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Abstract. A binary matrix has the consecutive ones property (C1P) if it is possible to

order the columns so that all 1s are consecutive in every row. In [McConnell, SODA 2004

768-777] the notion of incompatibility graph of a binary matrix was introduced and it was

shown that odd cycles of this graph provide a certificate that a matrix does not have the

consecutive ones property. A bound of k + 2 was claimed for the smallest odd cycle of a

non-C1P matrix with k columns. In this note we show that this result can be obtained

simply and directly via Tucker patterns, and that the correct bound is k + 2 when k is

even, but k + 3 when k is odd.

1. Introduction

A binary matrix has the Consecutive Ones Property (C1P), if there exists a permutation

of its columns that makes the 1s consecutive in every row. It was first introduced by Fulk-

erson and Gross in [FG65] as special case of deciding whether a graph is an interval graph,

and has important applications in computational biology, see for example [AKWZ94]. The

problem of deciding whether a given binary matrix has the C1P can be solved efficiently

[BL76]. Clearly, checking the claim that a matrix is C1P is easy, provided a valid permu-

tation of the columns is given. However it is not obvious how to certify that a matrix is

not C1P.

The first structural result on non-C1P matrices is due to Tucker, who proved in [Tuc72]

that a binary matrix is not C1P if and only if it contains a submatrix from one of five

families of binary matrices known as Tucker patterns, that define then a natural family

of certificates for non-C1P matrices. Tucker patterns can be detected in polynomial time

[DGN10].

McConnell, in [McC04], defined a simple and elegant certificate for non-C1P matrices.

He introduced the notion of the incompatibility graph of a binary matrix, and proved that

a matrix is C1P if and only if this graph is bipartite. Hence, an odd cycle in this graph

is a non-C1P certificate. He claimed that the incompatibility graph of a non-C1P matrix

with k columns always has an odd cycle of length at most k + 2 and proposed a linear

time algorithm to compute such a cycle, more efficient than the currently best algorithms

to detect Tucker patterns [DGN10].

In this note we correct the bound McConnell gave in [McC04] for the length of the odd

cycle of the incompatibility graph. We prove that the incompatibility graph of a non-C1P

matrix with k ≥ 4 columns has the smallest odd cycle of length at most k + 2 if k is odd
1
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Figure 1. The five Tucker patterns

and k + 3 if k is even, and that this bound is tight. Our approach relies on investigating

the odd cycles of the incompatibility graphs of Tucker patterns.

2. Preliminaries

2.1. Tucker patterns. Tucker characterized C1P matrices via minors known as “Tucker

patterns” illustrated in Figure 1.

Lemma 2.1. [Tuc72] A binary matrix has the Consecutive Ones Property if and only if it

contains none of the five Tucker patterns as a submatrix.

These patterns are the minimal structures that obstruct the matrix M from having the

C1P, i.e. removing a row from these structures result in a C1P-matrix. In this present note,

for all of the five Tucker matrices we consider the order of columns given in Figure 1.

2.2. Incompatibility graph. The concepts of incompatibility and forcing graphs were

introduced by McConnell in [McC04]. Let M be an m × n binary matrix with rows R =

{r1, r2, . . . , rm} and columns C = {c1, c2, . . . , cn}. The incompatibility graph of M is an

undirected graph GM = (V,E), whose vertices are pairs (ci, cj) (for i, j = 1, . . . , n, i 6= j).

Two vertices (ci, cj) and (cj, ck) are adjacent, if one of the following holds:

(1) ci = ck.

(2) There exists a row rl in M such that Mli,Mlk = 1 but Mlj = 0.

We sometimes refer to these edges as type 1 or type 2, as appropriate. These edges represent

incompatible pairs of orderings, i.e. each edge corresponds to two relative orderings of the

columns that cannot appear simultaneously in a consecutive ones ordering of the matrix.

McConnell noted that the incompatibility graph is bipartite if and only if the matrix is

C1P. Thus odd cycles in the incompatibility graph certify that a matrix is not C1P.

The forcing graph FM = (V,E
′
) is an undirected graph whose vertex set is same as that

of GM and whose edge set is a set of all pairs ((ci, cj), (ck, cj)) where ((ci, cj), (cj, ck)) is an
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edge of GM . It is not hard to see that the incompatibility graph and the forcing graph

both have n(n − 1) vertices and are symmetric. As with the incompatibility graph, the

forcing graph can be used to certify that a matrix is not C1P: a path in this graph from

(ci, cj) to (cj, ci) for and i, j, represents a chain of implications (“forcings”) leading to a

contradiction.

In fact, McConnell observed that these certificates are almost the same: such a path in

the forcing graph can be transformed to a cycle in the incompatibility graph and vice versa.

Lemma 2.2. If there exists a path with m vertices in FM between (ci, cj) and (cj, ci) there

is an odd cycle of length m − 1 (if m is even) or m (if m is odd) in GM containing the

vertex (ci, cj). Conversely, if there is an odd cycle of length m in GM containing (ci, cj)

there is a path with at most m + 1 vertices in FM from (ci, cj) to (cj, ci).

Proof. Without loss of generality the path in FM is:

P : (v1 = (ci, cj), v2, v3, v4, . . . , vm = (cj, ci)).

Let v
′

k = (c′, c) when vk = (c, c′). Then in GM we can build the walk:

P ′ : (v1, v
′
2, v3, v

′
4, . . . , v

(′)
m )

When m is even, the final vertex in this walk is v′m = v1, and we have a cycle with m− 1

vertices. When m is odd, the final term is vm, and we can complete the cycle using the

type 1 edge (vm, v
′
m = v1). In this case the odd cycle has length m.

Similarly, an odd cycle of length m in GM can be transformed into a walk of length m+1

in FM by performing the reverse operation on the walk with even length m + 1 by taking

the cycle vertices starting an ending in v1. Note that if this path contains some type 1

edge (vk, v
′
k) in GM , this becomes a trivial edge (vk, vk) or (v′k, v

′
k) in FM and should be

contracted, reducing the length of the found path. �

Given GM (FM), we define G1
M (F 1

M) and G2
M (F 2

M) to be the subgraphs induced by the

vertex sets V1 = {(ci, cj) | i < j} and V2 = {(ci, cj) | i > j} respectively. We observe that

the two pairs of subgraphs are isomorphic.

Suppose now that we build GM and FM graph for a given Tucker pattern M from Figure 1

by first generating the type 1 edges of GM and then adding the edges generated by each

row in turn, beginning at the top. Edges e = ((ci, cj), (cl, cj)) and e
′

= ((cj, ci), (cj, cl))

in FM are generated by triples (i, j, l) from a given row r exactly when Mri,Mrl = 1 but

Mrj = 0. The edges corresponding to the rows from the top of the matrix then come in

pairs e, e
′
, where one is contained in F 1

M and the other in F 2
M . As we descend the rows,

the ones in the rows are consecutive until we reach the final row, rt, that has gaps between

its 1s entries.

The edges of FM generated by the gaps in rt, i.e. triples (i, j, l) of columns where i < j < l

are the only edges which go between V1 and V2. We call these edges critical.
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3. Finding odd cycles using Tucker configurations

We now give a tight bound on the smallest odd cycle in the incompatibility graph of a

non-C1P matrix using Tucker matrices.

Theorem 3.1. The length of the smallest odd cycle in the incompatibility graph of a binary

matrix with k ≥ 4 columns is at most k + 2 if k is odd or k + 3 is k is even, and this bound

is tight.

We begin by remarking that since any non-C1P matrix M contains a Tucker pattern

as a submatrix, we can restrict our attention to Tucker patterns when looking for short

odd-cycles in the incompatibility graph. This is because if we look at the subgraph of the

incompatibility graph induced by considering only the columns (vertices) and rows (edges)

of M (GM) containing the Tucker pattern, we get exactly the incompatibility graph of the

submatrix, which has at most as many columns as M . So the upper bound for Tucker

patterns holds for all M , and the worst case for a given number of columns will occur at a

Tucker pattern.

We remark that for k ≤ 2 all binary matrices have the C1P, and for k = 3 if a matrix

is not C1P it must contain the Tucker pattern TI3 as a submatrix, and thus have an odd

cycle of length 3 in its incompatibility graph, see Section 3.1. For k ≥ 4, the tight bound

of k + 2 or k + 3 is attained by TIIIk , see Section 3.3. We proceed to analyze each Tucker

pattern separately.

3.1. First Tucker pattern. TIk is shown in Figure 1; it is a square matrix of size k where

k ≥ 3.

Lemma 3.2. For k ≥ 3, the length of the smallest odd cycle in the incompatibility graph

of TIk is k when k is odd and k + 1 when k is even.

Proof. We find a path in FM1k
in TIk between (c1, ck−1) and (ck−1, c1). Since M11,M12 =

1 but M1 k−1 = 0, we have that ((c1, ck−1), (c2, ck−1)) is an edge of FMIk
. Similarly

((ci, ck−1), (ci+1, ck−1)) is an edge of FMIk
for i = 2, . . . , k − 3 using row i of M . Using

row k−2, we get that (ck−2, ck−1) forces (ck−2, ck) and using row k−1 that (ck−2, ck) forces

(ck−1, ck). Observe that e = ((c1, ck−1), (ck, ck−1)) is a critical edge of FM1k
. Therefore

(c1, ck−1), (c2, ck−1), (c3, ck−1), . . . , (ck−2, ck−1), (ck−2, ck), (ck−1, ck), (ck−1, c1) is a path with

k + 1 vertices in FMIk
. By Lemma 2.2, this gives the required cycle.

Finally, we note that if there is any odd cycle in the incompatibility graph of length

less than k, we would derive a contradiction to the C1P using fewer than k columns,

contradicting the minimality of the Tucker pattern. Thus the length of this odd cycle is in

fact minimal. �

3.2. Second Tucker pattern. For k ≥ 4, TIIk is a square matrix of size k. We use a

strategy to find a cycle in the incompatibility graph of TIIk that is similar to that of TIk .

Lemma 3.3. The smallest odd cycle in the incompatibility graph of TIIk has length k when

k is odd and k + 1 when k is even.
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Figure 2. FMIII6

Proof. From row i of the matrix for i = 1, . . . , k − 2, we get that (ci, ck) forces (ci+1, ck).

From row k − 1, (c1, ck) forces (c1, ck−1). Finally, ((c1, ck−1), (ck, ck−1)) is a critical edge.

Then (c1, ck), (c2, ck), . . . , (ck−1, ck), (ck−1, c1), (ck, c1) is a path of length k+ 1 in the forcing

graph of TIIk . Using Lemma 2.2 we can find an odd cycle of length either k or k + 1

containing all rows of the pattern. Again the minimality of the Tucker pattern ensures that

we cannot have a cycle of length less than k. �

3.3. Third Tucker pattern. Now we consider the third Tucker pattern that has (k − 1)

rows and k columns where k ≥ 4.

Lemma 3.4. The smallest odd cycle in the incompatibility graph of the third Tucker pattern

has length k + 2 if k is odd and k + 3 if k is even.

Proof. In this case, because we need to prove a non-trivial lower bound, we will describe

the full structure of FMIII
. The graph FMIII6

is illustrated in Figure 2 and captures the

features we are interested in. Consider first the portion of the graph generated by excluding

the last row and column on MIIIk . In this case each row has a unique pair of 1 entries;

these can be combined with any zero entry to get a forcing triple. The result is a triangular

grid on V1 (and symmetrically, V2), where vertex (ci, cj) is connected to all of (ci±1, cj)

and (ci, cj±1) that are also vertices of V1 with coordinates between 1 and k − 1 and in

increasing order. Now, returning our attention the last column, we see it generates a path

(c1, ck), (c2, ck), . . . (ck−1, ck) by considering the pair of ones in each row in turn.. These two

components, and their symmetric copies in V2 are the entirety of the graph if we exclude

the final row.

The first zero from the final row combines with the many pairs of ones to connect the two

components of V1 by fusing (c1, c2), (c1, c3), . . . (c1, ck−2) and (c1, ck) (but not (c1, ck−1)) into

a clique. Finally the second zero (in row k−1) produces the critical edges (ci, ck), (ck, ck−1)

for i = 2, . . . , k − 2 and fuses all these vertices into a clique.

We can then see that a path with (k+3) vertices in FMIIIk
from (c1, ck) to (ck, c1) is given

by: (c1, ck), (c2, ck), . . . , (ck−1, ck), (ck−1, c2), (ck−1, c1), (ck−2, c1), (ck, c1). By Lemma 2.2, this
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Figure 3. Incompatibility Graph of TIII4

gives the required cycle in the incompatibility graph of length (k+3) if k is even, and (k+2)

if k is odd.

To prove that this is shortest, it suffices to show that this is the shortest path between

(ci, cj) and (cj, ci) for some i, j in FMIIIk
, since if there is a shorter odd cycle in the incom-

patibility graph of length (k + 1) with k even, or k with k odd, by Lemma 2.2 there would

be a path of length at most k + 2 between some (ci, cj) and (cj, ci).

We can see that there is no shorter path by contracting the groups of vertices illustrated

in Figure 2, i.e. (c1, cj) for j = 2, 3, . . . k − 2; (ci, ck−1) for i = 2, 3, . . . k − 2; and the

symmetric groups on FV2 . This will not increase the distance between any pair of vertices.

We can see that what remains is 2k − 2 cycle with vertices (ci, cj) opposite (cj, ci), an

additional part of FV1 attached to the two contracted vertices, and symmetrically in FV2 .

The shortest path between opposite vertices on the cycle has (k + 3) vertices, as does the

shortest path between any of additional vertices in FV1 and those of FV2 , though for some

choices of (i, j) the shortest path from (ci, cj) to (cj, ci) may be longer. �

Taking k ≥ 4 even, this gives a family of counter examples to Theorem 6.1 of McConnell

in [McC04]. For example, taking k = 4, we have M =
( 1 1 0 0
0 1 1 0
0 1 0 1

)
. Then FM is a 12-cycle and

GM is a 12-cycle with 6 chords added between opposite vertices of the cycle. It is clear

that the smallest odd cycle is of length 7. This graph is shown in Figure 3.

3.4. Fourth Tucker pattern. The fourth Tucker pattern is of size 4 by 5, with ((c1, c3),

(c5, c3)) as a critical edge of FMIV
. Here (c1, c3) forces (c5, c3), (c5, c3) forces (c5, c2), (c5, c2)

forces (c4, c2), (c4, c2) forces (c3, c2) and (c3, c2) forces (c3, c1), which gives a path with 6

vertices in FMIV
and an odd cycle of length 5 in the incompatibility graph of TIV .

3.5. Fifth Tucker pattern. The fifth Tucker pattern shown in Figure 1 is 4 by 6. It can

be observed that ((c2, c3), (c6, c3)) is a critical edge of FMV
. Now (c2, c3) forces (c6, c3) which

forces (c6, c4); (c6, c4) forces (c5, c4), (c5, c4) forces (c5, c2), (c5, c2) forces (c5, c1) which forces

(c6, c1). (c6, c1) forces (c4, c1) which forces (c4, c2); (c4, c2) forces (c3, c2). This gives a path
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with 10 vertices in FMV
and an odd cycle of length 9 in TV . In this case the length of the

smallest odd cycle also attains the bound of Theorem 3.1.

Combining these five case allows us to conclude Theorem 3.1.

Remark 1. Running the partition refinement algorithm of [McC04] on MIIIk may generate

an odd cycle of length as much as 2k − 1 for the certificate, depending on which critical

edge is processed from the last row.
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