
Research Article

Computation of Perfect DCJ Rearrangement Scenarios

with Linear and Circular Chromosomes

SÈVERINE BÉRARD,1,2 ANNIE CHATEAU,2 CEDRIC CHAUVE,3

CHRISTOPHE PAUL,2 and ERIC TANNIER4

ABSTRACT

We study the problem of transforming a multichromosomal genome into another using
Double Cut-and-Join (DCJ) operations, which simulates several types of rearrangements, as
reversals, translocations, and block-interchanges. We introduce the notion of a DCJ sce-
nario that does not break families of common intervals (groups of genes co-localized in both
genomes). Such scenarios are called perfect, and their properties are well known when the
only considered rearrangements are reversals. We show that computing the minimum
perfect DCJ rearrangement scenario is NP-hard, and describe an exact algorithm
which exponential running time is bounded in terms of a specific pattern used in the NP-
completeness proof. The study of perfect DCJ rearrangement leads to some surprising
properties. The DCJ model has often yielded algorithmic problems which complexities are
comparable to the reversal-only model. In the perfect rearrangement framework, however,
while perfect sorting by reversals is NP-hard if the family of common intervals to be pre-
served is nested, we show that finding a shortest perfect DCJ scenario can be answered in
polynomial time in this case. Conversely, while perfect sorting by reversals is tractable when
the family of common intervals is weakly separable, we show that the corresponding
problem is still NP-hard in the DCJ case. This shows that despite the similarity of the two
operations, easy patterns for revervals are hard ones for DCJ, and vice versa.

1. INTRODUCTION

Ageneric formulation of genome rearrangement problems is, given two genomes and some

allowed edit operations, to transform one genome into the other using a minimum number of edit

operations (Fertin et al., 2009). The solutions are used to estimate an evolutionary distance between species,

and to propose possible scenarios that could explain the differences in terms of gene order between the

considered genomes (Braga et al., 2008; Darling et al., 2008; Lemaitre et al., 2009). One of the most famous

algorithmic results related to genome rearrangements concerns the problem of sorting signed permutations by

reversals. This problem aims at computing a shortest sequence of reversals that transforms one signed

1Université Montpellier 2, UMR AMAP, Montpellier, France.
2CNRS, LIRMM, CNRS UMR55076, Université Montpellier 2, Montpellier, France.
3Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada.
4INRIA Rhône-Alpes, Université de Lyon, Lyon; Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et

Biologie Evolutive, Villeurbanne, France.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 16, Number 10, 2009

# Mary Ann Liebert, Inc.

Pp. 1287–1309

DOI: 10.1089/cmb.2009.0088

1287



permutation into another, and can be solved in polynomial time (Hannenhalli and Pevzner, 1999; Bergeron

et al., 2005; Tannier et al., 2007). It was later generalized to handle, still in polynomial time, multi-

chromosomal genomes with linear chromosomes, using rearrangements such as translocations, chromosome

fusions and fissions (Hannenhalli and Pevzner, 1995; Jean and Nikolski, 2007). Then, a general operation

called Double Cut-and-Join (DCJ), was introduced in (Yancopoulos et al., 2005). A DCJ can be, among

others, a reversal, a translocation, a fusion or a fission, but two consecutive DCJ operations can also simulate a

block-interchange or a transposition. Using this generic operation, genomes with circular and linear chro-

mosomes can be handled, as a DCJ can create circular chromosomes from linear ones.

Another way to conceive the evolution of gene orders is to consider groups of genes that are co-localized in

the genomes of different species, as these groups are likely to be present in the common ancestral genome and

not disrupted during evolution. For two permutations, such groups of co-localized genes can be modeled by

common intervals. Following the assumption that such common intervals are preserved during evolution

leads naturally to the study of rearrangement scenarios that preserve common intervals. Such scenarios,

which may not be shortest among all scenarios, are called perfect (Figeac and Varré, 2004). Computing a

reversal scenario of minimum length that preserves a given subset of the common intervals of two signed

permutations is NP-hard (Figeac and Varré, 2004) and several papers have explored this problem, describing

families of instances that can be solved in polynomial time (Bérard et al., 2004, 2007; Sagot and Tannier,

2005; Diekmann et al., 2007) and fixed parameter tractable algorithms (Bérard et al., 2007, 2008b).

When comparing algorithmic properties of the reversal and DCJ models, most problems seem to have

similar behaviors: the distance and scenario computations can be solved in polynomial time, yet the best

complexity varies for the latter by an O(
ffiffiffi
n
p

) factor (Tannier et al., 2007; Bergeron et al., 2006); the median

problems are both NP-hard (Caprara, 2003; Tannier et al., 2009); genome halving problems can be solved

in polynomial time in both models (El-Mabrouk and Sankoff, 2003; Warren and Sankoff, 2008; Mixtacki,

2008). In this paper we extend the notion of perfect scenario to the DCJ model. We define a notion of

scenario preserving common intervals that also allows to use the property of the DCJ model to create tem-

porary circular chromosomes. While the general problem of computing a shortest DCJ scenario that pre-

serves a family F of common intervals is still NP-hard, our results point to interesting differences between

the reversal and DCJ models. If the family of common intervals is nested (the intervals do not overlap), we

show that finding a perfect DCJ scenario of minimum length is solvable in polynomial time, while it is NP-

hard for reversals (Figeac and Varré, 2004); if the family is weakly separable (every interval overlaps with

some other interval or is the union of overlapping intervals) we show that the DCJ problem is NP-hard,

while this case was solved in polynomial time for reversals (Bérard et al., 2007). Table 1 sums up these

results.

The NP completeness proof relies on a specific pattern which we prove to be the only pattern that

prevents the existence of a polynomial time algorithm, by designing an algorithm whose exponential part

only depends on the presence of this pattern.

This article is organized as follows: in Section 2, we introduce genomes, DCJ operations and common

intervals and we state formally the perfect DCJ rearrangement problem. In Section 3, we define the

different properties of families of common intervals, that lead to different complexity status for the perfect

rearrangement problems. In Section 4, we state fundamental structural properties of DCJ scenarios that are

required to prove our main results, described in Sections 5 and 6. The properties described in Section 4 can

be seen as the conceptual backbone of perfect sorting by DCJ, while the precise results described in

Sections 5 and 6 require much more technical proofs. In Section 5, we prove NP-hardness of the general

prefect DCJ rearrangement problem. Then we describe in Section 6 an algorithm to solve the perfect DCJ

rearrangement problem, whose complexity is exponential only in a term that depends on the presence of a

specific pattern of common intervals, proving then that the problem is fixed parameter tractable.

Table 1. Complexity Results for the Shortest

F -Perfect Scenario Computation Problem

F nested F weakly separable

Reversal NP-complete (Figeac and Varré, 2004) Linear (Bérard et al., 2007)

DCJ Polynomial NP-complete

1288 BÉRARD ET AL.



This article is an extended version of Bérard et al. (2008a), which contains algorithms only in particular

cases of polynomial time complexity, and does not handle all cases of circular genomes. So an algorithm

solving the problem in the most general case, with wider classes of genomes where the problem is actually

polynomial, is presented here for the first time.

2. GENOMES, INTERVALS, REARRANGEMENTS, AND PERFECT SCENARIOS

2.1. Genomes and intervals

We follow the modeling of a genome introduced in Bergeron et al. (2006). A gene a is an oriented

sequence of DNA, identified by its tail at and its head ah. Tails and heads are the extremities of the genes.

An adjacency is an unordered pair of extremities of genes. A genome is a set of adjacencies on a set of

genes such that one extremity is contained in at most one adjacency. Each adjacency in a genome means

that two gene extremities are consecutive along the DNA molecule. In a genome, each gene extremity is

adjacent to zero or one other extremity. An extremity x that is not adjacent to any other extremity is called a

telomere, and can be written as a telomeric adjacency xT with a symbol T (we use the same notation for all

telomeres).

For a genome P on a set of genes, we define the graph GP: its vertex set is the set of all gene extremities,

and its edge set is composed of atah for every gene a, plus the adjacencies of P, except telomeric

adjacencies. An example of such a graph is drawn on Figure 1.

The graph GP is composed of disjoint paths and cycles. Each connected component of GP is called a

chromosome of P. A chromosome is said to be linear if it is a path, and circular if it is a cycle. A genome is

said to be linear if all its chromosomes are linear, circular if all its chromosomes are circular, and mixed if

both are allowed.

An interval of P is a set of genes I, such that the subgraph of GP induced by the extremities of genes in I

is connected. For example, {12, 4, 14, 1, 7, 8} and {14, 1, 7, 8} are intervals of genome Pex, which is

represented in Figure 1. An interval I is said to be a common interval of two genomes P and G if it is an

interval of both.

2.2. Double cut-and-joins

Given a genome P, a Double Cut-and-Join is an operation r acting on two adjacencies pq and rs of P
( p, q, r, s are gene extremities, some being possibly T symbols; in particular, we consider valid the

adjacency TT ). The DCJ operation cuts both pq and rs and joins either p with r and q with s, or p with s and

q with r, creating two new adjacencies. Examples of DCJ operations are shown in Figure 2.

A DCJ operation can reverse an interval in a genome, join two chromosomes into one (fusion), break one

chromosome into two (fission), or exchange two intervals from two different chromosomes, each of these

intervals containing a telomere (reciprocal translocation). Two consecutive DCJs may result in a block

interchange (two intervals exchange their positions), or a transposition (if these two intervals are con-

secutive): the first DCJ extracts a set of genes and creates a circular chromosome, while the second DCJ

reinserts these genes elsewhere in a chromosome. The DCJ operation is thus a very general framework,

where temporary circular chromosomes allow to simulate a wide range of genome rearrangements. It was

introduced by Yancopoulos et al. (2005), and since then it has been adopted by many others (Bergeron et al.,

2006), sometimes under the name ‘‘2-break rearrangements’’ (Alekseyev and Pevzner, 2008).

6 10

11

3
h t

t

h

t
ht

h

t

h

1312
ht h t t h t

1144 7 8
h th h

9 2 5
t h thhtt

15

16

17

18

19

20
ht

h

h
h

h

h t

t

t

t

t

FIG. 1. The graph GP
ex, where Pex is given by the union of the linear chromosome C1¼fT12t, 12h4h, 4t14t, 14h1t ,

1h7h, 7t8t , 8hTg, the circular chromosome C2¼f3t11t, 11h10t, 10h6t, 6h13h, 13t3hg, the linear chromosome C3¼fT9t ,

9h2t, 2h5h, 5tTg and the circular chromosome C4¼f15h16t, 16h17t, 17h18t, 18h19t , 19h20t, 20h15tg.

PERFECT DCJ REARRANGEMENT 1289



A sequence S of k DCJ operations transforming one genome P into another genome G is called a DCJ

scenario of length k for the two genomes. The minimum number of DCJ operations needed to transform P
into G is the DCJ-distance and denoted by d(P, G).

2.3. Perfect DCJ scenarios

The adjacencies of a genome P can be partitioned into three classes with respect to a subset I of its

genes. This distinction will be central in establishing our results.

Definition 1. Let I be a subset of genes of a genome. An adjacency pq ( p and q possibly being T

symbols) is said to be inside I if the two genes of which p and q are extremities belong to I; it is outside I if

the two genes of which p and q are extremities do not belong to I; it is a border adjacency of I (also called a

border of I) if one of the genes of which p and q are extremities belongs to I but not the other.

Notice that a T symbol does not correspond to a gene. So an adjacency involving a T symbol is either

outside I or a border of any set I of genes. An interval of a genome P has then zero or two border

adjacencies.

Definition 2. Let I be a set of genes of a genome P, which has at most two border adjacencies. A DCJ

acting on P preserves I if, in the resulting genome, I still has at most two border adjacencies. A DCJ that

does not preserve I is said to break I.

For example, in Figure 2, the DCJ operation on the left does not preserve the interval {1, 7, 8} but the

operation on the right does preserve this interval. In other words, a set of genes composed of a linear

chromosome and a (possibly empty) set of circular chromosomes is broken by a DCJ if this DCJ creates

more than one linear chromosome.

Note that in the genome resulting from a DCJ operation preserving an interval I, I may not be an interval

anymore; indeed, a proper subset of the genes that belong to I can form a circular chromosome, which

implies that the graph induced by I is not connected anymore. For example, if I¼ {1, 4, 7, 14} in the

genome Pex and a DCJ cuts adjacencies 4t14t and 1h7h and joins 1h with 14t and 4t with 7h, then this DCJ

preserves I although the subgraph induced by I in the resulting genome is not connected anymore as it

contains a path and a cycle. This definition of preserving an interval allows to use the property of the DCJ

model to create temporary circular chromosomes to simulate rearrangements such as block interchanges

and transpositions, without considering that the creation of temporary circular chromosomes breaks

common intervals.

Definition 3. Given a family F of common intervals of two genomes P and G, a DCJ scenario

transforming P into G is said to be F -perfect if every DCJ preserves all intervals in F .

The F -Perfect DCJ problem consists in, given P, G, and F , computing a F -perfect DCJ scenario of

minimum length transforming P into G. When genomes are restricted to signed permutations (they have

12 4
t hh t

cut

14
t h

12 4
t hh t

14
t h

12 4
t hh t

join

7
t h

1
h t

14
t h

812 4
t h thth

14
t h

join

cutcut cut

1 7
thht

I

8
ht

I

1 7
thht

8
ht

t

h

8 7

1

t h

h

t

FIG. 2. Two examples of DCJ operations. Left: the DCJ cuts 4t14t and 7t8t and joins 4t7t and 14t8t (it is a reversal).

Right: the DCJ cuts 14h1t and 8hT and joins 14hT and 8h1t. This operation produces a circular chromosome. The first

operation breaks the interval I¼f1, 7, 8g whereas the second preserves it.

1290 BÉRARD ET AL.



only one chromosome) and circular chromosomes are not allowed, this definition coincides with the one of

perfect scenarios of reversals (Figeac and Varré, 2004; Bérard et al., 2004, 2007, 2008b; Sagot and Tannier,

2005; Diekmann et al., 2007).

3. FAMILIES OF COMMON INTERVALS

We now consider some properties of families of sets that can be satisfied by sets of common intervals of

two genomes. We distinguish two cases: the first case concerns the common intervals of linear chromo-

somes or circular chromosomes with different gene contents, the second case concerns common intervals of

circular chromosomes with equal gene contents. This distinction is necessary to present convenient defi-

nitions of the properties, but does not change much the general algorithm.

Weakly partitive and weakly bipartitive families of intervals. Weakly partitive and weakly bi-

partitive families of intervals were introduced in Cunningham and Edmonds (1980). They are useful

combinatorial tools often involved in problems concerning modular decomposition of graphs. Here we need

to introduce them to characterize the families of common intervals we want to preserve in a perfect DCJ

scenario.

In general, given a subset I of a set E, the complementary subset of I is denoted �II E¼E n I. Two subsets I,

J of E are said to overlap if none of I \ J, I \ J, J \ I is empty. Two subsets I, J of E are said to bi-overlap if

the two bipartitions (I, �II E) and (J, �JJ E) overlap, which occurs when none of I \ J, I \ �JJ E, J \ �II E and �II E \ �JJ E

is empty.

A family F of subsets of E is weakly partitive if it contains all singletons of E and E itself, and if for

every two overlapping subsets I and J of F , I [ J, I \ J, I \ J and J \ I belong to F . Given a family F , we

denote by F p the smallest weakly partitive family that contains F .

A family F of subsets of E is weakly bipartitive if it contains all singletons of E and E itself, and I 2 F if

and only if �IIE 2 F , and for every two bi-overlapping subsets I and J of F , I [ J, I \ J, I \ J and J \ I belong

to F . Given a family F , we denote by F b the smallest weakly bipartitive family that contains F .

Property 1. (de Montgolfier, 2003; McConnell and de Montgolfier, 2005). The family of all common

intervals of two linear chromosomes is weakly partitive, and the family of all common intervals of two

circular chromosomes having the same gene content is weakly bipartitive.

Nested and weakly separable families of intervals. In a weakly partitive family of common

intervals, a common interval I of two genomes P and G is called strong if I does not overlap any other

common interval. It is maximal if it is strong and not contained in another common interval.

Definition 4. A family F is called nested 1 if every element of F is strong (note this implies that

F ¼F p). A family F of common intervals is called weakly separable2 if every strong interval of F with at

least three elements is the union of two overlapping intervals of F .

Note that if F is weakly separable, it does not imply that F p is weakly separable. Note also that, as soon

as there are intervals of F with at least three elements, the nested property and the weakly separable

property are mutually exclusive, i.e., F cannot be both weakly separable and nested.

The decomposition tree of weakly partitive families. Let F be a family of common intervals of

two genomes P and G, such that F does not cover circular chromosomes with equal gene content. By

definition, the sub-family of strong intervals of F p is nested. It follows that we can represent the strong

common intervals of P and G by a forest, in which each node is a strong common interval of F p, and its

1Note that this definition of nested common intervals differs from the one given in Hoberman and Durand (2005),
where a common interval of size k is nested if it contains common intervals of length 1, 2, . . . , k� 1:

2The terminology weakly separable is inspired by the notion of separable permutations. In separable permutations,
the common intervals with the identity have the property (Bouvel & Rossin, 2006). The converse is not true however,
justifying the term ‘‘weakly.’’

PERFECT DCJ REARRANGEMENT 1291



children are the maximal strong common intervals of F p it properly contains (Bérard et al., 2007; Hsu and

McConnell, 2003). Each component of this forest is a rooted tree, in which the root is a maximal common

interval of P and G. An example of such a tree is given in Figure 3. Given a maximum common interval,

the tree can be computed in linear time and space (Bergeron et al., 2008). A node of the forest of strong

intervals is called prime if it has at least three children and it properly contains no common interval

including more than one of its children. The node is linear if it has two elements or it is the union of two

overlapping common intervals, both containing a subset of its children. An important property of weakly

partitive families is that any strong interval of F p corresponds to a node which is either prime or linear

(Bérard et al., 2007).

Property 2. If a family F is nested, then all nodes of the decomposition forest of F p with at least three

children are prime. Furthermore, if a family F is weakly separable, then the decomposition forest of F p has

no prime node whose parent is a prime node.

Proof. If F is nested, then trivially F p¼F and as no two intervals overlap, no node of the decom-

position tree with at least three children may fit the linear definition. Now if F is weakly separable, suppose

F p contains a prime node which is the parent of a prime node N. Then N is not in F , otherwise it is the

union of overlapping intervals, so cannot be prime. Then N is the intersection, union or difference of

intervals of F . If it is the intersection or the difference of two intervals of F , then there are two different

overlapping intervals included in the parent of N, which thus cannot be prime. If it is the union of two

overlapping intervals, then it is not prime itself. &

We do not need to discuss the decomposition tree of weakly bipartitive families, that is known as PC-tree

(Hsu and McConnell, 2003), as one of the fundamental properties we describe in Section 4 is that handling

these families can be reduced to handling weakly partitive families.

Previous results on perfect rearrangement problems. It is known (Figeac and Varré, 2004) that,

given a nested family of common intervals F of two permutations, it is NP-hard to compute a perfect

scenario of reversals of minimum length. Conversely, if F is weakly separable, by Property 2, the algo-

rithm described in Bérard et al. (2007, 2008b) computes an F -perfect reversal scenario in polynomial time.

We prove here the exact opposite results for multichromosomal genomes with DCJ operations. While the

hurdle in rearranging genomes by reversals are prime nodes, they are linear nodes of certain types for DCJ

rearrangement problems.

12, 4, 14, 1, 7, 8

12 4 14 1 7 8

4, 14, 1, 7

FIG. 3. The tree that represents the strong common intervals of the maximal common interval I¼f12, 4, 14, 1, 7, 8g
of Pex and Gex, given by the union of C01¼fT12t, 12h14h, 14t7h, 7t4t, 4h1h, 1t8t , 8h2t, 2h6t, 6hTg, C02¼fT9t, 9h3t, 3h10t,

10h5t, 5h11h, 11t13h, 13tTg and C03¼f15h19t, 19h18t, 18h17t, 17h20h, 20t16t, 16h15tg. Prime nodes are surrounded by

an ellipse, while linear nodes are framed by a rectangle.

1292 BÉRARD ET AL.



4. PROPERTIES OF SHORTEST DCJ SCENARIOS

We present in this section several fundamental results on the DCJ distance that will be required to prove

the hardness of the perfect DCJ rearrangement problem and to describe our algorithm. The first subsection

describes known results on the DCJ distance. The next two subsections describe basic properties of perfect

sorting intervals with DCJ: we show that the problem can be reduced to consider only strong intervals of

weakly partitive families, and that these strong intervals can be considered independently of each other.

Finally, we introduce the central notion of the ‘‘sorting direction’’ of an interval, which is the main

difference with the problem of perfect sorting by reversals.

4.1. Computing a shortest DCJ scenario

To compute the DCJ distance, we use the breakpoint graph BP(P, G) of two genomes P and G defined

on the same set of genes. This graph, traditionally used in the problem of sorting by reversals (Hannenhalli

and Pevzner, 1999), is the graph whose vertex set is the set of extremities of the genes, and in which there is

an edge between two vertices x and y if xy is an adjacency in either P (these are P-edges) or G (G-edges).

Note that T symbols do not participate. Vertices in this graph have degree zero, one or two; so the graph is a

set of paths and cycles, where some paths may have no edge (Fig. 4).

The DCJ-distance is immediately readable from the breakpoint graph, as stated by Theorem 1, that

restates the main result of Bergeron et al. (2006) in terms of the breakpoint graph instead of the adjacency

graph.3

Theorem 1. (Bergeron et al., 2006). For two genomes P and G with n genes, let c(P, G) be the number

of cycles of the breakpoint graph BP(P, G), and p(P, G) be the number of paths with an even number of

edges (including trivial paths with no edge). The DCJ distance is

d(�, �)¼ n� c(�, �)þ p(�, �)

2

� �
:

4.2. The independence of sorting a single interval

We now prove a lemma on the possibility of doing the DCJs inside an interval independently of the DCJs

outside, which is an equivalent, for the DCJ model, of a lemma stated for reversals in Figeac and Varré

(2004).

Definition 5. We say that a common interval I is sorted in a genome P with respect to a genome G if

the set of adjacencies inside I in P contains the set of adjacencies inside I in G. If a DCJ scenario results in

a genome where I is sorted, we say that this scenario sorts I with respect to G.

t h h t t h t h h t t h

12 4 14 1 7 8
t h h

13 6
t

10
h t h

11
t t

3
h t h t h h t

9 2 5
h h h h h ht t t t t t

15 16 17 18 19 20

FIG. 4. The breakpoint graph of the genomes Pex given by the union of C1¼fT12t, 12h4h, 4t14t, 14h1t, 1h7h,

7t8t, 8hTg, the circular chromosome C2¼f3t11t, 11h10t, 10h6t, 6h13h, 13t3hg, the linear chromosome C3¼fT9t, 9h2t ,

2h5h, 5tTg and the circular chromosome C4¼f15h16t, 16h17t, 17h18t, 18h19t, 19h20t , 20h15tg. and Gex, given by the

union of C01¼fT12t, 12h14h, 14t7h, 7t4t, 4h1h, 1t8t, 8h2t, 2h6t , 6hTg, C02¼fT9t, 9h3t, 3h10t , 10h5t, 5h11h, 11t13h, 13tTg
and C03¼f15h19t, 19h18t, 18h17t, 17h20h, 20t16t, 16h15tg. Pex-edges are dotted lines, and Gex-edges are plain lines.

3The breakpoint graph BP(P, G), introduced for permutations in Hannenhalli and Pevzner (1999), is the line-graph
of the adjacency graph introduced in Bergeron et al. (2006).

PERFECT DCJ REARRANGEMENT 1293



Note that in the definition above, we do not say that I is sorted with respect to G if the set of adjacencies

inside I in P equals the set of adjacencies inside I in G. Indeed we also consider the case where I forms a

circular chromosome in P and not in G, in which case there is an additional adjacency inside I in P.

We now distinguish different ways a DCJ acts on an interval I, following the classification of adjacencies

described in Definition 1.

Definition 6. A DCJ r cuts inside I if it cuts either two inside adjacencies or one inside and one border

adjacency. On the contrary, a DCJ r cuts outside I if it cuts either two outside adjacencies, one outside and

one border adjacency, two border adjacencies, or one inside and one outside adjacency in the case I does

not have any border adjacency.

Property 3. A DCJ operation preserves I if and only if it cuts inside or outside I.

Proof.
1. If a DCJ operation preserves I then it cuts inside or outside I. Suppose that a DCJ D does not cut inside nor

outside I, then by Definition 6, I has two border adjacencies, say i1o1 and i2o2 and D cuts one inside adjacency,

say pq and one outside adjacency say rs, with i1, i2, o1, o2, p, q, r, s being gene extremities. i1, i2, p, q are

extremities of genes belonging to I and o1, o2, r, s are extremities of genes outside I. The DCJ D removes the

adjacencies pq and rs, and creates either pr and qs, or ps and qr. In the two cases, these two new adjacencies are

border adjacencies of I, leading I to have four border adjacencies. Thus by Definition 2, D breaks I.

2. If a DCJ operation cuts inside or outside I then it preserves I. Cutting inside or outside an interval does not change

its number of border adjacencies except cutting outside an interval I if I has no border adjacency, in this latter case,

I has 2 border adjacencies in the resulting genome. So it follows immediately from Definition 2 that if a DCJ

operation cuts inside or outside I then it preserves I. &

Lemma 1. If a DCJ scenario S0 transforming a genome P into a genome G does not break a common

interval I, then there exists a DCJ scenario S¼ S1S2 of same length as S0 for which all operations in S1 cut

inside I and all operations in S2 cut outside I.

Proof. Let S0 be a DCJ scenario of length k between two genomes P and G. No operation breaks

interval I, so by Property 3, every operation cuts inside or outside I. In a scenario of length k, each operation

has a numbered position from 1 to k. Let S be the scenario with the same length as S0, such that among all

such scenarios, the sum of the positions of all operations cutting inside I is minimized. Suppose that in S

there is an operation cutting inside I that occurs after an operation not cutting inside I. In this case, let A and

B be two consecutive operations such that B cuts inside I and not A. If A and B cut four adjacencies with no

gene extremity in common, then simply exchanging the positions of A and B in S gives another scenario

transforming P into G and the sum of the positions of all operations cutting inside I is strictly less than in S,

contradicting the definition of S.

So A and B have some common points, one adjacency broken by B and one adjacency broken by A share

a common gene extremity. We show now that we can replace A and B by two DCJs C and D such that, C

cuts inside I, D cuts outside I and applying C and D instead of A and B produces the same result (i.e. the

same set of adjacencies). The proof contains two cases depending on the shape of I (note that the second

case is not relevant if I is a circular chromosome in both genomes).

1. First case: I contains two border adjacencies and possibly l� 0 circular chromosomes. As A cuts outside I and

shares a common point with B then A cuts an outside adjacency, say sr, and one of the border adjacencies of I,

say pq with p inside I and q outside. A creates one border adjacency, say b1 and one outside adjacency, say o with

(o, b1) 2 f(rq, sp), (sq, rp)g. As B cuts inside I and shares a common gene extremity with A, then B cuts an inside

adjacency, say tu and the border adjacency created by A : b1. B creates an inside adjacency, say i, and a border

adjacency, say b2 with (i, b2) 2 f( pt, su), ( pu, st), ( pu, rt), ( pt, ru)g. We define the DCJ C that cuts pq and tu to

create i and b3, with (i, b3) 2 f( pt, qu), ( pu, qt)g and the DCJ D that cuts sr and b3 to create o and b2. C cuts

inside I, D cuts outside I and applying C and D instead A and B produces the same result.

2. Second case: I does not contain any border adjacencies and l� 1 circular chromosomes. As A cuts outside I and

shares a common point with B then A cuts an outside adjacency, say sr, and an inside adjacency, say vw. A creates

two border adjacencies b1 and b2 with (b1, b2) 2 f(sv, rw), (sw, rv)g. As B cuts inside I and shares a common

1294 BÉRARD ET AL.



gene extremity with A, then B cuts an inside adjacency, say tu and one of the border adjacencies created by A. B

creates an inside adjacency, say i, and a border adjacency, say b3 with (i, b3) 2 f(tv, su), (uv, st), (uw, rt), (tw, ru),

(uw, st), (wt, su), (tv, ru), (uv, tr)g. We define the DCJ C that cuts tu and vw to create i and i0, with (i, i0) 2
f(tv, wu), (tw, uv)g and the DCJ D that cuts sr and i0 to create b1 and b2. C cuts inside I, D cuts outside I and

applying C and D instead A and B produces the same result. &

4.3. Families of intervals

We now show that, for any family F of common intervals of two genomes, computing a perfect DCJ

scenario for F can be reduced to computing a perfect DCJ scenario for a weakly partitive family of

common intervals. We first consider both the cases of weakly partitive and bi-partitive families, as bi-

partitive families are the natural combinatorial framework for circular chromosomes with equal gene

content.

Property 4.
1. For any family F of common intervals of two genomes P and G such that no interval of F is equal to the gene

content of both a circular chromosome of P and a circular chromosome of G, a DCJ scenario transforming P
into G is F -perfect if and only if it is F p-perfect.

2. For any family F of common intervals of two unichromosomal circular genomes P and G on the same

set of genes G, if [I2F I¼G, a DCJ scenario transforming P into G is F -perfect if and only if it is F b-

perfect.

Proof.
1. Obviously if a scenario is F p-perfect, then it is F -perfect, as F � F p.

Let S be a F -perfect scenario transforming P into G. Let I and J be two overlapping intervals of F belonging to

S. At some stage of the scenario, I and/or J may contain circular chromosomes. Let i1 and i2 be the two border

adjacencies of I if I does not only contain circular chromosomes, and j1 and j2 be the two border adjacencies of

J, if J does not only contain circular chromosomes. Without loss of generality, if I\ J does not only contain

circular chromosomes, let j1 2 I and i2 2 J. Thus, for every K 2 fI [ J, I \ J, I n J, J n Ig, either K is composed

of one or more circular chromosomes and so has no border adjacency or K has two border adjacencies:

—i1 and j2 if K¼ I[ J;

—j1 and i2 if K¼ I\ J;

—i1 and j1 if K¼ I \ J;

—i2 and j2 if K¼ J \ I.

For every K 2 fI [ J, I \ J, I n J, J n Ig, a DCJ breaks K if and only if K has two border adjacencies and the

DCJ cuts an inside adjacency of K and an outside adjacency of K (see Def. 6 and Prop. 3). This DCJ creates two

new border adjacencies of K, these new border adjacencies are also new border adjacencies of I and/or J

(depending on which interval K is and if K¼ I[ J depending on where is the cut inside adjacency). Thus if a

DCJ breaks K 2 fI [ J, I \ J, I n J, J n Ig then it breaks I and/or J. Therefore a DCJ that does not break I nor J

does not break K 2 fI [ J, I \ J, I n J, J n Ig. So S is F p-perfect.

2. Obviously if a scenario is F b-perfect, then it is F -perfect, as F � F b.

Let S be a F -perfect scenario transforming P into G. Let I and J be two bi-overlapping subsets of F belonging

to S. By definition, if I and J bi-overlap, they overlap. Thus, as demonstrated for the previous case, if S does not

break I nor J then S does not break any K for K 2 fI [ J, I \ J, I n J, J n Ig. It remains to be shown that if S

does not break I, S does not break �II E. Note that I has no border adjacency if and only if �II E has no border

adjacency and that I has two border adjacencies if and only if �II E has two border adjacencies, in this latter case I

and �II E have the same border adjacencies. A DCJ D breaks �II E if and only if �II E has two border adjacencies and D

cuts an inside adjacency of �II E, say p, and an outside adjacency of �II E, say q. As I and �II E are complementary

subsets in E, p is outside I and q is inside I, so D breaks I. Therefore a DCJ that does not break I does not break
�IIE. So S is F b-perfect. &

So we may assume that families of common intervals we consider are either weakly partitive or weakly

bipartitive (in the case where both genomes contain a circular chromosome with the same gene content

which is covered by non-trivial common intervals to be preserved).

Assume now that the two genomes P and G have a circular chromosome with the same gene content, say

X, and that the family F of common intervals to be preserved covers X. Without any loss of generality,

PERFECT DCJ REARRANGEMENT 1295



we consider that P and G are the circular chromosomes, and F is the weakly bipartitive closure of the set

of common intervals between P and G that must be preserved. We show now how we can handle these

circular chromosomes using a weakly partitive family.

Conceptually, the general idea, a classical trick in the theory of partitive families, consists in rooting the

(unrooted) decomposition tree of F at an arbitrary leaf (corresponding to a gene x of X), which results in

the decomposition tree of a weakly partitive family. So let x be an arbitrary gene of X. We define F �xx as the

subfamily of F containing all common intervals I that do not contains the gene x. Let ��xx
lin (resp. ��xx

lin) be the

linear chromosome obtained from P (resp. G) by cutting the gene x (Fig. 5).

The following lemma is the main result of this section, as it implies that, given any pair of genomes P
and G and family F of common intervals, computing an F -perfect scenario requires only to consider a

weakly partitive family.

Lemma 2. A DCJ scenario transforming P into G is F -perfect if and only if it is a F �xx-perfect scenario

transforming ��xx
lin into ��xx

lin.

Proof. One direction is trivial: as F �xx is a subset of F , any F -perfect scenario is also F �xx-perfect.

Conversely, suppose that a scenario transforming ��xx
lin into ��xx

lin is not a F -perfect scenario transforming P
into G. This means that it breaks an interval I of F . If this interval does not contain x, then it belongs to F �xx

and the scenario is not F �xx-perfect. Now suppose I contains x. As the scenario is not perfect, there is a DCJ

that cuts inside and outside I. The adjacency inside I is outside �II and the adjacency outside I is inside �II. So

the DCJ breaks �II as well which, by definition of F , belongs to F . As �II does not contain x it also belongs to

F �xx. Thus the scenario is not F �xx-perfect. &

4.4. The sorting direction of an interval

Lemma 1 states that any scenario preserving an interval I can start by sorting I. Here, we state that there

are typically three different ways of sorting an interval I. First, once sorted, I can have either 0 border

adjacencies (it forms a circular chromosome) or 2. In the latter case, the two gene extremities of I that

belong to a border adjacency in G can form adjacencies with the two gene extremities outside of I that

frame I in P in two ways. These three situations define the three possible orientations, or sorting directions

of I. The fundamental problem in perfect rearrangement problems is then, for a given interval, to decide to

which direction it has to be sorted, or equivalently, to determine the exact set of adjacencies involving

genes in I that have to be constructed from P using DCJs.

In the reversal model, where only two sorting directions are allowed as circular chromosomes are not

considered, this decision was at the heart of the hardness of perfect sorting (Figeac and Varré, 2004; Bérard

et al., 2007, 2008b), as for some intervals it was impossible to decide which orientation was the most

parsimonious. Here we extend such results to the DCJ model and show that the ability to sort an interval

into a circular chromosome has for consequence that one of the three available choices is always more

parsimonious. This point is central in the fact that some hard problems in the reversal model become

tractable when using DCJs instead of reversals.

ab

xx

x

a b
hhht t t

t

h

t

h

t

h

FIG. 5. Transforming a circular chromosome into a linear chromosome by cutting a gene.

1296 BÉRARD ET AL.



Let I be a common interval of two genomes P and G. If I has border adjacencies in P let xP and yP be

the extremities of genes that are not in I and belong to the two border adjacencies of I in P (they may be T

symbols). If I has no border adjacencies in P, let xP¼ yP¼ T. If I has border adjacencies in G, let mG and

MG be the extremities of genes that are in I and belong to the two border adjacencies of I in G. Figure 6

illustrates these notations.

We wish to sort the interval I with respect to G, that is we want to obtain a genome P0 from P which

contains every adjacency inside I in G. The following property is immediate.

Property 5. If P has been sorted by DCJs that cut only inside an interval I, resulting in a genome P0,
then only one of the three following situations can occur:

1. xPmG and MGyP are adjacencies in P0,
2. xPMG and mGyP are adjacencies in P0,
3. mGMG and xPyP are adjacencies in P0.

Definition 7. Given I, xP, mG , MG and yP, we say that I is sorted positively if Property 5.1 holds,

negatively if Property 5.2 holds or neutrally if Property 5.3 holds. The way I is sorted is called its sorting

direction or orientation in P0.

We denote by PjIþ (resp. PjI� and PjIN) the genome obtained from P, in which I is sorted positively

(resp. negatively and neutrally) with respect to G. Note that PjIN contains a circular chromosome. It is clear

that d(�jI � , �jI þ )¼ d(�jI � , �jIN)¼ d(�jI þ , �jIN)¼ 1.

Remark 1. The sorting direction of a common interval I, when it is positive or negative, depends on

the choice of which gene extremity that is not in I but belongs to a border adjacency of I in P is called xP
(resp. yP and which gene extremity that is not in I but belongs to a border adjacency of I in G is called mG

(resp. MG). However, we stress that these two choices have no influence, as the sorting direction is

unambiguously defined by the border adjacencies of I in the genome resulting from sorting I. For example,

let I¼f2, 3g, �¼fT1t, 1h2t, 2h3t, 3h4t, 4h5t, 5hTg and �¼fT5t, 5h3t, 3h2t, 2h1t, 1h4t, 4hTg. Sorting I with

respect to P involves creating the adjacency 3h2t. Assume that I is sorted and the two border adjacencies in

the resulting genome are 1h2h and 3t4t (this resulting genome is then fT1t, 1h2h, 2t3h, 3t4t, 4h5t, 5hTg). If

xP¼ 1h, yP¼ 4t, mG¼ 2h and MG¼ 3t, then I has been sorted positively. However, if the choice for xP and

yP had been different (xP¼ 4t, yP¼ 1h), then the sorting direction of I is negative. This illustrates the fact

that the sorting direction depends on a decision that is specific to I (the choice of which gene extremities are

labeled xP, yP, mG and MG), and then, without loss of generality, we take that decision arbitrarily for every

strong interval.

Lemma 3. Let P and G be two genomes and let I be a set of genes that has two border adjacencies in G
and at most two in P. Then one and only one of the three following possibilities holds:

1. d(�, �jI þ )¼ d(�, �jI � )� 1¼ d(�, �jIN)� 1 and d(�, �)¼ d(�, �jI þ )þ d(�jI þ , �);

2. d(�, �jI � )¼ d(�, �jI þ )� 1¼ d(�, �jIN)� 1 and d(�, �)¼ d(�, �jI � )þ d(�jI � , �);

3. d(�, �jIN)¼ d(�, �jI þ )� 1¼ d(�, �jI � )� 1 and d(�, �)¼ d(�, �jIN)þ d(�jIN , �).

FIG. 6. Notations for the definition of sorting directions.

PERFECT DCJ REARRANGEMENT 1297



Proof. Let Gþ, G� and GN be the respective breakpoint graphs of genomes P and, respectively, PjIþ,

PjI�, and PjIN. We must consider three cases: &

1. Neither xP nor yP are T symbols (in other words xP and yP are vertices in the breakpoint graphs). The three

breakpoint graphs are identical for every edges, except that Gþ contains the edges xPmG and MGyP, whereas G�

contains the edges xPMG and mGyP, and GN contains the edges mG MG and xPyP. Each of these four vertices, in

either of these three graphs, has degree 2, so deleting from one graph the two edges joining the vertices xP, MG,

mG, yP yields two paths coupling these four vertices two by two, and this matching is independent of which

graph is considered. According to which couples are joined by a path, one of the three graphs Gþ, G� and GN has

one more cycle than the two others. Suppose for example that xP and mG are joined by a path, and MG and yP are

joined by a path, then Gþ has two cycles involving those vertices, whereas G� and GN have only one. As the

three graphs are identical everywhere else, the formula of Theorem 1 yields d(P,PjIþ)¼ d(P,PjI�) �1¼
d(P,PjIN) �1. The two other cases, where xP - MG and mG - yP are joined by paths, or xP - yP and mG - MG are

joined by paths, are symmetric.

2. xP or yP is a T symbol (but not both) (in other words, I is a linear chromosome extremity and then I has at least

one border adjacency that is a telomeric adjacency). Suppose that yP is a T symbol (the case where xP is a T

symbol is symmetric). Let MP be the gene extremity of I involved in its telomeric adjacency (there is a special

case if MP¼MG or if MP¼mG explained at the end of this item). In the three breakpoint graphs Gþ, G� and GN:

— Some vertices have degree 0, the ones representing the gene extremities of P involved in telomeric adja-

cencies, except MP;

— Two vertices have degree 1: MP in the three graphs and

� MG in Gþ,
� mG in G�,
� xP in GN;

— Every other vertices have degree 2.

The three graphs differ only by one edge, say e, between the vertices MG , mG and xP:

— e¼ xP�mG in Gþ,

— e ¼ xP�MG in G�,

— e ¼ mG�MG in GN;

If we delete the edge e from the graphs, we obtain four vertices of degree 1 which define two paths C1 and C2. In

two out of the three graphs, the edge e joins the paths C1 and C2 to form a longer path C, and in the third graph e

closes one of these two paths, then producing a cycle, and does not modify the other path, say Ci with i 2 f1, 2g. In

this last graph, there is one more cycle than in the other two but we must verify that the paths C and Ci have the

same parity to use the formula of Theorem 1. Remember that in these breakpoint graphs there are two classes of

edges: the P-edges and the PjIx-edges, with x 2 fþ , � , Ng, and that in every path or cycle, consecutive edges

never belong to the same class. So every cycle has even length and a path beginning and finishing by edges of the

same class (resp. from different classes) has odd (resp. even) length. Suppose that I contains k genes, in the three

graphs the vertex set can be split into two sets A and B. A contains the 2k gene extremities of I plus xP and B

contains all the vertices representing gene extremities not belonging to I except xP. All the vertices of B have

either a degree 0 or are involved in a cycle of length 2. We are interested in the edges incident to the vertices of A

and more precisely to the ones belonging to C1 and C2. All 2kþ 1 vertices of A have degree 2 except two of

them, so the sum of the degrees of these vertices is 2* (2k� 1)þ 2¼ 4k and the number of edges incident to

these vertices is then 2k. Among these edges, some of them can be involved in cycles, but as a cycle has even

length, the number of edges belonging to C1 and C2 plus e is even. Without loss of generality, say that C1 is the

even-length path and C2 the odd-length path. Looking more precisely at the four vertices at the extremities of C1

and C2:

— MP is incident to a PjIx-edge;

— The other degree one vertex before the removal of e is incident to a P-edge;

— e is a PjIx-edge, so the two vertices incident to e are also incident to a P-edge.

Therefore, MP is incident to a PjIx-edge, and MG , mG and xP are incident to a P-edge in either of the three

graphs after the removal of e. So, the path with extremity MP has even length (it is C1), whereas the other, C2,

has odd length. The edge e either joins C1 and C2 or closes the path C2 (it cannot close C1 as C1 begins with a

PjIx-edge). We thus check that C and Ci have the same parity. Suppose that Gþ is the graph with the cycle more

than the other two, the formula of Theorem 1 yields d(�, �jI þ )¼ d(�, �jI � )� 1¼ d(�, �jIN )� 1. The two

other cases are symmetric.

1298 BÉRARD ET AL.



For the special case where MP¼MG (resp. MP¼mG ), Gþ (resp. G�) has a degree 0 vertex instead of two

degree 1 vertices (the two other graphs keep the same structure). This vertex is a path of length 0, so even, and

this is in this graph that e forms a cycle with C2.

3. Both xP and yP are T symbols (in other words I has no border adjacency in P). In this case, the three graphs are

identical except that GN has an additional edge joining M G to mG. This edge creates a cycle where in the other

two graphs there is a odd-length path. Therefore, the formula of Theorem 1 yields d(�, �jIN )¼ d(�, �jI þ )�
1¼ d(�, �jI � )� 1.

Let S be a scenario that sorts I positively in d(P,PjIþ) operations. We prove now that all operations in S

create an adjacency that is in G but not in P. By Theorem 1, this implies that all operations in S are optimal,

and then d(�, �)¼ d(�, �jI þ )þ d(�jI þ , �). Suppose there is an operation r in S that does not create such

an adjacency of G, and that r cuts adjacencies ab and cd and joins ac and bd. Let r0 be the DCJ following r
in S and assume that r0 creates an adjacency of G. We can replace r and r0 by two DCJs that results in the

same genome and such that the second one does not create an adjacency in G: if r0 cuts neither ac nor bd,

then we can simply swap r and r0, while, if r0 cuts ac and xy and joins ax and cy, then we can replace r and

r0 by two DCJs, one that first cuts ab and xy and joins ax and by, then a second one that cuts by and cd and

joins cy and bd. So we can assume without loss of generality that there is a point in S where all adjacencies

of G inside I have been created, and all other operations come after. But here I is sorted, so no other

operation is needed. This proves that each DCJ operation is optimal. &

To summarize this section, to compute a prefect DCJ scenario:

— only the strong intervals of a weakly partitive family need to be preserved (Lemma 2),

— sorting an interval I of such a family only requires to create the adjacencies that are inside this interval in G, which

can be done independently of sorting the strong intervals that are not included in I (Lemma 1),

— for each strong interval I, the fundamental question is to decide its sorting direction and there is only one

parsimonious choice for this direction (Lemma 3),

— and finally, once this choice has been done, the classical greedy approach for sorting by DCJ can be applied to sort

I (proof of Lemma 3).

These properties are at the heart of the results we describe in the next two sections.

5. F WEAKLY SEPARABLE: A HARDNESS RESULT

In general, the problem of F -perfect DCJ rearrangement is hard, and even with weakly separable

families of common intervals. This is the DCJ version of the NP-hardness for perfect sorting by reversals

(Figeac and Varré, 2004), but it contrasts with the fact that perfect sorting by reversals with a weakly

separable family of common intervals can be done in linear time (Bérard et al., 2007) (the decomposition

tree of a weakly separable family of common intervals has no pairs of adjacent prime nodes).

Theorem 2. The F -perfect DCJ problem is NP-hard, even if F is weakly separable.

Proof. We use a reduction from the NP-complete Balanced Graph Decomposition (BGD) problem,

which was used in Caprara (2003) to prove the hardness of some reversal problems.

A graph G is balanced bicolored if is has only vertices of degree 2 and 4, and its edges are colored in red

and blue such that, for each vertex v, there are as many blue edges as red edges incident to v. A cycle of G is

said to be an alternating cycle if two consecutive edges do not have the same color. Given a balanced

bicolored graph and an integer k, the BGD problem consists in deciding whether its edge set can be

partitioned into k alternating cycles.

We first describe how to transform, in polynomial time, an instance of the BGD problem, i.e., a balanced

bicolored graph G, into the breakpoint graph BP(P,G) of two genomes. We then identify a set F of

common intervals of P and G for which the size of an F -perfect DCJ scenario depends on the number of

vertices of G and the number of alternating cycles.

To build BP(P, G) from a balanced bicolored graph G, each degree 2 (resp. 4) vertex of G is transformed

into two (resp. 8) vertices of BP(P, G) which can be seen as the extremities of genes of P and G (Fig. 7).

PERFECT DCJ REARRANGEMENT 1299



— For each degree 2 vertex u of G, we define two gene extremities uh and ut such that uhut is an adjacency of P. One

of the two edges of G incident to u becomes incident to uh and the other to ut. These two edges will correspond to

G adjacencies.

— For each degree 4 vertex v of G, we define 8 genes extremities, say v1
h, v1

t , v2
h, v2

t , v3
h, v3

t , v4
h, v4

t . The blue edges of

G incident to v are transformed into G adjacencies incident to v3
h and v4

h, while the red edges incident to v become

G adjacencies incident to v1
t and v2

t . Moreover we create two new G adjacencies, namely v2
hv3

t and v1
hv2

t , and four

new P adjacencies v1
hv4

h, v3
t v4

t , v1
t v2

h and v3
hv2

t .

By construction, the G and P adjacencies form two perfect matchings of G0, and thus define two

genomes without telomeres. The union of these two sets of adjacencies defines the breakpoint graph

BP(P, G).

Also by construction, for any degree 4 vertex of G, the subsets of genes fv1, v2g, fv2, v3g and fv1, v2, v3g
are common intervals of the genomes P and G. Let us denote by F this set of common intervals. Formally:

F ¼ffv1, v2g, fv2, v3g, fv1, v2, v3g j v is a degree 4 vertex of Gg

Only the intervals of type {v1,v2,v3} are strong intervals, and they are the union of overlapping intervals,

so this family is weakly separable. Then the genomes P and G together with F form an instance of the F -

perfect DCJ problem, with a weakly separable family of common intervals. It remains to relate the number

of cycles in G to the perfect DCJ distance of the reduced instance, which is done in Lemma 4 below and

concludes the proof of Theorem 2.

Lemma 4. Let G be a balanced bicolored graph with n2 degree 2 vertices and n4 degree 4 vertices and

let G, P be the genomes resulting from the reduction described above. There is an F -perfect DCJ scenario

of length k for P, G if and only if there are n2þ 5n4� k alternating cycles in G.

Proof. ()) Suppose there is an F -perfect scenario of length k. By Lemma 1 it can be assumed that this

scenario sorts a linear strong interval {v1,v2,v3} first. This interval may be sorted positively, negatively or

neutrally. The number of operations to sort it positively or neutrally is 3, while the number of operations to

sort it negatively is 2, but it is impossible to sort it negatively in less than 4 operations while preserving

{v1,v2} and {v2,v3}. So we may assume that the scenario sorts it positively or neutrally. Consider the step of

the scenario where all such intervals are sorted either positively or neutrally. The breakpoint graph is then a

set of cycles, and the G-edges of these cycles form alternating red/blue edge cycles in G. So k¼ 3n4þ d,

where d is the number of remaining operations to do. And we have d¼ n� c by Theorem 1 and because the

genomes have no telomeres, with n¼ n2þ 2n4. So k¼ n2þ 5n4� c, and there are n2þ 5n4� k alternating

cycles in G.

(() Suppose there are n2þ 5n4� k alternating cycles in G. For each degree 4 vertex, it is possible to find

two couples of blue/red edges, according to the edges that are incident in the cycles. Now construct a

h
u

v

v

v

v

v

v

v

v

v

3

4 4
h

h

h

h t

t

t

t

2 2

3

11

u ut

FIG. 7. On the left, u and v are vertices of the balanced bicolored graph G (blue edges are thick, while the reds are

thin). On the right hand-side of the figure it s depicted how vertices u and v transform in the breakpoint graph BP(G,P).

The dotted edges are P adjacencies.

1300 BÉRARD ET AL.



scenario that sorts every linear strong interval {v1,v2,v3} either neutrally or positively to match either v4hv4t

and v1
t v3

h, or v4tv
3
h and v1

t v4h, according to the incident edges that need to be paired. This scenario needs 3n4

DCJs. And the remaining DCJs are 2n4þ n2� (n2þ 5n4� k)¼ k� 3n4, so the scenario needs exactly k

DCJs. &

6. AN EXACT ALGORITHM

We now present an exact algorithm to compute a shortest DCJ scenario between two genomes P and G
that preserves a weakly partitive family F of common intervals. We first describe the general structure of

this algorithm, then the details of each major step. This algorithm can be decomposed into three main steps:

We first describe steps 1 and 3, that use known techniques and algorithms, before proceeding to step 2,

that is the core of our new method.

Step 1: Defining a set of independant subproblems. In this first step, we break down the shortest

perfect DCJ-scenario problem into a set of subproblems defined in terms of maximal common intervals. To

do so, we first compute the set of all maximal common intervals of P and G, by computing the common

connected components of GP and GG. Indeed, an interval is defined as a connected subgraph, and common

connected components are exactly the maximal subgraphs that are connected in both graphs. Efficient

techniques for this step can be found in Habib et al. (2004) for example.

By definition of common intervals, every interval F belongs to such a maximal common interval and we

denote by F IM
the subset of the intervals of F that are included in a maximal common interval IM. If IM is

the gene content of a circular chromosome of P and one in G, then, we choose an arbitrary gene inside IM

and linearize the circular chromosome. Otherwise, following Property 4.1, we compute the rooted de-

composition tree of F p
IM

. Decomposition trees can be computed efficiently (see proof of Theorem 3). We

denote by T (F , �, �) the forest of decomposition trees.

By definition of maximal common intervals, and by Lemma 1, we can now process each problem

associated to a maximal common interval IM independently of the other ones.

Step 3: Sorting adjacencies outside maximal common intervals. After Step 2 has been com-

pleted, all adjacencies of G that were inside maximal common intervals of P and G have been resolved by a

sequence of DCJ operations that preserved all common intervals of F . Therefore, to complete the sorting of

P into G, we only need to create the adjacencies of G that are not in any maximal common interval. This

may be done by applying any algorithm computing DCJ scenarios, the fastest and simplest being the one of

Bergeron et al. (2006). This requires linear time.

Step 2: Sorting inside a maximal common interval. We now consider a maximal common

interval IM and a rooted decomposition tree of a weakly partitive family of common intervals of P and G
included in IM. The general principle of this step is to sort these common intervals in a bottom-up way,

during a post-order traversal of the decomposition tree. For a given node I of the decomposition tree,

following Lemma 1 we can indeed assume that its children have been sorted (i.e., all adjacencies of G
inside its children have been created). Moreover, from this assumption, we can assume that we do not need

to consider DCJs that cut inside any child J of I. This yields Algorithm 2.

Algorithm 1 Computing an F -Perfect DCJ scenario between genomes P and G

Step 1. For each maximal common interval IM, compute the decomposition tree of the strong intervals that are

included in IM.

Step 2. For each of these decomposition trees, during a post-order traversal of this tree, sort each node I assuming its

children have been sorted using Algorithm 2.

Step 3. Finally, after all maximal common intervals have been sorted, compute a parsimonious series of DCJs that

creates all the remaining adjacencies of G, that are not inside any maximal common interval.

PERFECT DCJ REARRANGEMENT 1301



Lemma 5. Given two genomes P and G, a family F of common intervals and a maximal element IM of

F , Algorithm 2 computes a DCJ scenario that sorts IM with respect to G and preserves all the intervals of

F contained in IM. Moreover, no scenario can sort IM while preserving F in fewer operations and no

scenario achieves the same number of operations and sorts IM in another direction.

Proof. Every maximal common interval IM is sorted using Algorithm 2, which sorts every child I of IM

in the decomposition tree rooted by IM. For every child I� IM, I belongs to the family F and the algorithm

uses only DCJ operations inside I and outside its children to sort it, so it preserves every interval I 2 F .

Now we may prove that no scenario sorts any strong interval I (so it is true also for IM) in fewer

operations.

We analyze each case separately.

Case 1. The interval I is prime.

The interval I has two border adjacencies in G, and we suppose the algorithm sorts I positively (the other

cases are symmetric). By Lemma 3, it uses d(P,P \ Iþ) operations, and no scenario may sort I in fewer

operations. Again by Lemma 3, d(�, � n I þ )¼ d(�, � n I � )� 1¼ d(�, � n IN)� 1 so it is not possible to

sort I in another direction in the same number of operations.

Case 2. The node corresponding to I is linear. We subdivide this case following the successive

conditions in the algorithm, illustrating each case with a figure.

— Case 2.1 (Fig. 8) If there is at least one child of I that is sorted positively, then the breakpoint graph of P and P \

Iþ has at least two components, and the edges bordering the positive elements do not belong to the same cycle.

There is one less cycle in BP(P \ I�,G) and BP(P \ IN,G), so d(�, � n I þ )¼ d(�, � n I � )� 1¼ d(�, � n IN )� 1

and flipping all non positive elements to positive is perfect, and takes d(P,P\Iþ) operations.

Algorithm 2 F -Perfect sorting of a maximal common interval IM of genomes P and G, given the strong interval

tree T of a family F IM
of common intervals in IM

LET P0 ¼P
FOR each interval I� IM of P and G in a post-order traversal of T

{Note: all children of I are sorted}

Case 1. I is prime

Compute k¼ min (d(�0, �0 n I þ ), d(�0, �0 n I � ), d(�0, �0 n IN))

Sort I with k DCJs inside I and outside its children using Bergeron et al. (2006)

Case 2. I is linear

Give one of the possible two orders to the children of I

For each child of I, let xP and mG correspond to the adjacencies linking it to the

previous one in the chosen order, and yP, MG correspond to the adjacencies

linking it to the following one in the chosen order

Case 2.1 At least one child of I is sorted positively

Sort I by flipping to positive all non positive children

Case 2.2 All children of I are sorted neutrally

Sort I neutrally by joining the consecutive children

Case 2.3 One child of I is sorted negatively, and all others neutrally

Sort I by flipping to negative all neutral children

Case 2.4 Two children are sorted negatively, and all others neutrally

Create a circular chromosome from I by cutting its two border adjacencies.

Join all the neutral children to the circular chromosome

Case 2.5 Three children are sorted negatively, and all others neutrally

Try two possibilities:

1. Sort I positively by flipping all children to positive,

2. Independently, Sort I neutrally by performing three operations

Note: this part yields an exponential running time.

Case 2.6 At least four children are negative, and all others are neutral

Sort I positively by flipping all children to positive

LET P0 denote the resulting genome.

1302 BÉRARD ET AL.



— Case 2.2 (Fig. 9) If all k children of I are sorted neutrally, then BP(P \ IN,G) has one cycle whose edges are

inside I but not inside its children, while BP(P \ Iþ,G) and BP(P \ I�,G) both have one odd path, so by Theorem 1

d(�, � n IN )¼ d(�, � n I þ )� 1¼ d(�, � n I � )� 1, and k� 1 perfect DCJ operations sort I neutrally. All of

them construct an adjacency of G that is not an adjacency in P, so d(P,P \ IN)¼ k� 1.

— Case 2.3 (Fig. 10) If one child of I is sorted negatively, while all k� 1 others are sorted neutrally, then

the breakpoint graph of P and P \ I� has at least two components, and the edges bordering the negative

element do not belong to the same cycle. There is one less cycle in BP(P \Iþ,G) and BP(P \IN,G). So

d(�, � n I � )¼ d(�, � n I þ )� 1¼ d(�, � n IN)� 1¼ k� 1 and flipping all neutral elements to negative by

creating an adjacency at each time is perfect, and takes d(P,P \ I�) operations.

— Case 2.4 (Fig. 11) If two children X and Y are sorted negatively, while all k� 2 others are sorted neutrally, then

let ax and yb be the two border edges of I if they exist. Then there is a path in BP(P \ I,G) joining x and y and not

containing the middle edge, which is adjacency between X and Y. So BP(P \ IN,G) has one more cycle than BP(P
\Iþ,G) and BP(P \I�,G), and there is a perfect scenario sorting I in k� 1 DCJs. In the case I is the gene content of

a circular chromosome, that is, I has no border adjacencies, then there is no orientation choice to make, and we

still have d(�, � n IN)¼ d(�, � n I þ )� 1¼ d(�, � n I � )� 1¼ k� 2, so the only optimal way to sort I is to join

every small circular chromosome into the larger one containing two children at the beginning.

— Case 2.5 (Fig. 12) Three children are sorted negatively, while all the others are sorted neutrally. If I has border

adjacencies, then we meet here the exponential part of the algorithm. There are two ways to sort I in three

operations plus the number of neutrally sorted children: one positively, and one neutrally. It is the pattern which

proves the NP-completeness of the result. As the algorithm tries both possibilities, it is clearly optimal (note it is

possible to sort negatively in two operations plus the number of neutrally sorted children, but the first operation is

not perfect).

— Case 2.6 (Fig. 13) At least four children are sorted negatively, while all the others are sorted neutrally.

Claim 1. Every DCJ preserving the common intervals that cuts two adjacencies belonging to the linear

component of I cuts the two border adjacencies of one single element or the border adjacencies of a

whole linear component of I.

Proof. Suppose it cuts at two adjacencies which are not the two border adjacencies of a single element

nor the border adjacencies of the whole component. Then there are at least two children X and Y of I

between the two adjacencies and one child Z not between the two adjacencies (suppose without loss of

generality that Z is before X and X is before Y ). Then in the resulting genome, the minimal interval

containing X and Z has at least three border adjacencies: at both sides of Z, and after X. So one common

interval is not preserved. &

FIG. 8. Case 2.1: there is at least one child of I that is sorted positively.

PERFECT DCJ REARRANGEMENT 1303



Claim 2. In the case of a linear node, in any optimal perfect scenario, at least one negative child of I is

sorted positively.

Proof. Indeed, let J be a child of I which is sorted negatively and has one predecessor (say J� 1) and

one successor (say Jþ 1) in the order given to the children of I. As there are at least four negative

children, there are at least two such nodes J. The two border adjacencies of J have to be cut because they

are in P but not in G. By Claim 1, this can be achieved by cutting the two border adjacencies of J, Jþ 1

or J� 1. If none of these are sorted positively during a scenario, the only other possibility is to sort them

neutrally. Suppose one is sorted neutrally. Then there remain three negative children. With the analysis

of Case 2.5 above, we know that three operations plus the number of neutrally sorted children is

necessary to sort the interval. This gives four operations plus the number of initially neutrally sorted

children plus one, since we have sorted neutrally one additional child. This is more than what is needed

to sort all children positively. &

So in the case of a linear node, one negative child of I is sorted positively. By the analysis of Case 2.1,

the fastest way to complete the scenario is to sort all children positively one by one. &

Theorem 3. Let P and G be two genomes on n genes, and F be a family of common intervals of P and

G. Let ‘ be the number of linear nodes in T (F , �, �). A minimum F -perfect scenario that transforms P into

G can be computed in time O(2‘n2).

Proof. The correctness of the algorithm follows directly from Lemma 3 and Lemma 5, and we only

need to address the complexity of the algorithm.

Computing the common connected components of two graphs composed of paths and cycles is achieved

in linear time (Habib et al., 2004). This gives the maximal common intervals. Computing the forest of

decomposition trees can also be done in linear time (Hsu and McConnell, 2003).

In Algorithm 2, there is at most a constant number of DCJ distance computations performed at each node of

the strong interval tree of I, and each can be performed in linear time (Bergeron et al., 2006). However, due to

the case when three children are sorted negatively and all others are sorted neutrally, and that we need to

complete the sorting of the maximal common interval I with two different ways to sort I, there can be in the

worst case 2‘ scenarios sorting I that are computed, the shortest one being kept, each involving O(n) DCJ

FIG. 9. Case 2.2: all children of I are sorted neutrally.

1304 BÉRARD ET AL.



distance computations, so O(2‘m2) worst-case time on each maximal common interval containing m genes.

Altogether, for all maximal common intervals, as they are processed independently, this gives a complexity

of O(2‘n2) for the second step.

It then remains to create the adjacencies ofG that are not in any maximal common interval and are not inP0

and for that task, as we do not require to preserve any common interval, we can use the algorithm of Bergeron

et al. (2006). By Lemma 3, every maximal common interval is sorted with a minimum number of operations,

and one operation is enough to sort it in another direction. So if a minimum perfect scenario S betweenP andG
requires to sort a maximal common interval I in a direction that is not chosen by the algorithm, it takes one

additional operation to sort I in this direction (i.e. to correct the direction it has been sorted into by our

algorithm). This implies that S is not shorter than the perfect DCJ scenario obtained with our algorithm, which

proves the fact that our algorithm computes a minimum perfect DCJ scenario. &

Note that the exponential complexity is expressed in terms of linear nodes, unlike in the case of reversals

where it was linked to prime nodes (Bérard et al., 2007, 2008b). Moreover, the required pattern is very

specific and it can be expected that it happens rarely. Finally, as a consequence, if a forest of decomposition

trees does not contain any linear node, the algorithm computes in polynomial time a perfect scenario that is

also a shortest scenario.

Corollary 1. Let P and G be two genomes on n genes, and a family F of common intervals of P and G.

If T (F , �, �) does not contain any linear node, in particular if F is nested, a minimum F -perfect scenario

of length d(P,G) can be computed in time O(n2).

Proof. The time complexity of the scenario computation follows from Theorem 3. So it remains to

prove that the number of DCJ operations in the computed scenario is d(P,G). It follows from Theorem 1

and the fact that any DCJ operation in a scenario computed by our algorithm creates an adjacency of G as

we use the optimal algorithm of Bergeron et al. (2006). &

This result then defines a class of instances where a perfect scenario is also parsimonious. These

instances are defined only in terms of the structure of the considered common intervals and not in terms of

their breakpoint graph, which differs from similar results in the reversal model (Bérard et al., 2004; Sagot

FIG. 10. Case 2.3: one child of I that is sorted negatively, the others are sorted neutrally.

PERFECT DCJ REARRANGEMENT 1305



and Tannier, 2005; Diekmann et al., 2007). For example, if the family is nested, the algorithm runs in

polynomial time.

7. CONCLUSION

We proved in this paper that F -perfect sorting by DCJ is NP-hard in general, and even if F is a weakly

separable family of common intervals. On the other hand, it has a polynomial time solution when F is

nested. This contrasts with perfect sorting by reversals that is hard if F is nested, and easy if F is a weakly

FIG. 11. Case 2.4: two children of I are sorted negatively, the others are sorted neutrally.

OR

FIG. 12. Case 2.5: three children of I are sorted negatively, the others are sorted neutrally.

1306 BÉRARD ET AL.



separable. The key to these results is the ability of DCJ to create temporary circular chromosomes, that was

already the important factor in the fact that sorting with DCJ is simpler than with reversals (Bergeron et al.,

2006). This illustrates that the DCJ model, both by its combinatorial simplicity and its pertinence for

modeling genome rearrangements, offers an interesting way to attack several genome rearrangement

problems (Mixtacki, 2008; Warren and Sankoff, 2008).

We also described a fixed parameter polynomial time algorithm for the problem of perfect DCJ re-

arrangement, using the patterns used in the NP-hardness proof as a parameter. It runs precisely in O(2‘n2),

where ‘ is the number of times the algorithm runs into the configuration of a linear or circular node with

three negative children and all other children neutral. The parameter ‘ is naturally bounded from above by

the number of circular or linear nodes in the forest of decomposition trees. The average-time complexity of

our algorithm is still open, and could be attacked with techniques similar than the ones used in Bouvel et al.

(2009).

A natural problem that could benefit from such an algorithm is the perfect reversal median (Bernt et al.,

2007), or perfect DCJ-median.

It is also tempting to investigate the relationships between the general DCJ model and the reversal/

translocation/block-interchange model, as those two models have always been considered to be mostly

equivalent, since two DCJs simulate block-interchanges. But computing a perfect scenario seems to be a

case where these two models differ. Indeed, transforming chromosome {T3t, 3h2t, 2h1t, 1hT} into {T1t, 1h2t,

2h3t, 3hT} can be achived by one obvious block-interchange, which trivially preserves all common inter-

vals. However, the two double cut-an-joins that simulate this block-interchange always break some

common interval, so a perfect DCJ scenario has at least three operations. A polynomial algorithm for

perfect rearrangement by reversals and block-interchanges is still possible and the question remains open.

Finally, the algorithm we describe for nested families of common intervals runs in quadratic time, but we

think there is a linear time solution, with a smart treatment of prime nodes.

ACKNOWLEDGMENTS

We would like to thank Fabien de Montgolfier for his kind answer to some of our questions on bipartitive

families and the reviewers for a very careful reading of the manuscript. C. Chauve is supported by grants

FIG. 13. Case 2.6: at least four children of I are sorted negatively, the others are sorted neutrally.

PERFECT DCJ REARRANGEMENT 1307



from NSERC and SFU. C. Paul is supported by the ANR (grant ANR-O6-BLAN-0148-01 ‘‘GRAAL’’).

E. Tannier is funded by the ANR (grant ANR-08-GENM-036-01 ‘‘CoGeBi’’). A. Chateau is supported by

the ANR (grant BLAN07-1_185484 ‘‘CoCoGen’’).

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Alekseyev, M., and Pevzner, P. 2008. Multi-break rearrangements and chromosomal evolution. Theor. Comput. Sci.

395, 193–202.

Bérard, S., Bergeron, A., and Chauve, C. 2004. Conservation of combinatorial structures in evolution scenarios. LNCS/

LNBI 3388, 1–14.

Bérard, S., Bergeron, A., Chauve, C., et al. 2007. Perfect sorting by reversals is not always difficult. IEEE/ACM Trans.

Comput. Biol. Bioinform. 4, 4–16.

Bérard, S., Chateau, A., Chauve, C., et al. 2008a. Perfect DCJ rearrangements. LNCS 5267, 158–169.

Bérard, S., Chauve, C., and Paul, C. 2008b. A more efficient algorithm for perfect sorting by reversals. Inform. Proc.

Letters 106, 90–95.

Bergeron, A., Mixtacki, J., and Stoye, J. 2005. Mathematics of Evolution and Phylogeny. Oxford University Press,

New York.

Bergeron, A., Mixtacki, J., and Stoye, J. 2006. A unifying view of genome rearrangements. LNCS/LNBI 4175, 163–173.

Bergeron, A., Chauve, C., de Montgolfier, F., et al. 2008. Computing common intervals of k permutations, with

applications to modular decomposition of graphs. SIAM J. Discrete Math. 22, 1022–1039.

Bernt, M., Merkle, D., and Middendorf, M. 2007. A fast and exact algorithm for the perfect reversal median. LNCS/

LNBI 4463, 305–316.

Bouvel, M., and Rossin, D. 2006. The longest common pattern problem for two permutations. Pure Math. Appl. 17,

55–69.

Bouvel, M., Chauve, C., Mishna, M., et al. 2009. Average-case analysis of perfect sorting by reversals. LNCS 5577,

314–325.

Braga, M., Sagot, M.-F., Scornavacca, C., et al. 2008. Exploring the solution space of sorting by reversals with

experiments and an application to evolution. IEEE/ACM Trans. Comput. Biol. Bioinform. 5, 348–356.

Caprara, A. 2003. The reversal median problem. INFORMS J. Comp. 15, 93–113.

Cunningham, W., and Edmonds, J. 1980. A combinatorial decomposition theory. Can. J. Math. 32, 734–765.

Darling, A., Mikls, I., and Ragan, M. 2008. Dynamics of genome rearrangement in bacterial populations. PLoS

Genet. 4.

de Montgolfier, F. 2003. Décomposition modulaire des graphes. Théorie, extensions et algorithmes [Ph.D. dissertation].

Université Montpellier II, France.

Diekmann, Y., Sagot, M.-F., and Tannier, E. 2007. Evolution under reversals: parsimony and conservation of common

intervals. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 301–109.

El-Mabrouk, N., and Sankoff, D. 2003. The reconstruction of doubled genomes. SIAM. Comput. 32, 754–792.

Fertin, G., Labarre, A., Rusu, I., et al. 2009. Combinatorics of Genome Rearrangements. MIT Press, Cambridge, MA.

Figeac, M., Varré, J.-S. 2004. Sorting by reversals with common intervals. LNCS/LNBI 3240, 26–37.

Habib, M., Paul, C., and Raffinot, M. 2004. Common connected components of interval graphs. LNCS 3109, 347–358.

Hannenhalli, S., and Pevzner, P. 1999. Transforming cabbage into turnip: polynomial algorithm for sorting signed

permutations by reversals. J. ACM 46, 1–27.

Hannenhalli, S., and Pevzner, P.A. 1995. Transforming men into mice: polynomial algorithm for genomic distance

problem. FOCS 581–592.

Hoberman, R., and Durand, D. 2005. The incompatible desiderata of gene cluster properties. LNCS/LNBI 3678, 73–87.

Hsu, W.-L., and McConnell, R.M. 2003. PC trees and circular-ones arrangements. Theor. Comput. Sci. 296, 99–116.

Jean, G., and Nikolski, M. 2007. Genome rearrangements: a correct algorithm for optimal capping. Inform. Proc. Lett.

104, 14–20.

Lemaitre, C., Braga, M., Sagot, M.-F., et al. 2009. Footprints of inversions at present and past pseudoautosomal

boundaries in human sex chromosomes. Genome Biol. Evol. (in press).

McConnell, R., and de Montgolfier, F. 2005. Algebraic operations on pq-trees and modular decomposition trees. 31st

Int. Workshop Graph-Theoretic Concepts Comput. Sci.

1308 BÉRARD ET AL.



Mixtacki, J. 2008. Genome halving under DCJ revisited. LNCS 5092, 276–286.

Sagot, M.-F., and Tannier, E. 2005. Perfect sorting by reversals. LNCS 3595, 42–51.

Tannier, E., Bergeron, A., and Sagot, M.-F. 2007. Advances on sorting by reversals. Discrete Appl. Math. 155, 881–

888.

Tannier, E., Zheng, C., and Sankoff, D. 2009. Multichromosomal median and halving problems under different

genomic distances. BMC Bioinform. 10, 120.

Warren, R., and Sankoff, D. 2008. Genome halving with double cut and join. APBC 231–240.

Yancopoulos, S., Attie, O., and Friedberg, R., 2005. Efficient sorting of genomic permutations by translocation,

inversion and block interchange. Bioinformatics 21, 3340–3346.

Address correspondence to:

Dr. Eric Tannier

INRIA Rhônes-Alpes

Laboratoire de Biométrie et Biologie Evolutive

Université de Lyon 1

43 boulevard du 11 novembre 1918

Villeurbanne F-69622, France

E-mail: Eric.Tannier@inria.fr

PERFECT DCJ REARRANGEMENT 1309




