
Inferring Positional Homologs with Common
Intervals of Sequences�

Guillaume Blin1, Annie Chateau2,3, Cedric Chauve2,3,4, and Yannick Gingras3

1 IGM-LabInfo - UMR CNRS 8049, Université Marne-la-Vallée
5 bd. Descartes 77454 Marne-la-Vallée Cedex 2, France

gblin@univ-mlv.fr
2 LaCIM, Université du Québec À Montréal

CP 8888, Succ. Centre-Ville, H3C 3P8, Montréal (QC), Canada
{chateau, chauve}@lacim.uqam.ca

3 CGL, Université du Québec À Montréal
ygingras@ygingras.net

4 Department of Mathematics, Simon Fraser University
8888 University Drive, V5A 1S6, Burnaby (BC), Canada

Abstract. Inferring orthologous and paralogous genes is an important
problem in whole genomes comparisons, both for functional or evolu-
tionary studies. In this paper, we introduce a new approach for inferring
candidate pairs of orthologous genes between genomes, also called po-
sitional homologs, based on the conservation of the genomic context.
We consider genomes represented by their gene order – i.e. sequences
of signed integers – and common intervals of these sequences as the an-
chors of the final gene matching. We show that the natural combinatorial
problem of computing a maximal cover of the two genomes using the min-
imum number of common intervals is NP-complete and we give a simple
heuristic for this problem. We illustrate the effectiveness of this first ap-
proach using common intervals of sequences on two datasets, respectively
8 γ-proteobacterial genomes and the human and mouse whole genomes.

1 Introduction

In the comparison of two genomes, a first natural task is to compare the sequences
of their genes (nucleotides or amino-acids) in order to identify homologous genes,
that are pairs of genes whose sequence similarity is strong enough to suggest
a common ancestral gene. However, due to the evolutionary mechanisms that
shape genomes – rearrangements, duplications, both of genomic segments or of
whole genomes, gene losses or lateral transfers – homologous relations are often
ambiguous and do not induce clear one-to-one relationships between genes of the
two genomes [8]. Instead, non-trivial gene families, occurring in several positions
in one or both genomes, make difficult to distinguish pairs of orthologous genes.
Several methods have been proposed that use the genomic context to distinguish
� Work supported by grants from Génome Québec, NSERC and Coopération Franco-

Québecoise.

G. Bourque and N. El-Mabrouk (Eds.): RECOMB-CG 2006, LNBI 4205, pp. 24–38, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Inferring Positional Homologs with Common Intervals of Sequences 25

pairs of genes, called positional homologs, that are good candidates to be pairs
of orthologous genes [8]. In this paper we describe a new approach using the
genomic context, based on the notion of common intervals of two sequences.

There are two main approaches for inferring positional homologs using the
genomic context. In the exemplar approach, introduced by Sankoff [21], for every
non-trivial gene family, all but one copy in each genome are deleted. The pair of
genes that is conserved for each family is called a pair of ancestral homologs. The
gene matching approach is more general as it allows to conserve more than one
copy of a gene family and seeks for an unambiguous one-to-one matching between
these copies [12]. Both approaches have in common that they lead to represent
the two compared genomes by two permutations. These permutations can then
be used in several contexts: computing a genomic distance [23], phylogenetic
reconstruction [5] or proposing candidate pairs of orthologous genes [12,14].

In both families of methods – exemplar and gene matching –, several com-
binatorial criteria have been considered in order to clear ambiguous homology
relations between genes of the same family. A classical approach is to try to find
the resulting pair of permutations that will minimize a given genomic distance
between them, like the reversal distance [12,21,23,24] or the reversal and translo-
cation distance [14]. Another approach looks for the pair of permutations that
maximizes the conservation of some combinatorial structures in the two result-
ing permutations, like adjacencies [5] or common intervals of permutations [6].
However, it is important to note that, up to date, all these problems have been
shown to be NP-hard [3,7,11]

In the present work, we are interested in computing a gene matching with
a method that is inspired by algorithms for global alignment of long genomic
sequences. Indeed, given two genomes represented by two sequences of integers –
where each integer labels a gene family – a gene matching is nothing else than a
global alignment of these two sequences. Here we propose to use the occurrences
of common intervals of these two sequences, which are segments having the
same gene content with no constraint on gene order or multiplicity, as anchors
for the final gene matching. Then we recursively match common intervals, using
a simple heuristic for the Minimum Inextensible Box Covering problem –
which is a NP-hard problem (see Appendix) – until all possible pairs of positional
homologs have been chosen. Hence, one of the originality of our method is that
it does not try to compute the pair of permutations that is optimal for a given
combinatorial criterion, but rely on a greedy approach of recursively matching
genomic segments having a common combinatorial structure.

Our method can be seen as an extension of a previous gene matching al-
gorithm, that iteratively matches longest common substrings (LCS) of the two
genomes – such LCS representing perfect colinear segments of genes – [23,5], but
using a less constrained notion of conserved structure between genomes (common
intervals vs. LCS). Common intervals of sequences are interesting with respect to
LCS for two reasons. From the biological point of view, they are more adapted to
detect sequences of genes that evolved from a common ancestral sequence with
events like segmental or tandem duplications, or local rearrangements. From the

26 G. Blin et al.

algorithmical point of view, the set of all common intervals of two sequences
can be computed in quadratic time [22]. Note however that gene deletions or
insertions, that are natural evolutionary events, can destroy common intervals,
and we discuss this issue in Section 4.

In Section 2, we describe precisely our method to compute a gene matching.
In Section 3, we present two experimental studies of our method. We first con-
sider 8 genomes of γ-proteobacteria, and we compare the results of our method
with the LCS method of [5]; this experiment raises interesting facts about the
properties of these two notions of conserved structures in the comparison of more
than two genomes. Next, we consider the human and mouse genomes and we
compare our results with the results obtained with the MSOAR method that
tries to find the most parsimonious pairs of permutations for the reversals and
translocations distance [14]. In Section 4, we describe several ways to improve
our initial approach.

2 The New Method

A matching between two sequences of integers s1 and s2, where each of these
integers represents a family of genetic markers – genes here –, is a one-to-one
mapping between a subset of the first sequence and a subset of the second se-
quence, such that pairs of mapped markers belong to the same family [5]. In
the method we propose, we compute a matching in four main steps. First, we
define candidate anchors for the alignment between the genomes using common
intervals of sequences. We briefly recall in the next paragraph some definitions
and properties of common intervals of sequences. Then, we exclude anchors that
do not exhibit enough structure to produce an accurate matching, using some
reasonable selection criteria. Finally we extract from the remaining anchors a
consistent subset, and apply the method recursively in each anchor, until we
are left only with anchors containing markers of a single family, then we match
markers in these boxes. The final result is a matching between the two consid-
ered sequences that describe one-to-one correspondences between the genes of
the two corresponding genomes.

2.1 First Step: Finding the Anchors

Given a sequence of integers A representing a genome, the alphabet Σ of its
gene content, and a subset S of Σ, we define a location of S in A as a substring
of A that is a word on S. Hence, from a genomic point of view, a location of
S in A represents a contiguous region in A with gene content exactly S. The
location is maximal if this substring cannot be extended on the right or on the
left, meaning that the contiguous characters are not in S. A factor between two
genomes is a subset of Σ which has at least one location in each genome. Note
that, for a given factor, there can be several locations in the same genome.

In the following, a box will refer to a set of two maximal locations, one in each
genome, for a factor S, that is called the alphabet of the box1. A box is said to
1 Box are called common intervals in [22].

Inferring Positional Homologs with Common Intervals of Sequences 27

be trivial if its alphabet has cardinality 1. We represent a box by the quadruplet
of the coordinates of the two corresponding locations.
Example: S = {7, 8, 9, 10, 11} is a factor between A and B, with one location in
A and two in B, which gives two boxes for S, (5, 10, 4, 8) and (5, 10, 12, 16).

Genome A: 1 2 3 12 11 8 7 9 9 10 4 3 1 1 5
Genome B: 6 1 4 8 9 10 11 7 2 13 13 7 8 9 10 11

The first step of our method consists in the computation of all the boxes
between the two considered genomes, that we use as the basic structures to
define the final matching. To compute the set of all possible boxes, we use the
quadratic-time algorithm of Schmidt and Stoye [22].

2.2 Second Step: Filtering the Set of Boxes

Our experiments with the LCS method showed that a significant number of
false positives matched gene pairs (roughly speaking, pairs of matched genes that
contain two different genes according to gene names in the Uniprot database, see
Section 3 for more details) was removed when LCS of short length were discarded
from the analysis. This suggests that subsequences of the two genomes that do
not exhibit a strong common combinatorial structure (here measured in terms
of the length of the LCS) are more likely to produce wrong pairs of matched
genes.

This is why we decided to introduce a similar feature in our method, that
discards putative anchors, here boxes, that do not exhibit enough combinatorial
structure. For LCS, the natural parameter that defines such a structure is the
length, due to the conservation of the order in a LCS. However this is not the
case with boxes, due to the less constrained structure that defines them, an issue
that we discuss in Section 4.

In this first investigation of using common intervals of sequences that we
present in this work, we chose to use a simple geometrical criterion to exclude
boxes, that is the length of the smaller location for a given box, called the
minimum side of the box. The intuition for this choice is that this parameter
extends naturally the criterion of length that we used with the LCS method. This
filtering step, with the simple criterion we consider, can be done in linear-time
in the number of boxes.

We show in Section 3 some experiments using a dataset of 8 bacterial genomes
that illustrate the impact of this filtering step on the resulting matchings.

2.3 Third Step: Extracting a Consistent Subset of Candidate Boxes

The third step of the method we propose consists in the computation of the gene
matching by a recursive process, that takes as inputs the boxes that were not
discarded during the second step.

Before describing this process, we define some combinatorial notions about
sets of boxes:

28 G. Blin et al.

– Intuitively, a box (x1, x2, y1, y2) defines a rectangle in the 2D plane, defined
by the points (x1, y1), (x1, y2), (x2, y1), (x2, y2).

– Two boxes are said to be compatible if there exists no vertical or horizontal
line that can cross both boxes at once. Formally, B = (x1, x2, y1, y2) and
B′ = (x′

1, x
′
2, y

′
1, y

′
2) are compatible if [x1, x2]

⋂
[x′

1, x
′
2] = ∅ and [y1, y2]

⋂

[y′
1, y

′
2] = ∅.

– A box B id said to be enclosed in a box B′ if the rectangle B is completely
included in the rectangle B′. Formally, B = (x1, x2, y1, y2) is enclosed in
B′ = (x′

1, x
′
2, y

′
1, y

′
2) if [x1, x2] ⊆ [x′

1, x
′
2] and [y1, y2] ⊆ [y′

1, y
′
2].

– Given a set B{B1, . . . , Bn} of boxes, a subset B′ of B of boxes that are
pairwise compatible is said to be inextensible if every box of B that does not
belong to B′ is not compatible with at least one box of B′.

The principle of this third step is to select a subset B′ of boxes that is in-
extensible and of minimum cardinality with respect to this property of being
inextensible, then to recursively repeat this process inside each box of B′.

To extract the set B′ of boxes, we consider the Minimum Inextensible Box
Covering (MIBC) optimization problem: given a set of n boxes B = {B1, B2,
. . . , Bn}, find a subsetB′ ⊆ B of minimum cardinality such that (1) any pair
(Bi, Bj) of boxes of B′ is a pair of compatible boxes, and (2) B′ is inextensible.
Note that this problem is a variant of the Maximum Common String Par-
tition problem (MCSP) that occurs naturally in computing a gene matching
that minimizes the number of breakpoints in the resulting permutations [3,12].
This is the main reason that led us to introducing this problem for computing
gene matchings, as we think it is a very natural way to compute recursively a
gene matching from a set of boxes. However, the problem MCSP is NP-hard
[16,3] and it is then not surprising that the same result holds for the problem
MIBC (the proof is given in Appendix).

Theorem 1. The Minimum Inextensible BoxCovering problem is NP-hard.

This hardness result leads us to develop a simple greedy heuristic, inspired from
the MIBC problem, that selects an inextensible set of pairwise compatible boxes,
by iteratively selecting the box with maximal area.

MIBC_heuristic(Input: set of boxes B)
Create an empty set of boxes B’
While (B is not empty)

Select the biggest box Bi, in terms of area, in B
Add Bi to B’
Remove every box Bj of B which is incompatible with Bi

Return B’

This heuristic procedure is used recursively until only trivial boxes are left.

MIBC_main(Input: set of boxes B)
Let M=MIBC(B)
While (M contains at least one non-trivial box)

For (every non trivial box Bi of M)

Inferring Positional Homologs with Common Intervals of Sequences 29

Remove Bi from M
Let B’ be the set of all boxes of B enclosed in Bi
Add MIBC(B’) to M

Return M

The time complexity of this step is polynomial in the number of boxes given
in input, which is itself quadratic in the size of the two considered genomes.

2.4 Fourth Step: Matching Genes in Trivial Boxes

Once the third step is completed, we obtain a sequence of trivial boxes, that is
boxes of alphabet of size 1, that forms the core of the final matching. Indeed, for
all squared trivial boxes of side length 1, that are boxes of area 1, we add the
pair of corresponding genes to the final matching.

The case of boxes such that more than two genes are involved is more problem-
atic, as there are several ways to match the genes of such boxes. In the present
work, we used the naive strategy that matches genes in increasing order of their
positions in the two sequences representing the two genomes. We discuss briefly
in Section 3 the influence of this strategy and, in Section 4, we describe several
strategies to improve final matching inside the trivial boxes.

3 Experimental Results

We implemented our method in a software called CIGAL (Common Intervals
Global ALigner), and we now discuss two experimental studies on two datasets:
first 8 genomes of γ-proteobacteria, then the human and mouse genomes.

3.1 Bacterial Genomes

We considered the genomes of the following organisms, that span a wide spec-
trum in the phylogeny of γ-proteobacteria [2]:

– Buchnera aphidicola APS (GenBank accession number NC_002528),
– Escherichia coli K12 (NC_000913),
– Haemophilus influenzae Rd (NC_000907),
– Pasteurella multocida Pm70 (NC_002663),
– Pseudomonas aeruginosa PA01 (NC_002516),
– Salmonella typhimurium LT2 (NC_003197),
– Xylella fastidiosa 9a5c (NC_002488),
– Yersinia pestis CO_92 (NC_003143).

We computed gene families as described in [5]. For each of the 28 pairs of
genomes, we computed 6 different gene matchings: first three matchings using the
method described in Section 2, respectively with no filtering (the corresponding
matching is denoted CI1), with filtering boxes of minimum side 1 (CI2) and 2
(CI3), then three matchings using the LCS method of [5], respectively with no
filtering (LCS1), with filtering LCS of length 1 (LCS2) and 2 (LCS3).

We considered two ways to assess the quality of the obtained gene matchings
and compare the two methods:

30 G. Blin et al.

– To assess the accuracy of the matching between genes, we compared the
name of coding gene as given by the database UniProt [1], and we defined a
gene pair as a true positive if both genes have the same name or synonymous
names, a false positive if the names are different and an unknown pair if one
of the two genes is not present in UniProt.

– To assess the internal consistency of both methods, we considered the 28
pairwise matchings between pairs of genomes as a graph, called the combined
matchings graph, whose vertices are the genes of the 8 genomes and edges are
given by the matchings. We then computed the proportion of the connected
components of this graph that contain at least two genes of a same genome
– we call such component inconsistent components and components with at
most one gene of each genome consistent components. Indeed such a situation
can be seen as inconsistent with respect to the goal of inferring positional
homologs that are candidates to be orthologous genes.

– Subsequently we considered only consistent components and all pairs of genes
belonging to the same components that we classified in true positives, false
positives and unknowns pairs as described above.

– Finally we classified consistent components into two categories: perfect, if all
genes in a component have the same name (all gene pairs are true positives),
and imperfect if at least two genes have different names (note that we dis-
carded components with genes that are not present in Uniprot). Finally, we
studied the distribution of perfect components with respect to their size.

The results are given in Tables 1 and 2.

Table 1. Quality of gene pairs and components

LCS1 LCS2 LCS3 CI1 CI2 CI3
True positives (TP) 19142 13968 10553 18875 13831 10420
True negatives (FP) 3045 1181 789 3324 1500 1054
Unknown pairs (UP) 14420 6244 3630 14211 6419 3818

Number of components 3439 3850 3606 3539 3408 3480
Consistent components (CC) 2907 3704 3537 3117 3147 3382

Ratio of consistent components 0.85 0.96 0.98 0.88 0.92 0.97
TP in a CC 14954 13635 10729 14954 15909 17180
FP in a CC 821 736 596 1114 1661 2433
UP in a CC 7240 5339 3558 8078 9121 11030

Number of perfect components 1531 1723 1538 1628 1817 1962
Ratio perfect/consistent 0.53 0.47 0.43 0.52 0.58 0.58

Number of imperfect components 252 240 190 320 515 687
Ratio imperfect/consistent 0.09 0.06 0.05 0.1 0.16 0.2

First, it is interesting to notice that the number of true positives gene pairs
in consistent components decreases when one reduces the minimal length of
matched LCS, which is expected, while it increases when one reduces the

Inferring Positional Homologs with Common Intervals of Sequences 31

Table 2. Distribution of perfect and imperfect components by size

LCS1 LCS2 LCS3 CI1 CI2 CI3
Perfect components of size 8 258 138 71 254 259 263

Imperfect components of size 8 19 15 9 29 30 32
Perfect components of size 7 209 155 100 218 227 244

Imperfect components of size 7 34 13 9 37 45 86
Perfect components of size 6 157 145 107 172 185 215

Imperfect components of size 6 32 24 19 46 57 114
Perfect components of size 5 206 269 199 222 251 299

Imperfect components of size 5 32 39 24 44 76 135
Perfect components of size 4 236 290 246 253 344 368

Imperfect components of size 4 65 59 49 77 178 186
Perfect components of size 3 465 726 815 509 551 573

Imperfect components of size 3 70 90 80 87 129 134

minimum side of discarded boxes when using common intervals. In fact con-
sidering consistent components allows to recover true edges that were lost when
discarding boxes of short side, at the price of more false positives and unknown
pairs. However, a preliminary study of these imperfect components showed that a
significant number seems to be due to the fact that in some cases, when matching
two occurrences of a common interval, one has to deal with multiple occurrences
of a same family, a phenomenon that does not happen with LCS as the gene order
is conserved. We discuss how to improve our method on this point in Section 4.

In terms of components, and especially of consistent components, that are,
from our point of view, more important than single gene pairs, it seems that
using common intervals lead to the discovery of more (both in terms of num-
ber and of ratio) perfect components, here again at the price of more imperfect
components. However, it is interesting to notice an important difference between
both methods, in terms of the size of the inferred perfect components. Discarding
short LCS lead to the loss of large consistent components, in particular perfect
components, which is probably due to the fact that LCS represent perfectly con-
served colinear segments, and then long LCS that are present in several genomes
are quite rare and significant. Hence discarding short LCS clearly improves the
accuracy of the results but the price is that small components dominate in the
combined matchings graph. On the other hand using common intervals of se-
quences allows to find more consistent perfect components of large size – at the
price of more imperfect components – due to the less strict constraints imposed
on matched segments.

From a more biological point of view, we can notice that there seems to be a
set of approximatively 250 genes that form maximal perfect components in the
combined matchings graph of these 8 genomes. It would be interesting to study
more precisely these genes and to compare them with the set of genes used in
the phylogenomics analysis of γ-proteobacteria described in [20], or with the set
of essential bacterial genes defined in [15].

32 G. Blin et al.

3.2 Human and Mouse Genomes

In a second experiment, we considered the human and mouse genomes and we
compared the results of using common intervals with the method based on LCS
and with the recent MSOAR algorithm [14]. We downloaded the two genomes
from the MSOAR website and we used the gene pairs of the MSOAR hit graph
(see [14, Section 3.1]) and a single-linkage clustering to define gene families. In
a subsequent step, we deleted from the two genomes all genes that belonged to
a family present in only one genome.

Then, we computed 6 gene matchings using both the common intervals me-
thod and the LCS methods. These matchings are denoted CI1, CI2, CI3, LCS1,
LCS2 and LCS3 as in the previous experiment. Then we classified pairs of po-
sitional homologs as true positives (TP) and false positives (FP)on the base of
the gene names in Uniprot. The results are summarized in Table 3 below. The
results for MSOAR were computed from the result file available on the MSOAR
website.

Table 3. Classification of matched pairs in the gene matchings between human and
mouse

MSOAR LCS1 LCS2 LCS3 CI1 CI2 CI3
Matched pairs 13218 13380 12386 11764 13301 12737 12394
Number of TP 9214 9227 8865 8491 9186 9008 8792
Ratio of TP 0.7 0.69 0.72 0.72 0.69 0.71 0.71

Number of FP 2240 2357 1921 1749 2327 2071 1996
Ratio of FP 0.17 0.18 0.16 0.15 0.17 0.16 0.16

It appears that here again the LCS method performs better, but does lose
information faster when short LCS are filtered in comparison to the common
interval approach. Moreover, for the same reasons that we described in the pre-
vious section, we expect that improving the matchings of genes belonging to
boxes with duplicated genes will improve the accuracy of the method based on
common intervals. It would also be interesting to understand the reason why
discarding boxes with a short minimum side does not increase the number of
gene pairs, that could be due either to some properties of the method we used or
to differences in the two considered datasets, both from the combinatorial point
of view (8 genomes vs. 2 genomes) or the biological point of view.

4 Future Work

In this section we present several ideas that would improve the quality of the
matchings computed from common intervals of sequences. In particular, we be-
lieve that the general structure of our method allows very naturally to integrate
the scores of the all-against-all sequence comparison used to define gene families.

Inferring Positional Homologs with Common Intervals of Sequences 33

For example, a preliminary analysis of the false positives in both experiments
presented in Section 3 suggests that a significant number of them could be cor-
rected by a less naive strategy for matching genes in trivial boxes in the fourth
step of our method. A natural improvement could consist in considering the se-
quence comparison score between the genes of these trivial boxes, picking only
pairs of genes that form a best bi-directional hit.

In the second step, we use a basic filtering criterion which rely on the size of
the boxes. But it would be of interest to consider other criteria to select the best
candidates. It could be useful, for example, to integrate here again the sequence
comparison scores as a measure of quality of boxes. This would be a very natural
way to balance the effects of the single-linkage strategy used generally to define
gene families. One could also think to more sophisticated measures of “quality”
of boxes, based on their combinatorial structure: a trivial box of size 3 × 3 is
not necessarily a better candidate than a box of size 2 × 2 with an alphabet of
size 2. Some examples of criteria, like “nestedness”, defining what is a “good gene
cluster” for genome comparison, can be found in [19].

In the third step, we considered a natural optimization problem, the MIBC
problem, that involves only the geometry of boxes, both in its definition and in
the heuristic we proposed. It would be interesting to integrate in this step the
notion of quality of the boxes, used in the second step, which would lead to a
weighted version of the MIBC problem.

From a conceptual point of view, the method we described can be seen as an
extension of the LCS method used in [5], where the constraints on the notion
of conserved structure used as anchors have been relaxed to accept rearrange-
ments and paralogs. Previous works have already relaxed the notion of LCS,
that correspond from a genomic point of view to perfectly colinear segments,
allowing insertion or deletion of genes in colinear segments [17,10]. It would be
interesting to try to combine these two models and use as anchors common seg-
ments with rearrangements, paralogs, insertions and deletions. Several models
exist like common intervals with errors [13] or gene teams, that can be computed
in polynomial time in the case of two genomes [18]. However, with such relaxed
models, the notion of quality of boxes would become more important in order
to avoid to use boxes with a weak signal but good geometrical properties.

When considering a dataset of more than two genomes, it can happen that a
phylogenetic tree is known for this dataset. In such a case, it would be interesting
to perform our pairwise genomes comparisons according to this tree, as it is
classical to do it in multiple sequences alignment. We think that such an approach
could significantly reduce the number of imperfect components.

Finally in some cases, it would be interesting to consider that a gene in a
genome can be matched with more than one other gene in the second genome.
One can think for example to genomes that have undergone one or several whole
genome duplication, like the yeasts genomes [9]. We think that common intervals
of sequences are a good model to compute such generalized matchings.

34 G. Blin et al.

5 Conclusion

We presented in this work a first study about using common intervals of se-
quences for computing positional homologs. The experimental results we ob-
tained are very encouraging, despite using very simple approaches for each of
the four steps of our method. In particular, the comparison of 8 bacterial genomes
seems to indicate that this approach offers a good basis for the comparison of
multiple genomes datasets.

Hence, based on this preliminary study, we believe that common intervals of
sequences should be considered as a good model for the comparison of whole
genomes, which differs from their initial application as a gene cluster model [22].

Moreover, as we described it in Section 4, the very pragmatic approach we pro-
posed, based on four steps, allows to integrate easily more sophisticated technics,
and we are currently developing some of these extensions, that will be available
in the first release of CIGAL, our Common Intervals Global ALigner.

Acknowledgments. We thank Z. Fu for providing the hit graph of MSOAR [14].

References

1. A. Bairoch et al.. The Universal Protein Resource (UniProt). Nucleic Acids Res.
33:D154–D159, 2005.

2. E. Belda, A. Moya, F. J. Silva. Genome rearrangement distances and gene order
phylogeny in γ-proteobacteria. Mol. Biol. Evol., 22(6):1456–1467, 2005.

3. G. Blin, C. Chauve, and G. Fertin. The breakpoints distance for signed sequences.
In CompBioNets 2004: Algorithms & computational methods for biochemical and
evolutionary networks, vol. 3 of Texts in Algorithmics, p. 3–16. King’s Coll. Pub.,
London, 2004.

4. G. Blin, R. Rizzi. Conserved interval distance computation between non-trivial
genomes. In Computing and Combinatorics, 11th Annual International Confer-
ence, COCOON 2005, Kunming, China, August 16-29, 2005, Proceedings, LNCS
3595:22–31. Springer, Berlin, 2005.

5. G. Blin, C. Chauve, G. Fertin. Gene order and phylogenetic reconstruction: ap-
plication to γ-proteobacteria. In Comparative Genomics, RECOMB 2005 Interna-
tional Workshop, RCG 2005, Dublin, Ireland, September 18-20, 2005, Proceedings,
LNCS/LNBI, 3678:11–20. Springer, Berlin, 2005.

6. G. Bourque, Y. Yacef, N. El-Mabrouk. Maximizing synteny blocks to identify ances-
tral homologs. In Comparative Genomics, RECOMB 2005 International Workshop,
RCG 2005, Dublin, Ireland, September 18-20, 2005, Proceedings, LNCS/LNBI,
3678:21–34. Springer, Berlin, 2005.

7. D. Bryant. The complexity of calculating exemplar distances. In Comparative
Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map
Alignment, and the Evolution of Gene Families, p. 207–212. Kluwer Acad. Press.,
Dordrecht, 2000.

8. I. J. Burgetz, S. Shariff, A. Pang, E. R. M. Tillier. Positional homology in bacterial
genomes. Evolutionary Bioinformatics Online, 2:42–55, 2006.

9. K. P. Byrne, K, H, Wolfe. The Yeast Gene Order Browser: combining curated
homology and syntenic context reveals gene fate in polyploid species. Genome
Res., 15(10):1456–1461, 2005.

Inferring Positional Homologs with Common Intervals of Sequences 35

10. S. B. Cannon, A. Kozik, B. Chan, R. Michelmore, N. D. Young. DiagHunter and
GenoPix2D: programs for genomic comparisons, large-scale homology discovery
and visualization. Genome Biology 4:R68, 2003.

11. C. Chauve, G. Fertin, R. Rizzi, S. Vialette. Genomes containing duplicates are
hard to compare. In Computational Science - ICCS 2006, 6th International Confer-
ence, Reading, UK, May 28-31, 2006, Proceedings, Part II., LNCS, 3992:783–790.
Springer, Berlin, 2006.

12. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, T. Jiang. Assignment of
orthologous genes via genome rearrangement. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 2(4):302–315, 2005.

13. C. Chauve, Y. Diekmann, S. Hebber, J. Mixtacki, S. Rahmann, J. Stoye. On Com-
mon Intervals with Errors Report 2006-02, Technische Fakultät der Universität
Bielefeld, Abteilung Informationstechnik. 2006.

14. Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, J. Tang. A parsimony approach to
genome-wide ortholog assignment. In Research in Computational Molecular Biol-
ogy, 10th Annual International Conference, RECOMB 2006, Venice, Italy, April
2-5, 2006, Proceedings, LNCS/LNBI, 3909:578–594. Springer, Berlin, 2006.

15. J. I. Glass et al.. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci.
USA, 103(2):425–430, 2006.

16. A. Goldstein, P. Kolman, J. Zheng. Minimum common string partition problem:
hardness and approximations. In Algorithms and Computation, 15th International
Symposium, ISAAC 2004, HongKong, China, December 20-22, 2004, Proceedings,
LNCS, 3341:473–484. Springer, Berlin, 2004.

17. B. J. Haas, A. L. Dechler, J. R. Wortman, S. L. Salzberg. DAGchainer: a tool for
mining segmental genome duplication and synteny. Bioinformatics, 20(18):3643–
3646, 2004.

18. X. He, M.H. Goldwasser. Identifying conserved gene clusters in the presence of
homology families. J. Comput. Biol., 12(6):638–656, 2005.

19. R. Hoberman, D. Durand. The incompatible desiderata of gene cluster properties.
In Comparative Genomics, RECOMB 2005 International Workshop, RCG 2005,
Dublin, Ireland, September 18-20, 2005, Proceedings, LNCS/LNBI, 3678:73–87.
Springer, Berlin, 2005.

20. E. Lerat, V. Daubin, N. A. Moran. From gene trees to organismal phylogeny in
prokaryotes: the case of the γ-Proteobacteria. PLoS Biol., 1(1):E19, 2003.

21. D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–
917, 1999.

22. T. Schmidt, J. Stoye. Quadratic time algorithms for finding common intervals in
two and more sequences. In Combinatorial Pattern Matching, 15th Annual Sym-
posium, CPM 2004, Istanbul,Turkey, July 5-7, 2004, Proceedings, LNCS, 3109:97–
108. Springer, Berlin, 2004.

23. K. M. Swenson, M. Marron, J. V Earnest-DeYoung, B. M. E. Moret. Approximat-
ing the true evolutionary distance between two genomes. In Proceedings of the Sev-
enth Workshop on Algorithm Engineering and Experiments and the Second Work-
shop on Analytic Algorithmics and Combinatorics (ALENEX/ANALCO), p. 121–
129. SIAM Press, New York, 2005.

24. K. M. Swenson, N. D. Pattengale, B. M. E. Moret. A framework for orthology
assignment from gene rearrangement data. In Comparative Genomics, RECOMB
2005 International Workshop, RCG 2005, Dublin, Ireland, September 18-20, 2005,
Proceedings, LNCS/LNBI, 3678:11–20. Springer, Berlin, 2005.

36 G. Blin et al.

A Proof of NP-Completeness of MIBC

We consider here the decision versions of the problems MIBC and MCSP. We
first state formally the MCSP problem. In the following, given a string S, let
S[i] and S[i..j] denote respectively the ith character of S and the substring
starting at position i and ending at position j of S. Given two strings S and T ,
a common substring of S and T is defined by a quadruplet (i, j, k, l) such that
S[i, j] = T [k, l]. Two strings S and T are balanced if every letter appears the
same number of times in S and T . According to [16], a partition of a string S
is a sequence P = (P1, P2, . . . , Pm) of strings whose concatenation is equal to
S. Let P (resp. Q) be a partition of a string S (resp. T). The pair (P, Q) is
a common partition of S and T if Q is a permutation of P . Given a partition
P = (P1, P2, . . . , Pm) of a string, each string Pi is called a block of P . We
say that a block Pi = S[k..l] covers any substring of S[k..l]. Two blocks Pi

and Pj are disjoint if they do not both cover the same character. A common
partition (P, Q) of S and T can be naturally interpreted as a bijective mapping
from P = (P1, P2, . . . , Pm) to Q = (Q1, Q2, . . . , Qm). Given a common partition
(P, Q), we note π(i) = j if Pi is mapped to Qj . The NP-hard problem [16] MCSP
is the following: given two balanced strings S and T and a positive integer s,
find a common partition (P, Q) of S and T with at most s blocks.

For the sake of clarity, we recall here the version of the MIBC problem that
we consider below: Given a set of n boxes B = {B1, B2, . . . , Bn} and a positive
integer s′, the problem asks to find a subset B′ ⊆ B of cardinality lower than or
equal to s′, such that (1) given any pair (Bi, Bj) of boxes of B′, Bi and Bj are
compatible and (2) given any box Bm ∈ B such that Bm �∈ B′, ∃Bi ∈ B′ such
that Bi and Bm are not compatible (B′ is said to be maximal).

Clearly, MIBC problem is in NP since given a set B′ of boxes, one can check
in polynomial-time if (1) any pair of boxes of B′ is compatible, (2) B′ is maximal
and (3) |B′| ≤ s′. We show that given any instance (S, T, s) of MCSP problem,
we can construct in polynomial-time an instance (B, s′) of MIBC problem such
that there exists a common partition (P, Q) of S and T with at most s blocks iff
there exists a maximal subset of compatible boxes B′ ⊆ B of cardinality lower
than or equal to s′.

We detail this construction hereafter. Let (S, T, s) be any instance of MCSP
problem. For each common substring (i, j, k, l) of S and T , we create a box
(i, j, k, l) in B. This can be done in polynomial-time by the use of a generalized
suffix-tree for instance. In order to complete the definition of the MIBC problem
instance, we define s′: s′ = s. We denote by box-construction any construction
of this type. An illustration of a box-construction is given in Figure 1.

We now turn to proving that our construction is a polynomial-time reduction
from MCSP problem to MIBC problem.

Lemma 1. Let (S, T, s) be an instance of MCSP problem, and (B, s′) an instance
of MIBC problem obtained by a box-construction from (S, T, s). There exists a
common partition (P, Q) of S and T with at most s blocks iff there exists a maximal
subset of compatible boxes B′ ⊆ B of cardinality lower than or equal to s′.

Inferring Positional Homologs with Common Intervals of Sequences 37

ca abd dc

c

a

a

b

d

d

c

1 2 3 4 5 6 7

1

2

3

4

5

6

7

S
T

Fig. 1. A schematic view of the set of boxes B obtained by a box-construction of S =
cdabcda and T = abcadcd. For instance, the largest box is defined by the quadruplet
(3, 5, 1, 3).

Proof. (⇒) Suppose we have a common partition (P, Q) of S and T with m
blocks (m ≤ s). We look for a subset of compatible boxes B′ ⊆ B of cardinality
lower than or equal to s. We define this set of boxes as follows. For each pair
(Pi, Qj) such that Pi = S[si..ei], Qj = T [sj..ej], π(i) = j, 1 ≤ i, j ≤ m,
1 ≤ si, sj, ei, ej ≤ |S|, add the box (si, ei, sj , ej) to B′.

By construction, notice that the set B′ is of cardinality equal to m, which is by
definition lower than s. Remains to us to prove that (1) B′ is a set of compatible
boxes and (2) B′ is maximal. By definition, since (P, Q) is a bijective mapping
from P to Q, for any 1 ≤ i ≤ m there exists only one 1 ≤ j ≤ m such that
π(i) = j. Moreover, since P (resp. Q) is a partition, the blocks composing P
(resp. Q) are disjoint. Therefore, given any box (si, ei, sj , ej) of B′, there is no
box (sk, ek, sl, el) in B′ such that [si, ei]

⋂
[sk, ek] �= ∅ or [sj , ej]

⋂
[sl, el] �= ∅.

Thus, B′ is a set of compatible boxes.
Let us now prove that B′ is maximal. Suppose it is not the case. Thus, there

exists a box (si, ei, sj, ej) of B that can be added to B′ such that B′ is still
a set of compatible boxes. Then, by construction, the corresponding substrings
S[si, ei] and T [sj, ej] are not covered by any block of P

⋃
Q. Therefore, P and

Q are not partitions of S and T ; a contradiction. Therefore, if there exists a
common partition (P, Q) of S and T with at most s blocks then there exists a
maximal subset of compatible boxes B′ ⊆ B of cardinality lower than or equal
to s′.

(⇐) Suppose we have a maximal subset of compatible boxes B′ ⊆ B of car-
dinality equal to m (m ≤ s). We look for two partitions P and Q of S and
T each with at most s blocks. We define P and Q as follows. For each box
(si, ei, sj , ej) of B′, we define a block Pi = S[si..ei] and a block Qj = T [sj..ej].
Let P = (P1, P2, . . . , Pm) and Q = (Q1, Q2, . . . , Qm).

By construction, for each box (si, ei, sj , ej) of B′, there exist a block Pi =
S[si..ei] and a block Qj = T [sj..ej]. By definition of a box-construction, S[si..ei]
and T [sj..ej] are common substrings of S and T (i.e. S[si..ei] = T [sj..ej]).

38 G. Blin et al.

Therefore one can built a bijective mapping of P to Q where for each box
(si, ei, sj , ej) of B′, the corresponding blocks Pi and Qj are mapped (i.e. π(i) =
j). Clearly, Q is thus a permutation of P . Moreover, the partitions P and Q are
composed of exactly m blocks which is by definition lower than or equal to s. In
order to prove that (P, Q) is a common partition of S and T , it remains to us
to prove that P (resp. Q) is a partition of S (resp. T).

First, notice that since B′ is a set of compatible boxes, in P (resp. Q) blocks
are disjoint two by two. Let us prove that the blocks of P (resp. Q) cover the
string S (resp. T). Suppose it is not the case. Since S and T are balanced
strings, there exist a position i (resp. j) in S (resp. T) such that S[i] (resp. T [j])
is not covered by any block of P (resp. Q) and S[i] = T [j]. By definition, since
S[i] = T [j], no box in B′ covers S[i] and T [j]. Moreover, by construction, there
exists a box (i, i, j, j) in B which could be added to B′ such that B′ will still
be a set of compatible boxes. Therefore, B′ is not maximal; a contradiction. We
just prove that if there exists a maximal subset of compatible boxes B′ ⊆ B of
cardinality lower than or equal to s′ then there exists a common partition (P, Q)
of S and T with at most s blocks.
�

	Introduction
	The New Method
	First Step: Finding the Anchors
	Second Step: Filtering the Set of Boxes
	Third Step: Extracting a Consistent Subset of Candidate Boxes
	Fourth Step: Matching Genes in Trivial Boxes

	Experimental Results
	Bacterial Genomes
	Human and Mouse Genomes

	Future Work
	Conclusion
	Proof of NP-Completeness of MIBC

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

