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Abstract. We consider here the problem of chaining seeds in ordered
trees. Seeds are mappings between two trees Q and T and a chain is a
subset of non overlapping seeds that is consistent with respect to postfix
order and ancestrality. This problem is a natural extension of a similar
problem for sequences, and has applications in computational biology,
such as mining a database of RNA secondary structures. For the chaining
problem with a set of m constant size seeds, we describe an algorithm
with complexity O(m2 log(m)) in time and O(m2) in space.

1 Introduction

Comparing sequences is a basic task in computational biology, either for mining
genomics database, or for filtering large sequence datasets. The exponential in-
crease of available sequence data motivates the need for very efficient sequence
comparison algorithms. A fundamental application of sequence comparison is
to search efficiently in a database a set of sequences close to a query sequence.
Indeed, the pairwise comparison between the query and every sequence of the
database cannot practically be applied due to the quadratic time complexity of
edit distance computation. A typical approach to tackle this issue is to rely on
short sequences, called seeds, present in the query. These seeds can be detected
very quickly in the database using indexing techniques, then an optimal set of
seeds, called a chain, that tiles both the query and a sequence of the database,
must be identified while conserving the same order in both sequences. Widely
used programs such as BLAST [1] and FASTA [10, 13] rely on such an approach.
We refer the reader to [2, 6] for surveys of sequence comparison in computa-
tional biology. From an algorithmic point of view, an optimal chain between
two sequences, given m seeds, can be computed in O(m log(m)) time and O(m)
space [9] (see [12] for a recent survey).

With the recent development of high-throughput genome annotation meth-
ods, similar problems appear to be relevant for the analysis of more complex
biological structures.an RNA secondary structures can be represented by a tree
or a graph whose nodes are the nucleotides and whose edges are the chemical
bonds between them [14]. Large databases have been constituted for this kind of
biological data, such as Rfam [5]. Comparing and mining large RNA secondary
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structure databases is now an important computational biology problem. The
initial approach to these problems relied on extensions of the notion of edit
distance to ordered trees, pioneered by Zhang and Shasha [15]. The tree edit
approach has been extended in several ways since then, leading either to hard
problems, when a comprehensive set of edit operations is considered [8], or to
algorithms with a time complexity, at best cubic, even with a minimal set of edit
operations [4, 15].

Recently, Heyne et al. [7] introduced a chaining problem on another repre-
sentation of ordered trees called arc annotated sequences, that they solved using
dynamic programming. Their seeds are exact common patterns and they applied
their algorithm for RNA secondary structure comparison: once an optimal chain
of seeds between two given RNA secondary structures is detected, the regions
between successive seeds are processed independently using an edit distance al-
gorithm, which speeds up significantly the comparison process. From what we
know so far, [7] is the first paper addressing a chaining problem in trees.

After some preliminaries (Section 2 and 3), we describe in Section 4 an algo-
rithm for finding the score of a maximum-score chain between two ordered trees
(Maximal Chaining Problem) in O(m2 log(m)) time and O(m2) space when there
are m seeds of constant size, thus improving on the result of Heyne et al. [7]. We
conclude with further research avenues.

2 Background and problem statement

Let T be an ordered rooted tree of size n. Nodes of T are identified with their
postfix-order index from 0 to n − 1. Thus, n − 1 represents the root of T . Ti

is the subtree of T rooted at i. We denote by T [i, j] the forest induced by the
nodes that belong to the interval [i, j]; if i > j, then T [i, j] is empty. The partial
relationship “i is an ancestor of j” is denoted by i ≺ j. For a tree T and a node
i of T , the first leaf visited during a postfix traversal of Ti is denoted by l(i) and
called the leftmost leaf of the node i. The ordered forest induced by the proper
descendants of i is denoted by T̂i = T [l(i), i− 1].

Definition 1. Let T be an ordered rooted tree:

1. Let G = {g0, . . . , gk−1} be an ordered set of k nodes of T , with 0 ≤ gj < n.
If the subgraph of T induced by G is connected, then G is called an internal
tree rooted at gk−1 also referred to as rG.

2. The set of leaves of the internal tree G is denoted by L(G).
3. A node gj of G is said to be completely inside G if gj is not a leaf of T and

all its children belong to G. The set of nodes of G that are not completely
inside G is called the border of G and is denoted by B(G).

4. Two internal trees G1 and G2 overlap if they share at least one node, i.e.
G1 ∩G2 %= ∅.

We now recall the central notion of valid mapping between two trees intro-
duced in [14] for the tree edit distance. Given two trees Q and T , a valid mapping



P between Q and T is a set of pairs of Q × T such that, if (qi, ti) and (qj , tj)
belong to P , then

1. qi = qj if and only if ti = tj ,
2. qi < qj if and only if ti < tj ,
3. qi ≺ qj if and only if ti ≺ tj .

In the following we use the term mapping to refer to a valid mapping. Given
a mapping P between Q and T , the smallest internal tree of Q (resp. T ) that
contains all nodes of Q (resp. T ) belonging to a pair of P is denoted by QP (resp.
TP ). QP and TP are respectively called the internal trees of Q and T induced
by P .

Definition 2. Let Q and T be two ordered trees.

1. A seed P between Q and T is a mapping between Q and T such that
(rQP , rTP ) ∈ P and all the nodes of the border of QP (resp. TP ) belong
to a pair of P .

2. The border (resp. leaves) B(P ) (resp. L(P )) of the seed P is the set of pairs
(x, y) ∈ P such that x ∈ B(QP ) and y ∈ B(TP ) (resp. x ∈ L(QP ) and
y ∈ L(TP )).

3. The size |P | of the seed P is the number of pairs its mapping contains.
4. For a set S of seeds, ‖S‖ is the sum of the sizes of the |S| seeds in S.

Note that, theoretically, the number of seeds between T and Q can be expo-
nential in the size of Q and T , although in applications such as RNA secondary
structure comparison, this exponential upper bound is unlikely to happen (see [7]
for example).

Definition 3. Let Q and T be two ordered trees.

1. A pair (P 1, P 2) of seeds between Q and T is chainable if QP 1 does not
overlap QP 2 , TP 1 does not overlap TP 2 , and P 1 ∪ P 2 is a mapping.

2. A chain is a set C = {P 0, P 1, . . . , P !−1} of seeds between Q and T such that
any pair (P i, P j) of distinct seeds in C is chainable.

3. Given a scoring function v for the seeds P i, the score of a chain C is the
sum of the scores of its seeds: v(C) =

∑
i v(P

i).
4. Given a set S of possibly overlapping seeds between Q and T , CS(Q, T )

denotes the set of all possible chains between Q and T included in S.

Problem. Maximum Chaining Problem (MCP):
Input: A pair (Q, T ) of ordered rooted trees, a set S = {P 0, . . . , Pm−1} of m
possibly overlapping seeds between Q and T , and a scoring function v on the
seeds P i.
Output: The maximum score chain C included in S.

MCP (Q, T, S) = max{v(C);C ∈ CS(Q, T )}

Fig. 1 shows an instance of the MCP with 6 seeds.
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Fig. 1. An instance of the MCP problem with 6 seeds: P 0 = {(2, 10), (3, 11)}, P 1 =
{(6, 3)}, P 2 = {(9, 5)}, P 3 = {(10, 6), (11, 7)}, P 4 = {(7, 4), (11, 7), (12, 8)}, P 5 =
{(3, 1), (13, 9), (14, 11)}. If v(P i) = |P i| for every seed, an optimal chain is composed
of {P 1, P 2, P 4, P 5} and has score 8.

Remark 1. The notion of mapping extends naturally to ordered forests. Hence,
if S is a set of seeds between two forests F1 and F2 such that each seed is a seed
between a tree of F1 and a tree of F2, then the MCP can naturally be extended
to ordered forests.

Remark 2. To compare with chaining algorithms for sequences, we represent
a sequence u = (u0, . . . , un−1) by a unary tree, rooted at a node labeled by
un−1, where every internal node has a single child and u0 is the unique leaf: the
sequence of nodes visited by the postfix-order traversal of this tree is exactly u.

Motivation and background. As far as we know, [7] is the only work that at-
tacks the MCP in tree structures, although the authors describe the problem
in terms of arc-annotated sequences. They proposed a dynamic programming
algorithm to solve the maximum chaining problem with some restrictions on
the seeds (precisely, seeds are maximal exact pattern common to the consid-
ered sequences). This dynamic programming technique is different from, and in
fact simpler than, the approach used for the currently best known algorithms
for Maximum Chaining Problem in sequences [9, 12]. Moreover, when applied
to arc-annotated sequences with no arc (i.e. sequences) it can be shown this
algorithm has a worst-case time complexity in O(m2), where m is the number
of seeds (see Appendix).

Our main result is the following:

Theorem 1. Let S be a set of m seeds between two ordered trees Q and T . After
an O(‖S‖) time preprocessing of the m seeds of S one can solve the Maximum
Chaining Problem in O(‖S‖ log(‖S‖)+m‖S‖ log(m)) time and O(m‖S‖) space.

Note that we described the complexity of our algorithm using uniquely the
set of seeds S, unlike Heyne et al. [7], who, for the same problem, also consider
the sizes of Q and T . We discuss this aspect in an Appendix and propose a
unified point of view on the complexiy of both algorithms. We also prove in
Section 4, that our algorithm solves the maximal chaining problem on sequences
(i.e. unary trees as described in Remark 2 above) in O(m log(m)) time and O(m)
space complexity.



Remark 3. Without lost of generality, from now we assume that the seeds P i

are sorted increasingly according to the postfix number of their roots in Q, that
is: rQP0 ≤ · · · ≤ rQPi ≤ · · · ≤ rQPm−1 . For a given chain C, the last seed of C is
then the seed with the highest postfix index in Q.

3 Combinatorial properties of seeds and chains

We first describe combinatorial properties of seeds and chains, that naturally
lead to a recursive scheme to compute a maximum chain. Indeed, we show that
given a chain C and its last seed P , the root and border of P define a partition
of both Q−QP and T −TP into pairs of forests that contain the seeds C − {P}
and form sub-chains of C. More precisely, for every border nodes (x, y) of a seed

P , we define the couples of forests included in (Q̂x, T̂y), that is composed of
descendants of (x, y), such that any seed included into such couple of forest is
chainable with P .

Definition 4. Let P be a seed on two trees Q and T and (a, b; c, d) be a quadru-
ple such that l(rQP ) ≤ a < b < rQP , l(rTP ) ≤ c < d < rTP and the pair of
forests (Q[a, b], T [c, d]) do not contain an node form P (QP ∩ Q[a, b] = ∅ and
TP ∩T [c, d] = ∅). (a, b; c, d) is a chainable area if for all i ∈ [a, b] and all j ∈ [c, d],
P ∪ (i, j) is a valid mapping. (a, b; c, d) is a maximal chainable area for P if nei-
ther (a−1, b; c, d) or (a, b+1; c, d) or (a, b; c−1, d) or (a, b; c, d+1) are chainable
areas for P .

For example, in Fig. 1, let us consider the seed P = P 5 ; then, (4, 12; 2, 8) is
a maximal chainable area. See also Figure 2.

Fig. 2. Illustration of the notion of chainable areas of a seed of size 5: P =
{(x0, y0), . . . , (x4, y4)} and there are 4 chainable areas for P each indicated by a differ-
ent filling pattern.

From now, we will only consider maximal chainable areas and we refered
them as chainable areas.

Definition 5. Let (x, y) ∈ B(P ) for a seed P between Q and T . We define by
F (x, y) = {(ai, bi; ci, di)} the set of all maximal chainable areas for P included



in (Qx;Ty) such that there is no border node of P in Q (resp. T ) on the path
from b to x (resp. d to y). We call this set the chainable areas of (x, y).

For example, let us consider a pair (x, y) in L(P ) such that x and y are
not a leaf of respectively Q and T , then F (x, y) represents the couple of forests

Q̂x and T̂y, F (x, y) = {(l(x), x − 1; l(y), y − 1)}. In Fig. 1, with P = P 4 and
(x, y) = (11, 7), F (x, y) = {(8, 10; 5, 6)}); if (x, y) = (14, 11) ∈ B(P 5) − L(P 5),
F (x, y) = {(0, 1; 0, 0), (4, 12; 2, 8)}. See also Figure 3.

Fig. 3. Illustration of Definition 5 for a seed P (the shaded zone) and (x, y) ∈ B(P )−
L(P ): F (x, y) = {(a0, b0, c0, c1), (a1, b1, c1, c1), (a2, b2, c2, c2)}

Definition 6. The chainable areas of a seed P , denoted by CA(P ), is the union
of the sets of quadruples F (x, y) for all pairs (x, y) ∈ B(P ).

Notation. For a seed P (resp. chain C) and a chainable area (a, b; c, d), we say
that P ⊂ (a, b; c, d) (resp. C ⊂ (a, b; c, d)) if a ≤ rQP ≤ b and c ≤ rTP ≤ d.

The following property is a relatively straightforward consequence of the
definitions of seeds and chainable areas.

Property 1. Given a seed P between trees Q and T , |CA(P )| ≤ 2× |B(P )|+ 1.

The next property describes the structure of any chain between two forests
Q[a, b] and T [c, d] included in a set of m seeds S = {P 0, . . . , Pm−1}. It is a
direct consequence of the constraints that define a valid mapping and the fact
that seeds are non-overlapping in a chain.

From now, for every (x, y) of a seed P j , we denote by xj the unique node
y of T associated with x in P j . We also denote by Fj(x) the set of quadruples
F (x, xj) for the pair of nodes (x, xj) ∈ P j .

Property 2. Let P j be the last seed of a chain C included into two forests Q[a, b]
and T [c, d].

1. C can be decomposed into |CA(P j)|+2 (possibly empty) distinct sub-chains:
P j itself, |CA(P j)| chains: for each (e, f ; g, h) ∈ CA(P j) a (possible empty)
chain included into Q[e, f ] and T [g, h] and a chain included into the forests
Q[a, l(rj)− 1] and T [c, l(rjj )− 1].



2. Moreover, C is a chain of maximum score among all chains in Q[a, b] and
T [c, d] that contain P j if and only if all of its sub-chains described above are
chains of maximum score with respect to the corresponding forests defined
by CA(P j).

Property 2.2 naturally leads to a recursive scheme to compute an optimal
chain between two forests Q[a, b] and T [c, d] that ends by the last seed of a set.
If MCP ′(Q[a, b], T [c, d], {P 0 . . . P j}) is the score of a maximum chain between
Q[a, b] and T [c, d] and that contains P j :

MCP ′(Q[a, b], T [c, d], {P 0 . . . P j}) = (1)






0 if P j %⊂ (a, b; c, d),

v(P j) +
∑

(e,f ;g,h)∈CA(P j)

MCP (Q[e, f ], T [g, h], {P 0 . . . P j−1})
otherwise.

+MCP (Q[a, l(rj)− 1], T [c, l(rjj )− 1], {P 0 . . . P j−1})

and thus MCP (Q, T, S) can be computed using MCP ′ as follow5:

MCP (Q[a, b], T [c, d], {P 0 . . . P j}) = max
i=0...j

MCP ′(Q[a, b], T [c, d], {P 0 . . . P i}) (2)

MCP (Q, T, S) = MCP (Q[0, rQ], T [0, rT ], S) (3)

The main challenge in designing an algorithm for the MCP is then to imple-
ment efficiently this recursive formula, that was already central in the dynamic
programming algorithm of [7]. In Section 4, we will rely on the fact that for every
seed P j , CA(P j) and, for every border node x of P j , Fj(x), have been computed
during a preprocessing phase. We discuss in Appendix the issues related to this
preprocessing and we show that it can be done in O(‖S‖) time and space.

4 Algorithms for the Maximum Chaining Problem

From now, we consider that we are given two ordered trees Q and T , a set
S = {P 0, . . . , Pm−1} of seeds and a scoring score v on S. Furthermore, we
assume that the score v(j) of a seed P j can be accessed in constant time and
the seeds of S are given as a list I of triples (i, f, j) such that: (1) i is the postfix
number of either the root of P j

Q or a border node of P j
Q (ie. i ∈ B(P j

Q)∪ r(P j
Q))

and (2) f is a flag indicating if i is either border (f = 0) or root (f = 1) for P j
Q.

Thus if i is both in B(P j
Q) and the root of P j

Q then i appears in two distinct

triples6. Moreover, for a node i in Q belonging to a seed P j , we assume that the
corresponding node in T , ij (or more precisely its postfix number in T ) can be

5 We remind that the seeds are supposed to be sorted incrementally (see Remark 3).
6 Hence, we do not require as input the whole seeds mappings but just the borders
and roots of the seeds, as it is usual when chaining seeds in sequences.



accessed in constant time. Finally, for every node i in Q and T , its leftmost leaf
l(i) is also supposed to be accessed in constant time.

As a preprocessing, I is sorted in lexicographic order. Thus, if a node is both
in the border and root of P j , it first appears in I as a border, then as a root.
This sorting can be done in O(||S|| log(||S||)) time. In our algorithms, we visit
successively the elements of I in increasing order, and a seed P j is said to be
processed after its root has been processed (i.e. the current element of I is greater
than (rj , 1, j) for the order defined above).

In the following, we first introduce a simple but non optimal algorithm to
compute the MCP between Q and T which does not require any special data
structure. In a second step, we will present a more efficient method based on a
simple modification of this algorithm.

4.1 A simple non optimal algorithm

In order to compute in constant time the partial MCP for any pair of forests in
CA(P j) as described in equation (1), we introduce a data structure M indexed
by quadruples of integers (a, b; c, d) defining the forests Q[a, b] and T [c, d]. These
quadruples (a, b; c, d) belong to a set Y = Y1 ∪ Y2 ∪ Y3 defined as follows:

Y1 =
m−1⋃

j=0

CA(P j), Y2 = {(0, rQ, 0, rT )},

Y3 = {(a, l(rj)−1; c, l(rjj )−1) s.t. ∃(b, d) s.t. (a, b; c, d) ∈ Y1∪Y2 and P j ⊂ (a, b; c, d)}

In algorithm 1, the function Update replaces the value ofM [a, b, c, d] by a real
number w if w is greater than M [a, b, c, d]. We also use an array V of m integers
to store the intermediate quantities of MCP

′
. que c’est vrai The correctness of

the algorithm relies on the following invariants for the two data structures V
and M , that we prove later:

M1. After P j has been processed, then M [a, b, c, d] = MCP (Q[a, b], T [c, d],
{P 0, . . . , P j}) for every (a, b; c, d) ∈ Y .

V1. After P j has been processed, then V [j] = MCP ′(Q, T, {P 0, . . . , P j}).

Correctness of the algorithm. Obviously, V1 implies that maxj V [j] contains the
score of the maximum chain (equations (2) and (3)). Let us assume now that
M1 is satisfied. If the seed P j has been processed, then V [j] contains the sum
of v(j) (line 1), the MCP scores of the chainable areas of all its border nodes
(line 5) and the MCP score between forests Q(0, l(rj) − 1) and T (0, l(rjj ) − 1)

(line 11). From Property 2 and (1), V [j] = MCP ′(Q, T, {P 0, . . . , P j}) and V1
is satisfied.

We prove M1 by induction. Initially, since no seed has been processed, line 2
ensures that M1 is satisfied. Now let us assume that M1 is satisfied for all
processed seeds {P 0, . . . , P j−1} and the input (i, 1, j) is being processed. If P j %⊂



Algorithm 1 MCP1: compute the score of a maximum chain.

1 for j from 0 to m− 1 do V [j] = v(j)
2 foreach (a, b; c, d) ∈ Y do M [a, b, c, d] = 0
3 foreach (i, f, j) in I do

4 if f = 0 then # i.e. (i, ij) ∈ B(P j)
5 foreach (a, b; c, d) ∈ Fj(i) do V [j] = V [j] +M [a, b, c, d]
6 else # i.e. f = 1 and i is the root of QP j , i = rj
7 foreach (a, b; c, d) ∈ Y1 ∪ Y2 s.t. P j ⊂ (a, b; c, d) do

8 Update M [a, b, c, d] with w = V [j] +M [a, l(rj)− 1, c, l(rjj )− 1]

9 foreach P g ⊂ (rj + 1, b; rjj + 1, d) do

10 Update M [a, l(rg)− 1, c, l(rgg)− 1] with w

11 V [j] = V [j] +M [0, l(rj)− 1, 0, l(rjj )− 1]

12 return maxj V [j]

(a, b; c, d), then by induction, M1 is satisfied for M [a, b, c, d]. Otherwise, the loop
in lines 7 and 8 ensures that M1 is satisfied for all entries M [a, b, c, d] such that
(a, b; c, d) ∈ Y1 ∪ Y2, as (a, l(rj) − 1; c, l(rjj ) − 1) does not contain P j ; thus by
induction M1 is satisfied for this index. Finally, the loop in line 9 update all
(a, b; c, d) ∈ Y3 including P j ,and M1 is satisfied for all entries of M .

Complexity analysis. From Property 1, the space required to encode the entries
of M indexed by Y1 is in O(‖S‖). The space required to encode the entries of
M indexed by Y3 is in O(m2), as for every pair of seeds P i and P j , there is at
most one chainable area of CA(P i) that contains P j .

We now address the worst-case time complexity. We do not factor the prepro-
cessing required to compute the Fj and CA and we assume I has been sorted in
time O(‖S‖ log(‖S‖)). The amortized cost of lines 4–5 is O(‖S‖), as each chain-
able area is considered once, there are O(‖S‖) such areas, and we assumed we can
access them in amortized constant time. A naive implementation of lines 6–11
would require O(m2‖S‖) operations: indeed, there are m iterations of the loop
in line 6, the loop in line 7 considers only entries indexed by Y1 ∪ Y2 (there are
O(‖S‖) such entries) and the loop on line 9 iterates O(m) times. However, we can
notice that there are O(m) entries (a, b; c, d) ∈ Y1∪Y2 such that P j ⊂ (a, b; c, d),
and it is possible to preprocess I in time and space O(m‖S‖) in such a way that
the loop in line 7 can be implemented to perform O(m) iterations, leading to
a total time complexity of O(m‖S‖ +m3 + ‖S‖ log(‖S‖)) (respectively for the
preprocessing, the main algorithm and sorting the input).

4.2 A more efficient algorithm

We describe and analyse now a more efficient algorithm, that implies a proof of
our mauin result, Theorem 1.

The key ideas are to access less entries from M (while maintaining prop-
erty M1 on the remaining entries though) and to complement M with a data



structure R that can be queried in O(log(m)) instead of O(1), but whose main-
tenance does not require a loop with O(m2) iterations. Formally, let X =
{(a, c) s.t. ∃(a, b; c, d) ∈ Y1 ∪ Y2} and R be a data structure indexed by X such
that for a given index (a, c) ∈ X, R[a, c] is a set of pairs (j, s) where j is the index
of the seed P j and s is the score of the chain in Q[a, rj ], T [c, r

j
j ] that ends with

P j . Roughly, M is used to access, still in O(1) time, the values MCP (a, l(rj)−
1, c, l(rjj ) − 1, {P 0 . . . P j−1}) required to compute MCP ′ in equation (1) and
R[a, c] is used to access, in time O(log(m)), the scores of the best chains in-
cluded in (Q[a, rQ], T [c, rT ]) (the values MCP (Q[e, f ], T [g, h], {P 0 . . . P j−1}) in
equation (1)) and replace the entries M [a, b, c, d] with (a, b; c, d) ∈ Y1 ∪ Y2 that
were used in the previous algorithm.

Finally, the algorithm iterates on a list of triples J = I
⋃(

∪m−1
j=0 (l(rj),−1, j)

)
,

sorted using the lexicographic order than in the previous section, with the fol-
lowing modification: if we have two seeds P j and P g with g > j such that
(l(rj), l(r

j
j )) = (l(rg), l(rgg)) then only (l(rj),−1, j) occurs in J . This preprocess-

ing requires O(||S|| log(||S||)) time.

Algorithm 2 MCP2(Q, T, S, v): compute a maximum chaining from S.

1 for j from 0 to m− 1 do V [j] = v(j)
2 foreach (a, b; c, d) ∈ Y3 do M [a, b, c, d] = 0
3 foreach (a, c) ∈ X do R[a, c] = ∅
4 foreach (i, f, j) in J do
5 if f = −1 then # i = l(rj)

6 foreach (a, c) ∈ X s.t. a, c < l(rj), l(r
j
j ) do

7 M [a, l(rj)− 1, c, l(rjj )− 1]= value s of the last (y, s) of R[a, c] s.t. ryy < l(rjj )

8 else if f = 0 then # (i, ij) ∈ B(P j)
9 foreach (a, b; c, d) ∈ Fj(i) do

10 Add to V [j] the value s of the last entry (y, s) of R[a, c] s.t. ryy ≤ d
11 else # f = 1 and i is the root of QP j , i = rj
12 foreach (a, c) ∈ X s.t. a, c < l(rj), l(r

j
j ) do

13 w = V [j] +M [a, l(rj)− 1, c, l(rjj )− 1]

14 Insert entry (j, w) into R[a, c] and update R[a, c] as follow:

15 Find the last entry (y, s) s.t. ryy < rjj
16 if s < w then
17 Insert (j, w) just after (y, s) in R[a, c]

18 Remove from R[a, c] all entries (z, t) s.t. rjj ≤ rzz and t < w

19 V [j] = V [j] +M [0, l(rj)− 1, 0, l(rjj )− 1]

20 return maxj V [j]

Correctness of the algorithm. We consider the following invariants.



M2. After P j has been processed, then M [a, b, c, d] = MCP (Q[a, b], T [c, d],
{P 0, . . . , P j}) for every (a, b; c, d) ∈ Y3.

V1. After P j has been processed, then V [j] = MCP ′(Q, T, {P 0, . . . , P j}).
R1. After P j has been processed, then for all (a, c) ∈ X, R[a, c] contains all (y, s)

that satisfies

a. y ≤ j and s = MCP ′(Q[a, ry], T [c, ryy ], {P 0, . . . , P y}).
b. ∀(z, t) ∈ R[a, c], rzz < ryy ⇒ t < s.

R2. ∀(a, c) ∈ X, R[a, c] is totally ordered as follows: (y, s) < (z, t) iff ryy < rzz .

We first assume that R1 and R2 are satisfied. As previously, if V1 is satisfied,
then the algorithm computes MCP (Q, T, S). The initialization line 1 ensures
that V [j] contains v(j). Next to prove V1 we only need to show that when we
process a border i of a seed P j , in line 10 we add to V [j] the best chains of each
chainable area (a, b; c, d) of the border; it follows from (1) the fact that every
seed P j+e with e > 0 does not belong to the forest Q[a, b] (because b < i ≤ rj+e)
and thus can not belong to a chain in the (a, b; c, d) area, (2) the fact that the
score of this chain is present in R[a, c] (from R1) and (3) that fact it is the last
entry (y, s) such that ryy ≤ d (from R2).

M2 is similar to M1 but restricted to entriesM [a, b, c, d] such that (a, b; c, d) ∈
Y3. To check it is satisfied, we only need to focus on line 7, as it is the only line
that updates M . For entries M [a, b, c, d] such that a ≥ l(rj) or c ≥ l(rjj ), then
M [a, b, c, d] = 0 due to the initialisation in line 1. For all other entries, M2 follows
immediately from R1 and R2, using argument similar to the previous ones.

Finally, we need to check that R1 and R2 are satisfied. First, as previously,
in the case where a ≥ l(rj) or c ≥ l(rjj ), R[a, c] = ∅ which is ensured by the ini-

tialisation in line 3. So we need only to consider the case where a, c < l(rj), l(r
j
j ),

that is handled in lines 11 to 18. Every seed P y such that y < j has already been
processed and s = MCP ′(Q[a, ry], T [c, ryy ], {P 0, . . . , P y}) can not be modified
after P y has been processed, so lines 12 and 13, together with M2, ensure that
(y, s) has been inserted into R[a, c] previously, and the same argument applies if
y = j. Entries (z, t) removed at line 18 do not belong to any of these (y, s), which
implies that R1.a and R1.b, and so R1, are satisfied. R2 is obviously satisfied
from the position where (j, w) is inserted into R[a, c] in line 17.

Complexity analysis. The space complexity is given by the space required for
structures M and R. M requires a space in O(m2) as it is indexed by Y3. R
requires a space in O(m‖S‖), as |Y1 ∪ Y2| ∈ O(‖S‖) and for each seed P j ,
an entry (j, s) is inserted at most once in each R[a, c]. All together, the space
complexity is then O(m2 +m‖S‖) = O(m‖S‖).

We now describe the time complexity. First, note that following the tech-
nique used for computing maximum chains in sequence [6, 9, 12], the structures
R[lQ, lT ] can be implemented using classical data structures such as AVL or con-
catenable queues supporting query requests, insertions, successor and, predeces-
sor and deletions in a set of n totally ordered elements in O(log(n)) worst-case
time.



Now, we analyse the complexity of lines 5 to 7. The loop of line 6 is performed
at most O(m‖S‖) times and each iteration requires O(log(m)) in time (line 7),
which gives an amortized time complexity of O(m‖S‖ log(m)).

Line 10 is applied at most once for each of the O(‖S‖) chainable area Fj(i)
(Property 1), and each iteration requiresO(log(m)), which gives anO(‖S‖ log(m))
amortized time complexity.

Finally, we analyse the complexity of lines 11 to 19. First, we do not consider
the operation in line 18. The number loop starting in line 12 is performed in
O(m), and the complexity of each loop is in O(‖S‖). The cost of the opera-
tions performed during each iteration is O(log(‖S‖)) (lines 13 and 16 are both
performed in O(1) and lines 14 and 15 in time O(log(‖S‖)). The total time com-
plexity of this part, without considering line 18, is then O(m‖S‖ log(‖S‖)). To
complete the time complexity analysis, we show that the amortized complexity
of line 18 is in O(m‖S‖). Indeed, it follows from R2 that all entries removed in
one step are consecutive in the total order on R[a, c] defined in R2. Hence, if one
call to line 18 removes k elements from R[a, c], it can be done in O((k+2) log(m))
time, as the successor of a given element can be retrieved in O(log(m)) time.
As every element of R is removed at most once during the whole algorithm, this
leads to an amortized complexity of O(m‖S‖ log(m)) for line 18. Alltogether, our
algorithm solves computes MCP (Q, T ) in time O(m‖S‖ log(m)), using standard
data structures and after a preprocessing in time O(‖S‖ log(‖S‖)) to compute
the chainable areas and to sort J .

Additional remarks. If we consider that Q and T are sequences, or, as described
in Section 2, unary trees, then each of the two trees has a single leaf and each seed
is unambiguously defined by its root and border, which implies that‖S‖ = m.
There is only one R[a, c], as a = c = 0, that contains O(m) entries. Hence, all
loops that were iterating on R have now a single iteration, which reduces the
time complexity by a factor m to O(‖S‖ log(m)) = O(m log(m)).

In the complexity analysis above, we followed the approach used for express-
ing the complexity of chaining in sequences, as we expressed the complexity
only in terms of the size of the seeds. To express the complexity of our al-
gorithm in terms of the size of Q and T , a finer analysis of the data struc-
ture R and of the number of different chainable areas leads to the following
result: the worst-case space complexity of our algorithm is O(|Q|2|T |2) (simi-
lar to the algorithm of Heyne et al.), and its worst-case time complexity is in
O(‖S‖ log(‖S‖) + |Q||T | log(|T |)(|Q||T |+m)), to compare with the complexity
of the Heyne et al algorithm that is in O(‖S‖ log(‖S‖) + |Q|2|T |2(|Q||T | +m))
(see details in the Appendix). This alternative complexity analysis is mostly
of theoretical interest as in practice, for RNA analysis, one can expect that
m 0 |Q||T |.

5 Conclusion

The current paper describes algorithms to solve chaining problems in ordered
trees. With respect to similar problems in sequences, these methods exhibit a



linear factor increase both in time and space. Chains so obtained can be used to
speed-up RNA structure comparisons, as illustrated in [7, 11].

A natural question related to chaining problems, that, as far as we know,
has not been considered in the case of sequences, is to decide whether a given
seed P of a set of seeds S belongs to any optimal chains or not. However a
trade-off between quality and speed may have to be find. Indeed, identifying
these always optimal seeds would ensure a good quality of the chains, whereas
the high complexity of these identifications would slow down the detection of
similar structures in a large database.
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Appendix: remarks on the dynamic programming
algorithm of Heyne et al.

This appendix proposes a comparison of the worst-case time complexity between
chaining algorithms proposed in the current paper and in [7].

Time complexity of Heyne et al. algorithm [7]

Heyne et al. algorithm [7] considers pairs (S1, S2) of arc-annotated sequences, of
respective length n1 and n2.

This algorithm is based on processing holes in subsequences corresponding
to seeds, where a hole in an arc-annotated sequence is a part of the subsequence
spanned by a seed that does not belong to the seed. In trees, holes correspond
to the chainable areas of the border nodes of a seed. The complexity of this
algorithm is in O(hn1n2) where h is the number of different holes, n1 and n2

corresponds respectively to the hole size in S1 and S2. Due to the constraints on
the definition of seeds proposed in [7] (connected nucleotides in RNA structure),
authors claim a time complexity of O(n2

1n
2
2) as h is bounded by O(n1 × n2) [7].

Actually, this complexity do not take into account the time required to es-
tablish the holes and to sort them (holes are treated in a specific order). Thus,
the total time complexity of this algorithm is O(‖S‖ log ‖S‖+h×n1×n2) where
O(‖S‖) is the sum of seed sizes.

A worst-case complexity analysis In the following, we propose an analysis of the
complexity of Heyne et al. algorithm [7] in the case of more general seeds.

This algorithm uses dynamic programming tables indexed by holes (in fact
pairs of holes, one in each sequence defined by a seed). Given a hole h induced
by a seed and defined by the sequence S1[hL1, hR1] in S1 and the sequence
S2[hL2, hR2] in S2, Dh(j, l) is the best chain included in S1[hL1, j] in S1 and
S2[hL2, l] in S2. Each hole is then processed independently from the other ones
(in an order ensuring required information have already been computed), in
order to fill the table Dh, using the following dynamic programming equation:

Dh[j, l] = max{Dh(j − 1, l), Dh(j, l − 1), max
seed P∈h

st.P ends on j,l

{Dh(p− 1, q − 1) + SP }}

SP = v(P ) +
∑

h∈Holes of P

Dh(hR1, hR2)

where, p (resp. q) is the first base of seed P in S1 (resp. S2) and SP is the score
of the best chain included in the subsequences spanned by P in S1 and S2 and
ended by P .

We can easily transpose this recurrence on trees, using article notation, as
follow:

Dh=(a,b,c,d)[j, l] = max






Dh(j − 1, l),
Dh(j, l − 1),
maxseed P⊂(a,j,c,l)

st.(rP ,rPP )=(j,l)

{Dh(l(rP )− 1, l(rPP )− 1) + SP }








SP = v(P ) +
∑

(a,b,c,d)∈CA(P )

D(a,b,c,d)[b, d] = MCP ′(QrP , TrPP
, P 0...P )

First, let us remark that the computation of one dynamic programming ma-
trix can be done in O(n1n2 +m) as the matrix has at most n1 × n2 entries and
the search of the seeds P which ends on j, l requires a pre-processing in O(m).

Thus, assuming that holes have already been computed, the total time com-
plexity is O(‖S‖ log(‖S‖) + h× (n1n2 +m) + ‖S‖) (ie. complexity of sorting of
the holes plus the computation cost of Dh plus the computation cost of SP ).

In [7], authors design seeds that are connected nucleotides in the RNA
secondary structure either by backbone bond or base-pair bond. Hence, h is
bounded by n1n2 and the worst-case time complexity is O(‖S‖ log(‖S‖)+n1n2×
(n1n2 +m) + ‖S‖).

If we impose seed nodes to be connected in the trees (and not in RNA), which
is a special case of our seeds but different from the seeds developed by Heyne et
al., the number of different holes would be O(n2

1n
2
2) in the worst case (all possible

quadruplets (a, b, c, d)). The overall complexity of the dynamic programming
algorithm then becomes in the worst case:

O(‖S‖ log(‖S‖) + n2
1n

2
2(n1n2 +m) + ‖S‖).

Time complexity of Algorithm 2

To establish the worst-case complexity of Algorithm 2, we have to study the cost
of the algorithm for each f values. To ease the reading, we denote by n1 the size
of Q and n2 the size of T . Without loss of generality, we furthemore assume that
n2 ≤ n1.

Following invariants R1 and R2, each list of R contains at most min(m,n2)

elements, as there are no (y, s), (y′, s′) ∈ R[a, c] s.t. ryy = ry
′

y′ , and |X| ≤
min(‖S‖, n1n2). Thus, in the worst-case, we have at most O(n2

1n
2
2) different

chainable areas, |R| = O(n1n2), for all (a, c): |R[a, c]| = O(n2) and |X| =
O(n1n2).

f = −1 line 5: Over the whole execution of the algorithm eachM [a, l(rj)−1, c, l(rjj )−
1] is computed only once for all possible quadruplets as there is no (i, f, j),

(i′, f ′, j′) ∈ J such that (l(rj), l(r
j
j )) = (l(rj′), l(r

j′

j′ )). Each computation
require a search in R[a, c] that can be done in O(log(n2)). Thus, the total
time complexity for this case is O(n2

1n
2
2log(n2)).

f = 0 line 8: The computation line 10 can be store in a dedicated array M ′ such
that the best chain of the area (a, b, c, d) is computed only once. Thus, over
all the execution of the algorithm, each different chainable area requires a
search into a R[a, c] and the total time complexity for this case is O(‖S‖+
n2
1n

2
2 log(n2)).

f = 1 line 11: This case is run once peer seeds, so O(m) times. Each run cost
O(n1n2 log(n2)) and the total time complexity is O(mn1n2 log(n2)).



From above, we conclude that the worst-case time complexity of our algo-
rithm is

O(‖S‖ log(‖S‖) + n2
1n

2
2log(n2) + ‖S‖+ n2

1n
2
2 log(n2) +mn1n2 log(n2))

= O(‖S‖ log(‖S‖) + n1n2 log(n2)(n1n2 +m) + ‖S‖)
= O(‖S‖ log(‖S‖) + n1n2 log(n2)(n1n2 +m))

which represents an improvement of the worst-case complexity of Heyne et al.
algorithm [7].

To conclude, we can merge the worst-case complexity analysis with the time
complexity analysis of section 4.2 leading to the following time complexity for
Algorithm 2:

O( ‖S‖ computing the chainable areas
+‖S‖ log(‖S‖) sorting the areas
+min(m,n1n2)×min(‖S‖, n1n2)× log(min(m,n2)) f = −1 case
+‖S‖+min(‖S‖, n2

1n
2
2)× log(min(m,n2)) f = 0 case

+m×min(‖S‖, n1n2) log(min(m,n2)) f = 1 case
as |X| ≤ min(‖S‖, n1n2) and |R[a, c]| ≤ min(m,n2) for all a, c.

Appendix: Computing F (x, y) and families of seeds

The cost of the computation of the chainable areas for the border nodes of a
seed depends of the nature of this seed. We describe here an efficient algorithm
that compute the F (x, y).

Let P be a seed between two trees Q and T and let B(P ) the set of pairs
of its border nodes. For each node i of Q and T (in fact, only required for the
border nodes of P ), we suppose that we have access to the following informations
in O(1):

– l(i): the leftmost leaf of i.
– u(i): the node with the highest index such that r(u(i)) = r(i) where r(i) is

the right most leaf of i.

The nodes u(i) are often referred to as rightmost roots of the tree.
In Algorithm 3, we use B instead of B(P ) and we assume that B is an array

of k pairs of nodes on Q× T . For 0 ≤ i < k, B[i] represents the (i+ 1)th pair of
B and B[i]Q is the node Q of this pair and B[i]T is the node of T of this pair.

Algorithm 3 makes use of a stack of pair of nodes called Stack. top(Stack)
refers to the last element inserted into Stack and similarly to B, top(Stack)Q
and top(Stack)T are the node of Q and node of T of top(Stack). We write
push(Stack, (x, y)) to add (x, y) to the top of the stack and pop(Stack) remove
the last element of the stack.

The algorithm that computes F (x, y) for all pair of border nodes (x, y) of P
is presented in Algorithm 3.



Description of the algorithm. In the following, a pair of border node of P is
called shortly a pair. Pairs are traversed incrementally according to their postfix
index. Hence, descendants are visited before parents. Remind that a seed is
a valid mapping so ancestral and order relations between borders nodes are
respected. Thus, if a border node is a leaf in PQ, it is also a leaf in PT .

Before each insertion of a new chainable area into F (x, y) we test whether
the area is non-empty or not (cf. lines 6, 11, 17, 11 of Algorithm 3).

Let us call the direct descendants of a pair (x, y), the pairs (x′, y′) ∈ B(P )
such that x′ is a descendant of x (resp. y′ is a descendant of y) and there is no
border node of P in Q (resp. T ) between x′ and x (resp. y′ and y).

Except for the last pair, each time a pair is visited, it is added to the Stack
as it is necessarily the direct descendant of a none visited pair. Note that Stack
contains pairs sorted incrementally by their postfix index.

Two cases must to be considered: (1) a pair is a pair of leafs in QP , TP

((x, y) ∈ L(P )) and (2) a pair is not a pair of leafs in QP ,TP ((x, y) %∈ L(P )).
Lines 5–8 correspond to the first case and do not require additional explanations.

For the second case, the current pair (x, y) necessarily has direct descendants
in B(P ). Those descendants have been visited (lower postfix index) and thus
are in Stack. The chainable area (a, b, c, d) (possible empty) on the right of its
rightmost direct descendant (x′, y′) (a > x′ and c > y′) and the chainable area
(possible empty) (a, b, c, d) on the left of its leftmost direct descendant (x′′, y′′)
(b < x′′ and d < y′′) require a particular treatment. The possible chainable
areas between two direct descendants are considered by the loop on lines 15–
19. To compute these chainable areas, the following properties are used in the
algorithm: let (x, y) ∈ B(P )

1. Any chainable area (a, b, c, d) of (x, y) are such that b and d are children of
x and y and a and c are the leftmost leafs of children of x and y.

2. By definition, for chainable areas (a, b, c, d) of (x, y) except the one on the
right of its rightmost descendant, b and d are such that b+ 1 and d+ 1 are
the leftmost leafs of a direct descendant of x and y.

3. For chainable areas (a, b, c, d) of (x, y) except the one on the left of its leftmost
descendant, a and c are such that a − 1 and c − 1 are children of x and y
and are either border nodes or ancestor of border nodes.

As Stack is sorted incrementally, the top of the stack contains the rightmost
direct descendant of current pair. Lines 11–12 compute the chainable area on
the right of this descendant. Then, loop in lines 15–15 compute the area between
the direct descendants using the above properties. Finally, lines 21– 22 compute
the chainable area one the left the leftmost direct descendant (that is the last
pair (x′, y′) in the Stack such that x′ ≥ l(x) and y′ ≥ l(y)). Finally, remark that
all direct descendant are now out of the Stack and are replaced by the current
pair.

The time complexity of this algorithm is O(|B(P )|) as we iterate of all pair
and each pair is added only once to the Stack.

Note that our algorithm is general as it applies to any sets of seeds as defined
in Definition 2. When considering restricted families of seeds, it is possible to



design simpler, while still efficient, algorithms to compute the F (x, y) and the
chainable areas. For example if one considers only compact seeds, i.e. seeds such
that B(P ) = L(P ) for every seed P , then for each border (x, y), |F (x, y)| = 1
and the computation requires a time linear in the number of seeds. A discussion
on the issue of computing chainable areas depending of the combinatorial nature
of the considered seeds will be added in a journal version of the current work.

Algorithm 3 F (x, y): compute the F (x, y) for a seed P

1 sort B incrementally
2 foreach pair (x, y) of B do
3 F (x, y) = ∅
4 for i from 0 to k − 1 do
5 if i = 0 or B[i− 1]Q < l(B[i]Q) then #B[i] is a pair of leafs in QP and TP

6 if l(B[i]Q) ≤ B[i]Q − 1 #B[i]Q is not a leaf in Q
7 and l(B[i]T ) ≤ B[i]T − 1 then #B[i]T is not a leaf in T
8 F (B[i]) = (l(B[i]Q), B[i]Q − 1, l(B[i]T ), B[i]T − 1)
9 else #B[i]Q has at least one descendant in P that is the top of Stack

10 # the rightest chainable area of B[i]:
11 if u(top(Stack)Q) + 1 ≤ B[i]Q − 1 and u(top(Stack)T ) + 1 ≤ B[i]T − 1

then
12 F (B[i]) = (u(top(Stack)Q) + 1, B[i]Q − 1, u(top(Stack)T ) + 1, B[i]T − 1)

13 # the middle chainable areas of B[i]:
14 (x, y) = top(Stack); pop(Stack)
15 while Stack not empty and top(Stack)Q ≥ l(B[i]Q) do
16 #insert the area between (x, y) and top(Stack)Q if not empty
17 if u(top(Stack)Q) + 1 ≤ l(x)− 1 and u(top(Stack)T ) + 1 ≤ l(y)− 1

then
18 F (B[i])+ = (u(top(Stack)Q) + 1, l(x)− 1, u(top(Stack)T ) + 1, l(y)− 1)

19 (x, y) = top(Stack); pop(Stack)
20 # the leftest chainable area of B[i]
21 if l(x)− 1 ≥ l(B[i]Q) and l(y)− 1 ≥ l(B[i]T ) then
22 F (B[i])+ = (l(B[i]Q), l(x)− 1, l(B[i]T ), l(y)− 1)
23 if i < k − 1 then
24 push(Stack, ())


