
Perfect Sorting by Reversals
Is Not Always Difficult

Sèverine Bérard, Anne Bergeron, Cedric Chauve, and Christophe Paul

Abstract—We propose new algorithms for computing pairwise rearrangement scenarios that conserve the combinatorial structure of

genomes. More precisely, we investigate the problem of sorting signed permutations by reversals without breaking common intervals.

We describe a combinatorial framework for this problem that allows us to characterize classes of signed permutations for which one

can compute, in polynomial time, a shortest reversal scenario that conserves all common intervals. In particular, we define a class of

permutations for which this computation can be done in linear time with a very simple algorithm that does not rely on the classical

Hannenhalli-Pevzner theory for sorting by reversals. We apply these methods to the computation of rearrangement scenarios between

permutations obtained from 16 synteny blocks of the X chromosomes of the human, mouse, and rat.

Index Terms—Evolution scenarios, reversals, common intervals.

Ç

1 INTRODUCTION

THE reconstruction of evolution scenarios based on
genome rearrangements and, in particular, reversals

and translocations, has proven to be a powerful tool to
understanding the evolution of groups of species. For
eukaryotic genomes, several evolution scenarios have
recently been proposed between vertebrates genomes [10],
[11], [32], using the MGR and GRIMM softwares [9], [39].
These scenarios lead to interesting insight on the architec-
ture of ancestral genomes, the evolution pattern across
different lineages, or the presence of genome regions prone
to be involved in rearrangements (the so-called “breakpoint
reuse” hypothesis) [31], [33], [36]. Putative evolution
scenarios based on rearrangements were also computed
on large data sets of prokaryotic genomes [3], [16]. In this
paper, we describe new combinatorial and algorithmical
results for computing such scenarios, based on the
combinatorial problem of sorting by reversals.

1.1 Current Approaches for Sorting by Reversals

At the heart of the computation of such rearrangement

scenarios is the encoding of genomes by signed permutations,

where each element of a permutation represents a genomic

segment—from large synteny blocks in [10] to genes in

prokaryotic genomes analysis [16]—and the problem of

sorting signed permutations by reversals, introduced by Sank-

off [35]: Given two signed permutations, find a “good”

sequence of reversals that transforms one into the other one

[35]. In the original approach, a “good” sequence of

reversals is a parsimonious sequence of reversals. This

approach was pioneered by, among others, Hannenhalli

and Pevzner, who described a combinatorial and algor-

ithmical framework, known as the Hannenhalli-Pevzner

theory, leading to polynomial time algorithms for comput-

ing parsimonious sequences of reversals sorting signed

permutations [21]. Later, their approach was refined and

simplified by several authors and the current best algorithm

to compute a parsimonious reversal scenario runs in

subquadratic time [38]. Note that the best algorithm to

compute the length of a parsimonious reversal scenario,

known as the reversal distance, runs in linear time [2], [8].
However, the approach based on parsimonious pairwise

scenarios suffers from at least two limitations. First, it was

shown in [6] that the number of such scenarios can be

exponential and it then becomes problematic to pick one in

particular. This problem was also addressed, from a

statistical point of view, in a recent study of reversals

scenarios for metazoan mitochondrial genomes [26]. An-

other problem is that, when considering more than two

species, that is, computing evolution scenarios based on a

given phylogenetic tree, it is often impossible to compute a

multispecies scenario that induces pairwise parsimonious

scenarios. Hence, the parsimony constraint on computed

scenarios has to be relaxed in some way. A successful way

to deal with this problem has been to use the median

approach [9], which still relies on the detection of “good

reversals” in the sense of the Hannenhalli-Pevzner theory

for computing parsimonious scenarios, but allowing con-

sideration of nonoptimal reversals. These two problems

suggest the need for combinatorial models and algorithms

that allow computing both parsimonious and nonparsimo-

nious scenarios.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007 1

. S. Bérard is with the Département de Mathématiques et d’Informatique
Appliquées, INRA Toulouse, Chemin de Borde Rouge, BP 52627, Castanet-
Tolosan 31326 Cedex, France. E-mail: Severine.Berard@toulouse.inra.fr.

. A. Bergeron is with the Départment d’Informatique and Comparative
Genomics Laboratory, Université du Québec à Montréal (UQ�AM), CP
8888, succ. centre-ville, Montréal (QC) H3C3P8, Canada.
E-mail: anne.bergeron@uqam.ca.

. C. Chauve is with the Department of Mathematics, Simon Fraser
University and the Départment d’Informatique, Comparative Genomics
Laboratory and LaCIM, UQ�AM, CP 8888, succ. centre-ville, Montréal
(QC) H3C3P8, Canada. E-mail: chauve@lacim.uqam.ca.

. C. Paul is with the CNRS LIRMM, Université 34392 Montpellier II, 161
rue Ada Montpellier Cedex 5, France. E-mail: paul@lirmm.fr.

Manuscript received 15 Feb. 2006; accepted 3 May 2006; published online
31 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0017-0206.

1545-5963/07/$20.00 � 2007 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

1.2 Perfect Sorting by Reversals

In the present work, we are interested in pairwise scenarios
between two unichromosomal genomes, represented by
two signed permutations, that do not break combinatorial
structures—defined in terms of genomic segments—that are
present in both permutations. The combinatorial structures
we consider here are common intervals of signed permutations
[7], [22], [41]. Roughly speaking, a common interval of two
signed permutations is a set of elements that forms an
interval in both permutations or, in other words, that is
conserved in the two permutations up to local rearrange-
ments. The rationale for this approach is that the conserva-
tion of such groups of genomic segments in two genomes is
a character that is likely to have been present in the genome
of their common ancestor and is worth being considered in
the computation of evolution scenarios. One can consider,
for example, common intervals defined by operons or über-
operons in prokaryotic genomes [27]. Note that the current
approaches used to compute rearrangement scenarios do
sometimes produce scenarios that break common intervals,
see [4].

The precise problem we address, namely, perfect sorting
by reversals, is the following: Given two signed permutations
and the set of intervals common to these two permutations,
find a shortest sequence of reversals that transforms one
permutation into the other without breaking any of the
considered common intervals. The scenarios that do not
break any common intervals are called perfect scenarios. This
approach can be seen as a variant of the classical sorting by
reversal problem where the parsimony criterion has been
relaxed in order to include the conservation of common
intervals. This problem can be generalized by considering
an arbitrary set of common intervals. These problems were
first introduced by Figeac and Varré [17], who described an
exponential time algorithm solving the latter one. It was
later shown that perfect scenarios that are also parsimo-
nious scenarios can be computed in polynomial time [4],
[34]. Our main result is the precise description of a
combinatorial framework that leads to polynomial time
algorithms to compute perfect scenarios for large classes of
signed permutations.

1.3 Plan of the Paper

In Section 2, we define precisely the notions of reversal,
scenario, common interval, and the problem of perfect
sorting by reversals. In Section 3, we introduce the notion of
strong intervals of a signed permutation. These strong
intervals form a linear size basis of the set of common
intervals of a permutation. The strong intervals of a signed
permutation can be arranged in a tree structure, called the
strong interval tree, that is a central combinatorial tool to
design algorithms computing perfect scenarios. Note that
the strong interval tree of a permutation has a deep
relationship with the theory of modular decomposition of
permutation graphs [7], [30], that is described in the
Appendix. In Section 4, we show that perfect scenarios
can be characterized precisely in terms of the vertices of the
strong interval tree, which makes this structure a “guide”
for computing perfect scenarios. Building on this fact, we
propose 1) a subquadratic time algorithm for computing
perfect scenarios that are parsimonious among the set of all

perfect scenarios, for large classes of signed permutations,
and 2) an exponential time algorithm for the general case,
where the exponential time behavior is bounded by a
parameter that can be easily read on the strong interval tree.
We also show that our algorithms can be used to consider
only a subset of the common intervals of a signed
permutation. We illustrate our algorithms by computing
perfect scenarios between the X chromosomes of the
human, mouse, and rat genomes, already considered in
[18]. In Section 5, we extend the results of [4] on a
remarkable class of perfect scenarios, called commuting
scenarios, and we show that such scenarios can be computed
in linear time and that the signed permutations that can be
sorted by such scenarios can be characterized solely in
terms of their strong interval tree. We conclude with some
open problems related to perfect scenarios.

2 SORTING BY REVERSALS AND COMMON

INTERVALS

In this section, we introduce the main concepts covered in
this paper: signed permutation, reversal, scenario, commut-
ing reversals, common interval, and perfect scenario. A
signed permutation on n elements is a permutation on the set
of integers f1; 2; . . . ; ng in which each element has a sign,
positive or negative. Negative integers are represented by
placing a bar over them. An interval of a signed permutation
is a segment of consecutive elements of the permutation. An
interval can be defined by the set of its unsigned elements,
called its content. However, not every set of integers
corresponds to an interval of a given permutation P .

The reversal of an interval of a signed permutation
reverses the order of the elements of the interval while
changing their signs. Note that every reversal is an interval
of the permutation on which it is performed, which leads us
to often treat reversals as intervals and to represent a
reversal by the corresponding interval. If P is a permuta-
tion, we denote by P the permutation obtained by reversing
the complete permutation P .

Example 1. Let P ¼ ð1 3 2 5 4 6Þ be a signed permutation on
six elements, then P ¼ ð6 4 5 2 3 1Þ. Reversing, in P , the
interval ð3 2 5 4Þ or, equivalently, the set f2; 3; 4; 5g yields
the signed permutation ð1 4 5 2 3 6Þ.

Definition 1. Let P and Q be two signed permutations on
n elements. A scenario between P and Q is a sequence of
distinct reversals that transforms P into Q or P into Q. The
length of such a scenario is the number of reversals it contains.
When Q is the identity permutation, a scenario between P and
Q will be simply called a scenario for P .

The fact that the set of scenarios between P and Q
contains sequences of reversals that transform P into Q
models the fact that, in comparative genomics, permuta-
tions are used to represent chromosomes. Reversing a
complete chromosome does not modify its structure.

Example 2. Reversing successively the intervals f2; 3; 5g,
f3; 5g, f3g, f4g, and f4; 5g is a scenario of length 5 for
permutation P ¼ ð1 3 5 2 4 6Þ.

2 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

Given a signed permutation P on n elements, the
problem of sorting by reversals, introduced by Sankoff in
[35], asks for a parsimonious scenario, which is a scenario for
P of minimal length among all possible scenarios. The first
polynomial time algorithm solving this problem was given
by Hannenhalli and Pevzner in [21]. Subsequent improve-
ments were proposed, in particular in [23], [24], and the best
known algorithm in Oðn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
Þ time [38].

Definition 2. Two distinct intervals, I and J , commute if their
contents trivially intersect, that is, either I � J or J � I or
I \ J ¼ ;. If intervals I and J do not commute, they overlap.

Definition 3. Let P be a signed permutation on n elements. A
common interval of P is a set of one or more integers that is
an interval in both P and the identity permutation Idn. Note
that any such set is also an interval of P and of Idn. The
singletons and the set f1; 2; . . . ; ng are always common
intervals, and are called trivial common intervals.

Example 3. The common intervals of P ¼ ð1 3 2 5 4 6Þ
a r e f2; 3g, f1; 2; 3g, f4; 5g, f4; 5; 6g, f2; 3; 4; 5g,
f2; 3; 4; 5; 6g, f1; 2; 3; 4; 5g, f1; 2; 3; 4; 5; 6g, and the
singletons f1g; . . . ; f6g.

The notion of common interval was introduced in [41]. It was
studied, among others in [22], to model the fact that a group of
genes can be rearranged in a genome but still remains
connected. It was also studied, in connection with reversal
scenarios, in [4], [34]. In [41], Uno and Yagiura proposed the
first algorithm to compute the set of common intervals of a
permutation P in time OðnþNÞ, where N is the number of
such common intervals. However, N can be of size Oðn2Þ.
Heber and Stoye [22] defined the subset of irreducible common
intervals that contains OðnÞ common intervals and forms a
representation of the common intervals in the sense that every
common interval is a chain of overlapping irreducible common
intervals. They proposed anOðknÞ time algorithm to compute
the set of irreducible common intervals of kpermutations ofn
elements. A simpler algorithm is given in [7] (see also [12] for
a related work).

Definition 4. Let P be a signed permutation. A scenario S for P
is called a perfect scenario if every reversal of S commutes
with every common interval of P . A perfect scenario of
minimal length is called a parsimonious perfect scenario.

Note that, if I is a common interval of P and J is an
interval of P that does not commute with I, then reversing
J in P leads to a permutation P 0 such that I is not a
common interval of P 0. Hence, if J belongs to a scenario for
P , then the set of common intervals of P is not conserved
during this scenario, which explains the above definition.

Remark 1. From a biological and evolutionary point of
view, it can be natural to be interested in scenarios that
do not break a precise subset of the common intervals.
All our results apply to this more general problem.
However, for the clarity of the exposition, we will
consider perfect scenarios as defined in Definition 4 and
we will refer to Section 4.3 for the general problem.

There always exists a perfect scenario for a given signed
permutation P [17]. However, the authors of [17] claim that

computing a parsimonious perfect scenarios for an arbitrary
set of common intervals is intractable: NP-hard in general.
Hence, the difficulty of the problem lies in the parsimonious
aspect. The main goal of this paper is to propose efficient
algorithms to compute parsimonious perfect scenarios for
large classes of signed permutations. Our results rely on the
strong interval tree of a signed permutation described in the
next section.

3 STRONG INTERVAL TREE

As the number of common intervals of a permutation P on
n elements can be quadratic in n, an efficient algorithm (i.e.,
subquadratic time) for computing perfect scenarios should
rely on a space efficient encoding of the set of common
intervals. This section states structural properties of the set
of common intervals of a permutation P that are central to
the design of the algorithms for computing perfect
scenarios. As Section 4.3 considers the same problem, but
with respect to a subset of common intervals, all the
following results are special cases of those presented in
Section 4.3. Thus, the proofs will only be presented in
Section 4.3.

It should be noticed that, in [30], the author pointed out a
correspondence between common intervals of permutations
and the concept, well studied in graph theory, of modules of
graphs. Therefore, all the results presented in this section
and in Section 4.3 can be seen as direct consequences or
corollaries of well-known graph theoretical results about
modules in graphs and modular decomposition of graphs
(or, more generally, of the framework of partitive set
families [29]). A short description of the link between
common intervals and modules of graphs is given in the
Appendix.

First, we can remark that being a common interval for an
interval I has nothing to do with the sign of the elements of
I. Therefore, all the structural results presented in this
section are valid for both signed and unsigned permuta-
tions and, for the sake of simplicity, we omit the signs.

Let I be a common interval of a permutation P on n and
x 2 f1; 2; . . . ; ng such that x 62 I. It follows from the
definition of common interval that either x is larger than
all elements of I or x is smaller than all elements of I. The
order relation between x and I will be denoted x < I or
I < x. Similarly, for two disjoint common intervals I and J ,
I < J means that any element of I is smaller than any
element of J .

Definition 5. A common interval I of a permutation P is a
strong interval of P if it commutes with every common
interval of P .

Example 4. The strong intervals of permutation P ¼
ð1 4 2 5 3 7 8 6 9Þ a r e f2; 3; 4; 5g, f7; 8g, f6; 7; 8g,
f1; 2; 3; 4; 5; 6; 7; 8; 9g and the singletons f1g; . . . ; f9g.
The singletons and f1; 2; . . . ; 9g are the trivial strong
intervals of P .

It follows from Definition 5 that the inclusion order of
the set of strong intervals defines an n-leaf tree, denoted
by TsðP Þ, whose leaves are the singletons and whose root
is the interval containing all elements of the permutation.

B�ERARD ET AL.: PERFECT SORTING BY REVERSALS IS NOT ALWAYS DIFFICULT 3

We call the tree TsðP Þ the strong interval tree of P (see
Fig. 1), and we identify a vertex of TsðP Þ with the strong
interval it represents. Since each strong interval with
more than one element, or, equivalently, each internal
vertex of TsðP Þ, has at least two children in TsðP Þ, a
permutation has OðnÞ strong intervals. But, the most
interesting property of the set of strong intervals is that it
forms a “basis” of the set of common intervals.

Definition 6. Let P be a permutation. A partition I ¼
fI1; . . . ; Ikg of the elements of P into common intervals is a
congruence partition. The quotient permutation associated
with I , denoted PjI , is defined as follows:

ði precedes j in PjI Þ if and only if ðIi precedes IjÞ:

Example 5. For the permutation P ¼ ð1 4 2 5 3 7 8 6 9Þ of
Fig. 1, the partition I ¼ ff1g; f2; 3; 4; 5g; f7; 8g; f6g; f9gg
is a congruence partition of P into intervals and
PjI ¼ ð1 2 4 3 5Þ.

As shown below, a congruence partition for a permuta-
tion P “inherits” common intervals from P . More formally:

Lemma 1. Let I ¼ fI1; . . . ; Ikg be a congruence partition of a
permutation P . Then, J ¼ fj; . . . ; hg is a common interval of
the quotient partition PjI if and only if K ¼

S
j�i�h Ii is a

common interval of P .

Proof.) Assume J is a common interval of PjI . As I is a
partition, each element of P belongs to a unique interval
of I . Let x 62 K and I‘ be the common interval of I
containing x (notice that ‘ 62 J). Assume by contradiction
the existence of y; y0 2 K such that y < x < y0. Then, Ih
and Ih0 , the common intervals of I containing, respec-
tively, y and y0, are distinct (notice also that h; h0 2 J). It
follows that, in the quotient permutation PjI , h < ‘ < h0,
which contradicts the assumption that J is a common
interval of PjI .
(Assume J is not a common interval of PI . Then,

there exists ‘ 62 J and h; h0 2 J such that h < ‘ < h0.
Therefore, for any y 2 Ih and y0 2 Ih0 (which both belong
to K), there exists x 2 I‘ (i.e., x 62 K) such that y < x < y0.
It follows that K is not a common interval of P . tu

The following decomposition theorem shows the
importance of the congruence partition whose common

intervals are the maximal strong intervals. For permuta-
tion P ¼ ð1 4 2 5 3 7 8 6 9Þ, this congruence partition is
J ¼ ff1g; f2; 3; 4; 5g; f6; 7; 8g; f9gg.
Theorem 1. Let P be a permutation on n elements and I ¼
fI1; . . . ; Ikg be the partition of P into maximal strong
intervals of P other than P itself. Then,

1. either any set of consecutive elements in PjI is a
common interval of PjI or

2. the only common intervals of PjI are trivial.

Moreover, in case 1, either PjI ¼ Idk or PjI ¼ Idk. Therefore,
we say that PjI is linear if it satisfies case 1 and prime
otherwise.

Proof. See the proof of Theorem 5. tu

Using Lemma 1, the above theorem applied on the
strong intervals enables us to show that the strong interval
tree is a compact representation—it only requires
OðnÞ space—of the set of all common intervals, which is
possibly a set of quadratic size.

Proposition 1. An interval I of a signed permutation P is a
common interval if and only if it is either a vertex of TsðP Þ or
the union of consecutive children of a linear vertex of TsðP Þ.

Proof. Let I be a common interval of P which is not strong.
By the definition of strong intervals, there exists a
smallest strong interval J that contains I and I
commutes with all children of J , which proves that I is
the union of a subset of the children of J . These children
have to be consecutive because I is an interval of P .
Finally, it follows from Theorem 1 that J has to be linear.
Indeed, if J is prime, point 2 of Theorem 1 implies that
any nonsingleton subset of children of I is not a common
interval of P .

The converse is a direct consequence of Theorem 1
and Lemma 1. tu

Hence, Theorem 1 induces a classification of the vertices
of the strong interval tree TsðP Þ that is central in our
algorithms: Let PI be the quotient permutation defined by
the children of an internal vertex I of TsðP Þ. The vertex I or,
equivalently, the strong interval I of P , is either

1. increasing linear, if PI is the identity permutation or
2. decreasing linear if PI is the reverse of the identity

permutation or
3. prime, otherwise.

For example, in Fig. 1, the rectangular vertices are the
linear vertices and the round vertex (4, 2, 5, 3) is the unique
prime vertex. The only decreasing linear vertex in this tree
is (7, 8, 6).

This representation for strong intervals was first given
implicitly in [22] and explicitly in [25], where it was shown
that TsðP Þ can be related to a data structure widely used in
graph theory called PQ-tree. It can be computed in
OðnÞ time using algorithms described in [7], [22], [25]. A
formal link between PQ-trees and conserved structures in
signed permutations with application to comparative
genomics was first proposed in [5] in the context of
conserved intervals, a subset of common intervals.

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

Fig. 1. The strong interval tree TsðP Þ of the permutation
P ¼ ð1 4 2 5 3 7 8 6 9Þ. Prime and linear vertices (described later in this
section) are distinguished by their shape. There are two nontrivial linear
vertices, the rectangular vertices: (7, 8) is increasing and (7, 8, 6) is
decreasing. There is only one prime vertex, the round vertex (4, 2, 3, 5).

4 COMPUTING PERFECT SCENARIOS

We now describe efficient algorithms to compute parsimo-
nious perfect scenarios for large classes of signed permuta-
tions. The crux is the use of the strong interval tree as a
guide (we assume it is given and refer to [7], [12] for simple
algorithms building this tree.) Indeed, we obtain a
characterization of perfect scenarios of a signed permuta-
tion P in terms of TsðP Þ:
Proposition 2. A scenario S for a permutation P is perfect if and

only if each of the reversals of S is either a vertex of TsðP Þ or
the union of children of a prime vertex of TsðP Þ.

Proof. Suppose that S is a scenario for permutation P and
that every reversal of S is either a vertex of TsðP Þ or the
union of children of a prime vertex of TsðP Þ. Let I be a
reversal of S. If I is a vertex of TsðP Þ, I is a strong
interval and then commutes with every common interval
of P . Now, assume that I is the union of children of a
prime vertex J . I obviously commutes with any common
interval not contained in J and with any common
interval contained in a child of J . Hence, it remains to
show that I commutes with any common interval that is
a union of children of J , but there are none by definition
of a prime vertex. It follows that I commutes with every
common interval of P and, then, S is a perfect scenario.

Conversely, suppose that S is a perfect scenario, let I
be a reversal of S, and consider the partition I1; I2; . . . ; Ik
of I in which the part containing an element x of I is the
largest strong interval included in I and that contains x.
If k � 2, then I1; I2; . . . Ik must all be children of the same
parent J in TsðP Þ; otherwise, I would not commute with
the vertices of TsðP Þ that are parents of Ijs. If J is a linear
vertex, then I must be equal to J ; otherwise, I would
overlap an interval formed by a leftover child of J and
one of the intervals of I and such an interval is a common
interval of P by points 1 and 2 of Theorem 1. Therefore,
either k ¼ 1 and I is a vertex of TsðP Þ or k > 1 and the
vertex J must be prime. tu

Computing a perfect scenario S thus amounts to
identifying leaves, linear vertices, and union of children of
prime vertices of TsðP Þ that are the reversals of S. In the
remainder of this section, we show that, even if the general
problem of computing parsimonious perfect scenarios was
claimed to be difficult [17], it can be done efficiently for a
large class of signed permutations, defined in terms of the
structure of their strong interval tree, as defined below.

Definition 7. A strong interval tree TsðP Þ is unambiguous if
every prime vertex has a linear parent and ambiguous
otherwise. If TsðP Þ has no prime vertices, it is definite. Note
that a definite tree is unambiguous.

To identify reversals belonging to parsimonious perfect
scenarios, we give a sign to vertices of TsðP Þ.
Definition 8. A signed tree is a strong interval tree TsðP Þ in

which we associate a sign, þ or �, to the vertices according to
the following rules:

1. the sign of a leaf x is the sign of the corresponding
element in P ;

2. the sign of a linear vertex is þ if the vertex is
increasing and � if the vertex is decreasing;

3. a prime vertex inherits the sign of its parent if this
latter vertex is linear.

Note that these rules can leave some vertices with no sign.
Figs. 2, 3, and 4 show signed strong interval trees

associated with the permutations obtained by comparing
16 synteny blocks of the human, mouse, and rat
X chromosomes [18].1 In Fig. 2, the labels of the vertices
are given with respect to the order of the blocks of the
mouse chromosome.

Human ¼ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mouse ¼ �6 �5 4 13 14 �15 16 1 �3 9 �10 11 12 �7 8 �2

Rat ¼ �13 �4 5 �6 �12 �8 �7 2 1 �3 9 10 11 14 �15 16:

4.1 Computing Perfect Scenarios with
Unambiguous Trees

If a tree TsðP Þ is unambiguous, due to the definition of
unambiguous trees and the constraints imposed on signs of
vertices, there is a unique way to affect signs to all the
vertices of TsðP Þ. Next, Lemma 2 identifies reversals that
must belong to any perfect scenario and, thus, to any
parsimonious perfect scenario. It applies to all trees,
definite, unambiguous, and ambiguous.

Lemma 2 (The Parity Lemma). Let I be a vertex of the tree
TsðP Þ of a signed permutation P . If I has a linear parent and a
sign different from the sign of its parent, then I belongs to any
perfect scenario for P .

Proof. Let S be a perfect scenario and I be a vertex with a
negative sign whose linear parent J has a positive sign,
and such that I 62 S. Notice that I cannot be prime. Since
J is linear and I 62 S, by Proposition 2, any reversal of S
that contains I also contains J .

Let m be the number of reversals of S containing J .
If m is even, as J has a positive sign, S sorts P to Id
by definition of increasing vertices. If I is a leaf, it will
still be negative after an even number of reversals,

B�ERARD ET AL.: PERFECT SORTING BY REVERSALS IS NOT ALWAYS DIFFICULT 5

1. The positions of blocks 5 and 6 in our data differ from [18], following a
correction of the mouse genome assembly.

Fig. 2. Comparing the rat and mouse X chromosomes: The set of
vertices that have a sign different from the sign of their parent forms a
parsimonious perfect scenario that transforms the rat X chromosome
into the mouse X chromosome in 11 reversals: (4, 3, 2, 1), (1), (13, 15,
14, 16, 8, 9, 10, 11, 12, 5, 6, 7), (13, 15, 14, 16), (13), (15, 14), (14), (16),
(8, 9, 10, 11, 12), (11), (5, 6, 7).

contradicting the fact that S sorts P to Id. If I is a linear
vertex with a negative sign (it is decreasing by Definition
8), then its first child is greater than its last and will still
be after an even number of reversals, again contradicting
that S sorts P to Id. A symmetric argument holds if m is
odd or if I has a positive sign, and J a negative sign. tu

For definite trees, the Parity Lemma yields the following
theorem. We will study the case of permutations whose
strong interval tree is definite in more detail in Section 5.

Theorem 2. Let P be a signed permutation. If TsðP Þ is definite,
then the set of vertices that have a sign different from the sign
of their parent is a parsimonious perfect scenario for P .
Moreover, no other reversal than these vertices belongs to a
parsimonious perfect scenario for P .

Proof. If TsðP Þ is definite, Proposition 2 implies that a
parsimonious perfect scenario S consists of a set of
vertices of TsðP Þ. The Parity Lemma leads to the fact that
every parsimonious perfect scenario is composed of the
vertices of TsðP Þ that have a sign different from their
parent. tu

Given the tree TsðP Þ, Theorem 2 implies that computing
a parsimonious perfect scenario for P is almost immediate
when TsðP Þ is definite. The comparison of the rat and
mouse X chromosomes yields a definite tree, Fig. 2, and the
corresponding scenario can be obtained by comparing the
signs of the OðnÞ vertices. When such a scenario exists, it is
unique up to the order of the reversals since each of them
commutes with all the others.

Corollary 1. Let P be a signed permutation on n elements. If
TsðP Þ is definite, then computing a parsimonious perfect
scenario for P can be done in OðnÞ time.

Proof. Computing TsðP Þ can be done in OðnÞ time [7] and it
follows from Theorem 2 that the parsimonious perfect
scenario of P can be computed by a single traversal of
TsðP Þ that gives signs to its vertices. tu

We next turn to the more general case of unambiguous

trees. Recall that a prime vertex inherits its sign from its

parent and that any reversal that is a union of children of a

prime vertex commutes with all common intervals and,

thus, may belong to a perfect scenario. Algorithm 1

describes how to obtain a parsimonious perfect scenario

in the case of unambiguous trees. The basic idea is to

compute, for each prime vertex I of the tree, any

parsimonious scenario that sorts the children of vertex I

in increasing or decreasing order, depending on the sign of

I. Then, it suffices to deal with linear vertices whose parent

is linear in the same way as for a definite tree.

Algorithm 1: Computing a parsimonious perfect scenario

for unambiguous TsðP Þ
S is an empty scenario.
For each prime vertex I of TsðP Þ
PI is the quotient permutation of I over its children

If the sign of I is positive Then

compute a parsimonious scenario T from PI to Id

Else compute a parsimonious scenario T from PI to Id

Deduce the corresponding scenarioT 0 on the children ofPI
Add the reversals of T 0 to scenario S

End for each

Add to S the linear vertices and leaves having a linear

parent and a sign different from the sign of their parent.

Fig. 3 shows the signed tree associated with the

permutations of the human and rat X chromosomes. This

tree is unambiguous: It has one prime vertex (4, 5, 6, 12, 8, 7,

2, 1, 3, 9, 10, 11) whose parent is a decreasing linear vertex.

The quotient permutation of this vertex over its five

children is PI ¼ ð2 5 3 1 4Þ and a parsimonious scenario

that sorts PI to Id is given by: f1; 3; 4g, f1; 3g, f1g, f2; 3; 4; 5g,
f3; 4; 5g. Note that if the corresponding five reversals are

applied to the rat chromosome, the resulting permutation

has a definite tree.
The time complexity of Algorithm 1 depends on the time

complexity of the sorting by reversals algorithm used to

compute a reversal scenario that sorts the children of a

6 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

Fig. 3. Comparing the human and rat X chromosomes: A parsimonious
perfect scenario is obtained by sorting the five children (4, 5, 6), (12), (8,
7), (2, 1, 3), and (9, 10, 11) in decreasing order using any parsimonious
scenario that sorts the quotient permutation PI ¼ ð2 5 3 1 4Þ and then
reversing the linear vertices and leaves whose linear parent have a
different sign: (13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11), (4), (6), (2, 1), (2),
(1), (3), (15). The length of the scenario is 13.

Fig. 4. Comparing the human and mouse X chromosomes: The root
has no sign, but its children can be sorted to Id or Id in six
reversals using a parsimonious scenario that sorts the quotient
permutation PI ¼ ð4 6 1 3 5 2Þ. A parsimonious perfect scenario would
also contain the reversals: (4), (15), (9, 10, 11, 12), (10), (7, 8), (7). The
total length of the scenario is 12.

prime vertex. Using the Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
Þ algorithm described

in [38], we have:

Theorem 3. Let P be a signed permutation on n elements. If

TsðP Þ is unambiguous, Algorithm 1 computes a parsimonious

perfect scenario for P in subquadratic Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
Þ time.

Proof. The time complexity bound is obtained by observing

that, first, computing TsðP Þ requires OðnÞ time [7] and,

second, that the sorting by reversals procedure will be

applied on permutations of size n1; . . . ; nk, the number of

children of the k prime vertices of TsðP Þ, with

n1 þ . . .þ nk � n, and the best current sorting by

reversals algorithm running in Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
Þ time [38].

We now prove that the sequence of reversals that is
computed is a scenario for P . First, it is immediate that
the quotient permutation of a prime vertex has to be
sorted into Id or Id, according to its sign. This is done
during the first phase of the algorithm, which deals with
prime vertices. The argument for the second phase—
leaves and linear vertices whose parent is linear—is
similar to the one used in the proof of Theorem 2.

Finally, we prove that the computed scenario is
parsimonious among perfect scenarios. Given a parsi-
monious perfect scenario, the subsequence of reversals
that are contained in a prime vertex I sorts I in
increasing or decreasing order. Suppose that S0 is a
parsimonious scenario shorter than the scenario S
produced by Algorithm 1. Then, there is at least one
prime vertex I such that the number of reversals of S0

that are contained in I is less than the number of
reversals of S that are contained in I. Let R and R0 be the
subsequences of reversals of S and S0 that are contained
in I. One of R and R0 sorts I in increasing order and the
other in decreasing order. Otherwise, one of them would
not be parsimonious. Suppose that the sign of the parent
of I is positive, then R sorts I in increasing order and R0

sorts I in decreasing order. By the same argument that
was used in the Parity Lemma, I must belong to S0 and,
thus, to R0 and removing I from S0 produces a shorter
scenario, contradicting the hypothesis that S0 was
parsimonious. A similar argument holds if the sign of
the parent of I is negative. tu

Remark 2.

1. Any improvement on the complexity of sorting
by reversals will immediately lead to a similar
improvement in the complexity of Algorithm 1.

2. Note that Algorithm 1 can easily be modified in
order to compute the length of a parsimonious
perfect scenario—the perfect distance—in
OðnÞ time as computing the reversal distance
requires OðnÞ time [8].

Remark 3. Algorithm 1 and its variant computing the

perfect distance, as well as the linear time algorithm

computing the strong interval tree of a signed permuta-

tion, are available online on the Web site of the CGL

http://cgl.bioinfo.uqam.ca/.

4.2 Computing Perfect Scenarios with Ambiguous
Trees

When TsðP Þ is ambiguous, the sign of some prime vertices is

undefined, but one can then apply the following brute-force

algorithm to sort P . Such an algorithm is a generalization of

the algorithms we described for unambiguous trees and

was described using another formalism in [17]. It has a

worst-case time complexity that is exponential in the

number of prime vertices whose parent is prime and, thus,

is efficient if the number of such edges is small.

Algorithm 2: Computing a parsimonious perfect scenario

for ambiguous TsðP Þ
Let I1; . . . Ik be the vertices of TSðP Þ whose sign is

undefined.
For every binary word W of length k do

Give to every unsigned vertex Ij the sign þ if W ½j� ¼ 1

or the sign � if W ½j� ¼ 0.

Apply Algorithm 1 on the resulting signed tree.

End for every

Return a parsimonious scenario among the resulting set of

2k perfect scenarios.

As an example, consider Fig. 4 which shows the signed

tree associated with the permutations of the human and

mouse X chromosomes. This tree is ambiguous since its root

is a prime vertex, and we must try to sort this vertex both to

Id and to Id. In this case, both parsimonious scenarios have

the same length.

Theorem 4. Let P be a signed permutation on n elements. If

TsðP Þ is ambiguous with k unsigned vertices, Algorithm 2

computes a parsimonious perfect scenario for P in Oð2k �
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
Þ time.

Proof. The Parity Lemma and a proof similar to that of

Theorem 3 prove the statement. tu

Constructing permutations that are hard to perfectly

sort, that is, whose strong interval tree is ambiguous,

requires breaking almost any structure in a given permuta-

tion. The smallest example of a hard to sort permutation is

given in Fig. 5.

B�ERARD ET AL.: PERFECT SORTING BY REVERSALS IS NOT ALWAYS DIFFICULT 7

Fig. 5. A hard to sort permutation: If both vertices are sorted in

increasing order or both are sorted in decreasing order, then the

resulting perfect scenarios are not parsimonious.

4.3 Computing Perfect Scenarios for a Subset of
Common Intervals

From a practical point of view, it is worth recalling that the
interest in computing scenarios that do not break common
intervals relies on the assumption that genes, or other
genomic markers, cluster in such groups for functional
reasons, like cotranscription, for example. However, it is
possible that clusters of genomic markers appear by
“chance” in the data or are not supported by any functional
evidence and it would then not be relevant to impose that
such intervals should not be broken during an evolution
scenario, which leads to the following generalization of the
problem we addressed until now: Given a permutation P of
length n, its set C of common intervals, and a subset F � C,
find a scenario S for P that does not break any interval from
F and is parsimonious among such scenarios. We call such
a scenario a parsimonious perfect scenario for P with regard to
F . We say that S respects the intervals of F .

In this section, we show that the algorithms presented in
Sections 4.1 and 4.2 can be applied to solve this problem
without any modification. To that aim, we show that, given
a set of common intervals which are believed to be pertinent
from the biological point of view, an interval tree can be
constructed. Moreover, this tree has the same properties as
the strong interval tree. For the paper to be self-contained,
we propose a proof of this result that generalizes Theorem 1.
But, as already mentioned in Section 3, it is a special case of
known graph theoretical results (see the Appendix).

Definition 9. Let F be a set of common intervals of a signed
permutation P . The closure F	 of F is the smallest set of
common intervals of P that contains F , all trivial common
intervals of P and such that, for any I1 2 F	s and I2 2 F	s, if
I1 and I2 overlap, then I1 [I2, I1 \ I2, I1nI2, and I2nI1

belong to F	.

A simple brute-force algorithm computes this closure in
polynomial time. It is worth noting that the family C of all
common intervals of a signed permutation is closed
(C ¼ C).
Lemma 3. Let P be a signed permutation and F a set of common

intervals of P . A scenario for P is a perfect scenario with regard
to F if and only if is a perfect scenario with regard to F	.

Proof. If a scenario S for P is a parsimonious perfect
scenario with regard to F , then, for each pair of
overlapping intervals S respects, say I and J , S also
respects I [J , I \ J , InJ , and JnI. Therefore, S is also a
parsimonious perfect scenario with regard to F	. As
F � F	, the converse is true. tu

From now on, we consider the set F	 and we are
interested in computing a parsimonious perfect scenario for
P with regard to F	. First, we notice that the notion of
strong intervals can be used with F	: An interval of F	 is
strong with regard to F	 if it does not overlap with any
other interval of F	. It follows immediately that we can
define (as we did for TsðP Þ) an inclusion tree of the strong
intervals of F	, denoted by TF

	

s ðP Þ, that, when F	 ¼ C,
turns out to be the strong interval tree of P . An example of
such a tree is depicted in Fig. 6.

We now show that the tree TF
	

s ðP Þ, for a strict subset F	
of the common intervals of a signed permutation P , has a
structure similar to the strong interval tree of P in terms of
prime and linear vertices. The following result is a general-
ization of Theorem 1.

Theorem 5. Let P be a permutation on n elements and I ¼
fI1; . . . Ikg be the congruence partition of P into maximal
strong intervals of F	 other than P itself. Then, exactly one of
the following is true:

1. either every union of consecutive elements I ¼
fi; . . . jg of PjI is a common interval of PjI and

K ¼
S
i�h�j Ij belongs to F	 (moreover, either PjI ¼

Idk or PjI ¼ Idk) or
2. no union of intervals of I belongs to F	.

Proof. By induction on the size k of PjI . The cases k ¼ 1; 2,
and 3 are easy to check. Assume it is true for any value
less than k.

If PjI has a nontrivial common interval I ¼ fi; . . .hg,
then, by Lemma 1, K ¼

S
i�h�j Ij is a common interval of

P . By definition of I , K cannot be a strong interval of F	.
So, either it does not belong to F	 or it is not strong for
F	. Assume K belongs to F	 (is not strong) and that I
has been chosen maximal for such K.

Therefore, there is K0 2 F	 overlapping K. Moreover,
K0 can be chosen as the union of a set I 0 of intervals of I .
Let us consider K0 (and, thus, I 0) maximal. As K and K0

are maximal and as F	 is closed, K [K0 ¼ f1; . . .ng and,
thus, I [I 0 ¼ f1; . . . kg. Moreover, InI 0 (respectively,
I 0nI) is a singleton. Otherwise, KnK0 (respectively,
K0nK) would be a common interval of F	, union of at
least two intervals of I . By definition of I , it cannot be a
strong interval of F	. As K [K0 ¼ f1; . . .ng, we could
therefore find a common interval of PjI overlapping both
KnK0 and K0 (respectively, K0nK and K). But, as F	 is
closed, it would contradict the maximality of K0

(respectively, K).
Now, as InI 0 and I 0nI are singletons, as I \ I 0 is a

common interval of PjI , we have I \ I 0 ¼ f2; . . . k� 1g
and K \K0 ¼

S
2�j�k�1 Ij. So, the induction can be

applied on the subpermutation P 0 of P induced by the

8 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

Fig. 6. The strong interval tree obtained when comparing the rat and
mouse X chromosomes with a subset of their common intervals
(intervals (13, 14,15), (14, 15,16), (13, 14, 15,16), (10, 11), (9, 10,
11), (10, 11, 12), (8, 9, 10, 11), and (9, 10, 11, 12) were removed from
the set of common intervals).

elements of f1 . . .ngnI1 for which the congruence
partition into a maximal nontrivial strong interval of
F	 is I0 ¼ fI2 . . . Ikg. As K \K0 belongs to F	, P 0jI 0
satisfies case 1. To end the proof, we need to show that
I1 [I2 belongs to F	. The opposite would mean that the
union of I2 and the intervals that follow I2 in P 0 is not an
interval belonging to F	: a contradiction.

Notice that further pushing the induction proof would
show that, in case 1, either PjI ¼ Idk or PjI ¼ Idk. This is
a consequence of the fact that f1; 2g, f2 . . . k� 1g are
intervals of PjI . tu

From this result, we can deduce immediately that the
main concepts related to the strong interval tree we used in
Sections 4.1 and 4.2 can be used with TF

	

s ðP Þ, in particular,
1) the notions of linear (case 1 of Theorem 5) vertices,
increasing and decreasing, and prime (case 2 of Theorem 5)
vertices, 2) the notions of definite, unambiguous and
ambiguous strong interval tree, and 3) the definition of
the sign of a vertex of the strong interval tree (Definition 8).
The only difference is that the alternation of increasing and
decreasing linear vertices does not hold anymore. More-
over, proofs of the Parity Lemma and Theorems 2 and 3 do
not require that the set of considered common intervals is
the set of all common intervals of the considered signed
permutation P . It follows immediately that, if we denote by
Algorithm 3 the algorithm obtained by replacing TSðP Þ by
TF

	

s ðP Þ in Algorithm 2, the following result generalizes
Theorems 2, 3, and 4.

Theorem 6. Let P be a signed permutation of n and F be a set of

common intervals of P . Given TF
	

s ðP Þ, Algorithm 3 computes
a parsimonious perfect scenario with regard to F in

. OðnÞ time if TF
	

s ðP Þ is definite,

. Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
Þ time if TF

	

s ðP Þ is unambiguous, or

. Oð2k � n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logðnÞ

p
Þ if TF

	

s ðP Þ is ambiguous with
k unsigned vertices.

5 COMMUTING PERMUTATIONS AND SCENARIOS

We now consider a class of scenarios, namely, commuting
scenarios, that were introduced in the framework of
parsimonious scenarios in [4]. We show that the class of
commuting scenarios is a remarkable class of perfect
scenarios as they correspond exactly to the perfect scenarios
for signed permutations whose strong interval tree is
definite (Theorem 7).

Definition 10. A scenario S for a signed permutation P is said to
be commuting if every pair of reversals of S commutes.

A remarkable feature of commuting scenarios is that the
order of reversals in such scenarios does not matter. Indeed,
given a commuting scenario S for a signed permutation P ,
it follows immediately from Definition 10 that any sequence
of reversals that is a reordering of the reversals of S is a
scenario for P .

Proposition 3. A commuting scenario S for a signed permuta-

tion P is a perfect scenario.

Proof. In order to prove the statement, we will prove that
every common interval I of P commutes with all
reversals of S.

Since S is a commuting scenario, one can, without loss
of generality, consider that S begins with all the reversals
that commute with I. Applying these reversals leads to a
permutation P 0 such that I is a common interval of P 0.
Let S0 be the set of remaining reversals, those that do not
commute with I. As S is a scenario for P , S0 is a scenario
for P 0.

If all reversals in S0 are disjoint, there are at most two
of them: One overlaps I on its right extremity and one
overlaps I on its left extremity. Then, as I is a common
interval of P 0, applying them to P 0 leads to a signed
permutation that is neither the identity permutation nor
the reversed identity. This contradicts the fact that S0 is a
scenario for P 0.

Suppose that S0 contains at least two nondisjoint
intervals that overlap I on the same extremity, say its
right extremity—the argument is completely symmetri-
cal if we consider the left extremity. Let J be the largest
of the intervals that intersects I at its right extremity, J 0

the second largest, and I 0 the nonempty set of elements
of I that do not belong to J . Since S is a commuting
scenario, J 0 is strictly contained in J and all other
reversals of S0 are either disjoint of J and J 0 or included
in J 0. Therefore, J can be partitioned into three disjoint
intervals, J1, J 0, and J2, such that J1 is contained in I, J2

is disjoint from I, and at least one of J1 and J2 is
nonempty. Applying both J and J 0 to P 0 results in a
signed permutation where the elements of J1 are to the
right of the elements of J 0 that are themselves to the right
of the elements of J2 that are at the right of the elements
of I 0. Let P 00 be the resulting permutation.

P 0 ¼ . . . I 0 J1 J
0 J2 . . . �!P 00 ¼ . . . I 0 J2 J

0 J1 . . . :

By the choice of J and J 0 as the maximal intervals
overlapping the right extremity of I, this structure will
remain unchanged when applying all other reversals of
S0—recall that none of them contains I by definition of
S0. If J1 is not empty, the elements of J2 that are not in I
will end up between I 0 and J1, while, if J2 is not empty,
the elements of J1 will end up between I 0 and J 0 \ I. This
results in a signed permutation Q such that I is not a
common interval of Q and then Q cannot be the identity
nor the reversed identity. This contradicts the fact that S
is a scenario for P and completes the proof. tu

Lemma 4. Every reversal of a commuting scenario S for a signed

permutation P is a common interval of P .

Proof. It follows from the nonexistence of overlapping
intervals in commuting scenarios. tu

Definition 11. A signed permutation P that can be sorted by a
commuting scenario is said to be a commuting permutation.

We now state the main result of this section: a
characterization, in terms of the structure of their strong
interval tree, of the class of commuting permutations.

Theorem 7. A signed permutation P is commuting if and only if
its strong interval tree TsðP Þ is definite.

B�ERARD ET AL.: PERFECT SORTING BY REVERSALS IS NOT ALWAYS DIFFICULT 9

Proof. First, if TsðP Þ is definite, then it follows immediately
from Theorem 2 that every parsimonious perfect
scenario for P is commuting. Indeed, the reversals of
such scenarios are the vertices of TsðP Þ, which implies
that every pair of reversals commutes.

Now, suppose that P is commuting and let S be a
commuting scenario for P . As S is a commuting scenario,
it is a perfect scenario (Proposition 3) and then every
reversal of S is either a linear vertex of TsðP Þ or a union
of children of a prime vertex of TsðP Þ (Proposition 2).
Moreover, if there is a reversal I of S that is a union of
children of a prime vertex and I is different from this
vertex, then I is not a common interval of P , by
definition of prime vertices, which contradicts Lemma 4.
Hence, if TsðP Þ contains a prime vertex, no reversal of S
can be a strict subset of the children of this vertex, which
immediately contradicts the fact that S is a scenario for
P . It follows that TsðP Þ does not have prime vertices. tu

Corollary 2. Let P be a commuting permutation. Then, all
perfect scenarios for P are commuting, are parsimonious
perfect scenarios, and have the same set of reversals, namely,
the vertices of TsðP Þ that have a sign different from their
parent.

Proof. Direct consequence of Proposition 2 and of Theo-
rems 2 and 7. tu

We now conclude this section with a few remarks about
commuting scenarios and permutations. First, note that
these notions were introduced in a more restrictive frame-
work, that is, commuting scenarios that are parsimonious,
and with no reference to the strong interval tree, in [4]. In
particular, the proof of Proposition 3 is an immediate
extension of a similar result in [4]. Next, from a combina-
torial and algorithmical point of view, the class of
commuting permutations is remarkable for several reasons,
the main ones being stated in Corollary 2. Moreover, this is,
as far as we know, the largest nontrivial class of signed
permutations that can be sorted 1) in linear time, as it only
requires constructing the strong interval tree and perform-
ing a single pass on this tree, and 2) without having to rely
on the classical Hannenhalli-Pevzner theory for sorting by
reversals [8], [21]. Finally, the fact that the order of reversals
of commuting scenarios does not matter is a striking
feature, especially as commuting permutations have ap-
peared in the analysis of real data sets, as, for example, the
comparison of the mouse and rat X chromosomes described
in Section 4, but also in a comparison of human chromo-
some 16 and mouse chromosome 11 [4], [32].

6 CONCLUDING REMARKS AND FUTURE WORK

6.1 Summary of Results

We described in this paper a combinatorial and algorithmi-
cal framework for computing perfect scenarios, that leads to
efficient algorithms for large classes of signed permutations.
From the algorithmic point of view, the central aspect of our
work is the link between the computation of perfect
scenarios and the strong interval tree of a signed permuta-
tion, which can be seen as similar, for the combinatorial
criterion of perfection, to what the overlap graph of

Hannenhalli-Pevzner theory is for the criterion of parsi-
mony. We also introduced the classes of commuting
permutations and scenarios that have remarkable combina-
torial and algorithmical properties and deserve to be
investigated in more details.

Finally, we think that the new insight we bring in this
paper, and especially to the introduction of the strong
interval tree, opens the way to many interesting questions,
that range from very combinatorial problems to applica-
tions of our algorithmical tools in the analysis of real data
sets. We describe below some of these questions.

6.2 Exponential Complexity of the General Problem

Despite the existence of efficient algorithms for computing
perfect scenarios for some classes of permutations, the best-
known algorithm for the general problem still runs in
exponential time. However, using the strong interval tree,
we are now able to identify the problematic structures that
lead to an exponential behavior, namely, the prime vertices
whose parent is prime. We conjecture that the perfect
sorting by reversals problem is Fixed Parametrized Tract-
able if we choose as a parameter the maximal prime degree of
prime vertices (the maximal number of prime vertices
children of a same prime vertex). It would mean the
complexity to handle permutations for which this para-
meter is bounded is actually polynomial.

From a practical point of view, it is relevant to ask
whether, in real data sets, the above parameter is bounded
or remains small. A preliminary study of several data sets of
eukaryotic and prokaryotic genomes (results not shown)
suggests a positive answer. Actually, all the corresponding
strong interval trees exhibit very few prime vertices whose
parent is prime. However, if it turns out that a prime vertex
represents genomic markers that are functionally related, it
is likely that the segment of the chromosome corresponding
to this interval is framed in the genome, either upstream or
downstream, or even both, by regulatory sequences. It
follows that, if one considers these framing sequences in the
signed permutation, they could prevent, in the strong
interval tree, the corresponding prime vertex having a
prime vertex for parent. Recent works that explore the
properties of the chromosomal regions between synteny
blocks are of interest with regard to this problem [34], [40].

6.3 Parsimony and Conservation of Common
Intervals

In [34], it was shown that when, for a given signed
permutation, there exists a parsimonious scenario that is
also a perfect scenario, computing such a scenario can be
done in polynomial time, extending a previous result of [4].
In the present work, one can, once a parsimonious perfect
scenario has been computed, check whether this scenario is
also parsimonious, using, for example, one of the linear
time algorithms for computing the reversal distance
proposed in [2], [8]. However, the computation of a
parsimonious perfect scenario can ask for an exponential
time depending on the strong interval tree. In order to close
the gap between these two approaches in computing perfect
scenarios, it would be interesting to characterize, in terms of
strong interval trees, the class of signed permutations for
which a parsimonious perfect scenario is also parsimonious

10 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

among all possible scenarios. This problem raises interest-
ing combinatorial questions about the links between the
Hannenhalli-Pevzner theory and the strong interval tree.

6.4 Other Applications of the Strong Interval Tree in
Computing Evolutionary Scenarios

In the current study, we considered only reversals.
However, several other evolutionary events should be
considered in computing evolution scenarios, especially
with multichromosomal genomes, such as translocations,
transpositions, or block interchanges [42]. It would also be
interesting to see how the strong interval tree can be
considered in the recent Bayesian approaches to rearrange-
ments scenarios [26]. One could, for example, ask if perfect
scenarios are more significant than parsimonious scenarios
or if reversals belonging to perfect scenarios are more likely
to appear in significant scenarios. An interesting question
related to this point would be to study the difference
between reversals given by linear vertices and prime
vertices. Since they have a stronger structure in terms of
common intervals, could reversals corresponding to linear
vertices be more significant? It is also natural to consider
evolution scenarios for more than two genomes and the
median problem, which is one of the main tools used for
this purpose. For example, it could be interesting to
consider the reversals given by the strong interval tree as
putative evolutionary events along the branches of a
phylogenetic tree, in a similar way as reversals given by
the Hannenhalli-Pevzner theory are used in MGR [9].

6.5 Alternative Applications of the Strong Interval
Tree in Comparative Genomics

We believe that the strong interval tree of a signed
permutation is a very versatile tool for comparative
genomics. Indeed, it is immediate to extend this notion to
several genomes, which allows us to exhibit conserved
structures in all or part of a given set of genomes. This
approach was used, for example, to determine putative
ancestral genomes without computing evolution scenarios
[1], [5], [13]. Another potential application would be the
identification of so-called evolutionary hot-spots for re-
arrangements, that is, genome segments that are likely to be
involved in several rearrangements, a problem that has
been the subject of an intense debate recently [31], [33], [36].
Indeed, we believe that the structure of the strong interval
tree could be useful to pinpoint genomic regions at the
border of conserved sets of genomic segments. It would be

interesting to investigate the nature of these segments in the
data set used in [31] for example.

APPENDIX

MODULAR DECOMPOSITION OF GRAPHS

In Section 3, we mentioned links between common intervals
of a pair of permutations and the modular decomposition of
graphs. This appendix is a short presentation of this
correspondence. For further results and complete presenta-
tion of the modular decomposition theory, the interested
reader should refer to [29]. Let us first introduce the graph
theoretical concepts and then establish the links with
common intervals.

Definition 12. A module of a graph G ¼ ðV ;EÞ is a subset S of
vertices such that any vertex x 62 S is either adjacent to any
vertex of S or to none of them.

Notice that any singleton vertex set, as well as the whole
vertex set of a graph, are modules, namely, the trivial
modules. A graph whose modules are precisely the trivial
modules is called a prime graph. Any vertex subset of the
complete graph (similarly, of the stable graph2) is also a
module. For these reasons, the complete graph and the
stable graph are called degenerated graphs in the scope of
modular decomposition theory. The last simple cases of
modules of a graph are its connected components or the
connected components of its complement.

A module M is strong if it overlaps no other module, that
is, any module M 0 6¼M satisfies either M \M 0 ¼ ; or M �
M 0 or M 0 �M. It follows that trivial modules are strong
modules. The family of strong modules naturally defines an
inclusion tree, called the modular decomposition tree (see
Fig. 7), which will be denoted MDðGÞ. Next, Lemma 5
states that the family of strong modules is a basis (or a
generating family) of the set of modules of the graph.

Lemma 5 [29]. Any module of a graph G is either a strong
module or the union of strong modules all sons of a
degenerated vertex of MDðGÞ.

Let P ¼ fM1; . . .Mkg be a partition of the vertex set of a
graph G. If, for any 1 � i � k, Mi is a module of G, then P is
called a congruence partition. Congruence partitions play an

B�ERARD ET AL.: PERFECT SORTING BY REVERSALS IS NOT ALWAYS DIFFICULT 11

2. The complete graph has an edge between any pair of vertices, while
the stable graph has no edge at all.

Fig. 7. A graph G ¼ ðV ;EÞ and its modular decomposition tree MDðGÞ. The nontrivial strong modules are f2; 3g, f5; 6; 7g, f10; 11g, and f8; 9; 10; 11g.
Any strong module but the module V is degenerated. The representative graph of the root is displayed on its left. That representative graph is the

quotient graph GjP with P ¼ ff1g; f2; 3; 4g; f5g; f6; 7g; f8; 9; 10; 11gg.

important role in the modular decomposition theory and its
algorithmic aspects. The first property to be noticed is that,
if M and M 0 are modules of a congruence partition, then
they are either adjacent (any vertex of M neighbors any
vertex of M 0) or nonadjacent in G. It follows that, given a
congruence partition P, we define its quotient graph, GjP as
the subgraph induced by a vertex set V ðGjPÞ satisfying
jV ðGjPÞ \Mij ¼ 1 for any 1 � i � k (see Fig. 7).

Theorem 8 [14]. Let G be a graph and P ¼ fM1 . . .Mkg the
congruence partition containing the maximal nontrivial
strong modules. Then, exactly one of the following is true:

1. G is not connected (GjP is the stable).
2. The complement graph of G is not connected (GjP is

the clique).
3. G and its complement are connected (GjP is prime).

A representative graph is associated with any strong
module M: the quotient of the subgraph G½M� (induced
by vertices of M) by the congruence partition M of M into
maximal strong modules included in M (see Fig. 7). Strong
modules whose representative graphs are a clique or a
stable are labeled degenerate, while the others are labeled
prime. To establish the links between modules of a graph
and common intervals, let us explain how a permutation �
naturally defines a graph.

Definition 13. Let � be a permutation of the set f1 . . .ng. The
permutation graph G� ¼ ðV ;E�Þ has vertex set V ¼
f1 . . .ng and edge set E� ¼ fði; jÞ j i < j and �ðiÞ > �ðjÞg.

For example, the graph of Fig. 7 is a permutation graph:
It is the graph G� with � ¼ ð6; 7; 5; 1; 4; 10; 11; 9; 8; 2; 3Þ. The
main observation is established by the following recently
observed property [12], [30]:

Lemma 6. An interval I is a strong common interval of � if and
only if I is a strong module of G�.

Theorem 1 and Proposition 1 directly follow as corol-
laries of Theorem 8 and Lemma 5. We should finally
mention that the modular decomposition theory is part of a
more general framework of partitive families (see [29]). The
algorithmic aspect of modular decomposition has seen
many developments in the last decade. Very efficient
algorithms have been proposed for, given a graph, comput-
ing its modular decomposition tree (see [15], [19], [20], [28]).

Remark 4. Note that definite strong interval trees that
define commuting permutations (Section 5) are also
known as co-trees in the theory of modular decomposi-
tion of graphs.

REFERENCES

[1] Z. Adam, M. Turmel, C. Lemieux, and D. Sankoff, “Common
Intervals and Symmetric Difference in a Model-Free Phyloge-
nomics, with an Application to Streptophyte Evolution,” Proc. Int’l
Workshop Comparative Genomics (RCG ’06), pp. 63-74, 2006.

[2] D.A. Bader, B.M.E. Moret, and M. Yan, “A Linear-Time Algorithm
for Computing Inversion Distance Between Signed Permutations
with an Experimental Study,” J. Computational Biology, vol. 8, no. 5,
pp. 483-491, 2001.

[3] E. Belda, A. Moya, and F.J. Silva, “Genome Rearrangement
Distances and Gene Order Phylogeny in �-Proteobacteria,”
Molecular Biology Evolution, vol. 22, no. 6, pp. 1456-1467, 2005.

[4] S. Bérard, A. Bergeron, and C. Chauve, “Conserved Structures in
Evolution Scenarios,” Proc. Int’l Workshop Comparative Genomics
(RECOMB ’04), pp. 1-15, 2005.

[5] A. Bergeron, M. Blanchette, A. Chateau, and C. Chauve,
“Reconstructing Ancestral Gene Orders Using Conserved Inter-
vals,” Proc. Fourth Int’l Workshop Algorithms in Bioinformatics
(WABI ’04), pp. 14-25, 2004.

[6] A. Bergeron, C. Chauve, T. Hartman, and K. St-Onge, “On the
Properties of Sequences of Reversals that Sort a Signed Permuta-
tion,” Proc. Journées Ouvertes Biologie, Informatique, Mathématiques
(JOBIM ’02), pp. 99-108, June 2002.

[7] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot,
“Computing Common Intervals of K Permutations, with Applica-
tions to Modular Decomposition of Graphs,” Proc. 13th Ann.
European Symp. Algorithms (ESA ’05), pp. 779-790, 2005.

[8] A. Bergeron, J. Mixtacki, and J. Stoye, “The Inversion Distance
Problem,” Math. Evolution and Phylogeny, O. Gascuel, ed., pp. 262-
290, Oxford Univ. Press, 2005.

[9] G. Bourque and P.A. Pevzner, “Genome-Scale Evolution: Recon-
structing Gene Orders in the Ancestral Species,” Genome Research,
vol. 12, no. 1, pp. 26-36, 2002.

[10] G. Bourque, E.M. Zdobnov, P. Bork, P.A. Pevzner, and G. Tesler,
“Comparative Architectures of Mammalian and Chicken Gen-
omes Reveal Highly Variables Rates of Genomic Rearrangements
across Different Lineages,” Genome Research, vol. 15, no. 1, pp. 98-
110, 2005.

[11] G. Bourque, P.A. Pevzner, and G. Tesler, “Reconstructing the
Genomic Architecture of Ancestral Mammals: Lessons from
Human, Mouse, and Rat Genomes,” Genome Research, vol, 14,
no. 4, pp. 507-516, 2004.

[12] B.M.B. Xuan, M. Habib, and C. Paul, “Revisiting Uno and
Yagiura’s Algorithm,” Proc. Int’l Symp. Algorithms and Computation
(ISAAC ’05), pp. 146-155, 2005.

[13] A. Chateau, “Méthodes De Reconstruction de Génomes Ances-
traux: Quelques Reflexions,” Proc. Journées Ouvertes Biologie,
Informatique, Mathématiques (JOBIM ’05), July 2005.

[14] M. Chein, M. Habib, and M.-C. Maurer, “Partitive Hypergraphs,”
Discrete Math., no. 37, pp. 35-50, 1981.

[15] E. Dahlhaus, J. Gustedt, and R. McConnell, “Efficient and Practical
Algorithm for Sequential Modular Decomposition Algorithm,”
J. Algorithms, vol. 41, no. 2, pp. 360-387, 2001.

[16] J.V. Earnest-DeYoung, E. Lerat, and B.M.E. Moret, “Reversing
Gene Erosion: Reconstructing Ancestral Bacterial Genomes From
Gene-Content and Order Data,” Proc. Fourth Int’l Workshop
Algorithms in Bioinformatics, (WABI ’04), pp. 1-13, 2004.

[17] M. Figeac and J.-S. Varré, “Sorting by Reversals with Common
Intervals,” Proc. Fourth Int’l Workshop Algorithms in Bioinformatics,
(WABI ’04), pp. 26-37, 2004.

[18] R.A. Gibbs et al., “Genome Sequence of the Brown Norway Rat
Yields Insights Into Mammalian Evolution,” Nature, vol. 428,
no. 6982, pp. 493-521, 2004.

[19] M. Habib, F. de Montgolfier, and C. Paul, “A Simple Linear-Time
Modular Decomposition Algorithm,” Proc. Ninth Scandinavian
Workshop Algorithm Theory (SWAT ’04), pp. 187-198, 2004.

[20] M. Habib, C. Paul, and L. Viennot, “Partition Refinement: An
Interesting Algorithmic Tool Kit,” Int’l J. Foundations of Computer
Science, vol. 10, no. 2, pp. 147-170, 1999.

[21] S. Hannenhalli and P.A. Pevzner, “Transforming Cabbage Into
Turnip: Polynomial Algorithm for Sorting Signed Permutations by
Reversals,” J. ACM, vol. 46, no. 1, pp. 1-27, 1999.

[22] S. Heber and J. Stoye, “Finding All Common Intervals of
k Permutations,” Proc. 12th Int’l Symp. Combinatorial Pattern
Matching (CPM ’01), pp. 207-218, 2001.

[23] H. Kaplan, R. Shamir, and R.E. Tarjan, “A Faster and Simpler
Algorithm for Sorting Signed Permutations by Reversals,” SIAM J.
Computing, vol. 29, no, 3, pp. 880-892, 1999.

[24] H. Kaplan and E. Verbin, “Sorting Signed Permutations by
Reversals Revisited,” J. Computing Systems Science, vol. 70, no. 3,
pp. 321-341, 2005.

[25] G.M. Landau, L. Parida, and O. Weimann, “Using PQ Trees for
Comparative Genomics,” Proc. 16th Ann. Symp. Combinatorial
Pattern Matching (CPM ’05), pp. 128-143, 2005.

[26] B. Larget, D.L. Simon, J.B. Kadane, and D. Sweet, “A Bayesian
Analysis of Metazoan Mitochondrial Genome Arrangements,”
Molecular Biology Evolution, vol. 22, no. 3, pp. 486-495, 2005.

12 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 1, JANUARY-MARCH 2007

[27] W.C. Lathe III, B. Snel, and P. Bork, “Gene Context Conservation
of a Highier Order than Operons,” Trends Biochemical Science,
vol. 25, no. 10, pp. 474-479, 2000.

[28] R. McConnell and J. Spinrad, “Ordered Vertex Partitioning,”
Discrete Math. and Theoretical Computer Science, no. 4, pp. 45-60,
2000.

[29] R.H. Möhring and F.J. Radermacher, “Substitution Decomposition
for Discrete Structures and Connections with Combinatorial
Optimization,” Annals of Discrete Math., no. 19, pp. 257-356, 1984.

[30] F. de Montgolfier, “Décomposition Modulaire des Graphes.
Théorie, Extensions et Algorithmes,” PhD thesis, Univ. Montpel-
lier II, France, 2003.

[31] W.J. Murphy et al., “Dynamics of Mammalian Chromosome
Evolution Inferred from Multispecies Comparative Maps,”
Science, vol. 309, no. 5734, pp. 613-617, 2005.

[32] P.A. Pevzner and G. Tesler, “Genome Rearrangements in
Mammalian Evolution: Lessons from Human and Mouse Gen-
omes,” Genome Research, vol. 13, no. 1, pp. 37-45, 2003.

[33] P.A. Pevzner and G. Tesler, “Human and Mouse Genomic
Sequences Reveal Extensive Breakpoint Reuse in Mammalian
Evolution,” Proc. Nat’l Academy of Sciences USA, vol. 100, no. 13,
pp. 7672-7677, 2003.

[34] M.-F. Sagot and E. Tannier, “Perfect Sorting by Reversals,” Proc.
11th Ann. Int’l Conf. Computing and Combinatorics (COCOON ’05),
pp. 42-52, 2005.

[35] D. Sankoff, “Edit Distance for Genome Comparison Based on
Non-Local Operations,” Proc. Third Ann. Symp. Combinatorial
Pattern Matching (CPM ’92), pp. 121-135, 1992.

[36] D. Sankoff and P. Trinh, “Chromosomal Breakpoint Reuse in
Genome Sequence Rearrangements,” J. Computational Biology,
vol. 12, no. 6, pp. 812-821, 2005.

[37] T. Schmidt and J. Stoye, “Quadratic Time Algorithms for Finding
Common Intervals in Two and More Sequences,” Proc. 15th Ann.
Symp. Combinatorial Pattern Matching (CPM ’04), pp. 347-358, 2004.

[38] E. Tannier, A. Bergeron, and M.-F. Sagot, “Advances on Sorting by
Reversals,” Discrete Applied Math., 2005.

[39] G. Tesler, “GRIMM: Genome Rearrangements Web Server,”
Bioinformatics, vol. 18, no. 3, pp. 492-493, 2002.

[40] P. Trinh, A. McLysaght, and D. Sankoff, “Genomic Features in the
Breakpoint Regions between Syntenic Blocks,” Bioinformatics,
vol. 20, suppl. 1: (ISMB/ECCB ’04: Proc. 12th Int’l Conf. Intelligent
Systems for Molecular Biology/Third European Conf. Computa-
tional Biology), pp. i318-i325, 2004.

[41] T. Uno and M. Yagiura, “Fast Algorithms to Enumerate All
Common Intervals of Two Permutations,” Algorithmica, vol. 26,
no. 2, pp. 290-309, 2000.

[42] S. Yancopoulos, O. Attie, and S. Friedberg, “Efficient Sorting of
Genomic Permutations by Translocation, Inversion and Block
Interchange,” Bioinformatics, vol. 21, no. 16, pp. 3340-3346, 2005.

Sèverine Bérard received the PhD degree in
computer science from the University of Mon-
tpellier, France, in 2003. She is a full time
researcher in the Department of Applied Mathe-
matics and Computer Science at the French
National Institute for Agronomy Research
(INRA). Her main research interest is the use
of algorithmics and combinatorial tools to com-
pare biological sequences (DNA, RNA, and
whole genomes).

Anne Bergeron received the PhD degree in
computer science from the University of Mon-
tréal in 1990. She is a full professor in the
Department of Computer Science at the Uni-
versity of Québec at Montréal. Her research
interests are the use of combinatorial and
mathematical tools to understand genome orga-
nization and evolution.

Cedric Chauve received the PhD degree in
computer science from the University of Bor-
deaux I, France, in 2000. Since 2001, he has
been a professor in the Department of Computer
Science at the University of Québec in Montréal.
His current research interest is the development
of combinatorial models and efficient algorithms
for comparative genomics.

Christophe Paul received the PhD degree in
computer science from Montpellier University,
France, in 1998. He is a full-time CNRS
researcher. His research interests are mainly
algorithms and graph theory.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

B�ERARD ET AL.: PERFECT SORTING BY REVERSALS IS NOT ALWAYS DIFFICULT 13

