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Abstract. We describe a new algorithm for the problem of perfect sorting a signed permutation by
reversals. The worst-case time complexity of this algorithm is parameterized by the maximum prime
degree d of the strong interval tree, i.e. f(d).nO(1). This improves the best known algorithm which
complexity was based on a parameter always larger than or equal to d.
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1 Introduction

Sorting a signed permutation by reversals is an algorithmical problem that has several applications
in the study of genome rearrangements (see [9] for example). In the classical approach a “good”
sequence of reversals that sorts a given signed permutation is a parsimonious sequence of reversals.
This problem can be solved in subquadratic time [10]. Recently, another combinatorial framework
for sorting by reversals was proposed, called perfect sorting by reversals [8]. The principle is to
look for a sequence of reversals that do not break any common interval of the considered signed
permutation and is parsimonious among such sequences of reversals. This approach can be seen
as a variant of the classical sorting by reversal problem, where the parsimony criterion has been
relaxed and the conservation of common intervals is the main criterion.

The first algorithm proposed for this problem has an exponential worst-case running time [8]. It
was latter improved in [1] by showing that the problem is fixed parameterized tractable [6] (FPT):
i.e. the complexity function is f(p).nO(1) for some parameter p. The parameter p proposed in [1] is
the number p of prime edges of the strong interval tree of the signed permutation to be sorted (see
definition in Section 2). The algorithm proposed in this note is still FPT, but the parameter we
use is always smaller than or equal to the number of prime edges. Hence our new algorithm is then
the most efficient, in terms of worst-case time complexity, among published algorithms solving this
problem. One motivation for having FPT algorithm is that whenever the parameter remains small,
then the problem is still tractable, which for the problem we are interested is most likely to be the
case both in real instances and in random instances [5].
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Montréal, Canada.



2 Preliminaries

We first summarize the combinatorial and algorithmical frameworks for perfect sorting by reversals.
For a more detailed treatment, we refer to [1].

2.1 Permutations, reversals, common intervals and perfect scenarios.

A signed permutation on [n] is a permutation on the set of integers [n] = {1, 2, . . . , n} in which each
element has a sign, positive or negative. Negative integers are represented by placing a bar over
them. We denote by Idn (resp. Idn) the identity (resp. reversed identity) permutation, 1 2 . . . n

(resp. n . . . 2 1). When the number n of elements is clear from the context, we will simply write Id

or Id.
An interval I of a signed permutation P on [n] is a segment of consecutive elements of P . The

content of I is the subset of I defined by the absolute values of the elements of I. Given P , an
interval is defined by its content and from now, when the context is unambiguous, we identify an
interval with its content.

The reversal of an interval of a signed permutation reverses the order of the elements of the
interval, while changing their signs. If P is a permutation, we denote by P the permutation obtained
by reversing the complete permutation P . A scenario for P is a sequence of reversals that transforms
P into Idn or Idn. The length of such a scenario is the number of reversals it contains.

Two distinct intervals I and J commute if their contents trivially intersect, that is either I ⊂ J ,
or J ⊂ I, or I ∩ J = ∅. If intervals I and J do not commute, they overlap. A common interval of a
permutation P on [n] is a subset of [n] that is an interval in both P and the identity permutation
Idn. The singletons and the set {1, 2, . . . , n} are always common intervals.

A scenario S for P is called a perfect scenario if every reversal of S commutes with every common
interval of P . A perfect scenario of minimal length is called a parsimonious perfect scenario.

2.2 The strong interval tree.

A common interval I of a permutation P is a strong interval of P if it commutes with every other
common interval of P .

The inclusion order of the set of strong intervals defines an n-leaf tree, denoted by TS(P ), whose
leaves are the singletons, and whose root is the interval containing all elements of the permutation.
The strong interval tree of P can be computed in linear time and space (see [2, 3] for example). We
call the tree TS(P ) the strong interval tree of P , and we identify a vertex of TS(P ) with the strong
interval it represents.

Let I be a strong interval of P and I = {I1, . . . , Ik} a partition of the elements of I into maximal
strong intervals. The quotient permutation of I, denoted PI , is defined as follows: i precedes j in
PI if any element of Ii is smaller than any element of Ij . The vertex I, or equivalently the strong
interval I of P , is either:

1. Increasing linear, if PI is the identity permutation, or
2. Decreasing linear, if PI is the reversed identity permutation, or
3. Prime, otherwise.

An edge whose both vertices are prime is called a prime edge. The prime degree of a prime
vertex I, denoted degp(I) is the number of prime edges whose two vertices are I and a child of
I. The maximum prime degree of TS(P ) is defined as the maximum, over all prime vertices I of
TS(P ), of degp(I). See Figure 1 for an example of strong intervals tree, linear and prime nodes, and
prime degree.



{1} {2} {3}{4} {5} {6} {7}{8} {9} {10} {11}{12} {13}{14} {15} {16}{17} {18}

{2, 3, 4, 5} {6, 7}

{2, 3, 4, 5, 6, 7, 8, 9}

{13, 14} {16, 17}

{10, 11, 12, 13, 14}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

Fig. 1. The strong intervals tree TS(P ) of the permutation P = (1 8̄ 4 2 5̄ 3 9 6̄ 7 12 10 1̄4 13 1̄1 15 1̄7 16 18).
Prime and linear vertices are distinguished by their shape. There are three non-trivial linear vertices, the rectangular
vertices, and three prime vertices, the round vertices. There is only one prime edge shown by the dashed line. The
prime degree of TS(P ) is one.

3 Computing perfect scenarios with the strong interval tree

3.1 Using the strong interval tree as a guide

We first describe the algorithms given in [1] to compute a perfect scenario for a given signed
permutation P (Algorithms 1 and 2). The basis of the algorithm is to give signs, + or −, to the
vertices of TS(P ) using the following set of rules:

– (S.1) a leaf receives the sign of the corresponding element in P ;
– (S.2) a linear vertex receives + (resp. −) if I is increasing (resp. decreasing);
– (S.3) a prime vertex whose parent J is linear receives the sign of J .

Note that these rules can leave some vertices with no sign, when a prime vertex is child of a
prime vertex, or is the root. A tree whose some (resp. all) vertices are unsigned (resp. signed) is
called ambiguous (resp. unambiguous).

In the previous section, quotient permutations have been defined classically without a consider-
ation about signs. In the following we need quotient permutations to be signed – fully or partially
–, as follows: Let I be a vertex of TS(P ), and {I1, . . . , Ik} its children, the sign of the element i

of PI is either the sign of its corresponding node Ii, if Ii is signed, or is not defined. Therefore, if
TS(P ) is unambiguous, each quotient permutation defined from a vertex of TS(P ) is fully signed,
otherwise, if TS(P ) is ambiguous, some quotient permutations are partially signed, and will need
to be completed (see Definition 3).

From now on, we consider strong interval trees on which rules (S.1), (S.2) and (S.3) have been
applied and signed quotient permutations.

It was shown in [1] that, for a given signed permutation P , if TS(P ) is unambiguous, then Algo-
rithm 1 below computes a parsimonious perfect scenario for P in worst-case time O(n

√

n log(n)),
while Algorithm 2 can handle the case where TS(P ) is ambiguous in O(2pn

√

n log(n)) worst-case
time, where p is the number of unsigned prime vertices in TS(P ).

Definition 1. A completion of an ambiguous strong interval tree T is an unambiguous strong
interval tree obtained by giving signs to the unsigned vertices of T .



Algorithm 1: Computing a parsimonious perfect scenario for TS(P ), when TS(P ) is unambiguous

S is an empty scenario.
For each prime vertex I of TS(P ) Do

PI is the quotient permutation of I over its children
If the sign of I is positive Then

Compute a parsimonious scenario S′ from PI to
Id

Else

Compute a parsimonious scenario S′ from PI to
Id

End if

Add to S the sequence of reversals obtained by
replacing in S′ every element by the corresponding
interval in P

End for

Add to S the linear vertices and leaves having a lin-
ear parent and a sign different from the sign of their
parent.

Algorithm 2: Computing a parsimonious perfect scenario for TS(P ) with p unsigned vertices

For each of the 2p completions of TS(P ) Do

Apply Algorithm 1 on the resulting unambiguous
tree.
End for

Return a parsimonious scenario among the resulting
2pperfect scenarios.

The correctness of Algorithm 2 (see [1, Theorem 4]) induces the following obvious lemma, that
we state for the sake of completeness, as it will serve as a basis for the invariant of the algorithm
we describe in Section 3.2.

Definition 2. A completion of an ambiguous strong interval tree T is said to be parsimonious if
the resulting perfect scenario computed with Algorithm 1 is a parsimonious perfect scenario among
all completions of T .

Lemma 1. Let TS(P ) be the strong interval tree of a signed permutation P , signed according to
rules (S.1), (S.2) and (S.3). There exists a parsimonious completion of TS(P ).

3.2 A more efficient algorithm

The difficulty in computing a parsimonious perfect scenario then relies on non-root vertices I that
are not signed. Indeed such a vertex I, whose parent J is prime by definition, having no sign
implies that (1) we do not know if PI has to be sorted towards the identity or the reversed identity
and (2) the quotient permutation PJ of J is not fully signed. The elements of PJ corresponding
to the unsigned children of J are unsigned. Following Algorithm 2, computing a parsimonious
perfect scenario consists of completing accurately an ambiguous strong interval tree and thereby
the corresponding partially signed quotient permutation.



The principle of the new algorithm we propose is to detect patterns, in an ambiguous TS(P ),
that can be signed in such a way that the resulting completion can be extended into a parsi-
monious completion. The key notion to define such patterns is a classification of partially signed
permutations.

Definition 3. Let P be a partially signed permutation on {1, 2, . . . , n}. A signed permutation P ′

is a completion of P if it is obtained from P by giving signs to all its unsigned elements.

Definition 4. (1) Let P be a partially signed permutation. We denote by d+(P ) (resp. d−(P )) the
minimum, over all completions P ′ of P , of the reversal distance to sort P ′ into Id (resp. Id). We
denote by P+ (resp. P−) a completion of P whose reversal distance to Id (resp. Id) is minimum.
(2) If d+(P ) > d−(P ), P is said to be negative. If d+(P ) < d−(P ), P is said to be positive. If
d+(P ) = d−(P ), P is said to be neutral.
(3) We extend naturally the notions defined in (1) and (2) to a vertex I of TS(P ) by considering
its quotient permutation PI .

Remark 1. The classification introduced in Definition 4 has been introduced in [8]. It was shown
there that for an ambiguous strong interval tree, there always exists a parsimonious completion in
which every positive vertex (resp. negative) received a sign + (resp. −). However the signs defined by
rules (S.1), (S.2) and (S.3) can contradict the signs given by Definition 4, as rule (S.3) will sign
positively a negative prime vertex whose parent is linear increasing. So our algorithm is different in
nature of the algorithm described in [8], as it uses first the strong interval tree, then Definition 4.

The general idea of our algorithm is as follows: when there is a path of consecutive prime vertices
that are unsigned and neutral, no decision on the signs of these vertices can be taken, but as soon
as such a path ends up on an ancestral non-neutral or signed vertex, then sign decision can be
made for the whole path.

Definition 5. Let T be an ambiguous strong interval tree. A subtree of T rooted at a vertex I is
compact if all unsigned descendants of I are neutral and linked to I by a path of unsigned neutral
vertices.

We now introduce a recursive procedure (Algorithm 3) that propagates signs in a compact
subtree whose root is signed. As proved in Lemmas 2, 3 and 4 below, Algorithm 3 computes a
parsimonious completion of the input compact subtree.

Algorithm 3: Propagating signs in a compact subtree of T rooted at a signed vertex I

Let ⋆ be the sign (+ or -) of I

For each child J of I Do

J is given the sign of its associated element of P ⋆
I

Propagate the signs in the subtree rooted in J

End for



Lemma 2. Let T be an ambiguous strong interval tree. If T is compact and its root I is unsigned
and neutral then giving either sign (+ or −) to I and propagating the signs in T using Algorithm
3 produces a parsimonious completion of T .

Proof. We proceed by induction on the maximum length of a path of unsigned neutral vertices
starting at I. As by assumption T is compact, all unsigned vertices are neutral (see Definition 5).

First assume that all these paths have length 1. Then the only signs that have to be added to
complete T are on I and its unsigned children. As all these vertices are neutral, then sorting each of
them into Id or Id makes no difference on the perfect reversal distance. Thus I can be arbitrarily
signed and propagating its sign to its children will produce a parsimonious completion of T .

Now assume that the longest path of unsigned neutral vertices starting at I has length k > 1.
As I is neutral, PI can be sorted to either Id or Id using the same minimum number of reversals.
Assume without loss of generality that I is sorted to Id (i.e. given sign +) and that sign has been
propagated to its descendants. It follows that its unsigned children have been signed according to
P+

I . By induction, this choice for every unsigned child of I was parsimonious, which shows that the
completion of T obtained by giving sign + to I is parsimonious.

Lemma 3. Let T be an ambiguous strong interval tree. If T is compact and its root is signed, then
propagating the signs in T using Algorithm 3 produces a parsimonious completion of T .

Proof. The proof follows immediately from Lemma 2. Assume, without loss of generality, that I

has sign +. Using Lemma 2 on the unsigned children of I, that are all unsigned neutral vertices
that root compact subtrees, we can say that the sign that they are given does not matter in terms
of parsimony: the number of reversals obtained from the corresponding subtrees with Algorithm
1 is parsimonious. Hence, we only have to ensure that the number of reversals used to sort the
completion of PI to Id (as I has sign +) is minimal, which follows from the definition of P+

I .

Lemma 4. Let T be an ambiguous strong interval tree. If T is compact and its root I is unsigned
and positive (resp. negative), then signing I with + (resp. −) and propagating the signs in T using
Algorithm 3 produces a parsimonious completion of T .

Proof. For the same reason than in the proof of Lemma 3, the signs given to the children of I do not
prevent from completing T in a parsimonious completion. Assume now, that I is positive. To ensure
the parsimony of the scenario that will be computed from the completed tree using Algorithm 1,
we want that PI is completed in such a way that it is sorted using a minimum number of reversals.
As I is positive, this implies that PI has to be sorted to Id and can be completed to P+

I , which
concludes the proof.

Lemma 5. Let T be an ambiguous strong interval tree. Let I be an unsigned positive (resp. nega-
tive) vertex of T that roots a compact subtree of T . Then signing I with + (resp. −) and propagating
the signs in the subtree it roots using Algorithm 3 produces a tree that can be completed parsimo-
niously.

Proof. The case where I is the root was proved in Lemma 4. Now assume that I is not the root, is
unsigned and positive (the case where I is negative is symmetric). From Lemma 4, the signs given
to the unsigned vertices belonging to the subtree rooted at I complete parsimoniously this subtree.



It then remains to show that signing I with + does not prevent to complete T parsimoniously. Let
J denote the parent of I and PJ its quotient permutation. Assume that a parsimonious completion
requires that the element of PJ corresponding to I receives sign −. So if I has been given sign +, it
will cost one extra reversal to sort PJ , for example reverting the element corresponding to I. But
as I is positive, sorting I towards Id instead of towards Id saves one reversal. Thereby I could as
well received sign + and this would not prevent a parsimonious completion of T .

Algorithm 4 below computes a parsimonious perfect scenario. The principle is to traverse TS(P )
and to give signs to the unsigned vertices using the rules described in Lemmas 2, 3, 4 and 5, before
using Algorithm 1 on the resulting unambiguous tree.

Algorithm 4: Computing a parsimonious perfect scenario for TS(P )

Traverse TS(P ) using a post-order traversal and
For each prime vertex I , visited for the last time

If I is not signed Then

Compute all completions of PI ,
d+(PI), d−(PI), P+

I and P−

I .
If I is positive (d+(PI) < d−(PI)),Then

Sign I with +
Else If I is negative (d+(PI) > d−(PI)) Then

Sign I with −
Else If I is the root Then

Sign I with an arbitrary sign
Else store with I the permutations P+

I and P−

I .
End if

End if

If I is signed Then

Propagate signs from I using Algorithm 3
End if

End for

Apply Algorithm 1 on the resulting unambiguous tree.

Theorem 1. Let P be a signed permutation on {1, 2, . . . , n} and TS(P ) its strong interval tree. Let
d be the maximum prime degree of TS(P ). Algorithm 4 computes a parsimonious perfect scenario
for P in space O(n2) and time O(2dn

√

n log(n)).

Proof. We first prove that Algorithm 4 computes a parsimonious perfect scenario for P . We will
show that an invariant of the algorithm is that, at any time, the tree can be completed parsimo-
niously and that at the end, the tree is unambiguous.

Due to the post-order traversal, it is immediate that when signs are given to unsigned vertices,
using the propagation from the root of a subtree, this subtree is compact. This implies that after
signs have been propagated from a vertex I, then the whole subtree rooted at I is unambiguous.
Hence the tree is unambiguous at the end of the traversal.

From Lemma 1, at the beginning, TS(P ) can be completed parsimoniously. Now assume that
the current tree can be completed parsimoniously when signs are given to some unsigned vertices,
by propagating them from a vertex I that roots a compact subtree. This can happen only when I

is the root, or is signed or is not neutral. If I is the root, either signed or unsigned, then Lemmas 2,



3 and 4 ensure that the resulting tree is completed parsimoniously. Assume that I is not the root
and is signed. It follows from Lemma 3 that the signs given in the subtree rooted in I complete
parsimoniously this subtree. As I was signed and the tree could be completed parsimoniously this
ensures that this property still holds after propagating signs from I. Finally the case where I is
unsigned and positive or negative follows from Lemma 5.

The space complexity follows from the fact that with each unsigned neutral vertex I of TS(P ),
we store P+

I and P−

I in order to be able to propagate the signs without having to re-compute these
two completions of PI . The time complexity follows from (1) there are O(n) vertices in TS(P ), (2)
the fact that for every unsigned vertex I, we have to compute all possible completions of PI to
decide if I is positive, negative or neutral, and (3) the fact that the most efficient known algorithm
to sort a signed permutation by reversals has a O(n

√

n log(n)) worst-case time complexity [10].

4 Conclusion

Our main result in this note is an algorithm that computes a parsimonious perfect scenario for a
signed permutation more efficiently that the algorithm described in [1]. A very similar use of the
notion of positive, negative and neutral permutations was used in [8], but in a framework that did
not take advantage of the structure provided by the strong interval tree, in particular to propagate
signs. This property allows to both describe a simpler algorithm and have a better understanding
of its complexity.

The main algorithmical problem we face for perfect sorting by reversals, in the framework
using the strong interval tree, is to decide, for every unsigned vertex I, independently of the other
vertices, if this vertex is positive, negative or neutral. The solution we used in our algorithm involves
trying all completions of PI . Any advances on this problem of giving signs to a partially signed
permutation in order to minimize the reversal distance could then be used immediately in our
algorithm. However, based on the fact that sorting unsigned permutations by reversals is NP-hard
[4], it is very likely that this problem is hard too.

Otherwise, aside of some recent works on the class of signed permutations that has a parsimo-
nious scenario that is also perfect [7], it seems difficult to optimize the strong interval tree framework
in order to compute perfect scenarios in polynomial time for larger classes of signed permutations.
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