
Universität Bielefeld

Technische Fakultät
Abteilung Informationstechnik
Forschungsberichte

On Common Intervals with Errors

Cedric Chauve Yoan Diekmann Steffen Heber

Julia Mixtacki Sven Rahmann Jens Stoye

Report 2006-02

Impressum: Herausgeber:
Ellen Baake, Robert Giegerich, Ralf Hofestädt, Franz Kummert,
Peter Ladkin, Ralf Möller, Helge Ritter, Gerhard Sagerer,
Jens Stoye, Ipke Wachsmuth

Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, Postfach 10 01 31,
33501 Bielefeld, Germany

ISSN 0946-7831

On Common Intervals with Errors

Cedric Chauve ∗ Yoan Diekmann † Steffen Heber ‡

Julia Mixtacki § Sven Rahmann ¶ Jens Stoye ‖

October 23, 2006

The information that groups of genes co-occur in several genomes provides
a basis for further comparative genomic analysis. The task of finding such
constellations, mostly referred to as gene clusters, has led to various models
of increasing generality. A central feature to enhance the biological relevance
of their definition when applied to real genomic data is to allow for slight
differences in the gene content within a cluster, thus not only considering
groups of exact equality. We contribute a model defining gene clusters as
common intervals with errors and discuss different representations and the
corresponding problems resulting for the search procedure.

1 Introduction

The last years have seen a steadily increasing number of available completely sequenced
genomes, allowing access to information about gene locations of a large number of or-
ganisms. Based on this knowledge, the comparison of genomes on a higher level – that
means, considering genes rather than nucleotides as smallest entities – provides insight
into various problems emerging in genomic science.

One approach analysing the spatial organisation of genes is concerned with so called
gene clusters, that are groups of genes co-localised in several genomes, which might result

∗Comparative Genomics Laboratory and LaCIM, Université du Québec à Montréal, Canada, and De-

partment of Mathematics, Simon Fraser University, Canada. Work funded by an NSERC discovery

grant. chauve@lacim.uqam.ca
†Technische Fakultät, Universität Bielefeld, Germany. ydiekman@TechFak.Uni-Bielefeld.DE
‡Dept. of Computer Science, North Carolina State University, Raleigh, NC, USA. sheber@ncsu.edu
§International NRW Graduate School in Bioinformatics and Genome Research, Universität Bielefeld,

Germany. julia.mixtacki@uni-bielefeld.de
¶Algorithmen und Statistik für Systembiologie, AG Genominformatik, Technische Fakultät, Universität

Bielefeld, Germany. rahmann@CeBiTec.uni-bielefeld.de
‖AG Genominformatik, Technische Fakultät, and Institut fr Bioinformatik, Universität Bielefeld, Ger-

many. stoye@TechFak.Uni-Bielefeld.DE

1

from many factors such as vertical inheritance or functional selection [32]. The fact that
selective pressure has conserved the genes in each others’ neighborhood during evolution
indicates that gene order has functional implications [5], examples being operons of
prokaryotic organisms [20] or metabolic relationships [25]. Thus finding gene clusters
conserved through several genomes can amongst others be used for operon prediction,
but also for functional inference of uncharacterised genes, if the function of a gene located
in the same conserved cluster is known.

Other research fields use the information that the analysis of gene clusters provide,
for example to reconstruct rearrangement events [9], with the aim of inferring ancestral
genomes or elucidating phylogenetic relationships (see [3] for example).

To deal with areal organisation of genes, in comparative genomics gene order is often
modelled by assigning a number to every gene, where in general each number labels a
unique family of homologous genes. This represents a genome as a permutation if the
numbers are unique, or as a sequence if genes exceeding a certain degree of similarity
are assigned the same number. Though permutations are the stronger mathematical
structure, they do not allow to model multiple occurrences of genes, namely paralogous
genes that are results of a duplication of an ancestor gene. However, since this is a
common event in evolution, sequences are the more natural way to model gene order,
though at the price of apparently higher problem complexities.

Based on this model, one can define very generally a gene cluster as a set of gene
family labels such that, in some genomes of the considered dataset, the genes belonging
to these families are clustered together along the genome. These genome segments that
contain the genes of a cluster, that are intervals of the integer sequences representing the
genomes, are called the locations of the cluster. The main question in defining a gene
cluster model is to describe (1) the kind of data (permutations or sequences) it applies
to and (2) the link between clusters and their locations. We describe below the main
gene cluster models developed so far.

The first concept subsequently applied to model gene clusters was defined by Uno
and Yagiura [30], who devised the structure of common intervals on two permutations.
Common intervals are pairs of intervals containing the same set of elements. For two
permutations of n elements, the authors describe an O(n + k) time algorithm, where k
(≤ n(n − 1)/2) is the number of common intervals. This algorithm is optimal in the
sense that n and k correspond to the size of the input and output respectively.

This model was extended to more than two permutations by Heber and Stoye [17].
They defined a generating subset of i (≤ n − 1) common intervals, called irreducible
intervals, and devised an optimal O(kn + K) time algorithm to find all K common
intervals of k permutations of length n. A simpler algorithm achieving the same result
was recently given in [2].

An important generalisation was made by Luc et al. [21] introducing the notion of gene
teams. Gene teams on permutations are defined as common intervals but allow to have
gaps between consecutive elements of the cluster not exceeding a specified threshold-
number of genes. This way of dealing with errors, also referred to as max-gap clusters
[18], completely disregards the “intruder”-genes as well as their total number, they are of

2

no further importance for the definition of a cluster. In [21], an O(kn log2 n) algorithm
is given detecting all gene teams in k permutations of length n. The algorithm finds
gene teams that are present in all k permutations, though it could be modified by simple
pairwise comparison such that gene teams are found that are present in at least q ≤ k
of the input permutations. Such a threshold of the subset size is called a quorum.

A step towards modeling gene clusters on sequences was published by Eres et al. in
[11]. They establish a definition of clusters on sequences, handling them as permutations
of multisets of characters, therewith distinguishing between clusters with the same set
of characters but different length.

Two algorithms reporting clusters defined as sets of characters on sequences were
presented by Schmidt and Stoye [29], whose clusters are conceptually similar to common
intervals with the advantage of allowing paralogs. They gave a simple O(n2) time and
space algorithm for two sequences of length at most n whose time complexity increases
to O(k(1 + k − q)n2) if applied to k sequences with a quorum q. A further result in
[29], based on an earlier algorithm by Didier [7], has also quadratic time complexity,
but requires only linear space. This algorithm was simplified in [8], where in addition
another algorithm is presented that finds all common intervals in O(n|Σ| log |Σ|) time,
based on the fingerprinting technique from [1].

The drawback of a rigid definition of clusters without considering errors can partially
be compensated by a post-processing step [28], where clusters are fused that contain
some non-matching genes according to a parameter p, called identity rate.

The conceptual union of gene teams and sequences is due to He and Goldwasser [16],
who published a recursive algorithm detecting max-gap clusters, termed COG teams,
on two sequences in O(mn) time, m and n being the number of common genes in each
sequence. The shortcoming of this approach is that it is not defined on and does not
efficiently generalise to multiple genomes, as the algorithm’s complexity would grow
exponentially in the number of sequences. In fact, it was shown in [26] that the number
of gene teams for more than two genomes represented by sequences can be exponential
in the size of the genomes. This rules out any hope to design an efficient algorithm for
computing all gene teams in more than two sequences.

As hinted in the description of gene teams, modelling clusters as subsequences with
limited gap size has consequences in terms of cluster properties, which are not always
favorable. All gapped cluster definitions ensure that the borders of any location of
a cluster are no gaps, but in between no restriction bounds the number of genes not
belonging to the cluster, as long as no gap is larger than the specified threshold. As a
result, locations of max-gap clusters can grow arbitrarily in worst case without ensuring
a minimum density, i.e. the ratio between the number of gene families that appear in
this location and the number of genes actually belonging to the cluster can become
arbitrarily small.

A biological interpretation of gene clusters conjectures that co-regulation processes due
to the gene neighborhood on chromosomes is the evolutionary ground for the observed
functional associations of the resulting proteins, which also speaks against a model not
allowing to directly regulate the broadening of a cluster.

3

This report proposes an alternative model for gene clusters, basically differing in the
way how errors are handled. The max-gap approach to introduce errors by allowing gaps
between genes is modified. Instead, a distance measure between sets, inspired by the
edit distance on sequences, is defined.

A similar approach is taken in [27], where additionally a quantitative quality measure
of a cluster based on the set distance measure is introduced, and a general framework
to formulate gene cluster detection as an integer linear program is presented.

The next section points out important gene cluster properties and introduces general
definitions. Section 3 gives different representations of clusters and the corresponding
search problems, which are discussed in Section 4 together with possible enhancements
of the underlying model in future work. The last section concludes this report by sum-
marizing its results.

2 General Definitions

Before defining a new model for gene clusters, it is helpful to first point out different
properties that a new cluster model should combine, and thus achieve a high degree of
flexibility. A more complete analysis of different gene cluster properties is contained in
[18].

Permutation/sequence. As noted in the previous section, modelling genomes as se-
quences allows to consider paralogous genes and gene loss. Therefore this approach
incorporates a higher degree of biological reality, whereas permutations generally
allow to design more efficient algorithms.

Multiple genomes. It is a desirable property if gene cluster models extend to multiple
genomes, without losing the ability to design a feasible algorithm to find them.

Quorum parameter. A quorum parameter enables to find clusters present only in a sub-
set of all genomes, whereby the model gains flexibility and the number of potential
clusters is augmented.

Allowing Errors. Relaxing the claim of equality between the gene set that defines a
cluster and the gene contents of the intervals that define its locations improves the
flexibility of the model as it allows to detect clusters that evolved through events
of gene loss, insertion or fusion for example.

The notation used in the following sections is adapted from the one in [29].
Starting point is a finite alphabet Σ = {1, . . . , σ} of characters representing genes,

which are concatenated leading to sequences representing genomes. For a sequence S,
S[a] refers to the a-th character of S, S[a, b] to the substring S[a]S[a + 1] . . . S[b], and
|S| to the length of S. We assume that all sequences that occur are bounded in length
by a finite number n.

Important for the further development of the model is the definition of character sets,
which allows to consider intervals independently from multiple occurrences of characters.

4

Definition 1 (character set) Given a string S over a finite alphabet Σ, the character
set of S is defined by

CharSet(S) := {S[k] | 1 ≤ k ≤ |S|} ⊆ Σ.

The set of all character sets of substrings of S is denoted by

Call(S) := {CharSet(s) | s is a nonempty substring of S}.

Given a set of k distinct strings S = {S1, . . . , Sk}, we extend the above definition of
Call to S in a natural way:

Call = Call(S) :=
k

⋃

i=1

Call(Si).

Example. Consider the set of sequences S = {S1, S2, S3} over the alphabet Σ = {1, 2, 3}.

1 2 3 4 5 6

S1 = 1 1 2 1
S2 = 1 2 3 3 2 1
S3 = 3 3 2 1 1

Then Call = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.

In a model making no allowance for errors, exact equality of character sets is the
method of choice when defining a gene cluster. A way to relax this condition and detect
more rearranged clusters is to introduce a notion of distance between sets, and consider
resemblance within the bounds of a distance parameter instead of equality.

A possible distance measure is the following:

Definition 2 (symmetric set distance) Given two character sets C and D, the sym-
metric set distance is defined as

dS(C,D) = |(C ∪D) \ (C ∩D)| = |C \D|+ |D \ C|.

A comparison with edit distances on sequences suggestes another distance measure as
follows. In sequence alignment mostly three edit operations are considered: insertion,
deletion and substitution, each of which can, in general, be assigned an individual cost.
The Levenshtein or unit cost edit distance assigns a cost of one to all three operations.

Sequence alignments are often used in the comparison of biological sequences, where
point mutations inevitably occur over time and modify sequences in the course of evolu-
tion. Assuming genomic dynamics – though on a wider time scale – leading to successive
transformation of genes, an analogous consideration on sets leads to the following dis-
tance definition:

Definition 3 (set transformation distance) Given two character sets C and D, the
set transformation distance is defined as

dT (C,D) = max{|C \D|, |D \ C|}.

5

This distance between character sets alludes to the unit cost edit distance by counting
mismatches just once.

Remark 1 It is easy to check that dS and dT are indeed proper distances. In particular,
they satisfy the triangle inequality.

Given a parameter denoting a maximally allowed absolute or relative distance, it is
possible to define the neighborhood of a character set, i.e., all character sets not exceeding
the given distance from it.

Definition 4 ((absolute) d-neighborhood) Given an integer d ≥ 0 and a charac-
ter set C over an alphabet Σ, the (absolute) d-neighborhood Nd(C) of C according to
distance function dist is defined as

Nd(C) := {C ′ ⊆ Σ | C ′ 6= ∅, dist(C,C ′) ≤ d}.

More generally, given a set of character sets C = {C1, . . . , Cm} the d-neighborhood of C
is defined as

Nd(C) =

m
⋃

i=1

Nd(Ci).

Finally, the d-neighborhood of a string S or of a set of strings S is defined as the d-
neighborhood of the corresponding Call sets:

Nd(S) := Nd(C
all(S)), Nd(S) := Nd(C

all(S)).

Example. Given a character set C = {1, 2} over the alphabet Σ = {1, 2, 3}, the 1-
neighborhood of C according to the set transformation distance dT is

N1(C) = {{1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The 1-neighborhood of the set of character sets Call introduced in the last example is

N1(C
all) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},

in this example the whole set of nonempty subsets of Σ.

Remark 2 Given an alphabet Σ, a string S and a parameter d, the d-neighborhood of
S for the symmetric set distance dS contains

(

n
2

)

·
∑d

i=0

(

|Σ|
i

)

elements, which belongs
to O(n2|Σ|d). For the set transformation distance dT , the d-neighborhood of S contains
(

(

n
2

)
∑d

i=0

(|S|1
i

)

)

·
(

(

n
2

)
∑d

j=0

(|S|0
j

)

)

elements, where |S|1 is the number of elements of Σ

appearing in S and |S|0 + |S|1 = |Σ|. This belongs to O(n4|Σ|2d) and is hence quadratic,
in the worst case, with respect to the size of the d-neighborhood of S for the symmetric
set distance.

6

In the definition of the d-neighborhood, the maximally allowed distance d is constant
for all character sets, irrespective of their size. This can easily lead to problems: For any
d, the neighborhood of all character sets of size ≤ d would contain the empty character
set, which appears everywhere. Therefore it has been specifically excluded from the
neighborhood definition. Even so, the neighborhoods of all character sets of size ≤ d+1
contain d + 1 singleton character sets, which are also expected to occur frequently. An
alternative that avoids such problems is to define the neighborhood size relative to the
character set size.

Definition 5 ((relative) ε-neighborhood) Given a real number ε ≥ 0 (typically for
meaningful results, but not necessarily, ε < 1) and a character set C ⊆ Σ, the (relative)
ε-neighborhood Uε(C) of C according to an integer-valued distance function dist is
defined as

Uε(C) := {C ′ ⊆ Σ | dist(C,C ′) ≤ bε · |C|c}.

For a set of characters sets C = {C1, . . . , Cm} and for a string S and a set S of strings,
the ε-neighborhoods Uε(C), Uε(S), and Uε(S), are defined similarly to the respective d-
neighborhoods.

Remark 3 While the d-neighborhood has a simple symmetry property,

D ∈ Nd(C) ⇐⇒ C ∈ Nd(D),

this is more complicated for the ε-neighborhood: Let C and D be two character sets
with |C| ≥ |D| and let ρ := |C|/|D| ≥ 1. Then

D ∈ Uε(C) ⇐⇒ C ∈ Uρε(D).

Proof. Let d := bε|C|c = bρε|D|c.
Then D ∈ Uε(C) ⇐⇒ D ∈ Nd(C) ⇐⇒ C ∈ Nd(D) ⇐⇒ C ∈ Uρε(D). �

Based on the definition of distance between character sets, a cluster consists of a set
of character sets not too different in their gene content, and the information where on
the genomes intervals with these character sets can be found.

A first definition formalizes the notion of “not too different”.

Definition 6 (d-occurrences, ε-occurrences, representative) Let Crepr be a char-
acter set and d ≥ 0 be an integer (ε ≥ 0 a real number). The d-occurrences (ε-
occurrences) of Crepr in a set of strings S are given by the set

C = Call(S) ∩Nd(Crepr)
(

C = Call(S) ∩ Uε(Crepr)
)

.

Crepr is called a representative of C.

Note that the representative itself does not need to be present in any of the sequences
of S; see also Figure 1.

The next definition allows to describe more precisely the occurrences of a character
set or set of character sets in a set of sequences.

7

Definition 7 (location set) Given k sequences S = {S1, . . . , Sk} and a character set
C, the location set LC of C is the set of all triples (i, a, b) with

CharSet(Si[a, b]) = C

satisfying the length-maximality condition

(a = 1 or Si[a− 1] /∈ C) and (b = |Si| or Si[b + 1] /∈ C).

Given a set of character sets C, LC designates the union of the location sets of all elements
of C.

A definition crucial to handle the quorum concerns the set of sequences covered by a
location set.

Definition 8 (covering) Given k sequences S = {S1, . . . , Sk} and a character set C
with its location set LC = {(i1, a1, b1), . . . , (il, al, bl)}, the character set C or equivalently
LC is said to cover the set of sequences {Si1 , . . . , Sil} ⊆ S.

With these prerequisites a gene cluster on multiple sequences can be defined, allowing
errors and a quorum.

Definition 9 (d-cluster, ε-cluster) Given k sequences, an absolute distance threshold
d ≥ 0 (relative distance threshold ε ≥ 0) and a quorum q, 2 ≤ q ≤ k, a pair (Crepr, LC)
is called a d-cluster (ε-cluster) if and only if LC is the location set of the set C of all
d-occurrences (ε-occurrences) of Crepr, and LC covers at least q sequences.

We simply speak about a cluster when we mean either a d-cluster or an ε-cluster.

Example. Considering the sequences S defined in the first example and a quorum q = 3,
the following pairs are 1-clusters according to the set transformation distance dT :

α = ({1, 3}, {(2, 1, 6), (3, 1, 5), (1, 1, 4), (2, 1, 2), (2, 5, 6), (3, 3, 5), (2, 2, 5), (3, 1, 3),
(1, 1, 2), (1, 4, 4), (2, 1, 1), (2, 6, 6), (3, 4, 5), (2, 3, 4), (3, 1, 2)})

with d-occurrences Cα = {{1, 2, 3}, {1, 2}, {2, 3}, {1}, {3}}, and

β = ({1, 2, 3}, {(2, 1, 6), (3, 1, 5), (1, 1, 4), (2, 1, 2), (2, 5, 6), (3, 3, 5), (2, 2, 5), (3, 1, 3)})

with d-occurrences Cβ = {{1, 2, 3}, {1, 2}, {2, 3}}.

Remark 4 It follows immediately from the size of a d-neighborhood that the number
of d-clusters can be exponential in d. More precisely, an upper bound on the number
of d-clusters is the minimum of the cardinality of Nd(C

all) and of 2|C
all|. However, if

d is constant, then the number of d-clusters grows polynomially with the length of the
sequences.

8

Definition 10 (maximality of a cluster) Consider a fixed distance parameter d (ε).
A d-(ε-)cluster (Crepr1

,LC1
) is said to be included in a d-(ε-)cluster (Crepr2

,LC2
) if

C1 ⊂ C2, C1 6= C2.
A d-(ε-)cluster that is not included in any other d-(ε-)cluster is said to be maximal.

Example. Continuing the last example one can observe that 1-cluster β is included in
1-cluster α, since Cβ ⊆ Cα.

Definition 11 (equivalence of clusters) Two clusters (Crepr1
,LC1

) and (Crepr2
,LC2

)
are said to be equivalent, denoted by (Crepr1

,LC1
) ' (Crepr2

,LC2
) if C1 = C2. This

relation ' is an equivalence relation and we denote by ({Crepr1
, . . . , Creprk

}, LC) the
equivalence class containing the clusters (Crepr1

, LC1
), . . ., (Creprk

, LCk
).

Example. Considering sequences S from the previous example, with dT = 1 none of
the present d-clusters are equivalent, since all have a different set of d-occurrences.
However, with distance dT = 2 all d-clusters become equivalent and one obtains the
equivalence class ({{1, 2, 3}, {1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3}},LC) with d-occurrences
C = {{1, 2, 3}, {1, 2}, {2, 3}, {1}, {2}, {3}}.

Remark 5 Note that if a cluster of an equivalence class is maximal, then all clusters of
this class are maximal, and we extend the notion of maximality to equivalence classes
of clusters.

3 Finding Common Intervals with Errors

We present three algorithms for the gene cluster detection problem based on different
formulations for common intervals with errors. As shown in the previous section, clusters
can be defined in terms of character sets. We show that the gene cluster detection
problem has equivalent formulations as a maximal clique enumeration problem, and, for
d-neighborhoods, as a d-center decision problem. Using the different formulations, we
gain more insight into the problem’s structure and complexity.

We assume that |Σ| = Θ(n), i.e., alphabet size and sequence length have the same
asymptotic behavior.

3.1 Common Intervals as Character Sets

We first give an algorithm to find all d-clusters in a given set of sequences that follows
the definition of a d-cluster (Definition 9), as, basically, it generates all possible character
sets that could be a representative, and then checks if each of these character sets is a
representative for a set of approximate occurrences that cover at least q sequences (see
Figure 1 for an illustration). The case of ε-clusters is discussed further below.

Algorithm 1 operates in two phases.

9

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

Call

Nd(Crepr)

Nd(C
all)

Crepr

Nd(Crepr) ∩ Call

Figure 1: Graphical visualization of the set Call of all character sets from substrings of
the sequence set S and its d-neighborhood Nd(C

all) (which may be replaced
by the ε-neighborhood Uε(C

all)). The representative Crepr ∈ Nd(C
all) need not

occur in Call. The d-occurrences of Call in S are given by the intersection of
the d-neighborhood Nd(Crepr) with Call, the shaded area.

1. First (lines 1–6), it builds N all = Nd(C
all), which consists of all possible candidates

for representatives. This is done without explicitly generating the set Call first.
Instead, we iterate over each substring s in the sequence set S and add its d-
neighborhood to N all. We leave open the details of the set data structure for N all,
but suggest that it can be implemented by a trie.

The running time of this phase is bounded as follows: There are O(kn2) iterations
of the inner for loop (lines 5–6). For the symmetric set distance, each of them
takes at most O(nd+1) time, for a total running time of O(knd+3). For the set
transformation distance, each iteration takes O(n2d+1) time, for a total running
time of O(kn2d+3).

2. In the second phase the algorithm examines each candidate representative in turn
(lines 7–24) to find out whether its d-occurrences cover at least q sequences (lines
9–15, the number of covered sequences is counted in the variable hits). If yes, we
need to re-scan all sequences to find the exact location set of the d-occurrences of
the representative (lines 17–23).

The work for each candidate is O(kn3); and there are O(knd+2) candidates for sym-
metric set distance and O(kn2d+2) candidates for set transformation distance. This
gives a total running time of O(k2nd+5) for symmetric set distance and O(k2n2d+5)
for set transformation distance.

10

Algorithm 1 Naive d-cluster detection

Input: k distinct sequences S = {S1, . . . , Sk}, a distance d ≥ 0, a quorum q ∈ {2, . . . , k}
1: B Build the set N all of all candidates for Crepr:
2: N all ← ∅
3: for each S ∈ S do
4: for each substring s in S do
5: C ← CharSet(s)
6: N all ← N all ∪Nd(C)
7: B Try each candidate as a representative:
8: for each Crepr ∈ N

all do
9: hits← 0 B counts the number of sequences with at least one d-occurrence

10: for i = 1, . . . , k do
11: for each substring s in Si do
12: Compute δ ← dist(Crepr,CharSet(s))
13: if δ ≤ d then
14: hits← hits + 1
15: next i B Move on after finding first d-occurrence
16: if hits ≥ q then
17: B Compute the location set of Crepr’s d-occurrences
18: L ← ∅
19: for i = 1, . . . , k do
20: for each a, b with 1 ≤ a ≤ b ≤ |Si| do
21: C ← CharSet(Si[a, b])
22: if ((a = 1 or Si[a − 1] /∈ C) and (b = n or Si[b + 1] /∈ C)) and

dist(Crepr, C) ≤ d then
23: L ← L ∪ {(i, a, b)}
24: report (Crepr, L)

Note that, to save memory, the set N all may not need to be constructed explicitly.
Then some Crepr might be tested several times, though, also generating the same output
several times.

Clearly, the naive algorithm would benefit from several optimizations. For example,
before line 11, there are still k − i + 1 sequences to check, and if this is lower than the
missing number of hits (q − hits), we can abort checking this particular Crepr. Also, in
the loops starting at lines 11 and 20, we may in fact not need to check every substring,
but only those of certain constrained sizes. These optimizations are not the focus of this
report, however.

We now discuss the necessary changes for ε-clusters: Instead of a distance parameter
d, we now receive a relative distance threshold 0 < ε < 1 as input.

The main difference is the generation of the candidate set N all, where we must ask
in line 6: Which sets R have C in their ε-neighborhood? Recall that the neighborhood
relation is not symmetric. We may replace line 6 in Algorithm 1 by:
N all ← N all ∪ {R ⊆ Σ | C ∈ Uε(R)}.

11

We leave open the efficient construction of the above set and only give a size bound
for R.

Proposition 1 If ε < 1 and C ∈ Uε(R), then

d|C|/(1 + ε)e ≤ |R| ≤ b|C|/(1 − ε)c.

Proof. The condition for R is that dist(R,C) ≤ ε|R|. For ε < 1, this bounds the size
of R from above: If |R| = |C| + δ, then dist(R,C) ≥ δ. Thus certainly, C /∈ Uε(R) for
δ/|R| > ε, or equivalently, ε < δ/(|C| + δ), or δ > ε|C|/(1 − ε), or |R| > |C|/(1− ε). In
other words, the size of admissible candidates R is bounded by b|C|/(1 − ε)c.

With a similar argument for the ansatz |R| = |C| − δ, we obtain that for |R| <
|C|/(1 + ε) we also can never find C in the ε-neighborhood of R. �

The other (now obvious) changes to Algorithm 1 are to replace d in lines 13 and 22
by ε · |Crepr|.

It is unclear how the complexity of the algorithm changes.

3.2 Common Intervals as Cliques in Graphs

In this section we provide an alternative formulation of clusters in terms of cliques in
graphs. We first focus on d-clusters and discuss ε-clusters further below.

The intuition behind the clique representation is that character sets of the considered
sequences that are members of a same d-cluster (as d-occurrences of a representative) are
at most at a distance of 2d, and can then be seen as a set of close nodes in a graph where
character sets are vertices and edges are weighted by the distance between vertices.

More formally, we will consider a vertex-labeled bipartite graph G = (U ∪ V,E). The
two vertex subsets are defined as follows. U contains one vertex u for each character
set C ∈ Call, labeled with λ(u) = C. V contains one vertex v for each character set
C ∈ Nd(C

all), labeled with λ(v) = C. Note that since Call ⊆ Nd(C
all), the label of each

vertex in U also occurs as a label of some vertex in V . Two vertices u ∈ U and v ∈ V
are connected by an edge if the distance between the represented character sets is not
larger than d, i.e., E = {(u, v) ∈ U × V | dist(λ(u), λ(v)) ≤ d}. Finally, we say that a
set of vertices U ′ ⊆ U covers q sequences if the set of character sets λ(U ′) = ∪u∈U ′λ(u)
covers at least q sequences.

A schematic representation of such a bipartite graph is shown in Figure 2.

Proposition 2 There is a one-to-one correspondence between maximal bipartite cliques
of G that cover at least q sequences and equivalence classes of d-clusters that cover at
least q sequences.

Proof. Let U ′ ⊆ U and V ′ ⊆ V be two sets of vertices that define a maximal bipartite
clique. By definition of G, for every v ∈ V ′, the representative λ(v) is at distance at
most d of all the character sets in C = λ(U ′) := ∪u∈U ′λ(u). Moreover, the fact that the
clique is maximal implies that C is the set of all d-occurrences of λ(v), which is then a
representative of C. As U ′ covers at least q sequences, one can say that (λ(v),LC) is a

12

U V

Figure 2: Bipartite graph G with vertex sets U and V such that λ(U) = Call and
λ(V) = Nd(C

all). Two vertices u ∈ U , v ∈ V are connected by a solid edge
if their distance is not greater than d. The upper bipartite clique represents
an equivalence class with two representatives, the two lower ones represent
d-clusters. The extended graph G′ is obtained by adding the dotted edges
between vertices within U (respectively V), if vertices have distance at most
2d.

d-cluster that covers at least q sequences. Finally, by definition of a maximal bipartite
clique, V ′ is the maximal set of vertices of V having such properties, and is then the
complete set of representatives of C, and then (U ′, V ′) defines the equivalence class
containing (λ(v),LC).

Conversely, let (Crepr,LC) be a d-cluster covering q sequences. By definition of G,
there is a subset U ′ ⊆ U such that C = λ(U ′) and U ′ covers q sequences. There is also a
vertex v ∈ V such that λ(v) = Crepr, that is connected to all vertices of U ′ and no other
vertex, as C is the set of all d-occurrences of Crepr. By extending these properties to all
representatives of the clusters in the equivalence class of (Crepr,LC), one gets a maximal
bipartite clique in G. �

Remark 6 In the case of ε-clusters, we can proceed similarly, but define the vertex
set V as the set N all in the same way as in the ε-cluster version of Algorithm 1 (cf.
Proposition 1). The edge set becomes E := {(u, v) ∈ U×V | dist(λ(u), λ(v)) ≤ ε|λ(v)|}.

Given an equivalence class of clusters, it is immediate to get all clusters in this class,
by listing the vertices of V . Hence, the problem of detecting the set of all clusters
reduces to the enumeration of all maximal bipartite cliques of G, which is a well studied
algorithmic problem; see [22], for example.

The procedure is sketched in Algorithm 2. Its complexity depends on the construction
of the graph G and finding its maximal cliques. The graph contains a number of vertices
that is exponential in d (see also the previous section). In any case, if d is considered as
a constant, the graph G has a number of vertices and of edges that is polynomial in n.

13

Algorithm 2 Maximal cliques as equivalence classes of clusters

Input: k sequences S = {S1, . . . , Sk}, a distance d, a quorum q ∈ {2, . . . , k}
1: construct the vertex sets U and V , as explained in the text
2: construct the bipartite graph G = (U ∪ V,E), as explained in the text
3: for each maximal bipartite clique (U ′, V ′) in G do
4: if the vertices of U ′ cover at least q sequences then
5: report (U ′, V ′)

Unfortunately, a graph can have an exponential number of (maximal) cliques [23, 31],
but there are efficient algorithms for the enumeration of all maximal cliques in bipartite
graphs that have a time complexity that is polynomial in the number of maximal cliques
[22].

Note that there are also efficient algorithms to enumerate all maximal cliques in non-
bipartite graphs [4, 10]. In order to make use of these algorithms for d-clusters, one can
define an extended version of G, denoted G′, obtained by adding an edge between every
pair of vertices of U (resp. V) that represent character sets at a distance of at most 2d.
It is easy to see that the (ordinary) maximal cliques in G′ denote the same equivalence
classes of d-clusters as the bipartite cliques in G, if they contain at least one vertex of
each vertex set U and V .

3.3 Common Intervals as Binary Arrays

In this section, we only consider d-clusters, not ε-clusters, and we characterise them as
binary arrays.

Recall that we assume that Σ = {1, . . . , σ}. A character set C ⊆ Σ can be represented
as an array A ∈ {0, 1}σ , where A[i] = 1, if character i ∈ Σ is contained in C, and
A[i] = 0, otherwise.

Definition 12 (d-center) Given a set of binary arrays A, a binary array B ∈ {0, 1}σ

is called a d-center of A if and only if dist(A,B) ≤ d for all A ∈ A.

An illustration of this definition is given in Figure 3.
Observe that the number of d-centers for a given set of arrays can be exponential in

d. For example, consider the arrays A1 = 0σ and A2 with 2d entries with ones. There
exist

(

2d
d

)

different d-centers.

Proposition 3 Let Aall be the set of binary arrays representing the character sets from
Call. If the character sets corresponding to a subset of Aall cover at least q sequences
and this subset has a d-center, then there exists a d-cluster of the corresponding (and
possibly some additional) character sets from Call.

Proof. Consider a d-center B of the set {A1, . . . , Ak} ⊆ A
all whose corresponding char-

acter sets cover at least q sequences. Let Crepr be the character set corresponding to B.
The d-occurrences of Crepr can be represented as

14

≤ 2d

Figure 3: Space of bit-arrays with elements Aall. The small open circle represents a
d-center for a subset of elements of Aall encircled by the solid line. Note
that such a subset is not necessarily a d-cluster, since further elements can
be within distance d to the d-center (represented by the dotted circle). The
pairwise distance between the elements within the dotted circle never exceeds
2d.

Call ∩Nd(Crepr) = {C1, . . . , Ck, C
∗
1 , . . . , C∗

l },

where the character sets {C1, . . . , Ck} correspond to the binary arrays {A1, . . . , Ak}.
Thus, there exists a d-cluster (Crepr, LC) such that C consists of the character sets
corresponding to {A1, . . . , Ak} and possibly some more character sets. �

For the Hamming distance, defined as the number of positions in which two strings
differ, there exist several results for the problem of finding an array B that minimizes
the maximum distance between B and any other array of a given set of arrays. In the
context of coding theory, the decision version of the problem has been shown to be NP
complete [12]. A similar, more general result was given in [19]. Despite the NP hardness,
the problem has been widely studied in the last few years due to the importance of its
applications. Approximation algorithms were given in [13], and it was shown to be
fixed-parameter tractable in [15].

The problem was also shown to be NP hard for the Levenshtein distance [6] and for
the weighted edit distance [24] on sequences.

Like the edit distance, the set transformation distance allows for insertions, deletions,
and substitutions, but on the character sets of substrings instead of the substrings itself.
That makes it better comparable to the Hamming distance on binary arrays. More
precisely, letting k1 (respectively k2) be the number of positions i with A1[i] = 1 and
A2[i] = 0 (respectively A1[i] = 0 and A2[i] = 1), we have dT (A1, A2) = max{k1, k2},
while the Hamming distance is dH(A1, A2) = k1 + k2.

The following proposition states a simple connection between the Hamming distance
dH and the set transformation distance dT .

Proposition 4 If there exists a d-center for {A1, . . . , Ak} under dH , then there exists

15

a d-center for {A1, . . . , Ak} under dT ; if there exists a d-center for {A1, . . . , Ak} under
dT , then there exists a 2d-center for {A1, . . . , Ak} under dH .

We leave it open for the moment if this can be used to show that finding a dT -center
is NP hard or not.

The following observation, shown for the Hamming distance in [14], also holds for the
set transformation distance due to the triangle inequality.

Proposition 5 Given k binary arrays A1, . . . , Ak and an integer d ≥ 0, if there are i, j ∈
{1, . . . , k} with dT (Ai, Aj) > 2d, then there is no array B with maxi=1,...,k dT (B,Ai) ≤ d.

Instead of testing all subsets of arrays whether they have a d-center, it is sufficient
to test only those subsets whose maximal pairwise distance between any two arrays is
not greater than 2d. This heuristic is applied in Algorithm 3. In addition every set
of character sets corresponding to a subset of arrays has to cover at least q sequences,
which excludes more subsets and makes further tests dispensable.

A problem illustrated in Figure 3 is that a subset of Aall with a d-center forms not
necessarily a d-cluster, since further elements of Aall can be within distance d to the
d-center, depending on the choice of the d-center (see Proposition 3). To ensure that
the output of Algorithm 3 consists only of representatives with all their d-occurrences,
it is tested in line 7 whether the set of potential d-occurrences Apot is already contained
in a set stored before in an output set � . This way the returned � consists only of pairs
representing maximal d-clusters (see Definition 10), which does not lose any information
and eliminates d-centers (representatives) with incomplete sets of d-occurrences.

Algorithm 3 Maximal subsets with d-center

Input: k sequences S = {S1, . . . , Sk}, a distance d, a quorum q ∈ {2, . . . , k}
1: let � ← ∅
2: let Aall ← ∅
3: for each S ∈ S do
4: detect all character sets in S and add them as binary arrays to the set Aall

5: for each Apot = {A1, . . . , Ak} ⊆ A
all with dist(Ai, Aj) ≤ 2d for all i, j do

6: if the character sets corresponding to Apot cover at leat q sequences and there
exists a d-center of Apot then

7: if Apot is no proper subset of some element of � then
8: store Apot and its d-center in �
9: return the elements of �

4 Discussion

A shortcoming of our three algorithms is the fact that cluster maximality is not efficiently
taken into account. However, maximality is central to filter the enormous output pro-
duced by algorithms finding gene clusters allowing errors. Indeed, with our algorithms

16

it is possible to extract from the set of clusters the ones that are maximal, but it is still
open to design methods that compute directly maximal gene clusters.

The redundancy of the output is a major problem with Algorithm 1, due to its ap-
proach that is centered on computing clusters from representatives. It is handled in a
very natural way in the two other algorithms, in two different ways: in Algorithm 2, all
possible representatives for a cluster are considered at the same time when extending a
clique to get a maximal clique, while in Algorithm 3, clusters are detected from the set
of all d-occurrences first, and only one representative is produced.

A disadvantage of the latter algorithms is that both require the enumeration of large
combinatorial sets, namely maximal cliques of a graph or all subsets of the set of all
character sets. On the other hand, the output of Algorithm 2 is an equivalence class of
clusters which provides much more information than a single representative for a cluster.
In order to produce such an output, Algorithm 1 does not seem to offer an efficient basis,
and for Algorithm 3 it is not clear whether all d-centers for a given set of strings can be
computed efficiently and represented in a compact way.

5 Conclusion

This report presents a model for gene clusters, defined on multiple sequences and allowing
to handle errors in a way that overcomes the drawbacks of so called max-gap clusters.
Previous gene cluster models are analysed and properties desirable to the design of the
new model are worked out.

By devising three equivalent formulations of the presented approach, more insight to
the complexity of finding clusters allowing for errors is gained.

Another formulation based on integer linear programs that incorporates all existing
models and also offers a quantitative evaluation of cluster quality appears in [27].

The balance between a highest possible degree of flexibility and biologically relevant
output in contrast to the feasibility of algorithms reporting those clusters remains the
major challenge for new gene cluster models. The presented approach emphasizes the
first aspect, though finding efficient algorithms would revaluate its usefulness.

References

[1] A. Amir, A. Apostolico, G. M. Landau, and G. Satta. Efficient text fingerprinting
via Parikh mapping. J. Discr. Alg., 1(5-6):409–421, 2003.

[2] A. Bergeron, C. Chauve, F. de Mongolfier, and M. Raffinot. Computing common
intervals of k permutations, with applications to modular decomposition of graphs.
In Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca,
Spain, October 3-6, 2005, Proceedings, volume 3669 of Lecture Notes in Computer
Science, pages 779–790. Springer Verlag, 2005.

[3] G. Blin, A. Chateau, C. Chauve, and Y. Gingras. Inferring positional homologs with
common intervals of sequences. In Comparative Genomics, RECOMB 2006 Inter-

17

national Workshop, RCG 2006, volume 4205 of Lecture Notes in Bioinformatics,
pages 24–38. Springer Verlag, 2006.

[4] F. Cazals and C. Karande. Reporting maximal cliques: new insights into an old
problem. Technical Report 5615, INRIA, 2005.

[5] T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order: a
fingerprint for proteins that physically interact. Trends in Biochemical Sciences,
23(9):324–328, 1998.

[6] C. de la Higuera and F. Casacuberta. Topology of strings: Median string is NP-
complete. Theoretical Computer Science, 230(1–2):39–48, 2000.

[7] G. Didier. Common intervals of two sequences. In G. Benson and R. Page, editors,
Proceedings of the Third International Workshop on Algorithms in Bioinformatics,
WABI 2003, volume 2812 of LNBI, pages 17–24, Berlin, 2003. Springer Verlag.

[8] G. Didier, T. Schmidt, J. Stoye, and D. Tsur. Character sets of strings. J. Discr.
Alg., To appear.

[9] Y. Diekmann, M.-F. Sagot, and E. Tannier. Evolution under reversals: parsimony
and conservation of common intervals. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, To appear.

[10] D. Eppstein. All maximal independent sets and dynamic dominance for sparse
graphs. In roceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25,
2005, pages 451–459. SIAM, 2005.

[11] R. Eres, G. M. Landau, and L. Parida. A combinatorial approach to automatic
discovery of cluster-patterns. In Combinatorial Pattern Matching, 12th Annual
Symposium, CPM 2001 Jerusalem, Israel, July 1-4, 2001 Proceedings, volume 2812
of Lecture Notes in Computer Science, pages 139–150. Springer Verlag, 2003.

[12] M. Frances and A. Litman. On covering problems of codes. Theory of Computing
Systems, 30:113–119, 1997.

[13] L. Gasieniec, J. Jansson, and A. Lingas. Efficient approximation algorithms for the
hamming center problem. In SODA ’99: Proceedings of the tenth annual ACM-
SIAM symposium on Discrete algorithms, 17-19 January 1999, Baltimore, Mary-
land, pages 905–906. SIAM, 1999.

[14] J. Gramm, R. Niedermeier, and P. Rossmanith. Exact solutions for CLOSEST
STRING and related problems. In Algorithms and Computation, 12th Interna-
tional Symposium, ISAAC 2001, Christchurch, New Zealand, December 19-21,
2001, Proceedings, volume 2223 of Lecture Notes in Computer Science, pages 441–
453. Springer Verlag, 2001.

18

[15] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for
closest string and related problems. Algorithmica, 37(1):25–42, 2003.

[16] X. He and M. H. Goldwasser. Identifying conserved gene clusters in the presence
of homology families. Journal of Computational Biology, 12(6):638–656, 2005.

[17] S. Heber and J. Stoye. Finding all common intervals of k permutations. In Combi-
natorial Pattern Matching, 12th Annual Symposium, CPM 2001, Jerusalem, Israel,
July 1-4, 2001 Proceedings, volume 2089 of Lecture Notes in Computer Science,
pages 207–218. Springer Verlag, 2001.

[18] R. Hoberman and D. Durand. The incompatible desiderata of gene cluster prop-
erties. In Comparative Genomics, RECOMB 2005 International Workshop, RCG
2005, Dublin, Ireland, September 18-20, 2005, Proceedings, volume 3678 of Lecture
Notes in Bioinformatics, pages 73–87. Springer Verlag, 2005.

[19] J. K. Lanctôt, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection
problems. Inf. Comput., 185(1):41–55, 2003.

[20] W. C. III Lathe, B. Snel, and P. Bork. Gene context of a higher order than operons.
Trends in Biochemical Sciences, 25(10):474–479, 2000.

[21] N. Luc, J.-L. Risler, A. Bergeron, and M. Raffinot. Gene teams: a new formalization
of gene clusters for comparative genomics. Computational Biology and Chemistry,
27(1):59–67, 2003.

[22] K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In
Algorithm Theory – SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory,
Humlebaek, Denmark, July 8-10, 2004, Proceedings, volume 3111 of Lecture Notes
in Computer Science, pages 260–272. Springer Verlag, 2004.

[23] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics,
3(1):23–28, 1965.

[24] F. Nicolas and E. Rivals. Complexities of the centre and median string problems.
In R. Baeza-Yates, E. Chavez, and M. Crochemore, editors, Combinatorial Pattern
Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocn, Mexico, June
25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science, pages
315–327. Springer Verlag, 2003.

[25] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. The use of
gene clusters to infer functional coupling. Proceedings of the National Academy of
Sciences of the United States of America, 96(6):2896–2901, 1999.

[26] S. Pasek, A. Bergeron, J.-L. Rilser, A. Louis, E. Ollivier, and M. Raffinot. Identifi-
cation of genomic features using microsyntenies of domains: domain teams. Genome
Research, 15(6):867–874, 2005.

19

[27] S. Rahmann and G.W. Klau. Integer linear programs for discovering approximate
gene clusters. In Proceedings of WABI, volume 4175 of LNBI, pages 298–309.
Springer, 2006.

[28] T. Schmidt. Efficient algorithms for gene cluster detection in prokaryotic genomes.
PhD thesis, Faculty of Technology, Bielefeld University, Germany, 2005.

[29] T. Schmidt and J. Stoye. Quadratic time algorithms for finding common intervals
in two or more sequences. In Combinatorial Pattern Matching, 15th Annual Sym-
posium, CPM 2004, Istanbul,Turkey, July 5-7, 2004, Proceedings, volume 3109 of
Lecture Notes in Computer Science, pages 347–358. Springer Verlag, 2004.

[30] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290–309, 2000.

[31] D.R. Wood. On the maximum number of cliques in a graph. Technical report,
arXiv:math.CO/0602191, 2006.

[32] Y. Zheng, B. P. Anton, R. J. Roberts, and S. Kasif. Phylogenetic detection of
conserved gene clusters in microbial genomes. BMC Bioinformatics, 6:243, 2005.

20

Bisher erschienene Reports an der Technischen Fakultät
Stand: 2006-06-09

94-01 Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

94-02 Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann, Helge Ritter)

94-03 From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix
Tree Construction
(Robert Giegerich, Stefan Kurtz)

94-04 Die Verwendung unscharfer Maße zur Korrespondenzanalyse in Stereo
Farbbildern
(André Wolfram, Alois Knoll)

94-05 Searching Correspondences in Colour Stereo Images – Recent Results Using the
Fuzzy Integral
(André Wolfram, Alois Knoll)

94-06 A Basic Semantics for Computer Arithmetic
(Markus Freericks, A. Fauth, Alois Knoll)

94-07 Reverse Restructuring: Another Method of Solving Algebraic Equations
(Bernd Bütow, Stephan Thesing)

95-01 PaNaMa User Manual V1.3
(Bernd Bütow, Stephan Thesing)

95-02 Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock, Robert Giegerich)

95-03 Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

95-04 On the Equivalence of E-Pattern Languages
(Enno Ohlebusch, Esko Ukkonen)

96-01 Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz, Enno Ohlebusch)

96-02 Instructing Cooperating Assembly Robots through Situated Dialogues in Natural
Language
(Alois Knoll, Bernd Hildebrand, Jianwei Zhang)

96-03 Correctness in System Engineering
(Peter Ladkin)

96-04 An Algebraic Approach to General Boolean Constraint Problems
(Hans-Werner Güsgen, Peter Ladkin)

96-05 Future University Computing Resources
(Peter Ladkin)

96-06 Lazy Cache Implements Complete Cache
(Peter Ladkin)

96-07 Formal but Lively Buffers in TLA+
(Peter Ladkin)

96-08 The X-31 and A320 Warsaw Crashes: Whodunnit?
(Peter Ladkin)

96-09 Reasons and Causes
(Peter Ladkin)

96-10 Comments on Confusing Conversation at Cali
(Dafydd Gibbon, Peter Ladkin)

96-11 On Needing Models
(Peter Ladkin)

96-12 Formalism Helps in Describing Accidents
(Peter Ladkin)

96-13 Explaining Failure with Tense Logic
(Peter Ladkin)

96-14 Some Dubious Theses in the Tense Logic of Accidents
(Peter Ladkin)

96-15 A Note on a Note on a Lemma of Ladkin
(Peter Ladkin)

96-16 News and Comment on the AeroPeru B757 Accident
(Peter Ladkin)

97-01 Analysing the Cali Accident With a WB-Graph
(Peter Ladkin)

97-02 Divide-and-Conquer Multiple Sequence Alignment
(Jens Stoye)

97-03 A System for the Content-Based Retrieval of Textual and Non-Textual
Documents Based on Natural Language Queries
(Alois Knoll, Ingo Glöckner, Hermann Helbig, Sven Hartrumpf)

97-04 Rose: Generating Sequence Families
(Jens Stoye, Dirk Evers, Folker Meyer)

97-05 Fuzzy Quantifiers for Processing Natural Language Queries in Content-Based
Multimedia Retrieval Systems
(Ingo Glöckner, Alois Knoll)

97-06 DFS – An Axiomatic Approach to Fuzzy Quantification
(Ingo Glöckner)

98-01 Kognitive Aspekte bei der Realisierung eines robusten Robotersystems für
Konstruktionsaufgaben
(Alois Knoll, Bernd Hildebrandt)

98-02 A Declarative Approach to the Development of Dynamic Programming
Algorithms, applied to RNA Folding
(Robert Giegerich)

98-03 Reducing the Space Requirement of Suffix Trees
(Stefan Kurtz)

99-01 Entscheidungskalküle
(Axel Saalbach, Christian Lange, Sascha Wendt, Mathias Katzer, Guillaume
Dubois, Michael Höhl, Oliver Kuhn, Sven Wachsmuth, Gerhard Sagerer)

99-02 Transforming Conditional Rewrite Systems with Extra Variables into
Unconditional Systems
(Enno Ohlebusch)

99-03 A Framework for Evaluating Approaches to Fuzzy Quantification
(Ingo Glöckner)

99-04 Towards Evaluation of Docking Hypotheses using elastic Matching
(Steffen Neumann, Stefan Posch, Gerhard Sagerer)

99-05 A Systematic Approach to Dynamic Programming in Bioinformatics. Part 1 and
2: Sequence Comparison and RNA Folding
(Robert Giegerich)

99-06 Autonomie für situierte Robotersysteme – Stand und Entwicklungslinien
(Alois Knoll)

2000-01 Advances in DFS Theory
(Ingo Glöckner)

2000-02 A Broad Class of DFS Models
(Ingo Glöckner)

2000-03 An Axiomatic Theory of Fuzzy Quantifiers in Natural Languages
(Ingo Glöckner)

2000-04 Affix Trees
(Jens Stoye)

2000-05 Computergestützte Auswertung von Spektren organischer Verbindungen
(Annika Büscher, Michaela Hohenner, Sascha Wendt, Markus Wiesecke, Frank
Zöllner, Arne Wegener, Frank Bettenworth, Thorsten Twellmann, Jan
Kleinlützum, Mathias Katzer, Sven Wachsmuth, Gerhard Sagerer)

2000-06 The Syntax and Semantics of a Language for Describing Complex Patterns in
Biological Sequences
(Dirk Strothmann, Stefan Kurtz, Stefan Gräf, Gerhard Steger)

2000-07 Systematic Dynamic Programming in Bioinformatics (ISMB 2000 Tutorial Notes)
(Dirk J. Evers, Robert Giegerich)

2000-08 Difficulties when Aligning Structure Based RNAs with the Standard Edit Distance
Method
(Christian Büschking)

2001-01 Standard Models of Fuzzy Quantification
(Ingo Glöckner)

2001-02 Causal System Analysis
(Peter B. Ladkin)

2001-03 A Rotamer Library for Protein-Protein Docking Using Energy Calculations and
Statistics
(Kerstin Koch, Frank Zöllner, Gerhard Sagerer)

2001-04 Eine asynchrone Implementierung eines Microprozessors auf einem FPGA
(Marco Balke, Thomas Dettbarn, Robert Homann, Sebastian Jaenicke, Tim
Köhler, Henning Mersch, Holger Weiss)

2001-05 Hierarchical Termination Revisited
(Enno Ohlebusch)

2002-01 Persistent Objects with O2DBI
(Jörn Clausen)

2002-02 Simulation von Phasenübergängen in Proteinmonoschichten
(Johanna Alichniewicz, Gabriele Holzschneider, Morris Michael, Ulf Schiller, Jan
Stallkamp)

2002-03 Lecture Notes on Algebraic Dynamic Programming 2002
(Robert Giegerich)

2002-04 Side chain flexibility for 1:n protein-protein docking
(Kerstin Koch, Steffen Neumann, Frank Zöllner, Gerhard Sagerer)

2002-05 ElMaR: A Protein Docking System using Flexibility Information
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-06 Calculating Residue Flexibility Information from Statistics and Energy based
Prediction
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-07 Fundamentals of Fuzzy Quantification: Plausible Models, Constructive
Principles, and Efficient Implementation
(Ingo Glöckner)

2002-08 Branching of Fuzzy Quantifiers and Multiple Variable Binding: An Extension of
DFS Theory
(Ingo Glöckner)

2003-01 On the Similarity of Sets of Permutations and its Applications to Genome
Comparison
(Anne Bergeron, Jens Stoye)

2003-02 SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass
spectrometry
(Sebastian Böcker)

2003-03 From RNA Folding to Thermodynamic Matching, including Pseudoknots
(Robert Giegerich, Jens Reeder)

2003-04 Sequencing from compomers: Using mass spectrometry for DNA de-novo
sequencing of 200+ nt
(Sebastian Böcker)

2003-05 Systematic Investigation of Jumping Alignments
(Constantin Bannert)

2003-06 Suffix Tree Construction and Storage with Limited Main Memory
(Klaus-Bernd Schürmann, Jens Stoye)

2003-07 Sequencing from compomers in thepresence of false negative peaks
(Sebastian Böcker)

2003-08 Genalyzer: An Interactive Visualisation Tool for Large-Scale Sequence Matching
– Biological Applications and User Manual
(Jomuna V. Choudhuri, Chris Schleiermacher)

2004-01 Sequencing From Compomers is NP-hard
(Sebastian Böcker)

2004-02 The Money Changing Problem revisited: Computing the Frobenius number in
time O(k a1)
(Sebastian Böcker, Zsuzsanna Lipták)

2004-03 Accelerating the Evaluation of Profile HMMs by Pruning Techniques
(Thomas Plötz, Gernot A. Fink)

2004-04 Optimal Group Testing Strategies with Interval Queries and Their Application to
Splice Site Detection
(Ferdinando Cicalese, Peter Damaschke, Ugo Vaccaro)

2004-05 Compressed Representation of Sequences and Full-Text Indexes
(Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, Gonzalo Navarro)

2005-01 Overlaps Help: Improved Bounds for Group Testing with Interval Queries
(Ferdinando Cicalese, Peter Damaschke, Libertad Tansini, Sören Werth)

2005-02 Two batch Fault-tolerant search with error cost constraints: An application to
learning
(Ferdinando Cicalese)

2005-03 Searching for the Shortest Common Supersequence
(Sergio A. de Carvalho Jr., Sven Rahmann)

2005-04 Counting Suffix Arrays and Strings
(Klaus-Bernd Schürmann, Jens Stoye)

2005-05 Alignment of Tandem Repeats with Excision, Duplication, Substitution and
Indels (EDSI)
(Michael Sammeth, Jens Stoye)

2005-06 Statistics of Cleavage Fragments in Random Weighted Strings
(Hans-Michael Kaltenbach, Henner Sudek, Sebastian Böcker, Sven Rahmann)

2006-01 Decomposing metabolomic isotope patterns
(Sebastian Böcker, Zsuzsanna Lipták, Anton Pervukhin)

