
Minimal Conflicting Sets for the
Consecutive Ones Property in

ancestral genome reconstruction

Cedric Chauve1, Utz-Uwe Haus2, Tamon Stephen1, and Vivija P. You1

1 Department of Mathematics, Simon Fraser University, Burnaby (BC), Canada
[cedric.chauve,tamon,vpy]@sfu.ca

2 Institute for Mathematical Optimization, University of Magdeburg, Germany
haus@imo.math.uni-magdeburg.de

Abstract. A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered
in such a way that all 1’s on each row are consecutive. A Minimal Conflicting Set is a set of rows that
does not have the C1P, but every proper subset has the C1P. Such submatrices have been considered
in comparative genomics applications, but very little is known about their combinatorial structure and
efficient algorithms to compute them. We first describe an algorithm that detects rows that belong to
Minimal Conflicting Sets. This algorithm has a polynomial time complexity when the number of 1s
in each row of the considered matrix is bounded by a constant. Next, we show that the problem of
computing all Minimal Conflicting Sets can be reduced to the joint generation of all minimal true clause
and maximal false clauses for some monotone boolean function. We use these methods in preliminary
experiments on simulated data related to ancestral genome reconstruction.

Publiched in the proceedings of the Seventh Annual RECOMB Satellite Workshop on Comparative
Genomics, RECOMB-CG 2009, volume 5817 of Lecture NOtes in Bioinformatics, pp. 48–48, 2009.
Version of October 9, 2009.

1 Introduction

A binary matrix M has the Consecutive Ones Property (C1P) if its columns can be ordered in
such a way that all 1’s on each row are consecutive. Deciding if a matrix has the C1P can be
done in linear-time and space [4, 13, 15, 19, 20]. The problem of testing if a matrix has the C1P has
been considered in genomics, for problems such as physical mapping [2, 6, 17] or ancestral genome
reconstruction [1, 5, 18, 21].

If a binary matrix M does not have the C1P, a Minimal Conflicting Set (MCS) is a submatrix
M ′ of M composed of a subset of the rows of M such that M ′ does not have the C1P, but every
proper subset of rows of M ′ has the C1P. The Conflicting Index (CI) of a row of M is the number
of MCS that contains this row. Minimal Conflicting Sets were introduced in [3]. In the context
of ancestral genome reconstruction, MCS were used in [3] and in [23], where the CI was used to
rank the rows of M and input into a branch-and-bound algorithm that computes parsimonious
evolution scenarios for gene clusters. In both papers, the question of computing the CI of the rows
of a non-C1P binary matrix M , or more generally to compute all MCS of M , was raised.

In the present paper, after some preliminaries on the C1P and MCS (Section 2), we attack two
problems. First, in Section 3, we consider the problem of deciding if a given row of a binary matrix

M belongs to at least one MCS. We show that, when all rows of a matrix are constrained to have
a bounded number of 1’s, deciding if the CI of a row of a matrix is greater than 0 can be done
in polynomial time. Next, in Section 4, we attack the problem of generating all MCS for a binary
matrix M . We show that this problem, which is #P-hard, can be approached as a joint generation
problem of minimal true clauses and maximal false clauses for monotone boolean functions. This
can be done in quasi-polynomial time thanks to an oracle-based algorithm for the dualization
of monotone boolean functions [8, 9, 12]. We implemented this algorithm [14] and applied it on
simulated data (Section 5). We conclude by discussing several open problems.

2 Preliminaries

We briefly review here ancestral genome reconstruction and algorithmic results related to Minimal
Conflicting Sets. Let M be a binary matrix with m rows and n columns, with e entries 1. We
denote by r1, . . . , rm the rows of M and c1, . . . , cn its columns. We assume that M does not have
two identical rows, nor two identical columns, nor a row with less than two entries 1 or a column
with no entry 1. We denote by ∆(M) the maximum number of entries 1 found in a single row of
M . In the following, we sometimes identify a row of M with the set of columns where it has entries
1.

Minimal Conflicting Sets, Maximal C1P Sets and Conflicting Index. A Minimal Conflicting Set
(MCS) is a set R of rows of M that does not have the C1P but such that every proper subset of R
has the C1P. The Conflicting Index (CI) of a row ri of M is the number of MCS that contain ri.
A row ri of M that belongs to at least one conflicting set is said to be a conflicting row.

A Maximal C1P Set (MC1P) is a set R of rows of M that has the C1P and such that adding
any additional row from M to it results in a set of rows that does not have the C1P. For a subset
I = {i1, . . . , ik} of [n], we denote by RI the set {ri1 , . . . , rik} of rows of M . If RI is an MCS
(resp. MC1P), we then say that I is an MCS (resp. MC1P).

Ancestral genome reconstruction. The present work is motivated by the problem of inferring an
ancestral genome architecture given a set of extant genomes. An approach to this problem, described
in [5], consists in defining an alphabet of genomic markers that are believed to appear uniquely
in the extinct ancestral genome. An ancestral synteny is a set of markers that are believed to
have been consecutive along a chromosome of the ancestor. A set of ancestral syntenies can then be
represented by a binary matrix M : columns represent markers and the 1 entries of a given row define
an ancestral synteny. If all ancestral syntenies are true positives (i.e. represent sets of markers that
were consecutive in the ancestor), then M has the C1P. Otherwise, some ancestral syntenies are
false positives that create MCS and the key problem is to remove them. This problem is generally
attacked by removing from M the minimum number of rows such that the resulting matrix has the
C1P; this optimization problem is NP-hard, even in the simpler case where every row of M contains
exactly two entries 1, and is then often attacked using heuristics or branch-and-bound methods [1,
5, 18, 21].

2

Computing the conflicting index. In the case where each row of M has exactly two entries 1, M
naturally defines a graph GM with vertex set {c1, . . . , cn} and where there is an edge between ci and
cj if and only if there is a row with entries 1 in columns ci and cj . A set of rows R of M is an MCS
if and only if the subgraph induced by the corresponding edges is a star with four vertices (also
called a claw) or a cycle. This implies immediately that the number of MCS can be exponential in
n. Also, combined with the fact that counting the number of cycles that contain a given edge in an
arbitrary graph is #P-hard [25], this leads to the following result.

Theorem 1. The problem of computing the Conflicting Index of a row in a binary matrix is #P-
hard.

Testing for Minimal Conflicting Sets. Given a set of p rows R of M , deciding whether these rows
form an MCS can be achieved in polynomial time by testing (1) whether they form a matrix that
does not have the C1P and, (2) whether every maximal proper subset of R (obtained by removing
exactly one row) forms a matrix that has the C1P. This requires only p+ 1 C1P tests and can then
be done in time O(p(n+m+ e)), using an efficient algorithm for testing the C1P [19].

Generating one Minimal Conflicting Set. It follows from the link between MCS and cycles in
graphs that there can be an exponential number of MCS for a given binary matrix M , and that
generating all of them is a hard problem. However, generating one MCS is easy and can be achieved
in polynomial time by the following simple greedy algorithm:

1. let R = {r1, . . . , rm} be the full set of rows of M ;
2. for i from 1 to m, if removing ri from R results in a set of rows that has the C1P then keep ri

in R, otherwise remove ri from R;
3. the subset of rows R obtained at the end of this loop is then an MCS.

Generating all Minimal Conflicting Sets. Given M and a list C = {R1, . . . , Rk} of known MCS,
the sequential generation problem GenMCS(M,C) is the following: decide if C contains all MCS of
M and, if not, compute one MCS that does not belong to C. Using the obvious property that, if
Ri and Rj are two MCS then neither Ri ⊂ Rj nor Rj ⊂ Ri, Stoye and Wittler [23] proposed the
following backtracking algorithm for GenMCS(M,C):

1. Let M ′ be defined by removing from M at least one row from each Ri in C by recursing on the
elements of C.

2. If M ′ does not have the C1P then compute an MCS of M ′ and add it to C, else backtrack to
step 1 using another set of rows to remove such that each Ri ∈ C contains at least one of these
rows.

This algorithm can require time Ω(nk) to terminate, which, as k can be exponential in n, can be
superexponential in n. As far as we know, this is the only previously proposed algorithm to compute
all MCS.

3

3 Deciding if a row is a conflicting row.

We now describe our first result, an algorithm to decide if a row of M is a conflicting row (i.e. has a
CI greater than 0). Detecting non-conflicting rows is important, for example to speed-up algorithms
that compute an optimal C1P subset of rows of M , or in generating all MCS. Our algorithm has a
complexity that is exponential in ∆(M). It is based on a combinatorial characterization of non-C1P
matrices due to Tucker [24].

Tucker patterns. The class of C1P matrices is closed under column and row deletion. Hence there
exists a characterization of matrices which do not have the C1P by forbidden minors. Tucker [24]
characterizes these forbidden submatrices, called MI , MII MIII , MIV and MV : if M is binary
matrix that does not have the C1P, then it contains at least one of these matrices as a submatrix.
We call these forbidden matrices the Tucker patterns. Patterns MIV and MV have each 4 rows, while
the other three patterns do not have a fixed number of rows or columns; pattern MI corresponds
to the cycle when ∆(M) = 2.

Bounded patterns. Let P be a set of p rows R of M , that defines a p× n binary matrix. P is said
to contain exactly a Tucker pattern MX if a subset of its columns defines a matrix equal to pattern
MX . The following properties are straightforward from the definitions of Tucker patterns and MCS:

Property 1. (1) If a subset of rows of M is an MCS, then the subset contains exactly a Tucker
pattern.
(2) If a subset of p rows of M contains exactly a Tucker pattern MII MIII , MIV or MV , then
4 ≤ p ≤ max(4, ∆(M) + 1).

From Property 1.(1), to decide if ri belongs to at least one MCS, it suffices to decide if it
belongs to a set R of p rows of M that contains exactly a Tucker pattern and is an MCS. Moreover,
from Property 1.(2), if this Tucker pattern is of type MII to MV , it can be found by a brute-force
approach that considers all sets of at most ∆(M) rows of R that contain ri, and test, for each
such set of rows, if it is an MCS. This brute-force approach has a worst-case time complexity of
O(∆(M)2m∆(M)+1(n + m + e)). It also allows to detect if ri is in an MCS because of a Tucker
pattern MI containing at most ∆(M) + 1 rows, which leaves only the case of patterns MI (the
cycle) with more than ∆(M) + 1 rows.

Arbitrarily long cycles. Let BM be the bipartite graph defined by M as follows: vertices are rows
and columns of M , and every entry 1 in M defines an edge. Pattern MI with p rows corresponds to
a cycle of length 2p in BM . Hence, if R contains MI with p-row, the subgraph of BM induced by R
contains such a cycle and possibly other edges. Let C = (ri1 , cj1 . . . , ri` , cj`) be a cycle in BM . We
say that a riq belonging to C is blocked in C if there exists a vertex cj such Miq ,j = 1, Miq−1,j = 1
(Mi`,j = 1 if q = 1) and Miq+1,j = 1 (M1,j = 1 if q = `).

4

Proposition 1. Let M be a binary matrix that does not have the C1P. Let ri be a row of M that
does not belong to any set R of rows of M that contains exactly a Tucker pattern MII MIII , MIV

or MV .
A subset of p rows of M that contain ri contains exactly the pattern MI if and only if ri belongs

to a cycle C = (ri1 , cj1 , . . . ri` , cj,`) in BM and ri is not blocked in C.

Proof. (Sketch) If ri belongs to an MCS and is not included in any pattern MII MIII , MIV or
MV , then it belongs to a set of rows that contain exactly the pattern MI where ri is not blocked
(otherwise, this would contradict the fact that these p rows form an MCS).

To show that if ri is not blocked in a cycle C implies it belongs to an MCS, consider a minimal
cycle C where ri is not blocked. A chord in the cycle C is a set of two edges (r, c) and (r′, c) such
that r and r′ belong to C but are not consecutive row vertices in this cycle. If C has no chord, then
the vertices it contains define a Tucker pattern MI and then an MCS. Otherwise, the chord defines
two cycles that contain ri and where ri is blocked, which contradicts the minimality of C. ut

The algorithm. To decide whether ri belongs to an MCS, we can then (1) check all sets of at least
4 and at most ∆(M) + 1 rows that contain ri to see if they define an MCS, and, if this is not the
case, (2) check whether ri belongs to an MCS due to pattern MI . For this second case, we only
need to find a cycle where ri is not blocked. This can be done in polynomial time by considering
all pairs of possible rows ri1 and ri2 that each have an entry 1 in a column where ri has an entry
1 (there are at most O(m2) such pairs of rows), exclude the cases where the three rows ri, ri1 and
ri2 have an entry 1 in the same column, and then check if there is a path in BM between ri1 and
ri2 that does not visit ri. This leads to the main result of this section.

Theorem 2. Let M be an m × n binary matrix that does not have the C1P, and ri be a row of
M . Deciding if ri belongs to at least one MCS can be done in O(∆(M)2mmax(4,∆(M)+1)(n+m+ e))
time.

4 Generating all MCS with monotone boolean functions

Let [m] = {1, 2, . . . ,m}. For a set I = {i1, . . . , ik} ⊆ [m], we denote by XI the boolean vector
(x1, . . . , xm) such that xj = 1 if and only if ij ∈ I. A boolean function f : {0, 1}m → {0, 1} is said
to be monotone if for every I, J ⊆ [m], I ⊆ J ⇒ f(XI) ≤ f(XJ).

Given a boolean function, a boolean vector X is said to be a Minimal True Clause (MTC) if
f(XI) = 1 and f(XJ) = 0 for every J ⊂ I. Symmetrically, XI is said to be a Maximal False Clause
(MFC) if f(XI) = 0 and f(XJ) = 1 for every I ⊂ J . We denote by MTC(f) (resp. MFC(f)) the
set of all MTC (resp. MFC) of f .

For a given m× n binary matrix M , let fM : {0, 1}m → {0, 1} be the boolean function defined
by fM (XI) = 1 if and only if RI does not have the C1P, where I ⊆ [m]. This boolean function is
obviously monotone and the following proposition is immediate.

Proposition 2. Let I = {i1, . . . , ik} ⊆ [m]. RI is an MCS (resp. MC1P) of M if and only if XI

is an MTC (resp. MFC) for fM .

5

Generating Minimal True Clauses for monotone boolean functions. It follows from Proposition 2
that generating all MCS reduces to generating all MTC for a monotone boolean function. This
very general problem has been the subject of intense research, and we describe briefly below some
important properties.

Theorem 3. [12] Let C = {X1, . . . , Xk} be a set of MTC (resp. MFC) of a monotone boolean
function f . The problem of deciding if C contains all MTC (resp. MFC) of f is coNP-complete.

Theorem 4. [11] The problem of generating all MTC of a monotone boolean function f using an
oracle to evaluate this function can require up to |MTC(f) +MFC(f)| calls to this oracle.

The second property suggests that, in general, to generate all MTC, it is necessary to generate all
MFC, and vice-versa. For example, the algorithm of Stoye and Wittler [23] described in Section 2 is a
satisfiability oracle based algorithm – it uses a polynomial-time oracle to decide if a given submatrix
has the C1P, but it doesn’t use this structure any further. Once it has found the complete list C of
MCS, it will proceed to check all MC1P sets as candidate conflicting sets before terminating. Since
this does not keep the MC1P sets explicitly, but instead uses backtracking, it may generate the
same candidates repeatedly resulting in a substantial duplication of effort. In fact, this algorithm
can easily be modified to produce any monotone boolean function given by a truth oracle.

Joint Generation of MTC and MFC for monotone boolean functions. One of the major results on
generating MTC for monotone boolean functions, is due to Fredman and Khachiyan. It states that
generating both sets together can be achieved in time quasi-polynomial in the number of MTC plus
the number of MFC.

Theorem 5. [9] Let f : {0, 1}m → {0, 1} be a monotone boolean function whose value at any point
x ∈ {0, 1}m can be determined in time t, and let C and D be respectively the sets of the MTC
and MFC of f . Given two subsets C ′ ⊆ C and D′ ⊆ D of total size s = |C ′| + |D′|, deciding if
C ∪D = C ′ ∪D′, and if C ∪D 6= C ′ ∪D′ finding an element in (C\C ′) ∪ (D\D′) can be done in
time O(m(m+ t) + so(log s)).

The key element to achieve this result is an algorithm that tests if two monotone boolean
functions are duals of each other (see [8] for a recent survey on this topic). As a consequence, we
can then use the algorithm of Fredman and Khachiyan to generate all MCS and MC1P.

5 Experimental results

We used the cl-jointgen implementation of the joint generation method which is publicly avail-
able [14] with an oracle to test the C1P property based on the algorithm described in [19]. All
datasets and results are available at the following URL: http://www.cecm.sfu.ca/~cchauve/
SUPP/RCG09.

We generated 10 datasets of adjacencies (the rows of the binary matrices contain each two
entries 1) with n = 40 and m = 45. Each dataset contains exactly 39 true positive (rows {i, i+ 1}

6

for i = 1, . . . , 39) and 6 random false positives (rows {i, j} with j > i+ 1). These parameters were
chosen to simulate moderately large datasets that resemble real datasets. For a given dataset, the
conflicting ratio (CR) of a row is the ratio between the CI of this row and the number of MCS.
Similarly, the MC1P ratio (MR) of a row is the ratio between the number of MC1P that contain
the row and the total number of MC1P. The MCS rank of a row is its ranking (between 1 and 45)
when rows are ranked by increasing CR. The MC1P rank of a row is its ranking when rows are
ranked by increasing MR. Table 1 shows some statistics on these experiments.

Dataset Number Number Average Average Average Average Average FP Average FP
of MCS of MC1P FP CR TP CR FP MR TP MR MCS rank MC1P rank

1 55 8379 0.41 0.37 0.34 0.77 18.83 6.83

2 43 4761 0.36 0.32 0.3 0.84 20.33 6

3 38 9917 0.4 0.22 0.34 0.79 33.17 7

4 46 4435 0.5 0.35 0.41 0.8 33.33 9

5 59 6209 0.44 0.3 0.36 0.76 28.33 6

6 45 13791 0,47 0.2 0.39 0.8 32.67 4.67

7 61 2644 0.44 0.31 0.37 0.8 28.83 5.83

8 50 3783 0.43 0.28 0.36 0.81 34.5 6.83

9 57 2575 0.51 0.37 0.43 0.81 32.83 5.17

10 60 3641 0.45 0.31 0.38 0.83 26.33 7.83
Table 1. Statistics on MCS and MC1P on simulated adjacencies datasets. FP CR is the Conflicting Ratio for False
Positives, TP CR is for CR the True Positives, FP MR is the MC1P ratio for False Positives and TP MR is the MR
for True Positives.

First, we can notice the large difference between the number of MCS and the number of MC1P.
This shows that most computation time, in the joint generation, is spent generating MC1P. However
if, as expected, false positives have, on average, a higher conflicting ratio than true positives,
and conversely a lower MC1P ratio than true positives, it is interesting that the MC1P ratio
discriminates much better between false positives and true positives than the conflicting ratio. This
is seen in the MCS and MC1P ranks: the false positives have an average MCS rank of 28.91, well
below the rank that would be expected if they were the rows that have the highest CI (42.17), while
they have an average MC1P rank of 6.52, quite close of the 3.5 rank expected if they belonged to
the fewest MC1P. To get a better understanding of the usefulness of the MCS ratio and MC1P
ratio, Table 2 shows the rough distribution of these ratios.

These result suggest that the increased computation required by generating MC1P brings valu-
able information in discriminating false positives from true positives, and that the MC1P ratio is
a better information to rank rows when trying to compute a maximal MC1P subset of rows.

7

Dataset [0, .1] (.1, .2] (.2, .3] (.3, .4] (.4, .5] (.5, .6] (.6, .7] (.7, .8] (.8, .9] (.9, 1]

MCS ALL 52 16 75 205 87 14 1 0 0 0

MCS FP 0 0 14 31 13 2 0 0 0 0

MCS TP 52 16 61 174 74 12 1 0 0 0

MC1P ALL 10 2 7 18 32 50 73 44 20 194

MC1P FP 0 0 0 6 22 44 64 40 20 194

MC1P TP 10 2 7 12 10 6 9 4 0 0

Table 2. Distribution of the MCS and MC1P ratios for all rows (ALL), false positives (FP) and true positives (TP).
Each cell of the table contains the number of rows whose ratio is in the interval for the column.

6 Conclusion and perspectives

This paper describes preliminary theoretical and experimental results on Minimal Conflicting Sets
and Maximal C1P Sets. In particular, we suggested that Tucker patterns are fundamental in under-
standing the combinatorics of MCS, and that the generation of all MCS is a hard problem, related
to monotone boolean functions. From an experimental point of view it appears, at least on datasets
of adjacencies, that MC1P offer a better way to detect false positive ancestral syntenies than MCS
and the CI. This leaves several open problems to attack.

Detecting non-conflicting rows. The complexity of detecting rows of a matrix that do not belong to
any MCS when rows can have an arbitrary number of entries 1 is still open. Solving this problem
probably requires a better understanding of the combinatorial structure of MCS and Tucker pat-
terns. Tucker patterns have also be considered in [7, Chapter 3], where polynomial time algorithms
are given to compute a Tucker pattern of a given type for a matrix that does not have the C1P.
Even if these algorithms can not obviously be modified to decide if a given row belongs to a given
Tucker pattern, they provide useful insight on Tucker patterns.

It follows from the dual structure of monotone boolean functions that the question of whether a
row belongs to any MCS is equivalent to the question of whether it belongs to any MC1P. Indeed,
for an arbitrary oracle-given function, testing if a variable appears in any MTC is as difficult as
deciding if a list of MTC is complete. Consider an oracle-given f and a list of its MTC which define
a (possibly different) function f ′. We can build a new oracle function g with an additional variable
x0, such that g(x0, x) = 1 if and only if x0 = 0 and f ′(x) = 1 or x0 = 1 and f(x) = 1.

Generating all MCS and MC1P. Right now, this can be approached using the joint generation
method, but the number of MCS and MC1P makes this approach impractical for large matrices. A
natural way to deal with such problem would be to generate at random and uniformly MCS and
MC1P. For MCS, this problem is at least as hard as generating random cycles of a graph, which is
known to be a hard problem [16]. We are not aware of any work on the random generation of MC1P.
An alternative to random generation would be to abort the joint generation after it generates a
large number of MCS and MC1P, but the quality of the approximation of the MCS ratio and MC1P
ratio so obtained would not be guaranteed. Another approach for the generation of all MCS could

8

be based on the remark that, for adjacencies, it can be reduced to generating all claws and cycles
of the graph GM . Generating all cycles of a graph can be done in time that is polynomial in the
number of cycles, using backtracking [22]. It is then tempting to use this approach in conjunction
with dynamic partition refinement [13] for example or the graph-theoretical properties of Tucker
patterns described in [7].

Combinatorial characterization of false positives ancestral syntenies. It is interesting to remark
that, with adjacencies datasets, detecting most false positives can be attacked in a simple way.
True positive rows define a set of paths in the graph GM , representing ancestral genome segments,
while false positive rows {i, j}, unless i or j is an extremity of such a path (in which case it does
not exhibit any combinatorial sign of being a false positive), both the vertices i and j belong to a
claw in the graph GM . And it is easy to detect all edges in this graph with both ends belonging to
a claw. In order to extend this approach to more general datasets, where ∆(M) > 2, it would be
helpful to understand better the impact of adding a false positive row in M . The most promising
approach would be to start from the partition refinement [13] obtained from all true positive rows
and form a better understanding of the combinatorial structure of connected components of the
overlap graph that do not have the C1P.

Computation speed. The experiments in this paper took at most a few minutes to complete. We are
currently running experiments on larger simulated datasets, as well as real data taken from [21],
whose results will be made available on the companion Website of this paper. On larger datasets,
especially with matrices with an arbitrary number of entries 1 per row, some connected components
of the overlap graph can be very large (see the data in [21] for example). In order to speed up the
computations, algorithmic design and engineering developments are required, both in the joint
generation algorithm and in the problem of testing the C1P for matrices after rows are added or
removed.

7 Acknowledgments

Cedric Chauve and Tamon Stephen were partially supported by NSERC Discovery Grants. Utz-
Uwe Haus was supported by the Magdeburg Center for Systems Biology, funded by a FORSYS
grant of the German Ministry of Education and Research.

References

1. Z. Adam, M. Turmel, C. Lemieux, and D. Sankoff. Common intervals and symmetric difference in a model-free
phylogenomics, with an application to streptophyte evolution. J. Comput. Biol., 14, pp. 436–445. 2007.

2. F. Alizadeh, R. Karp, D. Weisser and G. Zweig. Physical mapping of chromosomes using unique probes. J.
Comput. Biol. 2, pp. 159–184. 1995.

3. A. Bergeron, M. Blanchette, A. Chateau and C. Chauve. Reconstructing ancestral gene orders using conserved
intervals. In WABI 2004, vol. 3240 of LNCS/LNBI, pp. 14–25. Springer. 2004.

4. K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval graphs, and grap h planarity. J.
Comput. Syst. Sci. 13, pp. 335–379. 1976.

9

5. C. Chauve and E. Tannier. A methodological framework for the reconstruction of contiguous regions of ancestral
genomes and its application to mammalian genome. PLoS Comput. Biol. 4, paper e1000234. 2008.

6. T. Christof, M. Jünger, J. Kececioglu, P. Mutzel and G. Reinelt. A branch-and-cut approach to physical mapping
of chromosome by unique end-probes. J. Comput. Biol. 4, pp. 433–447. 1997.

7. M. Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Dissertation, Institut für Informatik, Friedrich-Schiller-Universität, Jena. 2008.

8. T. Eiter, K. Makino and G. Gottlob. Computational aspects of monotone dualization: A brief survey. Disc. Appl.
Math. 156, pp. 2035–2049. 2008.

9. M.L. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. J.
Algorithms 21, pp. 618–628. 1996.

10. P.W. Goldberg, M.C. Golumbic, H. Kaplan and R. Shamir Four strikes againts physical mapping of DNA J.
Comput. Biol. 2, pp. 139–152. 1995.

11. D. Gunopulos, R. Khardon, H. Mannila and H. Toivonen. Data mining, hypergraph transversals and machine
learning. In PODS 1997, pp. 209–216. ACM. 1997.

12. V. Gurvich and L. Khachiyan. On generating the ireedundant conjunctive and disjunctive normal forms of
monotone Boolean functions. Disc. Appl. Math. 96–97, pp. 363–373. 1999.

13. M. Habib, R.M. McConnell, C. Paul and L. Viennot. Lex-BFS and partition refinement, with applications to
transitive orientation, interval graph recognition and consecutive ones testi ng. Theoret. Comput. Sci. 234, pp.
59–84. 2000.

14. U.-U. Haus and T. Stephen. CL-JOINTGEN: A Common Lisp Implementation of the Joint Generation Method.
available at http://primaldual.de/cl-jointgen/. 2008.

15. W.-L. Hsu. A simple test for the Consecutive Ones Porperty. J. Algorithms 43, pp. 1–16. 2002.
16. M.R. Jerrum, L.G. Valiant and V.Y. Vazirani. Random generation of combinatorial structures from a uniform

distribution. Theoret. Comput. Sci. 43, pp. 169–188. 1986.
17. W.-F. Lu and W.-L. Hsu. A test for the Consecutive Ones Property on noisy data – application to physical

mapping and sequence assembly. J. Comp. Biol. 10, pp. 709–735. 2003.
18. J. Ma et al.. Reconstructing contiguous regions of an ancestral genome. Genome Res., 16, pp.1557–1565. 2006.
19. R.M. McConnell. A certifying algorithm for the consecutive-ones property. In SODA 2004, pp. 761-770. ACM.

2004.
20. J. Meidanis, O. Porto and G.P. Telle. On the consecutive ones property. Discrete Appl. Math. 88, pp. 325–354.

1998.
21. A. Ouangraoua, F. Boyer, A. McPherson, E. Tannier and C. Chauve. Prediction of contiguous ancestral regions

in the amniote ancestral genome In ISBRA 2009, vol. 5542 of LNCS/LNBI, to appear. Springer. 2009.
22. R.C. Read and R.E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and spanning trees.

Networks 5. pp. 237–252. 1975.
23. J. Stoye and R. Wittler A unified approach for reconstructing ancient gene clusters. To appear in IEEE/ACM

Trans. Comput. Biol. Bioinfo. 2009.
24. A.C. Tucker. A structure theorem for the consecutive 1’s property. J. Combinat. Theory (B) 12, pp. 153–162.

1972.
25. L.G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput. 8, pp. 410–421. 1979.

10

