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ABSTRACT

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in
such a way that all 1’s on each row are consecutive. A Minimal Conflicting Set is a set of rows
that does not have the C1P, but every proper subset has the C1P. Such submatrices have
been considered in comparative genomics applications, but very little is known about their
combinatorial structure and efficient algorithms to compute them. We first describe an
algorithm that detects rows that belong to Minimal Conflicting Sets. This algorithm has a
polynomial time complexity when the number of 1s in each row of the considered matrix is
bounded by a constant. Next, we show that the problem of computing all Minimal Con-
flicting Sets can be reduced to the joint generation of all minimal true clauses and maximal
false clauses for some monotone boolean function. We use these methods on simulated data
related to ancestral genome reconstruction to show that computing Minimal Conflicting Set
is useful in discriminating between true positive and false positive ancestral syntenies. We
also study a dataset of yeast genomes and address the reliability of an ancestral genome
proposal of the Saccharomycetaceae yeasts.

Key words: algorithms, combinatorics, computational molecular biology, genomic rearrange-

ments, RNA.

1. INTRODUCTION

A binary matrix M has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way

that all 1’s on each row are consecutive. Algorithmic questions related to the C1P for binary matrices are

central in genomics, for problems such as physical mapping (Alizadeh et al., 1995; Christof et al., 1997; Lu

and Hsu, 2003) and ancestral genome reconstruction (Adam et al., 2007; Chauve and Tannier, 2008; Ma et al.,

2006; Ouangraoua et al., 2009). Here we are interested in the problem of inferring the architecture of an

ancestral genome from the comparison of extant genomes (due to DNA decay, for example, such genomes

cannot be sequenced directly). Note however that our results are of interest for physical mapping too. Briefly,

when inferring an ancestral genome architecture from the comparison of extant genomes, it is common to

represent partial information about the ancestral genome G as a binary matrix M: columns represent genomic
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markers that are believed to have been present in G, rows of M represent groups of markers that are believed

to be co-localized in G, and the goal is to infer the order of the markers on the chromosomes of G. Such

ordering of the markers define chromosomal segments called Contiguous Ancestral Regions (CARs).

If the matrix M contains only correct information (i.e., groups of markers that were co-localized in the

ancestral genome of interest), then it has the C1P, which can be decided in linear-time and space (Booth

and Lueker, 1976; Habib et al., 2000; Hsu, 2002; McConnell, 2004; Meidanis et al., 1998). However, with

most real datasets, M contains errors. These can be either incorrect columns, that represent genomic

markers that were not present in G, or incorrect rows, that represent groups of markers that were not

co-localized in G.1 A fundamental question is then to detect such errors in order to correct M, and the

classical approach to handle these (unknown) errors relies on combinatorial optimization, asking for an

optimal transformation of M into a matrix that has the C1P, for some notion of transformation of a matrix

linked to the expected errors; for example, if incorrect markers (resp. groups of co-localized genes) are

expected, one could ask for a maximal subset of columns (resp. rows) of M that has the C1P. In both cases,

such combinatorial optimization problems are intractable (Dom, 2008, 2009) for recent surveys.

In the present work, we assume the following situation: M is a binary matrix that represents information

about an unknown ancestral genome G and does not have the C1P due to erroneous rows, from now called

false positives. The notion of Minimal Conflicting Set was introduced to handle non-C1P binary matrices

and false positives in Bergeron et al. (2004) and Stoye and Wittler (2009). If a binary matrix M does not

have the C1P, a Minimal Conflicting Set (MCS) is a submatrix M0 of M composed of a subset of the rows of

M such that M0 does not have the C1P, but every proper subset of rows of M0 has the C1P. The Conflicting

Index (CI) of a row of M is the number of MCS it belongs to. Hence, MCS can be seen as the smallest

structures that prevent a matrix from having the C1P. It is then natural to expect that false positive belong to

MCS, and that every MCS contains at least one false positive. In Bergeron et al. (2004), an extreme

approach was followed in handling non-C1P matrices: all rows belonging to at least one MCS were

discarded from M, which can consequently discard also a large number of true positives. In Stoye and

Wittler (2009), rows were ranked according to their CI (or more precisely an approximation of their CI)

before being processed by a branch-and-bound algorithm to extract a maximal subset of rows of M that has

the C1P. These two approaches raise natural algorithmic questions related to MCS that we address here:

� For a row r of M, is the CI of r greater than 0?
� Can we compute the CI of all rows r of M or enumerate all MCS of M?

Our work is motivated by the fact that the fundamental question is to detect the false positives rows in M

rather than extracting a maximal C1P submatrix. We investigate here, using both simulations and real data,

the following question: does a false positive row have some characteristic properties in terms of MCS or

CI? This question naturally extends to the notion of Maximal C1P Sets (MC1PS), a dual notion of MCS,

that represent sets of row that do have the C1P but can not be extended while maintaining this property.

After some preliminaries on the C1P, MCS, and MC1PS (Section 2), we attack two problems. First, in

Section 3, we consider the problem of deciding if a given row of a binary matrix M belongs to at least one

MCS. We show that, when all rows of a matrix are constrained to have a bounded number of 1’s, deciding

if the CI of a row of a matrix is greater than 0 can be done in polynomial time. The constraint on the

number of 1’s per row is motivated by real applications: in Ma et al. (2006), for example, adjacencies, that

is rows with two 1s per row, were considered for the reconstruction of an ancestral mammalian genome.

Next, in Section 4, we attack the problem of generating all MCS or MC1PS for a binary matrix M. We show

that this problem can be approached as a joint generation problem of minimal true clauses and maximal

false clauses for monotone boolean functions. This can be done in quasi-polynomial time thanks to an

oracle-based algorithm for the dualization of monotone boolean functions (Eiter et al., 2008; Fredman and

Khachiyan, 1996; Gurvich and Khachiyan, 1999). We (U.-U. Haus and T. Stephen) implemented this

algorithm and applied it on simulated and real data (Section 5). Application on simulated data suggest that

computing all conflicting sets and the conflicting index of all rows of a binary matrix is useful to dis-

criminate between true positive and false positive ancestral syntenies. We also study a real dataset of yeast

1Note however that this classification of possible errors is somewhat simplified; see Goldberg et al. (1995) for a more
detailed discussion regarding errors in physical mapping.
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genomes and address the reliability of an ancestral genome proposal of the Saccharomycetaceae yeasts. We

conclude by discussing several open problems.

2. PRELIMINARIES

We briefly review here ancestral genome reconstruction and known algorithmic results related to

Minimal Conflicting Sets and Maximal C1P Sets.

2.1. The consecutive ones property, minimal conflicting sets, maximal C1P sets

Let M be a binary matrix with m rows and n columns, with e entries 1. We denote by r1, . . . , rm the rows

of M and c1, . . . , cn its columns. We assume that M does not have two identical rows, nor two identical

columns, nor a row with less than two entries 1 or a column with no entry 1. We denote by D(M) the

maximum number of entries 1 found in a single row of M, called the degree of M. In the following, we

sometimes identify a row of M with the set of columns where it has entries 1, and a set of rows with the

matrix defined by the submatrix of M containing exactly these rows.

Definition 1. A Minimal Conflicting Set (MCS) is a set R of rows of M that does not have the C1P but such

that every proper subset of R has the C1P. The Conflicting Index (CI) of a row ri of M is the number of MCS that

contain ri. A row ri of M that belongs to at least one conflicting set is said to be a conflicting row. The

Conflicting Ratio (CR) of a row ri of M is the ratio between the CI of ri and the number of MCS that M contains.

Definition 2. A Maximal C1P Set (MC1PS) is a set R of rows of M that has the C1P and such that

adding any row from M to R results in a set of rows that does not have the C1P. The MC1PS Index (C1PI)

of a row ri of M is the number of MC1PS that contain ri. The MC1PS Ratio (C1PR) of a row ri of M is the

ratio between the C1PI of ri and the number of MC1PS that M contains.

For a subset I¼fi1, . . . , ikg of [n], we denote by RI the set fri1 , . . . , rikg of rows of M. If RI is an MCS

(resp. MC1PS), we then say that I is an MCS (resp. MC1PS).

2.2. Ancestral genome reconstruction

The present work is motivated by the problem of inferring an ancestral genome architecture given a set of

extant genomes. An approach to this problem, described in Chauve and Tannier (2008), consists in defining

an alphabet of genomic markers that are believed to appear uniquely in the extinct ancestral genome. An

ancestral synteny is a set of markers that are believed to have been consecutive along a chromosome of the

ancestor. A set of ancestral syntenies can then be represented by a binary matrix M: columns represent

markers and the 1 entries of a given row define an ancestral synteny. If all ancestral syntenies are true

positives (i.e. represent sets of markers that were consecutive in the ancestor), then M has the C1P and defines

a set of Contiguous Ancestral Regions (CARs) (Chauve and Tannier, 2008; Ma et al., 2006). Otherwise, some

ancestral syntenies are false positives that create MCS and the key problem is to detect and discard them.

Note however that we do not assume that any false positive creates an MCS; indeed it is possible that a

false positive row contains two entries 1 corresponding to two markers that are extremities of two real

ancestral chromosomes, and then this false positive would create a chimeric ancestral chromosome. Such

false positives have to be detected using techniques other than the ones we describe in the present work, as

there is no combinatorial signal to detect them based on the Consecutive Ones Property.

In the framework described in Chauve and Tannier (2008) and also used in Adam et al. (2007), Ma et al.

(2006), and Stoye and Wittler (2009), ancestral syntenies are defined as common intervals: markers consist

of two genome segments having the same content (Bergeron et al., 2008) of a pair of genomes whose

evolutionary path goes through the desired ancestor. As ancestral syntenies are detected by mining common

intervals in pairs of genomes, it is then easy to control the degree of the resulting matrix by restricting the

comparison to common intervals of bounded size, such as adjacencies (ancestral syntenies of size 2), which

is fundamental for the result we describe in Section 3.

Also, it is common to weight the rows of M with a measure of confidence in its quality, for example based on

the distribution of a group of co-localized markers among the considered extant genomes (Chauve and Tannier,
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2008; Ma et al., 2006), and we can expect that false positives have a lower score in general than true positives.

However, the concepts of MCS and MC1PS are independent of this weighting and we do not consider it here

from a theoretical point of view, although we do consider it in our experiments on real data.

2.3. Preliminary algorithmic results on MCS and MC1PS

In the case where each row of M has exactly two entries 1, M naturally defines a graph GM with vertex set

fc1, . . . , cng and where there is an edge between ci and cj if and only if there is a row with entries 1 in

columns ci and cj. The following property is then obvious.

Property 1. If D(M)¼ 2, a set of rows R of M is an MCS if and only if the subgraph induced by the

corresponding edges is a star with four vertices (also called a claw) or a cycle.

This property implies immediately that both the number of MCS and the number of MC1P can be

exponential in n. Also, combined with the fact that counting the number of cycles that contain a given edge

in an arbitrary graph is #P-hard (Valiant, 1979), this leads to the following result.

Theorem 1. The problem of computing the Conflicting Index of a row in a binary matrix is #P-hard.

Given a set of p rows R of M, deciding whether these rows form an MCS can be achieved in polynomial

time by testing (1) whether they form a matrix that does not have the C1P and, (2) whether every maximal

proper subset of R (obtained by removing exactly one row) forms a matrix that has the C1P. This requires

only pþ 1 C1P tests and can then be done in time O( p(nþ pþ e)), using an efficient algorithm for testing

the C1P (McConnell, 2004).

The problem of generating one MCS is not hard and can be achieved in polynomial time by the following

simple greedy algorithm:

1. let R¼fr1, . . . , rmg be the complete set of rows of M;

2. for i from 1 to m, if removing ri from R results in a set of rows that has the C1P then keep ri in R,

otherwise remove ri from R;

3. the subset of rows R obtained at the end of this loop is then an MCS.

Given M and a list C¼fR1, . . . , Rkg of known MCS, the sequential generation problem GenMCS(M,C) is

the following: decide if C contains all MCS of M and, if not, compute one MCS that does not belong to C.

Using the obvious property that, if Ri and Rj are two MCS then neither Ri � Rj nor Rj � Ri, Stoye and

Wittler (2009) proposed the following backtracking algorithm for GenMCS(M,C):

1. Let M0 be defined by removing from M at least one row from each Ri in C by recursing on the

elements of C.

2. If M0 does not have the C1P then compute an MCS of M0 and add it to C, else backtrack to step 1

using another set of rows to remove such that each Ri 2 C contains at least one of these rows.

This algorithm can require time O(nk) to terminate, which, as k can be exponential in n, can be super-

exponential in n. As far as we know, this is the only previously proposed algorithm to compute all MCS.

Remark 1. The algorithms to decide if a set of rows is an MCS, compute an MCS or compute all MCS

can be transformed in a straightforward way to answer the same questions for MC1PS, with similar

complexity. The analogue of Property 1 for MC1PS in matrices of degree 2 is that a MC1P is a maximal set

of paths: adding an edge creates a claw or a cycle. We are not aware of any result on counting or

enumerating maximal sets of paths.

In summary, the number of MCS or MC1PS can be exponential, and there is no known efficient

algorithm to decide, in general, if a given row belongs to some MCS. In the next section we show that there

is an efficient algorithm if D(M) is fixed.

3. DECIDING IF A ROW IS A CONFLICTING ROW

We now describe our first result, an algorithm to decide if a row of M is a conflicting row (i.e., has a CI

greater than 0). Detecting non-conflicting rows is important, for example to speed-up algorithms that
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compute an optimal C1P subset of rows of M, or in generating all MCS. Our algorithm has a complexity

that is exponential in D(M). It is based on a combinatorial characterization of non-C1P matrices due to

Tucker (1972).

Tucker patterns. The class of C1P matrices is closed under column and row deletion. Hence there exists a

characterization of matrices which do not have the C1P by forbidden minors. Tucker (1972) characterizes these

forbidden submatrices, called MI, MII MIII, MIV, and MV: if M is binary matrix that does not have the C1P, then it

contains at least one of these matrices as a submatrix. We call these forbidden matrices the Tucker patterns.

Patterns MIV and MV each have 4 rows and respectively 6 and 5 columns, while MI,MII,MIII are (qþ 2) by

(qþ 2), (qþ 3) by (qþ 3) and (qþ 2) by (qþ 3), respectively, for a parameter q� 1. When q¼ 1, pattern MI

corresponds to cycle and pattern MIII corresponds to the claw. The patterns are described in the Appendix.

Bounded patterns. Let P be a set of p rows R of M, that defines a p�n binary matrix. P is said to contain

exactly a Tucker pattern MX if a subset of its columns defines a matrix equal to pattern MX. The following

properties are straightforward from the definitions of Tucker patterns and MCS:

Property 2. (1) A set P of rows of M is an MCS if and only if P contains exactly a Tucker pattern and

no proper subset of rows of P does contain exactly a Tucker pattern. (2) If a subset of p rows of M contains

exactly a Tucker pattern MII MIII, MIV or MV, then 4� p�max(4,D(M)þ 1).

If a row ri satisfies the conditions of Property 2.(1) for a Tucker pattern MX, we say that ri belongs to an

MCS due to pattern MX. Tucker patterns with at most D(M)þ 1 rows are said to be bounded. Property 2

leads to the following results.

Proposition 1. Let M be a binary matrix that does not have the C1P, and ri a row of M. Deciding if ri

belongs to an MCS due to a Tucker pattern of p rows can be done in O(mp�1p(nþ pþ e)) worst-case time.

Proof. The following brute-force algorithm decides if ri belongs to an MCS due to a Tucker pattern of p rows.

� Examine all sets of p rows of M that contain ri.
� For a given set of rows, if it does not have the C1P but every proper subset does have the C1P, then ri

belongs to an MCS due to a Tucker pattern of p rows.
� If no such set satisfies this property, then ri does not belong to any MCS due to a Tucker pattern of p rows.

The complexity can be explained as follows: there are O(mmax(3,p�1)) subsets of the m rows of M to

consider. For each such set, we need to perform at most pþ 1 C1P tests, and each such test can be

performed in O(nþ pþ e) worst-case time. &

The following corollary follows immediately from Property 2.(2).

Corollary 1. Let M be a binary matrix that does not have the C1P, and ri a row of M. Deciding if ri

belongs to an MCS due to a bounded Tucker pattern can be done in O(mmax(3,D(M))D(M)(nþD(M)þ e))

worst-case time.

Unbounded patterns. We now describe how to decide if a row ri of M belongs to an MCS due to an

unbounded Tucker pattern. From Property 2.(2), this Tucker pattern can only be a pattern MI with at least

D(M)þ 2 rows. The key idea is that Tucker pattern MI describes a cycle in a bipartite graph encoded by M.

Let BM be the bipartite graph defined by M as follows: vertices are rows and columns of M, and every

entry 1 in M defines an edge. Pattern MI with p rows corresponds to a cycle of length 2p in BM. Hence, if R

contains MI with p-row, the subgraph of BM induced by R contains such a cycle and possibly other edges.

Let C¼ (ri1 , cj1 . . . , rip , cjp ) be a cycle in BM. We say that a vertex riq belonging to C is blocked in C if

there exists a vertex cj such Miq,j¼ 1, Miq�1,j¼ 1 (resp. Mip,j¼ 1 if q¼ 1) and Miqþ1,j¼ 1 (resp. M1,j¼ 1 if

q¼ p). In other words, replacing the path between riq�1 and riqþ1 going through riq in C by the edges

{riq�1,cj} and {riqþ1,cj} gives a shorter cycle that does not contain riq.

Proposition 2. Let M be a binary matrix that does not have the C1P and ri be a row of M that does not

belong to any MCS due to a bounded Tucker pattern. Then ri belongs to an MCS if and only if ri belongs to

a cycle C¼ (ri1 , cj1 , . . . rip , cj, p) in BM, with p�D(M)þ 2, and ri is not blocked in C.
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Proof. If ri belongs to an MCS but not due to a bounded Tucker pattern, then, according to Property 2.(2), it

is due to pattern MI defined on p rows of M containing ri. So ri belongs to a cycle C defined by this pattern MI.

However, if ri is blocked in C, then, removing the row ri and its adjacent edges still leaves a cycle in the subgraph

of BM induced by the remaining vertices, which contradicts the fact that the initial p rows form an MCS.

Now, assume that ri belongs to a cycle C¼ (ri1 , cj1 , . . . rip , cj, p) in BM and ri is not blocked in C. We want

to show that ri belongs to an MCS. Assume moreover that C is minimal in the following sense: there is no

smaller cycle in BM containing ri unblocked.

� The set P¼fri1 , . . . , ripg of rows obviously does not have the C1P, because it contains (exactly) the

Tucker pattern MI.
� We now want to show that removing any row from this gives a matrix that has the C1P. Let ri‘ be a row

belonging to C. Assume that removing ri‘ and the adjacent edges results in a matrix with p� 1 rows

that does not have the C1P, and then contains an MCS. If ri belongs to this MCS, then it is due to a

Tucker pattern MI, as by hypothesis it does not belong to an MCS due to a bounded Tucker pattern.

This then contradicts the minimality assumption on the cycle C. Now assume that ri does not belong to

this MCS, which is then included in a set Q of q¼ p� 2 or q¼ p� 1 (if ri¼ ri‘ ) rows. A chord in the

cycle C is a set of two edges (r,c) and (r0,c) such that r and r0 belong to C but are not consecutive row

vertices in this cycle. We claim that the definition of Tucker patterns implies that there always exist a

column that does not belong to C and that defines a chord in C between two rows of Q. This again

contradicts the minimality assumption on the cycle C. Hence, by contradiction, we have that removing

ri‘ and the adjacent edges results in a matrix that has the C1P. &

The algorithm. To decide whether a row ri of M belongs to an MCS, we can then use the following

algorithm.

1. Decide whether it belongs to an MCS due to a bounded pattern as follows:

(a) Enumerate all subsets of at least 4 and at most D(M)þ 1 rows of M that contain ri.

(b) For each such subset, if it is not C1P but all its proper subsets are C1P, then ri belongs to an MCS.

2. If ri does not belong to an MCS due to a bounded pattern then

(a) Enumerate all pairs of rows ri1 and ri2 that each have an entry 1 in a column where ri has an entry

1 excluding the cases where the three rows ri, ri1 and ri2 have an entry 1 in the same column.

(b) For each such pair (ri1 , ri2 ), if there is a path in BM between ri1 and ri2 that does not visit ri then ri

belongs to an MCS.

This algorithm proves the main result of this section:

Theorem 2. Let M be an m�n binary matrix that does not have the C1P, and ri be a row of M.

Deciding if ri belongs to at least one MCS can be done in O(mmax(3,D(M))D(M)(nþD(M)þ e)) time.

4. GENERATING ALL MCS AND MC1PS USING MONOTONE
BOOLEAN FUNCTIONS

In this section, we describe an algorithm that enumerates all MCS and MC1PS of a binary matrix M

simultaneously in quasi-polynomial time. The key point is to describe this generation problem as a joint

generation problem for monotone boolean functions.

Let [m]¼f1, 2, . . . , mg. For a set I¼fi1, . . . , ikg � [m], we denote by XI the boolean vector (x1, . . . , xm)

such that xj¼ 1 if and only if ij 2 I.

Definition 3. A boolean function f: {0, 1}m? {0, 1} is said to be monotone if for every I, J � [m],

I � J ) f (XI) � f (XJ)

Definition 4. Given a boolean function f, a boolean vector X is said to be a Minimal True Clause

(MTC) if f (XI)¼ 1 and f (XJ)¼ 0 for every J � I. Symmetrically, XI is said to be a Maximal False Clause

(MFC) if f (XI)¼ 0 and f (XJ)¼ 1 for every I � J. We denote by MTC( f) (resp. MFC( f )) the set of all MTC

(resp. MFC) of f.

1172 CHAUVE ET AL.



For a given m�n binary matrix M, let fM: {0, 1}m? {0, 1} be the boolean function defined by fM(XI)¼ 1

if and only if RI does not have the C1P, where I � [m]. This boolean function is obviously monotone and

the following proposition is immediate.

Proposition 3. Let I¼fi1, . . . , ikg � [m]. RI is an MCS (resp. MC1PS) of M if and only if XI is an MTC

(resp. MFC) for fM.

It follows from Proposition 3 that generating all MCS reduces to generating all MTC for a monotone

boolean function. This very general problem has been the subject of intense research, and we briefly

describe below some important properties.

Theorem 3 (Gurvich and Khachiyan 1999). Let C¼fX1, . . . , Xkg be a set of MTC (resp. MFC) of a

monotone boolean function f. The problem of deciding if C contains all MTC (resp. MFC) of f is coNP-

complete.

Theorem 4 (Gunopulos et al., 1997). The problem of generating all MTC of a monotone boolean

function f using an oracle to evaluate this function can require up to jMTC( f )þMFC( f)j calls to this

oracle.

This property suggests that, in general, to generate all MTC, it is necessary to generate all MFC, and

vice-versa. For example, the algorithm of Stoye and Wittler (2009) described in Section 2 is a satisfiability

oracle based algorithm—it uses a polynomial-time oracle to decide if a given submatrix has the C1P, but it

doesn’t use this structure any further. Once it has found the complete list C of MCS, it will proceed to check

all MC1PS sets as candidate conflicting sets before terminating. Since this does not keep the MC1PS sets

explicitly, but instead uses backtracking, it may generate the same candidates repeatedly resulting in a

substantial duplication of effort. In fact, this algorithm can easily be modified to produce any monotone

boolean function given by a truth oracle.

One of the major results on generating MTC for monotone boolean functions, is due to Fredman and

Khachiyan. It states that generating both sets together can be achieved in time quasi-polynomial in the

number of MTC plus the number of MFC.

Theorem 5 (Fredman and Khachiyan, 1996). Let f: {0, 1}m ? {0, 1} be a monotone boolean function

whose value at any point x 2 f0, 1gm
can be determined in time t, and let C and D be respectively the sets of

the MTC and MFC of f. Given two subsets C0 � C and D0 � D of total size s¼ jC0j þ jD0j, deciding if

C [ D¼C0 [ D0, and if C [ D 6¼ C0 [ D0 finding an element in (CnC0) [ (DnD0) can be done in time

O(m(mþ t)þ so(log s)).

The key element to achieve this result is an algorithm that tests if two monotone boolean functions are

duals of each other (Eiter et al., 2008). As a consequence, we can then use the algorithm of Fredman and

Khachiyan to generate all MCS and MC1PS in quasipolynomial time.

5. EXPERIMENTAL RESULTS

We present here results obtained on simulated and real datasets using the cl-jointgen implementation

(release 2008-12-01) of the joint generation method which is publicly available (from U.-U. Haus and T.

Stephen) with an oracle to test the C1P property based on the algorithm described in McConnell (2004).

5.1. Simulated data

We generated several simulated datasets of ancestral syntenies as follows:

� We started from an ancestral unichromosomal genome G composed of 40 genomic markers, labeled

from 1 to 40 and ordered increasingly along this chromosome (i.e. it is represented by the identity

permutation on f1, . . . , 40g).
� From this ancestor, we extracted 39 true positive ancestral syntenies, labeled a1, . . . , a39, in such a way

that ai is an interval of G starting at marker i and of length chosen uniformly in the set f2, . . . , dg,
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where d is a parameter of the dataset corresponding to the maximum degree of the generated matrix.

We considered the values d¼ 2, 3, 4, 5.
� Finally, we added 6 false positive ancestral syntenies, defined as sets of markers containing between

2� c� d markers and spanning an interval of G of at most g markers (hence the gaps in this false

positive contain g� c markers), where g is a parameter of the dataset. We considered the values g¼ 2,

5, 10.
� To simulate the fact that, in general, if ancestral syntenies are weighted according to their conservation

in extant species, false positives have a lesser weight than true positives, we weighted false positives

by 0.5 and true positives by 1.0.
� For each pair of parameters (d,g), we generated 10 datasets.

This generation method was designed to simulate moderately large datasets that resemble real datasets.

For most of the 120 datasets, the generation of all MCS and MC1PS could be completed within three hours

of computation, but for 13 of them (one for (d,g)¼ (3, 5), three for (4, 5), one for (5, 5), four for (3, 10),

three for (4, 10) and two for (5, 10)) that were stopped if the computations were not completed after three

hours. These unfinished datasets were discarded when computing the statistics described below.

Table 1 presents a summary of the number of MCS and MC1PS observed in all the completed datasets;

for computations that had to be interrupted, similar results are observed from the partial information

contained in the log files. We can first observe the number of MC1PS is much larger than the number of

MCS. The second important observation is a general trend towards increasing the number of MCS when

either d or g increases, which can be explained by the more intricate combinatorial structure of sets of

ancestral syntenies. Indeed, for example, with d¼ 2 and g¼ 2, MCS are easy to find and count, as cycles in

the corresponding bipartite graph are short and are relatively easy to find, even using brute-force approach.

With larger values of g, cycles length increase and overlapping cycles appear more frequently, which

results in more MCS. Although it seems natural that increasing the value of d results in more MCS

understanding more precisely the impact of increasing d requires a better understanding of the combina-

torial structure of MCS with matrices of degree larger than 2; see You (2009) for the case d¼ 3. Regarding

MC1PS, we notice that increasing g results also in an increase of the number of MC1PS, but we also notice

that when d attains the value 5, there seems to be a decrease of the number of MC1PS. A possible

explanation is that, with such degree, constraints on sets of rows that have the C1P increase as a given row

can now overlaps a large number of other rows, which reduces the number of MC1PS containing such

rows. Generally, the impact of the degree on MC1PS deserves further theoretical or experimental inves-

tigations.

For each dataset, and each ancestral synteny, we also computed two statistics, the Conflicting Ratio (CR)

and the MC1PS Ratio (C1PR). For every row, we also computed its MCS rank and MC1PS rank, defined as

follows: the MCS (resp. MC1PS) rank of a row of M is its rank when rows are ordered by increasing CR

(resp. increasing C1PR). Table 2 presents a summary of these statistics. We can notice that, in general,

Table 1. Statistics on the Number of MCS and MC1PS in All Completed Datasets

(d, g)

Min. number

of MCS

Max. number

of MCS

Average number

of MCS

Min. number

of MC1PS

Max. number

of MC1PS

Average number

of MC1PS

(2,2) 17 25 21.4 464 3120 1393.2

(3,2) 27 51 38.8 492 4800 2701.4

(4,2) 42 84 59.1 756 11286 2861.8

(5,2) 68 137 93.3 160 10320 2757.2

(2,5) 16 29 22.4 1360 10800 4927.9

(3,5) 31 106 58.1 624 10395 5431.9

(4,5) 65 176 107.7 1612 11934 6366.9

(5,5) 75 356 154.8 1785 9420 3898.3

(2,10) 22 46 32.4 601 16954 5796.8

(3,10) 72 133 94.3 3876 16030 10995.8

(4,10) 101 583 265.3 1434 23474 13278.3

(5,10) 263 487 310.9 5432 12362 8909.5

All values 16 583 96.7 160 23474 5312.5
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MCS seem to discriminate slightly better between false positives and true positives in terms of ratio: the

average difference between the CR of a false positive and of a true positive is slightly larger than the

average difference of the C1PR. The difference between the rankings is more strongly in favor of MCS: on

average, a false positive is more likely to have a MCS rank close to the maximum rank than to have a low

MC1PS rank. The conclusion we can draw from these average results is that the CR and MCS rank seem to

better discriminate false positive from true positives.2 Considering the weights of the rows to weight MCS

and C1PS does not change significantly this conclusion (results not shown).

Confirming the conclusions from Table 2, we can observe in Figures 1 and 2, the following facts.

� The conflicting ratio (CR) discriminates effectively between false positives and true positives. For

example conserving all syntenies that have a CR at least 0.14 results in discarding 80% of FP while

still keeping 83% of TP.
� The MC1PS ratio (C1PR) does not discriminate as effectively between false positives and true pos-

itives.

It is also interesting to note that only 31% of true positives ancestral syntenies do not belong to any MCS.

This suggests that, at least with these simulated data, a significant number of ancestral syntenies do not

need to be considered when trying to detect false positives (as we expect rows with CI equal to 0 to be true

positives in general), but also that a very large part of true positive show some conflicting signal despite the

low ratio of false positives. This shows that the extreme approach of discarding all rows belonging to at

least one MCS, suggested in Bergeron et al. (2004), can result in discarding a very large number of true

positives.

5.2. Application on yeasts real data

Next, we considered a real dataset, used to reconstruct an ancestral Saccharomycetaceae genome from

non-duplicated yeasts genomes (S. kluyveri, K. thermotolerans, K. lactis, A. gossypii, and Z. rouxii),

described in Chauve et al. (2010). These genomes are represented with 1420 markers,3 and a total of 3106

ancestral syntenies were computed, giving a binary matrix M with 3106 rows and 1420 columns. From this

large matrix, five submatrices fM1, . . . , M5g were extracted that contained all MCS.4 For these five

matrices, the number mi or rows and ni of columns are the following: m1¼ 12, n1¼ 8, m2¼ 200, n2¼ 104,

Table 2. Statistics on MCS and MC1PS on Simulated Datasets

Dataset

Average

FP_CR

Average

TP_CR

Average

FP_C1PR

Average

TP_C1PR

Average

FP MCS rank

Average FP

MC1PS rank

(2,2) 0.20 0.05 0.66 0.82 39.65 15.47

(3,2) 0.20 0.06 0.67 0.76 38.48 19.27

(4,2) 0.21 0.06 0.61 0.73 39.35 18.45

(5,2) 0.21 0.05 0.59 0.69 38.37 19.57

(2,5) 0.21 0.07 0.69 0.79 39.53 17.72

(3,5) 0.21 0.07 0.63 0.73 38.33 18.72

(4,5) 0.21 0.06 0.60 0.65 38.16 21.19

(5,5) 0.21 0.06 0.59 0.65 37.91 21.33

(2,10) 0.27 0.11 0.62 0.81 38.20 14.02

(3,10) 0.23 0.08 0.62 0.69 36.41 19.92

(4,10) 0.26 0.07 0.55 0.62 39.52 20.19

(5,10) 0.23 0.07 0.55 0.58 37.15 22.38

FP_CR is the Conflicting Ratio for False Positives, TP_CR is for CR the True Positives, FP_MR is the MC1PS ratio for False

Positives, and TP_MR is the MR for True Positives.

2The opposite conclusion was stated in the preliminary version of this article (Chauve et al., 2010), due to an
experimental error.

3The 1420 markers represent 710 synteny blocks, each block being split into two markers corresponding to its two
extremities and represented by an ancestral synteny of size 2 containing these two markers.

4Each matrix corresponds to an R-node of the PQR-tree associated to M; see Chauve and Tannier (2008;) and
McConnell (2004) for details on R-nodes in PQR-trees.
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m3¼ 262, n3¼ 126, m4¼ 801, n4¼ 348, m5¼ 1393 and n5¼ 652. For matrices M1, M2 and M3, the joint

generation computation was completed within a few hours. For the larger matrices M4 and M5, the

computations were each interrupted after three days. We first report in Table 3 the number of MCS and

MC1PS detected.5 We also show the number of ancestral syntenies that belong to all MC1PS, that we call

reliable ancestral syntenies.

We can observe that, unlike with simulated data, the number of MCS is larger than the number of

MC1PS, a fact that is not related to the filtering of MC1PS. This could be explained by the fact that

ancestral syntenies can be much larger here than in the simulated data (where they were of size at most 5)

which can imply that a single false positive can create MCS with many different sets of true positive rows.
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FIG. 1. Percentage of conserved ancestral syntenies (y-axis) given a minimal C1PR (Threshold, x-axis), for both false

positives (FP) and true positives (TP) for simulated datasets.
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FIG. 2. Percentage of conserved ancestral syntenies (y-axis) given a maximal C1PR (Threshold, x-axis), for both false

positives (FP) and true positives (TP) for simulated datasets.

5For each matrix, we filtered the set of MC1PS to discard any set of rows that does not contain all ancestral syntenies
corresponding to the synteny blocks represented by the columns of this matrix.
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The second important observation is that approximately 85% of all ancestral syntenies belong to all MC1PS

(or at least, for M4 and M5, all generated MC1PS) and can then be considered as reliable. This fact

addresses a question that is raised in Chauve et al. (2010) about the reliability of ancestors computed from

ancestral syntenies, as it shows that most ancestral syntenies are reliable, at least from a combinatorial

optimization point of view. To refine this observation, we show in Figure 3 that most ancestral syntenies

have a high C1PR and a low CR.

Finally, we selected the subset of ancestral syntenies with a CR at most 0.5 and a C1PR at least 0.5. This

subset of ancestral syntenies does not have the C1P, but only three ancestral syntenies need to be discarded

to obtain a C1P matrix, that defines a set of 13 CARs. In comparison, the set of all ancestral syntenies from

M1, . . . , M5 required 12 ancestral syntenies to be discarded in order to have the C1P, leading to 9 CARs.

This shows that most CARs obtained in Chauve et al. (2010) are supported if only ancestral syntenies with

low CR and high C1PR are conserved.

6. CONCLUSION

This article describes preliminary theoretical and experimental results on Minimal Conflicting Sets and

Maximal C1P Sets. In particular, we suggested that Tucker patterns are fundamental to understanding the

combinatorics of MCS, and that the generation of all MCS is a hard problem, related to monotone boolean

functions. From an experimental point of view it appears, at least on datasets of adjacencies, that MCS offer

a better way to detect false positive ancestral syntenies than MC1PS. From a methodological point of view,

it suggests that the joint generation framework provides a very general and flexible tool for handling the

notion of minimal conflicting data in computational biology, as shown for example in Haus et al. (2008).

This leaves several open problems to attack.

Table 3. Statistics on MCS and MC1PS on the Yeasts Dataset

Matrix Number of MCS Number of MC1PS Number of reliable ancestral syntenies

M1 6 4 6

M2 402 13 166

M3 2214 90 199

M4 1976* 483* 617*

M5 1277* 883* 1291*

Numbers marked by the symbol * correspond to partial results for interrupted computations.
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FIG. 3. Percentage of conserved ancestral syntenies (y-axis) with a given CR (resp. C1PR). Each bar represents the

percentage of ancestral syntenies whose CR (resp. C1PR) is in an interval of length 0.1.

MINIMAL CONFLICTING SETS FOR THE CONSECUTIVE ONES PROPERTY 1177



Detecting non-conflicting rows. The complexity of detecting rows of a matrix that do not belong to any

MCS when rows can have an arbitrary number of entries 1 is still open. Solving this problem probably requires a

better understanding of the combinatorial structure of MCS and Tucker patterns. Tucker patterns have also be

considered in Dom (2008), where polynomial time algorithms are given to compute a Tucker pattern of a given

type for a matrix that does not have the C1P. Even if these algorithms can not obviously be modified to decide if

a given row belongs to a given Tucker pattern, they provide useful insight on Tucker patterns.

It follows from the dual structure of monotone boolean functions that the question of whether a row

belongs to any MCS is equivalent to the question of whether it belongs to any MC1PS. Indeed, for an

arbitrary oracle-given function, testing if a variable appears in any MTC is as difficult as deciding if a list of

MTC is complete. Consider an oracle-given f and a list of its MTC which define a (possibly different)

function f 0. We can build a new oracle function g with an additional variable x0, such that g(x0,x)¼ 1 if and

only if x0¼ 0 and f 0(x)¼ 1 or x0¼ 1 and f (x)¼ 1.

Generating all MCS and MC1PS. Right now, this can be approached using the joint generation method,

but the number of MCS and MC1PS makes this approach time consuming for large matrices. A natural way

to deal with such problem would be to generate at random and uniformly MCS and MC1PS. For MCS, this

problem is at least as hard as generating random cycles of a graph, which is known to be a hard problem

( Jerrum et al., 1986). We are not aware of any work on the random generation of MC1PS.

An alternative to random generation would be to abort the joint generation after it generates a large number

of MCS and MC1PS, but the quality of the approximation of the MCS ratio and MC1PS ratio so obtained

would not be guaranteed. Another approach for the generation of all MCS is based on the remark that, for

adjacencies, it can be reduced to generating all claws and cycles of the graph GM. Generating all cycles of a

graph can be done in time that is polynomial in the number of cycles, using backtracking (Read and Tarjan,

1975). It is then tempting to use this approach in conjunction with dynamic partition refinement (Habib et al.,

2000) for example or the graph-theoretical properties of Tucker patterns described in Dom (2008).

Combinatorial characterization of false positive ancestral syntenies. It is interesting to remark that, with

matrices of degree 2, most false positives can be identified in a simple way. True positive rows define a set

of paths in the graph GM, representing ancestral genome segments, while false positive rows {i,j}, unless i

or j is an extremity of such a path (in which case it does not exhibit any combinatorial sign of being a false

positive), both the vertices i and j belong to a claw in the graph GM. And it is easy to detect all edges in this

graph with both ends belonging to a claw. In order to extend this approach to more general datasets, where

D(M)> 2, it would be helpful to better understand the impact of adding a false positive row in M. The most

promising approach would be to start from the partition refinement (Habib et al., 2000) obtained from all

true positive rows and form a better understanding of the combinatorial structure of connected components

of the overlap graph that do not have the C1P.

Computation speed. On large datasets, especially with matrices with an arbitrary number of entries 1 per

row, some connected components of the overlap graph can be very large, see the data in Chauve et al.

(2010), for example. In order to speed up the computations, algorithmic design and engineering devel-

opments are required, both in the joint generation algorithm and in the problem of testing the C1P for

matrices after rows are added or removed.

7. APPENDIX: THE FIVE TUCKER PATTERNS

MI :

c1 c2 c3 c4 . . . cq cqþ1 cqþ2

r1 1 1 0 0 . . . 0 0 0

r2 0 1 1 0 . . . 0 0 0

r3 0 0 1 1 . . . 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

.

rq 0 0 0 0 . . . 1 1 0

rqþ1 0 0 0 0 . . . 0 1 1

rqþ2 1 0 0 0 . . . 0 0 1
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MII :

c1 c2 c3 c4 . . . cq cqþ1 cqþ2 cqþ3

r1 1 1 0 0 . . . 0 0 0 0

r2 0 1 1 0 . . . 0 0 0 0

r3 0 0 1 1 . . . 0 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
.

rq 0 0 0 0 . . . 1 1 0 0

rqþ1 0 0 0 0 . . . 0 1 1 0

rqþ2 1 1 1 1 . . . 1 1 0 1

rqþ3 0 1 1 1 . . . 1 1 1 1

MIII :

c1 c2 c3 c4 . . . cq cqþ1 cqþ2 cqþ3

r1 1 1 0 0 . . . 0 0 0 0

r2 0 1 1 0 . . . 0 0 0 0

r3 0 0 1 1 . . . 0 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
.

rq 0 0 0 0 . . . 1 1 0 0

rqþ1 0 0 0 0 . . . 0 1 1 0

rqþ2 0 1 1 1 . . . 1 1 0 1

MIV :

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 0 1 1 0 0

r3 0 0 0 0 1 1

r4 0 1 0 1 0 1

MV :

c1 c2 c3 c4 c5

r1 1 1 0 0 0

r2 1 1 1 1 0

r3 0 0 1 1 0

r4 1 0 0 1 1
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