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Abstract. The detection of gene clusters that are conserved in several genomes, in terms of gene prox-
imity and gene content, have proved to be an invaluable tool in the comparative analysis of prokaryotic
genomes. It has applications, for example, in predicting functional association between groups of genes
or putative genome rearrangements. We propose an efficient algorithm for computing gene clusters,
based on the hypothesis of the prevalence of short reversals in the evolution of prokaryotic genomes.

1 Introduction

In this paper, we are interested in the detection of groups of chromosomal segments with identical or almost
identical gene content, called gene clusters. In many cases, this conservation of gene content is probably due
to a selection pressure that tends to preserve the very proximity of the genes [11]. As a consequence, the
detection, across several genomes, of such clusters considerably helps the prediction of features of interest
such as operons [7], physical interactions of proteins [2], functional annotation of genes [11] or identification
of biological networks [21]. It can also be useful in detecting orthologous genes [1], and for phylogenetic
reconstruction, through the identification of some of the rearrangements events that can occur during the
evolution [6; 15; 20].

A first approach to the detection of gene clusters starts from a mathematically precise definition of
gene cluster, and then proposes an algorithm detecting the groups of chromosomal segments that meet the
criterions of this definition. In this category, one can cite the notion of gene teams, introduced by Nicolas et al.
[10] and developed by several authors, including He and Goldwasser [5], and Pasek et al. [12]. However, there
are some drawbacks with these methods. For some of them, the definition of gene clusters is too restrictive
and does not capture essential characteristics of biological gene clusters: gene teams do not model data with
duplicated genes for example [10]. A contrario, when the definition is flexible enough, the computation of
gene clusters can become hard from the computational point of view, which can limit the comparison to only
a few genomes: the domain teams of Pasek et al. [12] can require a computation time exponential in the size
of the considered genomes, and they can not be used for data sets containing a lot of genomes, while the
homology teams of He and Goldwasser [5] are defined for only two genomes.

A second approach attacks gene clusters detection on more pragmatic grounds, primarily based on the
detection of gene segments that are conserved among several of the considered genomes (see [14] for a recent
survey on this topic). This collection of conserved segments is then processed, in general using an heuristic,
to obtain a set of gene clusters. The main problem with this approach is the lack of a formal definition of
the computed clusters, that can lead to noisy results. Moreover, most of the algorithms developed under
this model base their search of gene clusters on the detection of conserved pairs of adjacent genes, which is
computationally efficient but makes it more difficult to detect clusters that have been rearranged. As far as
we know, the only two algorithms using this second approach and that can detect rearranged clusters are
due to Fujibuchi et al. [4] and Rogozin et al. [13], but both these methods have computational shortcomings:
the method of Rogozin et al. [13] is based on the NP-hard problem of computing maximal paths in a graph,
while Fujibuchi et al. [4] use a very time consuming P-quasi grouping clustering algorithm.

Note that the recent tool GECKO [19] uses both approaches: it defines primarily gene clusters as common
intervals of sequences [18], but it introduces a fast post-processing phase of the set of common intervals that



compensates in some way for the weakness, in terms of flexibility, of the definition of clusters as common
intervals.

In the present work, we follow the second approach, and we propose a time and space efficient algorithm
based on the local conservation of gene segments. The main qualities of our algorithm are its ability to
process data sets containing many genomes, as it has a time and space complexity that is quadratic in the
size of the input, and its flexibility, as it can detect clusters that are present only in a few genomes and
whose gene order have been rearranged. We present our algorithm in Section 2, and an application to the
analysis of 12 genomes of γ-Proteobacteriae, with a focus on the tryptophan operon, in Section 3.

2 Computing gene clusters

2.1 Description of the algorithm

Our algorithm runs through three phases: identification of short conserved gene segments, segmentation of
the genomes, and clustering of the genome segments, into gene clusters, based on their similarity in gene
content. The algorithm is parameterized by three integers δ, ω and ρ.

The input of the algorithm is made of k signed sequences, denoted by G1, . . . , Gk, representing k genomes1.
The value Gi[j] is a signed integer that represents the jth gene of the ith genome Gi: the absolute value
|Gi[j]| of Gi[j] describes the gene family this gene belongs to, and its sign is the orientation of this gene. We
denote by n1, . . . , nk the number of genes respectively of G1, . . . , Gk, with n = n1 + . . . + nk. We denote by
f the total number of gene families that appear in the genomes.

Given three integers i, j1, j2, the gene segment Gi[j1..j2] is the segment of Gi composed of the consecutive
genes Gi[j1], Gi[j1 + 1], . . . , Gi[j2]. The length of a gene segment is the number of genes it contains, that is
j2 − j1 + 1.

A gene cluster is a set of gene segments. The output of our algorithm is a list of gene clusters. We now
describe the three phases of our algorithm.

Phase 1. Identification of short conserved gene segments. Given the parameter δ, a positive integer, a δ-
segment is a gene segment of length at most δ + 1. A δ-segment Gi1 [j1..j2] is said to be conserved if there
exists another δ-segment Gi2 [k1..k2] that does not overlap it (either i1 6= i2 or k1 > j2 or j1 > k2) and such
that either |Gi1 [j1]| = |Gi2 [k1]| and |Gi1 [j2]| = |Gi2 [k2]|, or |Gi1 [j1]| = |Gi2 [k2]| and |Gi1 [j2]| = |Gi2 [k1]|.

The first phase of the algorithm computes the list G of all conserved δ-segments, which can easily be done
in O(nδ log(f)) worst-case time and O(f log(f)) space.

Phase 2. Segmentation of genomes based on supported points. A point in a genome is the region located
between two consecutive genes. We denote by Pi[k, k + 1] the point located between the genes in positions
k and k + 1 of the genome Gi. Given the set G of all conserved δ-segments, the support of Pi[k, k + 1] is the
number of these segments that contain both Gi[k] and Gi[k + 1]. Next, given an integer parameter ω, with
1 6 ω 6 2δ − 1, a segment Gi[j1..j2] is said to be ω-supported if all the points it contains have support at
least ω while both surrounding points Pi[j1 − 1, j1] and Pi[j2, j2 + 1], if they exist, have support lower than
ω.

The output of this second phase of the algorithm is the list of all the ω-supported segments, based on
the conserved δ-segments computed in Phase 1. Note that these segments are two-by-two disjoint. Given G,
computing the list of all ω-supported segments can easily be done in time O(δn) and space O(n). Figure 1
illustrates the concepts of conserved δ-segments and ω-supported segments.

Phase 3. Clustering of ω-supported segments in gene clusters. In this third phase, the set of ω-supported
segments computed during Phase 2 is clustered into disjoint subsets, each of these subsets representing a
gene cluster. This clustering is defined in terms of a graph whose vertices are the ω-supported segments and
edges are the pairs of segments (Gi1 [j1..j2], Gi2 [k1..k2]) such that at least ρ per cent of the genes of the first

1 In the case of a genome with more than one chromosome, we consider that these chromosomes have been concate-
nated.



g1 g2 g3 g4 g5 g6 g7 g8

3 2 1 1 1 2 3
g1 g2 g3 g4 g5 g6 g7 g8

Fig. 1. This small genome has eight genes, and seven short conserved segments are underlined. Short conserved
segments can overlap. The supports of the points range from 1 to 3, and there are two 2-supported segments: the
segment from g1 to g3, and the segment from g6 to g8. These segments do not overlap.

segment belong to families that have occurrences in the second segment and vice-versa. The final list of gene
clusters is then simply the list of the connected components of this graph. Computing this list only asks for
all pairwise comparisons between ω-supported segments, which can be done in O(n2) and produces a graph
with O(n) vertices and O(n2) edges. Computing the connected components of this graph requires an O(n2)
worst-case time.

Hence, all together, the three phases of our algorithm have a worst-case time complexity that is O(n2 +
nδ log(f)) and requires a space in O(n2 + f log(f)). Since in typical applications, δ has a low value (between
2 and 4 for example) and can be considered constant, and since f is in O(n), the practical complexity is
quadratic in n.

2.2 Discussion

Phase 1. Short conserved segments. The general idea of our algorithm is based on some recent observations
by Sankoff et al. [16; 17] that small reversals seem to be prevalent in the evolution of prokaryotic genomes.
This observation implies that close species should share many conserved δ-segments for short values of δ,
even if, due to genome rearrangements, insertions or deletions of genes, some pairs of consecutive genes are
not conserved. The goal of Phase 1 of our algorithm is to detect these segments. Note however that in most
other works following the same approach of detecting conserved gene segments, the length of these segments
is limited to two genes – this corresponds to δ = 0 in our framework –, which makes them very sensitive
to rearrangements, insertions and deletions. The only other models relaxing this constraint of adjacency are
due to Fujibuchi et al. [4], and Rogozin et al. [13], where the notion of conserved gene pair can be seen as a
restriction of our notion of conserved δ-segments with δ = 3.

Phase 2. Support of points. The second phase, in which the parameter ω is central, aims at detecting conserved
segments longer than δ-segments. Note that the parameter ω and the notion of support of a point is new, as
far as we know, in the problem of computing gene clusters. Together with the parameter ρ, it gives a useful
way to adjust to the quality of conservation one wants to detect. For detecting clusters of highly conserved
segments, both in terms of contents and order, one will use high values for these two parameters, while, by
lowering the value of ω, one will relax the gene order conservation.

However, as the example of the tryptophan operon described in Section 3 will show, our definition of
support can hide some parts of interesting clusters, if the data set contains genomes that are phylogenetically
close. Indeed this proximity implies the presence of long, strongly supported, and very similar, in terms of
gene order, segments that will then belong to the same cluster. And in the case when just a small part of
these segments is conserved in other genomes, this information can then be shadowed by these long strongly
supported segments. It would then greatly improve the quality of the computed clusters if the support of
points could take into account the phylogenetic distance between genomes: points that are only supported
by the similarity of close genomes should be valued less that points supported by distant genomes which
highlights the functional pressure on such points. The modification of our algorithm in this direction would
also increase its time and space complexities, as it implies, for each conserved δ-segment, to remember



in which genomes it appears. However, using classical algorithmical technics and tools, like bit-vectors for
example, should allow to maintain a good practical efficiency and we are currently updating our algorithm
in this way.

Phase 3. Clustering The third phase was designed in order to be efficient from a computational point of
view. Indeed, in the other works that aim at detecting gene clusters that may have been rearranged, this
phase is time-consuming: Fujibuchi et al. [4] base their approach on a quartic time approximation algorithm
for the quasi P-grouping clustering problem, that has been proved to be NP-hard [9], while Rogozin et al.
[13] have to compute longest paths in a graph, another NP-hard problem. Our approach is very efficient
in terms of computing time, but using a single-linkage clustering based on similarity of the gene content
can produce heterogeneous clusters due to chain effects. Nevertheless, preliminary experiments showed that
post-processing such clusters by removing weakly connected vertices – an approach that can be seen as an
approximation of the P-quasi grouping used in [4] – is still very fast and reduces these clusters in much more
homogeneous clusters.

Vizualisation and editing. Finally, due to the fact that our approach does not rely on a formal definition of
a gene clusters, the computed clusters often need to be manually adjusted. For example, it can happen that
the extremities of some segments computed with a low value of ω should not be part of a cluster. It can also
happen that a cluster should be split or that two clusters should be joined. It is also frequent that, given a
cluster, a core of gene families that define this cluster appear clearly. It then would be useful to “project”
these families on the genomes, as it is done in [13]. This would lead to the detection of segments that should
be part of a given cluster but are not detected by our current algorithm, due to a high value of ω or of ρ, or
due to the fact that a segment has been extensively rearranged.

3 Application to γ-proteobacterial genomes

We now describe the application of our algorithm to a data set composed of 12 genomes of γ-Proteobacteriae,
and we focus on the results for the well known tryptophan operon. All the files and results of our analysis
are available on the website http://adn.bioinfo.uqam.ca/~genoc/CLUSTERS.

3.1 Data set, gene families and gene clusters

We downloaded from the NCBI Microbial Complete Genomes database, the genomes of the following or-
ganisms: Escherichia coli K12 (E. coli), Salmonella typhimurium (S. typhimurium), Yersinia pestis CO92
(Y. pestis CO92), Yersinia pestis KIM (Y. pestis KIM), Buchnera aphidicola (B. aphidicola), Wigglesworthia
glossinidia (W. glossinidia), Haemophilus influenzae (H. influenzae), Pasteurella multocida (P. multocida),
Pseudomonas aeruginosa (P. aeruginosa), Xylella fastidiosa (X. fastidiosa), Xanthomonas axonopodis (X.
axonopodis), Xanthomonas campestris (X. campestris). This data set is interesting, as it contains very distant
and different genomes and at the same time, three pairs of close genomes: (E. coli and S. typhimurium, the
two Yersina pestis, and the two Xanthomonas).

We computed the gene families by considering all coding genes, tRNA genes and rRNA genes. Families
for tRNA and rRNA are based on the genes annotations. Coding genes families are based on amino acid
sequences similarity, using pairwise sequences comparisons with BLAST and single-linkage clustering with
the following parameters: two amino-acids sequences are linked if the best BLAST alignment overlaps at
least 70% of the length of both sequences and has a similarity of at least 30%, on the aligned segments,
for both sequences. The total number of genes in the 12 genomes is 39050. The gene families computation
process resulted in 11771 gene families. Of these, 6221 families contains only one gene, and thus are present
in only one genome, and one contains 434 genes, composed almost exclusively of genes coding for ATP-
binding proteins. A total of 6538 families are present in only one genome, while 227 are present in at least
10 genomes, and 284 families are present in all 12 genomes.

We then computed gene clusters for two data sets: the full data set of 12 genomes, and a subset of 9
genomes obtained by removing the genomes of S. typhimurium, Y. pestis KIM and X. campestris, to avoid



pairs of very close genomes. For both data sets, we computed gene clusters with all combinations of the
three parameters δ, ω and ρ, with δ = 2, 3, ω = 1, . . . , 2δ − 1 and ρ = 50, 60, 70, 80, 90, 100, which yields 48
different combinations.

For the 12 genomes, the computation was completed2 in approximatively 10 minutes , while for the 9
genomes, it took 4 minutes. This difference is a consequence of the absence of pairs of very similar genomes
that reduces the number of ω-supported segments and hence the time required for the clustering phase.
In terms of space complexity, the two possible bottlenecks are the computation of conserved δ-segments,
that can require a space in O(f log(f)), and the encoding of the edges of the graph whose vertices are ω-
supported segments and components define gene clusters, since there can be O(n2) edges. But in the light
of our experiments, one can assume that the space complexity, in practice, is linear in the number of genes
in the data set.

The number of clusters for the data set of 12 genomes goes from 199 clusters (δ = 3, ω = 2 and ρ = 100)
to 930 clusters (δ = 2, ω = 2 and ρ = 60). For the 9 genomes, the smallest number of clusters is 249 (δ = 3,
ω = 5 and ρ = 100) and the largest is 913 (δ = 2, ω = 1 and ρ = 60). The complete list of clusters is available
on the companion website.

3.2 The tryptophan operon

In order to get a first idea on the quality of the computed clusters, we now look our algorithm is able to
capture the structure of the tryptophan (trp) operon. In our data set, this operon is composed of the genes
trpA, trpB, trpC, trpD and trpE [22]. Note that none of the genes of this operon is present in W. glossinidia.
The computation of gene families gives the following result3:

– the trpA genes form the family 1, and the trpB genes the family 2,
– the trpC genes are split in two families, labeled 3 (E. coli, S. typhimurium, the two Y. pestis, B. aphidicola,

H. influenzae and P. multocida) and 7 (P. aeruginosa, X. fastidiosa, X. axonopodis and X. campestris),
– the trpD genes are split in two families, labeled 4 (all organisms but E. coli, S. typhimurium and Y.

pestis KIM), and 5 (E. coli and S. typhimurium); no gene named trpD appears in Y. pestis KIM,
– the trpE genes form the family labeled 6.

We then computed gene clusters on the two data sets, with parameters δ = 2, ρ = 50 and ω = 1, 2, 3. We
considered all possible values of ω since one of our goal in this work is to study the usefulness of the notion
of support in the detection of interesting gene clusters. We filtered each list of gene clusters so obtained to
keep only the clusters containing at least one gene belonging to the families 1, 2, 3, 4, 5, 6 or 7. For the data
set composed of 12 genomes, we obtained 11 clusters for ω = 1, and 8 clusters for both ω = 2 and ω = 3.
The most remarkable clusters are obtained with ω = 2 and ω = 1 and are shown in Figures 3 and 4.

One can notice that the cluster of Figure 3 does not capture the gene trpE in position 277 of Y. pestis
KIM, due to the fact that the segment trpC trpE in this genome is not conserved with δ = 2. Indeed, in all
other genomes, these two genes, if they appear, are part of segments containing 3 points. Three segments
that contains only the gene trpE are missing in this cluster, which is normal since every conserved segment
contains at least 2 genes. The segment 6 (98) (3477) 4 3 of H. influenzae is missing due to the insertion of
the gene (3477) that causes the point 6 (98) to have a support of only 1. However, with ω = 1, this segment
appears in the cluster displayed in Figure 4. This example illustrates the usefulness to consider several level
of support and the need for a method that could join clusters computed with different values of ω. Among
the segments of this operon that do not appear in the clusters of Figures 3 and 4, the two segments of E.
coli and S. typhimurium and the four segments of X. axonopodis and X. campestris appear in other clusters
but as small subsegments of large segments that are common either to E. coli and S. typhimurium, or X.
axonopodis and X. campestris. This illustrates the phenomenon discussed in Subsection 2.2.

2 On a Intel Dual Xeon 2.8 GHz/512K bi-processor SUN server.
3 For clarity reasons, we change here the numbers associated to the gene families corresponding to genes belonging

to the trp operon: 1 corresponds to 260, 2 replaces 261, 3 replaces 262, 4 replaces 263, 5 replaces 1428, 6 replaces
1429 and 7 replaces 3944. Others gene families numbers were not modified.



Fig. 2. The trp operon in the data set of 12 proteobacterial genomes. The numbers above the genes indicate the
position of the first and last gene of each segment. Dashed genes indicate genes not belonging to the tryptophan
pathway.



Fig. 3. A cluster obtained with the 12 genomes, δ = 2, ω = 2 and ρ = 50.

Fig. 4. A cluster obtained with the 12 genomes, δ = 2, ω = 1 and ρ = 50.



For the data set composed of 9 genomes, we obtained 6 clusters for ω = 1, 3 clusters for ω = 2 and 2
clusters for ω = 3. We show in Figures 5 and 6 two interesting clusters that illustrates the influence of the
inclusion of similar genomes in the data set, since they contain short segments that contains all genes of the
trp operon.

Fig. 5. A cluster obtained with the 9 genomes, δ = 2, ω = 1 and ρ = 50.

Fig. 6. A cluster obtained with the 9 genomes, δ = 2, ω = 2 and ρ = 50.

4 Conclusion

We presented in this work a novel algorithm for the computation of gene clusters based on the conservation
of short gene segments, the notion of support of a point between adjacent genes and simple strategies
for clustering gene segments. The main qualities of this algorithm are its flexibility and its computational
efficiency that allows to use it with several combination of parameters. Preliminary experiments on a data
set of 12 bacterial genomes showed promising results and illustrated the usefulness to be able to use several
values of the parameters δ, ω and ρ. An other interesting consequence of the efficiency of this algorithm is
that it leaves the door open for improving the computed clusters by post-processing in order to compensate
the chaining effect associated to the single linkage clustering, or merging clusters obtained with different
values of the parameters.



We think that among the important ways to extend our algorithm is the need to develop more precise
notions of support, in order to relate the support of a point to the phylogenetic distance of the δ-conserved
segments that contribute to this support. A probabilistic approach of this question has recently be proposed
in [23].

The other challenge that has to be tackled with programs computing gene clusters relies in the mining
of the computed clusters to find interesting ones, as generally these programs. Several possibilities exist, like
computing a statistical significance of clusters [3], but more sophisticated methods need to be developed,
especially methods taking into account the phylogenetic pattern of the considered genomes.
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