1. Let G be a k-chromatic graph on n vertices with no cycle of length 6 or greater. Define G' as follows: (1) let T be an independent set of kn vertices in G and $p = \binom{kn}{n}$, (2) take pairwise disjoint copies of G, denoted G_1, \ldots, G_p, (3) associate to each G_i a distinct n elements subset S_i of T, (4) for every pair $i \neq j$ add matching edges between the identical vertices of S_i and S_j. Prove that $\chi(G') = k + 1$.

2. Prove that $\chi(C_n; k) = (k - 1)n + (-1)^n(k - 1)$, where C_n is the cycle with n vertices.

3. Let G be a connected graph that is not a tree and $k \geq 3$. Prove that G has at most $k(k - 1)^{n-1}$ proper k-colorings.

4. Let G be a connected graph. The distance between two vertices x and y of G is the number of edges on the shortest path between x and y. For an integer $r \geq 0$ and a vertex x of G, let $G_{x,r}$ be the subgraph of G induced by the vertices at distance exactly r from x. Prove that there exists $r \geq 0$ such that $\chi(G)$ is at most $\chi(G_{x,r}) + \chi(G_{x,r+1})$.

5. Using Tutte’s 1-factor Theorem (Theorem 3.3.3, page 137 of the textbook), prove that every connected line graph of even order has a perfect matching, and then that the edges of a simple connected graph of even size can be partitioned into paths of length 2.

6. Let G be a regular graph with a cut-vertex. Prove that $\chi'(G) > \Delta(G)$.

For exercises 7 and 8, we will study a new notion related to colorings: the choosability of a graph. Let G be a graph and L a family of finite sets of positive integers, indexed by $V(G)$: $L(v)$ denotes the set associated to v, for $v \in V(G)$. G is said to be L-choosable if there is a proper coloring f of G such that $f(v) \in L(v)$ for every vertex v of G (if every $L(v) = \{1, \ldots, |V(G)|\}$, then this is equivalent to a proper coloring; otherwise not all colorings are allowed). For an integer k, G is said to be k-choosable if it is L-choosable for every L such that $|L(v)| \geq k$. The choice number of G, denoted $ch(G)$, is the smallest integer k such that G is k-choosable: obviously, $\chi(G) \leq ch(G)$.

7. For each of the following statement, is it true (and then prove it) or false (and then give a counter-example) ?
 (1) $ch(G) \geq \omega(G)$; (2) $ch(G) \geq \frac{|V(G)|}{\alpha(G)}$; (3) $ch(G) \leq \Delta(G) + 1$; (4) $ch(G) \leq 1 + \max_{H \subseteq G} \delta(H)$;

8. For every integer k prove that there exists a graph G with $\chi(G) = 2$ and $ch(G) \geq k$.