
An edit distance between RNA stem-loops

Valentin Guignon1?, Cedric Chauve2?? and Sylvie Hamel3? ? ?

1 Programme de Bioinformatique, Université de Montréal,
Pav. André-Aisenstadt, CP 6128 succ. Centre-ville, Montréal (QC), H3C 3J7, Canada

2 LaCIM, Département d’Informatique, Université du Québec à Montréal,
C.P. 8888 succ. Centre-Ville, Montréal (QC), H3C 3P8, Canada

3 LBIT, DIRO, Université de Montréal,
Pav. André-Aisenstadt, CP 6128 succ. Centre-ville, Montréal (QC), H3C 3J7, Canada

guignonv@yahoo.fr, chauve@lacim.uqam.ca, sylvie.hamel@umontreal.ca

Abstract. We introduce the notion of conservative edit distance and
mapping between two RNA stem-loops. We show that unlike the gen-
eral edit distance between RNA secondary structures, the conservative
edit distance can be computed in polynomial time and space, and we de-
scribe an algorithm for this problem. We show how this algorithm can be
used in the more general problem of complete RNA secondary structures
comparison.

1 Introduction

In this paper, we address a classical problem in bioinformatics, the compar-
ison of two RNA secondary structures, and we describe a new algorithm to
compute an edit distance and a mapping between two RNA secondary struc-
tures. The importance and functional variety of the several types of known RNA
molecules, especially non-coding RNAs like transfer RNAs (tRNAs), ribosomal
RNAs (rRNAs), untranslated regions (UTRs), small nuclear RNA (snRNAs) for
example, is a strong motivation for their study [4], in particular, in the compar-
ative approach that relates combinatorial similarity between molecules to func-
tional similarity. Several algorithms exist to compare RNA secondary structures,
most of them based on the encoding of RNA secondary structures by ordered
trees, followed by the computation of an edit distance and a mapping between
these trees. This approach was first used in [9, 10], and is part of the popular
Vienna RNA Package [7]. However, the set of edit operations considered in these
works appears to be too limited, as it does not contain some edit operations that
correspond to natural evolutionary events for RNA structures, a problem that
is discussed in [1]. Recently, Jiang et al. introduced a new edit distance model
[8] that is more realistic, as it contains a broader set of edit operations, but also
less tractable algorithmically, as computing the edit distance between two RNA
secondary structures in this model is NP-hard [3].

? Supported by a scholarship of the Génome Québec program “Comparative and in-
tegrative bioinformatics”.

?? Supported by grants from NSERC and FQRNT.
? ? ? Supported by grants from NSERC and FQRNT.



In the present work, we consider the set of edit operations defined in [8]. Our
main result is that, when the compared RNA structures are simple enough and
the set of allowed mappings is restricted, the distance and mapping computation
becomes tractable, and even easy. More precisely, we consider the computation
of a conservative mapping between two stem-loops; a precise statement of the
problem is given in Section 2, but intuitively, a mapping is said to be conser-
vative if it describes only evolutionary events involving bases that are closely
located in terms of secondary structure. We show that such a computation can
be done efficiently with a dynamic programming algorithm that is an extension
of the classical algorithm computing an edit distance between strings. The mo-
tivations for considering such a restricted notion of distance and mapping are
the following. First, every RNA secondary structure can be decomposed into a
sequence of stem-loops and stem-loop-like substructures, that can be handled by
our algorithm. For example, several families of non-coding RNAs, like tRNAs,
snoRNAs H/ACA or miRNAs precursors, have a secondary structure mostly
composed of a few stem-loops. Second, two closely related, from the evolution-
ary point of view, RNA structures – not limited to stem-loops – should share
several stem-loops that are very similar and whose comparison will be well rep-
resented by a conservative mapping. Moreover, if two compared RNA structures
share only some similar motifs that contain stem-loops, our approach based on
the decomposition in stem-loop-like substructures and their pairwise compar-
isons can highlight such locally conserved motifs, a problem that received some
attention recently [2, 6].

This paper is organized as follows. In Section 2, we state precisely the problem
we address, namely the computation of a conservative distance and mapping be-
tween stem-loops. In Section 3, we describe and analyze a dynamic programming
algorithm that solves this problem. In Section 4, we show how the stem-loops
comparison can be used in a very simple way to compare complete RNA sec-
ondary structures and we illustrate this approach with the comparison of two
RNAse P RNA.

2 Edit distance between stem-loops

Tree representation of stem-loops. RNA primary structure is generally repre-
sented by a string over the four letters alphabet {A, C, G, U}. This primary
structure folds back onto itself to form the secondary structure, that is a planar
structure containing unpaired bases from {A, C, G, U} and base pairs, that are
ordered pairs of bases, the most common being AU, UA, CG, GC, GU, UG. This
secondary structure can be represented by an ordered tree1, where, for a given
RNA secondary structure, each base pair is represented by an internal node la-
beled by this base pair and each unpaired base by a leaf, labeled by this base
(see Figure 1). In such a representation, a multi-loop corresponds to an internal
node having several children that are internal nodes. We call stem-loop an RNA
secondary structure without multi-loop, which implies that the tree representing

1 Depending on the level of comparison, an RNA can be represented by different trees,
see Allali and Sagot [1] for example.



a stem-loop is linear: each internal node has at most one child that is also an
internal node. Note that linear trees are quite similar to strings, as a string can
be seen as a linear tree with only one leaf.

Fig. 1. A stem-loop and its tree representation.

Given a linear tree representing a stem-loop, leaves can be of three kinds: left

leaves, right leaves and terminal leaves. The leaves representing unpaired bases
of the terminal loop are the terminal leaves, the leaves representing unpaired
bases located on the left (resp. right) of the stem-loop are the left leaves (resp.
right leaves). In Figure 1, the terminal leaves are G, U, C, G, A, the left leaves
are G, C, A, C and the right leaves U, A.

Edit operations. Let T1 and T2 be two linear trees representing two stem-loops.
Edit operations represent evolutionary events acting on secondary structures.
The set of edit operations we describe now is the same that was described in
[8]2, augmented of additional constraints on some of these operations. These
operations are illustrated in Figure 2.

We define an edit operation between T1 and T2 as a couple (a, b), where a
(resp. b) can be an internal node or a leaf of T1 (resp. of T2), or a pair of leaves
of T1 (resp. of T2) that have the same parent, or the symbol − (but both a and
b can not be −).

If a and b are both internal nodes or both leaves, the operation (a, b) is a
relabeling: the node a changes its label to become b. If b = −, (a, b) is a deletion:
the node a is removed from T1. If a = −, (a, b) is an insertion, the symmetric
operation of a deletion. We add the following constraint on the relabeling oper-
ation: if a and b are both leaves, respectively of T1 and T2, then either one of
these two leaves is a terminal leaf, or both of them are left leaves, or both are
right leaves. We call these three operations the simple operations.

If a is an internal node and b a leaf, (a, b) is called an altering – the internal
node a is replaced by the leaf b in T1 –, and if a is a leaf and b an internal
node, it is called a completion, which is the symmetric operation of an altering.
Finally, (a, b) is called an arc-breaking if a is an internal node and b is a pair
of leaves, and an arc-creation if a is a pair of leaves and b is an internal node.
These last four operations, that represent evolutionary events that act on base
pairs, were introduced in [8]. We call them complex operations. The fact that

2 Note that in [8] RNA secondary structures are represented by non-crossing arc-
annotated sequences, but such sequences are naturally equivalent to ordered trees.



these operations represent evolutionary events on base pairs that transform a
stem-loop into another stem-loop impose some implicit conditions on the nodes
of a linear tree that are involved. In particular, an arc-creation can only involve
two leaves that have the same parent, and these two leaves can not be both left
leaves or right leaves.

Fig. 2. Illustration of edit operations: relabeling (1a and b), insertion (2a and b),
deletion (3a and b), altering and completion (4 and 5), arc-breaking and arc-creation
(6 and 7) on stem-loops and trees

Conservative mapping and edit distance. Let T1 and T2 be two linear trees and
S = s1, . . . , sn a sequence of edit operations between T1 and T2 such that their
successive application transforms T1 into T2. Such a sequence of edit operations
is called a conservative edit sequence between T1 and T2. We shall here notice
that the definition of a conservative edit sequence is less general than the general
definition of edit sequence, used in [8], as we impose that all the operations of
this sequence have to be described on T1 and T2. This, for example, forbids that
a base that was unpaired by an arc-breaking could later be involved in a arc-
creation or a completion. This is why we call conservative such an edit sequence,
and we will justify later in this section why we consider such restrictions.

The edit operations of a conservative edit sequence between T1 and T2, other
than insertions and deletions, naturally induce, by their definition, a mapping

between nodes of T1 and T2, where a leaf of a tree can be mapped to a leaf or
an internal node of the other tree, and an internal node can be mapped to an
internal node, a leaf, or a pair of leaves. This mapping highlights the bases that
are common, up to relabeling, between the stem-loops represented by T1 and T2.
We call such a mapping a conservative mapping.

Fig. 3. A conservative edit sequence between two linear trees

Finally, we associate to each edit operation (a, b) a cost denoted δ(a, b). If
(a, b) is a relabeling, where the nodes a of T1 and b of T2 have the same label,



Fig. 4. The conservative mapping corresponding to the edit sequence of Figure 3.

then δ(a, b) = 0. Note that a complex operation (a, b), depending on the label of
the nodes in a and b, can also imply a relabeling. Hence, the cost of an operation
depends of its nature and of the labels of the involved nodes. The cost associated
to an edit sequence between T1 and T2 is the sum of the individual cost of each
operations in the sequence. The conservative edit distance is the minimal cost
of a conservative edit sequence that transforms T1 into T2.

We describe in this work an algorithm that computes a conservative mapping
and the corresponding edit distance between two linear trees T1 and T2.

Discussion on various distances. Several RNA comparison algorithms have been
defined based on different subsets of the set of edit operations we defined above.
We illustrate now, through a simple example on real data, the influence of the
choice of the set of allowed edit operations on the comparison of two structures.
Given the two micro-RNAs (miRNAs) precursors of Figure 5, we describe two
possible sequences of edit operations that transform the first structure into the
second one, based on different sets of edit operations.

Fig. 5. Two miRNAs (mouse and human).

If we consider only the simple operations of relabeling, insertion and deletion,
with cost 0.75 (resp. 1.25) for the insertion or deletion of an unpaired base
(resp. a base pair) and 0.25 for the relabeling of a base3, a possible optimal
scenario to transform the mouse miRNA precursor into the human one contains
4 operations, for a cost of 3: relabeling (UA, UG), deletion (U,−), insertion
(−, U) and insertion (−, UA). If we add to this set of possible edit operations
the operations of arc-creation and arc-breaking, each with a cost of 0.5, and the
altering and completion operations, with a cost of 1 each for example, then the
following scenario, that is conservative, has a better score of 2.25 and seems more

3 The scores we use here are the same we use in Section 4, where they are discussed.



plausible, from the evolutionary point of view than the previous one: insertion
(−, U) (below), relabeling (UA, UG) and completion (U, UA).

This example is a good illustration of why we believe that the set of all edit
operations we described above should be considered when comparing RNA sec-
ondary structures. However, the problem of computing the general edit distance
between RNA secondary structures is NP-hard [3]. And even in the case of the
comparison of two stem-loops, it is not known if the general edit distance can
be computed in polynomial time. As we will see in the next section, in the case
of a conservative distance and mapping between stem-loops, the problem can be
solved in polynomial time, due to the similarity between this problem and the
problem of computing an edit distance between strings.

Finally, one can see that the restrictions that we impose to define a conserva-
tive mapping prevent the evolutionary scenarios corresponding to such mappings
to create a base pair between bases that are not closely located in the secondary
structure. Hence, if considering only conservative mapping is a strong combi-
natorial restriction, it should not prevent to obtain a pertinent distance and
mapping between stem-loops that are close from an evolutionary point of view,
which is our goal in this work. Our experiments on real data, miRNAs precursors
(not shown) and RNAse P RNA (Section 4) seem to confirm this intuition.

3 A dynamic programming algorithm

We now describe a dynamic programming algorithm that computes the con-
servative distance between two stem-loops, by using a unique two-dimensional
dynamic programming table. Through all this section, we use distance and map-
ping respectively for conservative distance and conservative mapping. We recall
that a depth-first prefix traversal (DFP) of an ordered tree is a traversal of the
tree that visits recursively the children of the root from left to right.

Indexing pairs, predecessor and successor of a node. An ordered pair I = (x, y)
of nodes of a linear tree T is called an indexing pair if it satisfies one the five
following conditions: (1) x is an internal node and y = x, (2) x is an internal
node and y a right leaf of x, (3) y is an internal node and x a left leaf of y, (4) x
and y are respectively a left leaf and a right leaf and they have the same parent,
or (5) x and y are terminal leaves, and x is located to the left of y.

An indexing pair (x, y) of T defines a subtree of T , denoted by T(x,y), in
the following way: T(x,y) is the tree obtained from T by removing all the nodes
visited between x and y during a DFP traversal of T (if x = y, this corresponds
to removing from T all the nodes other than x in the subtree rooted in x).

We define the predecessor of a node x, p(x), as its immediate left sibling if x
is not the leftmost child of its parent, and its parent otherwise. Symmetrically,
the successor of a node x, s(x), is its immediate right sibling if x is not the
rightmost child of its parent, and its parent otherwise. Note that for an internal
node x that is the only child of its parent y, p(x) = s(x) = y. According to the
previous definitions, the root r of a tree does not have a predecessor, neither a
successor, so we define them formally by p(r) = s(r) = ∅.

Finally, an indexing pair (x, y) is said to be terminal if x (resp. y) is a terminal
leaf and y = s(x) (resp. x = p(y)).



A dynamic programming algorithm. We can now define the dynamic program-
ming table that we use to compute the edit distance between two stem-loops.
This table, denoted D, is a two-dimensional table indexed by pairs (I, J) such
that I is either an indexing pair of T1 or I = ∅, and J is either an indexing pair
of T2 or ∅. The cell D[I, J ] of this table contains the edit distance between the
two linear trees TI and TJ .

It follows immediately from the definition of indexing pairs that we can define
the edit distance between T1 and T2 in terms of D[I, J ]. Indeed, if we denote by
F1 and F2 the sets of terminal indexing pairs respectively of T1 and T2, we have:

d(T1, T2) = min
(x,y)∈F1,(u,v)∈F2

{D[(x, y), (u, v)]}. (1)

To compute the table D, we use a dynamic programming algorithm, based
on the following equations. First, we initialize the table











D[∅, ∅] = 0,
D[(x, y), ∅] =

∑

a node of T1(x,y)
δ(a,−), for all indexing pairs (x, y) of T1,

D[∅, (u, v)] =
∑

b node of T2(u,v)
δ(−, b), for all indexing pairs (u, v) of T2.

(2)
The general case is composed of 4 sub-cases. In the following equations, we
denote by (R) an equation corresponding to a relabeling event, (I) an insertion,
(D) a deletion, (AC) an arc-creation, (AB) an arc-breaking, (C) a completion
and (A) an altering.
1. If x = y and u = v (x and u are internal nodes),

D[(x, y), (u, v)] = min







D[(p(x), s(y)), (p(u), s(v))] + δ(x, u), (R)
D[(p(x), s(y)), (u, v)] + δ(x,−), (D)
D[(x, y), (p(u), s(v))] + δ(−, u), (I)







, (3)

where (p(x), s(y)) = ∅ if x is the root of T1 and (p(u), s(v)) = ∅ if u is the root
of T2.
2. If x 6= y and u 6= v,

D[(x, y), (u, v)] = min































D[(p(x), y), (u, v)] + δ(x,−), (D)
D[(x, s(y)), (u, v)] + δ(y,−), (D)
D[(x, y), (p(u), v)] + δ(−, u), (I)
D[(x, y), (u, s(v))] + δ(−, v), (I)
D[(p(x), y), (p(u), v)] + δ(x, u), (R)
D[(x, s(y)), (u, s(v))] + δ(y, v), (R)































. (4)

Note that in the above equation, some of the 6 terms of the form D[I, J ]+ δ(. . .)
can be undefined. This can happen if I and/or J is neither ∅, nor an indexing
pair: for example if x is an internal node and y a right leaf of x, then (p(x), y)
is not an indexing pair of nodes of T1. In such a case, the function min will not
take into account these undefined terms.



3. If x = y, and u 6= v

D[(x, y), (u, v)] = min































D[(p(x), s(y)), (u, v)] + δ(x,−), (D)
D[(x, y), (p(u), v)] + δ(−, u), (I)
D[(x, y), (u, s(v))] + δ(−, v), (I)
D[(p(x), s(y)), (p(u), v)] + δ(x, u), (A)
D[(p(x), s(y)), (u, s(v))] + δ(x, v), (A)
D[(p(x), s(y)), (p(u), s(v))] + δ(x, (u, v)) (AB)































, (5)

where the same remark as in sub-case 2, about possibly undefined terms, applies.
4. If x 6= y and u = v,

D[(x, y), (u, v)] = min































D[(x, y), (p(u), s(v))] + δ(−, u), (I)
D[(p(x), y), (u, v)] + δ(x,−), (D)
D[(x, s(y)), (u, v)] + δ(y,−), (D)
D[(p(x), y), (p(u), s(v))] + δ(x, u), (C)
D[(x, s(y)), (p(u), s(v))] + δ(y, u), (C)
D[(p(x), s(y)), (p(u), s(v))] + δ((x, y), u) (AC)































, (6)

where again the same remark as in sub-case 2, about possibly undefined terms,
applies.

We now describe the algorithm to fill all the cells of the table D. An indexing
pair (u, v) of a tree T is said to be ancestral for the indexing pair (w, z) of T
if (u, v) = ∅ or u (resp. v) is not visited after w (resp. before z) during a DFP
traversal of T . It follows from this definition and from the equations above that,
in order to compute the table D, we have to enumerate all the couples (I, J) of
indexing pairs of T1 and T2 in a way that preserves the ancestral order for I and
J : D[I, J ] will be computed after all the cells D[I ′, J ′] where I ′ is ancestral for
I and J ′ is ancestral for J . Such an enumeration scheme is easy to design for a
given tree, based on parallel depth-first prefix and postfix traversals of this tree,
and can be performed in time that is linear in the number of indexing pairs for
this tree. Given D, a mapping is a path in this table computed with the classical
backtracking method used to compute the alignment of two strings.

Complexity analysis. The space complexity of this algorithm is given by the size
of the table D, i.e the number of couples (I, J) where I is an indexing pair of T1

and J an indexing pair of T2. Let ind(T1) and ind(T2) denote respectively the
number of indexing pairs of T1 and T2: the table D contains Θ(ind(T1)×ind(T2))
cells.

As the enumeration of all indexing pairs of the trees T1 and T2 respecting
the ancestral relation can be performed in time linear in the number of such
pairs for each tree, the initialization of the table (equation (2)) can be computed
in O(ind(T1) × ind(T2)) time. Moreover, filling one cell of the table, using the
dynamic programming equations (3), (4), (5) and (6) can be done in constant
time, since testing if a pair of nodes is indexing takes a constant time. Note
also that the predecessor and successor of every node of a tree can easily be
computed, prior to the computation of the table D, in linear time during a DFP
traversal of this tree. Finally, once D has been filled, computing the edit distance



using equation (1) can be done by visiting the cells indexed by pairs of terminal
indexing pairs, and so in O(ind(T1) × ind(T2)) time. This leads to the result
that the time complexity for computing the conservative edit distance between
T1 and T2 is Θ(ind(T1) × ind(T2)) time. It follows from the similarity between
our algorithm and the string edit distance algorithm that computing a mapping
from D asks for the same time, that is Θ(ind(T1) × ind(T2)).

Let n1 be the number of nodes of T1, m1 be the number of internal nodes
of T1, {x1, . . . , xm1} these internal nodes, `i and ri the number of left and right
leaves of xi, for i = 1, . . . , m − 1, and t1 the number of terminal leaves. The
number ind(T1) of indexing pairs in T1 is exactly

m1 + (t1(t1 − 1)/2) + 2t1 +

m1−1
∑

i=1

((`i + 1) × (ri + 1) − 1), (7)

where these four terms correspond respectively to the number of indexing pairs
formed by two occurrences of the same internal node, those formed by two ter-
minal leaves, those formed by a terminal leaf and xm1 and, finally, those formed
with at least one non terminal leaf.

Hence, ind(T1) ∈ O(n2
1), and, if we denote by n2 is the number of nodes in T2,

the overall distance and mapping algorithm has a worst-case time complexity in
O(n2

1 ×n2
2). However, it is interesting to remark that, if T1 is a tree representing

a stem-loop with few unpaired bases, or small loops (internal loops and the
terminal loop), then ind(T1) is closer to n1 than to n2

1. Hence, when comparing
stem-loops with such characteristics in terms of unpaired bases and loops, the
algorithm asks for a time that is, in practice, in only quadratic.

4 Comparison of complete secondary structures

In this section, we describe a simple method that allows the comparison of two
complete RNA secondary structures R1 and R2, based on the stem-loops com-
parison algorithm of the previous section. This method has three phases: (1)
decomposition of the two RNA structures into two sequences of stem-loops sub-
structures, (2) independent pairwise comparisons between the stem-loops of R1

and the stem-loops of R2, and (3) finally, an alignment of these two sequences
of stem-loops using the distances computed during the phase (2).

Given an RNA secondary structure R, if one removes all the unpaired bases
belonging to multi-loops, one obtains a set of substructures with no multi-loops.
Even if these substructures are not all stem-loops under the classical definition
of the term, due to the fact that some of them do not have a terminal loop,
we call them stem-loops, as the algorithm we described in Section 3 does not
need any major modification to handle stem-loops that do not have a terminal
loop. This set of substructures is naturally ordered by the sequence of bases that
forms the primary structure of R, as illustrated in Figure 6.



Fig. 6. Decomposition of two RNase P RNA into stem loops. Numbers indicate the
order on each of the two sets of stem-loops.

Now, let R1
1, . . . , R

k
1 and R1

2, . . . , R
`
2 be the two sequences of stem-loops given

by the decompositions of two complete RNA secondary structures R1 and R2.
We use a table P , indexed by pairs of integers belonging to {0, . . . , k}×{0, . . . , `}
where P [i, j] is the distance between Ri

1 and Rj
2 – with R0

1 = R0
2 being the empty

stem-loop –, computed using the algorithm of Section 3. The table of Figure 7
corresponds to the pairwise comparisons of the stem-loops of Figure 6, with the
following costs: 0.25 for the relabeling of a single base, 0.4 for the relabeling of
the two bases of a base pair, 0.75 (resp. 1.25) for the deletion and the insertion of
a leaf (resp. an internal node), 0.5 for an arc-breaking and an arc-creation, and
1 for a completion and an altering. These costs were chosen in such a way that
no edit operation can be replaced, for a smaller cost, by a sequence of other edit
operations. Moreover, the results we present below did not differ when alternative
cost schemes, that had the same property, were used.

Fig. 7. Pairwise distances between the stem-loops of Figure 6.

Finally, we apply the classical string global alignment algorithm (see [5] for
example) to these two sequences of stem-loops, using the table P to define the
cost of the insertion or deletion of a given stem-loop, and the score of a matching



between two stem-loops. The resulting dynamic programming table is given in
Figure 8, where marked cells describe the alignment of stem-loops obtained by
backtracking. To obtain from this table a mapping, one can use the classical
backtracking method, both in the table of the alignment of the sequences of
stem-loops and in the tables of the pairwise alignments of stem-loops.

Fig. 8. Alignment of the two sequences of stem-loops of Figure 6 using the table of
Figure 7: marked cells indicate an optimal stem-loops alignment.

As it appears on Figure 8, this algorithm, applied on the two quite similar
RNAse P RNAs of Figure 6 gives a good result, even if the stem-loops 8, 9 and
10 of the RNAse P RNA SM-A18(31) show that this method is sensitive to the
insertion of a stem-loop into another stem-loop. However, the comparisons of
the other stem-loops that were very similar compensated this problem.

If n1 is the number of bases of R1 and n2 the number of bases of R2, it
follows immediately from the complexity of comparing two stem-loops that the
comparison of R1 and R2 is performed in O(n2

1 × n2
2) in the worst-case time.

However, the low number of unpaired bases in the two sets of stem-loops of our
example makes that the effective time complexity was only quadratic.

It is also interesting to notice that all the different variants of the alignment
of strings can be used with our method. For example, if one wants to discover
clusters of close stem-loops that are similar in R1 and R2, that is local motifs,
one just has to use the algorithm for local alignment of strings instead of the
global string alignment algorithm.

5 Conclusion

We described in this paper an efficient algorithm for the comparison of stem-
loops, intended to give good results for stem-loops that are evolutionary close. By
imposing some restrictions on the set of possible mappings that are considered,
we were able to use the complete set of edit operations defined in [8]. Moreover,
we sketched a method that allows to use the stem-loops comparison algorithm as
a basis for the comparison of complete RNA secondary structures. Experimental
results suggest that this approach gives interesting results.

This work raises several interesting algorithmical questions. First, it would
be interesting to see at which point the fact to consider stem-loops makes eas-
ier the edit distance computation: is computing the general edit distance of [8]



between stem-loops NP-hard ? And if this is the case, are there definitions of
some mapping, less restrictive than conservative mappings, that allow a poly-
nomial time computation. From a preliminary work on this question, it seems
that it is possible to relax the locality of interactions between bases imposed in a
conservative mapping and that one can consider interactions between bases that
do not belong to the same internal loop. However, this makes the computation
more time-consuming, at least in practice.

It would also be important to understand more deeply the influence of the
cost scheme of edit operations on the final result, as it was done in string algo-
rithms. It is for example possible that some cost schemes allow to compute in
polynomial time the general edit distance.

The most interesting question concerns the way to use the comparison of
stem-loops in the comparison of complete secondary structures. We used here a
simple method based on the alignment of strings, that has the good property
to be efficient in terms of computing time. In [1], Allali and Sagot introduced
the notion of multilevel RNA structure comparison, that considers several levels
of representation of an RNA structure into trees. The method we described in
Section 4 follows this principle in fact, but does not consider the high level ar-
chitecture of this structure as it considers the stem-loops in a simple sequence.
It then would be interesting to combine our algorithm with the multi-level ap-
proach of [1].

References

1. J. Allali and M.-F. Sagot. A new distance for high level RNA secondary structure
comparison. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 2(1):4–14. 2005.

2. R. Backofen and S. Will. Local sequence-structure motifs in RNA. J. Bioinform.
Comput. Biol., 2(4):681–698. 2004.

3. G. Blin, G. Fertin and C. Sinoquet. RNA sequences and the EDIT(NESTED,
NESTED) problem. Report RR-IRIN-03.07, IRIN (Nantes, France). 2003.

4. J. Couzin. Breakthrough of the year: small RNAs make big splash. Science,
298:2296–2297. 2002.

5. D. Gusfield Algorithms on strings, trees and sequences. Cambridge University
Press. 1997.

6. M. Höchsmann, T. Töller, R. Giegerich and S. Kurtz. Local similarity in RNA
secondary structures. In 2nd IEEE Computer Society Bioinformatics Conference
(CSB 2003), pages 159–169, IEEE Computer Society. 2003.

7. I.L Hofacker. Vienna RNA secondary structure server. Nucleic Acids Res.,
31(13):3429–3431. 2003.

8. T. Jiang, G. Lin, B. Ma and K. Zhang. A general edit distance between RNA
structures. J. Comput. Biol., 9(2):371–388. 2002.

9. B.A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using
tree comparisons. Comput. Appl. Biosci., 6(4):309–318. 1988.

10. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput., 18(6):1245–1262. 1989.


