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1 Introduction

Genomes of contemporary species, especially eukaryotes, are the result of
an evolutionary history, that started with a common ancestor from which
new species evolved through evolutionary events called speciations. One of
the main objectives of molecular biology is the reconstruction of this evo-
lutionary history, that can be depicted with a rooted binary tree, called a
species tree, where the root represents the common ancestor, the internal
nodes the ancestral species and speciation events, and the leaves the ex-
tant species. Other events than speciation can happen, that do not result
immediately in the creation of new species but are essential in eukaryotic
genes evolution, such as gene duplication and loss [12]. Duplication is the
genomic process where one or more genes of a single genome are copied,
resulting in two copies of each duplicated gene. Gene duplication allows
one copy to possibly develop a new biological function through point mu-
tation, while the other copy preserves its original role. A gene is said to
be lost when it has no function or is fully deleted from the genome. (See
[12] for example). Other genomic events such as lateral gene transfer, that
occurs mostly in bacterial genomes, will not be considered here. Genes
of contemporary species that evolved from a common ancestor, through



speciations and duplications, are said to be homologs [9] and are grouped
into a gene family. The evolution of a gene family can be depicted with a
rooted binary tree, called a gene tree, where the leaves represent the ho-
mologous contemporary genes, the root their common ancestral gene and
the internal nodes represent ancestral genes that have evolved through
speciations and duplications.

Given a gene tree G and the species tree of the corresponding genomes
S, an important question is to locate in S the evolutionary events of spe-
ciations and duplications. A reconciliation between G and S is a mapping
of the genes (extant and ancestral) of G onto the nodes of S that induces
an evolutionary scenario, in terms of speciations, duplications and losses,
for the gene family described by G. In this perspective, the notion of rec-
onciliation was first introduced in the pioneering work of [10] and a first
formal definition was given in [17] to explain the discrepancies between
genes and species trees. The LCA-mapping, that maps a gene u of G onto
the most recent species of S that is ancestor of all genomes that contain
a gene descendant of u, is the most widely used mapping, as it depicts
a parsimonious evolutionary process according to the number of dupli-
cations or duplications and losses it induces. It is widely accepted that
parsimony is a pertinent criterion in evolutionary biology, but that it does
not always reflects the true evolutionary history. This lead to the defini-
tion of more general notions of reconciliations between a gene tree and
a species tree [2, 11, 1] and the natural problem of exploring non-optimal
(for a given criterion) reconciliations, and then alternative evolutionary
scenarios for gene families.

The main concern of our work is the development of algorithms for ex-
ploring the space of the reconciliations between a gene tree and a species
tree. After introducing a very general notion of reconciliation (Section 2),
we describe in Section 3 an algorithm that generates a random reconcil-
iation under the uniform distribution, in Section 4.1 combinatorial oper-
ators that are sufficient to explore the complete space of reconciliations
between a gene tree and a species tree, and in Section 4.2 an algorithm
that explores exhaustively this space and computes in optimal time the
distribution of reconciliation scores in the duplication, loss, and mutation
(duplication + loss) cost models. (All proofs will be given in a future
technical report [6]). There are several applications of our algorithms in
functional and evolutionary genomics, such as inferring orthologs and
paralogs [8, 14], the gene content of an ancestral genome [16], or in the
context of Markov Chain Monte Carlo analysis of gene families [1]. We
illustrate our algorithms with experiments on simulated gene families in



Section 5 computed using duplication and loss rates taken from [13]. Our
experiments suggest that, at least for some real datasets, the use of a
parsimony model may be justified.

2 Preliminaries

Let T be a binary tree with vertices V (T ) and edges E(T ), and such that
only its leaves are labeled. Let r(T ), L(T ), and Λ (T ) respectively denote
its root, the set of its leaves, and the set of the labels of its leaves. We will
adopt the convention that the root is at the top of the tree and the leaves
at the bottom. A species tree S is a binary tree such that each element of
Λ (S) represents an extant species and labels exactly one leaf of S (there
is a bijection between L(S) and Λ (S)). A gene tree G is a binary tree.
From now on, we consider a species tree S, with |V (S)| = n and a gene
tree G such that Λ (G) ⊆ Λ (S) and |V (G)| = m. Let σ : L(G) → L(S)
be the function that maps each leaf of G to the unique leaf of S with the
same label.

For a vertex u of T , we denote by u1 and u2 its children and by Tu

the subtree of T rooted at u. For a vertex u ∈ V (T ) \ {r(T )}, we denote
by p(u) its parent. A cell of a tree T is either a vertex of T or an edge of
T . Given two cells c and c′ of T , c′ ≤T c (resp. c′ <T c) if and only if c is
on the unique path from c′ to r(T ) (resp. and c 6= c′); in such a case, c′ is
said to be a descendant of c. The LCA-mapping M : V (G) → V (S) maps
each vertex u of G to the unique vertex M(u) of S such that Λ(SM(u)) is
the smallest cluster of S containing Λ (Gu).

Definition 1. A reconciliation between a gene tree G and a species tree
S is a mapping α : V (G) → V (S) ∪ E(S) such that

1. (Base constraint) ∀u ∈ L(G), α (u) = M(u) = σ(u).
2. (Tree Mapping Constraint) For any vertex u ∈ V (G) \ L(G),

(a) if α (u) ∈ V (S), then α (u) = M(u).
(b) If α (u) ∈ E(S), then M(u) <S α (u).

3. (Ancestor Consistency Constraint) For any two vertices u, v ∈ V (G),
such that v <G u,
(a) if α (u) , α (v) ∈ E(S), then α (v) ≤S α (u),
(b) otherwise, α (v) <S α (u).

Remark 1. This definition of reconciliation differs slightly from the classi-
cal ones as vertices of G can be mapped onto edges of S, in order to repre-
sent duplication events (see explanations below). However, it is equivalent
to the definitions given in [1, 11], that are the most complete ones known
so far, and it is more general than the Inclusion-Preserving mapping of [2].



The whole set of reconciliations between a gene tree G and a species
tree S is denoted Ψ(G,S). A reconciliation α of Ψ(G,S) implies an evo-
lutionary scenario for the genes of G in terms of gene duplications, gene
losses, and speciations. A vertex u of G that is mapped onto an edge
(x, y) of S (where x = p(y)) represents a gene of the ancestral species
p(y) that has been duplicated in y. If u is mapped onto an internal vertex
x of S, then this represents a gene that will be present in a single copy
in the two genomes x1 and x2 following a speciation event that happened
to x. It is important to point out that the number of reconciliations is
finite. Briefly, a reconciliation α between G and S represents any birth-
and-death scenario along S such that the resulting gene tree is consistent
with G and each duplication event that implies an internal node u of G

is consistent with the mapping α(u). (See Figure 1).
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Fig. 1. (a) Left: gene tree G. Right: species tree S. The arrows represent the LCA-
mapping between G and S. (b) A reconciliation between G and S. The red circles
represent speciation events, and the green squares, duplications. (c) A birth-and-death
scenario that is consistent with the reconciliation. A cross represents a gene loss. The
right lineage of the first duplication has no extant gene that descents from it, as opposite
to its left lineage. We then say that this duplication is hypothetical, because it is not
a useful information for the evolutionary scenario of the extant genes of G along S.
Hence, such duplication is not depicted by the reconciliation.



We denote by dup(α) and los(α) respectively the number of duplica-
tions and losses induced by a reconciliation α. dup(α) is the number of
vertices of G that are mapped onto an edge of S (see below 3). Given two
cells c, c′ ∈ V (S)∪E(S), where c′ <S c, D(c, c′) is the number of vertices
x ∈ V (S) such that c′ <S x <S c. Also, if c = c′, then D(c, c′) = 0. The
number of losses associated to a vertex u ∈ V (G) \ L(G) is noted lu and
equal to D

(

α(u), α(u1)
)

+ D
(

α(u), α(u2)
)

(see [15] for example). los(α)
is then the sum of lu over all internal vertices u. The third constraint of
Definition 1 leads to the notion of forced duplication, that corresponds
to vertices of G that can only be mapped onto an edge of S: an internal
vertex u ∈ V (G) \ L(G) is said to be a forced duplication if and only if
M(u) = M(u1) or M(u) = M(u2).

For a vertex u ∈ V (G), a cell of S covers it if u can be mapped onto
this cell according to Definition 1. The set of cells that can cover it is
denoted by A(u) and is defined below.

A(u) =











{

M(u)
}

if u ∈ L(G) or u = r(G)
{

c ∈ E(S) : M(u) <S c
}

if u is a forced duplication
{

c ∈ E(S) : M(u) <S c
}

∪ {M(u)} otherwise

It is important to point out that there is three mappings that are
considered here: M(u), α(u), and A(u). From now on, except when indi-
cated, the term mapping will refer to the reconciliation mapping α(u) of
Definition 1.

Finally, combinatorial and probabilistic criteria can be used to com-
pare the different possible reconciliations and pick one that is supposed
to reflect the most the true evolution of G according to S. Three parsimo-
nious cost models, that aim to minimize the number of genomic events,
have been proposed so far: duplication [15], loss [4], and mutation (dupli-
cation+loss) [15]. Arvestad et al. also introduced a notion of likelihood of
a reconciliation in the framework of birth-and-death processes [1].

3 Counting and uniform random generation

In this section, we describe an efficient algorithm that computes a random
reconciliation between G and S following the uniform distribution. This

3 To consider duplication that preceds the first speciation event represented by r (S),
we can insert in S an “artificial” cell c such that r(S) <S c. For space reason, we
assume here that no duplication occurs in the most ancestral species. The details to
account for such early duplications will be described in the full version of this paper.



problem is important in the context of MCMC analysis for gene families,
as a major issue is to analyze if the Markov chain converges to the true
posterior probabilities. One of the most popular and simple tests of con-
vergence is to run several Markov chains, each starting at a different state
in the space, which motivates our random generation algorithm.

As usual in uniform random generation, it is based on a preprocess-
ing that computes the cardinality of Ψ(G,S) [5]. We first address this
problem, then describe the random generation algorithm.

For every node u ∈ V (G) and cell c ∈ A(u), we denote by Nb(u, c)
the number of reconciliations of Gu and Sc for which u is mapped on c.
It follows immediately that |Ψ(G,S)| = Nb

(

r (G) , r (S)
)

.

Lemma 1. Let u ∈ V (G) and c ∈ A(u) be a cell that covers u. Then

Nb(u, c) = 1 if u ∈ L(G), and otherwise

Nb(u, c) =
∑

c1∈A(u1), c1≤Sc

Nb(u1, c1)
∑

c2∈A(u2), c2≤Sc

Nb(u2, c2). (1)

Proposition 1. |Ψ(G,S)| can be computed in O(mn) time and space.

It follows from the work [4] that there is a single optimal reconciliation
for the loss and mutation costs, but that there can be several ones for the
duplication cost. Building on Lemma 1, we also get the following result,
that is of interest with respect to this point.

Proposition 2. The number of reconciliations of Ψ(G,S) that minimizes

the duplication cost can be computed in O(mn) time and space.

The algorithm 1.1 below computes a random reconciliation between
G and S. For a node u ∈ V (G) and a cell c ∈ A(u), let f(c) (d(c)) be the
ancestor (resp. descendant) cell of c in A(u), that is the cell of A(u) that
is the closest one to c and above (resp. below) it. The lowest cell of A(u)
is the one that has no descendant cell in A(u).

Theorem 1. Given a reconciliation α ∈ Ψ(G,S), Algorithm 1.1 returns

α with probability 1

|Ψ(G,S)|
. Given the table Nb and the sets A(u) for every

node u of G, it can be implemented to run in O(mn) space and Θ(mn)
time in the worst case and Θ(m) time in the best case.

Hence, the preprocessing time of our algorithm (computing the ta-
ble Nb and the sets A(u)) requires O(mn) time and space. However, it
needs to be done once and can be used for generating several random
reconciliations.



Algorithm 1.1 Uniform random generation in Ψ(G,S).
1: Let α be an empty reconciliation.
2: Perform a prefix traversal of G, and let u ∈ V (G) be the current node.
3: if u = r (G) or u ∈ L(G) then α (u)←M(u)
4: else

5: Let ĉ← α(p(u)).
6: {Choose randomly a cell c ∈ A(u) such that c ≤S ĉ}

7: Let k ←
P

c∈A(u),c≤S ĉ

Nb(u, c)

8: Generate randomly and uniformly an integer n ∈ {1, . . . , k}.
9: c← lowest cell in A(u) {If u is a forced duplication, then M(u) /∈ A(u)}

10: l← Nb(u, c)
11: while l < n do c← f(c), l ← l + Nb(u, c)
12: α (u)← c
13: return α

Our algorithm is useful for sampling the space of reconciliations, but
not for exhaustive enumeration of that space. Therefore, in the next sec-
tion, an algorithm for enumeration is introduced.

4 Exhaustive exploration of the whole space Ψ(G, S)

We first define combinatorial operators used to explore the space of all
possible reconciliations, and then give an algorithm, based on these op-
erators, that explores exhaustively this space.

4.1 Space exploration operators

We present in this section a type of operator, called Nearest Mapping

Change (NMC), acting on a reconciliation between a gene tree G and a
species tree S. This movement is similar to the ones described in [11]. We
show that this operator is sufficient to explore the space of all possible
reconciliations.

Definition 2. Let α : V (G) → V (S) ∪ E(S) be a given reconciliation
between G and S, and u a vertex of V (G) \ L(G) such that u 6= r (G).
Let ĉ, c, c1, and c2 respectively denote α(p(u)), α(u), α(u1), and α(u2).

1. An upward NMC (uNMC) can be applied to u if c <S ĉ, and if
ĉ ∈ V (S) and c ∈ E(S), then D(ĉ, c) > 0. It changes α(u) into its
ancestor cell f(α(u)) of A(u).

2. A downward NMC (dNMC) can be applied to u if c1 <S c, M(u) <S c,
and if c1 ∈ V (S) and c ∈ E(S), then D(c, c1) > 0 (idem for c2). It
changes α(u) into its descendant cell d(α(u)) of A(u).



It follows immediately from the definition of NMC operators that,
given α ∈ Ψ(G,S), applying an NMC operator to a vertex u of G results
in a reconciliation α′ between G and S. More precisely, it can induce the
following changes in the evolutionary scenario for the gene family (see
Figure 2).

– Changing a speciation by a duplication (uNMC, α(u) = M(u)).
– Changing a duplication by a speciation (dNMC, α′(u) = M(u)).
– Moving a duplication upward (uNMC, α(u) 6= M(u)).
– Moving a duplication downward (dNMC, α′(u) 6= M(u)).
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Fig. 2. (a) A section of the reconciliation depicted in figure 1. Here, the mapping of node
2 forbids to move up node 3. (b) The node 2 changes from a speciation to a duplication
by moving it up. (c) Then, node 3 can be moved up and still is a duplication.

For u ∈ V (G), and c, c′ ∈ A(u), du

(

c, c′
)

is the number of cells of
A(u) between c and c′, where du

(

c, c′
)

= 0 if and only if c = c′. For two
reconciliations α and α′, DNMC(α,α′) =

∑

u∈V (G) du

(

α(u), α′(u)
)

. We

call DNMC(α,α′) the NMC distance between α and α′. A valid (according
to Definition 2) NMC application to α can be encoded by a pair (u, c),
where u ∈ V (G) is the node being moved and c ∈ V (S) ∪ E(S) is its
new mapping. We denote by NMC(α) the set of such pairs for a given
reconciliation α.

Theorem 2. Let α and α′ two reconciliations of Ψ(G,S). There exists

a sequence of DNMC(α,α′) NMC that transforms α into α′. No shorter

sequence of NMC can transform α into α′.

We denote by GNMC(G,S) the graph with vertex set Ψ(G,S) and
where two reconciliations are linked by an edge if they differ by a single
NMC. Let αmin be the unique reconciliation where, for each vertex u of
G, αmin(u) is the unique cell of A(u) that has no descendant in A(u), and
αmax be the unique reconciliation where, for each vertex u of G, αmax(u)



is the unique cell of A(u) that has no ancestor in A(u). The following
results shows that although Ψ(G,S) can have an exponential size, NMC
operators are sufficient to define a structure on this space of polynomial
diameter.

Corollary 1. The diameter of GNMC(G,S) is equal to DNMC(αmin, αmax)
and is in O(nm).

Finally, as our NMC operators are intended to explore the space of
reconciliations between a gene tree and a species tree, we address now
the issue of updating the classical combinatorial criteria used to evaluate
a reconciliation: the following observation implies that they can be easily
updated in constant time.

Property 1. Let α and α′ be two reconciliations of Ψ(G,S) such that α′

can be obtained from α by a single NMC. Then, |dup(α) − dup(α′)| ∈
{0, 1} and |los(α) − los(α′)| ∈ {1, 2}.

4.2 Algorithm for the exhaustive exploration

We present in this section a simple algorithm, based on the NMC opera-
tor, that computes the set of all possible reconciliations between a gene
tree G (with |V (G)| = m) and a species tree S (with |V (S)| = n) in time
Θ(|Ψ(G,S)|) (see Theorem 3), which gives a CAT (Constant Amortized
Time) algorithm to generate Ψ(G,S).

For a node u ∈ V (G), let id(u) be the number of nodes that precede
u according to the prefix traversal of G, where the left child u1 of a node
u ∈ V (G) \ L(G) is visited before the right child u2. Let TNMC(G,S) be
the tree defined as follows (see Figure 3):

– the root is the reconciliation αmin and its children are the reconcil-
iations that can be obtained from αmin by applying a single uNMC
from NMC(αmin),

– given a reconciliation α, that differs from its parent by an uNMC
(ui, c), its children are the reconciliations that can be obtained from α

by applying a single uNMC (uj , c
′) from NMC(α) such that id(uj) ≥

id(ui).

Proposition 3. TNMC(G,S) is a spanning tree of GNMC(G,S).

The exhaustive exploration algorithm of the whole space Ψ(G,S) is
based on the tree TNMC(G,S). It follows immediately from the definition



of TNMC(G,S) that the main tasks for a given reconciliation α is 1) to
know the list of allowed uNMC operators that can be applied to obtain
the children of α, and 2) to keep in order its nodes according to the
increasing value of their indexes id. We denote by P (α) this ordered list.
The key to achieve this efficiently is the Property 2 below, that follows
easily from the definitions of NMC operators and of TNMC(G,S).

Property 2. Let α and α′ be two reconciliations of Ψ(G,S) such that α′ is
a child of α in TNMC(G,S), and differs from α by an uNMC (u, c). Then
P (α) and P (α′) differ by at most three uNMC, that involve u, u1 and u2.

Based on this property, we describe below an algorithm that performs
a prefix traversal of TNMC(G,S), where the children of a reconciliation
α are visited according to the ordered list P (α), in such a way that each
time an edge from α to a reconciliation α′ is followed, P (α) is updated
into P (α′). To perform this update in constant time, we encode P using
two disjoint lists Pℓ and Pr and two cursors uℓ and ur on these lists, in
such a way that a node u is in P if and only if u is in the sublist of Pℓ

(or Pr) that starts at uℓ (resp. ur).

Algorithm 1.2 below describes the general recursive function, where
the main tasks for the current reconciliaton α are i) select the next node
u ∈ P (α) with the smallest id from the sublists of Pℓ or Pr (lines 4,5); ii)
define the child reconciliation α′ by moving u upward (line 6); iii) define
P (α′) from P (α) by updating Pℓ, Pr, uℓ, and ur (lines 7-12). The function
is first called with α = αmin, Pℓ = NMC(α), Pr = ∅, uℓ = first(Pℓ),
and ur = end(Pr), that are computed during a preprocessing phase. Here,
first() and end() respectively represents the first cursor of the considered
list and a null one located at the end of the list. For a node u ∈ V (G)
and a cell c ∈ A(u), recall that f(c) and d(c) respectively are its ancestor
and descendant cells in A(u).

Theorem 3. Algorithm 1.2 visits all reconciliations of Ψ(G,S). Given

αmin, and Pℓ = NMC(αmin), it can be implemented to run in time

Θ(
∣

∣Ψ(G,S)
∣

∣) and space O(nm).

Together with Property 1, that implies that updating the number of
duplications and/or losses after a single NMC can be done in constant
time, this algorithm allows to compute efficiently the exact distribution
of the duplication, loss and mutation costs in optimal time Θ(|Ψ(G,S)|)
(see Section 5).



Algorithm 1.2 Exhaustive exploration algorithm of the space Ψ(G,S)

1: RecurExplore (α, uℓ, ur)
2: Let u′

ℓ ← uℓ and u′
r ← ur

3: while u′
ℓ 6= end(Pℓ) or u′

r 6= end(Pr) do

4: if u′
ℓ = end(Pℓ) then u← u′

r

5: else if u′
r = end(Pr) or id(u′

ℓ) < id(u′
r) then u← u′

ℓ, else u← u′
r

6: α′(u)← f(α(u))
7: if u1 /∈ Pℓ and u = u′

ℓ then insert u1 in Pℓ after u′
ℓ

8: else if u1 /∈ Pℓ and u = u′
r then insert u1 in Pℓ before u′

ℓ, u′
ℓ ← u1

9: if u2 /∈ Pℓ ∪ Pr and u = u′
r then insert u2 in Pr after u′

r

10: else if u2 /∈ Pℓ ∪ Pr and u = u′
ℓ then insert u2 in Pr before u′

r, u′
r ← u2

11: if (u, f(α′(u))) /∈ NMC(α′) and u = u′
ℓ then u′

ℓ ← succ(u′
ℓ, Pℓ)

12: if (u, f(α′(u))) /∈ NMC(α′) and u = u′
r then u′

r ← succ(u′
r, Pr)

13: RecurExplore (α′, u′
ℓ, u

′
r)

14: Retrieve old values of Pℓ, Pr, u
′
ℓ, u

′
r by performing the inverse operations of

lines 7 to 12.

15: α(u)← d(α′(u)) {Backtrack}
16: if u = u′

ℓ then u′
ℓ ← succ(u′

ℓ, Pℓ) else u′
r ← succ(u′

r, Pr)

5 Experimental results

We considered the phylogenetic tree of 12 Drosophila species and the
branch lengths, and gene gain/loss rates that are given in [13, Figure 1].
We generated 1000 synthetic gene trees according to the birth-and-death
process (with a single ancestral gene) along this species tree, and removed
multiple copies of each gene tree. This resulted in 249 unique gene trees
having from 6 to 22 leaves (Figure 4). Figure 5 describes the cardinality
and diameter of Ψ(G,S) for these 249 gene trees.

For each of the 249 unique gene trees, we used the algorithm 1.2 to
explore the whole space Ψ(G,S) focusing on the duplication cost (for the
loss and mutation criteria, the results are similar). For the duplication
criterion, 237 gene trees have a unique global minimum, and 12 have
two. In each of these 12 cases, the NMC distance between the two global
minimums is one. Over all the 249 gene trees, the LCA reconciliation
αmin, that is a global minimum, is either identical or, in the worst case,
at a distance of a single NMC to the true evolutionary scenario induced
by the birth-and-death and noted αreal. However, it is important to point
out that this is probably due to the low duplication and loss rates given
in [13].

For a reconciliation α ∈ Ψ(G,S), let dcost(α) = dup(α) − dup(α∗),
where α∗ is a global minimum, according to the duplication cost, that
minimizes DNMC(α,α∗). We denote by N(k) the number of reconcilia-
tions α ∈ Ψ(G,S) such that dcost(α) = k, for a given k ∈ N. Figure 6
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Fig. 3. The subtree of TNMC(G, S) rooted at αmin for the trees G and S depicted in
Figure 1. αmin and its children respectively are at the top and bottom of the figure.
For each child, the node that has been moved upward is in boldface.
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onciliation space size (x axis). A gene tree G is counted in the bar 10i iff 10i−1 ≤
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˛ < 10i. Right. Distribution of the 249 gene trees according to the diameter of
Ψ(G, S).



shows that, on average over all gene trees, N(k) is proportional to k from
k = 0 to k = 13 and inversely proportional from k = 13 to k = 18.
This can be explained by the following facts: the maximum value of dcost

is equal to the number of internal nodes u of G that can be mapped
on M(u), and the average number of such nodes is 13. All this suggests
that, for a given gene tree, N(k) is maximized at this maximum value of
dcost = k.
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Fig. 6. Over all 249 gene trees, average distribution of the number N(k) (y axis) of
reconciliations α such that dcost(α) = dup(α)− dup(α∗) = k, for k ∈ N (x axis). α∗ is
a global minimum that minimizes the NMC distance DNMC(α, α∗).

We analyzed the relationship between the NMC and cost distances
using the average value of DNMC(α,α∗) over all gene trees G and all
reconciliations α ∈ Ψ(G,S) such that dcost(α) = k, for a given k ∈ N. We
also computed the number of nodes u ∈ V (G) such that α(u) 6= αreal(u).
According to Figure 7, we observe that the cost distance of a reconciliation
α is proportional both to the NMC distance with the closest optimal
reconciliation α∗ and to how much α differs from the real reconciliation
αreal.

6 Conclusion

We described in this work several algorithms related to exploring the
space of all reconciliations between a gene tree and a species tree. From
an algorithmic point of view, our exhaustive exploration algorithm is op-
timal as it requires an (amortized) constant time between successive rec-
onciliations. Our experiments on a realistic simulated dataset with low
duplication/loss rates (we will consider simulated datasets with higher
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Fig. 7. Left: over all gene trees G, average value of DNMC(α, α∗) (y axis) for all
reconciliations α ∈ Ψ(G, S) such that dcost(α) = k, for a given k ∈ N (x axis). Right:
the same distribution with the real distance dreal, that is the number of nodes u of G
such that α(u) 6= αreal(u).

duplication/loss rates in the full version of this paper) show that even in
this case the number of reconciliations can be very large, but that for all
three combinatorial criterion considered there are relatively few optimal
or near-optimal reconciliations, always located close (in terms of NMC
distance) to the LCA reconciliation. It is known that for the loss and
mutation costs, this LCA reconciliation is the only possible minimum.
However, for the duplication cost (as well as for the maximum likelihood
cost), it can happen that several optimal reconciliations exist and our ex-
haustive exploration algorithm was able to locate them. This motivates
our current work to modify our algorithm to handle dNMC operators
in order to explore efficiently alternative but close evolutionary scenarios
(in terms of NMC) of a given reconciliation (work in progress). Our algo-
rithm can already be applied to this task when the starting reconciliation
is αmin by visiting only the reconciliations that are at a fixed distance
(in terms of NMC) from αmin. Natural generalizations of the algorithms
we described in the present work include handling either non-binary gene
or species trees [3, 18] (or both) and attacking the more difficult problem
of multiple gene duplications [7]. Moreover, we are now developing our
exhaustive exploration algorithm for the maximum likelihood cost.
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