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ABSTRACT

We describe algorithms to study the space of all possible reconciliations between a gene tree
and a species tree, that is counting the size of this space, uniformly generate a random
reconciliation, and exploring this space in optimal time using combinatorial operators. We
also extend these algorithms for optimal and sub-optimal reconciliations according to the
three usual combinatorial costs (duplication, loss, and mutation). Applying these algorithms
to simulated and real gene family evolutionary scenarios, we observe that the LCA (Last
Common Ancestor) based reconciliation is almost always identical to the real one.
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1. INTRODUCTION

Genomes of contemporary species, especially eukaryotes, are the result of an evolutionary history that

started with a common ancestor from which new species evolved through evolutionary events called

speciations. One of the main objectives of molecular biology is the reconstruction of this evolutionary

history, that can be depicted with a rooted binary tree, called a species tree, where the root represents the

common ancestor, the internal nodes the ancestral species and speciation events, and the leaves the extant

species. Other events than speciation can happen, that do not result immediately in the creation of new species

but are essential in eukaryotic genes evolution, such as gene duplication and loss (Graur and Li, 1999).

Duplication is the genomic process where one or more genes of a single genome are copied, resulting in two

copies of each duplicated gene. Gene duplication allows one copy to possibly develop a new biological

function through point mutation, while the other copy often preserves its original role. A gene is considered to

be lost when the corresponding sequence has been deleted by a genomic rearrangement or has completely lost

any functional role (i.e., has become a pseudogene) (Graur and Li, 1999). Other genomic events such as

lateral gene transfer, that occurs mostly in bacterial genomes, will not be considered here.

Genes of contemporary species that evolved from a common ancestor, through speciations and dupli-

cations, are said to be homologs (Fitch, 2000) and are grouped into a gene family. Such gene families are in
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general inferred using protein sequence comparison. The evolution of a gene family can be depicted with a

rooted binary tree, called a gene tree, where the leaves represent the homologous contemporary genes, the

root their common ancestral gene and the internal nodes represent ancestral genes that have evolved

through speciations and duplications.

Given a gene tree G and the species tree S of the corresponding genomes, an important question is

to locate in S the evolutionary events of speciations and duplications. A reconciliation between G and S is

a mapping of the genes (extant and ancestral) of G onto the nodes of S that induces an evolutionary

scenario, in terms of speciations, duplications and losses, for the gene family described by G. In this

perspective, the notion of reconciliation was first introduced in the pioneering work of Goodman et al.

(1979) and a first formal definition was given by Page (1994) to explain the discrepancies between genes

and species trees. The LCA-mapping, that maps a gene u of G onto the most recent species of S that is

ancestor of all genomes that contain a gene descendant of u, is the most widely used mapping, as it depicts a

parsimonious evolutionary process according to the number of duplications or duplications and losses it

induces. It is generally accepted that parsimony is a pertinent criterion in evolutionary biology, but that it

does not always reflect the true evolutionary history. This leads to the definition of more general notions of

reconciliations between G and S (Bonizzoni et al., 2005; Górecki and Tiuryn, 2006; Arvestad et al., 2004)

and the natural problem of exploring all evolutionary scenarios of a given gene family. Arvestad et al.

(2004) developed a Markov Chain Monte Carlo method that explores the possible reconciliations and

approximates their posterior probabilities, but the efficient exploration of all reconciliations or only the

most parsimonious ones has not been addressed until now.

Our theoretical contributions are the development of algorithms to study combinatorial aspects of the

space of the reconciliations between G and S, and more specifically its exploration. These results allow us

to give a first insight in the following question: is parsimony relevant to infer the true evolutionary scenario

of a gene family? In Section 2, we introduce basic notations and a very general notion of reconciliation. In

Section 3, we describe an algorithm that counts the total number of reconciliations or of sub-optimal ones

(for the duplication cost) and an algorithm that generates a random reconciliation under the uniform

distribution. In Section 4, we first define combinatorial operators that are sufficient to explore the complete

space of reconciliations, and then develop an algorithm that exhaustively explores this space in optimal

time. This allows us to compute the distribution of reconciliation scores in the duplication, loss, and

mutation (duplicationþ loss) cost models. We also describe a variant of this algorithm that explores all and

only all the sub-optimal reconciliations (according to an upper bound) for any of these models. There are

several applications of our algorithms in functional and evolutionary genomics, such as inferring orthologs

and paralogs (Fitch, 1970; Jensen, 2001), the gene content of an ancestral genome (Ma et al., 2007), or in the

context of Markov Chain Monte Carlo analysis of gene families (Arvestad et al., 2004). In Section 5, we

simulate several gene family evolutionary scenarios along two known species trees (Hahn et al. (2007b) and

Hahn et al. (2007a)), with length (in time) and gene duplication and loss rates along each branch. We then

study the shape of the reconciliation spaces according to the three usual cost models. Our main conclusion

is that the less the cost of a reconciliation is, the more the reconciliation is similar to the real one.

2. PRELIMINARIES

Let T be a binary tree with vertices V(T) and edges E(T), and such that only its leaves are labeled.

Let r(T), L(T), and L(T) respectively denote its root, the set of its leaves, and the set of the labels of its

leaves. We will adopt the convention that the root is at the top of the tree and the leaves at the bottom. A

species tree S is a binary tree such that each element of L(S) represents an extant species and labels

exactly one leaf of S (there is a bijection between L(S) and L(S)). A gene tree G is a binary tree. From

now on, we consider a species tree S, with jV(S)j ¼ n and a gene tree G such that L(G)�L(S) and

jV(G)j ¼m. Let s : L(G)! L(S) be the function that maps each leaf of G to the unique leaf of S with the

same label.

For a vertex u of T, we denote by u1 and u2 its children and by Tu the subtree of T rooted at u. For a vertex

u [ V(T)n{r(T)}, we denote by p(u) its parent. A cell of a tree T is either a vertex of T or an edge of T. Given

two cells c and c0 of T, c0�T c (resp. c0< T c) if and only if c is on the unique path from c0 to r(T) (resp. and

c= c0); in such a case, c0 is said to be a descendant of c. The LCA-mapping M : V(G)!V(S) maps each vertex

u of G to the unique vertex M(u) of S such that L(SM(u)) is the smallest cluster of S containing L(Gu).
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Definition 1. A reconciliation between a gene tree G and a species tree S is a mapping

a : V(G)! V(S) [ E(S) such that

1. (Base constraint) 8u 2 L(G), a(u)¼M(u)¼ r(u).

2. (Tree Mapping Constraint) For any vertex u 2 V(G)nL(G),

a. if a(u) 2 V(S), then a(u)¼M(u).

b. If a(u) 2 E(S), then M(u)5 S a(u).

3. (Ancestor Consistency Constraint) For any two vertices u, v 2 V(G), such that v5 G u,

a. if a(u), a(v) 2 E(S), then a(v) � S a(u),

b. otherwise, a(v)5 S a(u).

Remark 1. This definition of reconciliation differs slightly from the classical ones as vertices of G can be

mapped onto edges of S, in order to represent duplication events. However, it is equivalent to the definitions

given by Arvestad et al. (2004) and Górecki and Tiuryn (2006), that are the most complete ones known so

far, and it is more general than the Inclusion-Preserving mapping of Bonizzoni et al. (2005).

The whole set of reconciliations between a gene tree G and a species tree S is denoted C(G, S). A

reconciliation a of C(G, S) implies an evolutionary scenario for the genes of G in terms of gene dupli-

cations, gene losses, and speciations. A vertex u of G that is mapped onto an edge (x, y) of S (where

x¼ p(y)) represents a gene of the ancestral species p(y) that has been duplicated in y. If u is mapped onto an

internal vertex x of S, then this represents a gene that will be present in a single copy in the two genomes x1

and x2 following a speciation event that happened to x. It is important to point out that the number of

reconciliations is finite. Briefly, a reconciliation a between G and S represents any birth-and-death scenario

along S such that the resulting gene tree is consistent with G and each duplication event that implies an

internal vertex u of G is consistent with the mapping a(u) (Fig. 1).

We denote by dup(a) and los(a) respectively the number of duplications and losses induced by a

reconciliation a. dup(a) is the number of vertices of G that are mapped onto an edge of S.1 Given two cells

c, c0 2 V(S) [ E(S), where c05 S c, D(c, c0) is the number of vertices x [ V(S) such that c05 S x5 S c.

Also, if c ¼ c0, then D (c, c0)¼ 0. The number of losses associated to a vertex u 2 V(G)nL(G) is noted lu
and equal to D (a(u), a(u1))þD (a(u), a(u2)) (see Ma et al. (2001) for example). los(a) is then the sum of lu
over all internal vertices u. The third constraint of Definition 1 leads to the notion of forced duplication, that

corresponds to vertices of G that can only be mapped onto an edge of S: an internal vertex u 2 V(G)nL(G)

is said to be a forced duplication if and only if M(u)¼M(u1) or M(u)¼M(u2).

For a vertex u [ V(G), a cell of S covers it if u can be mapped onto this cell according to Definition 1.

The set of cells that can cover it is denoted by A(u) and is defined below.

A(u)¼

�
M(u)

�
if u 2 L(G) or u¼ r(G)�

c 2 E(S) : M(u)5 S c
�

if u is a forced duplication�
c 2 E(S) : M(u)5 S c

�
[ fM(u)g otherwise

8><
>:

It is important to point out that there is three mappings that are considered here: M(u), a(u), and A(u). From

now on, except when indicated, the term mapping will refer to the reconciliation mapping a(u) of Definition 1.

Finally, combinatorial and probabilistic criteria can be used to compare the different possible recon-

ciliations and pick one that is supposed to reflect the most the true evolution of G according to S. Three

parsimonious cost models, that aim to minimize the number of genomic events, have been proposed so far:

duplication (Ma et al., 2001), loss (Chauve et al., 2008), and mutation (duplicationþ loss; Ma et al.

(2001)). Arvestad et al. (2004) also introduced a notion of likelihood of a reconciliation in the framework of

birth-and-death processes (Kendall, 1948).

3. COUNTING AND UNIFORM RANDOM GENERATION

In this section, we describe an efficient algorithm that computes a random reconciliation between G and

S following the uniform distribution. This problem is important in the context of MCMC analysis for gene

1To consider duplication that precedes the first speciation event represented by r (S), we can insert in S an ‘‘artificial’’
cell c such that rðSÞ < S c. For the sake of clarity, and as handling such early duplications follows easily from our work,
we assume here that no duplication occurs in the most ancestral species.
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families, as a major issue is to analyze if the Markov chain converges to the true posterior probabilities.

One of the most popular and simple tests of convergence is to run several Markov chains, each starting at a

different state in the space, which motivates our random generation algorithm.

As usual in uniform random generation, it is based on a preprocessing that computes the cardinality of

C(G, S) (Denise and Zimmermann, 1997). We first address this problem, then describe the random gen-

eration algorithm.

Counting reconciliations. For every vertex u 2 V(G) and cell c 2 A(u), we denote by Nb(u, c) the num-

ber of reconciliations of Gu and Sc for which u is mapped on c. It follows immediately that jC(G,S)j ¼
Nb (r (G), r(S)).

Lemma 1. Let u 2 V(G) and c 2 A(u) be a cell that covers u. Then Nb(u, c)¼ 1 if u 2 L(G), and

otherwise

Nb(u, c)¼
X

c12 A(u1), c1�S c

Nb(u1, c1)
X

c22 A(u2), c2�S c

Nb(u2, c2): (1)

Proof. If u 2 L(G), it is obvious that Nb(u, c)¼ 1 is the number of reconciliations of Gu and Sc for

which u is mapped on c. We prove equation (1). The case of pairs c 2 A(u) and u 2 L(G) are the base cases.

Consider an internal vertex u 2 V(G)nL(G), its children u1 and u2, and suppose that u is covered by a cell

DA B C

Species tree S Gene tree G 

1

4 5

2

3

A1 B1 A2 B2 C1 D1

Evolutionary scenario

A1 A2 B1 B2 C1 D1

3

2

1

54

FIG. 1. (Above) The species tree S has four (extant) species (A, B, C, and D). The gene tree G has six (extant) genes,

where each gene belongs to one of the four species (i.e., gene A1 belongs to species A). The arrows represent the LCA-

mapping between G and S. (Below) A reconciliation between G and S. A circle (square) represents an internal vertex of

G that is mapped on an internal vertex (resp. edge) of S, that is a speciation (resp. duplication) event. A cross represents

a gene loss. The right lineage of the first duplication has no extant gene that descents from it, as opposite to its left

lineage. We then say that this duplication is hypothetical, because it is not a useful information for the evolutionary

scenario of the extant genes of G along S. Hence, such duplication is not depicted by the reconciliation.
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c 2 A(u). There are two cases: c is either a vertex or an edge of S, and Definition 1 respectively implies that

c1 < S c and c1 � S c. These constraints are considered by the left term in the summation of equation (1),

where c 62 A(u1) if c 2 V(S). Hence, this left term is the total number of reconciliations for Gu1
and Sc when

u is mapped on c. By applying the same reasoning for u2, we obtain the right term of the summation in

equation (1). The mapping of u1 and u2 are independent of each other, we can then conclude that equation

(1) is the number of reconciliations of Gu and Sc for which u is mapped on c. &

Proposition 1. jC(G, S)j can be computed in O(mn) time and space.

Proof. It follows from Lemma 1 and the obvious facts that A and M can be computed in O(mn) worst-

case time. &

It was shown by Chauve and El-Mabrouk (2009) that there is a single optimal reconciliation for the loss

and mutation costs, but that there can be several ones for the duplication cost. An important question is then

to count the number of these optimal reconciliations, and a more general problem is to count the number of

sub-optimal reconciliations. We consider here the case of the duplication cost, and Wdup(G, S, d)¼
fa 2 W(G, S) : dup(a)�dg is the set of sub-optimal reconciliations, for a given bound d.

Let K(G) be the set of vertices of G that are not forced duplications, that is K(G)¼fu 2 V(G) :
M(u) 2 A(u)g. For a vertex u 2 V(G) and a cell c 2 A(u), let f (c) (d(c)) be the ancestor (resp. descendant)

cell of c in A(u), that is the cell of A(u) that is the closest one to c and above (resp. below) it. The lowest

(highest) cell of A(u) is the one that has no descendant (resp. ancestor) cell in A(u).

Definition 2. amin (resp. amax) is the unique reconciliation of C(G, S) where, for each vertex u of G,

amin(u) (resp. amax(u)) is the lowest (resp. highest) cell of A(u).

Note that amin corresponds to the classical LCA-mapping reconciliation as every vertex u that is not

(resp. is) a forced duplication is mapped onto the LCA (resp. the edge preceding the LCA) of L(Gu).

Together with classical results on this LCA-mapping (Chauve and El-Mabrouk, (2009) and the definition of

dup(a) and K(G), we have the following properties.

Property 1.

1. amin minimizes the duplication, loss, and mutation cost models.

2. For every reconciliation a 2 W(G, S), dup(amin)�dup(a)�dup(amin)þ jK(G)j.
3. For every dup(amin)� d� dup(amin)þ jK(G)j, a reconciliation a is in Cdup(G, S, d) if and only if the number of

vertex u of K(G) such that a(u)=M(u) is at most d� dup(amin).

From these properties, we can then generalize Proposition 1 and describe a counting algorithm whose

complexity is exponential in the worst-case time, but parameterized by the quantity d� dup(amin). In

particular, Proposition 2 used with d¼ dup(amin) allows to know in polynomial time the exact number of

optimal (for the duplication cost) reconciliations.

Proposition 2. For a given dup(amin)� d� dup(amin)þ jK(G)j, jCdup(G, S, d)j can be computed in

O(qmn) time and O(mn) space, where q¼
Pc

‘¼ 0

jK(G)j
‘

� �
and g¼ d� dup(amin).

Proof. For each ‘ in f0, 1, . . . , cg, we have to count the number of reconciliations a 2 W(G, S) such

that dup(a)� dup(amin)¼ ‘. According to Property 1.(3), we have to consider each of the
jK(G)j
‘

� �

combinations of vertex u of K(G) such that a(u)=M(u). For each of these combinations, we can adapt the

equation 1 of Lemma 1 to compute its number of reconciliations. &

We describe in Section 4.5 how to exhaustively explore the set of sub-optimal reconciliations for any of

the three cost models.
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Generating a random reconciliation. Algorithm 1 below computes a random reconciliation between G

and S.

Theorem 1. Given a reconciliation a 2 W(G, S), Algorithm 1 returns a with probability 1
jW(G, S)j. Given

the table Nb and the sets A(u) for every vertex u of G, it can be implemented to run in O(mn) space and

Y(mn) time in the worst case and Y(m) time in the best case.

Proof. Let Pr(a) be the probability that Algorithm 1 returns a. It follows immediately from lines 5–12

of the algorithm that

Pr(a)¼
Y

u2V(G)nfr(G)[L(G)g

Nb(u, a(u))P
c2A(u), c�S a(p(u))

Nb(u, c)
(2)

By expanding the term Nb(u,a(u)) in (2) according to Lemma 1, we obtain

Pr(a)¼
Y

u2V(G)nfr(G)[L(G)g

P
c12A(u1), c1�S a(u)

Nb(u1, c1)
P

c22A(u2), c2�S a(u)

Nb(u2, c2)

P
c2A(u), c�S a(p(u))

Nb(u, c)
: (3)

Cancellations leads to the following formula, where r1 and r2 are the two children of the root r(G):

Pr(a)¼
Q

u2L(G)

P
c2A(u) Nb(u, c)P

c12A(r1) NB(r1, c1)
P

c22A(r2) NB(r2, c2)
, (4)

that, together with Lemma 1, implies that Pr(a)¼ 1
jW(G, S)j.

For the time complexity, suppose that for each vertex u 2 V(G), the size of A(u) is in Y(n). In the worst

case, each vertex is mapped on the closest edge to r(S) and the algorithm is in Y(mn). In the best case,

where each vertex is mapped onto the closest cell to M(u) (lowest cell of A(u)), the time complexity is in

Y(m). The space complexity follows from the fact that there are O(nm) pairs (u, c). &

Hence, the preprocessing time of our algorithm (computing the table Nb and the sets A(u)) requires O(mn)

time and space. However, it needs to be done once and can be used for generating several random

reconciliations.

4. EXPLORING THE SPACE C(G, S)

We present in this section an algorithm that visits the set of all possible reconciliations between a gene tree

G (with jV(G)j ¼m) and a species tree S (with jV(S)j ¼ n) in time Y(jC(G, S)j) (see Theorem 3), which

gives a CAT (Constant Amortized Time) algorithm to generate C(G, S).

Algorithm 1 Uniform random generation in C(G, S).

1: Let a be an empty reconciliation.

2: Perform a prefix traversal of G, and let u 2 V(G) be the current vertex.

3: if u¼ r (G) or u 2 L(G) then a(u)/M(u)

4: else

5: Let ĉc a(p(u)).

6: {Choose randomly a cell c 2 A(u) such that c�S ĉc}

7: Let k 
P

c2A(u), c�S ĉc

Nb(u, c)

8: Generate randomly and uniformly an integer n 2 f1, . . . , kg.
9: c/ lowest cell in A(u) {If u is a forced duplication, then M(u) 62 A(u)}

10: l/Nb(u, c)

11: while l< n do c/ f (c), l/ lþNb(u, c)

12: a(u)/ c

13: return a
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First, we define combinatorial operators used to explore the whole space of reconciliations C(G, S)

(Section 4.1). Second, we define a tree that covers C(G, S) and that is used by our algorithm to explore this

space (Section 4.2). Third, we give some theoretical preliminaries that are required for the algorithm

(Section 4.3) and then formally describe the algorithm (Section 4.4). We conclude this section by a variant

of this algorithm that explores all and only all sub-optimal reconciliations for any of the three cost models

(duplication, loss, or mutation) (Section 4.5).

4.1. Space exploration operators

We present in this section a combinatorial operator, called Nearest Mapping Change (NMC), acting on a

reconciliation between a gene tree G and a species tree S. A similar operator was described by Górecki and

Tiuryn (2006), in the framework of DLS-trees, to show that every DLS-tree can be obtained from the most

parsimonious one. We develop it here with our definition of reconciliation and studies its properties. We

first show that this operator is sufficient to explore the space of all possible reconciliations.

Definition 3. Let a : V(G)!V(S)[E(S) be a given reconciliation between G and S, and u a vertex of

V(G)nL(G) such that u= r (G). Let ĉc, c, c1, and c2 respectively denote a( p(u)), a(u), a(u1), and a(u2).

1. An upward NMC (uNMC) can be applied to u if c5 S ĉc, and if ĉc 2 V(S) and c 2 E(S), then D(ĉc, c)4 0. It

changes a(u) into its ancestor cell f (a(u)) of A(u).
2. A downward NMC (dNMC) can be applied to u if c1< S c, M(u)< S c, and if c1 2 V(S) and c 2 E(S), then

D(c, c1)> 0 (idem for c2). It changes a(u) into its descendant cell d(a(u)) of A(u).

It follows immediately from the definition of NMC operators that, given a 2 W(G, S), applying a NMC

operator to a vertex u of G results in a reconciliation a0 between G and S. More precisely, it can induce the

following changes in the evolutionary scenario for the gene family (Fig. 2).

� Changing a speciation by a duplication (uNMC, a(u)¼M(u)).
� Changing a duplication by a speciation (dNMC, a0(u)¼M(u)).
� Moving a duplication upward (uNMC, a(u)=M(u)).
� Moving a duplication downward (dNMC, a0(u)=M(u)).

For u 2 V(G), and c, c0 2 A(u), du(c, c0) is the number of cells of A(u) between c and c0, where du (c, c0 ¼ 0

if and only if c¼ c0. For two reconciliations a and a0, DNMC(a, a0)¼
P

u2V(G) du(a(u), a0(u)). We call

DNMC(a, a0) the NMC distance between a and a0. A valid (according to Definition 3) NMC application to a
can be encoded by a vertex u 2 V(G), that is the vertex being moved, and by a direction that is either

downward or upward. We denote by uNMC(a) the subset of V(G) such that an upward operator can be

applied on any u 2 uNMC(a) and by uNMC(a, a0) the set of vertex u 2 uNMC(a) such that applying an

upward operator on u results in a new reconciliation where the mapping of u is closer to its mapping in a0.
Formally,

uNMC(a, a0)¼fu 2 uNMC(a) : du(a(u), a0(u))¼ 1þ du(f (a(u)), a0(u))g:

For the downward operator, let dNMC(a) and dNMC(a, a0) be the sets defined similarly as for the upward

operator. Observe that uNMC(a)[ dNMC(a) is the set of all possible operators for a.

1

3

54

2

1

3

54

2

1

3

54

2

FIG. 2. (Left) A section of the reconciliation depicted in Figure 1. Here, the mapping of vertex 2 forbids to move up

vertex 3. (Center) The vertex 2 changes from a speciation to a duplication by moving it up. (Right) Then, vertex 3 can

be moved up and still is a duplication.

SPACE OF GENE/SPECIES TREES RECONCILIATIONS 1405



The lemma below is the first step toward the definition of a combinatorial structure with vertex set

C(G, S) (Definition 4 below), where each two reconciliations a and a0 are connected by a path of minimal

length DNMC(a, a0) (Theorem 2 below).

Lemma 2. Let a and a0 be two reconciliations of C(G, S). Then,

1. uNMC(a, a0)\ dNMC(a, a0)¼;;
2. uNMC(a, a0)¼ dNMC(a0,a) and dNMC(a, a0)¼ uNMC(a0, a);

3. for any two nodes u, v 2 V(G), where u <G v and u 2 uNMC(a, a0), if a(u) �S a(v) �S a0(u), then v 2
uNMC(a, a0).

Proof. The first two statements are obvious consequences of Definitions 1 (reconciliation) and 3

(operators) and of uNMC(a, a0) and dNMC(a, a0). For the third statement, Definition 1 implies that a(u)

�S a(v) �S a0(u) �S a0(v), and because u 2 uNMC(a, a0), a(u)= a0(u), a(v) <S a0(v), and then v 2
uNMC(a, a0) by definition. &

Theorem 2. Let a and a0 be two reconciliations of C(G, S). There exists a sequence of DNMC(a, a0)
operators that transforms a into a0. No shorter sequence of operators can transform a into a0.

Proof. Assume that a= a0 (otherwise the statement obviously holds). In order to prove that there is a

sequence of DNMC(a, a0) operators that transforms a into a0, we proceed in two steps. First, we prove that

uNMC(a, a0)[ dNMC(a, a0)= ;, and Lemma 2.2 implies that it is sufficient to prove, without lost of

generality, that uNMC(a, a0)= ;. Second, we prove that there is an ‘‘intermediate’’ reconciliation a00 such

that i) there is sequence of upward operators of length
P

u2uNMC(a, a0) du(a(u), a0(u)) that transforms a into a00,
ii) uNMC(a00,a0)¼; and dNMC(a00,a0)¼ dNMC(a, a0), and iii) for any u 2 uNMC(a, a0)(dNMC(a, a0)),
a†(u)¼ a0(u) (resp:¼ a(u)).

Let u be a vertex of G such that a(u)= a0(u). Let c¼ a(u) and c0 ¼ a0(u). Without loss of generality, we

can assume that c <S c0 and that a( p(u))= c. If c¼M(u), let y¼M(u) and (x, y) the edge of S such that x is

the parent of y. Then, by definition of the upward operator, it is allowed to map u onto (x, y), and then

u 2 uNMC(a, a0. Now assume that c=M(u), which implies that c, c0 2 E(S). Let c¼ (x, y) and c0 ¼ (s, t). As

c<S c0, we have that x �S t. If a( p(u))= x, then u 2 uNMC(a, a0). Otherwise, if a( p(u))¼ x, as a0(u)

�S a0( p(u)), then p(u) 2 uNMC(a, a0). Hence, uNMC(a, a0)= ;. Now, let u be the vertex of uNMC(a, a0)
with the smallest index id(u). The Lemma 2.3 and the definition of this index imply that there is a

reconciliation a00 obtained by applying du (a(u), a0(u)) times the upward operator on u, and only this one,

such that uNMC(a00,a0)¼ uNMC(a, a0) n{u} and dNMC(a00, a0)¼ dNMC(a, a0). Because uNMC(a, a0) and du

(a(u), a0(u)) are both finite, repeating this process recursively with a/a00 results in the ‘‘intermediate’’

reconciliation a00 described above.

We can use the same two steps described earlier with the two reconciliations a0 and a00 instead of a and

a0, respectively. Because Lemma 2.2 implies that uNMC(a0, a00)¼ dNMC(a00, a0)¼ dNMC(a, a0), the

resulting sequence that transforms a0 into the ‘‘intermediate’’ reconciliation a00 has a length equals toP
u2dNMC(a, a0) du (a(u), a0(u)).

Finally, the concatenation of the two sequences results in a sequence of DNMC(a, a0) operators that

transforms a into a0. The fact that no shorter sequence exists follows immediately from the definitions of

DNMC(a, a0) and uNMC(a, a0), and the fact that no operator can modify DNMC(a, a0) by more than 1. &

Definition 4. G(G, S) is the graph with vertex set C(G, S) and where two reconciliations are linked by

an edge if and only if they differ by a single NMC.

The following results shows that, although C(G, S) can have an exponential size, NMC operators are

sufficient to define a structure on this space of polynomial diameter.

Corollary 1. The diameter of G(G, S) is equal to DNMC(amin, amax) and is in O(nm).

Proof. By definition of amin and amax (Definition 2), for every vertex u of V(G), the distance between

the mapping of u in these two reconciliations is jA(u)j � 1, and is maximal for u as A(u) is the set of all
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possible cells that can cover u. This implies immediately that the diameter of G(G, S) is DNMC(amin, amax).

The fact that this diameter is in O(nm) follows immediately from the fact that for every m vertices u of G,

jA(u)j 2 O(n). &

Finally, as our NMC operators are intended to explore the space of reconciliations between a gene tree

and a species tree, we address now the issue of updating the classical combinatorial criteria used to evaluate

a reconciliation: the following observation implies that they can be easily updated in constant time.

Property 2. Let a and a0 be two reconciliations of C(G, S) such that a0 is obtained from a by a single

upward operator on a vertex u 2 uNMC(a). If a(u)¼M(u), then dup(a0)¼ dup(a)þ 1 and los(a0)¼
los(a)þ 2. Otherwise, dup(a0)¼ dup(a) and los(a0)¼ los(a)þ 1.

4.2. A spanning tree of G(G, S)

The exploration algorithm described next uses only upward operators and not downward operators, and

from now on the term operator refers to the former.

For a vertex u 2 V(G), let id(u) be the number of vertices that precede u according to the prefix traversal

of G, where the left child u1 of a vertex u 2 V(G)nL(G) is visited before the right child u2.

Definition 5. For a gene tree G and a species tree S, let T (G, S) be the ordered tree, with vertex set

C(G, S), defined as follows (Fig. 3).

1. The root is the reconciliation amin, and its children are the reconciliations that can be obtained from amin by

applying a single operator on a vertex from uNMC(amin).

2. Given a reconciliation a, that differs from its parent by an operator on a vertex ui 2 V(G), its children are the

reconciliations that can be obtained from a by applying a single operator on a vertex uj 2 uNMC(a)

such that id(ui)� id(uj).
3. Consider a reconciliation a and two of its children ai and aj, respectively, obtained by an operator on the vertices

ui and uj from uNMC(a). ai precedes aj in the ordered children of a if and only if id(ui)< id(uj).
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FIG. 3. The subtree of T (G, S) rooted at amin for the trees G and S depicted in Figure 1. amin and its children

respectively are at the top and bottom of the figure. For each child, the vertex that has been moved upward is in

boldface.

SPACE OF GENE/SPECIES TREES RECONCILIATIONS 1407



We now introduce properties that will be used to prove that T (G, S) is a spanning tree of G(G, S) (see

Proposition 3 below). The first property (Property 3 below) follows immediately from Definitions 3

(operators) and 5 (T (G, S)). The second one (Property 4) follows from Definition 5 and Property 3.

Property 3. Let a and a0 be two reconciliations of T (G, S), where the latter is a child of the former

obtained by an operator on a vertex u 2 uNMC(a). Any reconciliation a00 in the subtree of T (G, S) rooted at

a0 is such that a0(u) �Sa00(u).

Property 4. Let a vertex of T (G, S) labeled by the reconciliation a. Consider two children ai and aj of a,

respectively, obtained by the operator on the vertices ui and uj 2 uNMC(a), where id(ui)< id(uj). Then,

1. for any reconciliation a0 in the subtree of T (G, S) rooted at aj, a(ui)¼ a0(ui); and
2. the two subtrees of T (G, S), respectively rooted at ai and aj, are disjoints.

Proposition 3. T (G, S) is a spanning tree of G(G, S).

Proof. T (G, S) is a tree by definition. In order to prove it is a spanning tree of G(G, S), we only need to

prove that every reconciliation a 2 W(G, S) appears once and exactly once as a vertex of T (G, S).

First, if uNMC(amin, a)¼;, a¼ amin and then a is in T (G, S) by definition. Otherwise, let

u 2 uNMC(amin, a) with the smallest index id(u). By definition, there is a reconciliation a0, obtained by

applying du (amin (u), a(u)) times this operator, that is in the subtree of T (G, S) rooted at amin, and such that

a0(u)¼ a(u). Then, u 62 uNMC(a0, a), and for any u0 2 uNMC(a0, a), id(u0)4 id(u). Because both du (amin

(u), a(u)) and uNMC(amin, a) are finite, repeating this recursion with amin/a0 ends at a reconciliation a0 as

a vertex of this subtree and then of T (G, S) such that uNMC(a0, a)¼; and then a0 ¼ a.

Now assume that the reconciliation a labels two vertices of T (G, S). By definition, these vertices are not

comparable in T (G, S), and this is in contradiction with Property 4.2. &

4.3. Preliminaries to the algorithm

For a reconciliation a of T (G, S), we denote by P(a)� uNMC(a) the list of allowed operators that can be

applied to obtain the children of a, where the vertices are ordered according to the increasing value of their

indexes id. Assuming that the children of a are visited in the order described in the Definition 5, it follows

immediately that the efficient traversal of T (G, S) reduces to the following problem: For a reconciliation a0

that is a child of a, how can the list P(a0) be computed in constant time given the list P(a)?

The solution to this problem is based on the two properties below (Properties 5 and 6), which both are

obvious consequences of Definitions 3 (operators) and 5 T (G, S).

Property 5. Let a and a0 be two reconciliations of T (G, S) such that a0 is the first child of a and is

obtained by an operator on the first vertex of P(a), noted u. Then, the difference between P(a) and P(a0)
implies a constant number of vertices and is such that

1. P(a0)nP(a)� {u1, u2};

2. and P(a)nP(a0)� {u}.

Property 6. Let a be a reconciliation of T (G, S), and consider two of its children a0 and a00 respectively

obtained by an operator on the vertices u0 and u00 from P(a). Suppose that a00 (u00) is the child (resp. vertex)

of a (resp. P(a)) immediately before a0 (resp. u0). Then, the difference between P(a0) and P(a00) implies a

constant number of vertices and is such that

1. P(a0)nP(a00) � fu01, u02g;
2. P(a00)nP(a0) � fu0, u00, u001, u002g and u00 62 P(a0);
3. and u0 may or may not be in P(a0).

Let a be a reconciliation of T (G, S), and consider any vertex u of P(a). For the sake of clarity, we

suppose in the following proposition that the insertion (or removal) of any of the three vertices u, u1, or u2

into (resp. from) the list can be done in constant time.

Proposition 4. Let a be a reconciliation of T (G, S). Given the list P(a), if the children of a are visited

in the order described in the Definition 5, the list P(a0) can be computed in constant time for any

reconciliation a0 that is a child of a.
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Proof. The proof is by recurrence on the i-th child of a. If a0 is the first child of a, the desired result

follows directly from Property 5. Otherwise, assume that a00 is the child of a immediately before a0 and that

P(a00) is known. According to Property 6, P(a0) can be computed in constant time given P(a00). &

Let a be a reconciliation of T (G, S) and a0 be one of its children that is obtained by an operator on a

vertex u 2 P(a). In the context of Proposition 4, the possible removal (insertion) of u (resp. u1) from (resp.

into) the list can obviously be done in constant time (resp. because id(u1)¼ id(u)þ 1). We now explain how

to compute in constant time the position of u2 in the list P(a0) when u2 is not in P(a). The main problem is

that the number of vertices in P(a0) that are between id(u) and id(u2) is not constant. In this perspective, we

have to implement the list in a particular way, which is formally described in the next section. Below, we

formulate two lemmas that give a first intuition for the implementation and that are used to prove the

completeness and the complexity of the algorithm that explores T (G, S).

Lemma 3. Let a be a reconciliation of T (G, S), u be the first vertex of P(a), and suppose that u2 62 P(a).

Then, for any w 2 P(a) such that w 62 P(amin, w 6¼ u, and w is the second child of f (w), id(u2)< id(w).

Proof. Suppose that id(u2)> id(w). There is two possibilities. First, if id(w)< id(u), this is in contra-

diction with the definition of P(a). Otherwise, id(u)< id(u1)< id(w)< id(u2), and then w is in the subtree

Gu1. However, because we assume that w =2P(amin), there is a reconciliation a0 that is along the path of

T (G, S) that connects amin and a such that w 2 P(a0). Then, f (w) is used (at least one time) by an operator

along this path, this operator precedes the one(s) on the vertex u, and this is in contradiction with the

definition of T (G, S). &

Lemma 4. For any reconciliation a of T (G, S), there is a sequence of reconciliations that starts with a,

ends with a reconciliation an that is in the subtree of T (G, S) rooted at a, and that respects the next three

constraints. First, P(a)\P(an)¼;. Second, each reconciliation of the sequence, except the first one (a), is

the first child of the previous one. Third, each vertex of P(a) is the first vertex of P(a0), for at least one

reconciliation a0 of this sequence.

Proof. Let u 2 P(a) be the first vertex of P(a) and a01 be the first child of a obtained by the operator on

u. Because this operator can be repeated a limited number of times, each time defining the first child of the

previous reconciliation, we obtain a finite sequence of reconciliations where the last one, noted a1, is such

that P(a)nP(a1)¼ {u} (see Property 5). According to the definition of T (G, S), for any reconciliation a00 that

is in the subtree of T (G, S) rooted at a1, u is not in P(a00). Hence, because V(G) is finite, by repeating

recursively the two steps described above induces a sequence of reconciliations that ends at an and respects

the desired constraints. &

4.4. Algorithm for the prefix traversal of T (G, S)

We now give a complete description of an algorithm that exhaustively explores C(G, S) in time Y(jC
(G, S)j) by a prefix traversal of the spanning tree T (G, S).

In the context of the prefix traversal of T (G, S), where a child a0 of a reconciliation a is visited and is

obtained by an operator on u 2 P(a), recall that the difficulty to compute P(a0) given P(a) comes from the

(possible) insertion of u2 into the list. We describe below how the list P(a) can be implemented to

efficiently perform this insertion.

Definition 6. Let a be a reconciliation of T (G, S). The list P(a) is implemented on two sublists of

V(G) noted P and S and such that (i) P\ S¼;, (ii) any vertex w of S is the right child of f (w) and is

not in P(amin), (iii) P(a)¼fw 2 P : id(w)� id(v)g [ S, where v is the first vertex of P(a), and (iv) v is

in P.

The recursion starts at the root of T (G, S) with the reconciliation a¼ amin and the ordered lists

P¼P(amin), that are computed during a preprocessing phase, and v as the first vertex of P and S¼;. For a

vertex u 2 V(G) and a cell c 2 A(u), recall that f (c) is its ancestor cell in A(u).
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Theorem 3. Algorithm 2 visits all reconciliations of C(G, S). Given amin and P¼P(amin), it can be

implemented to run in time Y(jC(G, S)j) and space O(nm).

Proof. We first address the correctness of the algorithm. We prove that the algorithm visits all rec-

onciliations of C(G, S) using Proposition 3, and then that it performs a prefix traversal of T (G, S). In this

perspective, we need to prove that the children of a given reconciliation are visited according to the order

described in the definition of T (G, S) (Definition 5). Formally, for each recursion of the algorithm, where a
is the current reconciliation, we have to prove that P(a) is consistent (that is with the implementation of

Definition 6).

By construction, P(amin) is consistent, where P¼P(amin) and S¼;. Suppose that this is true for a

recursion with a 2 T (G, S) as the current reconciliation and a vertex v 2 V(G) as the parameter. We then

have to prove that the children of a are visited according to the usual order and that for any child a0 of a,

P(a0) is consistent. Let u00 (u0) be the vertex u considered at line 3 during the first (resp. second) pass of the

loop and a00 (resp. a0) be the new reconciliation defined at line 4.

Because of the hypothesis, u00 ¼ v is the first vertex of P(a) and then a00 is the first child of a according to

the definition of T (G, S). According to Property 5, P(a) and P(a00) differ by at most three vertices, that are

u00, u001 and u02. The required insertions of u001 and u002 are, respectively, done in lines 5 and 6. According to

Lemma 3, any vertex w of S is such that id(u002)5 id(w), the usual order of the vertices of S is then

conserved after the insertion of u002 at the front of this list. If u00 is a valid operator for the new reconciliation

a00, u00 stays in P(a00). Otherwise, the removal of u00 from P(a00) is the consequence of line 13. In both case,

P(a00) is consistent.

Moreover, by recursively applying the case of the first child described above, with a00 as the considered

reconciliation instead of a, the Lemma 4 implies that each vertex w 2 P(a00) is used at least one time as

the parameter during this recursion. Then, if w was in S before the recursion on a00, w is moved from S into

P at line 12 and is not moved back into S afterward. Hence, when all the children of a00 are visited, S is

empty, all its vertices are in P, and the fact that P(a00) is consistent results from each time line 15 is

performed.

Recall that a00 is the first child of a, and that P(a00) is consistent and S is empty immediately after the

recursive call on a00 is completed (line 14). We now prove that the second child of a is a0 and that P(a0) is

consistent. Remember the difference between the lists P(a00) and P(a0) formally described in Property 6.

First, the possible removals of the vertices u001 and u002 from the list are done in line 15. Afterward, P(a) is

consistent and then, because u00 is the first vertex of P(a), the consequences of lines 16 and 4, respectively,

are that u0 is the second vertex of P(a) and that a0 is the second child of a. The removal of u00 from the list

follows immediately (see Property 6 and Definition 6). Second, the possible insertions of u01 and u02 are,

respectively, done in lines 5 and 6, as with the previous child a00 of a, where S is in the usual order because

Algorithm 2 Exhaustive exploration algorithm of the space c(G, S).

1: RecurExplore (v)

2: u/ v

3: while u= end(P) do

4: a(u)/ f (a(u))

5: If u1 62 P and u1 62 L(G), then insert u1 immediately after u in P

6: If u2 62 P [ S and us 62 L(G), then insert u2 at the front of S.

7: if u is a valid uNMC for a then

8: RecurExplore (u)

9: else

10: Let x be the vertex immediately after u in P and y be the first one of S

11: if id(x)> id(y) then

12: Insert y immediately before x in P and remove y from S

13: Let v0 be the vertex immediately after u in P

14: RecurExplore (v0)
15: Undo lines 4, 5, and 6. If line 6 is undone, the removal is done on P instead of S.

16: Let u be the vertex immediately after u in P
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of its emptiness before the insertion of u02. The possible removal of u0 is similar to the one of u00 described

above. Hence, a0 is the second child of a and P(a0) is consistent.

By recurrence on the i-th child of a, we can conclude that the children of a in T (G, S) are visited

according to the usual order, that the algorithm performs a prefix traversal of T (G, S) and that all the

reconciliations of C(G, S) are visited.

We now address the complexity of the algorithm. Because it performs a prefix traversal of T (G, S), its

time complexity is in H(jT (G, S)jq), where q is the time needed for any loop of RecurExplore. With a

constant number of local variables for line 15, any loop can be done in constant time, that is without

considering the recursive call. We can then conclude that the time complexity of the algorithm is in

Y(jC(G, S)j).
The space complexity is first defined by the total size of both lists P and S, which is in O(m), where

m¼ jV(G)j. Second, for each recursive call, there is a constant number of local variables, and the maximal

depth of T (G, S) is the diameter of G(G, S), which is in O(nm) (see Corollary 1). We can then conclude that

the space complexity of the algorithm is in O(nm). &

Together with Property 2, that implies that updating the number of duplications and/or losses after a

single operator can be done in constant time, this algorithm allows to compute efficiently the exact

distribution of the duplication, loss and mutation costs in optimal time Y(jC(G, S)j) (see Section 5).

4.5. Exhaustive exploration of sub-optimal reconciliations

It is often interesting to consider not all reconciliations between a gene tree and a species tree, but only a

subset, whose cost is close to the optimal cost, or more generally bounded. In Proposition 2, we described

how to count the number of such reconciliations, for the duplication cost, that is jCdup(G, S, d)j. Here, we

rely on a monotony property (Lemma 5 below) of path in T (G, S) to adapt Algorithm 2 in order to explore

the space of sub-optimal reconciliations for any of the three cost models. Let Wcost(G, S, d)¼
fa 2 W(G, S) : cost(a)� dg be the considered set of reconciliations, where d is the given bound and cost is

one of the three usual cost models. Observe that the set Cdup(G, S, d) is a special case of this problem.

Lemma 5. Let a and a0 be two reconciliations of T (G, S), where the latter is a child of the former

obtained by an operator on a vertex u 2 uNMC(a). Any reconciliation a00 in the subtree of T (G, S) rooted at

a0 is such that cost(a00)� cost(a), for any of the three cost models.

Proof. Obvious consequence of the definition of T (G, S) (Definition 5), Property 2, and Property 3.&

Because Property 1.1 says that amin minimizes the three cost models, the considered bound is such that

d� cost(amin). Let Gcost(G, S, d) be the subgraph of G(G, S) where each of its reconciliation is from

Ccost(G, S, d). Because Algorithm 2 is based on the spanning tree T (G, S) to perform the exploration of

C(G, S), we define below a similar combinatorial structure to explore Ccost(G, S, d).

Definition 7. For a gene tree G, a species tree S, a cost model, and a bound d� cost(amin), let

Tcost(G, S, d) be the subtree of T (G, S) rooted at amin and defined as follows: any child a0 of amin in T (G, S)

is also a child of amin in Tcost(G, S, d) if and only if cost(a0)� d. The same rule is recursively applied to

define the children of these vertices and then the whole structure of the tree.

Proposition 5. Tcost(G, S, d) is a spanning tree of Gcost(G, S, d).

Proof. Obvious consequence of Property 1.1, Definition 7, and Lemma 5. &

For a reconciliation a 2 Tcost(G, S, d), we denote by Pcost(a) the sublist of P(a) (see Section 4.3) that

contains the allowed operators that can be applied to obtain the children of a in Tcost(G, S, d). We then use

this list, instead of P(a), in the Algorithm 2 so that it explores the whole space Ccost(G, S, d).

Theorem 4. Algorithm 2 can be adapted to visit all reconciliations of Ccost(G, S, d). Given amin and

P¼Pcost(amin), it can be implemented to run in time Y(jCcost(G, S, d)j) and space O(nm).
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Proof. From the definition of Gcost(G, S, d) and the Proposition 5, the set of reconciliations of

Ccost(G, S, d) is equal to the one of Tcost(G, S, d). Because Tcost(G, S, d) is a prefix tree of T (G, S), the

Algorithm 2 can be adapted to explore Tcost(G, S, d) with the modifications described below.

In the context of the Algorithm 2, let a, a0, and a00, respectively, be the current reconciliation, the one

defined by the operator on the vertex u 2 Pcost(a) on line 4, and the one obtained by a second operator on

the vertex u1. Recall that because of Property 2, cost(a0) and cost(a00) can be computed in constant time

given cost(a). In line 5, if u1 is inserted into P, then cost(a00)� d. Moreover, if u1 is already in P and

cost(a00)> d, then u1 is removed from P. For the case of the vertex u2 and the lists P and S, the conditions on

its insertion or removal are similar as for u1.

The correctness and the time and space complexities come from the Theorem 3 and the fact that

Tcost(G, S, d) is a prefix tree of T (G, S). &

5. EXPERIMENTAL RESULTS

Based on two known species trees, we simulated gene family evolutionary scenarios,2 which resulted

in realistic gene trees, and studied the reconciliation spaces and the effectiveness of parsimonious models

to retrieve the true reconciliation (the one that corresponds to the real evolutionary scenario). The first

phylogeny (Fig. 4) has 12 Drosophila species (Figure 1 in Hahn et al., 2007b), and the second one (Fig. 5)

includes only 6 mammalian species (Figure 1 in Hahn et al., 2007a). In the smallest phylogeny, the clade

of the 3 primates has high duplication and loss rates according to the rest of the tree, and we suspected that

FIG. 4. Species tree for the Drosophila group (Figure 1 in Hahn et al., 2007b), where divergence time is in Million

Years and the gene duplication/loss rate for each branch is as follows: h, high rate (0.0193 gene/MY); m, medium rate

(0.0022 gene/MY); and l, low rate (0.0006 gene/MY).

2This is done using the birth-and-death process (Kendall, 1948) along the considered species tree, where each branch
has its own length (in time) and gene duplication and loss rates.
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FIG. 5. Species tree for the mammalian group (Figure 1 in Hahn et al., 2007a), where divergence time is in Million

Years and the gene duplication/loss rate for each branch is as follows: h, high rate (0.0039 gene/MY); m, medium rate

(0.0024 gene/MY); and l, low rate (0.0014 gene/MY).
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this may generate evolutionary scenarios relatively far from the parsimonious ones. However, the results

of the two species trees are similar according to both the ‘‘average shape’’ of the reconciliation spaces

and the performance of the LCA reconciliation to retrieve the real evolutionary scenarios. Section 5.1

presents the results of the Drosophila gene families, and Section 5.2 briefly summarizes the ones of the

mammals.
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5.1. Drosophila group

Along the species tree S of the 12 Drosophila (Fig. 4), we generated 1000 synthetic gene trees and

obtained 249 unique ones after removing multiple copies. Figure 6 describes the distribution of the size of

each gene tree G, the cardinality and the diameter of the reconciliation space G(G, S). We also computed the

average diameter over all the 249 reconciliation spaces, which is mdiam¼ 34.142.

The first experimental concern that we address here is as follows: what is the average shape of the 249

reconciliation spaces according solely to the NMC operators? Recall that amin and amax are located on the

border of G(G, S) and their NMC distance is the diameter of this space (Corollary 1). Figure 7 plots the

average number N(d) of reconciliations that are at a given NMC distance d to amin, and we can easily

observe (left plot) that N(d) is inversely proportional to jd� mdiam / 2j. This suggests that the two regions of

G(G, S) with the lowest concentration of reconciliations are located around amin and amax and the highest

concentrated region is equidistant to these two reconciliations. Although this implies that there is relatively

(according to the size of the space) few (sub-)optimal reconciliations different from amin, we can see (right

plot) that their number is non-negligible. This justifies the use of our exploration algorithm to visit other

parsimonious reconciliations and to consider them as an alternative for the real evolutionary scenario.

For each of the 249 unique gene trees, we used Algorithm 2 to explore the whole space C(G, S) focusing on

the duplication cost (for the loss and mutation criteria, the results are similar). For the duplication criterion,

237 gene trees have a unique global minimum, and 12 have two. In each of these 12 cases, the NMC distance

between the two global minimums is one. Over all the 249 gene trees, the LCA reconciliation amin, that is a
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global minimum, is either identical or, in the worst case, at a distance of a single NMC to the true evolutionary

scenario induced by the birth-and-death and noted areal.

For a reconciliation a 2 W(G, S), let dcost(a)¼ dup(a)� dup(a*), where a* is a global minimum (for the

duplication cost) that minimizes DNMC(a, a*). We denote by N(k) the number of reconciliations a 2 W(G, S)

such that dcost(a)¼ k, for a given k 2 N. Figure 8 (left) shows that, on average over all gene trees, N(k) is

proportional to k from k¼ 0 to k¼ 13 and inversely proportional from k¼ 13 to k¼ 18. This can be

explained by the following facts: the maximum value of dcost is equal to the number of internal nodes u of G

that can be mapped on M(u), and the average number of such nodes is 13. All this suggests that, for a given

gene tree, N(k) is maximized at this maximum value of dcost¼ k.

We analyzed the relationship between the NMC and cost distances using the average value of

DNMC(a, a*) over all gene trees G and all reconciliations a 2 W(G, S) such that dcost(a)¼ k, for a given

k 2 N. We also computed the number of nodes u 2 V(G) such that a(u)= areal(u). We observe that the cost

distance of a reconciliation a is proportional both to the NMC distance with the closest optimal recon-

ciliation a* (Fig. 8, center) and to how much a differs from the real reconciliation areal (Fig. 8, right).

5.2. Mammalian group

We generated 10000 gene trees along the species tree of the mammals (Fig. 5), and obtained 9823 non-

empty ones and 446 gene trees after removing multiple copies. As with the Drosophila gene families, over

all the 446 gene trees, amin is either identical or at a distance of a single NMC to areal. Moreover, the

number of global minimums for the duplication cost ranges from 1 to 5, where 374 gene trees have a single
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such that a(u)=areal(u).
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minimum and 64 have 2. Figures 9 and 10 present the same experimental results as the ones for the

Drosophila.

6. CONCLUSION

We described in this work several algorithms for exploring the space of all reconciliations between a

gene tree and a species tree. From an algorithmic point of view, our exhaustive exploration algorithm is

optimal as it requires an (amortized) constant time between successive reconciliations. Our experiments on

two simulated and real datasets with low duplication/loss rates show that even in this case the number of

reconciliations can be very large, but that for all three combinatorial criteria considered there are relatively

few optimal or near-optimal reconciliations, always located close (in terms of NMC distance) to the LCA

reconciliation. Recall that this parsimonious reconciliation is known to be a minimum for all the three cost

models, and the only one for the loss and mutation criteria. This is opposite to the duplication cost, where

there can be more than one optimal reconciliation, which can be counted in polynomial time and explored

in optimal time. We are also able to perform such controlled exploration of sub-optimal reconciliations for

the three cost models, but we know to count the number of such sub-optimal reconciliations only for the

duplication cost. It would be interesting to explore further the combinatorial structure of T (G, S) to see if it

is possible to have as much control on gene losses than we currently have on duplication events.

According to our experimental results on fly and mammalian genomes, parsimonious models (based on

combinatorial costs) are fully justified to infer the real evolutionary scenario for all gene families con-

sidered here. However, more in-depth studies are required to evaluate the efficiency of parsimony as well as

of probabilistic methods in evaluating possible reconciliation scenarios. In this perspective, we are cur-

rently studying the impact of lower/higher duplication and loss rates on the shape of the reconciliation

space when using both, parsimonious and probabilistic criteria. Other natural generalizations of the al-

gorithms described here are handling either non-binary gene or species trees (Chang and Eulenstein, 2006;

Vernot et al., 2008) (or both) and attacking the more difficult problem of multiple gene duplications

(Fellows et al., 1998).
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H3C 3J7, Montréal, QC, Canada

E-mail: hamelsyl@iro.umontreal.ca

1418 DOYON ET AL.


