-Set]
(dotimes (i 7) (print (basis m23 i)))

(%)
NIL
NIL
(M3)
(N4)
NIL
NIL
NIL

(setf sm23 (suspension m23)) ==
[K31 Simplicial-Set]
(dotimes (i 7) (print (basis sm23 i)))

(:S-BSGN)
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NIL
NIL
NIL
(M3)
(N4)
NIL
NIL

Let us apply now the function suspension to objects built from S2%, namely
Q1(S5?) and 92(S5?) and let us have a look upon the homology groups . For

S?, we know that the only non-null homology groups are in dimension 0
and 2:

(homology (sphere 2) 0 5) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Component Z

Homology in dimension 3 :
Homology in dimension 4 :

-—--done—--

For §(S?), the non—null homology groups are of course in dimension 0 and
3:

(setf ss2 (suspension (sphere 2))) ==
[K16 Simplicial-Set]

(homology ss2 0 5) ==>

Homology in dimension O :

Component Z

Homology in dimension 1 :

Homology in dimension 2 :
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Homology in dimension 3 :
Component Z
Homology in dimension 4 :

—--—-done-——

Let us verify now that, for the space ©(S?), the homology groups are orga-
nized as the tensor algebra over one generator in degree 1:

(setf s2 (sphere 2)) ==>
[K11 Simplicial-Set]
(setf os2 (loop-space s2)) ==
[K44 Simplicial-Group]
(homology os2 0 5) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z

Homology in dimension 2 :
Component Z

Homology in dimension 3 :
Component Z

Homology in dimension 4 :

Component Z

And, in the suspension of the previous space, we verify that the homology
groups are suspended (in particular, there is no homology in dimension 1)

(setf sos2 (suspension o0s2)) ==>

[K153 Simplicial-Set]
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(homology sos2 0 5) ==>

o

Homology in dimension
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Component Z

Homology in dimension 3 :
Component Z

Homology in dimension 4 :

Component Z

At last, taking the loop space of the previous suspension, we recognize the
tensor algebra, over the previous tensor algebra, H,0S52. In each dimension,
the number of generators is 2":

(setf osos2 (loop-space so0s2)) ==
[K171 Simplicial-Group]
(homology osos2 0 5) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z

Homology in dimension 2 :
Component Z

Component Z

Homology in dimension 3 :

Component Z
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Component Z
Component Z
Component Z
Homology in dimension 4 :
Component Z
Component Z
Component Z
Component Z
Component Z
Component Z
Component Z

Component Z

14.3.1 Searching homology for suspensions

The comment list of a suspension has the form (SUSPENSION suspended-
object). The search-efhm method applied to a suspension, looks for the
value of the efhm slot of the suspended-object, (i.e. a homotopy equivalence),
then builds the suspension of this homotopy equivalence (see the method
suspension applied to a homotopy equivalence). Of course, this may imply
a recursive process.

(DEFMETHOD SEARCH-EFHM (suspension (orgn (eql ’suspension)))
(declare (type chain-complex suspension))
(suspension (efhm (second (orgn suspension)))))

Lisp files concerned in this chapter

disk-pasting.lisp, suspensions.lisp, searching-homology.lisp



Chapter 15

Loop spaces fibrations

15.1 The canonical loop space fibration

Let X be a simplicial set. The software Kenzo implements the canonical
twisted cartesian product of X by its loop space GX, denoted X x, GX,
giving the Kan' model of the contractible path space of X. The canonical
fibration

GX <= Xx;GX —» X,

is defined by the trivial application 7, where 7(x) is the letter z in GX.
This twisted cartesian product has the same simplices as the non-twisted
one. So both associated chain complexes are equal as graded modules. The
essential difference resides in the differential morphism. More precisely, the
face operator 0, behaves differently in the twisted cartesian product. Let
(z,9) € X x; GX, the rule for the face operators are:

8Z($,g) = (almaatg)a 1 < n,
On(z,9) = (Onz,7(2).0ng), 1=,

where 7(z) is the letter z in GX and ’.” is the group product in GX. Let us
recall that, from the mathematical definition of GX, if x is n—degenerate,
for instance z = n,2’, the 7(x) is the null element of GX,,. The behaviour
of 0, induces a change in the differential morphism of the chain complex
associated to the twisted cartesian product.

!Daniel M. Kan. A combinatorial definition of homotopy groups, Ann. of Math.,
1958, vol. 67, pp 282-312.

248
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15.2 The associated tensor twisted product

We recall that around the cartesian product X x GX, the Eilenberg—Zilber
theorem allows to build the reduction (see the function ez):

C(X xGX) I (X xGX)

fityg
C.(X) ® C.(GX)

On the other hand, the differential morphism d; of the chain complex
C«(X x; GX) may be considered as a perturbed differential morphism d
of the chain complex C,(X x GX), the perturbation ¢ being: § = d, — d.
Using the basic perturbation lemma, we may construct a new reduction:

Co(X %, GX) 5 5C.(X x, GX)

g
Ce(X) ®: C4(GX)

In fact, the interesting object produced by this machinery is the bottom
chain complex C.(X) ®; C.(GX) which is nothing but the twisted tensor
product®.

15.3 Main functions for the twisted products

twisted-crts-prdc space [Function]
From the simplicial set X, here the argument space, return the
twisted cartesian product X x,GX (a simplicial set). This function
calls internally the functions 1oop-space and crts-prdc described
in preceding chapters. The slot grmd of the resulting instance is set
with the ordinary cartesian product X x GX.

Edgar H. Brown Jr. Twisted tensor products, I, Ann. of Math., 1959, vol. 69, pp.
223-246.
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dtau-d space [Function]
From the simplicial set X, here the argument space, build the mor-
phism perturbation (degree —1)

d —d: X xGX — X xGX.

The work is essentialy done by the lisp function dtau-d-intr which
computes the difference between the differential morphisms taking
in account the discrepancy between the last face operator (9,) in
both chain complexes, X x,; GX and X x GX.

szczarba space [Function]
Starting from the simplicial set X, (the argument space), return
two values:

1- The reduction

Co(X %, GX) 5 5C.(X x, GX)

ity
Ce(X) ®: C.(GX)

obtained by perturbing by d, — d the top chain complex of the
reduction

C(XxGX) - sc(XxGX)

Filg
C.(X) ® C.(GX)

2- The morphism corresponding to the perturbation of the bot-
tom chain complex induced by the perturbation d; —d upon the
top chain complex of the above reduction.
This algorithm implements in particular in a very efficient way the
formulas of Szczarba3.

3R.H. Szczarba. The homology of twisted cartesian products. Transactions of the
American Math. Society, 1961, vol. 100, pp. 197-216
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twisted-tnsr-prdc space [Function]
Return the twisted tensor product (a chain complex) X ®; GX.
This is done simply by extraction of the bottom chain complex
from the reduction (szczarba space).

Examples

For testing the functions above, we shall use a “soft” version of A analogous
to soft-delta or soft-delta-infinity. The input of the simplices will be
done in clear with the help of the macro code. As this version does not exists
in Kenzo, we have modified some functions of soft-delta, as indicated.

(DEFUN SOFT-DELTAB-CMPR (gmsml gmsm2)
(if (= 1 (logcount (cdr gmsml)))
:EQUAL
(f-cmpr (cdr gmsml) (cdr gmsm2)) ))

(DEFUN SOFT-DELTAB-BNDR (dmns gmsm)
(declare
(fixnum dmns)
(type soft-dlop gmsm))
(the cmbn
(if (< dmns 2)
(zero-cmbn (1- dmns))
(make-cmbn
:degr (1- dmns)
:list (mapcar #’(lambda (term)
(with-term (cffc gmsm) term
(term cffc (d gmsm))))
(cmbn-list (delta-bndr dmns (cdr gmsm))))))))

(DEFUN SOFT-DELTAB ()
(the simplicial-set
(build-smst

:cmpr #’soft-deltab-cmpr
:basis :locally-effective
:bspn (d 1)
:face #’soft-delta-face

HH :intr-dgnl #’soft-delta-dgnl :dgnl-strt :gnrt
:intr-bndr #’soft-deltab-bndr :bndr-strt :gnrt
rorgn ‘(soft-deltab))))

(defmacro code (arg) ‘(d (dlop-ext-int ,arg)))
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(setf db (soft-deltab))

[K1 Simplicial-Set]

(setf gdb (loop-space db))

[K6 Simplicial-Group]

==>

==>

252

Let us compare the faces of a cartesian product in A x Q(A) and the faces
of the same object in A x, Q(A):

(setf crts-pr (crts-prdc db gdb)) ==>
[K18 Simplicial-Set]
(setf tw-crts-pr (twisted-crts-prdc db)) ==>

[K23 Simplicial-Set]

(setf smpx (crpr O (code (0 1 2 3 4))

0 (loop3 0 (code ’(0 1 2 3 4 5)) 1)))

I
Il
v

<CrPr - 0-1-2-3-4 - <<Loop[0-1-2-3-4-5]>>>

(dotimes (j 5)
(print

<AbSm - <CrPr -
<AbSm - <CrPr -
<AbSm - <CrPr -
<AbSm - <CrPr -
<AbSm - <CrPr -

(dotimes (j 5)
(print

<AbSm - <CrPr -
<AbSm - <CrPr -
<AbSm - <CrPr -
<AbSm - <CrPr -
<AbSm - <CrPr -

(face crts-pr j 4 smpx))) ==

<<Loop[1-2-
<<Loop[0-2-
<<Loop[0-1-
<<Loop[0-1-
<<Loop[0-1-

-3-4-5]>>>>
-3-4-5]>>>>
3-4-5]>>>>
2-4-5]>>>>
2-3-4\-1] [0-1-2-3-5]>>>>

(face tw-crts-pr j 4 smpx))) ==

<<Loop[1-2-
<<Loop[0-2-
<<Loop[0-1-
<<Loop[0-1-
<<Loop[0-1-

-3-4-5]>>>>
-3-4-5]>>>>
3-4-5]>>>>
2-4-5]1>>>>
2-3-5]1>>>>
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(setf smpx2 (crpr O (code ’(1 2 3 4 5))

0

(loop3 0 (code ’(5 6 7 8 9 10)) 1))) ==

<CrPr - 1-2-3-4-5 - <<Loop[5-6-7-8-9-10]>>>

(dotimes (j 5)

<AbSm
<AbSm
<AbSm
<AbSm
<AbSm

(dotimes (j 5)
(print

<AbSm
<AbSm
<AbSm
<AbSm
<AbSm

(print (face crts-pr j 4 smpx2))) ==>

<CrPr
<CrPr
<CrPr
<CrPr
<CrPr

<CrPr
<CrPr
<CrPr
<CrPr
<CrPr

4-5 - <<Loop[6-7-8-9-10]>>>>
4-5 - <<Loop[5-7-8-9-101>>>>
-4-5 - <<Loop[5-6-8-9-10]>>>>
3-5 - <<Loop[5-6-7-9-10]>>>>
3-4 - <<Loop[5-6-7-8-9\-1] [5-6-7-8-10]>>>>

(face tw-crts-pr j 4 smpx2))) ==>

-4-5 - <<Loop[6-7-8-9-10]>>>>
—-4-5 - <<Loop[5-7-8-9-10]>>>>
-4-5 - <<Loop[5-6-8-9-10]>>>>
-3-5 - <<Loop[5-6-7-9-10]1>>>>
-3-4 - <<Loop[1-2-3-4-5][6-6-7-8-9\-1][56-6-7-8-101>>>>

The user will have noted that we may obtain the same twisted cartesian
product by the fibration theory. Let us define a general function loop-fbr
with a reduced simplicial set, space, as argument. This function uses the
function fibration-total that we have seen in the chapter about fibra-
tions. Here, we see that the lisp function for the simplicial morphism, (key-
word :sintr), implements straightforwardly the canonical twisting operator
which applies a simplex of X to the corresponding 1-letter word of GX. Note
that the execution time by the fibration function is a little longer than for
the direct twisted cartesian product and it requires more memory.

(defun loop-fbr (space)

(fibration-total

(build-smmr

:sorc space

:trgt (loop-space space)
idegr -1

:sintr #’ (lambda (dmns gmsm)

(absm 0 (loop3 0 gmsm 1)))

torgn ‘(total-fibration ,space))))

(setf fb-tt-db (loop-fbr db)) ==>

[K46 Simplicial-Set]
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(dotimes (j 5)
(print(face fb-tt-db j 4 smpx2)))

<AbSm
<AbSm
<AbSm
<AbSm
<AbSm

(time
; cpu

; cpu
; cpu

; real time

- <CrPr - 2-3-4-5
- <CrPr - 1-3-4-5
- <CrPr - 1-2-4-5
- <CrPr - 1-2-3-5
- <CrPr - 1-2-3-4

(dotimes (j 1000)
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<<Loop[6-7-8-9-10]>>>>
<<Loop[5-7-8-9-10]>>>>
<<Loop[5-6-8-9-10]>>>>
<<Loop[5-6-7-9-10]>>>>
<<Loop[1-2-3-4-5] [6-6-7-8-9\-1] [6-6-7-8-10]1>>>>

(face tw-crts-pr 4 4 smpx2))) ==>

time (non-gc) 143,480 msec (00:02:23.480) user, 40 msec system
time (gc) 2,140 msec user, 40 msec system
time (total) 145,620 msec (00:02:25.620) user, 80 msec system

; space allocation:
;16,122,082 cons cells, 11,000 symbols, 6,226,992 other bytes

146,899 msec (00:02:26.899)

(time (dotimes (j 1000) (face fb-tt-db 4 4 smpx2))) ==>

; cpu time (non-gc) 215,190 msec (00:03:35.190) user, 40 msec system
time (gc) 3,630 msec user, 50 msec system
time (total) 218,820 msec (00:03:38.820) user, 90 msec system

; cpu
; cpu

; real time

; space allocation:
;23,859,004 cons cells, 17,000 symbols, 10,536,128 other bytes

221,946 msec (00:03:41.946)

The four following statements show the relationship between the differen-

tials:

(setf perturb (dtau-d db))
[K51 Morphism (degree -1)]

(? perturb 4 smpx2)

==>

==>

<1 * <CrPr - 1-2-3-4 - <<Loop[1-2-3-4-5] [6-6-7-8-9\-1] [6-6-7-8-10]>>>>
<-1 * <CrPr - 1-2-3-4 - <<Loop[5-6-7-8-9\-1] [6-6-7-8-101>>>>
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(? crts-pr 4 smpx2) ==>

- -—- e {CMBN 3}
<1 * <CrPr - 1-2-3-4 - <<Loop[5-6-7-8-9\-1] [6-6-7-8-10]1>>>>

<-1 * <CrPr - 1-2-3-5 - <<Loop[5-6-7-9-10]>>>>

<1 * <CrPr - 1-2-4-5 - <<Loop[5-6-8-9-101>>>>

<-1 * <CrPr - 1-3-4-5 - <<Loop[5-7-8-9-10]1>>>>

<1 * <CrPr - 2-3-4-5 - <<Loop[6-7-8-9-101>>>>

(? tw-crts-pr 4 smpx2) ==>

- -—- e {CMBN 3}

<1 * <CrPr - 1-2-3-4 - <<Loop[1-2-3-4-5] [6-6-7-8-9\-1] [6-6-7-8-10]>>>>
<-1 * <CrPr - 1-2-3-5 - <<Loop[5-6-7-9-10]1>>>>
<1 * <CrPr - 1-2-4-5 - <<Loop[5-6-8-9-101>>>>
<-1 * <CrPr - 1-3-4-5 - <<Loop[5-7-8-9-10]1>>>>
<1 * <CrPr - 2-3-4-5 - <<Loop[6-7-8-9-101>>>>

The same type of tests may be done with another reduced simplicial set,
namely P3R.

(setf pri3 (R-proj-space 3)) ==>

[K62 Simplicial-Set]

(setf tw-pri3 (twisted-crts-prdc pri3)) ==>
[K74 Simplicial-Set]

(basis tw-pri3) ==

:LOCALLY-EFFECTIVE

1]
I
v

(setf crt-pri3 (crts-prdc pri3 (loop-space pri3)))
[K69 Simplicial-Set]
(setf s (crpr 0 4 0 (loop3 0 5 1))) ==>

<CrPr - 4 - <<Loop[5]>>>
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(dotimes (i 5) (print (face crt-pri3 i 4 s))) ==>

<AbSm - <CrPr - 3 - <<Loop[4]1>>>>
<AbSm O <CrPr 1-0 0 - <<Loop[3]>>>>
<AbSm 1 <CrPr 1-0 0 - <<Loop[3]>>>>
2 1-0
3

<AbSm 2 <CrPr 0 - <<Loop[3]>>>>
<AbSm - <CrPr - <<Loop[4\-1]1>>>>

(dotimes (i 5) (print (face tw-pri3 i 4 s))) ==>

<AbSm - <CrPr - <<Loop[4]1>>>>

-3
<AbSm O <CrPr 1-0 O - <<Loop[3]>>>>
<AbSm 1 <CrPr 1-0 0 - <<Loop[3]>>>>
<AbSm 2 <CrPr 1-0 0 - <<Loop[3]>>>>
-3

<AbSm - <CrPr 2-1-0 <<Loop>>>>
(setf fb-tt-pri3 (loop-fbr pri3)) ==>
[K80 Simplicial-Set]
(dotimes (j 5) (print (face fb-tt-pri3 j 4 s)))
<AbSm - <CrPr - 3 - <<Loop[4]>>>>
<AbSm O <CrPr 1-0 O - <<Loop[3]>>>>
<AbSm 1 <CrPr 1-0 0 - <<Loop[3]>>>>

2 1-0

-3

<AbSm 2 <CrPr 0 - <<Loop[3]1>>>>
<AbSm - <CrPr 2-1-0 <<Loop>>>>

Let us check now the Szczarba reduction, with the simplicial set A.
(setf szc-reduc (szczarba db)) ==>

[K107 Reduction]

(pre-check-rdct szc-reduc) ==>

---done---

(setf *tc* (cmbn 2 1 (crpr O (code (0 1 2))
0 (loop3 0 (code ’(5 6 7 8)) 1))))

-- -——- e {CMBN 2}
<1 * <CrPr - 0-1-2 - <<Loop[5-6-7-81>>>>

(setf *bc* (cmbn 2 1 (tnpr O (code ’(0)) 2 (loop3 O (code (5 6 7 8)) 1))
10 (tnpr 1 (code ’(10 11)) 1 (loop3 0 (code ’(0 1 2)) 1))
100 (tnpr 2 (code (0 1 2)) O (loop3 0 (code ’(10 11)) 1))))
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<1 * <TnPr 0 <<Loop[5-6-7-8]1>>>>
<10 * <TnPr 10-11 <<Loop[0-1-2]>>>>
<100 * <TnPr 0-1-2 <<Loop[10-11]>>>>

(pre-check-rdct szc-reduc) ==
---done---

(check-rdct)

1]
Il
v

*TC* =>

<1 * <CrPr - 0-1-2 - <<Loop[5-6-7-8]>>>>

*BC* =>

<1 * <TnPr 0 <<Loop[5-6-7-8]1>>>>

<10 * <TnPr 10-11 <<Loop[0-1-2]>>>>
<100 * <TnPr 0-1-2 <<Loop[10-11]>>>>

Checking *TDD* = 0
Result:

Checking *HG* = 0
Result:

-—--done---
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{CMBN 2}

{CMBN 2}

{CMBN 2}

{CMBN 3}
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15.4 Exercice with the twisting cochain.

Let B be a reduced simplicial set and its loop space GB (a simplicial group).
In the following examples, we shall use the efficient Kenzo version of the
simplicial set A, i.e. the simplices are input and printed under their binary
form coding.
15.4.1 The twisting cochain.
The twisting cochain ¢ is the morphism
t : aug o dgy o coaug
where,
1. coaug is the morphism
coaug : B—- B® GB,
coaug(b) =b® 1gp.
2. dgy is the differential morphism of the twisted tensor product BR,GB.
3. aug is the morphism
aug: B GB — GB,
aug(b; ® g;) = g5,  bi € Bo,
aug(b;® g;) = 0, b; € By, k #0.

We recall that, as graded modules, B ® GB and B ®; GB are identical.
First, we create A and GA. The function twisted-tnsr-prdc extracts the

twisted tensor product A ®; GA from the reduction obtained by a call to
the function szczarba.

(setf d (deltab)) ==>

[K1 Simplicial-Set]

(setf gd (loop-space d)) ==>

[K6 Simplicial-Group]

(setf d-twtp-gd (twisted-tnsr-prdc d)) ==>

[K49 Chain-Complex]
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Let us define the coaugmentation and augmentation morphisms. As usual,
it is sufficient to define the algorithm on a generator.

(setf coaug (build-mrph
isorc d
1trgt d-twtp-gd
:degr 0
tintr #’(lambda (degr gnrt)
(term-cmbn degr 1 (tnpr degr gnrt O +null-loop+)))
istrt :gnrt
zorgn ’(coaug. d --> d-twtp-gd))) ==>

[K52 Morphism (degree 0)]

(7 coaug 3 15) ==>

T {CMBN 3}
<1 * <TnPr 15 <<Loop>>>>
(? coaug (cmbn 4 1 31 1 62 1 124)) ==>
e {CMBN 4}
<1 * <TnPr 31 <<Loop>>>>
<1 * <TnPr 62 <<Loop>>>>
<1 * <TnPr 124 <<Loop>>>>
(setf aug (build-mrph

:sorc d-twtp-gd

rtrgt gd

:degr O

:intr #’(lambda (degr tnpr)

(with-tnpr (degrl gmsml degr2 loop2) tnpr
(if (zerop degril)
(term-cmbn degr 1 loop2)
(zero-cmbn degr))))

istrt :gnrt

rorgn ’(aug. of d-twtp-gd))) ==
[K563 Morphism (degree 0)]
(7 aug (cmbn 2 9 (tnpr 0 1 2 (loop3 0 15 1))

3 (tnpr 1 3 1 (loop3 0 7 1)))) ==>

- — {CMBN 2}

<9 * <<Loop[15]>>>
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The morphism cochain is simply a composition of morphisms. We apply
it upon the simplices (0), (0 1 2), (0 1 2 3), ..., coded as the integers

1,7,15,. ...

(setf cochain (i-cmps aug (dffr d-twtp-gd) coaug))

[K65 Morphism (degree -1)]

(? cochain 0 1) ==>

(? cochain 2 7) ==>

<1 * <<Loop[0 3][7]>>>

(? cochain 3 15) ==>

<1 * <<Loop[1-0 3]1[0 7]1[1 131>>>
<-1 * <<Loop[1-0 3][1 7][15]>>>

(? cochain 4 31) ==>

<-1 * <<Loop[2-1-0 3][1-0 7][2-0 13][2-1 25]>>>
<1 * <<Loop[2-1-0 3][1-0 7]1[2-1 13][2 29]>>>

<1 * <<Loop[2-1-0 3]1[2-0 7]1[0 15][2-1 25]>>>
<-1 * <<Loop[2-1-0 3][2-0 7][2-1 13][1 29]>>>
<-1 % <<Loop[2-1-0 3]1[2-1 71[1 15]1[2 271>>>

<1 * <<Loop[2-1-0 3][2-1 7][2 15][31]>>>

(? cochain 5 63) ==>

{CMBN 3}

<-1 * <<Loop[3-2-1-0 3]1[2-1-0 7]1[3-1-0 131[3-2-0 25]1[3-2-1 49]>>>
<1 * <<Loop[3-2-1-0 3]1[2-1-0 7]1[3-1-0 13]1[3-2-1 25]1[3-2 571>>>

<1 # <<Loop[3-2-1-0 3]1[2-1-0 7]1[3-2-0 13]1[3-0 29][3-2-1 49]1>>>
<-1 * <<Loop[3-2-1-0 3][2-1-0 7]1[3-2-0 13]1[3-2-1 25][3-1 57]1>>>
<-1 * <<Loop[3-2-1-0 3][2-1-0 7][3-2-1 13][3-1 29][3-2 53]>>>

<1 # <<Loop[3-2-1-0 31[2-1-0 7]1[3-2-1 13]1[3-2 29]1[3 611>>>

<1 * <<Loop[3-2-1-0 3][3-1-0 7][1-0 15][3-2-0 25][3-2-1 49]>>>
<-1 * <<Loop[3-2-1-0 3][3-1-0 7][1-0 15][3-2-1 25][3-2 57]>>>

{CMBN 4}
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<-1 * <<Loop[3-2-1-0 3]1[3-1-0 71[3-2-0 131[2-0 29]1[3-2-1 491>>>
<1 * <<Loop[3-2-1-0 3]1[3-1-0 7]1[3-2-0 13]1[3-2-1 25]1[2-1 571>>>
<1 * <<Loop[3-2-1-0 3]1[3-1-0 7]1[3-2-1 13][2-1 29][3-2 53]>>>
<-1 # <<Loop[3-2-1-0 3]1[3-1-0 7][3-2-1 13][3-2 29][2 61]>>>
<-1 * <<Loop[3-2-1-0 3]1[3-2-0 7][2-0 15][3-0 27]1[3-2-1 49]>>>
<1 * <<Loop[3-2-1-0 31[3-2-0 7]1[2-0 15][3-2-1 25][3-1 57]1>>>
<1 * <<Loop[3-2-1-0 3][3-2-0 7]1[3-0 15][0 31][3-2-1 49]>>>
<-1 # <<Loop[3-2-1-0 3][3-2-0 7]1[3-0 15][3-2-1 25]1[2-1 571>>>
<-1 * <<Loop[3-2-1-0 3][3-2-0 7]1[3-2-1 13]1[2-1 29]1[3-1 531>>>
<1 * <<Loop[3-2-1-0 3]1[3-2-0 71[3-2-1 13]1[3-1 29][1 61]>>>

<1 * <<Loop[3-2-1-0 3]1[3-2-1 71[2-1 15]1[3-1 271[3-2 511>>>

<-1 * <<Loop[3-2-1-0 3]1[3-2-1 7]1[2-1 15][3-2 27]1[3 59]>>>

<-1 * <<Loop[3-2-1-0 3]1[3-2-1 7][3-1 15]1[1 31][3-2 51]>>>

<1 % <<Loop[3-2-1-0 3]1[3-2-1 71[3-1 15]1[3-2 271[2 59]1>>>

<1 * <<Loop[3-2-1-0 3][3-2-1 7]1[3-2 15][2 31][3 55]>>>

<-1 * <<Loop[3-2-1-0 3]1[3-2-1 7]1[3-2 15][3 311[631>>>

We verify, that for a simplex in dimension n, the length of the resulting
combination is (n — 1)!.

(length(cmbn-list *)) ==>
24
(? cochain 6 127) ==

-- S {CMBN 5}

<1 * <<Loop[4-3-2-1-0 3]1[3-2-1-0 7]1[4-2-1-0 13]1[4-3-1-0 25][4-3-2-0 49][4-3-2-1 97]>>>
<-1 % <<Loop[4-3-2-1-0 3]1[3-2-1-0 7][4-2-1-0 13][4-3-1-0 25] [4-3-2-1 49][4-3-2 113]>>>
<-1 % <<Loop[4-3-2-1-0 3]1[3-2-1-0 7][4-2-1-0 13][4-3-2-0 25][4-3-0 57][4-3-2-1 97]>>>
<1 * <<Loop[4-3-2-1-0 3]1[3-2-1-0 7][4-2-1-0 13][4-3-2-0 25][4-3-2-1 49][4-3-1 113]>>>
<1 * <<Loop[4-3-2-1-0 3]1[3-2-1-0 7]1[4-2-1-0 13][4-3-2-1 25][4-3-1 57][4-3-2 105]>>>
<-1 % <<Loop[4-3-2-1-0 3]1[3-2-1-0 7][4-2-1-0 13][4-3-2-1 25][4-3-2 57][4-3 121]>>>

<-1 % <<Loop[4-3-2-1-0 3]1[3-2-1-0 7][4-3-1-0 13]1[4-1-0 29] [4-3-2-0 49][4-3-2-1 97]1>>>
<1 * <<Loop[4-3-2-1-0 3]1[3-2-1-0 7]1[4-3-1-0 13]1[4-1-0 29] [4-3-2-1 49][4-3-2 113]>>>

<1 * <<Loop[4-3-2-1-0 3][3-2-1-0 7][4-3-1-0 13][4-3-2-0 25][4-2-0 57][4-3-2-1 97]>>>
<-1 * <<Loop[4-3-2-1-0 3][3-2-1-0 7][4-3-1-0 13][4-3-2-0 25][4-3-2-1 49][4-2-1 113]>>>
<-1 % <<Loop[4-3-2-1-0 3]1[3-2-1-0 7][4-3-1-0 13][4-3-2-1 25][4-2-1 57][4-3-2 105]>>>
<1 * <<Loop[4-3-2-1-0 3]1[3-2-1-0 7]1[4-3-1-0 13][4-3-2-1 25][4-3-2 57][4-2 121]>>>

(length(cmbn-list *)) ==

120
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15.4.2 Expression of the differential dg;

The differential dg; of the twisted tensor product B®; GB may be expressed
as the sum of the differential of the simple tensor product B ® GB and the
following morphism of degree —1,

V:B®GB — B®GB,

where V is the composition of the morphisms of the following sequence:

BoGB *2$" (BoB)9GB % Bo(BoaB) P4 pe(GBeGB) 2% BoGB.

In the previous formula, A is the coproduct in the coalgebra B, w is the
product in the algebra GB, 1p is the identity morphism in B and lgp
the identity morphism in GB. We need also, as in a previous example, an
“assoc” morphism for the compound tensor product. The user will note the
easiness for coding in Kenzo such a long composition of morphisms.

(setf 3-left (tnsr-prdc (tnsr-prdc d d) gd)) ==>
[K56 Chain-Complex]
(setf 3-right (tnsr-prdc d (tnsr-prdc d gd))) ==>
[K58 Chain-Complex]

(setf assoc (build-mrph
:sorc 3-left
:trgt 3-right
:degr 0
tintr #’(lambda (degr a2-a)
(with-tnpr (degra2 gnrta2 degra gnrta) a2-a
(with-tnpr (degrl gnrtl degr2 gnrt2) gnrta2
(cmbn (+ degrl degr2 degra)
1 (tnpr degril
gnrtl
(+ degr2 degra)
(tnpr degr2 gnrt2 degra gnrta))))))
istrt :gnrt
torgn ’ (assoc-double-tensor-product))) ==>

[K60 Morphism (degree 0)]
(setf id-d (idnt-mrph d)) ==>

[K61 Morphism (degree 0)]
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(setf id-gd (idnt-mrph gd)) ==>
[K62 Morphism (degree 0)]

(setf nabla
(add (dffr (tnsr-prdc d gd))
(i-cmps (tnsr-prdc id-d (aprd gd))
(tnsr-prdc id-d (tnsr-prdc cochain id-gd))
assoc
(tnsr-prdc (cprd d) id-gd)))) ==

[K74 Morphism (degree -1)]

We verify that the morphism nabla and the differential of the twisted tensor
product (accessible through the symbol d-twtp-gd) return the same results:

(? (dffr d-twtp-gd) 2 (tnpr 1 3 1 (loop3 0 7 1))) ==

- -—== i {CMBN 1}
<1 * <TnPr 1 <<Loop[7]>>>>

<-1 * <TnPr 1 <<Loop[0 3][7]1>>>>

<1 * <TnPr 3 <<Loop[3\-1][5]1>>>>

<-1 * <TnPr 3 <<Loop[6]1>>>>

(7 nabla 2 (tnpr 1 3 1 (loop3 0 7 1))) ==>

- -— R {cMBN 1}
<1 * <TnPr 1 <<Loop[7]1>>>>

<-1 *% <TnPr 1 <<Loop[0 31[71>>>>

<1 * <TnPr 3 <<Loop[3\-1][5]1>>>>

<-1 * <TnPr 3 <<Loop[61>>>>

(setf zero (sbtr nabla (dffr d-twtp-gd))) ==>
[K75 Morphism (degree -1)]

(7 zero 2 (tnpr 1 3 1 (loop3 0 7 1))) ==

-- -_—— et {CMBN 1}

(? zero 5 (tnpr 3 15 2 (loop3 0 15 1))) ==>

. o e {CMBN 4}
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15.4.3 The cup product of the twisting cochain
The cup product ¢t LI t of the twisting cochain ¢,

tut: B— GB
is defined by the following composition of morphisms:
B2 BeB® GBeGB = GB.
We may now verify the formula

dgpot+todp+tUt=0,

where dp and dgp are the respective differential morphisms in B and GB.

(setf t-cup-t (i-cmps (aprd gd) (tnsr-prdc cochain cochain) (cprd d))) ==>
[K78 Morphism (degree -2)]

(setf dt (cmps (dffr gd) cochain)) ==>

[K79 Morphism (degree -2)]

(setf td (cmps cochain (dffr d))) ==>

[K80 Morphism (degree -2)]

(setf zero-2 (i-add dt td t-cup-t)) ==>

[K82 Morphism (degree -2)]

(? zero-2 3 15) ==>

- - o {CMBN 1}

(? zero-2 4 31) ==>

- — o {CMBN 2}

(? zero-2 5 63) ==>

- - o {CMBN 3}




CHAPTER 15. LOOP SPACES FIBRATIONS 265

(? zero-2 6 127) ==>

So the user has easily verified the cochain condition for the twisting cochain
t.
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15.5 The essential contraction

It is known that if B is a reduced simplicial set, the space B x, GB is
contractible. So it is possible to build a reduction of this space over Z. This
reduction depends of the important contraction

Yr : Co(B) Xy Co(GB) — Cu(B) % Co(GB),
which is a homotopy operator (degree: +1) satisfying the relation
do‘XXT'+'XXT()d:: 1.

Now, from the reduction

CoX x,GX) 5 sC(X x,GX)

Fity
C*()() Qgt(z*((;)()

there is also an induced contraction

defined by xg: = f o xxr © g. This implies that the twisted tensor product
is also contractible over Z.
The two functions of Kenzo for this construction are:

crts-contraction space [Function]
Return the homotopy morphism corresponding to the contraction
Xx7- The lisp definition is:

(defun CRTS-CONTRACTION
(space
&aux (twisted-crts-prdc (twisted-crts-prdc space)))
(the morphism
(build-mrph
:sorc twisted-crts-prdc
1trgt twisted-crts-prdc
:degr +1
rintr (crts-contraction-intr
(cmpr space)
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(bspn space)

(face space)

(cmpr twisted-crts-prdc))
istrt :gnrt
torgn ‘(crts-contraction ,space))))

At execution time, the work is essentialy done by the function put
in the slot :intr.

tnpr-contraction space [Function]
Return the induced morphism xg: = f o xxr © g, as shown by the
lisp definition:

(defun TNPR-CONTRACTION
(space
&aux (szczarba (szczarba space))
(f (f szczarba))
(g (g szczarba))
(crts-contraction (crts-contraction space)))

(the morphism
(i-cmps f crts-contraction g)))

Examples
Let us use again our familiar simplicial set A. First we apply the homotopy

operator X ¢ upon various generators. Note that the binary coding of the
simplices allows normal arithmetic operators to generate them.

(setf delta (deltab)) ==>

[K1 Simplicial-Set]

(setf chi-x (crts-contraction delta)) ==>
[K28 Morphism (degree 1): K23 -> K23]

(? chi-x 0 (crpr 0 1 O +null-loop+)) ==>

- e {CMBN 1}

(7 chi-x 0 (crpr 0 1 0 (loop3 0 96 1)))

n
I
v

- s {CMBN 1}
<=1 * <CrPr - 96 0 <<Loop>>>>
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(? chi-x 0 (crpr 0 1 0 (loop3 0 96 1 0 (+ 256 128) 1))) ==>

-- -—-- - {CMBN 1}
<-1 * <CrPr - 96 0 <<Loop[384]1>>>>
<-1 * <CrPr - 384 0 <<Loop>>>>

(? chi-x 0 (crpr 0 1 0 (loop3 0 96 1 0 (+ 256 128) 1 0 (+ 512 1024) 1))) ==

-- -—-- T {CMBN 1}
<-1 * <CrPr - 96 0 <<Loop[384]1[15361>>>>

<-1 * <CrPr - 384 0 <<Loop[1536]>>>>

<-1 * <CrPr - 1536 0 <<Loop>>>>

(? chi-x 0 (crpr 0 1 0 (loop3 0 96 2))) ==

-- -—-- - {CMBN 1}
<-1 * <CrPr - 96 0 <<Loop>>>>
<-1 * <CrPr - 96 0 <<Loop[96]>>>>

(? chi-x 1 (crpr 0 3 0 (loop3 0 (+ 32 64 128) 1))) ==

- - - {CMBN 2}
<1 * <CrPr - 224 1-0 <<Loop>>>>

<-1 * <CrPr 1 3 0 <<Loop[224]>>>>

<1 * <CrPr 1 96 0 <<Loop[224]1>>>>

(? chi-x 2 (crpr 0 7 0 (loop3 O (+ 32 64 128 256) 1))) ==

e {CMBN 3}
<-1 * <CrPr - 480 2-1-0 <<Loop>>>>

<1 * <CrPr 2 7 1 <<Loop[480]>>>>

<-1 * <CrPr 2 224 1 <<Loop[480]>>>>

<-1 * <CrPr 2-1 5 0 <<Loop[480]>>>>

<1 * <CrPr 2-1 160 0 <<Loop[480]1>>>>

(? chi-x 3 (crpr 2 7 1 (loop3 2 (+ 32 64 128) 2 4 (+ 32 64 128) -2))) ==

- e {CMBN 4}
<-1 * <CrPr 3-1 7 2-0 <<Loop[1 224\2][2 224\-2]>>>>
<1 * <CrPr 3-2 7 1-0 <<Loop[1 224\2][2 224\-2]>>>>
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(? chi-x 3 (crpr 2 7 4 (loop3 2 (+ 32 64 128) 2 1 (+ 32 64 128) -2)))

269

{CMBN 4}

<-1 * <CrPr 3-1 7 2-0 <<Loop[1 224\-2][2 224\2]>>>>
<1 * <CrPr 3-2 7 1-0 <<Loop[1l 224\-2][2 224\2]>>>>

Then, for testing x o+ we use the image of all those generators by the function
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f of the Brown reduction.

Ci(X x; GX)

ity
Ce(X) ®; C4(GX)

(setf *tnpr-with-degrees* t)
T

(setf chi-t (tnpr-contraction
[K54 Morphism (degree 1): K50
(setf reduc (szczarba delta))
[K52 Reduction]
(setf £ (f reduc))

==>

[K42 Morphism (degree 0): K23

(? £ 0 (crpr 0 1 0 +null-loop+))

delta))

-> K501

-> K50]

==>

270

h

— C(X x; GX)

==>

* <TnPr 0O

<1 1 0 <<Loop>>>>

{CMBN 0}

? chi-t *)

? £ 0 (crpr 0 1 0 (loop3 0 96 1))) ==>

* <TnPr 0O

1 0 <<Loop[961>>>>
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(? chi-t *) ==>

271

<-1 * <TnPr 1 96 0 <<Loop>>>>

(? £ 0 (crpr 01 0 (loop3 0 96 1 0 (+ 256 128) 1)))

<1 * <TnPr 0 1 0 <<Loop[96] [384]>>>>

(? chi-t *) ==>

<-1 #% <TnPr 1 96 0 <<Loop[384]>>>>
<-1 % <TnPr 1 384 0 <<Loop>>>>

{CMBN

<1 % <TnPr 0 1 0 <<Loop[96][384] [1536]1>>>>

(? chi-t *) ==

<-1 * <TnPr 1 96 0 <<Loop[384]1[15361>>>>
<-1 * <TnPr 1 384 0 <<Loop[1536]>>>>
<-1 % <TnPr 1 1536 0 <<Loop>>>>

{CMBN

(? £ 0 (crpr 0 1 0 (loop3 0 96 2))) ==>

<1 * <TnPr 0 1 0 <<Loop[96\2]1>>>>

(? chi-t *) ==

<-1 % <TnPr 1 96 0 <<Loop>>>>
<-1 * <TnPr 1 96 0 <<Loop[96]1>>>>

{CMBN

1}

1}

1}
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(? £1 (crpr 0 3 0 (loop3 0 (+ 32 64 128) 1))) ==>
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{CMBN 1}

<1 * <TnPr 0 1 1 <<Loop[0 3][224]>>>>
<1 * <TnPr 1 3 0 <<Loop[192]>>>>

(? chi-t *) ==

{CMBN 2}

<-1 * <TnPr 1 3 1 <<Loop[224]>>>>
<1 * <TnPr 1 96 1 <<Loop[224]1>>>>
<1 * <TnPr 2 224 0 <<Loop>>>>

(? £ 2 (crpr 0 7 0 (loop3 O (+ 32 64 128 256) 1))) ==

{CMBN 2}

<-1 % <TnPr 0 1 2 <<Loop[1-0 3]1[0 71[1 4161>>>>
<1 * <TnPr 0 1 2 <<Loop[1-0 3][1 7][480]1>>>>

<1 * <TnPr 1 3 1 <<Loop[0 6][448]1>>>>

<1 * <TnPr 2 7 0 <<Loop[384]1>>>>

(? chi-t *) ==>

{CMBN 3}

<1 * <TnPr 0 1 3 <<Loop[2-1-0 3][1-0 7]1[2 480]1>>>>
<-1 * <TnPr 0 1 3 <<Loop[2-1-0 31[2-0 7]1[1 4801>>>>

<-1 #% <TnPr 0 32 3 <<Loop[2-1-0 96] [1-0 224] [2 480]>>>>
<1 * <TnPr 0 32 3 <<Loop[2-1-0 96]1[2-0 224]1[1 4801>>>>
<-1 * <TnPr 1 5 2 <<Loop[480]>>>>

<1 * <TnPr 1 160 2 <<Loop[480]1>>>>

<1 * <TnPr 2 7 1 <<Loop[448]>>>>

<-1 * <TnPr 2 224 1 <<Loop[448]>>>>

<-1 * <TnPr 3 480 0 <<Loop>>>>

(? £ 3 (crpr 2 7 1 (loop3 2 (+ 32 64 128) 2 4 (+ 32 64 128) -2)))

==>

{CMBN 3}
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(? chi-t *) ==>

- -— o {CMBN 4}
<1 * <TnPr 2 7 2 <<Loop[1 224\2][2 224\-2]>>>>

(7 £ 3 (crpr 2 7 4 (loop3 2 (+ 32 64 128) 2 1 (+ 32 64 128) -2))) ==>

- -—- e {CMBN 3}

(? chi-t *) ==>

. o ——— {CMBN 4}

(? £ 3 (crpr 2 7 1 (loop3 2 (+ 32 64 128) -2 4 (+ 32 64 128) 2))) ==

- - R {CMBN 3}
<1 * <TnPr 0 1 3 <<Loop[2-1-0 3]1[2-1 71[2-0 224\-2]1[3-0 224\2]>>>>

(7 chi-t *) ==

-- -——- e {CMBN 4}
<1 * <TnPr 2 7 2 <<Loop[1 224\-2][2 224\2]>>>>

(7 £ 3 (crpr 2 7 4 (loop3 2 (+ 32 64 128) -2 1 (+ 32 64 128) 2))) ==

- -—- e {cMBN 3}

(? chi-t *) ==

- -—- e {CMBN 4}

(7 £ 3 (crpr 1 7 2 (loop3 2 (+ 32 64 128) 2 4 (+ 32 64 128) -2))) ==>

-- -—— e {CMBN 3}
<-1 * <TnPr 0 1 3 <<Loop[2-1-0 3][1-0 7]1[2-1 224\2] [3-2 224\-2]>>>>
<1 * <TnPr 0 1 3 <<Loop[2-1-0 3][2-0 7]1[2-1 224\2] [3-1 224\-2]>>>>

(7 chi-t *) ==
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-- - o {CMBN

- -——- b {CMBN
<1 * <TnPr 0 1 3 <<Loop[2-1-0 3][1-0 7]1[2-1 224\2][2-0 224\-2]>>>>

<-1 % <TnPr 0 1 3 <<Loop[2-1-0 31[2-0 71[2-1 224\2]1[1-0 224\-2]>>>>

<1 * <TnPr 2 7 1 <<Loop[0 192\2][224\-2]>>>>

(7 chi-t *) ==>

- -——- b {CMBN

- — o {CMBN
<=1 * <TnPr 0 1 3 <<Loop[2-1-0 3][1-0 7][2-1 224\-2][3-2 224\2]>>>>

<1 * <TnPr 0 1 3 <<Loop[2-1-0 3]1[2-0 7]1[2-1 224\-2]1[3-1 224\2]>>>>

(7 chi-t *) ==

-- -——- o {CMBN
(7 £ 3 (crpr 4 7 2 (loop3 2 (+ 32 64 128) -2 1 (+ 32 64 128) 2))) ==

-- -——- L S {CMBN
<1 * <TnPr 0 1 3 <<Loop[2-1-0 3][1-0 7][2-1 224\-2][2-0 224\2]>>>>

<-1 * <TnPr 0 1 3 <<Loop[2-1-0 3][2-0 7]1[2-1 224\-2][1-0 224\2]>>>>

<1 * <TnPr 2 7 1 <<Loop[0 192\-2][224\2]>>>>

(7 chi-t %) ==

-- -——- o {CMBN

3}

3}

We verify now the required property of the homotopy operator xx,. As

usual, we build by composition a morphism zero.

(setf dfr (bndr (twisted-crts-prdc delta))) ==

[K24 Morphism (degree -1)]
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(setf zero (i-sbtr (idnt-mrph (sorc dfr)) (cmps dfr chi-x)
(cmps chi-x dfr))) ==

[K33 Morphism (degree 0)]

(setf simplx (crpr 4 7 2 (loop3 2 (+ 32 64 128) -2 1 (+ 32 64 128) 2))) ==>
<CrPr 2 7 1 <<Loop[1 224\-21[0 224\2]>>>

(? zero 3 simplx)

- - {CMBN 3}
Then, we do the same test for the homotopy operator yg:.

(setf tw (twisted-tnsr-prdc d)) ==>

[K565 Chain-Complex]

(setf zero-2 (i-sbtr (idnt-mrph tw) (cmps tw chi-t) (cmps chi-t tw))) ==>
[K64 Morphism (degree 0)]

(setf simpx2 (tnpr 0 1 3 (loop3 O (mask 5) 2 0 (* 32 (mask 5)) -1))) ==>
<TnPr 1 <<Loop[31\2] [992\-1]>>>

(time (7 zero-2 3 simpx2)) ==>

; cpu time (non-gc) 6,050 msec user, 260 msec system

; cpu time (gc) 450 msec user, 0 msec system

; cpu time (total) 6,500 msec user, 260 msec system

; real time 6,903 msec

; space allocation:

; 947,980 cons cells, 0 symbols, 71,344 other bytes

-- e {CMBN 3}

Note nevertheless that the relation is not satisfied for the base generator
* ® *, namely the tensor product of both base generators. This is due to the
fact that both contractions, xx; and xg¢, correspond to reductions over Z
and not on 0.

(setf gnrt-0 (tnpr O 1 O +null-loop+)) ==>

<TnPr 1 <<Loop>>>
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(? zero-2 0 gnrt-0) ==>

- == ettt {CMBN 0}
<1 * <TnPr 1 <<Loop>>>>

Let us build, for instance, the reduction of the twisted tensor product over Z
and check it. In that case, the two homomorphisms f and g are respectively
the augmentation and coaugmentation morphisms.

C.(B) @ C.(GB) X2 s¢,(B) ®;C.(GB)

aug |71 coaug

C«(Z)

We recall that, the unit chain complex corresponding to Z is built by the
function z-chcm. The unique generator in degree 0 is :z-gnrt.

(setf aug (build-mrph
isorc tw
:trgt (z-chcm)
:degr O
rintr #’(lambda (degr gnrt)
(if (zerop degr)
(term-cmbn 0 1 :z-gnrt)
(zero-cmbn degr)))
:strt :gnrt
torgn ’(aug tw))) ==>

[K67 Cohomology-Class (degree 0)]

(setf coaug (build-mrph
:sorc (z-chcm)
1trgt tw
:degr 0
:intr #’ (lambda (degr gnrt)
(if (zerop degr)
(term-cmbn 0 1 (tnpr O 1 O +null-loop+))
(zero—cmbn degr)))
istrt :gnrt
torgn ’(coaug tw))) ==>

[K68 Morphism (degree 0)]
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(setf rdct (build-rdct :f aug

1g coaug
:h Chi-t
rorgn ’ (reduction-tw-Z)))

[K69 Reduction]

(pre-check-rdct rdct)

-—--done---

==>

(setf *tc* (cmbn 3 1 (tnpr 1 3 2 (loop3 0 15 2))))

<1 * <TnPr 3 <<Loop[15\2]>>>>

(setf *bc* (cmbn O 1 :z-gnrt))

==>

<1 * Z-GNRT>

(check-rdct)

*TCx =>

<1 * <TnPr 3 <<Loop[15\2]>>>>

*BCx =>

<1 * Z-GNRT>

Checking *TDD*

Result:

=0

Checking *HG*
Result:

277
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15.6 An unproved property of the algebraic Kan

contraction

Since the early version of the software (1990), and through a host of ex-
amples, an amazing algebraic property of the Kan contraction xg: has been
experimentally discovered. Many computations have been done of xg:(b®9),
for various choices of b ® g and in all these cases, as soon as degree(b) > 0,
then the result is null. In other words, xg: is null outside the base fiber. Up

to now, no actual proof of this result has yet been given.
We show that, using the “soft” version of A.

(setf db (soft-deltab)) ==>

[K1 Simplicial-Set]

(setf tt (tnpr-contraction db)) ==>
[K54 Morphism (degree 1)]

(setf gnrtl (tnpr 3 (code (0 1 2 3 4))
4 (loop3 0 (code ’(0 1 2 3 4 5)) 2)))

I
1l
v

<TnPr 3 0-1-2-3-4 4 <<Loop[0-1-2-3-4-5\2]>>>

(? tt 7 gnrtl) ==>

{CMBN 8}

(setf gnrt2 (tnpr 4 (code ’(2 4 6 8 10 12))
5 (loop3 0 (code ’(1 3 57 9 11 13)) 5)))

<TnPr 4 2-4-6-8-10-12 5 <<Loop[1-3-5-7-9-11-13\5]>>>

(7 tt 9 gnrt2) ==>

{CMBN 10}
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But if degree(b) = 0, then the result is non—null in general.

(7 tt 2 (tnpr O (code ’(0)) 2 (loop3 0 (code (0 1 2 3)) 1))) ==>

- e {cMBN 3}
<-1 % <TnPr 0 <<Loop[2-1-0 0-1][1-0 0-1-2]1[2 0-1-2-3]1>>>>

<1 # <TnPr 0 <<Loop[2-1-0 0-1][2-0 0-1-2][1 0-1-2-3]1>>>>

<1 * <TnPr 0-2 <<Loop[0-1-2-3]1>>>>

<-1 * <TnPr 0-1-2 <<Loop[1-2-3]>>>>

<-1 * <TnPr 0-1-2-3 <<Loop>>>>

(? tt 4 (tnpr O (code ’(0)) 4 (loop3 0 (code (1 2 3 4 5 6)) 3))) ==>

- -—— Rt {CMBN 5}

<1 * <TnPr 1 <<Loop[4-3-2-1-0 1-2][3-2-1-0 1-2-3][4-2-1-0 1-3-4][4-3-1-0 1-4-5]
[4-3-2 1-4-5-6]>>>>

<1 * <TnPr 1 <<Loop[4-3-2-1-0 1-2][3-2-1-0 1-2-3][4-2-1-0 1-3-4] [4-3-1-0 1-4-5]
[4-3-2 1-4-5-6\2]>>>>

(length *) ==>

537

Lisp file concerned in this chapter

1s-twisted-products.lisp.



Chapter 16

Eilenberg-Moore spectral
sequence 1

16.1 Introduction

This chapter is devoted to the effective homology version of the spectral
sequence of Eilenberg-Moore, in the particular case of loop spaces. More
precisely, let X be a 1-reduced simplicial set with effective homology, the
software Kenzo constructs a 0-reduced simplicial set GX which is also with
effective homology. In particular, if X is m-reduced, this process may be
iterated m times, producing an effective homology version of G¥X, k < m.
So, the software builds an object which contains a complete solution of the
Adams problem about the iteration of the cobar construction. The user
is advised to consult the paper Stable homotopy and iterated loop spaces,
pp. 545 by Gunnar Carlsson and R.James Milgram in Handbook of
Algebraic Topology, pp 545 edited by L. M.James, North-Holland, 1995.

280
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16.2 The detailed construction

Let C.(X) be a coalgebra with effective homology. This means that a ho-
motopy equivalence:

S}

 / NN
Co(X) EC,

is provided, where the chain complex EC, is effective and must be consi-
dered as describing the homology of C,(X). This scheme includes the case
where C,(X) is itself effective; without any other information, the program
constructs automatically a trivial homotopy equivalence.

Now, if we apply the Cobar functor to this homotopy equivalence we obtain
the homotopy equivalence Hpg:

Ci
Cobar (Z,7)

/! NN

EC,
Cobar®X)(z,7) Cobar  (Z,7)

in which the C'obar’s are cobars construction with respect to the A,-coalge-
bras structure on C, and EC, defined by the initial homotopy equivalence.
Secondly, Julio Rubio' has shown that it is possible to construct another

13.J. Rubio-Garcia. Homologie effective des espaces de lacets itérés: un logiciel,
These, Institut Fourier, 1991.
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homotopy equivalence, Hr:

Cobar®X)(Z,C(X) ®; C.(GX))
/ NN
C.(GX) Cobar®X) (7, 7)

Both reductions of H; are obtained by the basic perturbation lemma, as
explained in the following section. The composition of both homotopy equi-
valences, Hy, and Hp, makes the link between GX, i.e. the loop space of X
and the effective right bottom chain complex of Hp.

16.2.1 Obtaining the left reduction Hj,

The homotopy equivalence Hj, is obtained by a sequence of intermediate
constructions based mainly upon two applications of the basic perturbation
lemma. We are led to consider the two following comodules:

e C.(X) comodule on itself, with the canonical coproduct.

Co(X) -2 Co(X) ® Cu(X).

e C.(X), comodule on C,(X), with a “trivial” coproduct

Cu(X) 2 CX) ®C.(X), 0100, 0cCu(X)

Now, we consider the set of the followings cobars (where u means “untwisted”
and t “twisted”):

Haty, = Cobar®X)(z,C,(X)® C,(GX)),
Hat,, = Cobar®™X)(z,C,(X)®;C.(GX)),
Haty, = Cobar®™X)(z,C(X) ® C.(GX))
Haty = Cobar®X)(z,C(X) ®, C(GX)).

One may always say that Hat,; is obtained from Hat,, by a perturbation
0r (r: right) induced by the twisted tensor product ®; and that Haty, is
obtained from Hat,,, by a perturbation §; (I: left) induced by the discrepancy
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between the coproducts in C,(X) and C,(X). After that, Haty is obtained
from Haty, by the perturbation §, as well as, by commutativity, from Hat,;
by the perturbation ¢;.

This is shown in the following diagram (here, the arrows are not reductions,
but denote the perturbations between the differential morphisms):

Hatyy
o N Or
Haty, Hat,;
or N\ )
Haty

The underlying graded modules Hat,,,,, Hat,;, Hat;, and Haty are the same
and the program keeps Hat,, as the underlying graded module for all the
chain complexes. The differential perturbations are given by the formulas:

G ® - ®®c®g) = [C1®:-®en]®[dei(c®g) —dg(c®9)],
HE1® R ®c®yg) = 6® Q6 Ac®yg,

where &, ¢ € C,(X), g € C,(GX)) and A = A — A,
Now, on one hand, we know that there exists a reduction
Haty, = Cobar®)(z,C(X) ® C.(GX)) = C.(GX),
so, perturbing this reduction by d,, one obtains the Rubio reduction
Haty, = Cobar®X)(Z,C.(X) ®; C,(GX)) = C.(GX).
On the other hand, we know also that there exists a reduction
Haty; = Cobar®™X)(z,C.(X) ®; C.(GX)) = Cobar® ) (z,7),
so, perturbing this reduction by d;, one obtains the reduction

Haty = Cobar®X)(Z,C.(X) ®: C.(GX)) = Cobar®X)(z, 7).
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Finally, we have obtained the wished left homotopy equivalence Hr:

Cobar®X)(Z,C(X) ®; C.(GX))
</ AVAN
C.(GX) Cobar®X)(z,7)

16.2.2 The useful functions

For the applications, the only function that the user must know is the func-
tion loop-space-efhm which builds the final homotopy equivalence. But
for the interested user, we give nevertheless a short description of all the
functions involved in the described process.

loop-space-efhm space [Function]
From the space X (1l-reduced) with effective homology (here the
argument space), build a homotopy equivalence giving an effective
homology version of the space GX. This homotopy equivalence
will be used by the homology function to compute the homology
groups. In fact, due to the slot-unbound mechanism of CLOS, this
function will be automatically called, as soon as the user requires a
homology group of a loop-space. If X is n-reduced and if the wished
loop space is QFX, k < n, then the process will be automatically
iterated.

1s-hat-u-u space [Function]
Return the chain complex Cobar®(X)(z, C.(X)®C,(GX)). Because
of the particular structure of C,(X), this chain complex is nothing
but Cobar®X)(z,7) ® C.(X) ® C.(GX).

1s-hat-left-perturbation space [Function]
Return the morphism corresponding to the differential perturbation
81, induced by the discrepancy between the coproducts of C, (X) and
C.(X).

1s-hat-t-u space [Function]
Return the chain complex Cobar®(X)(z,C,(X) ® C,(GX)) by ap-
plying the differential perturbation hat-left-perturbation upon
the chain complex built by the function hat-u-u. This is realized
by the method add.
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1s-hat-u-t space [Function]
Return the chain complex Cobar®X)(Z,C,(X) ®; C.(GX)). Be-
cause of the particular structure of C,(X), this chain complex is
nothing but Cobar® X)(z, Z)®[C.(X)®:C, (G X)], where the twisted
tensor product is obtained by a call to twisted-tnsr-prdc (see
loop space fibrations chapter).

1s-hat-right-perturbation space [Function]
Return the morphism corresponding to the differential perturbation
&, induced by the twisted tensor product. This morphism is nothing
but the tensor product of two morphisms: the identity morphism
on Cobar®X)(Z,Z) and the perturbation morphism induced by
the twisted tensor product. This last morphism is a by-product of
the function szczarba.

1s-left-hmeqg-hat space [Function]
Return the chain complex Haty = Cobar®(X)(Z,C(X)®:C.(GX))
by perturbing the chain complex Hat,; by the perturbation ;.

ls-pre-left-hmeq-left-reduction space [Function]
Build the reduction

Haty, = Cobar®™¥)(Z,C.(X) ® C.(GX)) = C.(GX).

ls-pre-left-hmeq-right-reduction space [Function]
Build the reduction

Haty; = Cobar®X)(Z,C.(X) ®; C+(GX)) = Cobar®X)(z, 7).

1s-left-hmeg-left-reduction space [Function]
Build the Rubio reduction

Cobar® (7., C.(X) ®; C.(GX)) = C.(GX)
by perturbing by the perturbation §, the reduction
Haty, — C*(GX)

obtained by the function pre-left-hmeq-left-reduction.
1s-left-hmeg-right-reduction space [Function]
Build the reduction

Cobar®™X)(z,,C(X) ®; C,(GX)) = Cobar®X)(z,7)
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by perturbing by the perturbation §; the reduction
Hat,; = Cobar®*)(z, 7)

obtained by the function pre-left-hmeq-right-reduction.

1s-left-hmeq space [Function]
Build the homotopy equivalence

Cobar®X)(7,C(X) ®; C.(GX))
</ AVAN
C.(GX) Cobar®X)(z, )

from the above reductions. The function loop-space-efhm com-
poses this left homotopy equivalence Hy, with a homotopy equiva-
lence Hp, which is the cobar of a pre-existing homotopy equivalence
(possibly the trivial one) between the coalgebra X and an effective
version of it, as described at the beginning of this chapter. The
Lisp definition is given in the next subsection.
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16.2.3 Searching homology for loop spaces

The origin list of a loop space object has the form (LOOP-SPACE space).
The search-efhm method applied to a loop space object consists essentially
in a call to the function loop-space-efhm described in this chapter.

(defmethod SEARCH-EFHM (loop-space (orgn (eql ’loop-space)))
(declare (type simplicial-set loop-space))
(loop-space-efhm (second (orgn loop-space))))

The lisp definition of the function loop-space-efhm shows clearly the pos-
sible recursivity of the process is space is itself a loop space.

(defun LOOP-SPACE-EFHM (space)
(declare (type simplicial-set space))
(let ((left-hmeq (1ls-left-hmeq space))
(right-hmeq (cobar (efhm space))))
(declare (type homotopy-equivalence left-hmeq right-hmeq))
(cmps left-hmeq right-hmeq)))

Examples

Let us show first how to get the homology groups of some known loop spaces,
082, 038, O*Moore(Z /22, 3).

(setf s2 (sphere 2)) ==>

[K1 Simplicial-Set]

(setf os2 (loop-space s2)) ==>
[K6 Simplicial-Group]

(dotimes (k 10) (homology os2 k)) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z

Homology in dimension 2 :
Component Z

Homology in dimension 3 :
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Component Z

Homology in dimension 4 :
Component Z

Homology in dimension 5 :
Component Z

Homology in dimension 6 :
Component Z

Homology in dimension 7 :
Component Z

Homology in dimension 8 :
Component Z

Homology in dimension 9 :
Component Z

--—done-—-—

(cat-init)

(setf s4 (sphere 4)) ==
[K1 Simplicial-Set]

(setf ooos4 (loop-space s4 3)) ==>
[K30 Simplicial-Groupl
(dotimes (k 6) (homology ooos4 k)) ==
Homology in dimension O :
Component Z

Homology in dimension 1 :

Component Z
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Homology in dimension 2 :
Component Z/2Z

Homology in dimension 3 :
Component Z/2Z

Homology in dimension 4 :
Component Z/3Z

Component Z/2Z

Component Z

Homology in dimension 5 :
Component Z/3Z

Component Z/2Z

Component Z

---done---

(setf moore-23 (moore 2 3)) ==>
[K42 Simplicial-Set]

(setf oo-moore-23 (loop-space moore-23 2)) ==>
[K569 Simplicial-Groupl

(dotimes (k 6) (homology oo-moore-23 k)) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z/2Z

Homology in dimension 2 :
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Component Z/2Z
Homology in dimension 3 :
Component Z/4Z
Component Z/2Z
Homology in dimension 4 :
Component Z/2Z
Component Z/2Z
Component Z/2Z
Homology in dimension 5 :
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z

---done—---
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16.3 The solution of the Adams and Carlsson prob-
lem

Let X an n-reduced simplicial set which is not a suspension. The Adams
and Carlsson problem? asks for a finite CW-complex modelizing the iterated
loop space Q2" X. We show in this section how the Kenzo program builds the

relevant solution.
Let us consider for instance the truncated projective space X = P°R/P3R

(a non-suspended space) and let us build Q3X.

(setf p4 (R-proj-space 4)) ==>

[K1 Simplicial-Set]

(setf o3p4 (loop-space p4 3)) ==>

[K30 Simplicial-Group]

(setf ecc (rbcc (efhm o3p4))) ==>

[K390 Chain-Complex]

The cellular homology of 93X is now known through the symbol ecc. Note
that 360 objects (390 — 30) have been built to get the final complex ecc.
From the printing of the length of the basis in dimensions 0 to 5,

(dotimes (i 6) (print (length (basis ecc 1i)))) ==>

we see that the required CW-complex can be constructed using 1 0-cell, 1
1-cell, 2 2-cells, 5 3-cells, 13 4-cells and 33 5-cells. Let us print the incidence
matrix between the 5 and the 4-cells:

Gunnar Carlsson, R.James Milgram. Stable homotopy and iterated loop spaces
in Handbook of Algebraic Topology, pp 545 edited by I.M.James, North-Holland, 1995.
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(chcm-mat ecc 5) ==>

Li=[C1=-2]

L2=[C1=-1]

L3=[C1=-4] [C2=1] [C3=-1] [C4=-2]

L4=[C2=1] [C3=-1] [C6=2]

L5=[C1=6] [C4=1] [C6=1]

L6=[C1=4] [C4=4] [C6=4] [C7=3]

L7=[C1=4] [C12=-2] [C14=2]

L8=[C1=6] [C4=1] [C6=1]

L9=[C1=4] [C4=4] [C6=4] [CT7=3]

L10=[C8=4] [C10=1] [C11=-1] [C14=-4] [C15=-2] [C20=-2]
L11=[C1=4] [C8=4] [C10=1] [C11=-1] [C16=-4] [C18=-1] [C19=1] [C23=-2]
L12=[C12=4] [C13=2] [C16=-4] [C18=-1] [C19=1] [C27=-2]
L13=[C1=-1] [€20=4] [C21=2] [C23=-4] [C24=-2] [C27=4] [C28=2]

========== END-MATRIX
---done---

For instance, we see that the first 5-cell,
(first (basis ecc 5)) ==>

<<AlLp[5 <<AlLp[6 <<AlLp[7 81>>]1>>]1>>
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is glued to the 4-cells #5 and #8 by attaching maps of degree 6. The 5-cell

#4 is also glued to the 4-cell #5 by an attaching map of degree 1, etc.

Lisp files concerned in this chapter

lp-space-efhm.lisp, searching-homology.lisp.



Chapter 17

Classifying Spaces

17.1 Introduction

Let G be a simplicial group 0-reduced. The software Kenzo allows the con-
struction of the universal bundle WG, called the classifying space of G. Tt
is known that this is the base space of a principal bundle such that the
total space is contractible. We know also that if G is an Abelian simplicial
group then WG is also an Abelian simplicial group, otherwise if G is non—
Abelian, then WG is only a simplicial set. In dimension n the simplices of
the classifying space are elements of the product:

Gn—1 X Gp_2 X -+ x Gy,

where Gy, is the set of the k—simplices of the given simplicial group.
A simplex of WG is called gbar (geometric bar) and may be seen as an
n—uple

(gn—lagn—Qa s aglagO)a

where the g;’s are elements of G;, possibly degenerated. In Kenzo a gbar is
represented externally under the form:

<<GBar < [ng]p—1><[ngln—2 > ... < [ngli > < - go> >>

where a term such as [ng]; is a simplex of G;. Let us recall that our group
G is assumed 0-reduced; as a consequence, the gg compound of a gbar is

necessarily the identity element of G.

In the symbolic expression [ng];, the operator 7 represents a sequence (pos-
sibly the void one) of degeneracy operators applied coherently upon some
element of Gy, for k£ < 4. For instance [ng]; can be 7ogo, i.e. the 0—degeneracy

293
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of the base point and [ng]2 can be can be 7179g0. To be more explicit, let us
take the Abelian simplicial group K(Zs,1) (see the simplicial groups chap-
ter), then some elements of the basis in dimension 4 of its classifying space
are, for instance:

<<GBar<- 3><- 2><- 1><- 0>>>

<<GBar<- 3><1-0 0><0 0><- 0>>>

<<GBar<i 2><- 2><0 0><- 0>>>

<<GBar<i 2><0 1><0 0><- 0>>>

<<GBar<2 2><1 1><0 0><- 0>>>

<<GBar<2-0 1><1 1><0 0><- 0>>>

<<GBar<2-1 1><1 1><- 1><- 0>>>

<<GBar<2-1 1><0 1><0 0><- 0>>>

We recall that the symbol -, in front of an element means “no degeneracy”.

17.2 Face, degeneracy and group operations
Let us denote a gbar under the following generic form:

Gbar = (gn—lagn—%--- y 8jr--- aglago)'

In this symbolism, gy is also the base point of the initial simplicial group.
The rule for the face operators is the following:

o If] =n, 5ngbar = (ganagnfi’n s 591590)-

b If] 7é n, 6jgbar = (5]'971—13 ey 5jgj+15 gj—ldjgja gj—1,---,91, gO)a where
in the term g;_1.d;g;, the dot represents the group composition.

e If j =0, dogbar = (d0gn—1---,%091)-
The rule for the degeneracy operators is:
NiGbar = (Mjgn—1,-- - MBj+1, Nj—17j—2 - - - N17080, &1, - - - , 1, 90)-
If G is Abelian then WG is also Abelian and its composition law is simply:
(9n—15---+91,90)-(91-91,90) = (Gn-1-95 1, -->91-91, 90-90)-

It is well known that if the initial group is not Abelian then, in general, the
previous composition law is not compatible with the simplicial structure.
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17.3 The functions for the classifying spaces

gbar dmns dop-1 elem-1 ... dop-n elem-n [Macro]
Build a gbar in dimension dmns. The sequence dop-1 elem-1 ...
dop-n elem-n, is a sequence of pairs (dop-k, elem-k), where dop-k is
a binary coded degeneracy operator and elem-k a simplex of the
initial simplicial group. The ordering of the pairs in the sequence
must conform to the theoritical definition of a gbar. If the sequence
of pairs is void, the special call (gbar 0), creates the base point of
the classifying space externally represented by <<GBAR>>. This base
point can be reached through the system symbol +null-gbar+.

classifying-space-cmpr cmpr [Function]
From a comparison function cmpr defined for a simplicial group G,
build a comparison function for the classifying space of G.

classifying-space-basis basis [Function]
From the basis function basis of a simplicial group G, build a basis
function for the classifying space of G. If G is locally effective, this
function returns the symbol :locally-effective.

classifying-space-face face sintr-grml [Function]
From the face function face and the lisp function for the group law,
sintr-grml, of a simplicial group G, build a face function for the
classifying space of G.

classifying-space smgr [Method]
Build the simplicial set, classifying space of the simplicial group
smgr. The construction uses the three preceding auxiliary func-
tions. The base point of the returned simplicial set is the null gbar
+null-gbar+.

classifying-space A-smgr [Method]
Build the Abelian simplicial group, classifying space of the Abelian
simplicial group A-smgr. The group law and its inverse (slots
:sintr-grml and :sintr-grin) are built by the two auxiliary func-
tions:

classifying-space-grml-sintr and
classifying-space-grin-sintr,

defining the laws of this new group from the corresponding laws of
A-smgr.
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17.4 Eilenberg-Mac Lane spaces K(m,n)

We have already described K(Z,1) and K(Zs2,1) in the chapter on simpli-
cial groups. This section gives some complements about the construction
of K(Z,n) and K(Zg,n). The trivial case for n = 0 is not implemented
in Kenzo. For n > 1, these simplicial groups are built recursively as the
classifying spaces of K(Z,n— 1) and K(Z9,n — 1), respectively, as shown in
the following description:

k-z n [Function
Build K(Z,n) recursively from K(Z,n—1). If n = 1, return K(Z, 1

(defun K-Z (n)
(the ab-simplicial-group
(if (=n 1)
(k-z-1)
(classifying-space (k-z (1- n))))))

k-z2 n [Function]
Build K(Zg,n) recursively from K(Zg,n — 1). If n = 1, return
K(Z9,1)

(defun K-Z2 (n)
(the ab-simplicial-group
(if (=n 1)
(k-z2-1)
(classifying-space (k-z2 (1- n))))))

These spaces have an effective homology which is computed via a search-
efhm method (described in a next chapter). For the case n = 1, we may recall
here that K(Z,1), though being locally effective, has the homology of S.
The search-efhm method applied to this chain complex does the following:
a reduction between K(Z,1) and the chain complex circle (described in
the chain complex chapter) is built using the function kzi-rdct and the
homotopy equivalence, value of the slot efhm, is built between this reduction
and the trivial reduction of K(Z,1) upon itself.

On the other hand, K(Z, 2) has a very simple finite basis in every dimension
(see R-projective spaces), so its homology is computed directly from its basis.
The homotopy equivalence, value of the slot efhm, is the trivial homotopy
equivalence of K (Z,2) upon itself.
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Examples

Let us begin by showing some examples of gbars built from various initial
simplicial groups. In the second statement, the initial simplicial group is
K(Zs9, 1), in the third, it is Q(Moore(2,2)). We recall that in the call of the
function gbar, the degeneracy operators appear as integers, according to the
general rule in Kenzo, but the printed result shows in clear the sequence of

nfs.
(gbar 2 1 ’a 2 ’b) ==>

<<GBar<0 A><1 B>>>
(gbar 4 033 01000) ==>
<<GBar<- 3><1-0 0><0 0><- 0>>>

(setf gbar-mr22 (gbar 4 0 (loop3 3 'm2 1 4 ’n3 1)
0 (loop3 0 ’n3 1)
0 (loop3 0 ’m2 1)
0 +null-loop+)) ==>

<<GBar<- <<Loop[1-0 M2][2 N3]>>><- <<Loop[N3]>>><- <<Loop[M2]>>>
<— <<Loop>>>>>

Let us test the face function upon this simplex. The user will note that the
face function returns an abstract simplex.

(setf om (loop-space (moore 2 2))) ==

[K18 Simplicial-Groupl

(setf face (classifying-space-face (face om) (sintr (grml om)))) ==>
#<Closure (FLET CLASSIFYING-SPACE-FACE RSLT) @ #x49af32>

(dotimes (i 5) (print (funcall face i 4 gbar-m22))) ==>

<AbSm - <<GBar<- <<Loop[0 M2]1[1 M2]>>><- <<Loop[M2]>>><- <<Loop>>>>>>
<AbSm 0 <<GBar<- <<Loop[M2]>>><- <<Loop>>>>>>

<AbSm - <<GBar<- <<Loop[0 M2] [N3]>>><- <<Loop[M2\2]>>><- <<Loop>>>>>>
<AbSm - <<GBar<- <<Loop[N3\2]>>><- <<Loop[M2]>>><- <<Loop>>>>>>
<AbSm - <<GBar<- <<Loop[N3]1>>><- <<Loop[M2]>>><- <<Loop>>>>>>

Let us work now, directly with the classifying space of K(Zs,1).

(setf cs-kz21 (classifying-space (k-z2-1))) ==>

[K13 Abelian-Simplicial-Group]
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(orgn cs-kz21) ==>

(CLASSIFYING-SPACE [K1 Abelian-Simplicial-Group])
(setf elem-1 (first (basis cs-kz21 4))) ==>
<<GBar<- 3><- 2><- 1><- 0>>>

(? cs-kz21 4 elem-1) ==>

- ---- e {CMBN 3}
<2 * <LGBar<- 2><- 1><- 0>>>>

(? cs-kz21 *) ==>

- ---- e e {CMBN 2}
(cprd cs-kz21 4 elem-1) ==>

- ---- e e {CMBN 4}

<1 * <TnPr <<GBar>> <<GBar<- 3><- 2><- 1><- 0>>>>>
<1 * <TnPr <<GBar<- 1><- 0>>> <<KGBar<- 1><- 0>>>>>
<1 * <TnPr <<GBar<- 3><- 2><- 1><- 0>>> <<GBar>>>>

(dotimes (i 5)
(print (face cs-kz21 i 4 elem-1))) ==

<AbSm - <<GBar<- 2><- 1><- 0>>>>
<AbSm O <<GBar<- 1><- 0>>>>
<AbSm 1 <<GBar<- 1><- 0>>>>
<AbSm 2 <<GBar<- 1><- 0>>>>
<AbSm - <<GBar<- 2><- 1><- 0>>>>

Let us test the law group with K(Z,1). We recall the simplices of this
Abelian simplicial group are represented as lists of integers. The functions
grml and grin accept also the gbars under the form of abstract simplices
(see the last statement).

(setf cs-kzl (classifying-space (k-z-1))) ==>
[K13 Abelian-Simplicial-Group]

(grml cs-kzl 3 (crpr 0 (gbar 3 0 (1 2) 0 "(3) 0 *())
0 (gbar 3 0 (-1 -2) 0 *(-3) 0 ()

n
I
v
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<AbSm 2-1-0 <<GBar>>>

(grml cs-kz1l 3 (crpr O (gbar 3 0 (1 2) 0 "(3) 0 *())

4 (gbar 2 0 °(-3) 0 *()))) ==>
<AbSm - <<GBar<- (1 2)><0 NIL><- NIL>>>>
(grml cs-kzl 3 (crpr 0 (gbar 3 0 (1 2) 0 *(3) 0 *())

1 (gbar 2 0 °(-3) 0 (D)) ==>

<AbSm - <<GBar<- (1 -1)><- (3)><- NIL>>>>

(grin cs-kzl 3 (gbar 3 0 °(1 2) 1 °(0) 0 °(Q)) ==>
<AbSm - <<GBar<- (-1 -2)><0 NIL><- NIL>>>>

(grin cs-kzl 3 *) ==>

<AbSm - <<GBar<- (1 2)><0 NIL><- NIL>>>>

As K(Z,1) and K(Z2,1) are Abelian simplicial groups, we may iterate the
classifying space construction and retrieve some known results.

(cat-init) ;; re-initialization
(setf k-z-3 (k-z 3)) ==

[K25 Abelian-Simplicial-Group]
(homology k-z-3 0 10) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Homology in dimension 3 :
Component Z

Homology in dimension 4 :
Homology in dimension 5 :

Component Z/2Z
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Homology in dimension 6 :
Homology in dimension 7 :
Component Z/3Z

Homology in dimension 8 :
Component Z/2Z

Homology in dimension 9 :
Component Z/2Z

(setf k-z2-5 (k-z2 5)) ==>
[K342 Abelian-Simplicial-Group]
(homology k-z2-5 0 7) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Homology in dimension 3 :
Homology in dimension 4 :
Homology in dimension 5 :
Component Z/2Z

Homology in dimension 6 :

--done—-

Lisp files concerned in this chapter

classifying-space.lisp, k-pi-n.lisp.



Chapter 18

Serre spectral sequence

18.1 Introduction

This chapter is devoted to the Kenzo implementation of the Serre spectral
sequence with the aim to compute the homology groups of the total space of
a fibration. From the programming point of view, this method will be used
according to our general scheme of searching homology (generic function
search-efhm) applied to an object of type fibration-total.

18.2 The topological problem

Let G be a simplicial group (the fiber space), B, a 1-reduced simplicial
set (the base space) and 7 (the fibration), a simplicial morphism of degree
—1, 7: B — G. We know, from a previous chapter (fibrations) that the
software Kenzo knows how to build the total space of the fibration: B %, G,
which has the same simplices as B x G and the same face operators except
the last one, given by:

On(b,g) = (0nb,7(b).0ng), b€ B,g€g,

where the ’.’ denotes the group operation in G. This discrepancy between
the respective face operators d, induces a discrepancy between the differen-
tial operators. We suppose now, that the base and fiber spaces are objects
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of effective homology type, i.e. there exists homotopy equivalences

&
Q)

pL NN 2 L NN b
B EB G EG

302

where the chain complexes EB and EG are effective. The problem consists
in finding a homotopy equivalence between B X, G and an effective chain
complex noted EB®EG; the underlying graded module of EBREG is EB®
EG but the differential is twisted in a rather complicated way. In fact, the

chain complex EB®EG is nothing but the Hirsh complex'.

18.2.1 The Ronald Brown reduction

We start from the Eilenberg-Zilber reduction (built in Kenzo by the function

ez).

C.(BxG) - sC(Bxg)

g
C.(B) ® C.(G)

But, in fact we are interested in the following one (the Ronald Brown re-

duction):

CBx.G) - sC.(Bx,0)

Fity

'!Guy Hirsh. Sur les groupes d’homologie des espaces fibrés, Bulletin de la Société

Mathématique de Belgique, 1954, vol. 6, pp. 79-96.
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where the symbol ®; represents a twisted tensor product, induced by the
twisting operator 7; this twisting operator is nothing but the Shih twisting
cochain? determined by Szczarba®. Here, to obtain the Szczarba cochain,
we apply the perturbation lemma (Ronnie Brown). In effect, writing

d, = d+ (d, — d),

one may consider that the differential d, of B x, G is the differential d of
B x G modified by the perturbation d, —d. The perturbation morphism d,—d
is deduced from the difference between both 0, face operators. This being
done, a perturbation may possibly be propagated along the Eilenberg-Zilber
reduction (see the method add applied to a reduction) and the perturbation
lemma, gives also, as a bonus, the perturbation to be applied to the diffe-
rential of B ® G to obtain the differential of B ®; G.

18.2.2 The Gugenheim algorithm

On the other hand, from the homotopy equivalences

&
Q)

pL NN 2 L NN P
B EB G EG

it is possible to build their tensor product, i.e. the homotopy equivalence:

&)
®
Q)

</ NN
B®g EB® EG

2Gugenheim., On the chain complex of a fibration. Tllinois Journal of Mathematics,
1972, vol. 16, pp. 398-414.

3R. H. Szczarba. The homology of twisted cartesian products. Transactions of the
American Mathematical Society, 1961, vol. 100, pp. 197-216.
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This is done in Kenzo by the method tnsr-prdc. In fact, we are interested
in the following one:

o NN
B®:§G EBQ®EG

where B®G and EBREG are appropriate strongly twisted tensor products
determined by the perturbation lemma: this last homotopy equivalence is
obtained by propagating over the previous one, the perturbation to be ap-
plied to the differential of B ® G to obtain the differential of B ®; G. The
homotopy equivalence so obtained is called in Kenzo the right Serre homo-
topy equivalence.

18.2.3 Assembling the puzzle

Let us build now the so-called left Serre homotopy equivalence,

Bx,G

N4 AVAN
Bx,;G B®:G

where the left reduction is the trivial one and the right reduction is the
Brown reduction. We may then compose both Serre homotopy equivalences
to obtain what we were looking for:

BXTg B®tg

p1 NN P2 LS NN Py
Bng B®tg B®tg EB@tEG
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18.3 The functions for the Serre spectral sequence
The following functions are given for information purpose.

fibration-dtau-d-intr fibration [Function]
Build the lisp function corresponding to the difference d, —d, where
d is the differential in B X G and d; the differential in B X G. This
is an internal function and is used in the following one.

fibration-dtau-d fibration [Function]
Build the morphism d; —d, which is the perturbation morphism to
be added to the differential d of Bx§ to obtain d,, the differential in
B x,;G. We recall that both simplicial sets have the same simplices.
The source and the target of this morphism is the total space Bx,G
and the degree is —1.

Brown-reduction fibration [Function]
Return two values: a) the Brown reduction and b) the perturbation
to be applied to the differential of the tensor product BQG to obtain
the differential of the twisted tensor product B ®; G.

left-Serre-efhm fibration [Function]
Build the left Serre homotopy equivalence from the argument fibra-
tion.

right-Serre-efhm fibration [Function]
Build the right Serre homotopy equivalence from the argument fi-
bration.

18.4 Searching homology for fibration total spaces

The comment list of a Kenzo object which is the total space of a fibration has
the form (fibration-total fibration). The search-efhm method applied
to a simplicial set having this kind of comment list, builds the composition
of the left and right Serre homotopy equivalences. The right one needs the
homotopy equivalences attached respectively to the base and fiber spaces.
This may involve a recursive call of search-efhm. If the base space or the
fiber space are locally effective, the total space is locally effective and the
method cannot compute the homology.

(defmethod SEARCH-EFHM (smst (orgn (eql ’fibration-total)))
(declare
(type simplicial-set smst))
(the homotopy-equivalence
(fibration-total-efhm (second (orgn smst)))))
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(defun FIBRATION-TOTAL-EFHM (fibration)
(declare (type fibration fibration))
(the homotopy-equivalence
(cmps (left-serre-efhm fibration)
(right-serre-efhm fibration))))

Examples

We begin by some examples similar to examples that we have seen in the
fibrations chapter. For the user, the delicate point is to write in Lisp a
correct twisting operator. There is no check in this version of Kenzo for
the coherency of the twisting operator. In the first example we define a
fibration 7 : §2 — K (Z,1) with 7(s2) = (2), then we build the total space of

the fibration, namely P3R, and we compute some known homology groups.
(setf sph2 (sphere 2)) ==
[K1 Simplicial-Set]
(setf kzl (k-z-1)) ==>
[K6 Abelian-Simplicial-Group]
(setf tw2 (build-smmr

:sorc sph2

itrgt kzil

idegr -1

:sintr #’ (lambda (dmns gmsm)

(unless (= dmns 2)
(error "Dimension error for
the twisting operator S$2-->KZ1"))
(absm 0 (list 2)))
torgn ’ (s2-tw-kz1))) ==>

[K18 Fibration]
(? tw2 2 ’s2) ==>
<AbSm - (1)>
(7 tw2 0 ’%) ==>
Error: Dimension error for the twisting operator S52-->KZ1

(setf p3r (fibration-total tw2)) ==>

[K24 Simplicial-Set]
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(homology p3r 0 10) ==

Homology in dimension O :

Component Z

Homology in dimension 1 :

Component Z/2Z

Homology in dimension 2 :

Homology

in

Component Z

Homology
Homology
Homology
Homology
Homology
Homology

--done—-

in

in

in

in

in

in

dimension 3 :

dimension 4 :

dimension 5 :

dimension 5 :

dimension 7 :

dimension 8 :

dimension 9 :
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Let us do the same kind of computations with 7(s2) = (5) and 7(s2) = (17).

(setf twb (build-smmr

:sorc sph2

itrgt kzil

:degr -1

:sintr #’ (lambda (dmns gmsm)
(absm 0 (list 5)))

torgn ’(s2-tw-kz1-5)))

1]
I
v

[K110 Fibration]

(setf total-5 (fibration-total tw5)) ==

[K111 Simplicial-Set]

(homology total-5 0 5)



CHAPTER 18. SERRE SPECTRAL SEQUENCE 308

Homology in dimension O :
Component Z
Homology in dimension 1 :
Component Z/5Z
Homology in dimension 2 :
Homology in dimension 3 :
Component Z
Homology in dimension 4 :
(setf twl7 (build-smmr
:sorc sph2
rtrgt kzl
idegr -1
:sintr #’ (lambda (dmns gmsm)
(absm 0 (list 17)))
iorgn ’ (s2-tw-kz1-17))) ==
[K165 Fibration]
(setf total-17 (fibration-total twl7)) ==>
[K166 Simplicial-Set]
(homology total-17 0 4) ==>
Homology in dimension O :
Component Z
Homology in dimension 1 :
Component Z/17Z
Homology in dimension 2 :

Homology in dimension 3 :

Component Z



CHAPTER 18. SERRE SPECTRAL SEQUENCE 309

Using the last total space (total-17), it is instructive to enter in the details
of the resulting homotopy equivalence that the system builds to compute
the homology groups. First, the function echcm selects the effective chain
complex of the homotopy equivalence, value of the slot efhm of the simplicial
set total-17, and we may print some basis of this chain complex. In fact,
all basis in dimension above 3 are null. The presence of the symbol S1 is
due to the fact that the effective chain complex used for the homology of
K(Z,1) is the circle (see the classifying spaces chapter).

(setf echcm (echcm total-17)) ==>
[K205 Chain-Complex]
(dotimes (i 6) (print (basis echem i))) ==>

(KTnPr * *>)
(<TnPr * S1>)
(<TnPr S2 *>)
(<TnPr S2 S1>)
NIL

NIL

The resulting homotopy equivalence built by the system, may be summa-
rized by the diagram:

—

S? x, K(7,1)
f NN
S? x, K(Z,1) [K205 Chain Complex]

where f and g are respectively the descending and ascending morphisms of
the left and right reductions of the homotopy equivalence. We recall that
these morphisms are obtained respectively by the functions 1f and rg. We
may compose these morphisms to create a morphism fg from [K205] to

S? x, K(Z,1) and see how it acts on the basis elements in dimension 1 and
2:

(setf fg (cmps (1f (efhm total-17)) (rg (efhm total-17)))) ==>

[K220 Morphism (degree 0)]

(setf genl (first (basis echcm 1))) ==>
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<TnPr * S1>

(7 fg 1 genl) ==>

- -— - {cMBN 1}
<-1 * <CrPr 0 * - (1)>>

(setf gen2 (first (basis echcm 2))) ==>

<TnPr S2 *>

(setf fg-gen2 (7 fg 2 gen2)) ==>

- -— o {CMBN 2}
<-1 * <CrPr - S2 1-0 NIL>>

<-1 * <CrPr 1-0 * - (1 1)>>

<-1 * <CrPr 1-0 * - (1 2)>>

<-1 * <CrPr 1-0 * - (1 3)>>

<-1 * <CrPr 1-0 * - (1 4)>>

<-1 * <CrPr 1-0 * - (1 5)>>

<-1 % <CrPr 1-0 * - (1 6)>>

<-1 * <CrPr 1-0 * - (1 7)>>

<-1 * <CrPr 1-0 * - (1 8)>>

<-1 * <CrPr 1-0 * - (1 9)>>

<-1 * <CrPr 1-0 * - (1 10)>>

<-1 * <CrPr 1-0 * - (1 11)>>

<-1 * <CrPr 1-0 * - (1 12)>>

<-1 % <CrPr 1-0 * - (1 13)>>

<-1 * <CrPr 1-0 * - (1 14)>>

<-1 * <CrPr 1-0 * - (1 15)>>

<-1 * <CrPr 1-0 * - (1 16)>>

The boundary of this combination in S? x, K(Z,1) is

(? total-17 *)

- o {CMBN 1}

<-17 * <CrPr 0 * - (1)>>

to which corresponds in the effective chain complex, the boundary of the
basis element in dimension 2, gen2 = s2 ® x*:

(? echcm 2 gen2) ==>

- -—- T {CMBN 1}
<17 * <TnPr * S1>>
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The printing of the 3 faces of the 17 simplices of the combination fg-gen2
shows the geometrical organisation of the twisted product:

(dolist(iterm (cmbn-list fg-gen2))
(dotimes (i 3) (print (face total-17 i 2 (gnrt iterm))))
(terpri)) ==>

<AbSm O <CrPr - * - NIL>>
<AbSm O <CrPr - * - NIL>>
<AbSm - <CrPr 0 * - (17)>>

<AbSm - <CrPr 0 * - (1)>>
<AbSm - <CrPr 0 * - (2)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (2)>>
<AbSm - <CrPr 0 * - (3)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (3)>>
<AbSm - <CrPr 0 * - (4)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (4)>>
<AbSm - <CrPr 0 * - (5)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (5)>>
<AbSm - <CrPr 0 * - (6)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (6)>>
<AbSm - <CrPr 0 * - (7)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (7)>>
<AbSm - <CrPr 0 * - (8)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (8)>>
<AbSm - <CrPr 0 * - (9)>>
<AbSm - <CrPr 0 * - (1)>>
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<AbSm - <CrPr (9)>>
<AbSm - <CrPr 0 * - (10)>>
<AbSm - <CrPr 0 * - (1)>>

o
|

<AbSm - <CrPr 0 * - (10)>>
<AbSm - <CrPr 0 * - (11)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (11)>>
<AbSm - <CrPr 0 * - (12)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (12)>>
<AbSm - <CrPr 0 * - (13)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (13)>>
<AbSm - <CrPr 0 * - (14)>>
<AbSm - <CrPr 0 * - (1)>>

<AbSm - <CrPr 0 * - (14)>>
<AbSm - <CrPr (15)>>
<AbSm - <CrPr 0 * - (1)>>

o
|

o
|

<AbSm - <CrPr (15)>>
<AbSm - <CrPr (16)>>
<AbSm - <CrPr 0 * - (1)>>

o
|

<AbSm - <CrPr (16)>>
<AbSm - <CrPr 0 * - (17)>>
<AbSm - <CrPr 0 * - (1)>>

o
|

We have seen that for the special case of loop spaces, there is a canonical
fibration and that the function twisted-crts-prdc builds the total space
X x;QX.

(setf sph3 (sphere 3)) ==>

[K221 Simplicial-Set]

(setf tw3 (twisted-crts-prdc sph3)) ==>
[K243 Simplicial-Set]

(face tw3 3 3 (crpr 0 ’s3 7 +null-loopt)) ==
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<AbSm - <CrPr 1-0 * - <<Loop[S3]>>>>

It is of course possible to study, any other fibration, provided one defines a
correct fibration 7. In the following example the fibration 7 : $3 — QS3,
is defined by 7(s3) = s372, where s372 is a word in the Kan simplicial

version of the first loop space of S3. In Kenzo, this object is created by the
statement:

(absm 0 (loop3 0 ’s3 -2)) ==>
<AbSm - <<Loop[S3\-21>>>

(setf tws3 (build-smmr  :sorc sph3
:trgt (loop-space sph3)

:degr -1
:sintr #’(lambda (dmns gmsm) (absm O (loop3 0 ’s3 -2)))
rorgn ’(s3-tw-1ps3))) ==>

[K248 Fibration]

(setf total (fibration-total tws3)) ==>

[K249 Simplicial-Set]
(homology total 0 7) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Component Z/2Z

Homology in dimension 3 :
Homology in dimension 4 :
Component Z/2Z

Homology in dimension 5 :
Homology in dimension 6 :

Component Z/2Z
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Lisp files concerned in this chapter

serre.lisp, searching-homology.lisp.



Chapter 19

Simplicial groups fibrations

19.1 Introduction

This chapter is analogous to the Loop spaces fibrations chapter where al-
gorithms have been specially designed for loop spaces. In the present case,
we have at our disposal all the tools developped for the fibrations. Let G be
a 0-reduced simplicial group and WG, its classifying space. We recall that
if G is an Abelian simplicial group then WG is also an Abelian simplicial
group, otherwise if G is non-Abelian, then W@ is only a simplicial set. The
software Kenzo implements the canonical twisted cartesian product of WG
by G, denoted WG = WG %, G. The canonical fibration

G =< WG —» WG,
is defined by the following twisting operator:

7[(gn-1,9n-2,- -, 90)] = gn-1-
The total space WG = WG X G is acyclic.

19.2 The function for the canonical fibration

smgr-fibration smgr [Function]
Build the simplicial morphism of degree —1 corresponding to the
canonical fibration. The source is the classifying space of the sim-
plicial group smgr (built internally by the function), the target is
smgr and the internal lisp function value of the slot :sintr imple-
ments the twisting operator. The returned object is a fibration.

315
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Examples

Let us take the Abelian simplicial group K(Z,1) and build the fibration
morphism.

(setf k1 (k-z-1)) ==>

[K1 Abelian-Simplicial-Groupl
(setf tw (smgr-fibration k1)) ==>
[K25 Fibration]

If needed, the classifying space may be found in the slot :sorc of the fibra-
tion:

(setf k2 (sorc tw)) ==>
[K13 Abelian-Simplicial-Group]

We may build now the total space of the fibration. We see that Kenzo
returns a Kan simplicial set because the base and fiber spaces are also of
Kan type. Then we test the face and differential operator upon a simplex
of degree 4 of the total space tt.

(setf tt (fibration-total tw)) ==>
[K31 Kan-Simplicial-Set]

(setf gmsm (crpr O (gbar 4 0 °(10 11 12) 0 ’(20 21) 0 ’(30) 0 > (D)
0°(24628))) ==

<CrPr - <<GBar<- (10 11 12)><- (20 21)><- (30)><- NIL>>> - (2 4 6 8)>
(dotimes (i 5) (print (face tt i 4 gmsm))) ==>

<AbSm - <CrPr - <<GBar<- (11 12)><- (21)><- NIL>>> - (4 6 8)>>

<AbSm - <CrPr - <<GBar<- (21 12)><- (41)><- NIL>>> - (6 6 8)>>

<AbSm - <CrPr - <<GBar<- (10 23)><- (50)><- NIL>>> - (2 10 8)>>
<AbSm - <CrPr - <<GBar<- (30 32)><- (30)><- NIL>>> - (2 4 14)>>
<AbSm - <CrPr - <<GBar<- (20 21)><- (30)><- NIL>>> - (12 15 18)>>

(7 tt 4 gmnsm) ==>
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- -—— et T {CMBN 3}
<1 * <CrPr - <<@GBar<- (10 23)><- (50)><- NIL>>> - (2 10 8)>>

<1 % <CrPr - <<GBar<- (11 12)><- (21)><- NIL>>> - (4 6 8)>>

<1 * <CrPr - <<GBar<- (20 21)><- (30)><- NIL>>> - (12 15 18)>>

<-1 * <CrPr - <<GBar<- (21 12)><- (41)><- NIL>>> - (6 6 8)>>

<-1 % <CrPr - <<GBar<- (30 32)><- (30)><- NIL>>> - (2 4 14)>>

(7 tt *) ==

- et {CMBN 2}

We may also build the Ronald Brown reduction and test the differential
upon a simplex belonging to the twisted tensor product (slot :bcc of the
reduction).

(setf br (brown-reduction tw)) ==>
[K59 Reduction]

(setf tw-pr (bcc br)) ==

[K57 Chain-Complex]

(7 tu-pr 4 (tnpr 4 (gbar 4 0 ’(1 10 100) 0 ’(1000 10000) O ’(100000) 0 ’())
00N

-- e {CMBN 3}
<-1 * <TnPr <<GBar>> (111 11000 100000)>>
<1 * <TnPr <<GBar>> (111 101000 10000)>>
<1 * <TnPr <<GBar>> (11011 100 100000)>>
<-1 * <TnPr <<GBar>> (11011 100000 100)>>
<-1 * <TnPr <<GBar>> (101001 110 10000)>>

<1 * <TnPr <<GBar>> (101001 10010 100)>>

<1 * <TnPr <<GBar<- (100000)><- NIL>>> (100)>>

<1 * <TnPr <<GBar<- (1 110)><- (101000)><- NIL>>> NIL>>
<1 * <TnPr <<GBar<- (10 100)><- (10000)><- NIL>>> NIL>>

<-1 * <TnPr <<GBar<- (11 100)><- (11000)><- NIL>>> NIL>>
<1 * <TnPr <<GBar<- (1000 10000)><- (100000)><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<- (1001 10010)><- (100000)><- NIL>>> NIL>>

(7 tw-pr *) ==>
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19.3 The essential contraction for simplicial groups
fibrations

It is known that if G is a O-reduced simplicial group, the space WG =
WG %, G is contractible. So it is possible to build a reduction of this space
over Z. This reduction depends on the important contraction

Xxr: WG x; G — WG %, G,
defined by:

XXT[(gTL—17 s 390)79n] = (_1)n+1(gna 9n—1,---,90, *)a

where g, € G, (gn_1,---,90) is a gbar in WG, and * is the neutral element
of Gp+1 (in fact the n—th degeneracy of the base point of G). We recall also
that x«, is a homotopy operator (degree: +1) satisfying the relation

doXX’T+XXTOd:]-'

In addition, if we consider the Brown reduction

WG %G 5 WG x,G
il
WG ®, G

there is an induced contraction
X®tzy_vg®’rg _)Wg®7'g7

defined by xg¢ = f o xxr ©¢. This implies that the twisted tensor product
is also contractible over Z.
The two functions of Kenzo for this construction are:

smgr-crts-contraction smgr [Function]
Return the homotopy morphism corresponding to the contraction
Xxr- The lisp definition is:
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(defun SMGR-CRTS-CONTRACTION (smgr)

(the morphism
(build-mrph
:sorc (fibration-total (smgr-fibration smgr))
:trgt (fibration-total (smgr-fibration smgr))
:degr +1
rintr (smgr-crts-contraction-intr (bspn smgr))
:strt :gnrt
torgn ¢ (smgr-crts-contraction ,smgr))))

At execution time, the work is essentialy done by the function put
in the slot :intr. This function is itself built by the internal func-
tion smgr-crts-contraction-intrrequiring as argument the base
point of the simplicial group.

smgr-tnpr-contraction smgr [Function]

Return the induced morphism xg¢ = f o xxr g, where f and g are
built by the Brown reduction. The lisp definition is:

(defun SMGR-TNPR-CONTRACTION (smgr
%aux (fibration (smgr-fibration smgr))
(brown (brown-reduction fibration))
(f (f brown))
(g (g brown))
(chi (smgr-crts-contraction smgr)))

(the morphism
(i-cmps f chi g)))

Examples

It is an instructive exercise to build and check the reduction over Z of the
space WG = WG %, G as we did in the loop spaces fibrations chapter.

WG x, G X8 WG x, ¢
aug iT‘coaug
Cy(Z)

In this case, the two homomorphisms f and g of the reduction, are respec-
tively the augmentation and coaugmentation morphisms. We define both
morphisms according to our previous example based on K(Z,1). The unit
chain complex corresponding to Z is built by the function z-chcm; its unique
generator in degree 0 is :z-gnrt.
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(setf k1 (k-z-1)) ==

[K1 Abelian-Simplicial-Group]
(setf tw (smgr-fibration k1)) ==>
[K25 Fibration]

(setf tt (fibration-total tw)) ==

[K31 Kan-Simplicial-Set]

The base point of the total space, needed for the coaugmentation, may be
obtained by either of the following statements:

(bspn tt) ==>

<CrPr - <<GBar>> - NIL>

(crpr O +null-gbar+ O nil) ==>
<CrPr - <<GBar>> - NIL>

(setf aug (build-mrph
:sorc (fibration-total(smgr-fibration(k-z-1)))
itrgt (z-chcm)
:degr 0
rintr #’ (lambda (degr gnrt)
(if (zerop degr)
(term-cmbn 0 1 :z-gnrt)
(zero-cmbn degr)))
istrt :gnrt
rorgn ’(aug-fibr-tot-smgr-fibr-k-z-1) )) ==

[K38 Cohomology-Class (degree 0)]

(setf coaug (build-mrph
:sorc (z-chcm)
:trgt (fibration-total (smgr-fibration(k-z-1)))
:degr 0
:intr #’ (lambda (degr gnrt)
(if (zerop degr)
(term-cmbn 0 1 (crpr O +null-gbar+ 0 *()))
(zero-cmbn degr)))
istrt :gnrt
torgn ’ (coaug-fibr-tot-smgr-fibr-k-z-1) )) ==>

[K39 Morphism (degree 0)]
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(7 aug 0 (bspn tt)) ==>

- -— o {CMBN 0}
<1 * Z-GNRT>

(? coaug 0 :z-gnrt) ==>

- —-— e e e e e e {CMBN 0}
<1 * <CrPr - <<GBar>> - NIL>>

(setf chi-x-tau (smgr-crts-comtraction (k-z-1))) ==>

[K40 Morphism (degree 1)]
Let us apply the contraction morphism upon some simplices:
(setf *tc* (cmbn O 1 (crpr O +null-gbar+ 0 ’()))) ==>

- I s St {CMBN 0}
<1 * <CrPr - <<GBar>> - NIL>>

(? chi-x-tau *) ==

-- et {CMBN 1}

(setf *tcx (cmbn 4 1 (crpr O (gbar 4 0 °(10 11 12) 0 *(20 21) 0 *(30) 0 *())
0°(2468))) ==

-- e LT {CMBN 4}
<1 * <CrPr - <<GBar<- (10 11 12)><- (20 21)><- (30)><- NIL>>> - (2 4 6 8)>>

(? chi-x—-tau *) ==>

- B {CMBN 5}
<-1 * <CrPr - <<GBar<- (2 4 6 8)><- (10 11 12)><- (20 21)><- (30)><- NIL>>>
4-3-2-1-0 NIL>>
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(setf *tc* (cmbn 3 1 (crpr O (gbar 3 0 >(10 11) 0 ’(20) 0 Q)

0°(2486)))) ==

<1 * <CrPr -

(? chi-x-tau

*) ==

————— {CMBN 4}

<1 * <CrPr - <<GBar<- (2 4 6)><- (10 11)><- (20)><- NIL>>> 3-2-1-0 NIL>>

We may build now the reduction over Z and test it upon the various simplices

above:

(setf rdct (build-rdct :f aug

:g coaug
:h chi-x-tau
rorgn ’ (reduction-tt-z)))

[K41 Reduction]

(pre-check-rdct rdct) ==>

—---done-——

(setf *tc* (cmbn 0 1 (crpr O +null-gbar+ 0 ’())))

<1 * <CrPr - <<GBar>> - NIL>>
(setf *bc* (cmbn 0 1 :z-gnrt)) ==>
<1 * Z-GNRT>

(check-rdct)

*TC* =>

<1 * <CrPr -

<<GBar>> - NIL>>

————— {CMBN 0}

————— {CMBN 0}
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*BCx =>
-- -—— e {CMBN 0}
<1 * Z-GNRT>

-—--done---

(setf *tcx (cmbn 4 1 (crpr O (gbar 4 O °(10 11 12) 0 *(20 21) 0 *(30) 0 *())
0°(24628)))) ==

- -—- e {CMBN 4}
<1 * <CrPr - <<GBar<- (10 11 12)><- (20 21)><- (30)><- NIL>>> - (2 4 6 8)>>

(check-rdct) ==>

---done---

(setf *tc* (cmbn 3 1 (crpr O (gbar 3 0 >(10 11) 0 ’(20) 0 Q)
0°(2486)))) ==

L {CMBN 3}

(check-rdct) ==>

-—--done—--

We build now the reduction over Z of the twisted tensor product. The
contraction is obtained by a call to the function smgr-tnpr-contraction.

WG®,6 X2 WG, 6
aug iT‘coaug
Ci(Z)
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Of course, we have to define the augmentation and coaugmentation mor-
phisms adapted to this new example. The user will note that the twisted
tensor product chain complex may be obtained from the slot :sorc of the
contration xgt.

(setf chi-t-tau (smgr-tnpr-contraction (k-z-1))) ==>
[K100 Morphism (degree 1)]

(setf aug-t (build-mrph
isorc (sorc chi-t-tau)
itrgt (z-chcem)
:degr 0
:intr #’ (lambda (degr gnrt)
(if (zerop degr)

(term-cmbn 0 1 :z-gnrt)

(zero-cmbn degr)))
istrt :gnrt
rorgn ’ (aug-t-fibr-tot-smgr-fibr-k-z-1) )) ==>

[K209 Cohomology-Class (degree 0)]

(setf coaug-t (build-mrph
:sorc (z-chcm)
itrgt (sorc chi-t-tau)
:degr O
rintr #’(lambda (degr gnrt)
(if (zerop degr)
(term-cmbn 0 1 (tnpr O +null-gbar+ 0 *()))
(zero-cmbn degr)))
istrt :gnrt
torgn °’(coaug-t-fibr-tot-smgr-fibr-k-z-1) )) ==>

[K210 Morphism (degree 0)]
(setf rdct-t (build-rdct :f aug-t
:g coaug-t
:h chi-t-tau
rorgn ’(reduction-t-tt-z)))  ==>
[K211 Reduction]
(pre-check-rdct rdct-t)

---done—---

(setf *tc* (cmbn O 1 (tnpr O +null-gbar+ 0 ’()))) ==>
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- — e {CMBN 0}
<1 * <TnPr <<GBar>> NIL>>

(setf *bc* (cmbn 0 1 :z-gnrt)) ==>

- — e {CMBN 0}
<1 * Z-GNRT>

(check-rdct) ==
....... All results null .....

---done---

The check is validated also for the following simplices. We see also that, if
we apply the contraction xg: upon various simplices outside the base fiber,
the result is in general non—null. The nullity of this contraction outside
the base fiber, which we have verified experimentally in many cases in loop
spaces fibration is not verified in simplicial group fibrations.

(setf *tc* (cmbn 3 1 (tnpr O +null-gbar+ 3 ’(1 10 100)))) ==

-- -——- i {CMBN 3}
<1 * <TnPr <<GBar>> (1 10 100)>>

(? chi-t-tau *tc*) ==>

-- -——- T {CMBN 4}
<1 * <TnPr <<GBar<- (1 10 100)><1-0 NIL><0 NIL><- NIL>>> NIL>>

(setf *tc* (cmbn 3 1 (tnpr 2 (gbar 2 0 >(1) 0 ’()) 1 °(10)))) ==

-- o T {CMBN 3}
<1 * <TnPr <<GBar<- (1)><- NIL>>> (10)>>

(? chi-t-tau *tc*) ==

-- -——- T {CMBN 4}

<1 * <TnPr <<GBar<1-0 (10)><1-0 NIL><- (1)><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<2-0 (10)><1 (1)><0 NIL><- NIL>>> NIL>>
<1 * <TnPr <<GBar<2-1 (10)><0 (1)><0 NIL><- NIL>>> NIL>>
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(setf *tcx (cmbn 3 1 (tnpr 3 (gbar 3 0 >(1 10) 0 °(100) 0 >()) 0 > ()))) ==>

- - it {CMBN 3}
<1 * <TnPr <<GBar<- (1 10)><- (100)><- NIL>>> NIL>>

(? chi-t-tau *tc*) ==

- o {CMBN 4}
<1 * <TnPr <<GBar<2 (1 10)><1 (100)><0 NIL><- NIL>>> NIL>>

<-1 * <TnPr <<GBar<2-1 (11)><0 (100)><0 NIL><- NIL>>> NIL>>

(setf *tcx (cmbn 4 1 (tnpr O +null-gbar+ 4 ’(1 10 100 1000)))) ==>

- - {CMBN 4}
<1 * <TnPr <<GBar>> (1 10 100 1000)>>

(? chi-t-tau *tc*) ==>

- - {CMBN 5}

<-1 * <TnPr <<GBar<- (1 10 100 1000)><2-1-0 NIL><1-0 NIL><0 NIL><- NIL>>> NIL>>

(setf *tcx (cmbn 4 1 (tnpr 2 (gbar 2 0 >(1) 0 ’(Q)) 2 ’(10 100)))) ==>

-- Rt {CMBN 4}
<1 * <TnPr <<GBar<- (1)><- NIL>>> (10 100)>>

(? chi-t-tau *tcx) ==>

- B {CMBN 5}
<-1 * <TnPr <<GBar<1-0 (10 100)><2-1-0 NIL><1-0 NIL><- (1)><- NIL>>> NIL>>

<1 * <TnPr <<GBar<2-0 (10 100)><2-1-0 NIL><1 (1)><0 NIL><- NIL>>> NIL>>

<-1 * <TnPr <<GBar<2-1 (10 100)><2-1-0 NIL><0 (1)><0 NIL><- NIL>>> NIL>>

<-1 * <TnPr <<GBar<3-0 (10 100)><2-1 (1)><1-0 NIL><0 NIL><- NIL>>> NIL>>

<1 * <TnPr <<GBar<3-1 (10 100)><2-0 (1)><1-0 NIL><0 NIL><- NIL>>> NIL>>

<-1 * <TnPr <<GBar<3-2 (10 100)><1-0 (1)><1-0 NIL><0 NIL><- NIL>>> NIL>>

(setf *tc* (cmbn 4 1 (tnpr 3 (gbar 3 0 >(1 10) 0 ’(100) 0 Q)
1 7(1000)))) ==
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- -—— et e e {CMBN 4}
<1 * <TnPr <<GBar<- (1 10)><- (100)><- NIL>>> (1000)>>

(? chi-t—-tau *tc*) ==>

- Rt et {CMBN 5}
<-1 % <TnPr <<GBar<2 (1 10 1000)><2-1-0 NIL><1 (100)><0 NIL><- NIL>>> NIL>>
<1 * <TnPr <<GBar<2-1 (11 1000)><2-1-0 NIL><0 (100)><0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<2-1-0 (1000)><2-1-0 NIL><- (1 10)><- (100)><- NIL>>> NIL>>
<1 * <TnPr <<GBar<3 (1 10 1000)><2-1 (100)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<-1 % <TnPr <<GBar<3 (1 1000 10)><2-1 (100)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<1 * <TnPr <<GBar<3 (1000 1 10)><2-0 (100)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<3-1 (11 1000)><2-0 (100)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<1 * <TnPr <<GBar<3-1-0 (1000)><2 (1 10)><1-0 NIL><- (100)><- NIL>>> NIL>>

<1 * <TnPr <<GBar<3-2 (11 1000)><1-0 (100)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<3-2 (1000 11)><1-0 (100)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<3-2-0 (1000)><1 (1 10)><1 (100)><0 NIL><- NIL>>> NIL>>

<1 * <TnPr <<GBar<3-2-1 (1000)><0 (1 10)><0 (100)><0 NIL><- NIL>>> NIL>>

(setf *tc* (cmbn 4 1 (tnpr 4 (gbar 4 0 ’(1 10 100)
0 ’ (1000 10000)
0 ’(100000)
0°M
0O ==

- T e {CMBN 4}
<1 * <TnPr <<GBar<- (1 10 100)><- (1000 10000)><- (100000)><- NIL>>> NIL>>

(? chi-t—-tau *tc*) ==>

- - {CMBN 5}

<1 * <TnPr <<GBar<2 (1001 10010 100)><2-1-0 NIL><1 (100000)><0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<2-1 (11011 100)><2-1-0 NIL><0 (100000)><0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<3 (1 10 100)><2 (1000 10000)><1-0 NIL><- (100000)><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<3 (111 1000 10000)><2-0 (100000)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<1 * <TnPr <<GBar<3 (1001 110 10000)><2-1 (100000)><1-0 NIL><O0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<3 (1001 10010 100)><2-1 (100000)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<1 * <TnPr <<GBar<3-1 (11011 100)><2-0 (100000)><1-0 NIL><0 NIL><- NIL>>> NIL>>

<1 * <TnPr <<GBar<3-2 (1 110)><1 (1000 10000)><1 (100000)><0 NIL><- NIL>>> NIL>>

<1 * <TnPr <<GBar<3-2 (111 11000)><1-0 (100000)><1-0 NIL><0 NIL><- NIL>>> NIL>>

<-1 * <TnPr <<GBar<3-2 (11011 100)><1-0 (100000)><1-0 NIL><0 NIL><- NIL>>> NIL>>
<-1 * <TnPr <<GBar<3-2-1 (111)><0 (1000 10000)><0 (100000)><0 NIL><- NIL>>> NIL>>
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Let us verify once again the unproved conjecture signaled in the loop spaces
fibrations chapter. In fact, if the conjecture is true, it is sufficient to prove it
with A. But the following is also a good test of verifying all the involved ma-
chinery. If we take G = K (Z, 1), the space WG = WG X, G is O-reduced. Let
us consider its loop space and the induced contraction xg: over WG ®.,.QWG.
WG and the contraction yg: are built by the two following statements:

(setf wgkzl (fibration-total (smgr-fibration(k-z-1)))) ==>

[K31 Kan-Simplicial-Set]

(setf chi-t-tau (tnpr-contraction wgkzl)) ==>

[K84 Morphism (degree 1)]

Let us apply successively the contraction upon a simplex belonging to the
base fiber (gnrt0) and a simplex out of the base fiber (gnrt1). We see that

in the second case we obtain a null result. We verify also that xg:o xg:t = 0.

(setf gnrt0 (tnpr O (crpr O +null-gbar+ O nil)
0 (loop3 0 (crpr 0 (gbar 2 0 (1) 0 (0) ) 0 (1)) -3))) ==>

<TnPr <CrPr - <<GBar>> - NIL> <<Loop[<CrPr - <<GBar<- (1)><- (0)>>> - (1)>\-31>>>

(7 chi-t-tau O gnrt0) ==>

- -— R {CMBN 1}
<1 * <TnPr <CrPr - <<GBar<- (1)><- (0)>>> - (1)>
<<Loop[<CrPr - <<GBar<- (1)><- (0)>>> - (1)>\-3]>>>>
<1 * <TnPr <CrPr - <<GBar<- (1)><- (0)>>> - (1)>
<<Loop[<CrPr - <<GBar<- (1)><- (0)>>> - (1)>\-21>>>>
<1 * <TnPr <CrPr - <<GBar<- (1)><- (0)>>> - (1)>
<<Loop[<CrPr - <<GBar<- (1)><- (0)>>> - (1)>\-1]>>>>
(? chi-t—-tau *) ==>
- o {CMBN 2}

(setf gnrtl (tnpr 4 (crpr O (gbar 4 0 ’(10 11 12) 0 >(20 21) 0 >(30) 0 QD)
0 ’(2 46 8))
0 (loop3 0 (crpr 0 (gbar 2 0 >(1) 0 ’(0) ) 0 ’(1)) 2))) ==>

<TnPr <CrPr - <<GBar<- (10 11 12)><- (20 21)><- (30)><- NIL>>> - (2 4 6 8)>
<<Loop[<CrPr - <<GBar<- (1)><- (0)>>> - (1)>\2]>>>
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(? chi-t-tau 4 gnrtl) ==>

-- -—- et {CMBN 5}

At last we verify that the total space of the fibration of K(Z,1) is con-
tractible.

(homology (fibration-total(smgr-fibration (k-z-1))) 0 10) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Homology in dimension 3 :
Homology in dimension 4 :
Homology in dimension 5 :
Homology in dimension 6 :
Homology in dimension 7 :
Homology in dimension 8 :
Homology in dimension 9 :

—-—-—-done-——

Another example is the following: we build the canonical fibration of W? K (Zs, 1)
and verify that its fibration total space is contractible:

(setf k22 (classifying-space(classifying-space(k-z2-1)))) ==
[K306 Abelian-Simplicial-Groupl

(setf fb (smgr-fibration k22)) ==>

[K836 Fibration]

(setf tt2 (fibration-total fb)) ==>

[K837 Kan-Simplicial-Set]
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(homology tt2 0 10) ==>

o

Homology in dimension
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Homology in dimension 3 :
Homology in dimension 4 :
Homology in dimension 5 :
Homology in dimension 6 :
Homology in dimension 7 :
Homology in dimension 8 :
Homology in dimension 9 :

--done—-

Lisp file concerned in this chapter

cs-twisted-products.lisp.



Chapter 20

Eilenberg-Moore spectral
sequence 11

20.1 Introduction

This chapter is devoted to the effective homology version of the spectral
sequence of Eilenberg-Moore, in the particular case of classifying spaces.
More precisely, let G be a simplicial group; then its classifying space WG
is a simplicial set canonically defined'. Furthermore, if G is an Abelian
simplicial group, then WG is again an Abelian simplicial group with natural
structure, so that the W construction can be iterated. The W construction
is implemented in Kenzo only if G is reduced (Gy has only one element).
In particular if G is a simplicial group with effective homology, then Kenzo
constructs a version of W@ also with effective homology.

1J. Peter May. Simplicial objects in algebraic topology, Van Nostrand, 1967.

331
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20.2 The detailed construction

Let G be a simplicial group with effective homology. This means that a
homotopy equivalence:

99’

o4 NN
C«(9) EG,

is provided, where the chain complex EG, is effective and must be consi-
dered as describing the homology of C,(G). This scheme includes the case
where C,(G) itself is effective; without any other information, the program
constructs automatically a trivial homotopy equivalence.

Now, if we apply the Bar functor to this homotopy equivalence we obtain
the homotopy equivalence Hpg:

Bar
N NN

Bar®©)(z,7) Bar " (2,2)

in which the Bar’s are Bars constructions with respect to the A, structure
on C, and EG, defined by the initial homotopy equivalence.

By analogy with the result of Julio Rubio? one may show that it is possible
to construct another homotopy equivalence, Hy:

Bar®9)(C,(WG) ®; C.(G),Z)
S NN
C.(VG) Bar®(©)(z,7)

2J.J. Rubio-Garcia. Homologie effective des espaces de lacets itérés: un logiciel,
These, Institut Fourier, 1991.
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Both reductions of H; are obtained by the basic perturbation lemma, as
explained in the following section. The composition of both homotopy equi-
valences, Hy, and Hpg, makes the link between WG, the classifying space of
the simplicial group G and the effective right bottom chain complex of Hp.

20.2.1 Obtaining the left reduction H,

The homotopy equivalence Hj, is obtained by a sequence of intermediate
constructions based mainly upon two applications of the basic perturbation
lemma. We are led to consider the two following modules:

e C.(G) module on itself, with the canonical product.
C.(G) ®C.(9) =5 Cu(9).
e C.(G), module on C,(G), with a “trivial” product

C.(9) ®C.(G) 5 C.(0)

defined by
oc®T+— 0.e(T1),

where ¢ is the traditional augmentation of C.(G).

Now, we consider the set of the followings Bars (where u means “untwisted”
and t “twisted”):

Hat,, = Bar®©9(C.(WG)®C.(G),Z),
Hat,, = Bar®9(C,(0WG)®C.(G),Z),
Hat,, = Bar™9(C,(WG)®,C.(G),Z),
Hat; = Bar®9(C.(WG)®;C.(G), ).

One may always say that Hat,; is obtained from Hat,, by a perturbation
6r (r: right) induced by the discrepancy between the products in C,(G) and
C«(G) and that Haty, is obtained from Hat,, by a perturbation d; (I: left)
induced by the twisted tensor product ®;. After that, Hats; is obtained from
Haty, by the perturbation J, as well as, by commutativity, from Hat,; by
the perturbation ¢;.
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This is shown in the following diagram (here, the arrows are not reductions,
but denote the perturbations between the differential morphisms):

Hat,,,
o N Or
Haty, Hat,;
or ¢ O
Haty

The underlying graded modules Hat,,,,, Hat,;, Hat;, and Haty are the same
and the program keeps Hat,, as the underlying graded module for all the
chain complexes. The differential perturbations are given by the formulas:

G(w®G) @91 ®@---®gn)] = [dei(w® go) —dg(w® Go)] @ (91 ®@ -+ ® gu),
Glw®Gg)®G1® - ®gn)] = w®(9091) RGP ® g,

where §o € Go, gi € G, w € WG.
Now, on the other hand, we know that there exists a reduction

Hat,; = Bar®(9)(C,0WG) ® C.(G),Z) = C.(WG),
so, perturbing this reduction by d;, one obtains the Rubio reduction
Haty = Bar®(9(C,(0WG) ®; C(G),Z) => C.(WG).
On the other hand, we know also that there exists a reduction
Haty, = Bar® 9 (C,(WG) ®;C.(G),Z) = Bar™'9)(z,7),
so, perturbing this reduction by d,, one obtains the reduction
Haty, = Bar®9)(C.(WG) ®,C.(G),2) = Bar™9)(z, 7).

Finally, we have obtained the wished left homotopy equivalence Hy:

Bar®9)(C,(WG) ®; C.(G),Z)
S NN
c.0v9) Bar9)(z,2)
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20.2.2 The useful functions

For the applications, the only function that the user must know is the func-
tion classifying-space-efhmwhich builds the final homotopy equivalence.
But for the interested user, we give nevertheless a short description of all
the functions involved in the described process.

classifying-space-efhm smgr [Function]
From the simplicial group G (0-reduced) with effective homology
(here the argument smgr), build a homotopy equivalence giving an
effective homology version of the classifying space WG of G. This
homotopy equivalence will be used by the homology function to
compute the homology groups. In fact, due to the slot-unbound
mechanism of CLOS, this function will be automatically called, as
soon as the user requires a homology group for a classifying space.

cs-hat-u-u smgr [Function]
Return the chain complex Bar®(9)(C,(WG) ® C.(G),Z). Because
of the particular structure of C,(G), this chain complex is nothing
but [C.(WG) ® C(G)] ® Bar®9)(z, 7).

cs-hat-right-perturbation smgr [Function]
Return the morphism corresponding to the differential perturbation
dr, induced by the discrepancy between the respective products in
c}(g) and in C,(G).

cs-hat-u-t smgr [Function]
Return the chain complex Bar®(9)(C,(WG)®C.(G),Z) by applying
the differential perturbation hat-right-perturbation upon the
chain complex hat-u-u smgr. This is realized by the method add.

cs-hat-t-u smgr [Function]
Return the chain complex Bar®(9)(C,(WG) ®; C.(G),Z). Because
of the particular structure of C,(G), this chain complex is nothing
but [C,(WG) ®; C.(G)] ® Bar®9)(Z,7), where the twisted tensor
product is the botton chain complex of the Brown reduction of the
fibration of the simplicial group.

cs-hat-left-perturbation smgr [Function]
Return the morphism corresponding to the differential perturba-
tion §; induced by the twisted tensor product. This morphism is
nothing but the tensor product of two morphisms: the perturbation
morphism by-product of the Brown reduction of the fibration of the
simplicial group and the identity morphism on Bar®(9)(z, 7).
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cs-left-hmeq-hat smgr [Function]
Return the chain complex Haty; = Bar®(9)(C,(WG) ®; C.(G),Z)
by perturbing the chain complex Hat,; by the perturbation ¢;.

cs-pre-left-hmeq-left-reduction smgr [Function]
Build the reduction

Haty, = Bar® 9 (C,(WG) ® C.(G),Z) = C,(WG).

cs-pre-left-hmeq-right-reduction smgr [Function]
Build the reduction

Hat,; = Bar®9(C.(G) ®; C.(OWVG),Z) = Bar®9)(z, 7).

cs-left-hmeq-left-reduction smgr [Function]
Build the Rubio reduction

Bar®9)(C,(WG) ®; C.(G),Z) = C.,(WG)
by perturbing by the perturbation §, the reduction

obtained by the function pre-left-hmeq-left-reduction.
cs-left-hmeq-right-reduction smgr [Function]
Build the reduction

Bar®9(C,(WG) ®; C.(G),7) = Bar®9)(z,17)
by perturbing by the perturbation §; the reduction
Hat,; = Bar®9)(z,7)

obtained by the function cs-pre-left-hmeq-right-reduction.
cs-left-hmeq smgr [Function]
Build the homotopy equivalence

Bar®9)(C,(WG) ®: C(G), )
P NN
c.(Wg) Bar(z,2)
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from the above reductions. The function classifying-space-efhm
composes this left homotopy equivalence Hy with the homotopy
equivalence Hg which is the Bar of a pre-existing homotopy equiv-
alence (possibly the trivial one) between the module G and an ef-
fective version of it, as described at the beginning of this chapter.

20.2.3 Searching homology for classifying spaces

The origin list of a classifying space object has the form (CLASSIFYING-SPACE
smgr). The search-efhm method applied to a classifying space object con-
sists essentially in a call to the function classifying-space-efhmdescribed
just above.

(defmethod SEARCH-EFHM (classifying-space (orgn (eql ’classifying-space)))
(declare (type simplicial-set classifying-space))
(classifying-space-efhm (second (orgn classifying-space))))

The following Lisp definition of the function classifying-space-efhmshows
that the process may be recursif if it happens that smryg is itself a classifying
space:
(defun CLASSIFYING-SPACE-EFHM (smgr)
(declare (type simplicial-group smgr))
(let ((left-hmeq (cs-left-hmeq smgr))
(right-hmeq (bar (efhm smgr))))
(declare (type homotopy-equivalence left-hmeq right-hmeq))
(cmps left-hmeq right-hmeq)))

Examples

(setf kzl (k-z-1)) ==>

[K1 Abelian-Simplicial-Group]
(homology kz1l 0 10) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z

Homology in dimension 2 :

Homology in dimension 3 :
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Homology in dimension 4 :
Homology in dimension 5 :
Homology in dimension 6 :
Homology in dimension 7 :
Homology in dimension 8 :
Homology in dimension 9 :
---done---

(setf bkzl (classifying-space kzl)) ==>
[K23 Abelian-Simplicial-Group]
(homology bkzl 0 10) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Component Z

Homology in dimension 3 :
Homology in dimension 4 :
Component Z

Homology in dimension 5 :
Homology in dimension 6 :
Component Z

Homology in dimension 7 :

Homology in dimension 8 :
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Component Z

Homology in dimension 9 :
---done---

(setf obkzl (loop-space bkzl)) ==>
[K154 Simplicial-Group]
(homology obkzl 0 6) ==
Homology in dimension O :
Component Z

Homology in dimension 1 :
Component Z

Homology in dimension 2 :
Homology in dimension 3 :
Homology in dimension 4 :
Homology in dimension 5 :

---done---

Lisp files concerned in this chapter

cs—-space-efhm.lisp, searching-homology.lisp.



Chapter 21

Computing homotopy groups

21.1 Mathematical aspects

The method used here to compute the homotopy groups is known as the
Whitehead tower. We recall some mathematical points:

1) The Hurewicz theorem.

Theorem. Let X be a 1-connected space such that all its homology groups
H,(X) are null for 0 < r <mn, then m,(X) ~ H,(X).

2) The properties of the classifying spaces.

Let X such that 7,(X) = 0 for 0 < r < n. From now on, we shall denote
7 (X) simply by 7. Let us consider the universal coefficients exact sequence:

0 — Ext(Hp,—1(X),7) — H"(X,7) — Hom(H,(X),7) — 0.
Here H,,1(X) =0, so that a canonical isomorphism is given:
H™Y(X,7) = Hom(H,(X),r),

but H,(X) ~ 7 and this gives us a canonical element h € H"(X, ) which
is the fundamental n—th cohomology class in this context. A cocycle x
representing h is constructed as follows. In the chain complex

dnty d
---—)Cn+1”—+>0n—”>(]n_1—>---,

340
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the kernel Z,, of d,, is a summand of C(X):

and such a decomposition induces a projection p : C,(X) — Z,,. Finally,
we have also the canonical projection p' : Z, — H, = m. Then, x can be
defined by xy = p’ op and x is a cocycle. If another p is chosen, another x is
obtained but the cohomology class is the same.

Let us fix now a choice for the cocycle x : Cn(X) — w. This cocycle
induces in turn a simplicial map:

@y : Cp(X) — K(7m,n),

where K (7, n) is the classifying group K (m,(X),n) of the group m,(X) = .
If ' is another choice for the cocycle then ¢, is homotopic to ¢,. We recall
that the space K (m,n) has the following properties:

1. H(K(mw,n)) =0for 0 <r <mn,
2. m(K(m,n)) =0 for r # n,
3. mp(K(m,n)) = Hp(K(m,n) = .

On the other hand, a canonical fibration of base space K(m,n) and fibre
space K(m,n — 1) is deduced from a canonical twisting operator

7:K(m,n) — K(m,n—1)

K(m,n—1)

So, if a simplicial map ¢, : X — K(m,n) is given, it is then possible to
construct a fibration of base space X and fibre space K (mw,n—1), the twisting
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operator being then defined by: 7, = 7 o ¢, according to the diagram:

K(m,n—1) = K(r,n—1)
: 4
X'=X xp K(mn—1) 2% K(m,n)x, K(r,n—1)
4 4
X x, K(m,n)

3) The Serre exact sequence of the homotopy groups of fibra-
tions.

Let us consider the fibration
F = T=XF —» X,

The Serre exact sequence establishes a connection between the homotopy
groups of the 3 spaces, in any dimension:

o = Ty 1 (F) — mpgt (T) — Tt (X) — mn(F) —>

— m(T) — (X)) — 71 (F) —> - -

In our special case, where the fibration is:
Krn—-1 <= X —» X,
the Serre sequence may be written:
cor — 1 (K(myon — 1)) — w1 (X)) — w1 (X) —

— (K (m,n — 1)) — 1, (X') — 1 (X) — 71 (K (m,n — 1)) — 0.

But we know that m;(K(m,n)) = 0 for ¢ # n and that m,(K(w,n)) = 7, so
the exact sequence may be re-written:

0— m1(X') = mpp1(X) =2 0 = mp(X') = mp(X) = 7 — 0.
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The subsequence:
0— m(X') — m(X) — 7 — 0.

is exact; furthermore, the cocycle x is such that the connection morphism
0 : mp(X) — 7 is the identity; so that we deduce that m,(X') = 0.
On the other hand, from the exactness of the subsequence

0 — T (X)) — 11 (X) — 0

we deduce that m,1(X’") ~ m,41(X) and more generally 7, (X') ~ 7,.(X)
for r # n. In particular, 7.(X') = 0 for r < n+1 and the Hurewicz theorem
gives again:

Hp1(X') = w1 (X) = mppa (X).

So, if we know how to compute H,,;1(X’) then we have obtained 7, 1(X).

4) The Whitehead tower

Let us denote for a reason which will be clear in a moment the space X’ by
X@+1)  Due to the properties of X1 we may iterate the process, namely,
build the following fibrations, where 7, (X®™*1)) is denoted simply by ':

K(n',n) — K(n',n)
) \J
X042 = x0H) 5 K(x'n) 25 K(,n+1) x, K(w',n)
) \J
X (n+1) #x, K(r',n+1)

where X(+2) = x(n+1) X5, K(7',n) has the property
Hyo(X™H2)) o (X)) gy o (XYY o 40 (X).

This construction is known as the Whitehead tower.
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21.2 The functions for computing homotopy groups

An important remark

In this version of Kenzo, only the case where the first non—null homology
group (in non—null dimension) is Z or Z/2Z can be processed; however if
this homology group is a direct sum of several copies of Z or Z/2Z, then the
corresponding stage of the Whitehead tower may also be constructed step
by step.

chml-clss chem first [Function]
Return a “fundamental” cohomology class, more precisely a cocycle
x defining it. The first argument chcm must be a chain complex
C, with effective homology; in particular, an effective chain com-
plex EC, is a by—product of the machine object C,. The second
argument “first” is an integer n, namely the first non—null dimen-
sion from which the chain complex chcm has a non—null homology
group, which must be isomorphic to Z or Z/2Z. The reader
may be amazed that this argument “first” must be provided, since
it is a consequence of the given C,. But in fact, the same function
chml-class may also be used in different contexts, for example,
the Postnikov tower; in such a case, the argument first is not re-
dundant. The returned cocycle x is in any case a chain complex
morphism y : EC, — Z, where Z is the unit chain complex cre-
ated by the function z-chcm. The degree of the morphism is —n. It
is important to note that the chain complex involved in the source
of the morphism is the effective chain complex of the homotopy
equivalence value of the slot efhm of the object chem. See the sec-
tion The general method for computing homology in the Homology
chapter. Finally, if H,(C\) = Z/2Z, the actual cohomology class
hoped by the user is the composition p o x, where p is the canon-
ical projection Z — Z/2Z. But nevertheless, the chml-clss lisp
function returns x and not p o x.

z-whitehead smst chml-clss [Function]
Return a fibration over the simplicial set smst (the first argu-
ment), canonically associated to the “cohomology class” chml-clss
(the second argument). The simplicial set X, i.e. smst, is re-
duced; its homotopy groups m,.(X) are null for 0 < r < n — 1.
The first non null homotopy group ,(X) is assumed to be Z, i.e.
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mn(X) = Hp(X) = Z. The previous function chml-clss, in this
situation, returns a cocycle x, which may be used as the second
argument chml-clss of the function z-whitehead. The integer n is
determined by the absolute value of the degree of the cohomology
class chem-clss. As explained in the previous section, a canonical
fibration is induced by y and it is this fibration which is returned by
z-whitehead. The slot sintr of the fibration is set by the internal
function z-whitehead-sintr which builds in an efficient way the
lisp function implementing the twisting operator 7 o ¢, .
z2-whitehead smst chem-clss [Function]
Return a fibration over the simplicial set smst (the first argument),
canonically associated to the “cohomology class” chml-clss (the
second argument). The simplicial set X, i.e. smst, is reduced;
its homotopy groups m.(X) are null for 0 < r < n — 1. The
first non null homotopy group m,(X) is assumed to be Z/2Z, i.e.
mn(X) = Hp(X) = Z/2Z. The previous function chml-clss, in this
situation, returns a “cocycle” x, which may be used as the second
argument chml-clss of the function z2-whitehead. The integer n is
determined by the absolute value of the degree of the cohomology
class chem-clss. In this Z /27 case, x is even not a cocycle. The
actual cocycle is obtained by the composition p o x, p being the
canonical projection Z — Z /2Z. But the user is not concerned by
these technicalities, because the function z2-whitehead makes it-
self the necessary conversion. The slot sintr of the fibration is set
by the internal function z2-whitehead-sintr which builds in an
efficient way the lisp function implementing the twisting operator

T O Py-

Examples

Let us retrieve some known facts about S%, in particular m4(S3) ~ Z/2Z.
We follow the theoritical method exposed above, namely build the fibration

K(z,2) < 8%, K(Z,2) —» S°,
and get the homology group in dimension 4 of the total space.
(setf s3 (sphere 3)) ==>

[K1 Simplicial-Set]
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(homology s3 0 4) ==

Homology in dimension O :

Component Z

Homology in dimension 1 :

Homology in dimension 2 :

Homology in dimension 3 :

Component Z

---done---

(setf s3-chml-clss (chml-clss s3 3)) ==>
[K12 Cohomology-Class (degree 3)]

(setf s3-fibr (z-whitehead s3 s3-chml-clss)) ==>
[K37 Fibration]

(setf s3-total (fibration-total s3-fibr)) ==>
[K43 Simplicial-Set]

(homology s3-total O 6)

Homology in dimension O :

Component Z

Homology in dimension 1 :

Homology in dimension 2 :

Homology in dimension 3 :

Homology in dimension 4 :

Component Z/2Z

Homology in dimension 5 :

---done—--
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Let us show a similar example with the space Moore(2,4). As Hy ~ Z/2Z,
the function for building the fibration is z2-whitehead. We verify that
m5(Moore(2,4)) ~ Z/2Z

(setf m24 (moore 2 4)) ==

[K1 Simplicial-Set]

(show-structure m24 6) ==>

Dimension = 0 :

Vertices : (%)
Dimension = 1 :
Dimension = 2 :
Dimension = 3 :
Dimension = 4 :

Simplex : M4

Faces : (<AbSm 2-1-0 *> <AbSm 2-1-0 *> <AbSm 2-1-0 *>
<AbSm 2-1-0 *> <AbSm 2-1-0 *>)
Dimension = 5 :

Simplex : N5

Faces : (<AbSm - M4> <AbSm 3-2-1-0 *> <AbSm - M4> <AbSm 3-2-1-0 *>
<AbSm 3-2-1-0 *> <AbSm 3-2-1-0 *>)

Dimension = 6 :

NIL

(homology m24 O 5) ==>
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :

Homology in dimension 3 :
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Homology in dimension 4 :

Component Z/2Z

---done---

(setf m24-chml-clss (chml-clss m24 4)) ==

[K12 Cohomology-Class (degree 4)]

(setf m24-fibr (z2-whitehead m24 m24-chml-clss)) ==>
[K49 Fibration]

(setf m24-total (fibration-total m24-fibr)) ==
[K55 Simplicial-Set]

(homology m24-total 0 6) ==>

Homology in dimension O :

Component Z

Homology in dimension 1 :

Homology in dimension 2 :

Homology in dimension 3 :

Homology in dimension 4 :

Homology in dimension 5 :

Component Z/2Z

---done—--

348

We may even verify that, up to 9, the homotopy groups of the classifying
group K(Z,5), for instance, are null except m5. This is a far-fetched method
to verify this well known result, but it proves that the software is coherent.

(setf k6 (k-z b)) ==
[K49 Abelian-Simplicial-Group]

(setf k5-chml-clss (chml-clss k5 5)) ==
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[K576 Cohomology-Class (degree 5)]

(setf k5-fibr (z-whitehead k5 k5-chml-clss)) ==>
[K579 Fibration]

(setf kb-total (fibration-total k5-fibr)) ==
[K580 Kan-Simplicial-Set]

(homology kb5-total O 10) ==>

Homology in dimension O :

Component Z

Homology in dimension 1 :

Homology in dimension 2 :

Homology in dimension 3 :

Homology in dimension 4 :

Homology in dimension 5 :

Homology in dimension 6 :

Homology in dimension 7 :

Homology in dimension 8 :

Homology in dimension 9 :

---done---

Let us show now the iteration of the process, to get for instance 75(5%) and
ﬂ6(53y

(setf s3 (sphere 3)) ==>
[K1 Simplicial-Set]
(setf s3-chml-clss (chml-clss s3 3)) ==>

[K12 Cohomology-Class (degree 3)]
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(setf s3-fibration (z-whitehead s3 s3-chml-clss)) ==
[K37 Fibration]

(setf s3-4 (fibration-total s3-fibration)) ==>

[K43 Simplicial-Set]

(homology s3-4 4) ==

Homology in dimension 4 :

Component Z/2Z

---done---

(setf s3-4-chml-clss (chml-clss s3-4 4)) ==>

[K253 Cohomology-Class (degree 4)]

(setf s3-4-fibration (z2-whitehead s3-4 s3-4-chml-clss)) ==>
[K292 Fibration]

(setf s3-5 (fibration-total s3-4-fibration)) ==>
[K298 Simplicial-Set]

(homology s3-5 5) ==

Homology in dimension 5 :

Component Z/2Z

---done---

(setf s3-5-chml-clss (chml-clss s3-5 5)) ==>

[K609 Cohomology-Class (degree 5)]

(setf s3-5-fibration (z2-whitehead s3-5 s3-5-chml-clss)) ==
[K624 Fibration]

(setf s3-6 (fibration-total s3-b-fibratiomn)) ==>

[K630 Simplicial-Set]
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(homology s3-6 6) ==
Component Z/12Z
An interesting example is given by the real projective space P°R/P!R which

may be built in Kenzo by the function r-proj-space. We list its first
homotopy groups.

(setf x (r-proj-space 2)) ==>
[K1 Simplicial-Set]
(homology x 0 10) ==
Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Component Z

Homology in dimension 3 :
Component Z/2Z

Homology in dimension 4 :
Homology in dimension 5 :
Component Z/2Z

Homology in dimension 6 :
Homology in dimension 7 :
Component Z/2Z

Homology in dimension 8 :
Homology in dimension 9 :
Component Z/2Z

—-—-—-done-——
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Using the machinery described in this chapter, we find that the total space
of the fibration has the same homology groups as S3. It has been effectively
proved that this space is homotopic to S2.

(setf ch (chml-clss x 2)) ==>
[K12 Cohomology-Class (degree 2)]
(setf f2 (z-whitehead x ch)) ==>
[K25 Fibration]

(setf x3 (fibration-total £f2)) ==
[K31 Simplicial-Set]

(homology x3 0 10) ==>

Homology in dimension O :
Component Z

Homology in dimension 1 :
Homology in dimension 2 :
Homology in dimension 3 :
Component Z

Homology in dimension 4 :
Homology in dimension 5 :
Homology in dimension 6 :
Homology in dimension 7 :

---done—--

Lisp files concerned in this chapter

whitehead.lisp, smith.lisp.
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