
Inferring a duplication, speciation and loss

history from a gene tree (extended abstract)?

Cedric Chauve1,2, Jean-Philippe Doyon3, and Nadia El-Mabrouk3

1 Department of Mathematics, Simon Fraser University, 8888 University Drive,
V5A 1S6, Burnaby (BC), Canada, cedric.chauve@sfu.ca

2 CGL and LaCIM, UQAM, Montréal, Canada
3 DIRO, Université de Montréal, CP6128, succ. Centre-Ville, H3C 3J7, Montréal

(QC),Canada, [mabrouk,doyonjea]@iro.umontreal.ca

Abstract. We consider two questions related to the evolution of gene
families. First, given a gene tree for a gene family, can the evolutionary
history of this family be explained with only speciation and duplication
events, and without gene loss. We show that this question can be an-
swered in linear time, and that such a gene tree induces a single species
tree consistent with a history with no loss. We then present a heuristic
for the following problem: if a gene tree can not be explained without
gene loss, what is the minimum number of losses involved in an evolu-
tionary history of the gene family. We finally evaluate our algorithms on
a dataset of plants gene families.

1 Introduction

The duplication of genetic material, from a single gene to the whole-
genome, is a fundamental process in the evolution of species, and in par-
ticular eukaryotes [12, 6]. As a consequence, in most nuclear genomes,
many genes are present in multiple copies, that define gene families. Gene
families evolve, from a single ancestral gene, through microevolutionary
events at the nucleotide level, and macroevolutionary events at the ge-
nomic level, such as gene duplication, gene loss, genome rearrangements,
and speciation events (see [5] and references there). Understanding the
evolution of gene families is a fundamental problem that has several ap-
plications. For example, it can help to distinguish between orthologs and
paralogs: orthologs are copies that are directly related through speciation,
while paralogs are copies that have evolved by duplication following a spe-
ciation event. This is an important question for functional annotation of
genes, as it is believed that pairs of orthologs are more likely to have
similar functions. For whole genome analysis based on gene orders and

? Work supported by grants from NSERC and SFU.

rearrangements, understanding the evolution of gene families can help es-
tablishing unambiguous one-to-one mappings between pairs of genomes,
which is, in general, a hard computational problem (see [2]).

As the notion of orthology and paralogy is directly related to the
history of speciation and duplication events during genomes evolution, a
natural way of distinguishing between the two types of gene homologues
is to infer these events from the phylogenetic tree of a gene family. This
question has been widely considered in the case of a well established
species tree. It can be described as “fitting a gene tree into a species
tree”, which is not obvious due to the possible incongruence between the
two trees [10]. The main algorithmic approach developed to solve this
problem, the gene tree/species tree reconciliation, allows to identify the
duplications with respect to the speciation events in the species tree [4,
13]. It is based on a mapping of the gene tree into the species tree, that
can be done in linear time [15, 3, 16].

Here we consider the more general case where the species tree is un-
known. In this context, a natural question is to infer a species tree from
a set of gene trees, that optimizes a given criterion, either combinatorial,
like the number of duplications and/or losses [13, 11], or probabilistic [1].
However, we follow a different approach, as we start from a decision ques-
tion, motivated among other reasons, by the importance of duplications
and speciations to infer co-orthologs: given the gene tree of a specific gene
family, can this gene tree be explained using only duplication and speci-
ation events (e.g. without gene losses)? If a gene tree can be explained
by a Duplication/Speciation history, we call it a DS-tree (a terminology
inspired from [9]). Otherwise, we explain the non-agreement between the
gene tree and any DS history by the presence of gene loss events, and we
consider the problem of minimizing such number of gene losses. The more
general problem of minimizing duplications and losses (in the minimum
mutation cost model) for reconciling a set of gene trees has been shown
to be NP-hard [13].

In Section 2, we define the notion of a DS-tree in both the frameworks
of evolution and reconciliation. We then show, in Section 3, that deciding
if a gene tree is a DS-tree can be answered in linear time4, and that in
such a case, there is a single species tree that is compatible with the
corresponding Duplication/Speciation history. In the case where a given
gene tree T is not a DS-tree, T can be derived from a DS-tree by a series
of gene losses. We introduce, in Section 4, the problem of finding the

4 For space reasons, all proofs are omitted and will appear in the full version of this
paper.

minimum number of gene losses that are needed to transform a DS-tree
into T , and we give an efficient heuristic for this problem running in
time O(g × n), where n is the size of T and g is the number of genomes
represented in T . We finally analyze, in Section 5, a dataset of plant gene
families taken from [14].

2 Duplication/Speciation history and Reconciliation

Duplication/Speciation history. Let G = {1, 2, · · · , g} be a set of integers
representing g different species (genomes). A species tree for G is a binary
tree with exactly g labeled leaves, where each i ∈ G represents the label of
a single leaf. A gene tree T on G is a binary tree with labeled leaves, where
each leaf is labeled by an integer from G. It is a formal representation of
a phylogenetic tree of a gene family, where each leaf labeled i represents
a member of the gene family located on genome i.

We say that T is a Duplication/Speciation tree (or simply a DS-tree)
if there exists a history involving only duplication and speciation events
that can lead to the observed tree T . Hereafter, we formally define a
Duplication/Speciation history (from now called DS history). See Figure 1
for an illustration.

Definition 1. Let T = (T 1, T 2, · · · T n) be an ordered sequence of n gene
trees. We denote by gk the number of genomes represented by T k for any
k. We say that T is a DS history if and only if:

1. T 1 = x is a tree restricted to a single vertex x and g1 = 1;

2. For 0 < k < n, one of the two following situations hold:

(a) Duplication event: T k+1 is obtained from T k by adding two chil-
dren y and z to a leaf x, and labeling them as x.

(b) Speciation event: There exists i, 1 ≤ i ≤ gk, such that T k+1 is
obtained from T k by adding two children y and z to each leaf x of
T k labeled i, and labeling one of the two new nodes by i and the
other by gk + 1. Moreover, gk+1 = gk + 1.

Let T be a DS-history leading to a gene tree T . Then, by construction,
T leads to a unique species tree S induced by the speciation events (see
Figure 1.a. and b.). We say that the species tree S is DS-consistent with
T .

11 12

21 22 23 24

31 32 33

Genome 1

Genome 2

Genome 3

Speciation 1

Speciation 2

(a)

11 21 22 23 24 33 123231

(c)

{{1},{2,3}} {{2},{3}}

{{2},{3}}

{{1},{2,3}}

{{2},{3}}

1 2 3

(b)

Fig. 1. (a) A DS-history; the segments represent the individual genes; the duplication
events are indicated by bold lines, and the speciation events by dashed lines; the genes
are denoted as ki meaning “gene i in genome k”. (b) The induced species tree S. (c)
The induced gene tree T ; notations introduced in Section 3: the partition associated
to each internal node is shown; the border B of T contains the two nodes indicated by
plain circles, with the associated partition {{1}, {2, 3}}, the nodes indicated by plain
squares form the border of the forest Fr containing the subtrees of T whose leaves
belong to {2, 3}.

Reconciliation. Suppose that a species tree S is already known for G.
Then a natural question is to know whether S is DS-consistent with T .
This question can be answered by using the classical reconciliation ap-
proach that “embeds” the gene tree T into the species tree S [7, 13]. The
potential non-congruence between a species tree and a gene tree can then
be explained by a minimum number of gene losses. More precisely, the
reconciliation approach aims to infer a duplication/loss history that has
led to the gene tree T , based on a particular mapping (the LCA map-
ping) from the vertices of T to the vertices of S. We denote by `(T, S)
the number of loss events.

In this framework, the notion of DS-tree and DS-consistent species
tree can be stated as follows (see [7] for a proof of the equivalence between
the two approaches): a gene tree T on G is a DS-tree if there exists a
species tree S on G such that `(T, S) = 0, in which case S is said to be
DS-consistent with T .

3 Recognizing a DS-tree

In this section, we propose two characterizations of a DS-tree following
from the fact that a DS-tree should lead to a species tree S that is DS-

consistent with T . The first follows a bottom-up approach, and is the base
of the linear-time recognition algorithm presented at the end of this sec-
tion. The second characterization follows a top-down strategy and leads
naturally to our heuristic for the problem of inferring the minimum num-
ber of gene losses required to recover a DS-tree from a given gene tree
(Section 4).

We first introduce a few notations and definitions. Let T be a gene
tree on a genome set G = {1, . . . , g}. For a given vertex x of T , we denote
by Tx the subtree of T rooted at x, and by L(x) the subset of G defined
by the labels of the leaves of Tx. We also denote by xl and xr respectively
the left and right child of x.

A cherry of T is a subset {i, j} of G such that L(x) = {i, j} for a given
vertex x of T .

Definition 2. A cherry {i, j} is said to be a DS-valid cherry for T if, for
any vertex xl such that L(xl) = {i} (resp. {j}) and L(x) 6= {i} (resp. {j})
where x is the parent of xl, the sibling xr of xl is such that L(xr) = {j}
(resp. {i}).

If {i, j} is a DS-valid cherry, we denote by c(T, i, j) the gene tree on
G\{i, j}∪{g +1} obtained by replacing every internal vertex x such that
L(x) = {i, j} by a leaf labeled g + 1.

Let x be an internal vertex of T . The unordered pair {L(xl), L(xr)}
is called the partition associated to x. We say that x is valid iff L(xl) ∩
L(xr) = ∅. Let F be a forest, that is a set of one or more trees. We say
that a set X of vertices of F is covering F iff each leaf belonging to a tree
of F is a descendant of a unique vertex of the set X. We say that a vertex
x is higher than a vertex z if z is a descendant of x. Let B = {b1, . . . , bk}
be the set of highest valid vertices of a forest F : B is called a border iff
it is covering F and all the partitions associated to the vertices of B are
identical. Let B be a border of a forest F , and {Pl, Pr} be the partition
generated by the vertices of B. We denote by Fl (resp. Fr) the set of
subtrees whose leaves labels belong to Pl (resp. Pr) (see Figure 1.c. for
an illustration of notations).

Definition 3. A DS-valid forest is recursively defined as follows:

1. It is a set of leaves or

2. It has a border and its resulting forests Fl and Fr are DS-valid.

Theorem 1. Let T be a gene tree on G. The following statements are
equivalent.

1. T is a DS-tree.
2. Either g = 1, or for any cherry {i, j}, {i, j} is a DS-valid cherry for

T and c(T, i, j) is a DS-tree on G\{i, j} ∪ {g + 1}.
3. T is a DS-valid forest.

Corollary 1. Let T be a DS-tree on G. There exists a single species tree
for G that is DS-consistent with T .

Point 2 of Theorem 1 immediately translates into a simple algorithmic
principle allowing to check whether a gene tree is a DS-tree. It is based
on iteratively considering a cherry, checking its DS-validity, and then con-
tracting all its occurrences into leaves and updating the species tree with
the current cherry. We describe below a linear time and space algorithm
based on this principle, taking as input a gene tree T on G with |G| = g,
and returning the species tree that is DS-consistent with T , if any.

Algorithm DS-recognition (T)
1. Let S be an empty tree and m = g + 1
2. Perform a depth-first traversal of T , and let x be the current vertex
3. IF x is an internal vertex with children xl and xr such that
4. L(xl) = {i} and L(xr) = {j} and i 6= j THEN

5. FOR EVERY vertex zl such that L(zl) = {i} DO

6. Let zr be the sibling of zl and z its parent
7. IF L(zr) = {j} THEN replace Tz by a leaf labeled m

8. ELSE IF L(zr) 6= {i} THEN RETURN FALSE
9. IF there remains a vertex x with L(x) = {j} THEN

10. RETURN FALSE
11. Add to S a subtree with root labeled m and children labeled i and j

12. Increment m

13. RETURN S

Theorem 2. Given a gene tree T with n vertices, Algorithm DS-reco-
gnition returns FALSE iff T is not a DS-tree, and the only species tree
that is DS-consistent with T otherwise. It can be implemented to run in
O(n) time and space.

4 Inferring gene losses in a non DS-tree

4.1 Problem statements

If a gene tree T is not a DS-tree, and assuming that the given gene tree
T is correct (see [8] for a discussion on the case where gene duplications
can lead to an incorrect gene tree for a gene family), this implies that
some homologous genes are missing or have been deleted or transformed

to pseudo-genes during evolution. When a species tree S is known, the
reconciliation method can be used to infer a scenario of minimum number
`(T, S) of gene losses that has led to the observed tree. In this section,
we assume that the species tree is unknown, and consider the following
natural optimization problem.

Duplication/Loss problem: Given a gene tree T that is not a DS-tree,
find a species tree S such that `(T, S) is minimum.

This problem can be related to those considered in [13] that compute,
for a given gene tree T (or more generally a set of gene trees T1, . . . , Tk),
a species tree S minimizing the total number of duplications (in the so-
called duplication cost model) or duplications and losses (in the mutation
cost model). They have both been shown to be NP-hard [13], but fixed-
parameter tractable [11].

We will instead consider an equivalent formulation of this problem,
based on the following property: if T is not a DS-tree, then for every
species tree S, there is a DS-tree T S that can be obtained from T by
inserting a minimum number of subtrees such that S is DS-consistent
with T S . Each of these subtree insertions represents a gene loss in a given
ancestral or extent genome. This way to relate T to a DS-tree T S , for a
given species tree S, leads to the following optimization problem, in the
case of an unknown species tree:

Subtrees Insertion Problem: Given a gene tree T that is not a DS-
tree, find the minimal number δ of subtree insertions in T allowing to
transform T into a DS-tree T ′. We denote by (S, δ) a solution to this
problem, where S is such that T ′ = T S.

It follows from [7] that:

Proposition 1. The Duplication/Loss Problem and the Subtrees Inser-
tion Problem are equivalent: a species tree S is a solution to the Duplica-
tion/Loss Problem with `(T, S) = δ if and only if (S, δ) is a solution to
the Subtrees Insertion Problem.

4.2 A heuristic for the Subtrees Insertion Problem

We now describe an algorithm allowing to obtain an upper bound on the
minimum number of subtrees insertions – called insertions from now for
short – required to transform a gene tree T into a DS-tree.

The method can be decomposed in three steps: (1) recursively label
the vertices of T with subsets of the genome set G, (2) use these labels

to construct a DS-tree from T , and (3) factorize some of the insertions to
reduce the total number of insertions.

Labeling the vertices of T . Initially, each vertex x of T is labeled by its
genome set L(x). A set of vertices is said consistent if and only if any two
vertex labels with a non-empty intersection are identical. Procedure Rela-
bel below then relabels the vertices of T in order to obtain successive levels
of consistent vertices. It uses the following concepts: a set {x1, . . . , xk} of
vertices is said to be connected if the intersection graph induced by the
labels of these vertices (the nodes of the graph are the xi’s and two nodes
are connected if their labels have a non-empty intersection) is connected.
Completing the labels of a set {x1, . . . , xk} of connected vertices consists
in adding to the label of every vertex x the subset ∪k

i=1L(xi)\L(x) of G,
in order that its new label is ∪k

i=1L(xi) (see Fig. 2).

Procedure Relabel (T)
1. F is the forest restricted to the tree T ;
2. WHILE F is not restricted to a set of leaves DO

3. Let V be the set of highest valid vertices of F ;
4. Complete the labels of every maximal connected subset of V
5. Let F be the forest of V;
6. IF g is inserted in the labels of a vertex x and of a descendant of x THEN

7. Remove g from the label of x.

The successive sets of highest valid vertices of T considered in Proce-
dure Relabel are called the successive levels of T . An illustration of this
procedure is given in Figure 2.

A first transformation of T into a DS-tree. We now describe how to use
the vertices labels computed by Procedure Relabel (T) in order to insert
subtrees into T , in such a way that the result is a DS-tree. We denote by
L the new labeling of the vertices of T computed by Procedure Relabel
(T): for a vertex x of T , L(x) is the new genome set associated to x. For
a given level of T , represented by a forest F of p trees T1, . . . , Tp rooted
at the vertices x1, . . . , xp, we extend the notion of connected subset of
the x′

is used in Procedure Relabel as follows: a subset of the T ′

is is said
to be connected if the intersection graph induced by the labels of the
corresponding x′

is is connected. We call the partition of F by genome
sets the unique partition of F into forests defined as maximal connected
subsets of the T ′

is.
The construction algorithm is described below, and illustrated in Fig-

ure 3.

[1,2]

[1,2]

[1,3,4,5]

[1,5]

{2,3, 4}
{1,2}

{3,4,5}

{2,3,4,5} [4,5]

1 1 2 3 4 5 1 5

{4}

[3,4,5]

u

v

Fig. 2. An illustration of Procedure Relabel for a tree on the genome set G =
{1, 2, 3, 4, 5}. For each internal vertex x, the label in square brackets is the genome
set L(x) of x and the label in brackets is the genome subset inserted by Procedure

Relabel. This tree has three levels: the first level is the set of vertices indicated by bold
circles, the second is the set of bold square vertices, and the third is the two leaves
indicated by white circles. The crossed genome in the label of vertex u is the genome
removed after applying instruction 7 of Procedure Relabel .

Procedure Construct-DSTree (T,L)
1. FOR each level of T (involving insertions) beginning with the last level DO

2. Let F be the forest representing the current level;
3. Let F1, · · ·Fp be the partition of F by genome sets;
4. FOR each subforest Fi DO

5. Let Gi be the genome set of Fi;
6. Let P be an arbitrary phylogeny for Gi;
7. FOR each vertex x of T such that L(x) ⊂ Gi DO

8. Perform the unique set of subtrees insertions,
9. in the subtree Tx and on the edge from x to its parent
10. leading to the phylogeny P

2 43214 35345 2 51543211

u

v
w

Fig. 3. The result of applying Procedure Construct-DSTree on the input (T, L) given
by Fig 2. The inserted branches are indicated by dotted lines.

The construction procedure can be reformulated as follows: consider
successively each level F of T beginning with the last one, for each tree Ti

of F rooted at xi, perform the subtrees insertions leading to the genome
set L(xi), and then replace each tree of Ti by a single leaf. The key

observation is that each level considered by this procedure consists solely
of leaves and cherries. Therefore, for any xi, any arbitrary phylogeny P

representing the genome set L(xi) can be obtained by subtrees insertions
in Ti. In other words, at each level, there is a coherent way of inserting
missing genes in a way leading to the same phylogeny at each node of
the tree. This is the main argument used in the proof of the following
theorem.

Theorem 3. Let T be a gene tree that is not a DS-tree, and (T,L) the
output of Procedure Relabel(T). The gene tree computed by Procedure
Construct-DSTree(T,L) is a DS-tree.

Corollary 2. The number of insertions performed by Procedure Cons-
truct-DSTree is an upper bound on the minimum number of insertions
necessary to transform T into a DS-tree.

Note that in step 6 of Procedure Construct-DSTree, we choose an
arbitrary phylogeny for the considered subset of taxa. This point could
be improved as this phylogeny can be non optimal in terms of the number
of subtrees insertions. It could be approached, for example, in a greedy
way by selecting the phylogeny that induces the minimum number of
subtrees insertions.

Reducing the number of subtrees insertions. A further improved upper
bound can be obtained by “factorizing” the subtree insertions made by
Procedure Construct-DSTree. Let T ′ be the tree computed by Procedure
Construct-DSTree, u be an internal vertex of T ′ that is also a vertex of T .
Let L(ul) be the left genome set of u in T and L(ur) be the right genome
set of u in T . Suppose that the two children v and w of u in S are two
inserted vertices, and let (v, L(vr)) and (w,L(wl)) be the two inserted
branches. Then we perform the following modification of T ′:

1. If Lu = Ru, then remove the two branches (v, L(vr)) and (w,L(wl))
and insert the subtree Twl

on the branch from u to its parent (see (1)
of Figure 4).

2. If L(vr) = L(wl) and L(vl) = L(wr), then remove the vertices v and
w and the subtrees T ′

vr
and T ′

wl
(see (2) of Figure 4).

Applying the factorization rule (1) on the tree of Figure 3 gives rise
to the tree of Figure 5, leading to 6 subtrees insertions.

ABABA B

u
(2)

v w

u

ABBA A AB

(1) v w

uu

Fig. 4. Illustration of the two factorization rules.

1 2 1 2 3 4 5 3 4 5 1 2 1 2 3 4 5

Fig. 5. The result of applying the factorization rules on the DS-tree of Figure 3.

Complexity. Let n be the size (number of vertices) of T . A depth-first
traversal of T , in time O(n), is required before applying Procedure Relabel
for the initial labeling of T ’s vertices by their genome sets. Finding the
sets of highest valid vertices then requires a second preorder tree traversal,
and for each set of highest valid vertices, relabeling the vertices requires
to compare their genome sets, which can be done in time proportional to
the number g of different genomes. Therefore, Procedure Relabel can be
done in time O(g × n).

For each level F of T , Procedure Consruct-DSTree requires to partition
F into its subforest, which is done in time proportional to g by comparing
genome sets for one level, and thus in time O(g × n) for all the levels of
T . On the other hand, as each tree insertion can be done in constant
time, and a maximum of g tree insertions are performed at each vertex
of T , the time complexity for tree insertions is in O(g × n). Therefore,
Procedure Consruct-DSTree can be done in time O(g×n). Finally, the step
of reducing the number of subtree insertions can be done in time O(n),
by performing a depth-first traversal of T . Therefore, the time complexity
of the whole algorithm is in O(g × n).

5 Experimental results

We describe the results obtained with the algorithms presented in the
previous sections on the 577 gene families studied in [14], in a study of
the phylogeny of seven angiosperm genomes from EST data. We focus
mainly, in this preliminary experiment, on the computational properties

of our algorithms, and in particular on the quality of our heuristic for the
Duplication/Loss Problem.

Data. Each of the 577 gene families contains at least four genes and spans
at least three genomes. The gene trees were obtained with PAUP, using
a maximum likelihood approach (see [14] for a detailed description of the
process followed to obtain these gene families and gene trees). The data,
including the gene trees and statistics on the size of 577 gene families,
and the results of our experiments are available on a companion website,
accessible at http//www.lacim.uqam.ca/~chauve/CG07.

Results. First, we found that 333 of the 577 gene trees are DS-trees.
However, without surprise, most of these families exhibit few gene dupli-
cations. For example, 89 of these 333 families contain 4 genes and span
3 species, while only 7 of the 59 gene trees that span the 7 species are
DS-trees (see the file STATS.txt on the companion website for the com-
plete statistics). Next, we applied to the 244 remaining gene trees (called
non-DS trees from now) the heuristic described in Section 4 to compute
an upper bound on the minimum number of gene losses needed to explain
the observed gene tree. The results are summarized in the left graphics
of Figure 6, and show that many gene families can be explained with
few gene losses. We also implemented a branch-and-bound algorithm (to
be described in the full version of this paper) in order to assess, on this
particular dataset, the quality of our heuristic. The results, summarized
in the right graphics of Figure 6, show that it performs well, as for 214
gene trees, it computed the optimal number of gene losses.

Finally, our branch-and-bound algorithm allowed us to compute, for
each gene tree that is not a DS-tree, the number of species trees that
induce a minimum number of gene losses. As shown in the table below,
in most cases, there is a unique optimal species tree.

Number of species trees: 1 2 3 4 5 6 7 13 15

Number of families: 179 16 34 2 6 3 1 2 1

Table 1. Distribution of the 244 gene families with a non-DS tree (second line) ac-
cording to the number of species trees inducing a minimum number of gene losses (first
line).

�
� �

� �
� �

� �
� �
� �
� �
� �
	 �

� � �

 � � �

 �
 �
 � � � � � � � � �
� � � � � � � � � �

�� �
�� �

� ! "
#

$

% $

& $ $

& % $

' $ $

' % $

$ & ' () % * + &)
, - . / 0 1 2 0 3 4 - 5 6 3 2

78 9
:: ;

<=>= ?
@

Fig. 6. Left: Distribution of the 244 gene families having a non-DS tree (y axis) accord-
ing to the number of gene losses inferred by our heuristic (x axis); Right: Distribution
of the 244 gene families having a non-DS-tree (y axis) according to the difference be-
tween the minimum number of losses needed to transform them into a DS-tree, and
the upper bound obtained by our heuristic (x axis).

Discussion. On the considered dataset, we found that many gene families
could be explained with few gene losses. However, as these gene families
are obtained from EST data, it is very likely that many of them are
incomplete and it should be expected that more gene losses are required
to explain the true evolution of these families. The distribution of the size
of the gene families that can be explained without gene losses illustrates
this point, as most of them are quite small, while most gene families with
many genes and/or genomes require significantly more gene losses.

From an algorithmic point of view, these experiments suggest that
our heuristic works well and that, together with our branch-and-bound
algorithm, it gives an efficient way to compute the minimum number of
gene losses to explain the evolution of a gene family and the corresponding
species tree(s). As a consequence, our approach seems to be an interesting
candidate to propose quickly, for a given set of gene trees, a set of species
trees (for example the species trees inferred from gene trees that can be
explained with few gene losses) that can be analyzed using tree consensus
or supertree methods.

6 Conclusion

We proposed in this paper a study of gene trees with a focus on dupli-
cation and speciation events. In particular, we showed that deciding if a
gene tree is a DS-tree is not difficult, and lead to a single species tree.
We also introduced a new way to study the evolution of a gene family
by minimizing the number of gene losses. Our preliminary experimental

results suggest that our approach is worth further studies, and should be
compared with the two other reconciliation approaches based on mini-
mizing the number of duplications and the number of duplications and
losses.

Among the algorithmic open problems that our work suggest, the
most natural is the complexity of the Subtrees Insertion Problem. In a
different perspective, preliminary results on yeast gene families show that
our approach needs to be generalized to non fully resolved gene trees
(work in progress). It would also be very useful to consider not only gene
losses to complete gene trees, but also tree rearrangement operations that
could account for potential errors in the obtained gene trees. Finally, as
our approach relies on inferring a (or a set of) species tree(s) for each
gene family, it would be useful to measure the significance of such species
trees.

References

1. L. Arvestad, A.-C. Berglung, J. Lagergren and B. Sennblad. Gene tree reconstruc-
tion and orthology analysis based on an integrated model for duplications and
sequence evolution. RECOMB 2004, p. 326–335. 2004.

2. G. Blin, C. Chauve, G. Fertin, R. Rizzi and S. Vialette. Comparing genomes with
duplications: a computational complexity point of view. To appear in IEEE/ACM
Trans. on Comput. Biol. and Bioinformatics. 2007.

3. K. Chen, D. Durand and M. Farach-Colton. NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol., 7(3-4):429-444.
2000.

4. J.A. Cotton and R.D.M. Page. Going nuclear: gene family evolution and vertebrate
phylogeny reconcilied. Proc. R. Soc. Lond. B, 269:1555-1561. 2002.

5. D. Durand, B.V. Haldórsson and D. Vernot. A hybrid micro-macroevolutionary
approach to gene tree reconstruction. J. Comput. Biol., 13(2):320–3354. 2006.

6. E.E. Eichler and D. Sankoff. Structural dynamics of eukaryotic chromosome evo-
lution. Science, 301(5634):793–797. 2003.

7. O. Eulenstein, B. Mirkin and M. Vingron. Comparison of annotating duplication,
tree mapping, and copying as methods to compare gene trees with species trees.
In Mathematical hierarchies and biology, vol. 37 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., p.71–93. Amer. Math. Soc., 1997.

8. M.A. Fares, K.P. Byrne and K.H. Wolfe. Rate asymmetry after genome duplica-
tion causes substantial long-branch attraction artifacts in the phylogeny of Sac-
charomyces species. Mol. Biol. Evol., 23(2):245–253. 2006.

9. P. Gorecki and J. Tiutyn. DLS-trees: a model of evolutionary scenarios. Theoretical
Comput. Sci., 359(1–3):378–399. 2006.

10. R. Guigó, I. Muchnik and T.F. Smith. Reconstruction of ancient phylogenies. Mol.
Phylogenet. Evol. 6(2):189–213. 1996.

11. M.T. Hallett and J. Lagergren. New algorithms for the duplication-loss model.
RECOMB 2000, p. 138–146. 1996.

12. M. Lynch and J.S. Conery. The evolutionary fate and consequences of duplicate
genes. Science, 290(5494):1151–1155. 2000.

13. B. Ma, M. Li and L. Zhang. From gene trees to species trees. SIAM J. Comput.,
30(3):729–752. 2000.

14. M.J. Sanderson and M.M. McMahon. Inferring angiosperm phylogeny from EST
data with widespread gene duplication. BMC Evol. Biol., 7(Suppl 1):S3. 2007.

15. C.M. Zmasek and S.R. Eddy. A simple algorithm to infer gene duplication and
speciation events on a gene tree. Bioinformatics, 17(9):821–828. 2001.

16. L. Zhang. On a Mirkin-Muchnik-Smith conjecture for comparing molecular phy-
logenies. J. Comput. Biol., 4(2):177–187. 1997.

