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Abstract—In this paper, we are interested in the computational complexity of computing (dis)similarity measures between two

genomes when they contain duplicated genes or genomic markers, a problem that happens frequently when comparing whole nuclear

genomes. Recently, several methods [1], [2] have been proposed that are based on two steps to compute a given (dis)similarity

measure M between two genomes G1 and G2: First, one establishes a one-to-one correspondence between the genes of G1 and the

genes of G2; second, once this correspondence is established, it explicitly defines a permutation and it is then possible to quantify their

similarity using classical measures defined for permutations like the number of breakpoints. Hence, these methods rely on two

elements: a way to establish a one-to-one correspondence between genes of a pair of genomes and a (dis)similarity measure for

permutations. The problem is then, given a (dis)similarity measure for permutations, compute a correspondence that defines an

optimal permutation for this measure. We are interested here in two models to compute a one-to-one correspondence: the exemplar

model, where all but one copy is deleted in both genomes for each gene family, and the matching model, which computes a maximal

correspondence for each gene family. We show that, for these two models and for three (dis)similarity measures on permutations,

namely, the number of common intervals, the maximum adjacency disruption (MAD) number, and the summed adjacency disruption

(SAD) number, the problem of computing an optimal correspondence is NP-complete and even APX-hard for the MAD number and the

SAD number.

Index Terms—Comparative genomics, computational complexity, common intervals, maximum adjacency disruption number,

summed adjacency disruption number.

Ç

1 INTRODUCTION

THE comparison of whole genomes from the gene order
point of view has been a very active research domain

since the early 1990s. In this context, genomes are modeled
by sequences of integers, each integer representing a single
gene or a genomic marker.1 In phylogeny reconstruction,
the main problem is thus to compute a (dis)similarity
measure between the corresponding integer sequences
which approximates the true evolutionary distance between
these genomes (see, for instance, [3] for one of the first
papers using this approach and [4] for a recent application
to vertebrate genomes). Most of the mathematical models
developed to compute such (dis)similarity measures are
based on the assumption that a given integer appears

exactly once in each considered genome. The rationale of
this approach is that genomes are thus simply represented
by permutations. However, aside some particular cases
such as mitochondrial genomes [3], due to several evolu-
tionary mechanisms (duplication/loss or whole genomes
duplications [5]), duplicated genes are very common in
genomes. As a result, real data cannot be naturally modeled
by permutations.

The first way to overcome such a limitation is to consider
genomes at a higher scale than genes, for example, synteny
blocks [4]. However, if one wants to stay at the level of genes
or, more generally, short genomic markers, one has to deal
with the fact that genomes are modeled by sequences of
integers where some integers may appear more than once in a
given genome. Such genes that appear at several occurrences
are said to belong to nontrivial gene families. Two genes
represented by the same integer are said to have the same
label. Recently, a new two-step permutation-based approach
has been proposed for computing (dis)similarity measures
between genomes. The first step consists of transforming the
two sequences into a single permutation P by establishing a
one-to-one correspondence between pairs of genes having
the same label (and then, by resorting to renaming
procedure, we can always assume that one of the two
permutations is the identity permutation, see Section 2). In
the second step, a permutation-based (dis)similarity mea-
sure is computed from the permutation P . The main line of
research following this approach seeks the permutation P
that optimizes the (dis)similarity measure. The classical
criterion retained to define the optimal (dis)similarity
measure is the parsimony criterion: One tries to compute
the permutation P that induces the maximal (respectively,
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di Udine, Italy. E-mail: Romeo.Rizzi@simi.uniud.it.

. S. Vialette is with the Laboratoire de Recherche en Informatique (LRI),
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minimal) similarity (respectively, dissimilarity) measure.
Note, however, that there exist other methods that are based
on the principle of transforming a pair of integer sequences
into a permutation but do not aim at optimizing a
(dis)similarity measure for the resulting permutation (see
[6], [7], [8] for example).

There are two main approaches for computing a one-to-
one correspondence between two integer sequences. In the
exemplar model, introduced by Sankoff [1], for every
nontrivial gene family, all but one copy in each genome is
deleted. The pair of genes that is conserved for each family
is called a pair of ancestral homologs as the goal of the
exemplar method is to find the pair of genes which best
reflects the original position of the ancestral gene in the
common ancestor genome. The matching model is more
general as it allows us to conserve more than one copy of a
gene family and seeks a maximal one-to-one correspon-
dence between these copies [2]. Several distances have been
considered under the exemplar and matching models
which are either based on minimizing the number of
evolutionary events that allow us to transform a genome
into the other, for events like reversals2 [1], [9], [10], [11],
[12], [13], reversals and insertions and deletions [14], [15],
reversals and translocations [16], or on maximizing a
similarity measure based on conserved structure in permu-
tations like the number of adjacencies (which is equivalent
to minimizing the number of breakpoints) [1], [9], [12], [13],
[17] or the number of conserved intervals [18], [19], [20],
[21]. As far as we know, none of the above problems has
been shown to be solvable in polynomial time and, in fact,
most of them have been shown to be NP-complete as soon
as duplicates are present in the genomes (see Tables 1 and 2,
in Section 6).

In this paper, we present new results on the algorithmic
complexity of computing different (dis)similarity measures
between pairs of genomes that contain duplicates. We
describe results for three (dis)similarity measures, namely,
number of common intervals, Maximum Adjacency Dis-
ruption (MAD) number, and Summed Adjacency Disrup-
tion number (SAD), which will be defined in Section 2. In
Section 3, we focus on the problem of computing the
number of common intervals in genomes containing
duplicates and show that the problem is NP-complete in
both the matching and exemplar models. In Sections 4 and
5, we prove that, under both models, both the MAD and
SAD problems are APX-hard when genomes contain
duplicates.

2 PRELIMINARIES

In this section, we precisely define the three similarity
measures we are interested in, together with the exemplar
and matching models. As mentioned in the introduction,
the three considered measures (number of common inter-
vals, MAD, and SAD) are defined for duplication-free
genomes only and, hence, one has to first disambiguate the

data by inferring homologs, that is, a nonambiguous
mapping between the genes of the two genomes.

We need some notations. A genome is a sequence of
unsigned integers. Let G be a genome of size n. As
mentioned above, a gene family is any integer that occurs
in G, regardless of its number of occurrences. A gene is an
occurrence of a gene family in G and we denote by G½i� the
gene that occurs at position i in G. Let occðG; gÞ denote the
maximum number of occurrences of a gene g in genome G
and let occðGÞ be the maximum of occðG; gÞ over all genes g
in G. The genome G is said to be duplication-free if
occðGÞ ¼ 1. Let G1 and G2 be two genomes. A matching M
between G1 and G2 is a set of pairwise disjoint pairs M¼
fði1; j1Þ; ði2; j2Þ; . . . ; ðik; jkÞg such that G1½i‘� ¼ G2½j‘�, for all
1 � ‘ � k. A maximum matching between G1 and G2 is a
matching of maximum cardinality. Suppose that G is
duplication-free, let i and j be such that 1 � i < j � n and
write a ¼ G½i� and b ¼ G½j�. The distance between a and b in
G, written DistðG; a; bÞ, is defined by DistðG; a; bÞ ¼ jj� ij.

Given two genomes containing duplications, the first
step is thus to establish a nonambiguous mapping between
the genes of the two genomes. In the exemplar model, for all
gene families, all but one occurrence in each genome is
deleted. In other words, we are looking for a matchingM¼
fði1; j1Þ; ði2; j2Þ; . . . ; ðik; jkÞg between G1 and G2 such that
1) G1½i‘� 6¼ G1½i‘0 �, for all 1 � ‘ < ‘0 � k, and 2) each gene
family occurs in one pair of M. In the matching model, the
goal is to map as many genes as possible, that is, to find a
maximum matching between G1 and G2. The rationale of
this preliminary step is that we may now assume that the
two genomes are duplication-free. Indeed, suppose the first
step results in the matching M, we thus modify the two
genomes G1 and G2 as follows:

1. we delete all genes in G1 and G2 that are not part of
the matching M and

2. we rename the genes of G1 and G2 according to the
index of the associated pair in M.

Observe that the resulting genomes are both of size jMj.
According to the above (for both the exemplar and the
matching models) discussion, if a gene family occurs in one
genome but not in the other, then all occurrences of this
gene family will be deleted in the end. Therefore, we may
thus assume in the sequel that any gene family of G1 is a
gene family of G2 and vice versa.

We now turn to precisely defining the three similarity
measures in which we are interested. As mentioned before,
we assume now that the two genomes are duplication-free,
that is, both G1 and G2 are permutations of size n.
Moreover, for convenience, by first resorting to an easy
renaming procedure, we can always assume that one of the
two genomes, say, G1, is the identity permutation, that is,
G1 ¼ 1 2 . . . n.

Number of common intervals. A common interval between
G1 and G2 is a substring of G1, that is, a consecutive
sequence of genes of G1, for which exactly the same content
can be found in a substring of G2. For example, if G1 ¼
1 2 3 4 5 and G2 ¼ 1 4 3 5 2, then 1, 2, 3, 4, 5, 3 4, 3 4 5, 2 3 4 5,
and 1 2 3 4 5 are common intervals. Notice that there exist at
least nþ 1 common intervals between G1 and G2 since each
individual gene is always a common interval and G1 itself is
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2. The reversal model considers signed permutations, where each element
has a sign, positive or negative, that indicates which strand on the genome
is the corresponding gene located. However, the three (dis)similarity
measures we consider in this paper do not take signs into account and, thus,
we do not discuss signed permutations here.



also a common interval. This lower bound is tight, as shown

by G1 ¼ 1 2 3 4 and G2 ¼ 2 4 1 3. Furthermore, if G1 ¼ G2,

the number of common intervals between G1 and G2 is
nðnþ1Þ

2 , that is, each possible substring of G1 is a common

interval.
Maximum Adjacency Disruption (MAD) Number. This

notion was introduced by Sankoff and Haque [22]. The

MAD number between G1 and G2, denoted MADðG1; G2Þ, is

defined by

MADðG1; G2Þ ¼ maxfM1;M2g;

where M1 ¼ maxfDistðG2; G1½i�; G1½iþ 1�Þ : 1 � i � n� 1g
and M2 ¼ maxfDistðG1; G2½i�; G2½iþ 1�Þ : 1 � i � n� 1g.

The rationale of this double maximization measure lies

in the fact that, in general, M1 6¼ M2. For instance, if G1 ¼
1 2 3 4 5 and G2 ¼ 1 4 3 5 2, then M1 ¼ 4 and M2 ¼ 3 and,

hence, MADðG1; G2Þ ¼ maxf4; 3g ¼ 4.
Summed Adjacency Disruption (SAD) Number. This notion

was also introduced by Sankoff and Haque [22] and can be

seen as a global variant of the MAD number. The SAD

number between G1 and G2, denoted SADðG1; G2Þ, is

defined by

SADðG1; G2Þ ¼
X

1�i�n�1

DistðG2; G1½i�; G1½iþ 1�Þ

þ
X

1�i�n�1

DistðG1; G2½i�; G2½iþ 1�Þ:

Going back to our example, G1 ¼ 1 2 3 4 5 and

G2 ¼ 1 4 3 5 2, one obtains

SADðG1; G2Þ ¼ ð4þ 2þ 1þ 2Þ þ ð3þ 1þ 2þ 3Þ ¼ 18:

Of particular importance from a computational complex-

ity point of view, we observe that the MAD and SAD

numbers are dissimilarity measures, that is, the associated

optimization problem is a minimization one; on the

contrary, the number of common intervals is a similarity

measure, that is, the associated optimization problem is a

maximization one.

3 NUMBER OF COMMON INTERVALS

In this section, we investigate the algorithmic complexity of

computing the number of common intervals between two

genomes in both the exemplar and matching models. Let

ECOMI (respectively, MCOMI) denote the problem of

computing the maximum number of common intervals in

the exemplar (respectively, matching) model. We show that

both ECOMI and MCOMI are NP-complete, even for

restricted instances. The proof we give below is valid for

both models since it shows NP-completeness in the case

where occðG1Þ ¼ 1. However, in order to simplify notations,

we will mention in the proof only the exemplar model (that

is, the ECOMI problem). The proof is made by reduction

from VERTEXCOVER. Starting from any instance of VERTEX-

COVER (that is, a graph G ¼ ðV ;EÞ with V ¼ fv1; v2 . . . vng
and E ¼ fe1; e2 . . . emg), we will first describe a polynomial-

time construction of two genomes, G1 and G2, such that

occðG1Þ ¼ 1 and occðG2Þ ¼ 2. We first describe G1:

G1 ¼ b1; b2 . . . bm; x; a1; C1; a2; C2 . . . an; Cn; y; bmþn;

bmþn�1 . . . bmþ1:

The ais, the bis, x, and y are genes, whereas Cis are

sequences of genes. They are defined as follows:

. for any 1 � i � n, ai ¼ 2ði� 1Þmþ i;

. for any 1 � i � n, Ci ¼ ðai þ 1Þ; ðai þ 2Þ . . . ðai þ 2mÞ;

. for any 1 � i � nþm, bi ¼ an þ 2mþ i;

. x ¼ bnþm þ 1; and

. y ¼ bnþm þ 2.

It can be seen that no gene appears more than once in G1,

thus occðG1Þ ¼ 1. Now, we describe the construction of G2:

G2 ¼ y; a1; D
0
1; bmþ1; a2; D

0
2; bmþ2 . . . an�1; D

0
n�1; bmþn�1; an;

D0n; bmþn; x:

The duplicated genes in G2 are b1; b2 . . . bn and are spread

within the D0is. Moreover, each bi, 1 � i � n, will appear

only twice in G2. We now describe the contents of D0i,

1 � i � n. Basically, D0i is constructed in two steps:

1. We first construct, for each i, a sequence of genes Di,
which is a specific shuffle of the contents of
Ci ¼ ðai þ 1Þ; ðai þ 2Þ . . . ðai þ 2mÞ. More precisely,
let min ¼ ai þ 1 and max ¼ ai þ 2m, then

Di ¼ ðai þ 3Þ; ðai þ 5Þ . . . ðai þ 2m� 3Þ;
ðai þ 2m� 1Þ;min;max; ðai þ 2Þ; ðai þ 4Þ . . .

ðai þ 2m� 4Þ; ðai þ 2m� 2Þ:

2. For any 1 � i � n, we obtain D0i by adding some bjs
ð1 � j � mÞ into Di, according to the initial graph G
we are given. More precisely, for any edge ej that is
incident to a vertex vi in G, we add the gene bj
between the jth and the ðjþ 1Þth gene of Di. This
process gives us the D0is.

Note that no two bjs ð1 � j � mÞ can appear contigu-

ously in a D0i and that no D0i starts or ends with a bj (all D0is

start and end with a gene that only appears in Ci in G1). In

the following, any interval of size one (that is, any

singleton), as well as the whole genome, will be called a

trivial interval.

Lemma 1. For any exemplar genome GE
2 of G2, the only

nontrivial common intervals that occur between GE
2 and G1

are necessarily taken in G1 within the sequence aiCi, for any

1 � i � n.

Proof. We will first prove that, for any exemplar genome GE
2

obtained from G2, any interval of size greater than or

equal to 2 that contains x (respectively, y) also contains y

(respectively, x) and thus corresponds to the whole

genome. Suppose, indeed, that there is a common

interval, different from a singleton, containing x and

not y. Let us call this interval Ix. Now, let us look at what

other genes Ix could contain in G1:

. If Ix contains bm in G1, since bm belongs to a D0i in
GE

2 , this means that Ix contains bmþn in GE
2 and

thus contains y in G1, a contradiction.
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. If Ix contains a1 in G1, Ix contains, in particular,
bmþn in GE

2 and thus contains y in G1, a
contradiction.

Hence, any common interval Ix that contains x also
contains y. Now, suppose that a common interval Iy,
different from a singleton, contains y and not x and let us
look at what other genes Iy could contain in G1:

. If Iy contains bmþn in G1, then it contains all of the
D0is in GE

2 and, in particular, it contains all of the
bjs, 1 � j � m. Thus, it contains x in G1, a
contradiction.

. If Iy contains an þ 2m in G1, then it contains, in
particular, bmþn�1 in GE

2 and thus contains bmþn in
G1. We are now back to the previous case.

Hence, the only common interval containing x
(respectively, y) is the whole genome G1. Thus, if there
are common intervals that are nontrivial, they must be, in
G1, strictly on the left of x, strictly between x and y, or
strictly on the right of y. We will separately investigate
these three cases:

1. Intervals strictly on the left of x in G1. Since no
two bjs, 1 � j � m, are contiguous in GE

2 , any
such interval would contain at least one gene in a
given D0i, which occurs only in Ci in G1, a
contradiction.

2. Intervals strictly on the right of y in G1. Similarly,
any such interval would contain an ai in GE

2 , a
contradiction.

3. Intervals strictly between x and y in G1. Indepen-
dent of the way GE

2 is exemplarized, we see that
no common interval in G1 can contain, at the
same time, ai and aiþ1, 1 � i � n� 1. Thus, the
only possible common intervals between G1 and
GE

2 must be taken within a given substring of the
form aiCi ð1 � i � nÞ in G1 and the lemma is
proven. tu

Lemma 2. For any given 1 � i � n, let �i be a subsequence of

D0i that does not contain any bj. If 2 � j�ij � 2m� 1, then it

is not a common interval.

Proof. Let �i be a subsequence of D0i that does not contain

any bj and let 2 � j�ij � 2m� 1. By Lemma 1, �i can

only be a common interval with a substring of Ci, which,

by construction, contains consecutive integers. Thus,

since j�ij � 2, it must contain at least two consecutive

integers. However, by construction, any two consecutive

integers in D0i are extremities of an interval that contains

both the minimum value m and the maximum value M

of D0i. However, since, in Ci, m and M are the left and

right extremities, �i is at least as big as Ci. Since, by

construction, jCij ¼ 2m and since we supposed that

j�ij � 2m� 1, this cannot happen. Hence, �i is not a

common interval. tu
Lemma 3. For any exemplar genome GE

2 of G2 and for any

1 � i � n, only two cases can occur:

1. In GE
2 , all of the bjs have been deleted from D0i and, in

that case, there are exactly two nontrivial common
intervals involving D0i.

2. In GE
2 , at least one bj has been left within D0i and, in

that case, there is no nontrivial common interval
involving D0i.

Proof. By Lemma 1, we know that any nontrivial interval is

composed in G1 of elements of the sequence aiCi, for any

1 � i � n. Hence, it is composed, in any exemplar

genome GE
2 obtained from G2, of elements of the

sequence aiD
0
i, for any 1 � i � n.

Suppose first that all of the bjs in D0i have been deleted
in our exemplar genome GE

2 , thus transforming it into
the exemplar subsequence Di. By Lemma 1, we know
that any nontrivial interval is composed in G1 of
elements of the sequence aiCi, for any 1 � i � n. Hence,
it is composed, in any exemplar genome GE

2 obtained
from G2, of elements of the sequence aiDi, for any
1 � i � n. In that case, it can be easily seen that, for any
1 � i � n:

1. interval aiCi in G1 is a common interval to aiDi in
GE

2 and
2. interval Ci in G1 is a common interval to Di in GE

2 .

Moreover, by Lemma 2, no strict subsequence �i of Di

such that 2 � j�ij � jDij � 1 is a common interval (we
recall that jDij ¼ jCij ¼ 2m by construction). Hence, if all
of the bjs in D0i have been deleted to obtain Di, then only
two common nontrivial intervals exist in GE

2 : aiDi (which
is common with aiCi in G1) and Di (which is common
with Ci in G1).

Suppose now that at least one bj in D0i has not been
deleted in GE

2 . First, we note that no nontrivial common
interval can include bj, since bj does not appear in Ci.
Hence, any possible nontrivial interval involving D0i is a
substring �i of D0i that does not contain any bj. However,
since no bj is an extremity of D0i, it implies that,
necessarily, j�ij � 2m� 1. However, by Lemma 2, we
know that, in that case, �i is not a common interval. tu

Lemma 4. Let G be a graph and G1 and G2 be the two genomes

obtained by the construction described above. G admits a

Vertex Cover V C such that jV Cj � k iff there exists an

exemplar genome GE
2 obtained from G2 having at least I ¼

2ðn� kÞ þ IT common intervals, where IT is the number of

trivial common intervals.

Proof. ð)Þ Suppose there exists in G a Vertex Cover V C

such that jV Cj ¼ k0 � k. Let V C ¼ fvi1 ; vi2 . . . vik0 g. In

G2, delete the bjs in the substrings D0i for any

i 62 fi1; i2 . . . ik0 g. If, after doing this, there remain some

bjs which appear twice, remove one copy of each

arbitrarily. Since, in G2, 1) only the bjs are duplicated,

2) each bj occurs exactly twice in G2, and 3) V C is a

Vertex Cover of G, we conclude that, with those

deletions, we end up with an exemplar genome GE
2 . In

GE
2 , we have at least ðn� kÞ substrings of the form D0i for

which all of the bjs have been deleted. Thus, by Lemma 3,

we know that they each imply two nontrivial common

intervals, which sums up to at least 2ðn� kÞ. To those

intervals, we add the trivial ones. Hence, on the whole,
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we get at least I ¼ 2ðn� kÞ þ IT common intervals
between G1 and GE

2 .
ð(Þ Suppose there exists an exemplar genome GE

2

obtained from G2 and having at least I ¼ 2ðn� kÞ þ IT
common intervals. Then, there are at least 2ðn� kÞ
nontrivial common intervals. However, by Lemma 1,
we know that they can only occur within the substrings
aiCi, 1 � i � n, in G1, that is within the substrings aiD

0
i,

1 � i � n, in GE
2 . By Lemma 3, we know that, in at least

ðn� kÞ such substrings, all of the bjs, 1 � j � m, have
been deleted. Since GE

2 is exemplar, this means that the
bjs have remained in at most k substrings of the form
aiD

0
i. By construction, each bj has been included in a D0i

because the edge ej is incident to the vertex vi in the
graph G. Since one copy of each bj has remained in GE

2

and since they are included in at most k substrings of the
form aiD

0
i, we conclude that those substrings imply a

Vertex Cover which is of at most size k in G. tu

As a direct consequence of Lemma 4, we can say that the
ECOMI problem is NP-complete. Moreover, as mentioned
before, the proof and the result are also valid for the
MCOMI problem since our construction implies that
occðG1Þ ¼ 1. We thus have the following theorem.

Theorem 1. The ECOMI and MCOMI problems are both NP-
complete, even when occðG1Þ ¼ 1 and occðG2Þ ¼ 2.

We also consider, for the matching model, instances for
which the constraints do not rely on the maximum number
of duplicates per family but on the number of families that
contain duplicates. With this restriction, we obtain the
following result.

Theorem 2. The MCOMI problem is NP-complete even when
fðG1Þ ¼ fðG2Þ ¼ 1, where fðGÞ denotes the number of
different families of genes that contain duplicates in G.

Proof. The proof is directly derived from the proof by Blin
and Rizzi [18] in which the authors studied conserved
intervals, a measure that is closely related to common
intervals. More precisely, a conserved interval is a
common interval for which the extremities are conserved
[23]. Hence, any conserved interval is by definition a
common interval, although the converse is not true in
general. However, the construction given in [18] has the
property that any common interval is in fact also a
conserved interval. Hence, the reduction they provide is
also valid for the MCOMI problem, and the result
follows. tu

4 MAXIMUM ADJACENCY DISRUPTION (MAD)

Let EMAD (respectively, MMAD) denote the problem of
computing the minimum MAD number in the exemplar
(respectively, matching) model. In this section, we prove
inapproximability results for both the EMAD and MMAD
problems. More precisely, we show that, for no " > 0, EMAD
(respectively, MMAD) admits a ð2� "Þ-approximation algo-
rithm unless P ¼ NP. This inapproximability result does
not rely on the PCP theorem. We will also remark, however,
how reconsidering the reduction proposed in view of the
APX-hardness results based on the PCP theorem can one

replace the constant 2 above with a strictly bigger constant.
The proof is split into two: We first study the complexity of
a restricted form of SAT, which we call UNIFORM-SAT, and,
in particular, we show that it is NP-complete. Next, we
show that a ð2� "Þ-approximation algorithm for EMAD
(respectively, MMAD), for some " > 0, would imply the
existence of a polynomial time algorithm for UNIFORM-
SAT. Finally, we obtain the inapproximability result for
EMAD (respectively, MMAD).

In the following, 3SAT will denote the restriction of SAT
for which each clause contains at most three literals. We
introduce a restricted form of 3SAT called UNIFORM-SAT,
as follows: An instance hX; Ci of 3SAT is an instance of
UNIFORM-SAT when the following two conditions are met:

1. for each clause C 2 C, either all literals occurring in
C are positive occurrences of variables from X or all
literals occurring in C are negated occurrences of
variables from X and

2. for each variable x 2 X, x has at most three positive
and at most two negated occurrences within C.

A 3SAT formula F ¼
V
C2C C is called 3-bounded if no

variable has more than three occurrences within C and is
called (2, 2)-bounded if no variable has more than two
positive occurrences and no more than two negated
occurrences within C. The following two facts are known:

1. the decision problem 3SAT is NP-complete even
when restricted to 3-bounded formulas [24] and

2. the optimization problem MAX-3SAT is APX-hard
even when restricted to 3-bounded formulas [25].

Since both problems admit a trivial self-reduction in case
a variable has only positive (or only negated) occurrences,
then the following two facts also hold:

1. 3SAT is NP-complete even when restricted to
(2, 2)-bounded formulas and

2. MAX-3SAT is APX-hard even when restricted to
(2, 2)-bounded formulas.

Notice that, of the above two results, only the second is
related to the PCP theorem, whereas the first was known
much before its appearance.

The following reduction links the complexity of
UNIFORM-SAT to the complexity of (2, 2)-bounded 3SAT.
Given a generic instance hX; Ci of (2, 2)-bounded 3SAT,
where X ¼ fx1; x2; . . . ; xng and C ¼ fC1; C2; . . . ; Cmg, con-
sider the instance hY ;Pi of UNIFORM-SAT, where Y ¼ fyji :
i ¼ 1; 2; . . . ; n; j ¼ 0; 1; 2; 3g and P ¼ Pvar [ Pcla, where

Pvar ¼ fðyji _ y
jþ1 mod 4
i Þ; ð:yji _ :y

jþ1 mod 4
i Þ :

i ¼ 1; 2; . . . ; n; j ¼ 0; 1; 2; 3g

and Pcla ¼ fP1; P2; . . . ; Pmg, where, for j ¼ 1; 2; . . . ;m, the
clause Pj is obtained from the clause Cj as follows: For each
literal ‘ occurring in Cj and assuming that ‘ is the
tth positive (or the tth negated) literal of variable xi (with
i ¼ 1; 2; . . . ; n and t ¼ 1; 2) occurring within the clauses
C1; C2; . . . ; Cm as taken in this order, then the literal y2t�1

i

(respectively, the literal y2t�2
i ) is placed in the clause Pj. In

practice, the clause Pj is a clause made only of positive
literals which is meant to represent the original clause Cj.
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At the same time, the all-positive or all-negated clauses in
Pvar are there to enforce the consistency of the truth values
of the variables y0

i , y
1
i , y

2
i , and y3

i , which are meant to
represent either the positive (y1

i and y3
i ) or the negated (y0

i

and y2
i ) occurrences of variable xi within C.

The above is clearly a polynomial time reduction;
besides, we have the following lemmas.

Lemma 5. Let tX : X 7!f0; 1g be a truth assignment over X
which satisfies at least c of the clauses in C. Then, there exists a
truth assignment tY : Y 7!f0; 1g over Y which satisfies at least
cþ 8n of the clauses in P.

Proof. Consider the assignment tY defined by tY ðy1
i Þ :¼

tY ðy3
i Þ :¼ tXðxiÞ and by tY ðy0

i Þ :¼ tY ðy2
i Þ :¼ :tXðxiÞ. Note

that each of the 8n clauses in Pvar is satisfied under tY .
Moreover, for each j ¼ 1; 2; . . . ;m, the clause Pj is
satisfied under tY if and only if the clause Cj is satisfied
under tX. tu

Lemma 6. Let tY : Y 7!f0; 1g be a truth assignment over Y
which satisfies at least cþ 8n of the clauses in P. Then, in
polynomial time, we can derive from tY a truth assignment
tX : X 7!f0; 1g over X which satisfies at least c of the clauses
in C.

Proof. Truth assignment tY is called canonical if for
each i ¼ 1; 2; . . . ; n, the truth values of the variables
y0
i , y1

i , y2
i , and y3

i are consistent, that is, when
tY ðy0

i Þ ¼ tY ðy2
i Þ 6¼ tY ðy1

i Þ ¼ tY ðy3
i Þ. Notice that by possibly

redefining at most two truth values among tY ðy0
i Þ, tY ðy2

i Þ,
tY ðy1

i Þ, and tY ðy3
i Þ, we can always assume that tY is

canonical. Indeed, at least two extra clauses from Pvar are
satisfied in restoring the consistency among the variables
y0
i , y

1
i , y

2
i , and y3

i , while, at the same time, since at most
two truth values have been affected, at most two clauses
from Pcla may lose in satisfaction. In other words, we can
make tY canonical by a majority vote on y0

i , y
1
i , y

2
i , and y3

i ,
for each i ¼ 1; 2; . . . ; n, while preserving the fact that at
least cþ 8n of the clauses in P are satisfied under tY .
Once tY is canonical, the arguments spent within the
proof of the previous lemma are fully reversible. tu

The above two lemmas imply that UNIFORM-SAT is
NP-complete.

Theorem 3. Deciding whether a given UNIFORM-SAT formula
is satisfiable is NP-complete.

Theorem 3 here does not need the PCP theorem and
is all that is required in the following for proving that,
for no " > 0, EMAD (respectively, MMAD) admits a
ð2� "Þ-approximation algorithm unless P ¼ NP. With de-
pendence on PCP, Lemmas 5 and 6 also imply the following
result, which, besides being of independent interest, can be
used to show that the right constant for the approximability
of EMAD (respectively, MMAD) is not 2.

Theorem 4. Given a UNIFORM-SAT formula, the problem of
finding a truth assignment maximizing the number of satisfied
clauses is APX-hard.

Proof. We will proceed as follows: Assume we are given a
ð1� "Þ-approximation algorithm A for UNIFORM-SAT
and design a ð1� 25 "Þ-approximation algorithm for a

(2, 2)-bounded 3SAT, which rests on algorithm A as a
subroutine. The APX-hardness of UNIFORM-SAT then
follows from the APX-hardness of a (2, 2)-bounded 3SAT.

After receiving an instance hX; Ci of (2, 2)-bounded
3SAT in the input, we construct the instance hY ;Pi of
UNIFORM-SAT, as described above. Assume that the
optimal truth assignment tX;opt for hX; Ci satisfies at least
opt clauses in C. Clearly, opt � n

3 since there clearly exists
a truth assignment under which, for each variable x 2 X,
at least one of the occurrences of x in C belongs to a
satisfied clause since each clause contains at most three
literals. Moreover, by Lemma 5, there exists a truth
assignment tY ;opt over Y satisfying at least 8nþ opt
clauses in P. By running algorithm A, we are hence
guaranteed to find a truth assignment tY ;apx over Y
satisfying at least ð8nþ optÞð1� "Þ clauses in P. More-
over, Lemma 6 (whose proof can be easily converted into
a polynomial time algorithm) shows how, starting from
this truth assignment tY ;apx, can one obtain a truth
assignment tX;apx over X such that the clauses in C that
are satisfied under tX;apx are at least

ð8nþ optÞð1� "Þ � 8n � opt� " opt� 8 " n

� opt� " opt� 24 " opt � ð1� 25"Þ opt:
ut

We now prove that both the EMAD and MMAD
problems are APX-hard. The result holds for both problems
since we prove it in the case where occðG1Þ ¼ 1, where they
coincide. The result rests on a reduction from UNIFORM-
SAT. Assume we are given an instance hX; Ci of
UNIFORM-SAT, where X ¼ fx1; x2; . . . ; xng. Here, C can be
partitioned into the family P ¼ fP1; P2; . . . ; Pmp

g of clauses
comprised of only positive literals and the family N ¼
fN1; N2; . . . ; Nmn

g of clauses comprised of only negated
literals. Let M" be a sufficiently big positive integer that we
will later fix in order to force our conclusions. Let us now
detail the construction of the two genomes G1 and G2 from
any instance of the UNIFORM-SAT problem. Here, G1 is the
simple (that is, duplication-free) genome G1 of length
L1 ¼ 2M" þmp þmn þ n� 1, defined as follows:

G1 ¼ 1 2 3 . . .L1:

A gene at position i in G1 with i � mp or i � L1 �mn þ 1 is
called an �-gene. Genome G2 has length L2 ¼ 2M" þ 6n� 1
and conforms to the following pattern, where we have
found it convenient and pertinent to spot out the displace-
ment of the �-genes within genome G2:

G2 ¼ mp þ 1;mp þ 2; . . . ;mp þM"; �; �; �; �; �;mp þM" þ 1;

�; �; �; �; �;mp þM" þ 2; . . . . . . ; �; �; �; �; �;
mp þM" þ n;mp þM" þ nþ 1;mp þM" þ nþ 2;

. . . ;mp þ 2M" þ n� 1:

We will specify later the precise identity of the �-genes
within genome G2. For now, notice that, in G2, we have
precisely n runs of five consecutive �-genes. We put these
runs into a 1, 1-correspondence with the n variables in X so
that the ith run corresponds to variable xi, for i ¼ 1; 2; . . . ; n.
For each i ¼ 1; 2; . . . ; n, let Pi and N i be the lists of index
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sets of the clauses from P and N which contain variable xi.
For example, if xi appears in P3, in P7, and in N2, then
Pi ¼ ð3; 7Þ, whereas N i ¼ ð2Þ. Notice that the lengths of the
lists Pi and N i are at most 3 and 2, respectively. From the
list Pi, we obtain a list P0i of length precisely 3 by possibly
iterating the last element in Pi the required number of times
(that is, 3� jPij times). A list N 0i of length precisely 2 is
similarly obtained from list N i. Now, for each
i ¼ 1; 2; . . . ; n, the ith run of five consecutive �-genes
consists, more precisely, of the following five characters:

ð�; �; �; �; �Þ !ðP0i½1�;P0i½2�;P0i½3�; L1 �mn þN 0i½1�;
L1 �mn þN 0i½2�Þ:

The above is clearly a polynomial time reduction. It can
also be easily seen that there are no duplications in G1,
whereas each gene appears at most nine times in G2 (that is,
occðG1Þ ¼ 1 and occðG2Þ � 9). Besides, we have the follow-
ing lemmas.

Lemma 7. Let tX : X 7!f0; 1g be a satisfying truth
assignment for hX; Ci. Then, there exists an exemplar
subgenome GE

2 of G2 whose MAD number satisfies
MADðG1; G

E
2 Þ �M" þmp þmn þ n.

Proof. For each clause Pj 2 P, choose a variable xi occurring
in Pj and such that tXðxiÞ ¼ 1 (remember that tX is a
satisfying truth assignment) and color with red one copy
of gene j occurring within the ith run of five consecutive
�-genes in G2. Similarly, for each clause Nj 2 N , choose a
variable xi occurring in Nj and such that tXðxiÞ ¼ 0
(again, at least one such variable must exist since tX is a
satisfying truth assignment) and color with red one copy
of gene ðL1 �mnÞ þ j ¼ 2M" þmp þ n� 1þ j occurring
within the ith run of five consecutive �-genes in G2. Now,
obtain GE

2 from G2 by deleting all of the �-genes except
those marked red. Notice that GE

2 is indeed an exemplar
genome on the genes 1; 2; . . . ; L1.

We now verify that

MADðG1; G
E
2 Þ �M" þmp þmn þ n;

which is better done in two separate steps. First, we
check out that any two genes j and jþ 1 that are adjacent
in G1 are at most M" þmp þmn þ n positions apart in
GE

2 . This follows from the fact that L1 ¼ 2M" þmp þ
mn þ n� 1 and considering that the first M" positions in
GE

2 are taken by genes j 2 ½mp þ 1;mp þM"�, whereas the
last M" positions in GE

2 are taken by genes
j 2 ½L1 �mn �M" þ 1; L1 �mn�. Moreover, for

j 2 ½mp þ 1;mp þM" � 1�[
½L1 �mn �M" þ 1; L1 �mn � 1�;

genes j and jþ 1 are also adjacent in GE
2 (more generally,

for j 2 ½mp þ 1; L1 �mn � 1�, genes j and jþ 1 both also
have a unique occurrence in G2, where they are at most
six positions apart, and they are at most four positions
apart in GE

2 ). Second and last, we check out that any two
genes i and j which are adjacent in GE

2 are at most M" þ
mp þmn þ n positions apart in G1. Here, if neither i nor j
are �-genes, then i and j are also adjacent in G1, that is,
j ¼ i� 1. Furthermore, if precisely one among i and j,

say, j, is an �-gene, then mp þM" � i � mp þM" þ n
since, otherwise, i could not be adjacent to an �-gene in
GE

2 ; hence, if j < i, then i� j � mp þM" þ n, whereas if
i < j, then j� i � mn þM" þ n. Thus, the only interest-
ing case is when both i and j are �-genes, that is, both i

and j belong either to the interval ½1;mp� or to the interval
½L1 �mn þ 1; L1�. It suffices here to notice that, in this
case, i and j come from the same interval. Indeed, this
follows from the fact that i and j are adjacent in GE

2 and,
hence, correspond to occurrences of the same variable.
However, then these two occurrences must either be both
positive or both negative since they both have been
colored with red in the marking phase. tu

Lemma 8. For any exemplar genome GE
2 of G2 such that

MADðG1; G
E
2 Þ < 2M" þ n, we can derive in polynomial time

from GE
2 a satisfying truth assignment for hX; Ci.

Proof. Since MADðG1; G
E
2 Þ < 2M" þ n, then, in obtaining

GE
2 from G2 and for each i ¼ 1; 2; . . . ; n, it must be the

case that, in the ith run of five consecutive �-genes in G2,
either the genes P0i½1�, P0i½2�, and P0i½3� have all been
deleted or the genes N 0i½1� þ L1 �mn and N 0i½2� þ L1 �
mn have both been deleted. Consider the truth assign-
ment tX : X 7!f0; 1g such that, for each i ¼ 1; 2; . . . ; n,
tXðxiÞ ¼ 1 iff both N 0i½1� þ L1 �mn and N 0i½2� þ L1 �mn

have been deleted. We claim that tXðxiÞ is a satisfying
truth assignment. Indeed, for each clause Pj 2 P, we
know that at least a copy of gene j has been retained
in GE

2 . This copy must come from one of the runs of
five consecutive �-genes in G2, say, from the ith run. It
follows that xi occurs in Pj and that tXðxiÞ ¼ 1.
Similarly, for each clause Nj 2 N , we know that at
least a copy of the gene ðL1 �mnÞ þ j (that is, of gene
2M" þmp þ n� 1þ j) has been retained in GE

2 . This
copy must come from one of the runs of five consecutive
�-genes in G2, say, from the ith run. It follows that xi
occurs in Nj and that tXðxiÞ ¼ 0. tu

Theorem 5. For no " > 0, EMAD (respectively, MMAD) admits
a ð2� "Þ-approximation algorithm unless P ¼ NP.

Proof. We proceed as follows: We assume that we are given
a ð2� "Þ-approximation algorithm A for EMAD (respec-
tively, MMAD) and design a polynomial time algorithm
for UNIFORM-SAT which rests on algorithm A as a
subroutine. The theorem then follows from the
NP-completeness of UNIFORM-SAT, as stated in Theo-
rem 3. After receiving an instance hX; Ci of UNIFORM-
SAT in the input, we construct the instance hG1; G2i of
EMAD (respectively, MMAD), as described above. If
hX; Ci is satisfiable, then, by Lemma 7, there exists an
exemplar subgenome GE

2 of G2 such that

MADðG1; G
E
2 Þ �M" þmp þmn þ n:

By running algorithm A, we are hence guaranteed to find
an exemplar subgenome GE

apx of G2 such that

MADðG1; G
E
apxÞ � ðM" þmp þmn þ nÞð2� "Þ
� 2M" þ 2mp þ 2mn þ 2n� "M":
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Now, after choosing M" � 2mpþ2mnþ2n
" , we conclude that

the solution GE
apx produced by algorithm A satisfies

MADðG1; G
E
apxÞ � 2M". Moreover, Lemma 8 (whose

proof can be easily converted into a polynomial time

algorithm) shows how, starting from GE
apx, one can

obtain a satisfying truth assignment for hG1; G2i.
Conversely, if hX; Ci is not satisfiable, then, by Lemma 8,

MADðG1; G
E
apxÞ � 2M" þ n must hold for the solution

returned by algorithm A as it holds for any solution and

we can realize that hX; Ci was not satisfiable comparing

this fact against Lemma 7. tu
Remark 1. There actually exists a constant c > 2 such that

EMAD (respectively, MMAD) admits no c-approximation

algorithm unless P ¼ NP. We can get to this stronger

conclusion if, in the proof of Theorem 5 above, we apply

Theorem 4 instead of Theorem 3. Moreover, explicit

values of c for which this stronger statement holds can

also be worked out.

5 SUMMED ADJACENCY DISRUPTION (SAD)

Let ESAD (respectively, MSAD) denote the problem of

computing the minimum SAD number in the exemplar

(respectively, matching) model. In this section, we prove

that both problems ESAD and MSAD, expressed on two

genomes G1 and G2 such that jG1j � jG2j, cannot be better

than logðjG1jÞ approximated (here and in the rest of the

paper, logarithms are assumed to be base e). This result

holds for both the exemplar and the matching models since

we prove it in the case where occðG1Þ ¼ 1, for which the two

problems coincide. The inapproximability of ESAD (respec-

tively, MSAD) is obtained starting from the inapproxim-

ability of SETCOVER. This result will hence depend on the

PCP theorem but will deliver stronger SETCOVER-like

inapproximability thresholds than for the EMAD and

MMAD problems discussed in the previous section.

Let hV ;Si be an instance of SETCOVER, where V ¼
f1; 2; . . . ; ng and S ¼ fS1; S2; . . . ; Smg is a family of subsets

of V . We can assume n is even, say, n ¼ 2k, and each set Si

contains precisely k ¼ n
2 elements, say, si1; s

i
2; . . . ; sik. The

well-known inapproximability results for SETCOVER also

hold under these assumptions since we can think of

enlarging a groundset V , originally on k elements, by

adding a set V 0 of k new elements, adding V 0 to S, and

enlarging the other sets in S with elements from V 0 until

their size rises up to k. Let M ¼ m2n2 play the role of a

sufficiently big positive integer. Let us now detail the

construction of the two genomes, G1 and G2, from any

instance of the SETCOVER problem. Here, G1 is a simple

(that is, duplication-free) genome of length L1 ¼M þ nþm
as given by G1 ¼ 1; 2; 3 . . .L1. Genome G2 has length L2 ¼
M þmðkþ 1Þ and is constructed as follows:

G2 ¼ nþ 1; nþ 2; . . . ; nþM; s1
1; s

1
2;

. . . ; s1
k; nþM þ 1; s2

1; s
2
2; . . . ; s2

k; nþM þ 2; . . .

. . . ; sm�1
1 ; sm�1

2 ; . . . ; sm�1
k ; nþM þm� 1; sm1 ; s

m
2 ; . . . ;

smk ; nþM þm:

The above is clearly a polynomial time reduction; in

addition, we have the following lemmas.

Lemma 9. Let S0 � S be a set cover of V with jS0j � s. Then,

there exists an exemplar subgenome GE
2 of G2 whose SAD

number satisfies SADðG1; G
E
2 Þ � 2 sM þ 5M.

Proof. For each element v 2 V , choose a set Si in S0 such that

v 2 Si, that is, sij ¼ v for some j ¼ 1; 2; . . . ; k. Color with

red this copy of gene v, that is, the copy of gene v

occurring in the position M þ ðkþ 1Þði� 1Þ þ j of G2.

Now, obtain GE
2 from G2 by deleting all of the copies of

the first n genes, except those marked with red. Notice

that GE
2 is indeed an exemplar genome on the genes

1; 2; . . . ; L1.
We now verify that SADðG1; G

E
2 Þ � 2 sM þ 5M.

Indeed,

SADðG1; G
E
2 Þ ¼

XMþmþn�1

i¼1

DistðGE
2 ; G1½i�; G1½iþ 1�Þþ

XMþmþn�1

i¼1

DistðG1; G
E
2 ½i�; GE

2 ½iþ 1�Þ;

where, assuming that m and n are sufficiently big

ðm;n � 4Þ,

XMþmþn�1

i¼1

DistðGE
2 ; G1½i�; G1½iþ 1�Þ �

Xn�1

i¼1

DistðGE
2 ; G1½i�; G1½iþ 1�Þþ

ðM þmþ nÞþ
XMþn�1

i¼nþ1

DistðGE
2 ; G1½i�; G1½iþ 1�Þþ

XMþmþn�1

i¼Mþn
DistðGE

2 ; G1½i�; G1½iþ 1�Þ

� nðnþmÞ þ ðM þmþ nÞ þM þmn
� 2M þ 3mn2

� 2M þm2n2

� 3M;

and where, again assuming that m and n are sufficiently

big ðm;n � 4Þ,
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XMþmþn�1

i¼1

DistðG1; G
E
2 ½i�; GE

2 ½iþ 1�Þ ¼

XM�1

i¼1

DistðG1; G
E
2 ½i�; GE

2 ½iþ 1�Þþ

XMþmþn�1

i¼M
DistðG1; G

E
2 ½i�; GE

2 ½iþ 1�Þ ¼

ðM � 1Þþ
XMþmþn�1

i¼M
DistðG1; G

E
2 ½i�; GE

2 ½iþ 1�Þ

�M þ
X
Si 62S0

1þ
X
Si2S0
ð2ðM þmþ nþ n2ÞÞ

�M þmþ 2 s ðM þmþ nþ n2Þ
�M þ 2 sM þm2n2

� 2 sM þ 2M:

To better explain the upper bound on the termPMþmþn�1
i¼M DistðG1; G

E
2 ½i�; GE

2 ½iþ 1�Þ used in the above

chain of inequalities, denote with pi, i ¼ 0; 1; . . . ;m, the

absolute position of the gene M þ nþ i inside the

genome GE
2 . (Thus, p0 ¼M and pn ¼M þ nþm).

Clearly,

XMþmþn�1

i¼M
DistðG1; G

E
2 ½i�; GE

2 ½iþ 1�Þ ¼

Xm
i¼1

Xpi�1

j¼pi�1

DistðG1; G
E
2 ½j�; GE

2 ½jþ 1�Þ:

Now, when Si 62 S0, then the two genes nþM þ ði� 1Þ
and nþM þ i are adjacent both in GE

2 and in G1, wherePpi�1
j¼pi�1

DistðG1; G
E
2 ½j�; GE

2 ½jþ 1�Þ ¼ 1. Also, for each
i ¼ 1; 2; . . . ;m,

DistðG1; G
E
2 ½pi�1�; GE

2 ½pi�1 þ 1�Þ �M þmþ n

and DistðG1; G
E
2 ½pi � 1�; GE

2 ½pi�Þ �M þmþ n since

M þmþ n is the length of G1. Furthermore,

pi � pi�1 � 1þ k � n, and, for each

j ¼ 1; 2; . . . ; pi � pi�1 � 2;

DistðG1; G
E
2 ½pi�1 þ j�; GE

2 ½pi�1 þ jþ 1�Þ � n:
ut

Lemma 10. For any exemplar subgenome GE
2 of G2 such that

SADðG1; G
E
2 Þ < 2 sM, we can derive, from GE

2 and in

polynomial time, a set cover S0 � S of V such that jS0j � s.
Proof. Let S0 be the family of those Si 2 S for which there

exists a v 2 Si, say, v ¼ sji , such that, in obtainingGE
2 from

G2, the copy sji of gene vhas not been deleted. Notice thatS0
is a cover of V since all genes 1; 2; . . . ; L1 occur in GE

2 .

Moreover, jS0j � s follows from SADðG1; G
E
2 Þ < 2 sM.

Indeed,

XMþmþn�1

i¼M
DistðG1; G

E
2 ½i�; GE

2 ½iþ 1�Þ � SADðG1; G
E
2 Þ � 2 sM:

However, for every i such that Si 2 S0, the genes M þ
nþ ði� 1Þ and M þ nþ i are not consecutive in GE

2 . Let
us denote with pi�1 and pi the absolute positions of genes
M þ nþ ði� 1Þ and M þ nþ i within the genome GE

2 .
Thus, whenever Si 2 S0, then pi > pi�1 þ 1 and we have
DistðG1; G

E
2 ½pi�1�; GE

2 ½pi�1 þ 1�Þ �M and

DistðG1; G
E
2 ½pi � 1�; GE

2 ½pi�Þ �M

since GE
2 ½pi�1 þ 1� � n and GE

2 ½pi � 1� � n. It follows that

jS0j � 2 sM
2M ¼ s. tu

Theorem 6. There exists a constant c > 0 such that ESAD
(respectively, MSAD) admits no ðc log jG1jÞ-approximation
algorithm unless P ¼ NP, where jG1j is the length of the
smallest genome.

Proof. It is well known that the SETCOVER cannot be
approximated within ð1� "Þ logn (where n is the number
of elements) for any " > 0 (see [26]) nor within c logm
(where m is the number of sets (see [27]) for some c > 0).
To be more precise, it has been proved in [27] that the
instance of the Set Cover produced through the reduction
in [26] is characterized by having m � n5. Thus, for no
" > 0, SETCOVER can be ð1� "Þ-approximated, even when
restricting attention to instances in which logm � 5 logn.
This means that there exists a constant c0 such that no
polynomial algorithm approximates SETCOVER within
c0ðlogmþ lognÞ, with c0 chosen small enough (consider
any c0 < 1

6 ). We claim that ESAD (respectively, MSAD)
admits no ðc04 log jG1jÞ-approximation algorithm. We
proceed as follows: We assume that we are given
a ðc04 log jG1jÞ-approximation algorithm A for ESAD
(respectively, MSAD) and design a c0ðlogmþ
lognÞ-approximation algorithm for SETCOVER which
rests on algorithm A as a subroutine. The theorem then
follows from the above collected inapproximability facts
about SETCOVER. After receiving in input an instance
hV ;Si of SETCOVER, we construct the instance hG1; G2i
of ESAD (respectively, MSAD) as described above.
Notice that jG1j � 2M and, hence,

log jG1j � log 2m2n2 � 3 ðlogmþ lognÞ:

Let opt be the minimum size of a set cover for hV ;Si.
Then, by Lemma 9, there exists an exemplar subgenome
GE

2 of G2 such that SADðG1; G
E
2 Þ � 2 optM þ 5M. By

running algorithm A, we are hence guaranteed to find an
exemplar subgenome GE

apx of G2 such that

SADðG1; G
E
apx � ð2 optM þ 5MÞ c

0

4
log jG1j

� 8

3
optM

� �
c0

4
3 ðlogmþ lognÞ

� ð2 optMÞ c0 ðlogmþ lognÞ:

Indeed, in the derivation of the above chain of inequal-
ities, we can conveniently assume that the value of opt is
sufficiently big since, if opt was bounded by any
constant, then an optimal solution to the original
SETCOVER instance could be found in polynomial time.
Now, Lemma 10 (whose proof can be easily converted
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into a polynomial time algorithm) shows how, starting

from GE
apx, one can obtain a set cover S0 with jS0j �

1
2M ð2 optMÞ c0 ðlogmþ lognÞ ¼ opt c0 ðlogmþ lognÞ. tu

6 SUMMARY OF THE RESULTS AND DISCUSSION

In this section, we give a summary of the results from this

paper, as well as some other results concerning the

complexity of computing several classical (dis)similarity

measures, under both the exemplar and the matching

models. We found it interesting to end this paper by giving

an overview of the existing results in this area since several

recent papers, by different groups of authors, have

investigated the problem. Hence, in addition to the number

of common intervals, MAD number and SAD number, we

include results concerning the number of conserved

intervals (initially defined in [23]), number of breakpoints,

and number of reversals. However, we should note that the

three above-mentioned measures take signs into account,

which is not the case for common intervals, MAD, and SAD.
We recall that occðGÞ denotes the maximum of occðG; gÞ

over all genes g in G, where occðG; gÞ denotes the maximum

number of occurrences of a gene g in genome G (regardless

of the signs). We also recall that fðGÞ denotes the number of

different families of genes that contain several occurrences

in genome G.
The results concerning the exemplar model are summar-

ized in Table 1, whereas the ones concerning the matching

model are summarized in Table 2.
The main conclusion that we can draw from these two

tables is that, as soon as occðG1Þ ¼ 1 and occðG2Þ ¼ 2, the

computation of five out of the six above-mentioned measures

becomes NP-complete under both the exemplar and match-

ing models. In that sense, we are able to draw the exact border

between polynomial problems (occðG1Þ ¼ occðG2 ¼ 1) and

NP-complete problems (occðG1Þ ¼ 1 and occðG2Þ ¼ 2), ex-

cept for the number of reversals where a gap exists (we do

not know the complexity of the problem when occðG1Þ ¼ 1

and occðG2Þ ¼ 2).
Another interesting parameter to consider for the

complexity of those problems is fðGÞ, the number of
families of genes that are duplicated in genome G.
Concerning this parameter, only a few results are known
(breakpoints and conserved and common intervals, in the
matching model only).

Concerning the approximability of the problems, it turns
out that, even when occðG1Þ ¼ 1, we are able to say that five
out of the six measures lead to APX-hard problems. For the
number of reversals, it is APX-hard in the exemplar model
when occðG1Þ ¼ occðG2Þ ¼ 2 [13]. However, for three of
those five cases (breakpoints and conserved and common
intervals) similar to the complexity results, we know that
the problem is APX-hard even when occðG1Þ ¼ 1 and
occðG2Þ ¼ 2, whereas, in the others, the value of occðG2Þ is
either unbounded (SAD) or bounded by constant 9 (MAD).

7 CONCLUSION

In this paper, we have investigated the algorithmic complex-
ity of the problem of computing similarity measures between
genomes in the case where they contain duplicates. This has
been done for three measures: common intervals, MAD,
and SAD. We have shown that the three problems are
NP-complete, for both the exemplar and matching variants.
Moreover, we have provided APX-hardness results con-
cerning MAD and SAD. Those results, together with the
ones concerning conserved intervals, breakpoints, and
reversals, basically show that, as soon as duplicates are
present, the problem becomes hard and even hard to
approximate, even in very restricted instances.

Several lines of research would be interesting to follow,
some of which we mention below:

. Make Tables 1 and 2 even more precise. In
particular, 1) complete the cases for which no result
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TABLE 1
Results Concerning the Exemplar Model

ð�Þ We note that this result can actually be extended to the case where
occðG1Þ ¼ 1 and occðG2Þ ¼ 2 by reducing the problem from VERTEX-

COVER instead of SETCOVER.

TABLE 2
Results Concerning the Matching Model

ð�Þ We note that this result can actually be extended to the case where
occðG1Þ ¼ 1 and occðG2Þ ¼ 2 by reducing the problem from VERTEX-

COVER instead of SETCOVER.



is known or a gap exists (that is, the number of
reversals), 2) study more deeply the complexity and
approximability results with respect to the para-
meter f , and 3) tighten, if possible, the results
concerning the (in)approximability of the problems,
notably for the number of reversals in the exemplar
model.

. Find Fixed-Parameter Tractable algorithms for those
problems in order to circumvent NP-completeness
and APX-hardness of the problems.

. Find good heuristics for those problems, as done, for
instance, in [17] and [28] (among many others), in
which the authors are able to compare their
proposed heuristic to the exact results.
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