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Abstract. Reconciliation between a set of gene trees and a species tree
is the most commonly used approach to infer the duplication and loss
events in the evolution of gene families, given a species tree. When a
species tree is not known, a natural algorithmic problem is to infer a
species tree such that the corresponding reconciliation minimizes the
number of duplications and/or losses. In this paper, we clarify several
theoretical questions and study various algorithmic issues related to these
two problems. (1) For a given gene tree T and species tree S, we show
that there is a single history explaining T and consistent with S that
minimizes gene losses, and that this history also minimizes the number
of duplications. We describe a simple linear-time and space algorithm
to compute this parsimonious history, that is not based on the Low-
est Common Ancestor (LCA) mapping approach; (2) We show that the
problem of computing a species tree that minimizes the number of gene
duplications, given a set of gene trees, is in fact a slight variant of a
supertree problem; (3) We show that deciding if a set of gene trees can
be explained using only apparent duplications can be done efficiently, as
well as computing a parsimonious species tree for such gene trees. We
also characterize gene trees that can be explained using only apparent
duplications in terms of compatible triplets of leaves.

1 Introduction

Applying local similarity search tools to genomes of closely related species usu-
ally reveal large clusters of homologous genes, also called gene families . Such
grouping by sequence similarity is not sufficient to infer a common function
for genes. Indeed, in addition to orthologs which are copies in different species
related through speciation, gene families are likely to contain paralogs, which
are copies that have evolved by duplication. Paralogs are more likely to have ac-
quired new functions. In addition to gene duplication, gene losses, arising through
the pseudogenization of previously functional genes, also play a key role in the
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evolution of gene families [23,21,14,10,4,11,19]. Understanding the evolution of
gene families is thus a fundamental question in functional genomics, but also in
evolutionary biology and phylogenomics [28,32].

The most commonly used methods to infer evolutionary scenarios for gene
families are based on the reconciliation approach that compares the species tree
(describing the relationships among taxa) to the gene trees, and implicitly infers
a set of gene duplications and losses. Given a species tree and a set of gene trees,
there can be several reconciliations, and a natural approach is then to select one
optimizing a given criterion, either combinatorial [22] or probabilistic [3]. Natural
combinatorial criteria are the number of duplications (duplication cost), losses
(loss cost) or both combined (mutation cost). The so called Lowest Common
Ancestor (LCA) mapping between a gene tree and a species tree, introduced
in [17] and is widely used studies [24,15,25,33,22,26,5,16,13], defines a reconcil-
iation that minimizes both the duplication and mutation costs [16]. Although
losses appear to be an important phenomenon in the evolution of a gene fam-
ily, they have only recently been explicitly used as a parsimony criterion [7]. It
can be computed efficiently, in linear time [33] or using a simple quadratic time
algorithm [34]. When no preliminary knowledge on the species tree is given, a
natural problem is to infer, from a set of gene trees, a species tree leading to
a parsimonious evolution scenario, for a chosen cost. Similarly to the case of a
known species tree, methods have been developed for the duplication and muta-
tion costs [22,18,8]. For both criteria, the problem of inferring an optimal species
tree given a set of gene trees is hard [22].

In this paper, we present various theoretical results related to the optimization
problems of inferring, for a given gene tree (or a forest of gene trees), an evolution
scenario minimizing a given cost, in both cases of a known and an unknown
species tree.

In Section 3, we clarify the link between the duplication and loss cost criteria
for reconciliation. Given a gene tree T and a species tree S, we show that there is
a single history explaining T and consistent with S minimizing losses, and that
this history also minimizes duplications. This refines recent results showing that
there is a unique reconciliation minimizing the mutation cost [16]. We describe
a simple linear-time reconciliation method, not based on the LCA mapping,
computing this most parsimonious history. Although our new reconciliation al-
gorithm is not the only one running in linear time [33,15], its implementation
is simpler, and it highlights the important combinatorial role of gene losses re-
garding parsimonious evolution scenarios for gene families.

In Section 4, we describe the problem of computing, from a set of gene trees,
a most parsimonious species tree for the duplication cost (the Minimum Dupli-
cation Problem), as an instance of the following restricted supertree problem:
given a set of uniquely-leaf labeled gene trees where only the first speciation is
resolved, compute a species tree that agrees with the largest number of such
gene trees. Clearly, these two problems share some common ground in terms
of goal – inferring a species tree from a collection of gene trees –, but differ
in terms of data – duplicated leaves versus uniquely leaf-labeled trees – and
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considered evolutionary mechanisms: duplication are ignored, at least explicitly,
in supertree problems. The link between these two problems suggests that heuris-
tics for the supertree problem, such as the min-cut greedy heuristic [29,27], are
natural candidate heuristics for the Minimum Duplication Problem. The parallel
with supertrees implies also an efficient algorithm to decide if a set of gene trees
can be explained using only apparent duplications, as well as an efficient algo-
rithm to compute all most parsimonious species trees for a set of such MD-trees
(Minimum-Duplication trees). We also provide a combinatorial characterization
of MD-trees as trees not containing triplets of leaves leading to contradictory
phylogenetic information. The latter characterization of gene trees may be use-
ful to detect ambiguous phylogenetic relationships or possible errors in a set of
gene trees, as we illustrate in Section 5 on a simulated dataset.

2 Preliminaries

Trees. Let G = {1, 2, · · · , g} be a set of integers representing g different species
(genomes). A species tree on G is a binary tree with exactly g leaves, where each
i ∈ G is the label of a single leaf. A gene tree on G is a binary tree where each
leaf is labeled by an integer from G (each tree represents a gene family, where
each leaf labeled i represents a gene copy located on genome i).

For a given vertex x of a tree T , we denote by Tx the subtree of T rooted at
x and by L(x) the subset of G defined by the labels of the leaves of Tx. L(x) is
called the genome set of x. We denote by x� and xr the two children of x, if x
is not a leaf, and by xp its parent if x not the root. An expanded leaf of T is a
vertex x such that |L(x)| = 1 and L(x) �= L(xp), or x is the root of T . A cherry
of a tree is an internal vertex x for which both children are expanded leaves.

Reconciliation. There are several definitions of reconciliation between a gene tree
and a species tree. Here we define reconciliation in terms of subtree insertions,
following an approach used in [16,7]. A subtree insertion in a tree T consists in
grafting a new subtree onto an existing branch of T . A tree T ′ is said to be an
extension of T if it can be obtained from T by a sequence subtree insertions in T .

Given a gene tree T on G and a species tree S on G, T is said to be DS-
consistent with S (following the terminology used in [7]) if, for every vertex x of
T such that |L(x)| ≥ 2, there exists a vertex u of S such that L(x) = L(u) and
one of the two following conditions (D) or (S) holds: (D) either L(xr) = L(x�),
or (S) L(xr) = L(ur) and L(x�) = L(u�).

A reconciliation between a gene tree T and a species tree S is an extension R
of T that is DS-consistent with S (this definition is easily shown to be equivalent
to other definitions of reconciliation [3,12]). Such a reconciliation between T and
S implies an unambiguous evolution scenario for the gene family T where a
vertex of R that satisfies property (D) represents a duplication (the number
of duplications induced by R is denoted by d(R, S)), and an inserted subtree
represents a gene loss (the number of gene losses induced by R is denoted by
�(R, S)). Vertices of R that satisfy property (S) represent speciation events (see
Fig. 1).



New Perspectives on Gene Family Evolution 49

2111 12 31
13 41

2111 12 13

31 41

A

B C

4321

(a)  S:

2432

A

A

A

B B B C
C

(b)

Genome 2Genome 1

Genome 4Genome 3

Speciation {1,2},{3,4}

Duplication

Gene loss

Duplication

Speciation {3},{4}

Speciation {1},{2} Gene loss

Gene loss

(c)  H:

Fig. 1. (a) A species tree S; (b) The reconciliation R of S with the gene tree T rep-
resented by plain lines. Dotted lines represent subtree insertions (3 insertions). The
correspondence between vertices of R and S is indicated by vertices labels. Circles rep-
resent duplications. All other internal vertices of R are speciation vertices; (c) Evolution
scenario resulting from R. Each oval is a gene copy.

Given a gene tree T , it is immediate to see that every vertex x of T such that
L(x�) ∩ L(xr) �= ∅ will always be a duplication vertex in any reconciliation R
between T and S. Such a vertex is called an apparent duplication vertex (or just
apparent duplication for short). For example, in the gene tree T represented by
plain lines in Fig. 1.b., both duplication vertices are apparent duplications.

The notion of reconciliation can naturally be extended to the case of a set, or
forest, of gene trees F = {T1, . . . , Tm}: a reconciliation between F and S is a set
R = {R1, . . . , Rm} of reconciliations, respectively for T1, . . . , Tm, such that each
Ri is DS-consistent with S. We denote by R(F , S) the set of all reconciliations
between F and S.

Optimization problems: We consider three cost measures for a reconciliation
R(F , S) between a gene tree forest F = {T1, . . . , Tm} and a species trees S. The
duplication cost is given by d(R, S) =

∑m
i=1 d(Ri, S), the loss cost by �(R, S) =∑m

i=1 �(Ri, S) and the mutation cost by m(R, S) =
∑m

i=1 d(Ri, S)+�(Ri, S). For
a given cost measure C (here d, � or m), there are two natural combinatorial
optimization problems, depending on whether a species tree is known or not.
Minimum Reconciliation C Problem:
Input: A gene tree forest F on G and a species tree S for G;
Output: A reconciliation R with minimum cost C(R, S).
Minimum C Problem:
Input: A gene tree forest F on G;
Output: A species tree S such that minR∈R(F ,S) C(R, S) is minimum.

The Minimum Duplication Problem and Minimum Mutation Problem
with multiple gene trees are NP-complete [22]. The complexity status of the
Minimum Loss Problem is still unknown.

3 Reconciled Trees

Let T be a gene tree on G. We assume that a species tree S is already known
for G. The LCA mapping between T and S, denoted by M , maps every vertex
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x of a gene tree T towards the Lowest Common Ancestor (LCA) of L(x) in S.
This mapping induces a reconciliation between T and S (see [12] for example)
where an internal vertex x of T leads to a duplication vertex if M(x�) = M(x)
and/or M(xr) = M(x). We denote by M(T, S) the reconciliation between T and
S defined by the LCA mapping. It has been shown recently [16] that M(T, S)
is the only reconciliation that minimizes the mutation cost, while there can be
several reconciliations that minimize the duplication cost. The following theorem
refines this result.

Theorem 1. Given a gene tree T and a species tree S, M(T, S) minimizes the
duplication, loss and mutation costs. Moreover, M(T, S) is the only reconciliation
between T and S that minimizes the loss cost and minimizes the mutation cost.

In [7, Prop. 1], it was shown that M(T, S) is optimal for the loss cost. On the
other hand, the fact that M(T, S) is optimal for the duplication cost is a well
known result (see [16] for a recent reference for example). It follows that M(T, S)
is optimal for each of the three costs. It then remains to show that M(T, S) is
the unique reconciliation between T and S that is optimal for the loss cost. This
would imply that M(T, S) is also the unique reconciliation that minimizes the
mutation cost (a result proved in [16] although in a more complicated way) and
complete our proof. To do so, we rely on a new simple linear-time algorithm that
computes a reconciliation between T and S and minimizes the loss cost.

Algorithm Minimum-Reconciliation described below takes a gene tree T and
a species tree S as input, and returns a reconciled tree R. Roughly speaking,
the algorithm proceeds as follows: it traverses the gene tree T from the leaves to
the root, and completes by subtree insertions the subtrees of T corresponding
to the successive speciation events of S, from the latest ones to the earliest one.
An example is given in Figure 2.

Algorithm Minimum-Reconciliation (T ,S):

1. Set R = T , R′ = R and S′ = S;
2. While S′ is not reduced to a single vertex.

(a) Visit the expanded leaves of R′ given S′

i. Let x be the current expanded leaf of R′ and y its sibling;
ii. Let u be the leaf of S′ with L(u) = L(x) and v its sibling;
iii. If L(y) �= L(v) then insert in R on the branch between x and xp a

leaf labeled by L(v);
(b) Reduce each subtree of S′ and R′ corresponding to a cherry of S′ to a

single leaf labeled with the cherry genome set;
3. Return (R);

Theorem 2. Given a gene tree T on G and a species tree S for G, Algo-
rithm Minimum-Reconciliation reconstructs the unique reconciliation be-
tween T and S that minimizes the number of gene losses. It can be implemented
to run in O(n) time and space.
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Fig. 2. Left: speciation tree S. Right: reconciliation tree R constructed over the gene
tree T represented by solid lines. Three executions of Algorithm Minimum-Reconciliation
loop of step 2 are required, and the successive lists of considered cherries of S′ are
represented by circles for the first iteration, a rectangle for the second iteration and
ovals for the third iteration.

Proof. At the end of this algorithm, the resulting tree R is DS-consistent with
S as it recursively completes cherries in R according to S. Therefore, R is a
reconciliation of T and S. Moreover, as the algorithm considers each vertex of T
exactly once, it can be implemented in a single post-order traversal of T . Han-
dling vertices labeled by genome sets can be done efficiently by replacing such
sets by integers, as was done in the algorithm DS-Recognition described in [7]
that decides if a gene tree can be explained without gene loss by comparing the
cherries of the gene tree to the cherries of the species tree. In fact Algorithm
Minimum-Reconciliation can be implemented as a direct extension of algo-
rithm DS-Recognition. Combined with the fact that subtree insertions can be
implemented in constant times using pointers on vertices of S, this leads to a
linear time and space complexity with low constants and using only simple data
structures.

From now on, we denote by MinR(S, T ) the reconciliation tree obtained by
Algorithm Minimum-Reconciliation, and we show that MinR(S, T ) is the
only reconciliation between T and S that minimizes the number of losses. To
prove this, we use the fact that each gene loss is represented by a subtree in-
sertion. Given a species tree S, a gene tree T , and a cherry u of S such that
L(u) = {a, b}, it follows from the definition of DS-consistency that every ex-
panded leaf x of T with L(x) = {a} or L(x) = {b} has to be completed, if re-
quired, by inserting a sibling in order to form a cherry labeled {a, b}. Hence, all
subtree insertions performed by Algorithm Minimum-Reconciliation when
visiting the set of expanded leaves of T (first iteration of step 2) are required in
order to extend T into a tree that is DS-consistent with S. The same property
holds recursively to the following iterations of step 2, which implies that all sub-
tree insertions performed by Algorithm Minimum-Reconciliation are nec-
essary in order to extend T into a tree that is DS-consistent with S. Combined
with the fact that, at the end of the algorithm, MinR(S, T ) is DS-consistent
with S and the fact that the number of subtree insertions is the number of gene
losses induced by MinR(S, T ), this completes the proof. ��

Remark 1. It follows from Theorem 1 that minimizing losses results in mini-
mizing duplications, as the unique solution to the Minimum Reconciliation
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Loss Problem is a solution to the Minimum Reconciliation Duplication
Problem. The converse is not true, as more than one solution may exist, in
general, for the Minimum Reconciliation Duplication Problem. Stated
differently, the loss cost criterion is more constraining than the duplication
cost criterion for reconciliation. This property does not hold anymore in the
case of inferring a species tree from a set of gene trees: the species tree that
minimizes losses does not always minimizes duplications, and conversely. Even
a weaker property does not hold in this case: there is not always a common
solution to the Minimum Duplication Problem and the Minimum Loss
Problem.

4 Gene Duplication and Supertrees

The general supertree problem can be stated as follows: given a set of uniquely
leaf-labeled gene trees (i.e. in each gene tree no two leaves have the same label),
compute a species tree optimizing some combinatorial criterion. A natural crite-
rion is to maximize the number of input gene trees that are DS-consistent with
the species tree (called a supertree).

The Minimum Duplication Problem is a supertree problem. We follow [31] to
introduce terminology on supertrees. Given two uniquely leaf-labeled trees T
and T ′, possibly non-binary, we say that T ′ refines T (denoted by T ′ → T ) if
T can be obtained from T ′ by a sequence of contraction of internal edges of
T ′. Given a species tree S on G and a subset H of G, we denote by S|H the
induced species tree on H, obtained by first removing all vertices x of S such
that L(x) ∩ H = ∅ and next removing all vertices of degree two. A, possibly
non-binary, gene tree T is consistent with a species tree S if S|L(T ) → T , and
inconsistent otherwise. Finally, a uniquely leaf-labeled tree T on G is said to be
a bipartition of G if T contains only three internal vertices x (the root), xr and
x�, and L(xr) ∩ L(x�) = ∅ (xr and x� are possibly non-binary vertices). For a
given set B = {B1, . . . , Bm} of bipartitions of G and a species tree S on G, we
denote by c(B, S) the number of Bi’s that are inconsistent with S.

We now introduce a simple variant of the general supertree problem, where
each gene tree indicates a single speciation.
Minimum Bipartition Inconsistency Supertree (MBIS) problem
Input: A set of bipartitions B of G;
Output: A species tree S such that c(B, S) is minimum.

Given a binary gene tree T and a vertex x of T that is not an apparent
duplication, we define the bipartition associated to x, denoted B(T, x), as the
bipartition with root y and internal vertices yr (resp. y�), such that L(yr) =
L(xr) and L(y�) = L(x�). Given a forest F = {T1, . . . , Tm} of binary gene trees,
we denote by B(F) the set of bipartitions associated to all vertices of the trees
of F that are not apparent duplications.
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Theorem 3. Let F be a forest of gene trees on G and k be the number of ap-
parent duplications present in the trees of F . Then, for any species tree S on G,
d(F , S) = k + c(B(F), S).

Proof. Apparent duplications are associated to duplications for every species tree
S. Hence the remaining duplications (there are d(F , S) − k such duplications,
for a given species tree S) are not apparent duplications. Let x be such a vertex,
belonging to a tree T of F . As the reconciliation with S implies that x is a
duplication, without loss of generality, we can assume that M(xr) = M(x) (M
is the LCA mapping between T and S). Hence there are two elements a, b ∈ G
such that a, b ∈ L(xr) and, if M(x) = u, a ∈ L(ur) and b ∈ L(u�). This implies
that S|L(x) does not refine B(T, x), and thus B(T, x) is not consistent with S.

Conversely, let B = B(T, x) be a bipartition of B(F) that is not consistent
with S. It is clear that if S|L(B) refines B, then it can be transformed into B by
contracting all internal edges that are not incident to its root. Thus, if B(F) is
not consistent with S, there should be two elements a, b ∈ G that do not belong
to a proper subtree of S|L(B), but belong to a proper subtree of B (say the
subtree rooted at xr). This implies that M(x) = M(xr) and then that x is no
an apparent duplication but counts for a duplication when reconciled with S. ��

This result shows that inferring a most parsimonious species tree for the dupli-
cation cost is equivalent to a restricted supertree problem that considers only
very pathological input gene trees (bipartitions). Note however that despite the
very restricted nature of its input trees, the MBIS Problem is NP-complete,
which is deduced from the NP-completeness of the Minimum Dup. Problem.
Another simple variant of the supertree problem, where input gene trees are
rooted triplets (the Max. Triplet Consistency Supertree prob.), has been shown
to be NP-complete [6].

The link between the two problems has the interesting consequence that
heuristics for the supertree problem are then natural candidate heuristics for
the Minimum Duplication Problem. In particular, min-cut based heuristics
such as those developed in [29,27] can be directly applied to bipartitions (see Sec-
tion 5). Such heuristics can then be seen as greedy approaches to the Minimum
Duplication Problem, that, as far as we know, has never been used for the
Minimum Dup. Problem, while it follows very naturally from its description
as a supertree problem. The resulting species tree can then be used as a starting
point for local-search algorithms such as the one presented in [2].

Minimum Duplication trees and compatible trees. A gene tree forest F is said
to be a Minimum Duplication forest (from now an MD-forest) if there exists a
species tree S such that d(F , S) is exactly the number of apparent duplications
present in the trees of F . In such case, F is said to be MD-consistent with S.

Theorem 4. Deciding whether a forest of gene trees F is an MD-forest and
computing the set of all species trees S such that F is MD-consistent with S can
be done in polynomial time and space.
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Proof. Assume that F contains p vertices that are non-apparent duplications,
we first note that B(F) contains O(p) bipartitions. Following Theorem 3, the
problem of deciding if F is an MD-forest reduces to deciding if c(B(F), S) =
0. Several algorithms exist that answer this question in polynomial when the
input consists of rooted triplets [1] or unconstrained rooted binary trees [9,20].
However, these algorithms can be easily adapted to our situation. For example,
the algorithm of [1], as described in [30], can be used if we simply define the
edges of connectivity graph as follows: for two elements i, j ∈ G, there is an edge
between i and j if and only if there is a bipartition B of F such that i and j
belong to the same proper subtree of B.

To compute the set of all species trees such that F is MD-consistent with S,
we can use the polynomial time and space algorithm of [9] by replacing each
subtree rooted at a non-binary vertex x of the bipartitions B(F), with leaf
set L(x) = {i1, . . . , ik} such that i1 < i2 < . . . < ik by the caterpillar tree
(i1, (i2, . . . (ik−1, ik), . . .)). ��
We now provide a simple combinatorial characterization of MD-trees and MD-
forests in terms of triplets of species. A vertex of T is said to split three species
{a, b, c}, into {a, b; c} if the genome set of one of its children contains a and b but
not c, and the genome set of its other child contains c but neither a nor b. Let x
and y be two vertices of a gene tree T , that are non-apparent duplications. They
disagree on a triplet {a, b, c} of species if they split {a, b, c} in different ways (say
{a, b; c} and {a, c; b} for example). A gene tree T on G is compatible if no pair of
non-apparent duplication vertices disagrees on any triplet of species. For a given
species tree S on G, T is said to be a compatible gene tree consistent with S if
it is compatible, and every triplet of species {a, b, c} is split in the same way by
the LCA of these species in S and by any non-apparent duplication vertex of T
that split them. These definitions extend naturally to a forest of gene trees.

Theorem 5. Let F be a gene tree forest on G, and S be a species tree for G.
Then F is a compatible gene tree forest consistent with S if and only if F is an
MD-forest consistent with S.

Proof. We consider a compatible gene tree T , as the proof generalizes in a
straightforward way to forests.

Suppose first that T is not a compatible gene tree. Then there are two non-
apparent duplication vertices v and w that split a triplet of species {a, b, c} into
two different ways, say {a, b; c} for v and {a, c; b} for w. If {a, b, c} are split into
{a, b; c} in a species tree S, then w is a duplication vertex as it maps to the same
vertex of S than its child that contains leaves labeled by a and c, and then T
is not an MD-tree. Similarly, v is a duplication vertex if {a, b, c} are split into
{a, c; b} in S and both v and w are duplication vertices if {a, b, c} are split into
{b, c; a} in S.

Suppose that T is a compatible gene tree that is not consistent with S. Then
there is a triplet {a, b, c} of elements of G and a non-apparent duplication vertex
v of T that splits {a, b, c} in a different way than they are in S. W.l.o.g, let
assume that v splits them into {a, b; c} while in S they are split into {b, c; a}.



New Perspectives on Gene Family Evolution 55

Then v is a duplication vertex, as it maps to the same vertex of S than its child
that contains leaves labeled by a and b. Therefore, as T contains a vertex that is
a duplication vertex but not an apparent duplication vertex, T is not an MD-tree
consistent with S.

Conversely, suppose that T is not an MD-tree consistent with S. Then there
is a vertex v in T that is a duplication vertex but not an apparent duplication
vertex. As v is a duplication vertex, v maps to the same vertex of S than one
of its child v� or vr, let say its left vertex v�. Moreover, as v is not an apparent
duplication, there are two leaves xa and xb of Tv�

labeled respectively a and b,
and a leaf xc in Tvr labeled c that imply that {a, b, c} is split into {a, b; c} by v,
while {a, b, c} is split into {b, c; a} in S. Therefore, T is not a compatible gene
tree consistent with S. ��
Corollary 1. A gene tree forest F on G is a compatible gene tree forest if and
only if F is an MD-forest.

Proof. We will prove the result on a single gene tree T . The generalization to a
forest F is straightforward.
“⇐” This case follows directly from the previous proof.
“⇒” Suppose that T is a compatible tree. Then for any triplet {a, b, c} of distinct
elements of G, any non-apparent duplication vertex of T splits them in the same
way. Then there is a DLS-history H for T leading to a species tree S such that,
for any triplet {a, b, c} of distinct elements of G, S splits {a, b, c} in the same way
than any non-apparent duplication vertex of T . It follows that any vertex v of T
that is not an apparent duplication vertex is not a duplication vertex for H . ��
From a theoretical point of view, the above results are interesting as they can
be seen to be the MD-trees counterpart of a well known result about supertrees
stating that deciding if, given a set of gene trees, there is a species tree that
agrees with all of them, is equivalent to checking the same property on all triplets
induced by these gene trees. From a practical point of view, triplets of species can
be used to point at possibly ambiguous phylogenetic relationships and possibly
misplaced genes in the gene tree, as we illustrate in the next section.

5 Experimental Results

We generated gene families, as in [7], using the species tree of 12 Drosophilia
species given in [19] (including branch length) and a birth-and-death process,
starting from a single ancestral gene, with four different gene gain/loss rates
(expected number of events by million years): 0.02 (the highest rate identified
in [19]), 0.05, 0.1 and 0.2. For each rate, we generated 250 gene trees, described
in Table 1. Note that more than 95% of gene duplications lead to an apparent
duplication vertex. Note also that the number of informative bipartitions (i.e. bi-
partitions with at least two leaves) induced by non-apparent duplication vertices
decreases dramatically as the rate of gene gain/loss increases 1.
1 All the material is available at: http://www.cecm.sfu.ca/∼cchauve/SUPP/RECOMB09
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Table 1. Characteristics of simulated gene trees. Considered bipartitions are those
containing more than two species.

Rate Nb. of Nb. of Losses Nb. of Genes Nb. of Int. Nb. of Apparent Nb. of
Duplications vertices duplications Bipartitions

0.02 1080 976 3014 2752 1057 831

0.05 2018 1366 3622 3360 1948 593

0.1 3126 1603 4376 4114 3007 358

0.2 6123 2552 7709 7447 5875 429

For each of the four datasets, we extracted the informative bipartitions in-
duced by the non-apparent duplication vertices. We then used the Modified
Min-Cut algorithm described in [27] to compute a species tree from these bi-
partitions. With rates 0.02 and 0.04, this species tree is the correct species tree,
while with rate 0.1, it differs from the correct one by a single branch swap, and
with rate 0.2, it differs from the correct one by the fact that two consecutive
binary nodes have been replaced by a single quaternary node. The fit statistic
associated to the inferred species tree, that measures how well it agrees with the
bipartitions, is very high, ranging from 0.98 to 0.855 (maximum fit is 1). This
shows the effectiveness of the supertree approach using bipartitions, at least on
a dataset of relatively close species where few vertices indicating a speciation are
false positive.

We also studied the phylogenetic signal given by triplets of species that were
split by non-apparent duplication vertices. With rates 0.02 and 0.05, for each
triplet of species, there is a phylogeny that appears in most cases. However, with
rates 0.1 and 0.2, among the triplets that appear a significant number of times
(at least 50 times), the ones where the dominant phylogeny appears in less than
90% of the bipartitions splitting this triplet, contain the two species involved in
the branch swap or species involved in the unresolved node that differs from the
correct species tree. This illustrates the interest in using triplets of species that
are split by non-apparent duplication vertices to point at possible locations of
an inferred species tree that are associated with a weaker phylogenetic signal.

6 Conclusion

In this paper, we show that minimizing losses is a more constraining criterion
than minimizing duplications for reconciliation. This highlights the importance
of the former criterion from a combinatorial point of view, although it has been
rarely considered alone in reconciliation approaches. Our second main result re-
lates the problem of inferring a species tree minimizing duplications (given a set
of gene trees), to a supertree problem. This link has important implications, as
it allows, for example, to use min-cut based algorithms to infer a species tree
from a set of gene trees. Moreover, this link with supertree problems allowed
us to highlight properties of gene trees that could be exploited for gene tree
correction. Indeed, a major problem with reconciliation, and its generalization
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to an unknown species tree, is that errors in gene trees usually lead to erro-
neous duplication/loss histories, and potentially to a wrong species tree. There-
fore, eliminating a number of potentially misleading gene copies is an important
preliminary step to any reconciliation approach. In this context, non-apparent
duplications, or triplets leading to contradictory phylogenetic informations, may
point at gene copies that are possibly erroneously placed in the gene tree. Our
preliminary experimental results tend to support this strategy for pruning gene
trees.
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