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Abstract

The polynomial-time decidable Consecutive-Ones Prop@tyP) of binary ma-
trices, formally introduced in 1955 by Fulkerson and Grds,[ has since found
applications in many areas. In this thesis, we propose anly several variants of
this property that are motivated by the reconstruction akatral species.

We first propose the Gapped C1P, or {thed)-Consecutive-Ones Property
((k,0)-C1P): a binary matrixM has the(k,d)-C1P for integerk and ¢ if the
columns ofM can be permuted such that each row contains at knlolstcks of1’s
and no two neighboring blocks dfs are separated by a gap of more than’s.
The C1P is equivalent to th@,0)-C1P. We show that for every bounded and un-
boundedk > 2,6 > 1, (k,0) # (2,1), deciding thgk, §)-C1P is NP-complete [55].
We also provide an algorithm for a relevant case of the (€15~

We then study thék, §)-C1P with a boundl on the maximum number afs in
any row (the maximundegre¢ of M. We show that théd, k, d)-Consecutive-Ones
Property (d,k,d)-C1P) is polynomial-time decidable when all three paransete
are fixed constants. Since fixinlgalso fixexk (k < d), the only case left to consider
is the (d,k,)-C1P (whend is unbounded). We show that for evedy> k > 2,
deciding the(d, k,)-C1P is NP-complete.

We also study the Consecutive-Ones Property with MuliiiglionC1P), intro-
duced by Wittler and Stoye [151]: a binary matik on columnsS= {1,...,n}
has themC1P formultiplicity vectorm : S— N if there is a sequence on Ssuch
that (i) o contains eaclk € Sat mostm(s) times, and (ii) for each row of M, the
set of columns that have enttyin r form at least one subsequencesofWe show
that deciding thenC1P, and two restricted variants thereof, are NP-complete,
M having maximum degree 3 (6 for one of the variants), andrf(s) < 2 for all



se S We also give a tractability result for timeC1P that is motivated by handling
telomeres in the reconstruction of ancestral species.

Finally, we study the Generalized Cladistic Character Catrbpity (GCCC)
Problem, a generalization of the Perfect Phylogeny Proljlie37] introduced by
Benham et al. [12]. We use the structure of the PQ-iree [2d9@ated with the
C1P to give algorithms for several cases of the GCCC Problem.



Preface

This thesis is structured into six chapters. The first chiaptes a general overview
of the C1P and the motivation for considering the four vaddhat we propose and
study here. This was written specifically for the thesis bywith help from Cedric
Chauve in structuring the content. Each of the four subs#qcieapters is then
dedicated to a particular variant. These four chapters tbhemesults of this thesis,
which have been published in several co-authored puliicsatias detailed below.
The sixth chapter concludes this thesis with open questiadsuture work.

In Chapter 2, Cedric Chauve identified tfle )-C1P and its motivation for
studying this variant. The results of Sections 2.2 and 21/&@Wnd by Jan Manuch
and I, while Jan Manuch wrote most of Section 2.2 and | wRBeetion 2.3. The
ideas of Section 2.4, with exception of Conditicn 8 were fibby me, and this sec-
tion was also written by me. Finally, the idea of the congtamcof Section 2.5 was
mine, while | wrote most of this with some help from Jan MaluAll the results,
with exception of Section 2.4 appear in our work Manuch =fldl1]. Preliminary
results on this appear in our published work Chauve et ]. [29

In Chapter 3, Cedric Chauve came up with the idea for the #gorof Sec-
tion 3.1, and also wrote most of this, which was expanded lateme. The re-
sults of Section 3.2 were then found by Jan Manuch andnlManuch came up
with the idea of using a hypergraph covering problem to shd®vddmpleteness
of deciding the(3,2,0)-C1P, and wrote this up as well (Sections 3.2.1, 3.2.2
and 3.2.4). Generalizing this construction (Section 3.@:&s then found by Jan
Manuch and I, while | wrote it up and Jan Manuch suppliedl figures. The re-
sult of Section 3.1 can be found in our work Manuch et al. [{@hd in our work
Chauve et &l. [29]). The results of Section 3.2 are the stlgieour published



work Manuch and Patterson [100], while preliminary reswlh this appear in our
published work Mafuch and Patterson [99].

In Chapter 4, Wittler and Stoye [151] formally define the ootbf themC1P,
and propose also the two variants of Section 4.2. All of tiseilte of Sections 4.1
and 4.2 where found by Jan Manuch and |, with some help fratarRi Wittler.
The ideas and work for the tractability result of Sectiorn wede then shared with
Cedric Chauve, Jan Manuch, Roland Wittler and I. In paféic Cedric Chauve and
Roland Wittler worked on and wrote the subsection titled € T®ase of a Single
Multicolumn”, while Jan Manuch and | worked on and wrote gubsection titled
“Completing the Proof of Theorem 51”. All of the results ofcBens 4.1 and 4.2
appear in our published work Wittler et al. [152], while thadtability result of
Section 4.3 is the subject of our published work [31].

The work of Chapter 5 was an equal contribution of Jan Marard |. The
GCCC (at least its form) was first proposed in Benham et al. [TBe results of
Section 5.2 were then found and written by Jan Manuch anthé. algorithm of
Subsection 5.3.1 was found by me, and written with help frégm Manuch. In
Subsection 5.3.2, Jan Manuch came up with the idea of Le68navhile | came
up with the idea of this struture based on PQ-trees [21, If6lémma 65. This
Subsection 5.3.2 was then written by me. Jan Manuch arehl¢ame up with the
idea of Subsection 5.3.3, and Jan Manuch wrote this. Téatseof Section 5.4
were then found and written by Jan Manuch and I.
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Glossary

C1P Consecutive-Ones Property, a property of binary matricies
AGO Ancestral Gene Order

DNA Deoxyribonucleic Acid, a nucleic acid that contains theeg@ninstructions
used in the development and functioning of all known livimgamisms (with
the exception of RNA viruses)

RNA Ribonucleic Acid, one of the three major macromoleculegr@liwith DNA
and proteins) that are essential for all known forms of life

STS Sequence Tagged Site mapping, a type of physical mapping\éf [20€,
119]

CAR Contiguous Ancestral Region, a set of genes that remairitege some
(reconstructed) ancestral genome [96]

k-C1P k-Consecutive-Ones Property

(k,8)-C1P (k,d)-Consecutive-Ones Property

(d,k,0)-C1P (d,k,d)-Consecutive-Ones Property

d-UH-p-CP d-Uniform Hypergraphp-Covering by Paths Problem

mC1P Consecutive-Ones Property with Multiplicity

mC1P(fr) Consecutive-Ones Property with Multiplicity for Framedv®, a re-

stricted variant of thenC1P
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mC1P(ne) Consecutive-Ones Property with Multiplicity for Nestedviry another
restricted variant of thexC1P

GCCC Generalized Cladistic Character Compatibility Problengeaeralization
of the Perfect Phylogeny Problem [137]

GCCC-NB GCCC with non-branching character trees Problem, a speasd of
the GCCC Problem in which character trees have a single braec, each
character tre@y is0—1— --- — |Tg| —1

SB-GCCC-NB Single-Branch GCCC-NB Problem, the case of the GCCC with
non-branching character trees (GCCC-NB) Problem whereestict the
solution (a phylogeny tree) to have only one branch stadirte root

P-GCCC-NB Path GCCC-NB Problem, the case of the GCCC-NB Problem
where we restrict the solution (a phylogeny tree) to havg tmb branches
starting at the root

BKW Benhan-Kannan-Warnow Case, a case of the GCCC Problens thigpar-
ticular intrest to the biological setting that motivatedsthroblem

FPT Fixed Parameter Tractable

PTC Path Triple Consistency Problem

LEF-PTC Left Element Fixed Path Triple Consistency Problem
REF-PTC Right Element Fixed Path Triple Consistency Problem
OEF-TO One Element Fixed Total Ordering Problem

QC Quartet Consistency Problem

TO Total Ordering Problem

NAE-3SAT Not-All-Equal-3SAT

E-C1P Extended Consecutive-Ones Property, a property of matuigth entries
from set{0,1,0~,0"}
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Chapter 1

Introduction

This thesis concerns variants of the Consecutive-OneseRyofC1P) of binary
matrices. In particular, we define and study here four wayggagtralizing the C1P
in order to better model various scenarios of the reconsimuof ancestral species
from a computational point of view. The first three of these motivated by the
reconstruction of Ancestral Gene Orders (AGQSs) [27], wthie last is motivated
by the Generalized Cladistic Character Compatibility (GJ®roblem [12].

First we give an overview of the C1P, some historical baclkgdoof the prop-
erty, and its applications. We then give a detailed overnviéwhe reconstruction
of AGOs and show its relation to the C1P. We then show that,ngnmeany other
applications, the problem with the reconstruction of AG®O#hat it often involves
handling matrices that do not have the C1P. This then leattte tirst contribution
of this thesis: to offer three ways of generalizing the C1Briter to address this
problem raised in the reconstruction of AGOs. Finally weddtice and motivate
the GCCC Problem. We then propose our fourth and final vadftiie C1P that
leads to an algorithm for a case of this problem.
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Figure 1.1: (a) A binary matrixM that has the C1P. (b) A C1 order . (c)
A binary matrix that does not have the C1LP [145].

1.1 The Consecutive-Ones Property

1.1.1 An Introduction of the Consecutive-Ones Property

Let M be a binary ¢,1)-matrix with m rows andn columns. Ablockin a row ofM
is a maximal sequence of consecutive entries containifggapis a sequence of
consecutive’s that separates two blocks, where the size of the gap istiggh of
this sequence df's. Thedegreeof a row ofM is the number of’s in the row. The
degree of a matrii is the largest degree over all rowsMf In the first row of the
matrix M of Figure 1.1a, the blocks are ab and d, while a gap of size ep&rates
these two blocks. The degree of the second roMaf Figure 1.1a is 2, while the
degree oM is 3.

A matrix M is said to have the C1P (for rows) if its columns can be perthute
such that each row contains only one block (there are no gapssicase). We call
a permutationrt of the columns oM that witnesses this property a consecutive-
ones (Cl)order of M; that the matrixM’ resulting from this permutation ison-
secutive or that it isconsecutive with respect @ and thatM has the C1P, or is
C1P. Further, we call the problem of deciding whether or noihary matrix has
the C1P the C1P Problem. Observe that the mafrief Figure 1.1a has the C1P,
while permutation cabde of its columns is a C1 order of Miscf. Figure 1.1b,
while the matrix of Figure 1.1.c does not have the C1P.

According to Kendall [84], this property was first mentioneg Petrie, an ar-
chaeologist, in 1899. In 1951, Robinson [129], also an aclumist, proposed
several heuristic methods for the problem. The first polyiadtime algorithm for
deciding the C1P was then introduced by Fulkerson and GBagsr 1965. Inter-



estingly, it was a problem in genetics, cf. Benzer [13], thativated these authors
to study the C1P.

1.1.2 Background: Deciding the Consecutive-Ones Property

The early attempts at deciding the C1P started with the ighgor of
Fulkerson and Gross [52]. In this work, Fulkerson and Grégg first compute
the overlap graphfor the set of rows of the binary matriM. For each compo-
nent (a tree, otherwis®l does not have the C1P) of this graph, they then give a
guadratic-time algorithm to incrementally build a perntuferm of this compo-
nent (which corresponds to a set of rows) that has the C1Powkndg this, in
1969, Ryser [132] studied this problem and provided a géimet@mn of the re-
sult of Fulkerson and Gress [52] for a class of matrices thsehhecircular-ones
property? In 1972, Tucker [145] then presented a forbidden submatraracter-
ization of binary C1P matrices. In this work, Tucker [145pels that a binary
matrix M has the C1P if and only if the bipartite grafy corresponding tiv
contains no asteroidal triple. Hei@y = (V1,V,, E), whereV; (resp.\s) is the set
of columns (resp., rows) d¥l, and(vy,Vv2) € E if and only if columnv; contains
alinrow v, (cf. Figure 1.2). An asteroidal triple of a graph is a set akéh
vertices such that there is a path between any two of thesieegewhich avoids
the neighborhood of the third vertex, cf. Figure 1.2b. Thisaf forbidden sub-
mitrices then comes directly from the set of bipartite (sgtgphs which contain
an asteroidal triple. For example, the matrix of Figure 1t does not have the
C1P contains the submatrix obtained by removing columnowshin Figure 1.2a,
which is a forbidden submatrix because its correspondipgrbie graph, shown
in Figure 1.2h, has an asteroidal triple. Until recently, |26, 39], the forbidden
submatrix approach of Tucker was not seen as computatjona#iful, which is
why people followed other approaches.

In 1976, Booth and Lueker [21] introduced the first lineandi algorithm for
deciding this property. In Booth and Lueker [21], the aushimtroduced also a
data structure called tHeQ-tree a linear-time constructible structure that encodes
all C1 orders of a binary C1P matrix. See Figure 1.3 for an @tamof a PQ-tree:

Iwhile we focus here on generalizations of the C1P other thawitcular-ones property, refer to
Dom |37] for details on this property.
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Figure 1.2: (a) A binary matrixM that has does not have the C1P. (b) The
bipartite graphGy, corresponding toM where the black (resp., white)
vertices correspond to the columns (resp., rowdYloiGraphGy con-
tains the asteroidal triplg, h, j.

In Figure 1.3a we have a binary C1P matrix, while Figures a3t 1.3c give two
configurations for the PQ-tree of this matrix. This work ofd8oand Lueker [21]
was a significant achievement in the history of deciding th® n particular, the
PQ-tree has since served as a useful tool in using the C1Pddelimg problems
in many settings. In this thesis, we use the structure of @rBe to obtain several
of our algorithmic results. There would then be a break iraesh on deciding the
C1P for more than ten years after this milestone result otiBand Lueker [21].
Year 1989 showed a renewed interest in research on deciden@iP with
the result of Korte and Mohring [37]. Indeed, while the sture of the PQ-tree
is very elegant and simple, the algorithm in Booth and LugR&f for construct-
ing it is quite complicated. This motivated Korte and Malgri[87] to introduce
MPQ-trees (modified PQ-trees), where the internal (P- anech@des contain some
additional information, which makes these trees simplecdostruct. In 1992,
Hsu [73] ([76]) also presented a linear-time algorithm tst fer the C1P without
using PQ-trees, however its implementation is still quibenplicated. In 1998,
Meidanis et al. [106] proposed a new theory of the C1P whiché&izes many
concepts alluded to in other works, suchathogonality of two rows in a bi-
nary matrix [21, 52, 73, 76, 113]. In addition to this new thedhe authors of
Meidanis et al. [106] also introduce a new structure caliedRQR-tree, which ex-
ists for any instance of a binary matrix; it generalizes tQetRee in that a PQR-tree
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Figure 1.3: (a) A binary C1P matrixM. (b) The PQ-treely for M. Here,
Twm has internal (circular) P-nodes and (rectangular) Q-noaled leaf
nodes for the set of columns bf. A leaf order ofTy;, obtained by taking
any arbitrary (resp., forward or reverse) permutation efchildren of a
P-node (resp., Q-node) represents a C1 ordbt.dflote that the current
configuration ofTy represents C1 order bdaecgf ldf. (c) Another
configuration of PQ-tredy representing C1 order dgcaebfidf Note
that T(M) has 4! 2-2 = 96 configurations, and hendé has 96 C1
orders.

for a C1P matrix is a PQ-tree. See Figure 1.4a for an exampeRPR-tree. In
2000, Habib et al. [64] gave a very simple algorithm for dewidhe C1P which is
based on partition refinement.

In 2003, Hsu and McConnell [78] introduced a remarkable $fination for
building PQ-trees. Here, these authors introdue€etrees a structure that is much
more straightforward to construct, but which encodes atlutar-ones orders of a
binary matrix that has the circular-ones property. Howeadrinary matrixv that
has the C1P has also the circular-ones property, and mardabege is an easy
way to modify the PC-tree fa¥l so that it yields the PQ-tree fddl [37]. In 2004,
McConnell [102] proposed the first linear-time certifyinlga@rithm for deciding
the C1P, that is, if a matrid is not C1P, the algorithm outputs a certificate of
size linear inM that verifies thi€ In McConnell [102], the author also provided
a slightly different type of structure than the PQR-treedolasn partitive families,
called the Generalized PQ-tree, which exists for any igasf a binary matrix;
again, a generalized PQ-tree is a PQ-tree for a C1P matrist Maoently, in 2010,
Blin et al. [18] developed a faster algorithm for finding tleelfidden submatrices

2Refer tc Kratsch et al. [90] for more details on such certifisa
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Figure 1.4: (a) A binary matrixM that does not have the C1P. Note thais
the matrix of Figure 1.3a with a fourth row added, causing thatrix to
not have the C1P. (Note also, thdtcontains the forbidden submatrix
of Figure 1.2a). (b) The PQR-trdg for M. Here, Ty has the additional
third type of internal (diamond-shaped) R-node. An R-nagl@asents
a part ofM which do not have the C1P (contains a conflicting set of
columns ofM). Note that the PQR-tree of the matrix formed by the first
three lines oM is equivalent to that shown in Figure 1.3b.

of Tucker [145]. Refer to the works of Michael Dom [36, 37] fonice survey of
the C1P and its algorithmic aspects, respectively.

1.1.3 Applications of the Consecutive-Ones Property

The Consecutive-Ones Property has had a rich set of apphsasince its in-
troduction. Indeed, according to Kendall [84], Petrie'senmest in this prop-
erty in 1899 was motivated by the application of the semati archaeological
data [72] 84, 129]. The C1P appears in many other practigadicagions, such as
scheduling [67, 70, 89, 147], information retrieval [54] &&d circuit and railway
design/optimization [4€, 104, 105, 131]. Essentially, @R finds applications
in any problem where one needs to linearly arrange a set ettshgubject to the
constraint that objects in a given subset must appear cotisaly in this order.
Since binary matrices can be represented as graphs andevga the C1P has
close connections to graph theory, in particular to integvaphs and their recogni-
tion [34, 74,77, 90]. Indeed, much of the progress in degidire C1P was a result
of research on interval graphs [21, 52, 64, 87]. The C1P dBysmn important
role in the area of solving (integer) linear programs, imteof both its direct appli-
cation to practical linear programming problerns [€, 70,14L7], or how it relates
to linear programming from a more theoretical point of viad%, 115, 136]. From



a complexity theoretic point of view, there are many proldean matrices that are
in general NP-hard that become polynomial-time solvablemte input has the
C1P [33,112], such as problems in railway optimization asteeduling [105, 14.7].
This has also been shown in the study of covering problemis asiset cover, as
well as geometric covering problems such as rectangle isigf®6, 43, 104, 131].

The C1P has also found applications in quite a few areas ofijatational)
molecular biology as different technologies developedr dvee. Since this ap-
plication is the subject of this thesis, we illustrate thismore detail in the next
few paragraphs. One of its first applications to moleculaldgly was in the study
of the composition of genes [13, 52, 92]. By 1926, it was alyeknown from
Morgan [109] that genes are arranged linearly on a chromesorowever, by
1959, genetic analysis technology was advanced enougl} fha@¢.Benzer [13]
was able to perform a series of experiments aimed at vegfyihether a gene is
also a linear arrangement of its components. While the fiviengenetic maps of
the set of components that Benzer [13] produced did not ety exclude non-
linear arrangements, the assumption of a linear arrangeseemed to be the most
probable fit given this data. This would be the first, very esuidrm of physical
mapping. It was six years later, in Fulkerson and Gross [B2ihe study of this
problem by these authors that they formulated the set oktbhemponents from
the experiments of Benzer [13] as a binary malfixwhere each component rep-
resented a row. The set of components then has a linear arrangement exactly
when matrixM has the C1P, hence formally defining this notion of the C1P in
Fulkerson and Gross [52] and also introducing the first paiyial-time algorithm
for deciding the C1P. Of course, today it is common knowletlge a gene is
a linear arrangement of its components, but in Benzer [1#, was an exciting
result that provided the first insights into the finer struetaf genes.

More recently, when the technology allowed scientists tirbeonstructing, en
masse, highly accurate physical meps [93] of hybridizatiata, with the aim of se-
guencing specific DNA strands, it introduced new computaichallenges [7, 8],
some of which have been overcome by very applied approadtes§, 94], while
several theoretical works exist on the subject [4, 5, 55].18thce a DNA strand
is too long to study in its entirety (i.e., the human chronmeocontains about
10° base pairs [5]), it is broken into fragments,adones and the goal of physical
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mapping is to reconstruct the DNA strand given a collectiboverlapping clones
of the strand. A popular approach of the time was Sequencgetiagite (STS)
mapping [108, 119]. In this approach, relatively short stihgs calledmarkers
(or probes) are extracted from the DNA strand itself, but sufficiently long,
however, that it is highly unlikely to occur twice on the sastend. Given the
information as to which clones contain which markers, thal gothen to find an
order of markers in such a way that subsets of markers thaaamm the same
clone appear consecutively in this order, i.e., one pasgibtonstruction of this
DNA strand. See Figure 1.5 for an example of an STS physical. n@onsider
the binary matrixM where we have a column for each marker, and a row for each
subset of markers that appear on the same clone (i.e., a tbvawin the column
corresponding to each marker in this subset). It follows Wecan find an order
of markers satisfying the above condition if and onlyMfhas the C1P. In the
next section, we introduce in detail an application in tremasf molecular biology,
namely the reconstruction of AGOs, the application thatrhativated the defini-
tion and study of the several relaxed versions of the C1Patigathe subject of this
thesis.

1.2 The Reconstruction of Ancestral Gene Orders

1.2.1 A Basic Overview of the Reconstruction of Ancestral Qe
Orders

The area of comparative genomics concerns the relatioh&typeen the structure
and function of genomes across sets of different specids.ifiolves the analysis
of the information provided by the signatures of selectiomamn attempt to under-
stand the evolutionary processes that act on these gendatiedies in this area
have shown that conserved regions between the genomes tobfaspecies often
contain functionally or evolutionarily associated gerigs,[118]. See Figure 1.6
for an example. From this discipline, and the existing dadé has been generated,
comes the natural question of inferring the structure otatral genomes, or An-
cestral Gene Orders (AGOs). A set of closely related spesieh as mammals in
Figure 1.6 have many regions that are common, or at leadisindie can use this
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Figure 1.5: A STS physical map of the kallikrein gene region. The posi-
tions of the markers are depicted along the top, and the slane
shown as horizontal lines. The markers were developed friamec
insert ends (red) and kallikrein genes (blue). The unfillgdases
on clones 338F22 and 003F08 show markers not analysed. césour
http://westnilevirus.okstate.edu/research/2004rr/13/13.htm)

commonality to reconstruct the AGOs for this set of species.

Given the genomes for a sBDf existing species and a set of genomic markers
(such as markers obtained from STS physical mapping, fanple genes), the
reconstruction of AGOs is to infer possible orders of thesekers in the chromo-
somes of some ancestor commorstor his assumes that a phylogenetic tilees
given, with the existing specie3at the leaves of this tree, and the common ances-
tor is the extinct (unsequenced) species at the internad obd that is common to
setS. Note, thafT may contain some less closely relataatgroupspecies (leaves
that are not ir§), and, in fact, this is a good practice, as the informatiaey tpro-
vide helps to produce more accurate reconstructions [7 A@6an auxiliary step
to reconstructing AGOs, we first infer a setgyinteniestaking from the terminol-
ogy of Chauve and Tannier [27], i.e., groups of markers trabalieved to appear
together in this ancestor, cf. Figure 1.7 for an illustnatid this. An AGOs is then
any order of the markers such that each group of markers intarsy appears to-
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Figure 1.6: The alignment of a human genome against several mammals and
a chicken genome. Here, the regions of each genome that oode f
the Apolipoprotein Al gene (a gene that has an importantiroligid
metabolism) are highly conserved, and hence similar, foanammals.
(source:http://www.lbl.gov/tt/techs/Ibnl1690.html)

gether in this order. The value of reconstructing AGOs isitlean give us insights
into the biology, ecology, and evolution of extinct spe¢es 56]. Experimentally,
at least for proteins, the reconstruction of ancestralgimsthas led to the discov-
ery of new biochemical functions that have been lost in mogeoteins [80, 133].
Since the input to this problem is a phylogeny tileghis area is closely related to
phylogenetics [45] (constructing a phylogeny tree for aodespecies, etc.). There
are also studies of reconstructing phylogenies for a sekisfieg species given
AGO data as well as computing both simultaneously [1].
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Figure 1.7: An illustration of the inference of syntenies for the anoesbm-
mon to setS= {human, mouse, dggof species with outgroup species
chicken. A synteny is a group of markers that appears togetla least
two species whose path goes through the considered anddster, the
first synteny appears in the human and the dog, and the sesdnd i
ferred from the chicken and the mouse, while the fourth oreears
in all three species db. These syntenies can be weighted according to
how often they appear in the existing species, i.e, thistfiosynteny
would be weighted more heavily than the first two. (animalletiom
reproduced with permission fromww.bigstock.com)

1.2.2 Previous Approaches to Reconstructing Ancestral GenOrders

While the problem of reconstructing AGOs has been studied eg early as 1936
for simpler organisms such as insects [140], cytogenegidsriology such as chro-
mosome painting allowed scientists to start reconstrgatitore complex organ-
isms such as mammals 50, 127,141, 1.42, 150, 153] in the ®anhyd 2000’s. At
roughly the same time, because physical maps for diffefgeties became avail-
able [5, 108, 119], many bioinformatics methods for recartsing AGOs from
physical mapping data also began to appear [22—24, 111]b&hefit of bioinfor-
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matics methods over cytogenetics methods is that they peoAGOs at a much
higher resolution. However, since physical mapping i atioung field, there
are fewer such existing genome sequences available [441260 Since physical
maps continue to be generated at an explosive rate (onenrbagty the drop in
the cost of next generation sequencing technology) it ieetgal that bioinformat-
ics methods will be the dominating technology for recoredtng AGOs. These
bioinformatics methods use various differing approachegsrocessing data from
physical maps. However, scientists started to notice agkvee between some
of the bioinformatics methods that use a parsimony appraa¢trms of evolu-
tionary events (reversals, translocations, fusions argibfis), in particular, the
works 22, 111], with cytogenetics studies [51]. Howevar2006, the first bioin-
formatics approach to this problem appeared in Ma et al. {8&i, when applied
to mammalian genomes, gave results that were more in agneemith cytoge-
netics methods, while exhibiting few points of divergent8(]]. We present this
important result in more detail in the next paragraph.

Given the genomes for a s&of existing species (in their experiments,
consists of human, mouse, rat and dog, while they use the tégyaup species
chicken and opossum), and phylogeny tfEecontaining S, the approach of
Ma et al. [96] is to first segment the multispecies alignmén® with the human
genome as a reference (or more precisely, nets, cf. Kent[8E§) to build a set of
orthology blockg9€]. Orthology blocks are essentially regions that are mam
(regions that are of some minimum size, here 50ko [96], thettra certain similar-
ity threshold) among all species 8 From these orthology blocks, Ma et al. [96]
then computeonserved segmenthat is, sequences of orthology blocks that re-
main together and in the same order in all specieS, isee Figure 1/8. Finally,
from the set of pairs of conserved segments, where each aass adjacent in
some species d§, they extract a maximal unambiguous subset of adjacenzies t
construct Contiguous Ancestral Regions (CARS). In ordataohis, they employ
a method analogous to Fitch [48] to find the most parsimonsmesario for each
of these adjacencies. This has the effect of assigning edjelcemcy a weight
between 0 and 1, where the weight is the measure of confidéatehis adja-
cency appears also in the ancestor. The set of outgroupesp@gere, chicken and
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opossum) is used to improve the accuracy of this step. Censiolv the graph
G = (V,E), where the vertex sét is the set of conserved segments, andssef
(weighted) edges is this set of weighted adjacencies. $ircgoal to infer a set of
AGOs, they construct a grafghl incrementally by selecting edges frdnin order
of decreasing weight, skipping over any edge in this ordatr creates either

(a) avertex of degree larger than two, or
(b) acycle,

in the currentG'. At the end of this proces§’ should be a union of disjoint paths,
where any layout of these paths on a line represents a pté&@iO for this set
Sof species. Here, it is each disjoint path, or rather its §eboserved segments
that represents a CAR. Figure 1.9 represents the set of CARgracted in the
experiments of Ma et al. [96]. The mapping of these CARs (dfjufe 1.9) onto
the chromosomes of the human show quite a similarity, wii@xpected, as these
CARs essentially represent ancestral chromosomal segment

While this approach of Ma et al. [96] uses a parsimony metbagdight each
adjacency, there are no assumptions on any evolutionantsveor is each CAR
even guaranteed to be an ancestral whole chromosome, th#ieapproach is
model-free taking from the terminology of Adam et al. [1]. Indeed, thedel-
free approach avoids computing any global parsimony in seofnevolutionary
events such as reversals, translocations, fusions andrgssivhich is what all
the methods whose results diverge with those of cytogenstidies [51] rely on.
This, and the fact that Ma et al. [96] is the first bioinforngatmethod to agree well
with cytogenetics methods [130], suggests that a modeldpmproach is a step in
the right direction. In the next subsection, we present aahfsde framework
for reconstructing AGOs based on the C1P of binary matridéste that model
of adjacencies, used here in Ma et al. [96], is the specia o&slegree 2 binary
matrices. Indeed, with the method of Ma et al. [96], the ligtvieen the C1P and
the reconstruction of AGOs started to become explicit. Tiy@@ach we propose
generalizes this method of Ma el al. [96] (in one sense, thadricerns matrices

SNote that in Ma et &l. [96], they consider a directed graphyéwer the principle is the same.
This detail is left out to ease the summary of this method.
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Figure 1.8: (a) Human-mouse nets |85] with human as the reference. Four
mouse intervals are depicted, as ordered and oriented bgrthelo-
gous human segments. The second and third mouse intereatdar
jacent (and appropriately oriented) on a mouse chromosamz the
intervening bases, if any, do not align to human, and arectEpby a
thin line connecting these intervals. (b) The human-mobsejan-rat
and human-dog nets for a segment of the human sequence, ¥dseh
trates the construction of orthology blocks (OB). (c) Thastouction
of conserved segments (CS) from the fusion of runs of corisecor-
thology blocks whenever the order and orientation of thdgekis are
conserved in each of the existing genomes. (source: Ma [X€d).
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Figure 1.9: The set of CARs for the Boreoeutherian ancestral genome (of
human, rat, mouse and dog) constructed from the experimants
Ma et al. [96]. Numbers above bars indicate the correspgnkdirman
chromosomes. (source: Ma et al. [96])
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of degree larger than 2), and is the state of the art in terrmsathodologies for
reconstructing AGOs.

1.2.3 Binary Matrices, the C1P and the Reconstruction of AGQ

We now outline the approach for reconstructing AGOs baseti@ 1P of binary
matrices that formalizes and generalizes the principlesl uis several computa-
tional [1, 96] as well as the cytogenetics studies [1.27, 153]. This approach
can be broken down into the following two steps. The first isatadhcquisition
phase: where we compute from the alignments of these genarseis(or alpha-
bet) of genomic marker&” = {1,...,n}. From this setZ of genomic markers we
then compute the groups of markers (syntenies) that areveelito be contiguous
in the ancestral genome. Here, we represent the set of $gmi@ith a binary ma-
trix M on the set of columng” where for each synteny C ., we have a row in
M with a1 in every column ofX, and0’s everywhere else. In general each syn-
teny (row ofM) can also be weighted according to the confidence that iteappe
in the ancestral genome. The second step of this approaskstaf transforming
this matrixM into a C1P matrix. It is this second step that we concentrata o
this thesis, however, we will see later that the way to apgrdhis second phase
depends very much upon the data acquisition phase. Indeedafcomputational
point of view, this approach is closely related to physicapping: if M has (or
can be transformed into a matrix that has) the C1P, then wdindran order of
markers that represents an AGO. Because syntenies of rmartieenaturally repre-
sented by binary matrices in this way, it also follows tharéhcan be many AGOs
that are consistent witM. This set of AGOs can be encoded in a compact way
with some uncertainty by the PQ-tree for (the possibly fiemsed) M, which is
another benefit of C1P-based approach.

The first work to represent AGOs with PQ-trees appeared in4200
Bergeron et al. [15] used a Fitch-like [48] approach to find @strparsimonious
scenario for the set of intervals (sytenies) defined by tkistfee. This work was
quite preliminary however, and the experiments were peréal on fairly basic
chloroplast genome data. A year later, in 2005, Landau §3Hlalso use PQ-trees
for ancestral genomes, but also in a parsimony context. ,Hemdau et l. [91]
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also suggest a way of representing duplicated genes (getiesiultiplicity, which
we will cover later in this thesis), but show only how this eggech works on some
experimental data. Following this, in 2006, Parida [121pioved on the result of
Landau et al. [91] by using a PQ-tree where some of the intaodes are oriented,
to help to uniquely construct the orders it encodes, as el lbranch-and-bound
scheme for outputting all solutions, rather than just thetrparsimonious solution.
Again, while the concept of Parida [121] is on the right tratbley only give prelim-
inary experimental results to test this concepr. In 200& whrk of Adam et al. [1]
also considered representing AGOs with PQ-trees. Herg,ateeconcerned with
computing the phylogeny and the AGOs, where they frame ib&g) the Steiner
Tree Problem. While they perform experiments only on fabésic chloroplast
genome data as well, this is the paper that introduces thelrfied approach to
using bioinformatics methods for reconstructing AGOs.a\tbat, while this is not
made explicit, Ma et al. [96] also represent AGOs with P@drdn Ma et al. [96],
Z is their set of conserved segments, ahdtores the set of adjacencies (iM.,
has degree 2). This union of disjoint paths that they builthén equivalent to a
PQ-tree with a P-node as the raptwhere each child af, containing only Q-nodes
(sinceM has degree 2) corresponds to a path (or CAR). Next we degailitink of
Chauve and Tannier [27], where this two step approach fanstcucting AGOs
based on the C1P and PQ-trees was first developped.

Here we give some details of the method of Chauve and Tan2ié}. [
While this approach generalizes the approach of Ma et al. (@8 one thing,
Chauve and Tannier [27] consider matrices of degree lafymm 2), these ap-
proaches are very similar in spirit. Here, given the markerssetS of species
(and possibly some outgroup species) with phylogenet&Tiren S (and the out-
group species), they first compute the $8tof markers. Here they mention that
markers can be genes from whole genome alignment methdts]agous genes,
or various others (from comparative maps [111] or virtuadbrigization [10] for
example). From the input representationS)iChauve and Tannier [27] compute
(maximal) sets of markers, i.e., syntenies, that appeasemutivel{ in at least two

“Note that, more precisely. Chauve and Tannier [27] compistt af gene teams [9. 95]: synte-
nies, as we have defined them here are gene teands=at [27]. We leave these details out to ease
the explanation of the principles of this approach of Chaang Tannier [27].
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species frons, where the path iT between these two species goes through the
node for the ancestor which we wish to reconstruct. Thestesigs are weighted
using the same principle in Ma et al. [96] for weighting adjacies, and outgroup
species are also used to improve this step. In fact, the sstndénies inferred in
Figure 1.7 is exactly what the method of Chauve and Tannigryuld obtain.
Note that, since an adjacency is a synteny of size two, thteadds more general
than that of Ma et al. [96]. One reason for considering theseergeneral syntenies
is that it is closer to the methocs [127, 150, 153] on cytogjeselata. Indeed, the
inference of syntenies in Chauve and Tannier [27] is a biwmftics version of
the hybridization used by cytogeneticists, which explaivesconvergence between
these two approaches. Chauve and Tannier [27] represesgtiof syntenies with
a binary matrixM on the set of columng” where for each synteny C .#, they
have a row inM with a1 in every column ofX, and0’s everywhere else. We now
outline the second step of the approach of Chauve and Tg27igrtransforming
M into a C1P matrix.

Given binary matriXxM, constructing an AGO foBthen corresponds to finding
a linear order of?, such that eac appears consecutively in this order, i.e.,a C1
order ofM. In fact, all AGOs forScan be represented by building the PQ-ffge
for M. Here, the set of CARs fd@will be the children of the root nodeof Ty, (as
it was in Ma et al. [96], however they can contain also P-noueg, as each row
of M has degree larger than 2 in general). It is here that the C2y& pin impor-
tant role in the reconstruction of AGOs of Chauve and Tan2i¢], i.e., that they
can represent sets of CARs with a PQ-tree [21]. Indeed, fois#t of syntenies
inferred in Figure 1.7, the matrix (which is C1P) for this segiven along with the
PQ-treeTy for M in Figure 1.10. Howevei rarely has the C1P as we will see
later, and so Chauve and Tannier [27] do the following todbthiis PQ-tree (im-
plicitly transformingM into a C1P matrix). At this point, they could employ the
greedy heuristic of Ma et al. [96] of incrementally buildiad®?Q-tree by selecting
syntenies in order of decreasing weight, and skipping owgisginteny that creates
a conflicting set in the collection of currently selectedteyies. Rather than doing
this, however, they build first a generalized PQ-tree (a R@R-{106], or the gen-
eralized PQ-tree from McConnell [102]), and then find a stbsytenies (rows
of M) of maximum cumulative weight, such that the matx of this subset has
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Figure 1.10: The binary matrixM corresponding to the set of sytenies in-
ferred in Figure 1.7 and the PQ-trég for M. Note that each CAR is
a child of the root P-node of Ty.

the C1P, i.e., the generalized PQ-tree Nbris a PQ-tree. While this approach is
not greedy, it is the combinatorial optimization problenowm as the Consecutive-
Ones Submatrix Problem. Here, Chauve and Tannier [27] @ssttbcture of this
generalized PQ-tree favl to design an efficient branch-and-bound algorithm for
this problem.

In experiments, the method of Chauve and Tannier [27] agredswvith all of
the cytogenetics studies [50, 127, 141, 142, 150, 153] asaselith the work of
Ma et al. [96], while disagreeing with the same approachest @re not model-
free) that Ma et al. [96] disagrees with. However, differemperiments (from
data at different levels of resolution, or variations onithfgut phylogenyT) show
that the approach of Chauve and Tannier [27] is more stabigmeral than that
of Ma et al. [96]. One reason for this is due to the fact thatjleavB@ARs from
syntenies are less well-defined than those of adjacendiey ére degree larger
than two), they are better supported because every compytedny appears in
at least two existing species whose patiTigoes through the considered ances-
tor. Another reason is likely due to the fact that in certases, the optimization
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phase of Chauve and Tannier [27], can do much better tharréleelgapproach of
Ma et al. [96]. While both the greedy approach of Ma et al. [@6d the optimiza-
tion approach of Chauve and Tannier [27] tend to work wellrizacfice (these are
the state of the art in bioinformatics methods for recomsiing AGOs), there is
much more work to be done in the area of handling a matrix thas ehot have the
C1P. The first step in this effort is to studshy matrix M does not have the C1P.
Indeed, previous works [27, 96] point this out, which we gimimore detail in the
next paragraph.

Indeed, the second step of this two step approach of recotisg AGOs based
on the C1P of binary matrices, is to transform binary maltfixnto one that has
the C1P. Ideally, if each synteny wadrae positiveancestral synteny, thed
would be C1P, however matrices from real data are rarely GRather some of
the syntenies arfalse positivesi.e., not contiguous in the true ancestral genome.
The reason and nature of these false positives dependy lnighthe data acquisi-
tion method. Depending on the method used, the reasonsi$acah be errors in
constructing the set of market®, such as errors in the assembly from the whole
genome alignments, such as paralogs being mistaken falogthin the construc-
tion of orthology blocks [96]. Other reasons come from thestauction of incom-
plete syntenies due to the convergent loss of markers, andgywntenies joining
together (creating a “chimeric” synteny) due to the congatdgusion of chromo-
somal segments in several lineages. For example, this dezase of chimeric
syntenies might happen especially in genomes of yeastsewhergenerally see
many translocations [31, 128]. Indeed, it is unavoidabk the must deal with
matrices that do not have the C1P. This is what motivates tr& w this the-
sis. Why these matrices do not have the C1P depends on the wdtihe errors
in the data acquisition phase. In the next section, we itistthe several open
problems on such matrices, raised by these different typesars, some of these
mentioned in Chauve and Tannier [27], and then propose aaedaxations of the
C1P to address these problems, which is the contributiohisfthesis. In some
cases, solving these generalizations is NP-complete,raathér cases, there are
algorithms for finding a solution.
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1.3 Computational Solutions for non-C1P Matrices

1.3.1 Transforming the Matrix to a C1P Matrix

The first and most direct approach, taken in previous workg98g] is to transform
the binary matrixM into one that has the C1P. Indeed, because of the assump-
tions made on the nature of the errors expected in their elatéihat the markers,
i.e., columns, were inferred correctly), in Chauve and T@nj27] they consider
all computed syntenies, and extract a maximum subset of, mweh that subma-
trix M’ of M defined by this set of rows is C1P. However, one could also vemo
columns fromM if one was less confident on the correctness of the markers for
example, or flip some entries i from 0 to 1, or from 1 to 0 to account for
approximate syntenies. It follows, however that all cquasling optimization
problems are NP-complete [36, 38, 66], even for sparse ceatfil43]. For the
case of extracting a maximum subset frédinof rows or columns that is C1P, it
has been shown in Dom [36] that this is also APX-hard and WWHIH. Aside from
the work of Chauve and Tannier [27] and the reconstructioA®Ds in general,
this problem of transforming a matrM into one that has the C1P, while minimiz-
ing the modifications td/ can be found in other applications (8, 143], as well as
physical mapping [7. 55, 94, 149]. The latter comes as noriserpsince, from a
computational point of view, physical mapping is also deieing the C1P of a
binary matrix in the presence of errors (in assembly, comguharkers, etc.). We
now introduce the contribution of this thesis: in the nexeéthsubsections, we out-
line three variants of the C1P motivated by this problem obrstructing AGOs
that we have proposed and/or studied here.

1.3.2 Relaxing the C1P

Another approach for handling a binary mathkthat does not have the C1P is,
instead of transforminiyl, to relax the notion of the C1P, and then decide whether
M has this relaxed property. A natural relaxation of the C1®iallow gaps in
each row of this “relaxed” C1 order &fl. Indeed Chauve and Tannier [27] they
claim that in their reconstructions, certain syntenicdea$ are not captured with
the strict nature of the C1P. Rather, if some number of gajps altowed [15, 122],
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a significantly larger number of syntenies would be detectéowever, allowing
gaps could radically change the combinatorial nature sfgtoblem, which means
we cannot rely anymore on PQ-trees to encode all solutiomswaerful tool in
using an approach based on the C1P for reconstructing AGOs.

Indeed a relaxed form of the C1P with gaps was considereddg, Ifiotivated
by problems in the area of physical mapping [55]. Here Galgllet al. [55] intro-
duce the notion of th&-Consecutive-Ones Property-C1P). A binary matrixv
has thek-C1P when its set of columns can be permuted such that eachaow
tains at mosk blocks. This is a fairly general form of relaxing the C1P, tacoies
not put any restriction on the size of the gaps between bl@@ké&dberg et &l. pro-
posed this relaxation of the C1P to handle the case in pHysaaping of chimeric
clones: when sets of markers from two distant clones appe#iieasame clone,
an artifact of hybridization [149]. Interestingly, from araputational standpoint,
this is identical to the case of Chauve and Tanrier [27] whem gyntenies join
together (creating a “chimeric” synteny) due to the congatdusion of chromo-
somal segments in several lineages. kKHelP models this case well, as there is
no restriction on the distance between the two synteniggdimtogether to form
the chimeric clone. However, this relaxation is indeedaaltly different in combi-
natorial nature, s Goldberg et al. [55] show that decidirghinary matrixM has
thek-C1P is NP-complete.

Chauve and Tannier| [27] state, however, that a decision lgmobof
“consecutive-ones with allowed gaps” is still open, i.acle row of the matrix
must have consecutive-ones, except that between eachfmaies, a fixed num-
ber of zeros is allowed. So, in this setting, it makes sensmisider a limit on
the maximum size of any allowed gap. This idea has been ntetivim other
works as well. Indeed, Pasek et al. [122] consider an arpimamber of fixed-
sized gaps and are able to capture interesting conservéehgyfeatures. Further,
Ouangraoua et al. [117], in work on double-conserved syegeshow that when
trying to transform their obtained matril into a C1P matrix, they must discard a
large number of syntenies, and conclude that the C1P is aqtrtiper model here,
and that gaps are needed.

The first variant of this thesis is relaxation of the C1P withnat on the max-
imum size of any gap. Here we define the Gapped C1P, diktldg-Consecutive-
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Ones Property.

Property 1 ((k,d)-Consecutive-Ones Propert{k(d)-C1P)) A binary matrix M
has the(k, )-C1P for the two integers k andlif the columns of M can be ordered
such that each row contains at most k blocks, and no two neigidblocks ofl’s
are separated by a gap of size more thian

Notice that the classical C1P is equivalent to thg)-C1P. If any of the two
parameters is unbounded, we repl&cer o with . For instance, th&-C1P is
equivalent to thék,«)-C1P. Note also, then, that in the work of Pasek af al. [122]
they consider precisely theo,5)-C1P. Here, we call a permutatiam of the
columns ofM that witnesses thé&, 8)-C1P a(k, d)-consecutive-onegK, 5)-C1)
order of M; that the matrix resulting from this permutation(ls d)-consecutive
or that it is (k, d)-consecutive with respect t@ and thatM is (k,d)-C1P, or has
the (k,)-C1P. Note that, for smak andd, this is a stricter model than the ones
considered before, such as tke€1P [55] or that of Pasek et'al. [122]. A model
that is even more strict would be to consider the numbe@isoih gaps in the entire
matrix (in addition to the constrainksandd) as a third parameter. This remains an
interesting open question. Although tfle 5)-C1P is stricter than previous mod-
els, we show in this thesis, however, that deciding this @rygs computationally
hard for the most part.

We give our first set of results, the complexity of deciding tk,5)-C1P in
Chapter 2 of this thesis. In Section 2.3, we show that foryeker 2,6 > 1, (k, d) #
(2,1), deciding thgk, d)-C1P is NP-complete, leaving open only case of the com-
plexity of the(2,1)-C1P. We show that this remains NP-complete even if one of
the two parameters is unbounded:

(i) for everyk > 2, deciding the(k,)-C1P is just the problem of deciding if
matrix M has thek-C1P, and is thus NP-complete by Goldberg et al. [55],
and

(i) for everyd > 1, deciding thee, )-C1P is NP-complete (Section 2.5).

While the complexity of the (2,1)-C1P remains open, we dwigl@an algorithmic
result for a relevant case of the (2,1)-C1P in Section 2.4 ndve mention several
other versions of the C1P with gaps considered in other works
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Another slightly different version of the C1P with gaps wamsidered in
Haddadi [65], where they show that finding an order of the rwisi that mini-
mizes the number of gaps in the entire malvixs NP-complete, even if each row
of M has degree at most two. While the works [75, 94] do not dedl thie¢ C1P
with gaps, they do propose algorithms for recognizing roegithat are “close”
to having the C1P in some sense. Aside from this, Dorn [36, B¥3gnts an ap-
proximation algorithm as well as a fixed parameter algorifbminstances of the
Set Cover Problem that are “close” to having the C1P, whidhidaly means that
either the input matrices have been generated by startitig avinatrix that has
the C1P and replacing randomly a certain percentage of'shigy 0's [104], that
the average number of blocks 0 per row is much smaller than the number of
columns of the matrix [131], or that the maximum number otkkof1’s per row
is small [105]. In light of this, approximation schemes rémta be considered for
the (k, )-C1P, as well as any natural parameter that could lead toedFaram-
eter Tractable (FPT) result. In the next subsection, weidenshe(k, d)-C1P for
matrices of bounded degree which is the second variant ®tlbsis.

1.3.3 Matrices of Bounded Degree

The NP-completeness results on deciding(#hé)-C1P of Chapter 2 involve con-
structions with many rows of large degree. After examiniogne data from the
experiments cf Chauve and Tannier [27], however, we fouatittiis is not always
realistic. We considered here the ancestral synteniesetdta the boreoeutherian
ancestor of Chauve and Tannier [27] at a resolution of 20@kth, 1651 markers
(i.e., columns) and 2515 syntenies (rowd this dataset, we observed that 90%
of the syntenies have small degree (less than or equal to Bighvis less than
1% of the number of columns of this matrix). In addition tostheéach of the re-
maining 10% of the syntenies (with degrees 17 to 99) conta@teieen 16144
of these syntenies of degree less than or equal to 16. Intieecthakes sense, as
a long common interval that does not contain any other comimienval would
not be realistic. Hence, if the syntenies with large degt®&4) are discarded, the
majority of the information is preserved. Indeed, this hiasaaly been shown in

5This dataset can be found at
http://lwww.cecm.sfu.ca/~cchauve/SUPP/ANCESTOR08/BOREO_200_u/index.html.
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Chauve and Tannier [27]: when considering only adjacencregrices of degree
2), they obtain only slightly more CARs than in the generalecaf syntenies. This
illustrates again that most of the signal is captured in bomhmon intervals. In
light of these two analyses, it makes sense to consideroversif the(k, 8)-C1P
where the degree is bounded, especially if this could résalgorithms for these
versions. Note that this would apply to chimeric syntenibst we would expect
that the individual syntenies that compose them will be detkas well, and then
we just need to remove the row corresponding to a chimeritegyn

To take into account the above observations, we considerthercase of the
(k,8)-C1P for matrices of bounded degree. This forms the secondtref this
thesis, given in Chapter 3. Formally, we define tloek, 5)-Consecutive-Ones
Property.

Property 2 ((d, k, &)-Consecutive-Ones Propertyd(k, 5)-C1P)) A binary matrix
M has the(d,k, )-C1P when the bound on the maximum degree of any row of M
isd, and M has the¢k, 5)-C1P.

We call a permutationt of the columns ofM that witnesses this property a
(d,k, &)-consecutive-ones (d, k, 0)-C1) order, that the matrixM’ resulting from
this permutation igd, k, &)-consecutiveor that it is(d, k, d)-consecutive with re-
spect torr; and thatM is (d,k,d)-C1P, or has thé€d.k,5)-C1P. In Chapter 3,
Section 3.1, we first show that if all three parameters aredfixieciding the
(d,k,0)-C1P is related to the deciding the bandwidth of a graph, amdbe de-
cided in polynomial time by slightly modifying an algorithof Saxe [135] for
recognizing graphs with a fixed constant bandwidth. While #hgorithm is only
practical for small values of the parameters, this is ugudilé case in practice
(cf. Chauve and Tannier [27] and discussion in previousgraphs). Currently, an
implementation of this algorithm on biological data is inralpminary stage. We
point out that for the case whete= 2, we can also take advantage of the faster
linear-time algorithm of Caprara et al. [25] for the bandili@ case. An interest-
ing open question here is whether or not the techniques ns€dprara et al [25]
can be extended to matrices of degree (and graphs of baijvadger than two.

After obtaining this algorithmic result for the case of a#ieg the(d, k, 5)-C1P
when all three parameters are fixed, we began to study theleritypof deciding
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this property when one or more of these parameters is unleouithe case witd
unbounded is just thgk, §)-C1P, and hence the complexity of deciding everything
except for the(eo, 2,1)-C1P, or just thg2,1)-C1P is known. Since fixingl also
fixesk (k < d), the only case that remains for us to consider is the case wihe
unbounded, or théd, k,)-C1P. The motivation from a practical point of view to
consider this case is that it concerns chimeric synteriesgap size is unbounded)
where we assume that we do not lose too much information bgidering only
syntenies with low degree as argued above. Here, in Chap&sdion 3.2.4, we
show that in every non-trivial case, deciding this propétiP-complete, i.e., for
everyd > k > 2, deciding th€d, k,«)-C1P is NP-complete. Note thatdf= 2, the
this becomes the C1P, anddif< k, then any order of the columns bf is a valid
solution, since no row can have more thdilocks of1’s. This case is also of
importance to physical mapping, since chimerism is a phemam that happens
here also. In particular, since the setting when clonestayg and there is limited
coverage of the sequence by the clones is likely to be motistiegsimilar to
how it is in the reconstruction of AGOs), Goldberg et al. [B6ke the question of
deciding the 2-C1P when the number of ones per row and pemecoisi bounded.
Interestingly, the construction we use in Seclion 3.2.4 lofj@er 3 happens also
to use a bounded number of ones per column, and hence we ati®vabove
guestion posed by Goldberg et al. [55]. In the next subsecti@ present the third
variant of the C1P of binary matrices that we study in thisihe

1.3.4 Matrices with Columns of Multiplicity

Here, we present the third variant of the C1P of binary mesrihat we study in
this thesis, namely to allow columns to appear multiple sirimea C1 order. While
this is technically another relaxation of the C1P, it is vdifferent than the ones
considered previously. It also models a very different gmeenon in the recon-
struction of AGOs, namely duplicated (or indistinguiskgbinarkers. Indeed, a
preliminary approach for handling this was mentioned indaanet al. [91]. Alter-
native ways of handling duplicated markers was also a lifetafe research posed
in Chauve and Tannier [27]. The input to C1P based approaciioned above for
reconstructing AGOs is a set of pairwise distinct markgts- {1,...,n}. This as-
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sumption is needed for the use of the C1P and, in particu@gtrees for the recon-
struction of AGOs (the columns of the binary matkikthat is the input to deciding
the C1P are pairwise distinct). In order to cope with datasentaining duplicate
markers (among other things like missing or overlappingkearwhich are beyond
the scope of this discussion), in Chauve and Tannier [27%] tise approximate in-
tervals of markers in the detection phase. That is, a set déereneed only be ap-
proximately similar (e.g., 80% similar) between two spediemS, where the path
in T between these two species goes through the ancestor, éobét tonsidered
a synteny (a row itM). This approach in some sense allows the existence of du-
plications by relaxing the detection of syntenies. An alée approach suggested
in Chauve and Tannier [27] would be to infer some pre-dupboaAGO, which
has been considered in some rearrangment-based works suéh 4il, 134F
Chauve and Tannier [27] also mention that there exist dlyos for computing
syntenies between pairs of genomes with duplicate marldéds fr with dupli-
cate segments followed by losses in both copies [146]. Hewéiecause these
algorithms account for duplicates, the input is not assutodek a set of pairwise
distinct markers anymore, and hence one cannot use the Giédel AGOs here.

In 2009, a year after the important result of Chauve and Ein[R7],
Stoye and Wittler [139] present a parsimony approach foonsttucting AGC$
that uses PQ-trees [139]. Here, they propose a frameworlkedbam
Bergeron et al. [15], which is what Chauve and Tannier [2Hdsed on, and pro-
vide an efficient method for finding a most parsimonious AG@iclv they show
works well in practice. In this work of Stove and Witiler [13%hey propose ex-
tending their models to allow markers to appear multipleesinfto account for
duplications). A year after this, in Wittler and Stoye [15tlje authors then for-
mally define a model that incorporates markers with muttipli This model is
equivalent to deciding the following property of binary megs.

Property 3 (Consecutive-Ones Property with MultiplicitynC1P)) Given a bi-
nary matrix M on columns S {1,...,n} and a functionm : S— N, is there a

6Refer tc Ma et al. [€7] for a solution to handling duplicaterkeas in the case of physical map-
ping.

“More accurately, their work concerns modelsgehe clustersof which a set of syntenies used
to reconstruct an AGO is one such model. We only discuss Wik in the scope of reconstructing
AGOs to remain within the subject of this thesis.
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sequencer over alphabet S that
(i) o contains each columnesS at mosim(s) times, and

(i) for each row r of M, the set of columns that have entrin r form at least
onesubsequencef 0.

Note that deciding this property becomes trivial if we allamy column to have
arbitrary multiplicity, i.e., we could take to be the concatenation of all rows of
M. Of course, such a long AGO would be dubious, and hence ahibicesn the
multiplicity of each marker is reasonable. This is why Wéittand Stoye [151] in-
troduce thismultiplicity constraint(i). This property generalizes the C1P: indeed
the C1P is the case when(s) = 1 for alls€ S i.e., that there simply is permu-
tation T over the alphabe$ such that (ii) holds. Here, we call this thaC1P. Of
course, now that this problem has moved outside the domairrofiutations into
sequences, the classical C1P and the associated PQ-tre¢ ajgply anymore. A
natural question to ask then is the complexity of decidiregni®1P.

In Wittler and Stoye [151], they show that deciding tm€1P can be done
in polynomial time if each row oM has degree at most 2 (which is the model
of adjacencies) by showing that this problem is equivalerddciding if a graph
is Eulerian. The authors of Wittler and Stoye [151] also stibat if each row
has degree at most 5, then tm€1P, as well as two restricted variants motivated
by biological settings, is NP-complete. We mention that oh¢hese restricted
variants, the case of framed common intervals on permutatias the first model
used to formally state the problem of reconstructing AGOsgIBQ-trees [15].

In this thesis, we improve these NP-completeness resultath row having
degree at most 3 (resp., at most 6 in the case of the framed conmtervals
variant), whilem(s) < 2 for eachs € S whereSis the set of columns dfl. We
give these results in Section 4.1 and 4.2 of Chepter 4. Theigees used here to
improve these NP-completeness results are based on thasduiced in Chapter 3
for showing NP-completeness of deciding tlek, «)-Consecutive-Ones Property
((d,k,)-C1P).

Finally, in Section 4.3 of Chapter 4, we then present a thalitya result which
is motivated in the following. The C1P based approach foomstructing AGOs
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introduced here (for example, by Chauve and Tannier [2Zlues computing
a set of ancestral syntenies represented by binary midgtriand then building a
PQ-tree forM (by possibly transformind/ to a C1P matrix). Here, each subtree
rooted at a child of the root of this PQ-tree represents a CARCAR is an an-
cestral chromosomal segment, but it is not guaranteed todoenalete ancestral
chromosome. In fact, itis common that the number of CARsinbthis larger than
the expected number of ancestral chromosomes. This raisdsltowing natural
guestion: which CARs are believed to form complete ancestmamosomes, or
more generally, to contain an extremity of an ancestral mlospme (an ancestral
telomere)? Indeed, a CAR with two ancestral telomeres iaghd complete an-
cestral chromosome. Moreover, when CARs are grouped imtesi¢ sets, that is,
sets of CARs that are believed to belong to the same ancebt@hosome, each
such syntenic set of CARs can contain only two ancestrairtetes. We address
this question as follows. A columei with multiplicity (bounded, for example, by
twice the maximum expected number of ancestral chromosameasore generally
with infinite multiplicity) can then be used to represenbtatres, that is, virtual
extremities of ancestral chromosomes. Then any ancegm#drg/ that contains
putatively a marker that is an extremity of an ancestral wimsome (for exam-
ple because the ancestral synteny is telomeric in two agistescendants of the
considered ancestor) can be represented by two roWs i row representing the
ancestral synteny, plus a copy of this row with an additiceraty 1 in column
c/. This structure ensures thatM has themC1P, then the occurrences dfare
located at the extremities of the CARs. Otherwist does not have theiC1P),
some rows can be discarded to result in a mditixhat has thenC1P, with the
same property. This assumption on the structuid @ fundamental to leave open
the possibility for any ancestral synteny to be at the exitseof a CAR or to be
embedded inside a CAR. It follows that the tractable familgnatrices considered
here meets precisely this assumption.

Formally, in Section 4.3 of Chapter 4, we present a tradtghiésult for a
family of matrices where every row @ has (i) at most one entry in columns
with multiplicity greater than one, or (ii) exactly two ei@s 1 in columns with
multiplicity greater than one and no other entries. Our fgagely on the two
classical concepts of PQ-trees and Eulerian graphs. THes@n#ion of this thesis
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outlines our study of the GCCC Problem, where we present auwith and final
variant of the C1P that we use to develop an algorithm for @iapease of this
problem.

1.4 The Generalized Cladistic Character Compatibility
Problem

In Chapter 5 we present our fourth and final variant of the Qiérdler to develop
an algorithm for a case of a phylogeny problem that we condides. We now
briefly motivate our study of this type of phylogeny problem.

Here we study the problem of constructing a phylogenetie for a set of
species [45]. Aqgualitative characterassigns to each speciestatefrom a set
of states, e.g., “is a vertebrate”, or “number of legs”. Wihies evolution of the
states of the character is known, e.g., evolution from ii@@ate to vertebrate
is only forward, the character is callathdistic This evolution of the states is
usually represented by a rooted tree, callezharacter tree on the set of states.
The Qualitative Character Compatibilitf?roblem, orPerfect Phylogenyroblem,
is NP-complete! [20, 138], while it is polynomial-time sdbla when any of the
associated parameters is fixed [2, 82, 83, 103]. When clessagte cladistic, the
problem, called th€ladistic Character Compatibilityroblem, is the problem of
finding a perfect phylogeny tree on the set of species suclit tten be contracted
to a subtree of each character tree. This problem is polyaleinie solvable [42,
62, 143].

Experimental research in molecular biology [47, 79, 86.] Biws that traits
can disappear and then reappear during the evolution of @espesuggesting
that genes contain information about traits that are notgdwexpressed. In
Benham et al. [11., 12], the authors argue that a new modehfmacters is needed
in order for the resultant phylogenetic trees to capture phienomenon. The au-
thors thus devise thgeneralized charactemwhich assigns to each speciesudset
of a set of states, where we only know that the expresseddtate) is in this sub-
set. The GCCC Problem is then the Cladistic Character CahilisitProblem on
a set of species with generalized characters where we fivet thapick one state
from the subset for each character. Interestingly, geizedhlcharacters capture
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also the case of qualitative characters with missing da& “(hcomplete Perfect
Phylogeny” Problem). Here, missing data can be replaced“iyl@card” gener-
alized state containing all possible states of the charatkes problem was shown
to be NP-complete even if the number of states is constaltih [

In Chapter 5 we study the complexity of several cases of th€E G@roblem
that are motivated by the previous works of Benham et al. 1£], In Subsec-
tion 5.3.2, we introduce a variant of the C1P which gives ualgarithm for a case
of this problem.
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Chapter 2

The Gapped Consecutive-Ones
Property

In this chapter we show that for every bounded and unbourded2,6 >
1,(k,0) # (2,1), deciding the(k,4)-C1P is NP-complete. Section 2.1 outlines
the notation used in this chapter. Section 2.2 provides aré¢hne that is central
to the results of Section 2.3: that for every boun#ted 2,6 > 1, (k,d) # (2,1),
deciding thek,8)-C1P is NP-complete. In Section 2.4, we then give an algorith
for a case of the (2,1)-C1P that is motivated by the type oktrantion used to
obtain the results of Section 2.3. In the final Section 2.5hf thapter we show
that for everyd > 1, deciding thg, )-C1P is NP-complete.

2.1 Notation and Conventions

First we introduce all notation and conventions used thinougthis chapter. Given
integersa, b, wherea < b, (a,b) denotes the séia,a+1,...,b}. LetM be a binary
mx n matrix (on0’s and1’s) with columns labelled by1,n). In the constructions
used to show NP-completeness of deciding(thé)-C1P, we will divide columns
of M into ordered sequences of blodBs, ..., B, by designing rows enforcing the
columns of each block to appear together and the blocks teaagp the order
B1,...,Bp (resp., in the reversed order), i.e., for any j, columnc € B; and
d € Bj, c appears before (resp., afterjn any (k,5)-C1 order ofVl. The columns

32



0 T e i A

20 + 2 20 +3

Figure 2.1: Possible positions of columred + 2 and2d + 3.

of a block B; will be denotedB?,...,B andB{*” = {B2 B**1 ... B}, where
a<bh.

To specify a row in the a binary matrid, we use the convention of only
listing in the square brackets, the columns that contdamthis row. For example,
[1,8,5] represents a row witl's in columns 1, 5, and 8, antls everywhere else.
We will also use blocks oM to specify columns in the block, for example, if
B1 = {1,2,3,4,5}, then[By, 7] would mean[1,2,3,4,5,7], [B, \ {B?},6,7] would
mean[1,3,4,5,6,7], and [Biz’4> ,6] would mean2,3,4,6).

2.2 Fixing the Order of Selected Columns in a Matrix

For everyk > 2,6 > 1, we have the following important property of matrices that
have the(k, 8)-C1P. Note that the following construction does not depamtl as
it uses only two ones per row.

Theorem 4. For every k> 2 or k=, > 1 and s> 20 + 3, given binary matrix

M on n> s columns, s- 0 + 1 rows can be added to M to force s selected columns
to appear together and in fixed order (or the reverse orde@ny (k,5)-C1 order

of M.

Proof. Letk> 2 (ork=), d > 1,s> 26+ 3 andn > s. Without loss of generality,
letS={1,...,5} be the subset afcolumns that we want to force to appear together
and in this order (or the reverse order) in gkyd)-C1 order ofM. We will show
by induction orsthat there are-+ &+ 1 rows of the typéc, d], where 1< c<d < s
and|c—d| < 6 + 1, which force this order.

For the base case, let us assume $hat2d + 3. We will show the base case
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by induction ond. If d =1, thens=2-1+43 =5, and we add t&/ the follow-
ing 7 rows: [1,2], [2,3], [3,4], [4,5], [1,3], [2,4], and[3,5]. It is easy to check
that the claim holds and that the number of rows used is gxaetld + 1. Now
assume that the claim holds fér= & ands= 55 = 2dy + 3, wheredy > 1. We
will show that it holds also fod = &+ 1 ands= 20 + 3 = 28 + 5. Using the
induction hypothesis, there asg+dp+1=5—24+0—1+1=5+0 — 2 rows,
which will force the correct order for columrs...,25 + 1. Note that all of these
rows [c,d] satisfy the conditioric — d| < & + 1, and hence, they can be added to
M for parameter® = &+ 1 ands = 28+ 5. In addition, we add toM three
new rows: [0+ 1,286 + 2], [0+ 2,20 + 3] and [2d + 2,20 + 3]|. The total number
of rows added taM is nows+ &+ 1. Figure 2.1 shows the possible positions of
columns2d + 2 and2d + 3 forced by rowsd + 1,25 + 2] and[d + 2,25 + 3] if we
assume that rows, ..., 26+ 1 appear in the correct order. It is easy to see that
the row[26 + 2,26 + 3] is (k, &)-consecutive only if column&d + 2 and26 + 3
appear in the correct positions as well. This completesrttiedtion ond and we
have that the claim holds for ary> 1 ands= 20 + 3, i.e., the base case for the
induction ons.

Now, assuming that the claim holds fer 1, wheres— 1 > 29 + 3, we show
that it holds also fos columns. By the induction hypothesis, there a#ed rows
which will force columnsl,...,s—1 to appear in the correct order. We add one

new row: [s— 8 —1,3]. Sinces—d —1 > &+ 3, there is only one position where

columns can appear: next te— 1, i.e., all columns irS appear in correct order.
The number of rows used is exacy 0 + 1. This completes the induction @n
and the claim follows. O

2.3 The Complexity of Deciding the(k, d)-C1P

In this section we will show that for evety> 2,6 > 1,(k,d) # (2,1), deciding
the (k,0)-C1P is NP-complete.

2.3.1 The Complexity of Deciding thek, 5)-C1P for everyk,d > 2

For everyk, o > 2, we use Theoreim 4 in a reduction from 3SAT to the problem of
deciding thek, 6)-C1P to show that this problem is NP-complete.
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Theorem 5. For every ké > 2, deciding thek, 8)-C1P is NP-complete.

Proof. Considerk,d > 2. Let ¢ be a 3CNF formula over tha& variables
{Vv1,...,Vn}, with m clauses{cy,...,cn}. We construct a matrii, with 2n+
d + 6m columns anch+ 7m+d+ 6 + 1 rows, whered = max{2k — 1,25 + 3},
such thatM,, has the(k, 5)-C1P if and only ifg is satisfiable.

Goldberg et al. [55] show that for eveky> 2, given a 3CNF formulap, they
can construct a matriM, that has thé&-C1P if and only ifg is satisfiable. Our con-
struction is based on theirs. In our construction, we assethe first & columns
(1,2n) of M, with the variablegvi, ..., vq}. In particular, we associate variabie
with the pair of columndy; = {2i —1,2i}, fori € (1,n). Variablev; equal totrue
represents the statement about the order of the columis: I2s before 2’ (v
equal tofalserepresents statement:i“2 1 is after 2"). Since a truth assignment
to the formulag represents a statement about a permutation of the colunivig, of
we want to relatéMy, to the clausegc,...,cm} of @ in such a way that only the
permutations oM, that are(k, 8)-consecutive correspond to truth assignments that
satisfy@ and vice versa. This construction involves associatindgtbtedn columns
(2n+d+1,2n+d -+ 6m) with the clausegcy,...,cn}. In particular, we associate
clausec; with the block of five column®; = (2n+d+6j —4,2n+d+6j), while
each blockB; is preceded by a columa; = {2n+d+6j —5}. Finally, the set
(2n+1,2n+d) of columns in the middle will be used to ensure that the coostr
tion works for parametersandd. The details are as follows.

The base of our construction is a subset of the colummég,athat we force to
be together and in fixed order in ag, 5)-C1 order ofM,, and then we will build
off of this base a construction similar to that of Goldberale{55]. In particular,
we impose this fixed order on this subgeh+ 1,2n+d) of the columns in the
middle of My by addingd + & + 1 rows toM,, according to Theorem 4. While
thesed columns must be together and in fixed order (or the reversafyrk, d)-
C1 order, we assume the former without loss of generality. e build the
remaining construction off of this block afcolumns.

To force the blockdy, ..., b, to appear together and in this order, and before
the set(2n+1,2n+d) of d columns inMy, we add thearows b, b1, ..., bn, 20+
1,2n+3,...,2n+2k—3,2n+ 2k — 1] to My, fori € (1,n). Observe that, if block
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b, is not immediately to the left of thé columns, then there are more than 1
gaps in the rowb,,2n+1,2n+3,...,2n+ 2k— 3,2n+ 2k — 1], while, for each €
(1,n—1), if block by; is not immediately to the left dfi 1, then there are more than
k—1 gaps in the rowb;, b1 1,...,by,2n4+1,2n+3,...,2n+ 2k — 3,2n+ 2k — 1].

Next, to force the blockss,By,...,an, By to appear together and in this
order, andafter the set(2n+ 1,2n+d) of d columns inM,, we add the
2mrows [2n+d — (2k—2),2n+d — (2k—4),...,2n+d —4,2n+d — 2,2n+
d,a1,By,...,8j-1,Bj_1,8;] and[2n+d — (2k—2),2n+d — (2k—4),...,2n+d —
4,2n+d—2,2n+d,a1,Bq,...,a;,Bj] to My, for j € (1,m).

Now the blocks of columns in anfk, 5)-C1 order of the matrixv, are or-
dered as follows: the blocKs, ..., b, associated with the variables @f followed
by thed columns & +1,...,2n+d, followed by the blocksa;,By,...,amn, Bm,
where the block8s, ..., B, are associated with the clausespfSince the restric-
tions placed on variable blockdy, ..., by} and the clause block&B;,...,Bn}
are the same as in Goldberg et al. [55], we simply have to atd,raimi-
lar to those in Goldberg et al. [S55], ], to associate each clause to its three
variables to properly simulate 3SAT. The difference fronr gonstruction to
that of Goldberg et al. [55], is what values the row takes initthis segment
(2n+1,2n+d) of d columns and then columnsay, . ..,a,. We now present the
details.

Suppose that clausg contains the literal,. We add the following (corre-
sponding) row taMy: [b2,bg1,...,bn,2n+1,2n+3,....2n+ 2k — 7,2n+ 2k —
5,(2n+2k—3,2n+d),a1,By, ... ,,a;,B]]. If vy isfalse this forcesB} to be the first
column of blockB; in any (k,d)-C1 order of\M,. Any other order of the columns
of B; would introduce &-th gap in this row. Ifv, appears negated @}, then we
add the rowjby , by 11,...,bn,2n+1,2n+3,...,2n+2k—7,2n42k— 5, (2n+ 2k —
3,2n+d),a1,By,...,aj, le] instead. Suppose another literatins vg. We add the
row [b%,bﬁﬂ,...,bn,2n+1,2n+3,...,2n+2k—7,2n+2k—5, (2n+2k—3,2n+
d),a;,By,... ,aj,B§1’4>]. If v is false this forcest’ to be the last column of block
Bj. Suppose the third literal ofj is v,. We add the rowsbZ,by.1,...,bn,2n+
12n+3,...,2n+ 2k~ 7,2n+ 2k — 5,(2n + 2k — 3,2n + d), a, By, ..., a;,B{?]
and[by,by,1,...,bn,2n4+1,2n43,...,2n+2k— 7,2n+ 2k — 5, (2n+ 2k — 3,2n +
d),ar,By,...,a;,B{"¥] to M. If vy is false this forcesB? to be the middle col-
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by by by by b, (n+1,2n+d) ay By a9 By a3B§ ay  Bm
I I I I B LTI T T TIPTITIIyy - LTI

00011111 111010 - 111111111000000 000000
00001011 111010 --- 111111111111000 000000
01111111 111010 -+ 111111111100000 000000
01111111 111010 - 111111111110000 000000
00000000 o00010 --- 111111101010100 000000
———
k—3 gaps

Figure 2.2: The structure oM, and the five rows encoding clausg= {v> v
—V3V Vi }.

umn of blockB;. Finally, we add the row2n+3,2n+5,...,2n+2k—7,2n+
2k—5,(2n+2k—3,2n+d),a1,B,...,aj-1,Bj_1,B],B?,B?] to M. This last row
is not (k, 8)-consecutive exactly wheB?, BJ3, and BJ5 are the first, middle and
last columns of blockB;, as it containk gaps then. This fifth row enforces the
constraint that not all three literals of can befalse Figure 2.2 illustrates the
structure of matriXMy, along with these five rows that would be addedvg for
clausec, = {vo vV —v3Vvp}.

It remains to show that if any literal igy is true, then there is some order of the
columns of blockB; such that these five rows afk, 6)-consecutive. I, (resp.,
vg) is true, we can order the columr$, B, B?,Bf,B? (resp.,B}, B?, B}, B3, BY).

If vy is true, the columns can be in any order that plaBegresp.,B?) in the first
(resp., last) position, while placir@?, B?, B in any of the four orders that avoids
pIacingB? in the middle (as this fifth row would havkegaps in this case). Note that
these orders work even when the corresponding variable iartly one that isrue,
and that in all of these orders, no row has a gap of size lahgar two. Finally,
we remark that ifv, is the only variable that satisfies clause for example, then
in all of the four (possible) orders of the columns where éhfége rows arek, d)-
consecutive, there is a gap of size two in the fifth row. Hehtedonstruction does
not work ford = 1.

Since, for everk, d > 2, deciding thegk, 8)-C1P is clearly in NP, by the above
reduction from 3SAT, it follows that for everly, & > 2, deciding thgk, 5)-C1P is
NP-complete. O
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2.3.2 The Complexity of Deciding thek,1)-C1P for everyk > 3

We slightly modify the reduction from 3SAT in the proof of Téorem 5 to show
that, for everyk > 3, deciding thgk,1)-C1P is NP-complete.

Theorem 6. For every k> 3, deciding thgk,1)-C1P is NP-complete.

Proof. Considerk > 3. Let be a 3CNF formula over thevariables{v, ..., vy},
with mclauses{cy,...,cn}. We construct a matrik, with 2n+d + 4m columns
andn+4m+d+ 2 rows, whered = 2k — 1, such thaM,, has the(k,1)-C1P if and
only if @ is satisfiable. We do this as follows.

We again use Theorem 4 to force the colunj@s+ 1,2n+d) to appear to-
gether and in fixed order in ani, 1)-C1 order ofM,, and build a construction
off of this block. We again associate columfis2n) with the variables ofp, and
associate each clausgwith block Bj. However,B; now has four columns rather
than five, that isB; = (2n+d +4j — 3,2n+d +4j). Note also that we do not
have the blocks; in this construction. We again add the appropriate rowslo
so that the columns of ank, 1)-C1 order of the matriil, are orderedby, ..., by,
followed by 2h+1,...,2n+d, followed byB;,...,By. The only major difference
from Theorem 5 of this reduction is the manner in which we eisse the clauses
to their variables to property simulate 3SAT. The detaitsas follows.

We need to introduce only three more rows to associate theseato their
variables to properly simulate 3SAT. Suppose that claysentains literals/y, vg
andv,. We add the rowb2,bg1,...,bh,2n+1,2n+3,...,2n+2k— 9,2n+ 2k —
7,(2n+2k—5,2n+d),By,...,Bj_1, B§1’2>] to M. If vq is false this forcesle and
BJ2 to be among the first three columns of bldgkin any (k,1)-C1 order ofMy,.
Note that any other order of the columns By would introduce either a gap of
size 2, or &-th gap in this row. Similarly, we add the rov[ls%,bBH, ...,bp,2n+
L2n+3,....2n+2k—9,2n+ 2k — 7, (2n+ 2k — 5,2n+d>,Bl,...,Bj_1,B:J!',B?]
and[b?.by,1,....bn,2n+1,2n+3,... . 2n+2k—9,2n+ 2k — 7,(2n+ 2k —5,2n+
d),Bi,...,Bj_1,B],Bf] to My. If vz is falsg this forcesB} andB? to be among
the first three columns of blocB;, and if v, is false this forcesBJ1 and B‘j‘ to
be among the first three columns of bloBk Finally, sinceBj, B?, B, B{ cannot
simultaneously be among the first three columns of bBgkwe have that not all
three literals ot; can befalsein any (k,1)-C1 order of\,,.
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It remains to show that if any literal igy is true, then there is some order of the
columns of blockB; such that these four rows afle, 1)-consecutive. I, (resp.,
vg, andvy) istrue, we can order the columi, B, BY, B? (resp. B?, B, B{, B, and
B?,B},B3,BY). Note that these orders work even when the correspondirigble
is the only one that ifue.

Since, for evenk > 3, deciding thek,1)-C1P is clearly in NP, by the above
reduction from 3SAT, it follows that for everly > 3, deciding thek,1)-C1P is

NP-complete. O

In summary, by Theorem 5 and Theorem 6, it follows that forgke> 2,6 >
1,(k,d) # (2,1), deciding the(k, )-C1P is NP-complete. The only open question
that remains is the case of the complexity of deciding th&){21P. In the next
section we give a result for a special case of the (2,1)-C1P.

2.4 The (2,1)-C1P

All of the constructions in this chapter used to show NP-cletemess of deciding
the (k,0)-C1P fork > 2,0 > 1,(k,d) # (2,1) divided the columns of a binary
matrix M into an ordered sequence of blodRs ..., By by designing rows which
force the columns of each block to appear together and thek®lw appear in
the orderBy,...,Bp (or in the reversed order), i.e., for ahy u, columnd € B
ande € By, d appears before in any (k,5)-C1 order ofM. We will call any
permutation of the columns d&fl that meets this condition £B4,...,Bp}-block-
structured order Given any 3CNF formula, we then represented each variable
and each clause with a block frofB,...,Bp}, where the permutations of the
columns within this block correspond to the configuratioastiue andfalse if
it is a variable block, or (b) which of its literals is set time andfalse if it is a
clause block. The above restriction of columns into blo¢lentprovided enough
structure so that for each clausewe could add some rows td that introduce
dependencies only between the permutations of columnsddltitk forc and the
3 blocks corresponding to each d$ literals, such that is satisfied ing if and
only if these rows have th&k, )-C1P, and no other dependencies, i.e., tha
satisfiable if and only iM has a(k,5)-C1{By,...,Bp}-block-structured order.
Here we provide a polynomial-time(mPn(¢ + 1)! + n12%) and space
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O(mPn¢! + 2 algorithm, given binaryn x m matrix M where its columns are di-
vided into an ordered sequence of blodks...,B, and each block contains at
most some fixed constant numbeof columns (B;| < ¢ for all t € (1, p)), which
either

(a) decides ifit has 4By, ...,Bp}-block-structured (2,1)-C1 order, or
(b) finds a proof that deciding the (2,1)-C1P is NP-complete.

Note that we can force any (2,1)-C1 order to béBa,...,Bp}-block-structured
order by adding rows to the matrix similarly as it was done iedrems 5 and 6.

One observation is that this algorithm is FPT in paramétéknother motiva-
tion for this result is that if the (2,1)-C1P is NP-completerin this{B,...,By}-
block-structured case, then this algorithm provides aoraated tool which could
be used to prove this: with some instance of the problem, itlavind the proof
that deciding the (2,1)-C1P is NP-complete. We now give therdhm in the next
subsection.

2.4.1 The Algorithm

Let M be a binary matrix om rows andn columns and% = {By,...,Bp} be sets
of columns ofVl where|B;| < ¢ for allt € (1, p). The basic idea of the algorithm is
as follows. First, it does some preprocessindvbto check if it has some necessary
properties for it to have &-block-structured order that is also a (2,1)-C1 order.
If this succeeds, it then checks another condition of maitixIf this condition
holds, it generates a set of 2-clauses of polynomial-siae ithsatisfiable if and
only if M has such an order. If this condition does not hold, it is ablénd in
polynomial-time, proof that deciding the (2,1)-C1P is Nétvplete.

GivenM and% = {Bq,...,Bp}, fort € (1, p), let % denote the set of permu-
tations ofB; that are (2,1)-C1P with respect kb, for some order of the columns
outside ofB;. We will explain later exactly how to computgt, but for now, we
observe the following property:

Property 7. The set of{By,...,B; }-block-structured (2,1)-C1 orders of M is a
subset of/ = % x -+ X Up.
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Letr;, fori € (1,m) be a row ofM. For a seB of columns ofM, we useo (B, i)
to denote the subset of columnsBthat contain a in row r;. Lets (resp.,€)
€ (1, p) be the index of the first (resp., last) block Mfsuch thato(Bg,i) (resp.,
0(Bg,i)) #0, and%; = By, 1,...,Bg_1, the sequence of blocks betweBg and
Bs (we can assume th&ll does not contain any row on ontys). Note that%;
may be empty, however, i.e., the case wHen €, oré = s + 1. Since Property 7
holds, it follows that

(i) if % in row r; contains two or mor@’s, thenr;, and henceM is not (2,1)-
C1P; and

(ii) if 2 in row r; contains exactly on@, then, inBy (resp.,Bg) in r;, there
cannot be a singl@ to the right (resp., left) of anyt in any (2,1)-C1 or-
der of rowr;, and hence, oM. However, this effectively splits the block
By (resp.Bg) into the two blocks: By = o (Bg,i) (resp.,By = a(Bg,i));
and B} = By \ 0(Bg,i) (resp., B = Bg \ 0(Bg,i)). We can then re-
place the set4 = {By,...,Bq,...,Bg,...,Bp} Of blocks with the new set
#' ={By,...,By,By,...,B,,Bj,...,Bp} of blocks, and the set a#’-block-
structured(2,1)-C1 orders of matriXM with row r; removed (as this row is
always(2,1)-C1P in any%’-block-structured order) will be the same as the
set of #-block-structured 2,1)-C1 orders oM.

Since both cases (i) and (ii) for row can be determined in tim@(n) and space
O(1), and hence, in overall tim®(mn) and spac®(1) for M, we can assume that,
in M, these cases do not apply, i.e., tbdt#;,1) = %,.

We now explain how to computé; for eacht € (1, p). Since we ruled out
cases (i) and (ii) in the previous paragraph, it follows tloateacht € (1, p) and
row r; for i € (1,m), we have the following set of disjoint cases:

(1) o(B,i)=0,ie.,t¢ (s éd);
(2) 0(B,i) =By, i.e.,te(s,€);or

(3) neither (1) nor (2), theh=s or €, andB; contains some’s and somel’s in
row ri, and

(@) s <€, or
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(b) s =€, i.e.,B is the only block oM wherea (B, i) # 0

Fort € (1, p), we will denoteS as the set of permutations of ea8fthat are(2,1)-
C1P with respect to row;, for some order of the columns outside®f If either
case (1) or (2) holds, then any permutation of the columr d in §. In case
(3a), whert = s (resp.,€), then, in rowr;, any permutation which does not place
more than one@ to the right (resp., left) of any in By is in §. In case (3b), in row
ri, any(2,1)-C1 order ofB; is in §. Since|B| < ¢, determining if a permutation is
in § takes timeO(¢), and since there are at mdésuch permutations, computing
S takes timeO((¢ + 1)!) and spac®(¢!). Then, set

%= () S, (2.1)

ie(l,m)

and computingZ; for a givent € (1, p) takes timeO(m¢!) and spac®(¢!). Since

p is O(n), computingz; for all t € (1, p) takes timeO(mr¢!) and space(n¢!)
overall. Note that if%4 = 0 for somet, then% = 0, and hence, by Property Vi
does not have thé€2,1)-C1P. We remark that if only one blod®; is associated
with M, then?Z4 is simply the set 0f2,1)-C1 orders ofM. This completes the
details of the preprocessing phaseMbito check if it has some necessary properties
for it to have a{Bq,...,Bp}-block-structured2,1)-C1 order.

Up to this point, we have ruled out the trivial cases (i) afld{henM does not
have such an order and we have computedor all t € (1, p), and we can assume
that% # 0. The set of#-block-structured2,1)-C1 orders oM is a subset ot/
(Property 7), however it may be the case that it is not eqgeintabb 7%/, as a choice
of one permutation in som&; and another in som&/; might lead to an order
which is not(2,1)-consecutive. In particular, for any romfor i € (1,m) where
s < €, By andBgy (or neither) can be permuted such that exactly o to the
right (resp., left) of anyt in row r;, but both blocks cannot be in this state;ifs to
be (2,1)-consecutive. We will express this dependency on the pations ofBg
andBg with a disjunction on two Boolean variables, defined beloor.tFe (1, p),
let B be the set of permutations € % that do not place ang to the right (resp.,
left) of any 1 in By in row rj, in the case (3a) wheh=s (resp.,€). So thatP
is defined for every block/row pair, we |8 = % in cases (1), (2) and (3b) for
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t € (1,p), i< (1,m). Note that, for a given € (1, p) andi € (1,m) (like with §)
thatP/ can also be constructed in tinf®é (¢ +1)!) and spac®(¢!), for overall time
O(mn(¢+1)!) and space&(mr¥!) to computeR! for all t € (1, p) andi € (1,m).
Let Boolean variable ; represents € B!, fort € (1,p), i € (1,m). It follows that
ri is (2,1)-consecutive if and only if it satisfies

XsiVXdj (2.2)

Note that Equation 2.2 is defined for all rowsfor i € (1,m) (in the case that
s = ¢, Equation 2.2 is a tautology by the fact thgt = 0 for allt € (1, p)).

In the previous paragraph, we saw that, for any given rgwhere is a one-
to-one correspondence between satisfying truth assigismerEquation 2.2 and
(2,1)-C1 orders of;. However, the same correspondence betw2eh-C1 orders
of M and satisfying truth assignments of

N\ XV X, (2.3)
ie(1m)
does not hold in general. This is due to the fact that when A set1, m) of two or
more rows are involved, one ¢§,€} for eachr;, i € A can coincide on the single
block B;, and ﬂieAPt‘ = (0. This means that a truth assignmento the pairs of
variablesX; ; corresponding to the rows éfmay not bevalid, where we say that a
truth assignment is valid when there is &-block-structured ordem =1, ..., T,
of the columns oM such thatr (X ;) = trueif and only if 1§ € P for all t € (1, p),
€ (1,m). So, in addition tor satisfying Equation 2'3, we must also ensure that

T is valid. This can be done simply by ensuring for any such setves A where
Nica P = 0 for somet € (1, p), that not allXj, i € A are set to true, which can be

encoded by
A N \/ =X (2.4)

te(1,p) AC(1,m) Mica Pi=0i€A

While the (2,1)-C1 orders d¥l correspond to the satisfying assignments of Equa-
tion 2.4, this SAT formulation can have clauses of size agelaism, sinceA can
be as large am.

We now give the following condition oM, which can be checked in
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polynomial-timeO(mr¢ +n¢!2%). If the condition holds, then Equation 2.4 can
be replaced by an equivalent set of 2-clauses, and if theittmmdloes not hold,
then an NP-completeness proof can be constructed.

Condition 8. For every tc (1,p), and AC (1,m), N;icaP' = 0 implies that there
exists j j € A such that PN PR’ = 0.

It follows that if this condition holds, then for evetye (1, p), it is sufficient to
forbid X andX; j from both beingtrue in t for every pairi, j € (1,m) such that
P/ NP’ = 0. We can hence replace Equation 2.4 with

A A X VX (2.5)

te(Lp) i je(1,mPinP =0

Clearly this is a 2SAT formulation of polynomial-siZg(n?n). Note that Equa-
tion 2.5 can be constructed in polynomial-ti@énm?n/!).

We now show how to perform the polynomial-time check to sdhiff condi-
tion holds for the particular instandé, and how to construct an NP-completeness
proof if Condition 8 does not hold. To check this conditiore Wwave to check
for everyt € (1,p) if there is anA C (1,m) with |A| > 2 such tha{),.oP = 0.
For a givent € (1,p), |B| < ¢, and sinceM is a binary matrix, there are only
2" unique rows inB. It takes timeO(m¢ + £2) to find this set of unique rows
and spaceD(2’) to store (or index) this set. From this set, there drecRoices
for A. For each choice of, we have to computf)icac1m) P which takes time
0O(¢12"). For each of these intersections, we have to complteP,’ for each
i,j €A Since computing® N Ptj takes timeO(¢!), and there are? pairsi, j, this
step takes tim@(¢!12%). Hence, the time of this check for a givere (1, p) is
O(me+ 2" +-2¢ - (012" 4- £122Y)) which simplifies toO(m¢ + ¢12%). Again, sincep
is O(n), this check takes overall tim@(mrY +n¢!12%). SinceR' for eacht € (1, p)
andi € (1, m) has already been computed previously, the only additigredesused
is O(2") to store the set of unique rows for the currBatandO(1) for the pairi, j,
and hence this check uses spaxe’).

Now, suppose that we find a s&C (1, m) with |A| > 2 such tha ., P = 0.
For simplicity, letA be the set of rows$ry,r2,r3}. If this is the case, it follows that
for somet € (1, p), PrNP2N PR3 = 0, while for any pair{i, j} c {1,2,3} where
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by by b3 by bv| Dy Dj-1 Dj Dj D¢y by bs by by
I I R e | | R | | | IR [ 11 CLLITT]

01111111 111 1 71 0 000 000000
00000000 000 0 7y 1 111 111000
00001011 111 1 73 0 000 000000

Figure 2.3: The structure of the construction for a 3CNF formgian the
setV of variables andC of clauses, along with the 3 rows encoding
the clausecj = {v1V v2VV =v3}. The blocksby, ... by, correspond to
the variables ofp in exactly the same way as in the construction of
Subsection 2.3.1. The block3,...,D ¢ correspond to the clauses.
Here, fori € {1,2,3}, fj is rowr; restricted to the columns &, and
P, P2 (resp.,P?) are sets of permutations that do not place @iy the
left (resp., right) of anyt in B; in rowsr, r3 (resp.r»). It follows that all
truth assignments to the literals ofare (2,1)-C1 orders except for the
case when all 3 literals are falsg (s not satisfied), sincB!NR?NP3 =
0. Note that for each e {1,...,|V|}, rows can be added to force the
copy of variable blocky; on the left and right of the clause blocks to
encode the same truth value.

i#j, RN Ptj # 0. This property allows us to usk to build a 3-clause gadget,
for a reduction from 3SAT, similar to that of Subsection 2,30 the problem of
deciding ifM has a%-block-structured (2,1)-C1 order. Figure 2.3 illustraties
structure of this construction along with the 3 rows that lddoe added for the
clausecj = {v1 Vo vV —v3}. Note that if|A] > 3, then aAl-clause gadget can be
built in a similar fashion. Sinced| < 2!, this construction is of size polynomial in
|IM||, and hence deciding the (2,1)-C1P would be NP-completeriti@ion & does
not hold for someM.

Finally, we summarize the time and space complexity of tlgerithm. The
preprocessing phase, i.e., checking cases (i) and (ii)ddn eow ofM takes time
O(mn) and spac@(1). For eacht € (1, p) andi € (1,m), computing§ (andR))
takes timeO((£ + 1)!) and spac&(¢!), for overall timeO(mn(¢ + 1)!) and space
O(mr¢!) for this step. Computing for all t € (1, p) takes timeO(mr¢!) and
spaceO(n/!) overall. Performing the check for Condition 8 takes ti@@nry +
n?12%) and spaced(2"). If the condition holds, then it computes Equation 2.5,
which takes timeO(n?n¢!), generating a 2SAT formulation of sizZg(nm?n). In
summary, it follows that this algorithm runs in tin@n?n(¢ + 1)! +n¢123) and

45



spaceO(nmPn/! 4 2°).

Theorem 9. Given binary matrix M on n columns and m rows and a collection
A = {Bu,...,Bp} of sets of columns of M whet&| < ¢ for all t € (1, p) for
some fixed constant numbérthere is an algorithm that runs in polynomial-time
O(mPn(£+1)! +n¢12%Y) and space QrPn/! +2') which either

(a) decides if there ig8-block-structured order of M that is also a (2,1)-C1 order,
or

(b) finds a proof that deciding the (2,1)-C1P is NP-complete.

While this algorithm checks Condition 8 for the particulastanceM, we con-
jecture that Condition 8 holds for all binary matrices. litls the case, as a corol-
lary of Theorem 9, we could omit the check of this conditionddaster algorithm.

Corollary 10. If Condition & holds for all binary matrices, then given bigana-
trix M on n columns and m rows and a collectiod = {By,...,Bp} of sets of
columns of M wheréB;| < ¢ for all t € (1, p) for some fixed constant number
¢, there is an algorithm that runs in polynomial-time(r&>n(¢ + 1)!) and space
O(m?n¢!) which decides if there is-block-structured order of M that is also a
(2,1)-C1 order.

2.5 The Complexity of Deciding the(, )-C1P

Here we show that for every > 1, deciding thgw, 5)-C1P is NP-complete. The
first step is to reduce 3SAT(3), the version of the 3SAT Probléhere no variable
appears more than twice positively and more than once negjato an auxiliary
version of the 3SAT Problem. We then reduce this auxiliangiom to the problem
of deciding the(e, §)-C1P for the result.

2.5.1 The 3SAT(L:2,R:2) Problem

First we reduce from 3SAT(3), the version of the 3SAT Probleitlh 2-clauses
and 3-clauses, and where no variable appears more thanpgosiesely and more
than once negatively [120, p. 183, Prop. 9.3], to an auyiliarsion of the 3SAT
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Problem, namely 3SAT(L:2,R:2): the version of the 3SAT Reabwith 2-clauses
and 3-clauses, where each clause is assigned thellai& (for left or right) such
that for each label, no variable appears more than onceiy@bgiand more than
once negatively in the corresponding set of claifses.

Lemma 11. The 3SAT(L:2,R:2) Problem is NP-complete.

Proof. We are given an instance to the 3SAT(3) Problem: avsef variables
andC of 2 and 3-clauses, such that for each V, v appears no more than twice
in C and —v appears no more than once@ For eachv € V with two positive
occurrences, we replace one of the occurrenceswith the new variable/. We
then label all the clauses of this new instance with Note that in this set of
clauses labelled witl., no variable appears more than once positively and once
negatively. Now, for each appearancevgf we add the two new clauses =

VvV -vandc = vV -V, and label them both witR. These two clauses enforce
the constraint that = V' in any satisfying assignment to this new instance of the
3SAT Problem, thus this new instance is satisfiable if ang ibithe original 3SAT
Problem instance is satisfiable. This new instance of thefT3¥ablem has 2- and
3-clauses, and for each of the labelandR, no variable appears more than once
positively and once negatively. Thus we have transformgablgnomial time the
instance of the 3SAT(3) Problem to an instance of the 3SATR:2) Problem that

is satisfiable if and only if the original 3SAT(3) instancesiisfiable. Since the
3SAT(L:2,R:2) Problem s clearly in NP, it follows that th8 8T (L:2,R:2) Problem

is NP-complete. O

2.5.2 The Complexity of Deciding the(e, 1)-C1P

We now show that the problem of deciding ttwe,1)-C1P is NP-Complete by
giving a reduction from 3SAT(L:2,R:2). We will later genéze this reduction to
show that for every > 1, deciding thgw, §)-C1P is NP-Complete.

Theorem 12. Deciding the(e, 1)-C1P is NP-complete.

1We remark that the exact formulation of 3SAT(3) in Papadimit [120] allows also variables
with one positive and two negated occurrences, howevee tt@s easily be converted to the other
type of variables by replacing them with their negationslirtiauses. Clearly, this does not affect
the complexity of the problem.
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Proof. We are given an instanagof the 3SAT(L:2,R:2) Problem: a sgtof vari-
ables and the se® andCR of 2- and 3-clauses, such that for eachV, vand—v
each appear no more than onceCi¥) for S¢ {L,R}. We useg to build a matrix
My, such thaip is satisfiable if and only iV, has the(e,1)-C1P.

The idea of the construction is that for each variagle V = {v1,...,vn},
the matrixM, will have the block of columndy;, called thevariable block to
represent the value of this variable. Matik, will also contain the blocks of
columnsbg 1,...,bnne1 Of dummy blockshat will interleave the variable blocks.
We will add some rows t¥, to force the individual columns of each of the variable
and dummy blocks to appear together and in fixed order, oreberse order. The
direction of blockb; will represent the value of the variable We will then add
some rows tdVl, to force only the ordebg 1,b1,b12,...,bn_1n,bn,bnn1 (Or the
reverse order) of these blocks, while the individual vddatlocks may switch
direction relative to this order. If variable blodk is in the same order relative
to this order of all of the blocks then its corresponding akle v; has valuetrue,
otherwise it has valuéalse The matrixM, will also have an additionalrfree
columns. To each clausec C = {C- UCR} we associate a unique empty free
column fc. This is possible since for evey< {L,R}, each variable appears no
more than once positively and once negativel{Ci) and eactc € CS contains at
least 2 variables, and hen@®| < 2n/2 = n. Thus|C"| + |CR| < 2n. We then add
some rows tdM, to force these 2free columns to fall (in any order) between the
2n pairs of adjacenb;_1;,b; andb,b; ;1 blocks, fori € (1,n), such that there is
one free column for each hole.

For a clause € C* (resp.,CR) wherec contains variablesy,vg (andvy, for a
3-clause), we assign this clause to colufgrof the 2 free columns, and we add
a row toM,, that forces the columif to be to the left (resp., right) of either block
ba,bg (or b, for a 3-clause). However, columf can only go to the left (resp.,
right) of the block of a variable when its correspondingrétes set to the value
that satisfies clause Note by the construction that each variable can satisfy at
most one left and one right clause, which is sufficient beeaagh literal appears
at most once in a right (resp., left) clause. These propevti# imply that only
when, for evenc € Ct (resp. CR), columnf, can be placed to the left (resp., right)
of aby, fori € (1,n), for av; that is set to a value that satisfied.e., @ is satisfied,
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free columns

bo.1 b1 b1,2 brn—1.n bn b nt1

" N

Figure 2.4: The structure of matrii,.

is there g, 1)-C1 order ofM,, and vice versa. We now give the full details of the
construction in what follows.

For each variable; € V = {vi,...,vy}, we add the set of columnls =
{b,...,b?} to My. In addition, for everyi € (1,n), we add the set of columns
bi1i = {b" 1;,...,b° 1;} to My. For each set of columnis for i € (1,n), and
bi_1; fori € (1,n+ 1), we add taVl, the rows according to Theorem 4 to force the
columns of each set to appear together and in fixed order €oretverse) in any
(00,1)-C1 order ofMy, i.e., in any(c, 1)-C1 order ofM, setb; will appear either
as the sequendg},...,b° or b°,... bl of consecutive columns, and similarly for
the columns in setl;_1;. We will refer to theb; asvariable blocksand theb;_1
asdummy blocks Note that Theorern 4 requires that a set of columns must have
size D + 3 before such an order can be enforced on it, this is why eak lod of
size five. In addition, we adddree columns tdV,.

Now, for each pair of blocks;_1;,bi andb;, b1 for i € (1,n), we add rows
i1\ {bl;;}Ubi] and by Ubij1\ {b7,,}] to force these pairs to be together
with at most one free column in between them. This enforcaistitte blocks appear
inthe ordetbg 1,b1,b1 2, ...,bn_1n,bn, b np1 (Or the reverse) in anfeo, 1)-C1 order
of My. The first (resp., last) column of the dummy blocks is omitiedix their
direction (relative to the order of the blocks) under theuagstion that there is a
free column between each pair of neighboring blocks, whiehwl now enforce
with the following row. We add td, the row[BUF], whereB = b{;" Ub>* U
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- UbY U bfr’f_'gl}, andF is the set of 2 free columns. It now follows that
between eacly_1;,b; andb;,b; ;1 pair fori € (1,n), there must lie at least one
column fromF, in any (,1)-C1 order ofMy. Since we have exactlyn2pairs,
between each pair there must be exactly one. Figure 2.4tdeglig(c,1)-C1
orders of the current matrid,. Note that the columns in each variable block can
be oriented either in the same direction as the order of ah@blocks, or in the
reverse direction. If variable blodk is oriented in the same direction as the order
of all of the blocks, this corresponds to the setting of thealde v; to true, while
the reverse direction correspondsvideingfalse Now it remains to add rows to
M,, to force the free column associated with each clause to &t to only the
blocks of variables that are set to a value that satisfieslduse.

Let c € C* (resp.,CF) contain the variables,,xz (andx, for a 3-clause), and
let fc € F be the free column associated with claeséVe add the rowBUF \
{fc.}US] to My, whereS; is defined as follows. I€ € C*, then for eactj € {a, B}

(j € {a,B,y} for a 3-clause), ifv; appears positively (resp., negatively)dnset
& contains the columngb? , ;,b7} (resp., {b> ; ;,b°}). Otherwise, ifc € CR,
then for eachj, if v; appears positively (resp., negatively) énsetS; contains
the columns{b?,b} ;. ,} (resp.,{b},b} ;,,}). Adding these extra ones around the
variable blocksb; for eachj forces f; to fall only to the immediate left (resp.,
right) of theseb; in any («,1)-C1 order ofMy. Furthermore,f; can only fall to
the immediate left (resp., right) of Iy if it is oriented in a direction such that
corresponding variablg; is set to a value that sets its literal e, i.e., if v;
satisfiex. Hence, the satisfying assignments of any individual dawrrespond
to the («,1)-C1 orders of the submatrix dfl, consisting of the row added for
clausec, and all of the rows previously added, for the blocksb; for i € (1,n),
andbi_q; fori e (1,n+1).

After adding the row for all clausese CH UCR, the set of remainingeo, 1)-C1
orders ofM,, (if there exist any) correspond to the cases where for evangec ¢
Ct (resp.,CR), its corresponding columf is placed to the immediate left (resp.,
right) of a block of a variable that is set to a valueué or false that satisfiex,
that is, to satisfying assignmentsqf Conversely, ifp has a satisfying assignment,
then we can assign eacle C* (resp.,CR) to a uniquev € V that satisfieg, in the
sense that eitheror —v satisfiesc, i.e., eachv € V will satisfy at most one clause
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from Ct and at most one clause froBR. We can make this claim becaugand
—v each appear no more than onceCin(resp.,CR), and at most one of and—v
satisfies a given clauge Thus we can assign each colurfyof M, to a unique slot
to the immediate left (resp., right) of blodk for i € (1,n), for the corresponding
v that satisfies the clause ThusMy, has a(«, 1)-C1 order. Henceyp is satisfiable
if and only if My has the(e, 1)-C1P.

In summary, given a 3SAT(L:2,R:2) formulp with n variables andn < 2n
clauses, we have constructed a malfix with 12n+ 5 columns and 16+ m+-8
rows such thaiM, has the(e,1)-C1P if and only if¢ is satisfiable. Given that
deciding the(e,1)-C1P is clearly in NP, and Lemma 11, it follows that deciding
the (c0,1)-C1P is NP-complete. O

2.5.3 The Complexity of Deciding thee, §)-C1P

We now generalize the construction given in Subsectior?2 2dshow that for every
0 > 1, the problem of deciding th@o, )-C1P is NP-complete by reduction from
3SAT(L:2,R:2).

Theorem 13. For everyd > 1, deciding thgw, )-C1P is NP-complete.

Proof. Considerd > 1. Here, given an instanag of 3SAT(L:2,R:2), we build a
matrix My, such thatp is satisfiable if and only iMy has thg(c, 5)-C1P. The idea
of the construction is the same as that of the proof of Thedr2nit will again have
the blocksb; for i € (1,n), andb_1; for i € (1,n+ 1) as well as & free columns
for the clauses, only the blocks will need more columns, aadwill need to add
more rows tdMy, in order for it to behave in the same way for arbitrary

For each block; for i € (1,n), andb_1; fori € (1,n+ 1) we again add td/,
the rows according to Theorem 4 to force each individual lotode in fixed order
(or the reverse) in anfgo, 6)-C1 order ofM,. Thus, each block will contain®+-3
columns. In order to force each pair of blodks;,b; andby, b1 fori e (1,n),
to be together, with at most one free column in between thbog énforcing a
total order on the blocks, we add the rofs®; "> Uly] and[bi Ub$:5 1. Note
here, that the first (resp., lasi)columns of the dummy blocks are omitted to fix
their direction (relative to the order of the blocks) undes assumption that there
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is a free column between each pair of neighboring blockschviae enforce by

adding toM, the row[BUF |, whereB = b, 2" ub{>* 23 ... upP 043

b2 L") andF is a set of 2 free columns. NowM, again has the desired
structure, as depicted in Figure 2.4. Now it remains to addsrtw M, for the
clauses.

Let c € C* (resp.,CR) contain the variablegq, Xg (andx, for a 3-clause), and
let fc € F be the free column associated with clauséNVe add the roWBU F \
{fc} US| to My, whereS; is defined as follows. I€ € Ct, then for eachj € {a,}
(j € {a,B,y} for a 3-clause), ifv; appears positively (resp., negatively)dnset
S contains the columngb?®13, b1} (resp. {b7%13,03%*3}). Otherwise, ifc € CR,
then for each, if v; appears positively (resp., negatively)dnsetS; contains the
columns{b?®*3 bt} (resp.,{b},b}, 1}). Now this matrixM, will have the
same behavior as in the proof of Theorem 12, hepie satisfiable if and only if
My, has theg(w, 5)-C1P.

In summary, for every > 1, given a 3SAT(L:2,R:2) formuleg with nvariables
andm < 2n clauses, we have constructed a may with (46 +8)n+26 + 3
columns and 65 + 10)n+ m+- 36 + 4 rows such thaMy, has the(w, 5)-C1P if
and only if @ is satisfiable. Given that for evedy> 1, deciding thg, §)-C1P is
clearly in NP, and Lemma 11, it follows that for evedy> 1, deciding thgw, d)-

C1P is NP-complete. O
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Chapter 3

The Gapped Consecutive-Ones
Property for Matrices of Bounded
Maximum Degree

In this chapter, we study thg, )-C1P with a third parametet, the bound on the
maximum degree ofl. In Section 3.1 we first provide an algorithm for the case
of the (d,k,d)-C1P when all three parameters are fixed constants. In 8ep
we show, in four subsections, that deciding tdek, «)-C1P for everyd > k > 2
is NP-complete. First, in Subsection 3.2.1, we give the definof a type of hy-
pergraph covering problem. In Subsection 2.2.2 we showdlsiecial case of
this hypergraph covering problem is NP-complete, and theSubsection 3.2.3
we generalize this construction to show that the genera o&shis hypergraph
covering problem is NP-complete. Finally, in Subseciol.8we show a direct
correspondence of the general case of this hypergraphingyaoblem to decid-
ing the(d, k,)-C1P for everyd > k > 2 to give the result of this Section 3.2.

3.1 An Algorithm for Matrices of Bounded Maximum
Degree

A binary matrixM has maximum degree if every row contains at most entries
1. We show now that, whed and é are constant (which implies th&tis also
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constant, sinc& < d), then deciding thék, 5)-C1P is tractable. We rely on a
connection to graph bandwidth, and an algorithrn of Saxe][fi@%leciding graph
bandwidth. We now give several definitions, theorems andteedly the algorithm
from Saxz [135], and our extensions to these to give an afgorior deciding the
(d,k,9)-C1P.

We first define dayout of a graph, or a mapping of its vertices to distinct
positive integers, and then thandwidthof a layout.

Definition 14 (Layout of a Graph) Saxe [135]Let G= (V,E) be a graph with
[V| = n. Alayoutof G is a one-to-one mapping: ¥ — (1,n).

Definition 15 (Bandwidth of a Layout) Saxe [135]Given graph G= (V,E) with
[V|=n, and alayout f of G, theandwidthof f is defined as the maximum distance
between the images under f of any two vertices that are coehdxy an edge in
G. That is,

bandwidth{f) = max{ f (u) — f(v) | {u,v} € E}.

The bandwidth of a graph is then the smallest bandwidth fgradits layouts.

Definition 16 (Bandwidth of a Graph)Saxe [1351Given graph GV, E) with |V | =
n1
bandwidtiG) = min{bandwidti{ f) | f is a layout ofG}.

We now show the connection of graph bandwidth to (thg, 5)-C1P. LetM be
an mx n binary matrix andGy = (Mu,Em) be the undirected graph defined as
follows: V = (1,n) (each vertex o6y represents a column M), and there is an
edge{i, j} € Ev if and only if there is a row oM with entries1 in columnsi and

j- The following property then follows immediately from thdefinition:

Property 17. If M has maximum degree d and M has tllke §)-C1P, then
bandwidti{Gy) is at most d+ (k—1)d — 1.

We hence denotelayoutof a binary matrixM to be a layoutf of its Gy, while the
bandwidthof such a layout is the bandwidth éf(where the domain of this layout
of M is its columng(1, n) corresponding to the vertices Gf, that form the domain
of f). We then denote that tHeandwidth bandwidti{M), of a binary matrixM
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is bandwidtliGy). It is an algorithm for deciding for some given gra@h if
bandwidtiG) < b for some fixed constart, that is the main result of Sexe [135].
In the following, we give the details of this algorithm, anoWhit can be extended
to give an algorithm for deciding th@l,k, )-C1P. This relies, of course, on the
above Property 17. We first need to give some of the prelimiaasumptions,
definitions and theorems (and their extensions for our magpo” Saxe [135].

First, we note that if grap@® = (V, E) with |V | = nis not connected, the@ has
a layout of bandwidth< b if and only if each of its components has such a layout.
Also, it is clearly impossible fofG to have such a layout i& has any vertex of
degree greater tharb2We therefore assume thatis (i) connected and (ii) has no
vertex of degree greater thah.2Sinceb is a fixed constant, we can determine (ii)
in linear timeO(n), and, given that (ii) holds, we can determine (i) in lineandi
as well [135]. Similarly, we assume that any matkixgiven as input to deciding
the (d,k, 8)-C1P emits a graptby that has properties (i) and (ii).

We now introduce the key notion from Saxe [135] opartial layout some
related definitions with respect to deciding if a graph hasdeadth < b whereb
is a fixed constant, and our extensions of some of these d&fisiso that we can
later extend the algorithm of Saxe [135] to obtain an albamitfor deciding if a
binary matrix has th¢d, k,5)-C1P.

Definition 18 (Partial Layout of a Graph)Saxe [135]Let G= (V,E) be a graph
with |V| = n. Apartial layoutof G is a one-to-one mapping:tJ — (1, p), where
UCVandU|=p,ie,0<p<n.

Definition 19 (Feasible Partial Layout)Saxe [135]We say that a partial layout
f of a graph G isfeasibleif it can be extended to a (total) layout g, such that
bandwidthg) <b.

Definition 20 (Bandwidth of a Partial Layout)Saxe [135]The bandwidthof a
partial layout f of a graph G is the maximum distance betwéenimages of any
two edge-connected vertices of G which are in the domain of f.

Definition 21 (Edge Dangling from a Partial LayoutSaxe [135]Given partial
layout f of a graph G= (V,E), if {u,v} € E and u is in the domain of f and v is
not, then edgdu, v} is said to bedanglingfrom f.
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Here we denote partial layout of a binary matrixM to be a partial layout of its
Gum. Note that this emits a submati’ of M on the columnd). The remainder
of these definitions carry over directly to matriddsi.e., in terms ofGy, with the
exception of feasibility, which is a bit more complicated.

Definition 22 (Feasible Partial Layout of a Binary MatrixYVe say that a partial
layout f of a binary matrix M ideasibleif it is a feasible partial layout of G,
and if it can be extended to a (total) layout g, such thandwidti{g) < b, and the
order of the columns of M given by §(1),...,g7(n) is a(k, 6)-C1 order.

We now introduce the notions from Saxe [135] oplausible partial layout
and theactive regionof a partial layout.

Definition 23 (Plausible Partial Layout of a Graph$axe [135]Given partial lay-
out f of agraph G=(V,E), where f is of size p, itis clear that f cannot be feasible
unless

(1) bandwidth{f) < b, and

(2) whenever u and v are vertices of G such that) & p—b and{u,v} € E, then
v is also in the domain of f.

If f satisfies both of these conditions, then f is said to ptaasible partial layout

In order to extend this above definition so that it holds feoddinary matrices, we
have to add to it the following third and fourth properties

(3) submatrixM’ given by f has the(k, 5)-C1P, and
(4) for each rowr of M, if the degree of in M’ is less than its degree M, then

(@) rin M’ has the’k—1,9)-C1P, and
(b) the rightmostl in r of M’ is followed by at mosb 0’s.

Note thatG = Gy in (2) of the above property. Finally, we give the following
definition ofactive regionwhich carries over directly to the case of binary matrices.
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Definition 24 (Active Region of a Partial Layout)Saxe [135]Given partial
layout f of a graph G, where f is of size p, the sequefite!(max(p — b+
1,1)),..., f71(p)) taken together with the set of dangling edges of f is called th
active regiorof f.

We now present the theorem of Saxe [135] on which Saxe’sipahalgorithm
depends.

Theorem 25. Saxe [135]Let f and g be two plausible partial layouts of G having
identical active regions. Then,

(1) f and g have identical domains, and
(2) fisfeasible if and only if g is feasible.

Proof. SinceG is connected, the domains &fandg must each consist precisely
of those vertices which are path-connected to verticesdmathive region by paths
not including any dangling edges. Thus, (1) holds. To seg(f)aholds, we need
only note that any assignment of the remaining vertices vbitends eithef or g

to a total layout of bandwidtkl b must also extend the other to such a layouil

Note that since we defined active region and what it meansartéal layout of a
binary matrix to be feasible and plausible, that Thecrema2&es over to the case
of a binary matrixM also, whereés = Gy, and the assignment that extends either
andg to a total layout of bandwidtkc b also has th¢k, )-C1P in the proof of this
theorem.

Finally, we present the notions from Saxe [135] sll@cessoandpredecessor
of a plausible partial layout.

Definition 26 (Successor of a Plausible Partial Layou®axe [135]Let f be a
plausible partial layout of G. Then successoof f is a plausible partial layout
g which extends f by precisely one element. In this case,dineeaegion of g is
also said to the be the successor of the active region of f.

Definition 27 (Predecessor of a Plausible Partial Layo8axe [135]If plausible
partial layout g is the successor of plausible partial layduthen (the active region
of) f is apredecessaof (the active region of) g.
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Again, because we have defined all of these notions in theatdseary matrices,
these notions of successor and predecessor also carry iceethydto the case of
binary matrices.

As in Saxz [135], Theorem 25 allows us to say that two plaagibltial layouts
of a binary matrixM areequivalentif they have identical active regions. We can
now easily extend the algorithm of Saxe to obtain a breadshdearch over the
space of all induced equivalence classes of plausiblegbtatiouts, i.e., the active
regions. Here, again, since each active region consists rmbatb vertices and
each vertex has no more tham&dges, each of which may or may not be dangling,
the number of equivalence classes is bounded above by

)3 (?)(i!)(zzb)‘ = o). (3.1)
0<i<b
We are now ready to present our extension of the algorithmaod: $135] for
deciding if a binary matrixM has the(d,k,5)-C1P. Here, we need only extend
Saxe’s algorithm with a data structure that stores a sulmistt corresponding
to each active region, and some procedures associatedhiateubmatrix to test
for the (k,5)-C1P of this active region. Note that since we assume thdtas
bounded degred, by Property 17 we can test here for bandwidttb, where
b=d+ (k—1)0 — 1. Note also that, by the definition Gy, it follows thatb is
greater than the distance between the leftmaatd rightmostl in any row of any
(k,0)-C1 order ofM. Hence, it is sufficient to test for thé, 8)-C1P of only the
submatrixM’ corresponding to each active region (of sigeand not all ofM.

The algorithm uses the following two data structures:

(1) A (fifo) queueQ whose elements are active regions.

(2) An arrayA which contains one element for each possible active redi@ch
elementA[r| of A consists of a Boolean flayr]. exam ned, telling whether
the active regionr has already been considered in the search, and a list
Alr]. unpl aced of vertices which is intended to list all verticemt in the
domain of each plausible partial layout with active regronHere, we ex-
tend each elemerf[r] so that it also contains ax b (sub-) matrixAfr].M’
which stores the submatrix & that corresponds (in this order) to the columns
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f~(maxp—b+1,1),...,f1(p)) of active regiorr.

At the start of the algorithmQ is initialized to contain the single element repre-
senting the active region (henceforth deno®f the empty partial layout 0. The
flag A|®@]. exam ned is set totrue andA[®]. unpl aced is initialized to list all
the elements of. The remainingA[r]. exani ned are initially false and the re-
mainingA[r]. unpl aced are uninitialized. Eaclr].M’ is also set to the matrix
on zero columns (the empty matrix). The algorithm now prdsegs follows:

Algorithm 1 Algorithm of Saxz [135] for testing the bandwidth of a graph.

1. Extract an active regionfrom the head of).

2. FromA[r]. unpl aced, determine the successorsrof To determine ifs, the
active region obtained by extendingvith somec € Ajr]. unpl aced is a suc-
cessor, we first check (as in done in Sexe [135]) to seésif the active region
of a plausible partial layout dBy. In addition, we computé|s|.M’ by adding
columncto the end ofA[r].M’. This new active regioscan only be a successor
if Als].M’ satisfies properties (3) and (4) that extend Definition 23.

3. for each successarof r such thatA[s]. exami ned is false perform the fol-
lowing steps:
a. SetA[s]. exami ned totrue.

b. Compute Alg. unpl aced by deleting the last vertex ofs from
Alr]. unpl aced.

c. If A[g.unplaced is the empty set, then halt, asserting that
bandwidtiG) < b.

d. Insertsat the end of).

4. If Qis empty, then halt, asserting that bandw{@h > b. Otherwise, go to Step
1.

We now analyze the time and space complexity of the algorith8ince
there areD(n®) active regions, and with eactr we associate th®(n) elements
Alr]. unpl aced, thenx b matrix Alr].M’, which is of sizeO(mn), and some con-
stant size flags, the space required by the algorith@(isrP*2). For the running
time, we first note that (as in Saxe’s algorithm) that Stegedugh 4 will be exe-
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cutedO(n°) times. Again, each individual execution of Steps 1 and 4 takestant
time, so their contribution to the total running time@§n®). In each execution
of Step 2,A[r]. unpl aced can haveO(n) elements, and the test thajfs].M’ for
each potential successem Ar]. unpl aced satisfies properties (3) and (4) that
extend Definition 23 takes tim@(mn), sinceA[s|.M’ is of sizeO(mn). Hence Step
2 contributesO(mrP+2) to the total execution time. In each execution of Step 3,
again Steps 3.a through 3.d maybe executed as mamirags, and that Step 3.b
takes timeO(n), Step 3 takes tim®(n°+2) (which is already less than that of Step
2, so we leave out the analysis of Saxe [135] for bringing dtvisiupper bound).

We hence have our version of the following theorem from SA8&] for de-
ciding the bandwidth of a binary matrix.

Theorem 28. Let b be any positive integer. Then, given some binary madrix
there is an algorithm which decides if bandwi@lth) < b using time and space
o(mrP+2).

Proof. To test the bandwidth d¥1, we first perform a tim&(n) depth-first search
which either

(1) determines thaby has some vertex of degree greater thenaz

(2) partitionsGy into connected components, none of which have any vertex of
degree greater tharb2

In case (1), we know immediately that bandwidé > k. In case (2), we apply
Algorithm 1 to the submatrices & that correspond to the connected components
of Gm. Ol

By the above Theorem 28 and Property 17, we have the followiegrem
which gives us the result.

Theorem 29. Let M be an mx n binary matrix such that every row has at most
d entries1. Deciding if M has thelk,d)-C1P can be done in time and space
O(mndJr(kfl)c?Jrl).
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3.2 The(d,k,0)-C1P

Here, we show that deciding ttid, k, «)-C1P for everyd > k > 2 is NP-complete.

This proof is broken down into the following subsections.Smbsection 3.2.1 we
define first a hypergraph covering problem that will be useérleo show NP-

completeness of this case. In Subsection 3.2.2 we then dimvatspecial case
of this covering problem for 3-uniform hypergraphs is NRPagbete. In Subsec-
tion 3.2.3 we use the NP-completeness construction of $tibee3.2.2 to show

that this covering problem defined in Subsection 3.2.1 ischplete in general.
Finally, in Subsection 3.2.4, we give a correspondenceisftbvering problem of

Subsection 3.2.1 to the problem of deciding tHek, «)-C1P for the result of this
section.

3.2.1 A Hypergraph Covering Problem

We first define the following hypergraph covering problem.the sections that
follow, we will show that this problem is NP-complete, andtthit corresponds
exactly to the problem of deciding ttid, k, «)-C1P for the hardness result of this
chapter. Note that a hypergraph= (V,E) is d-uniformwhen all its hyperedges
ared-edgesthat is, hyperedges that contain exactlyertices.

Definition 30 (p-Covering of ad-Uniform Hypergraph) Given a d-uniform hy-
pergraph H= (V,E) and an integer p, let ¢ be a complete graph on V and let
Py be the set of all subsets of Ky) with exactly p edges. A-goveringof H is

a graph G= (V,E’) such that there exists a map E — & such that

(a) for every he E, and for every & c(h), eC h; and
(b) E'=Uneec(h).
Here, we say that se{h) p-coversthe hyperedge h and that GqoversH.

Informally, a p-covering of ad-uniform hypergraph is a graph constructed by
picking p edges from each hyperedge.

Problem 31 (d-Uniform Hypergraphp-Covering by Paths d-UH-p-CP)). Given
a d-uniform hypergraph H-= (V,E) and an integer p< d, is there a p-covering of
H which consists only of disjoint paths?
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Variations of this problem were defined in previous works-[69]. The first
variation allowed the hypergraph to have only 2, 3 and 4-edg#ere 2- and 3-
edges were covered by picking one edge, while 4-edges weeesmbby two paral-
lel edges, and required that the covering contains onlpidispdges and vertices.
This variation was shown to be polynomial-time solvablechkhprovided an algo-
rithm for a special version of haplotyping problem via gaiteee networks [59].
The second variation allowed only 3-uniform hypergraphs] eequired all con-
nected components of the covering to be paths of length at Badkhis variation
was shown to be NP-complete [61]. A slightly more complexsi@r of this was
then used to show that in general the haplotyping problemafied-tree networks
is NP-complete [€0].

In the next section, we show that a special case of this pmpbleamely the
3-UH-1-CP Problem, is NP-complete, which is then genegdlinm Section 3.2.3
to show NP-completeness of tHedJH-p-CP Problem for everd —2 > p > 1.

3.2.2 The 3-Uniform Hypergraph 1-Covering by Paths Problem

We now show that the 3-Uniform Hypergraph 1-Covering by Pa{B-UH-1-CP)
Problem is NP-complete.

Theorem 32. The3-UH-1-CP Problem is NP-complete.

Proof. Clearly, the problem is in NP. We will show it is also NP-harg b
reduction from 3SAT(3), a restricted version of 3SAT, pravlP-complete
by Papadimitriou [120], in which every variable has exatilp positive and one
negative occurrence in the clausedNe will call a p-covering of a hypergraph
valid if it consists only of disjoint paths. Note that a val@Ecovering does not
contain vertices of degree 3 or more and does not contairsy&iven 3SAT(3)
formula @ with variablesX = {x,..., %} and clause€ = {cy,...,Cn}, we now
construct a 3-uniform hypergrayt, on at most 18-+ 15m hyperedges which con-
tains, among other vertices, a vertex for each literg (there are 8 such vertices)
that has a valid 1-covering if and onlydfis satisfiable.

1We remark that the exact formulation of 3SAT(3) in Papadimit [120] allows also variables
with one positive and two negated occurrences, but theseasity be converted to the other type
of variables by replacing them with their negations in afludes. Clearly, this does not affect the
complexity of the problem.
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Figure 3.1: (a) A simple dependency on 1-coverings of two touching hyper
edges enforced by a copy bf(depicted as a diamond). (b) The 2-clause
and (c) 3-clause gadgets for clauge

First we give an important building block that is used thioogt this construc-
tion: the complete 3-uniform hypergrajgthon 4 vertices. In any valid 1-covering
of D, there is no isolated vertex. Indeed, assume for contiadi¢hatv is the
isolated vertex in a valid covering of D. Let up,u,,us be the remaining three
vertices. Then there is a pair,u; such that{u;,u; } is not an edge ilG. However,
no edge is 1-covering hyperedde u;,u; }, a contradiction. We will use several
copies ofD in the construction to introduce a dependency on 1-coverfigouch-
ing hyperedges and depict them as diamonds in the figuresn$tance, consider
the hypergraph in Figure 3.1a. Since in any valid 1-cove@mf this hypergraph,
vis a member of an edge D, at most one of the hyperedgesandh, can “pick”
an edge involving, otherwise vertex would have degree 3 or more.

Now to the main construction. Consider the instapoaf 3SAT(3) with vari-
ablesX = {xy,...,%,} and clause€ = {c,...,cn}. In the construction, any valid
covering selects a set of literals (more precisely, thacestcorresponding to these
literals), i.e., positive and negative occurrences ofaldés. If this selection satis-
fies the following two properties:

(1) every clause selects at least one literal, and
(2) for everyx € X, at most one ok and—x is selected,

then this selection can be used to build a satisfying trusigasent forg as fol-
lows: for everyi € {1,...,n} if X (resp.,—x) is in the selection, set the value of
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Figure 3.2: (a) The variable gadget for variable with positive occuc&m:ip
and c? and negated occurreneg in the clauses. The dashed edge is
always picked in any valid 1-covering. (b) Grey edges arkgaovhen
this variable is set tdalse in a satisfying assignment @. (c) Grey
edges are picked when the variable is sdtue.

X to true (resp.,false. If neitherx; and or—x; is in the selection, pick the value
at random. We design a hypergraplp composed of clause gadgets which will
guarantee the first condition and variable gadgets whichem$ure the second
condition.

Figures 3.1b and 3.1c depict the 2-clause and 3-clause Fadgspectively.
Given a valid 1-coverings of the clause gadget for clausgwith literals ¢!, ¢
(and ci3 for a 3-clause), we say that a literal vertq&is selectedin G, if cij is
contained in two edges of the coveri@g Note that in both clause gadgets at least
one of the literal vertices is selected in any valid coverimbis is obvious for the
2-clause gadget. For the 3-clause gadget, if none of thrallitertices is selected
in a valid 1-covering of this gadget, then in the three hygges in Figure 3.1.c, no
picked edge involves!,c? or ¢2. But this creates a cycle, a contradiction. Now,
each literal vertexcij will also appear in exactly one variable gadget describékdan
next paragraph. If a literal vert@,{ is selected in a valid covering then it cannot be
contained in any edge that covers the hyperedges of theblmgadget, otherwise
cij has degree 3 or more in this covering. The variable gadgegdonx € X will
use this property to ensure that literal vertigemd—x are not selected at the same
time.

Figure 3.2a depicts the variable gadget for variadafeX with the two positive
occurrences” and c?, and one negated occurrencgeof this variablex in the
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clauses. Note that if both a positive and the negated litenmrdices ofx are selected
by a clause gadget in a valid 1-coveringHf, then it forces a cycle in the variable
gadget ofx, a contradiction. It follows that iH, has a valid 1-covering theq is
satisfiable.

Conversely, ifp has a satisfying assignmentlet us pick one literal for each
clause which makes it satisfied mand build the 1-covering ofl, as follows.
In each clause gadget, (i) in each hyperedge of this claudgegdhat contains a
literal vertex, pick an edge containing the literal vertethis literal was selected
for this corresponding clause, and (ii) for each diamondpsk any of the 3 valid
1-coverings of this diamond that consist of 2 parallel ed¢yrethe variable gadgets,
pick the edges as depicted in Figure 3.2b if the variable bhgevalsein T and
otherwise, pick the edges as depicted in Figure 3.2c. Byctetpedges in this
fashion, every hyperedge bf, is 1-covered by an edge, and each literal vertex is
adjacent to at most two edges in the 1-covering, one of tharg in the diamond.
Hence, there is no vertex of degree 3 and no cycles in thisvértwy, i.e., this
1-covering is valid.

Since the number of hyperedges used in the constructiomigsit 121+ 15m,
i.e., linear in the size of, this construction can be built in polynomial-time, and
hence, the 3-UH-1-CP Problem is NP-hard. O

In the following section, we generalize this constructiorsthow that for every
d—2> p>1, thed-UH-p-CP Problem is NP-complete.

3.2.3 Thed-Uniform Hypergraph p-Covering by Paths Problem

We now show how the construction of Section 3.2.2 can be géred to show that
for everyd — 2 > p > 1, thed-Uniform Hypergraphp-Covering by Paths d-UH-
p-CP) Problem is NP-complete. The main building block in tiesv construction
is the followingd-uniform hypergraph that generalizes the hypergmadlthe dia-
mond) from the previous construction of Section 3.2.2.

Lemma 33. For any d— 2> p > 1, there exists a d-uniform hypergraphy D=
(V,E) with a distinguished vertexaV that has the following properties:

1 V|=2d—p-1and[E|= ("GP
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Figure 3.3: HypergraptDg p: only one of the(d‘ﬁp) hyperedges is shown.

2. inany valid p-covering of B, v is not isolated; and

3. hypergraph [ , has a valid p-covering in which v has degree 1.

Proof. Let Dy p = (V,E) be thed-uniform hypergraph on the vertex sét= SU
PuU{v} where|S = 2(d — p) — 1, |P| = p— 1, andv is the single distinguished
vertex. For every subs& C Sof sized — p, we add a hyperedge on thevertices
SUPU{V} toE,i.e,|E|= (2(dd—7p%—1)_ HypergraptDy p is depicted in Figure 3.3.
We now show that this hypergraph satisfies conditions 2 arfdigedemma. Here,
again, we call a grapp-covering of a hypergraptalid if it consists only of disjoint
paths.

Assume, for contradiction, thatis isolated in a valido-coveringG of Dy p.
SinceG is some collection of paths on the vertex SetP, virtual edges can always
be added tdG to extend this collection to a single pa@i on this set. In what
follows, we will find a hyperedge gy, and show that it contains less than
edges inG/, and hence, less thanedges inG, and thus, is not covered I6y.

PathG' defines a total order on its vertex s&t/ P (there are two such total
orders, but we can choose either one, without loss of getygrdlett : SUP — N
be this total order. If we follow the vertices of paBi according ta, it starts at
some vertex in one dbor P, alternates between the two sets, and then terminates
in one of these sets. Hence, the subgr&ah(resp.,Gp) of G’ induced on vertex
setS (resp.,P) is some collection of paths o& (resp.,P), say$s,,...,S (resp.,
Pi,...,P), where for anyi < j, vertexu € § (resp.,R) andu’ € §; (resp.,P)),
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Figure 3.4: The pathG’ through vertex seBU P that alternates between sub-
paths completely ir§ and completely irP. Some of the shown edges
may be virtual.

Figure 3.5: Hyperedgeh of Dq , which contains less thap edges fromG’
depicted in Figure 3.4.

t(u) <t(u), cf. Figure 3.4.

Let us order the elements 8faccording to total order and letS be the odd
numbered elements &according to this order. Sind§ =2(d—p)—1,|S| =
d — p. Now, consider thel-edgeh = S UPU{v} of Dq p. Hyperedgeh is indeed
an edge iy p since it contain® U {v} and a subset, name§, of sized — pof S.
Hyperedgeh for the example of Figure 3.4 is depicted in Figure 3.5. Wé stibw
that this hyperedge contains less thaedges fronG'.

Let us count the number of edges @f that are contained ih. Each path
R,i=1,...,¢is completely contained ih, and thus contributes tothe |R| — 1
edges that connect the vertices of this path. On the othet, lsamceS is the set
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Figure 3.6: A valid p-covering ofDq ,, in which vertexv has degree 1.

of odd numbered elements 8faccording to total ordet, none of the edges in
S, j =1,...,ris contained irh. Finally, we need to consider edges of the path
G’ crossing between the seSsand P. We will show that for each = 1,...,7,
there is at most one crossing edge starting at a vert@arid ending irSthat is
contained irh. There are at most two edges starting at a verté} ahd ending in
some vertex os. If the number of these edges is less than two, the claim holds
Assume there are two such edges. They must start at the etslpbR, and end
in the consecutive elements Sf(according tat). Hence, at most one of them is
ending in the odd numbered elementfi.e., contained irh. It follows that the
number of crossing edges containedhiis at most/. Hence,h contains at most
(+51(R|—1) = |P| = p— 1 edges of5, and hence, at mogt— 1 edges of3,
thus it is notp-covered byG, a contradiction. We can conclude that in any valid
p-covering ofDy p, vertexv has degree at least one.

Finally, we show thaDy , has a validp-covering in which vertex has degree
1. Consider the pat®s that starts av and then visits all vertices iR and then all
vertices inS, cf. Figure 3.56. Consider any hyperedge- S UPU {v} whereS
is some subset & of sized — p. The hyperedgé containsP U {v}, and thus the
subpath ofs induced by these vertices. This subpath pasl edges. Consider the
subgraph ofG induced byS. If this subgraph contains at least one edge, we pick
this edge foih, and henceh is p-covered byG. Otherwise S must consist only of
odd numbered elements of the subpatiGahduced byS, and thus it contains the
first vertex of this subpath. Hendegcontains the edge @ connecting setSand
P, and we pick this edge fdr, i.e., it is p-covered byG. O
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Figure 3.7: Vertices and hyperedges addedHdo simulate the 3-edge =
{a,b,c}. The grayed diamonds depict copiedxfp.

In the following theorem we will use many copiesDf ,, to simulate the be-
havior of a 3-edge in the 1-covering problem witt-adge in thep-covering prob-
lem.

Theorem 34. For every d—2 > p > 1, the d-UH-p-CP Problem is NP-complete.

Proof. Clearly, this problem is in NP. We will show that it is also Niard by
reduction from the 3-UH-1-CP Problem that was shown to bechifaplete in Sec-
tion 3.2.2.

Given a 3-uniform hypergrapil = (V,E), we will construct ad-uniform
hypergraphH that has a validp-covering if and only ifH has a valid 1-
covering. For each 3-edde= {a,b,c} € E we add the correspondind-edge
h={a,b,c,hy,...,hg_3} to H. To simulate inH, the behavior oh, we then add
2(d — p—2) copies ofDq  to H, where the distinguished vertexof each copy
is identified with one of the verticels,, ..., hq_3 such that each of them is used
exactly twice. Figure 3/7 illustrates all vertices and hypiges added td for this
3-edgeh in H. We note that all vertices other thanb,c added toH for h are
disjoint from all other vertices.

Now, assume that there is a valpalcoveringéof H. We will construct a
1-coveringG of H as follows. For eacln € E, consider the subgrapﬂgﬁ of G
induced by the vertices in. It must have at leagt edges. By Lemma 33, vertices
hp,...,hq—3 are incident to some edges @fin two different diamonds, and since
there is no vertex of degree 3 B, they are isolated vertices @,. Hence, we
have p edges in thep+ 2 element se{a,b,c,hy,...,hp_1} which cannot create
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a cycle. It hence follows that these vertices must form attrtvas components.
Therefore, at least one pair of the vertigeb, c must lie in the same component.
If there is only one such pair, we add it@as an edge. If all three verticasb, c
are connected, we add & a pair which remains connected after removing the
third vertex. As a consequence of this choice, each ddge} in G covering a
hyperedgeh in H corresponds to a path connectingu andv. In addition, all
internal vertices of these paths are noVinand since hyperedges fih share only
vertices inV, they are pairwise internally vertex disjoint.

The graphG constructed above is obviously a 1-coveringaf Let us check
that it is also valid. First, if there is a vertexe V with degree 3 or more, then there
are three internally disjoint paths startinguai G, i.e.,uwould have degree at least
3in G, a contradiction. Second, if there is a cydgu,, ... Uk, ug in G, then for
each edgdui, i1} in G, we have a path connectingandu;. 1 in G. Since these
paths are internally vertex disjoint, they create a cycIG_,ila contradiction.

Conversely, assume there is a 1-cover@®@f H. We construct g-covering
G of H as follows. Cover each copy @fq , such that the distinguished vertex has
degree 1 (this is possible by Lemma 33). For each hyperbdgda,b,c} € E,
without loss of generality, lefa,b} be the edge that covelsin G. Then cover
hyperedgeﬁ by a path starting ad, visiting all verticeshy, ... ,hp_; and ending at
b, while the vertexc is an isolated vertex. This is@coveringH and it is easy to
verify that it is also valid.

Finally, let us check that the construction is polynomigdie humber of vertices
of H is |V| + |E|[d — 3+ 2(d — p—2)(2d — p— 2)] and the number of edges is
1 {1+2(d -p-2) (z(d(;_pg’l)} . Sinced and p are assumed to be constants, the
reduction is polynomial. O

3.2.4 The Complexity of Deciding the(d, k,«)-C1P

We now show that for everg > k > 2, deciding th€d, k, «)-C1P is NP-complete,
by showing the correspondence of this problem todtiéH-(d — k)-CP Problem.
A d-uniform hypergraphd = (V,E) can be represented as a binary majixwith

[V| columns andE| rows, where for each hyperedgec E, we add a row with
1's in the columns corresponding to verticeshimnd0’s everywhere else. Obvi-
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ously, the degree of every row Bf; is d and there is a one-to-one correspondence
betweerd-uniform hypergraphs and such matrices.

Lemma 35. A d-uniform hypergraph H= (V,E) can be(d — k)-covered by disjoint
paths if and only if matrix B has the(d,k,)-C1P.

Proof. Assume first thaH has a valid coverings. SinceG consists of disjoint
paths, there is a Hamiltonian pakhonV containing all edges o&. This path
defines an order on the verticesMn Consider the order of the columns of matrix
By based on this orde¥/(is the set of columnBy). We will show that this order is
(d,k,)-consecutive. Since each row Bf; contains exactlyl 1's, it is enough to
show thatd — k pairs of theseal columns are adjacent in this order. Tdheolumns
containing1’s in each row form a hyperedge . SinceG is a valid (d — k)-
covering, there are edges betwakn k pairs of thesal columns inG. SinceP
contains all edges ds, it contains also these — k edges and hence, each of the
correspondingl — k pairs of columns are adjacent in the order. It follows that th
order ofBy is (d, k, «)-consecutive.

Conversely, assume that matBy is (d,k, «)-consecutive. Letr=vi,, ..., Vi,
be the order of the columns in(d,k, «)-consecutive order dBy. Now, for any
hyperedgeh = {vj,,Vj,,...,Vj,} of H, there is a row inBy with 1’s in thesed
columns, henced — k pairs of the columns ifth must be adjacent in the order
1. Consider the following covering of H: for every hyperedge pick the edge
between each pair of adjacent columns/vertices. Note ety eedge inG is
{vi;,Vi;,, } for somej. HenceG has no vertex of degree 3 or higher, nor any cycle,
thusG is a collection of disjoint paths, i.e., a valid — k) covering ofH. O

By Theorem 34 and Lemma 35 it follows that for every k > 2, deciding the
(d,k,0)-C1P is NP-complete.

Theorem 36. For every d> k > 2, deciding the(d, k,)-C1P is NP-complete.

We remark that théd, k,c)-C1P is thek-C1P [55] for matrices of bounded
degreed. Goldberg et el. [55] posed the open question of the comiplexidecid-
ing the 2-C1P for matrices with a limiton the number of ones per roand per
column This is motivated by a typical setting in physical mappiwgere a clone
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will only contain a small number of probes, and there is omhjited coverage of
the entire sequence by the clones (cf. Chapter 1 for detaifghgsical mapping).
Since our construction of Theorem 32 in Subsection 3.2.Zkwhmplies that de-
ciding the 2-C1P for matrices of bounded degree 3 is NP-cetapises also only 7
ones per column, we have the following corollary which ctoges open question
of Goldberqg et al. [55].

Corollary 37. Deciding the 2-C1P with a limit 3 on the number of ones per row
and 7 on the number of ones per column is NP-complete.
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Chapter 4

The Consecutive-Ones Property
with Multiplicity

In this chapter we show in Section 4.1 that decidingri@LP is NP-complete for
matrices with degree at most 3 amds) < 2 for eachs € S whereSis the set of
columns ofM. We then present in Section 4.2 the two restricted variahtheo
mC1P given in Wittler and Stoye [151], namely the Consecu@ves Property
with Multiplicity for Framed Rows inC1P(fr)) and the Consecutive-Ones Prop-
erty with Multiplicity for Nested RowsriC1P(ne)). In Subsecticn 4.2.1 (resp.,
Subsection 4.2.2) we detail tmaC1P(fr) (resp.mC1P(ne)) variant, its biological
motivation, and show that deciding th€€1P(fr) (resp.mC1P(ne)) is NP-complete
for matrices with degree at most 6 (resp., 3) am@) < 2 for eachs€ S Then,

in Section 4.3 we give a tractability result for a case of ti@1P, motivated by
handling ancestral telomeres in the reconstruction of AGO.

4.1 The Consecutive-Ones Property with
Multiplicity ( mC1P)

Here, we show that deciding tmaC1P is NP-complete for matrices with degree at
most 3 andn(s) < 2 for eachs € S whereSis the set of columns d¥l.

Theorem 38. Given a degree 3 matrix M on set S of columns, deciding the mC1P
for M is NP-complete for a multiplicity vectan wherem(s) < 2 for each sc S.
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Before giving the proof, we would like to emphasize that ikithe strongest
possible result. If the maximum multiplicity would be onkistis just an instance
of the classical C1P. If the degree M is restricted to 2, then this corresponds
to the model of adjacencies, and can hence by solved usingetieod based on
Eulerian graphs given in Wittler and Stoye [151].

Proof. One can easily formulate an algorithm that verifies a givdatiem, i.e.,
a C1 order with multiplicity in polynomial time, which showkat the problem
belongs to the complexity class NP. We will show NP-hardradsdeciding the
mC1P by reduction from 3SAT(3), which has been proven to bechi@plete by
Papadimitriou [120]. 3SAT(3) is a restricted version of 33A which every vari-
able has exactly two positive and one negative occurrentieeinlauses.

Here, we again reduce from a type of hypergraph coveringl@nolas we did
in Chapter 3 to show NP-hardness of deciding (ithé, 6)-C1P. Given a 3SAT(3)
formula ¢ with variablesX = {x,...,X,} and clause€ = {cy,...,Cn}, We con-
struct a matrixMy, consisting of at mostrb+ 2m columns of multiplicity at most
two and at most B+ 3m rows of degree three or less for which a C1 ordewith
multiplicity exists if and only ifg is satisfiable.

For this instancep of 3SAT(3), we say that a clauselectne of its literals in
a truth assignment ap if this literal has valudrue in this assignment. Obviously,
a truth assignment ap is a satisfying truth assignment if and only if every clause
selects at least one literal and for everg X, at most one ok and—x is selected.
We design an instanddl, composed of clause gadgets which will guarantee the
first condition and variable gadgets which will ensure thepge condition.

For each 2-clause with literalsc! andc?, we add toM, the two columns!
andc?, each of multiplicity 2, and the two columms andc'*, each of multiplicity
1, and the rows§' = [c¢!,c¢?,¢’] and S = [¢f,¢*]. This is referred to as th2-
clause gadget For each 3-clausg with literals ct,c? andc?, we add toM,, the
three columng?, ¢? andc?, each with multiplicity 2, and the ro = [c!,c?,c?].
This is referred to as th@-clause gadget

1We remark that the exact formulation of 3SAT(3) in Papadimit [120] allows also variables
with one negated and two positive occurrences, but theseasity be converted to the other type
of variables by replacing them with their negations in aludes. Clearly, this does not affect the
complexity of the problem.
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Figure 4.1: Graphical representations of the (a) 2-clause gadget gn8- (b
clause gadget for clausg The multiplicity of the columns (resp., ver-
tices) is indicated by the number of dots. Rows are depicyedllipses
surrounding two vertices or triangles surrounding threaes, respec-
tively.

Figure 4.1 shows graphical representations of these gadgkich also high-
lights thatM,, can be viewed as a hypergraph with a vertex for each colummand
hyperedge for each row. A C1 order with multiplicity Wi, is then a collection of
walks on this hypergraph thabverseach hyperedge (for each hyperedgbere
is a connected subwalk containing all verticeg)irsuch that no vertex is visited
more tharm(v) times.

We say that in stringr, a clause gadgeselectsa literal columncij, if, in o, cij
is enclosed on both the left and right side by at least onenwolaf this gadget.
Note that in both clause gadgets, at least one of the liteviainmns is selected
in any valid stringo. For the 2-clause gadget, strimghas to contain one of the
substringstc?cic* or c?clcici*, or one of their reversals. For the 3-clause gadget,
string o has to contain one of the substrings?c? or c2clc?, or c'cc? or one of
their reversals. Clearly a literal column is always selédteeach of these gadgets
for any stringo that is a C1 order with multiplicity of,,.

Now, all 3n literal columnscij from the set of clause gadgets fowill appear
in the variable gadgets, where the variable gadgétctsthis columncij, if cij is
again enclosed on both the left and the right side by at leastoolumn of the
gadget ino. So if a literal columrcij is selected by a clause gadget, then it cannot
be selected by this variable gadget, siocis a string and thqu can be framed by
at most two other columns a@f. The variable gadget for eashe X will use this
property to ensure that literal verticeeind—x are not selected at the same time.
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Figure 4.2: Graphical representation of the variable gadget for végiap
with positive occurrences{ andcf and negated occurren@é in the
clauses.

For each variable, with the two positive occurrences’ and c‘f and the
negated occurrencg!, we already added tul, the columng?, cjﬁ andc}, each of
multiplicity two in the corresponding clause gadgets far dtauses containingy
and—x,. We further add tdv, the two columnsc, andx;/, each of multiplicity one,
and the four row$} = [c?,c)/,X], P? = [x@,cﬁ ], P2 = cﬁ ,cl], P} =[c?,X/]. This
is referred to as theariable gadgefor x,, depicted in Flgure 4.2.

Now, consider a C1 ordes with multiplicity for My, where the Iiteralcl‘(’ is
selected by some clause gadget. Since one com‘(’ f used up by this clause
gadget,o must contain the substrirté3 cf('ci“ X; or its reversal because it is the only
way to ensure consistency @for rows P} andP? in M, with the one remaining
copy ofcl‘(’. If literal cf is also selected by some clause gadget, then there is no
way thato can be consistent witlﬁv?€2 in 0. While if literal ¢ is also selected by
some clause gadget, then there is no way thaan be consistent witR;!, which
contradicts the fact that is a C1 order with multiplicity foM,,. It follows that if
M, has a C1 ordeo with multiplicity, then g is satisfiable.

We now show that the converse holds, namelyp iias a satisfying truth as-
signmentr, thenMy, has a C1 ordeo with multiplicity. Given 1, we construcio
as follows. For any variabbe with the two positive occurrences andcﬁ3 and the
negative occurrenoe,{, in 7, either of the two cases must hold:

1. ¢ andc” arefalseandc] istrue: In this case, we create the substrafig)cy,
satisfyingS, or cf clcic;* satisfyingSt and <, depending on whethey, is
part of a 3- or a 2-clause. Further, we create the substdﬁ%{Jr xgcf and

c@x/, fulfilling all P->%,
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2. ¢ andcﬁ3 are true and ci‘: is false In this case, we create the substrings
of'c?et, satisfying§ (resp.,cl'cicr,¢* satisfying§' and ) andc!'cfc’

v
satisfyingS (resp.ct B crer satisfyingSj1 andez). Further, we create the

substringx ¢ c/x,cf i:l’(’ i‘ulfijllijng all P34,

The requirements foo imposed by all given rows dfl,, fulfilled. It remains
to be shown that the multiplicity constraint is met as weland of the columnsl‘(’,
(resp.,c, ¢¥), X, andx; used in the first case are affected by the second case for
any other variable and none of the colunefis(resp. ¢, ™), cf (resp.cj,ci), X;
andx; are affected by the first case for any other variable. Forfaliese columns,
the multiplicity constraint is met. The colungf is used twice in case one. The
same column will occur ag" or ¢” in the second case for some other variable.
But since in both of the corresponding substrings, the caolisithe first or last
element, they can be merged into one substring using onlcops ofc”. Here
we might have to reverse the substriefi; to x;cf, still fulfiling P}. The same
argument holds foc‘f.

Analogously, the columnl‘(’ is already used twice in case two. The same col-
umn will occur asc or ¢ in the first case for some other variable. But since in
both of the corresponding substrings, the column is thedirast element, they
can be merged to one substring using only two copiai.oHere we might have
to reverse one of the substrings, still fulfilling the restidns by the rows oM.

Since each column only occurs in one réw(resp.,S') of My, each substring
induced by rows?">** has to be merged on one side, i.e., no cycles are created
in the set of walks covering the corresponding hypergrapkeniially, any con-
catenation of the constructed substrings yields a stirthat is a C1 order with
multiplicity of My. Thus if ¢ has a satisfying assignmenf thenM,, has a C1
ordero with multiplicity.

Since the number of columns used in the construction is at Bms 2m, the
number of rows is at mostrd+ 2m, and each row is of degree at most 3, i.e., the
construction is linear in the size @, it can be built in linear time, and hence,
deciding themC1P is NP-hard for matrices with degree at most 3, and no aolum
has multiplicity greater than two. O
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4.2 Two Variants of the mC1P

Besides its classical definition, there are different galimations of thenC1P dis-
cussed in the literature, such as r-windows [40, 49], maxehasters [68. €9, 122],
and approximate gene clusters/[19, 125]. Since decidingy@EP is NP-complete,
any generalization is NP-hard as well.

In contrast to generalizations, there are also restricieidnts of thanC1P that
are relevant to settings in the reconstruction of AGOs. &nftilowing, we will
discuss such models, in particular the Consecutive-OrazeRy with Multiplicity
for Framed RowsniC1P(fr)) and Consecutive-Ones Property with Multiplididy
Nested RowsriC1P(ne)).

4.2.1 ThemC1P(fr) Variant

The C1P of binary matrices where each row is framed by tworngok) or the
model of common intervals framed by two genes (whose ofiemnis have to be
conserved also), was first introduced @mserved interval®n permutations in
Bergeron and Stoye [14]. In the reconstruction of AGOs, &dmows on per-
mutations was the first model to formally state the problenfirading putative
AGOs [15]. Here, we define theC1P(fr), which models framed rows @e-

guencesto account for duplicate markers, for example.

Definition 39 (Framed Row of a Matrix) Let M be a binary matrix on the set of
columns S={1,...,n}. Aframed row(for r C S) of M is denoteda r b, where its
two extremities(or framing columns) & € S. We sometimes refer to the columns
of r as theinner columnsf this framed row. A framed roya r b| is containedn a
sequences on S if, somewhere ia, a and b appear with the set of characters of
the substring between a and b taken only fromr.

Definition 40 (Consecutive-Ones Property with Multiplicity for Framea’s
(MC1P(fr))). A binary matrix M on the set of columns=S{1,...,n} with framed
rows has the mC1P(fr) if there is a sequer@¢hat contains each framed row of
M.

The obvious relationship of theC1P and thenC1P(fr) allows us to infer an
important correlation of these properties: any instandé@mC1P can be reduced
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to an instance of thed\C1P(fr). Based on this, we can deduce the following state-
ment.

Theorem 41. Given a degree 6 matrix M on set of columns S, deciding the
mC1P(fr) is NP-complete for a multiplicity vecton wherem(s) < 2 for each
seS.

Proof. Again, one can easily formulate an algorithm that verifiesvargsolution
for correctness in polynomial time, which shows that thebfgm belongs to the
complexity class NP. NP-hardness is shown by reducing tee @ themC1P
used in the proof of Theorem 38 to theC 1P(fr).

The basic idea is to replace each rBw= {ey,...,en} by a framed rowB =
[B{ey,...,em,...} B] containing, besides others, the columnBas inner columns.
Then, if this new instance allows for a valid sequemcehere is a sequenag’
for the original instance of thenC1P by simply removing all newly introduced
columns fromo such that only the columns contained in the r@ware left ino’.
Because the inner columns of all framed rows have to occuigruausly ing, the
columns of the original rows occur contiguouslydnh

Since the rows of the matrix used in the proof of Theorern 3&lape the
framing columns have to be included into the set of innermois of overlapping
framed rows. However, no row is included in another. Thisvedl us to use the
following technique which ensures that, if there is a vaéiduence for the original
matrix, there is a valid sequence for the constructed setaidd rows. Together
with the argument in the previous paragraph, this will yiedplivalence of the two
instances of the C1P with multiplicity.

For each rowB = {ey,...,en} overlapping with rowsBy,...,Bx, we create
a framed rowB = [B{ey,...,em,B1,...,Bx, B1,...,B¢} B] containing the framing
columns ofBy,...,By, the framed rows constructed f@i,...,Bx. Note that
this means that the framing columisand B also appear as inner columns to
Bi1,...,Bk. All rows used in the proof of Theorem 38 have the property, thea
a valid sequence (a C1 order with multiplicity), an occuceiof a given row can
overlap with the occurrence of only one other row on each. silessume, the
occurrence of som8 overlaps withB, in ey,...,g on one side and witlB; in
&,...,en on the other side. Then, we can extend the substring thallu#fito
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B,e,...,a,B,....B.e,...,en,B. BetweenB, andB; we include all remaining
inner columns o in an arbitrary order. The resulting substring fulfiisand also
allows a realization of the framed rows created BpiandB,. This extension can
be performed for all rows such that, finally, all framed rows eontained in the
extended, overall string. What remains to be shown is thett suconstruction is
possible using at most six inner columns in each framed cammmw, as well as
that a maximum multiplicity of two is sufficient.

To minimize the number of inner columns, we do not always aatti framing
columns to all overlapping rows. The structure of the rowsdum the gadgets
of the proof of Theorem 38 restricts the possible overlaptheir occurrences in
a valid sequence. As can be seen in the proof of Theorem 3&rié tis a valid
sequence, we can construct one using the following orderthéir reversals) of
row occurrences within the gadgets:

P2, P, P? or P} P P2 PP, ands!, &

Within the gadgetP? can only be followed by} We thus addP? (but notP?) to
the inner columns oP?, andP! (but notP?) to those of3. Analogously, we add
P! to P? andF? to P}, P? to P} andP} to P}, P? to P? andP? to P2, andS! to S?
and¥ to St

A 2-clause gadget overlaps the gadgets of two variablessjsaydx,. As can
be seen in the proof of Theorem 38, if there is a valid sequemeean construct
one with one of the following orders (or their reversals) @froccurrences:

1 1
Pjpas 732’ orpqu 7§

wherep,q € {2,3,4}, depending on where it overlaps the variable gadgets. Thus,

we add§! to the inner columns G andFP}.
A 3-clause gadget overlaps the gadgets of three varialdg; sxc andx, in

the columnc!, ¢ andc?, respectively. As can be seen in the proof of Thecrem 38,

if there is a valid sequence, we can construct one with onkeofdllowing orders
(or their reversals) of row occurrences:

P’.S,RlorPP,§,P or Rl S, P,

80



wherep,q,r € {2,3,4}, depending on where the variable gadgets are overlapped
by §. We addS§ to the inner columns dPP, S to the inner columns dfY, and§
and§ to the inner columns aP}. This way, in any of the three cases, there is at
least one copy of each framing columnSpfavailable on both sides.

In summary, we reduce a given set of rows as used in the prodiedrem 33
to a set of framed rows with at most six inner columns as fdlowor the rows

>34 used in the variable gadget fer, we create the framed rows
P} = [Pl ot %, PE. PEL P P,
% F7 1., Pg, PRI PR,
= B3 {cf ¢/, B, P2y UI)/P?] and
= [P {cf, f,Pé}uli“ P/], where
{§} (or {§'} if c* appears in a 2-clause) jif=a
I = {S} (or {§} if 1 =p

{§.8} (or {§}) if u=y.
For the rowsﬁl’2 used in the 2-clause gadget fpy we create the framed rows

S{CI7CI’CI7$2P S]and
= [§{¢".c". 5} 5.

where we defineP_(cij) to be the right framing column of the (uniqu&y’ that
containsc' andc? as inner columns.

For the rowS used as in the 3-clause gadget égrwe create the framed row
= [Iil {Cil> Cizv Ci3> IS(Cll)> IS(Clz)v IS(C|3)} FTIL

where we definef’(cij) to be the left framing column of the (uniquiy’ that con-
tainsct, andc? or ¢ as inner columns.

It remains to be shown that a maximum multiplicity of two fdirreewly added
columns suffices. This is true, because each new columnligdied in the inner
columns of at most two framed rows. In fact, we can assign diptigity of
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one to some of these columns. We defimaP124) = m(&) = m(F) = 1 and
m(PL234) = m(P3) = m(§) = m(S) = 2.

Since the number of columns used in the construction is at 6ms 8m, the
number of framed rows is at most 4 2m, and each framed rows contains at most
six inner columns, i.e., the construction is linear in treef @, it can be built in
linear time, and hence, deciding t&€1P(fr) is NP-hard for matrices with degree
at most 6, and no column has multiplicity greater than two. O

Please note that, again, for a maximum multiplicity of onglypomial solu-
tions exist. Framed rows with no inner columns are equivateadjacencies, for
which there is an efficient solution [151]. However, theraigap left for framed
rows with one to five inner columns. For these, the complasistill open.

4.2.2 ThemC1P(ne) Variant

Hoberman and Durand [69] discussed nestedness as a desieitp of gene
clusters (ancestral syntenies in our case) and proposest al§jorithm to identify
respective clusters. Recenily, Blin et al. [17] formallyfided and studiedested
common intervalsand gave efficient algorithms to detect them in genomes mod-
eled both as permutations and as sequences. Here, we debitieraof themC1P

for nested rows.

Definition 42 (Nested Row of a Matrix) Let M be a binary matrix on the set of
columns S={1,...,n}. The structure of a nested row of M is defined recursively.
A nested rown M is either

(i) arow {a,b} of degree 2, or
(i) atuple (c,a) of a nested row ¢ and a column a.

A nested rowc, a) (resp.,{a,b}) is containedn a sequence on S if a is adjacent

to a substringo’ of o such that the character set of cag, and c is contained in
a’ (resp., a and b are adjacent ). Here, the character set CS of a nested row is
defined recursively as (i) @&a,b}) = {a,b}, and (ii) CS(c,a)) = CSc)U{a}
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Example 43. Consider the sequen@e= 5421236 The nested roW({2,3},1),4)
is contained ino as illustrated below, where the occurrences of the (nestet)
rows are indicated by lines:

(5,4,2,1,2,3,6).

In contrast,(({1,3},2),4) is not contained iro since, althought is adjacent to a
substring with character s€tl, 2,3} in o, none of the occurrences Bis adjacent
to a substring with character sétl, 3}.

Note that row({2,3},3) is not contained in s, becaugeis not adjacent to a
substring with character s€®2, 3}, whereas row({1,2},2) is contained ino:

(57 47 27 l? 27 37 6) °

Definition 44 (Consecutive-Ones Property with Multiplicity for Nestews
(mC1P(ne))) A binary matrix M on the set of columns=S{1,....n} with nested
rows has the mC1P(ne) if there is a sequeaaen S that contains each nested row
of M.

We show now that even the strict assumption of nestednes$ sérong enough
to allow an efficient verification of this variant. In factnsilar to deciding the
mC1P, there is no gap left for fixed-parameter tractabilitthim considered param-
eters.

Theorem 45. Given a degree 3 matrix M on the set of columns S, deciding the
mC1P(ne) for M is NP-complete for a multiplicity vectorwherem(s) < 2 for
each s= S.

Proof. NP-hardness is proven by reduction from 3SAT(3) using a tcoction
very similar to that of Theorern 38. Given 3SAT(3) formuta we will again
design an instanckl, of the matrix onnestedrows comprising of clause gadgets
and a variable gadget, and then argue why they simulate tfoerréhat deciding
themC1P(ne) for this instance simulates) exactly this instamce

For each 2-clause with literalsc! andc?, we add toM, the two columns!
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(a) (b)

Figure 4.3: Graphical representations of the (a) 2-clause gadget an8-(b
clause gadget for clausein themC1P(ne) case.

andc?, each of multiplicity two, and the columg of multiplicity one, and the
nestedow § = ({c},c?},c’). The 2-clause gadget is depicted in Figure 4.3a.

For each 3-clausg with literalsct, c? andc?, we add taM,, the three columns
ct, ¢ andc?, each with multiplicity two, the three columng, & and &, each with
multiplicity one, the three columns!,@? and g, each with multiplicity two and
the six nested rows = ({c!, ¢}, § = (¢, €18, § = (S, §1.8), 5 =
{¢, ¢, ={¢ ¢}, ={& ¢} The 3-clause gadget is depicted in Fig-
ure'4.3h.

Note again that in both clause gadgets, at least one of #gmallitolumns is
selected in any valid string. For the 2-clause gadget, strirmghas to contain
one of the substrings!,c?,c’ or ¢?,ct,c’, or one of their reversals, thus a literal
columns is always selected in this case. In the 3-clauseeggaifigo literal column
is selected in string, i.e., o contains substringgqﬁﬁ,ciq (or their reversals) for
q € {1,2,3}, there is only one remaining copy of for g € {1,2,3} and hence
there is no way thatr can be consistent with all (3{4’576} simultaneously, which
is a contradiction. Therefore at least one literal columseigcted in this case as
well.

For each variable, with the two positive occurrences’ andc‘f and the
negated occurrencg, we already added tM™,, the columnsc?, cf andc/, each
of multiplicity two in the corresponding clause gadgetstfue clauses containing
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7 a "
C; T,

Figure 4.4: Graphical representation of the variable gadget for végiap

with positive occurrences{ andcf and negated occurren@é in the
clauses in thenC1P(ne) case.

x, and—x,. We further add tdM,, the two columns¢, andx], each of multiplicity
one, and the four nested rows = ({c,ct},x;), P? = {x’é,cﬁ} P3 = {c‘f,ci‘(’
P} = {c%,x/}. The variable gadget is depicted in Figure 4.4.

Now, consider a valid string- where the Iiterabl’(’ is selected by some clause
gadget. Since one copy qﬁf is used up by this clause gadgetmust contain the
substringc‘f,c}(’, ¢, X, or its reversal because it is the only way to ensure consis-
tency for nested rowB! and Pf with the one remaining copy mf{ If literal cf is
also selected by some clause gadget, then there is no way taat be consistent
with Pf. While if literal ¢ is also selected by some clause gadget, then there is no
way thato can be consistent with?, which is a contradiction to the fact thatis
valid. It follows that if M, has a valid stringr, theng is satisfiable.

We now show that the converse holds, namely ifias a satisfying truth as-
signmentrt, thenM, has a valid strings. Given 1, we constructo as follows.

For any variablex, with the two positive occurrences’ andcﬁ3 and the negative

occurrence:l’(’, in T, either of the two cases must hold:

1 c andcﬁ are false and cl’(’ is true: In this case, we create the substring

&l ¢, ¢‘ ck,ck,6,@,0{,6{,@,6{satisfying§£1 """ 6 orcl,clc; satisfy-
ing S& depending on Whethefj is part of a 3- or 2-clause. Further, we again
create substnngsﬁ ck,c“ X cﬁ andc?, x7, fulfilling all le’2'3’4}.

2. ¢ andcﬁ3 aretrue andc! is false In this case, we create the substrings

SN A v a A A e A A A Satlsfylngail’ ) (resp.,ct , | c
sat|sfy|ngS'1) and§,¢?, ¢, ¢ ¢, ¢ ¢ 8¢ ¢ Sat|sfy|ng3< .... o

(resp., c cﬁ ,CT satisfying Sl) Further, we again create the substring
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"o &Y y i 1234
X', ckx’,cf,ck,fulfllllng all P>,

I

The requirements imposed by all given nested rows are adfilBince none of
the columns used in the first (resp., second) case are affbgtthe second (resp.,
first) case for any other variable (this timﬁ,,c‘j3 andcl‘(’ appear only once in either
of the two cases), the multiplicity constraint is met as welNentually, again, any
concatenation of the constructed substrings yields agstrithat is valid w.r.t.M,.
Thus, if @ has a satisfying assignmentthenM, has a valid stringy.

Since the number of columns used in this construction is &t o+ 6m, the
number of nested rows is at most-5 9m, and each nested row is of size at most
three, i.e., the construction is linear in the sizeppit can be built in linear time,
and hence, deciding threC1P(ne) is NP-hard for matrices with degree at most 3,
and no column has multiplicity greater than two. O

Indeed, deciding theaC1P is a hard problem, since even two restricted versions
of itare hard. In the next section, however, we present & cbdeciding thenC1P
that is tractable, motivated by handling telomeres in tioemstruction of AGOs.

4.3 A Tractability Result for the Consecutive-Ones
Property with Multiplicity

In this section, we present a tractability result for a fanoil matrices where every

row of M has (i) at most one entry in columns with multiplicity greater than

one, or (ii) exactly two entries in columns with multiplicity greater than one and

no other entries. Our proofs rely on the two classical cotscep PQ-trees and

Eulerian graphs. We first give the following technical prefiaries.

4.3.1 Preliminaries

Let M be a binary matrix, with rowBR={r1,...,rm}, columnsS= {s,...,s,} and
¢ entries1. We represent a rowof M as a subset @, defined as the set gf such
thatM[r,s] = 1. A columns with multiplicity m(s) > 1 is called amulticolumn
and a rowr containing a multicolumn (i.eMir,s| = 1 for some columrs with
m(s) > 1) is called anultirow. A multirow that does not contain any other multirow
is calledminimal We say a binary matri# with multiplicity vectorm: S— N
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M|[1 2 3 4 5a b
|1 1 0 0 0 1 1
ff/1 1 0 0 0 0 0
|1 1 1 0 0 0 O M|l1 2 3 4 5
30 01 1 1 0 1 nm|1 £ 0 0 0
fl3 0 01 1 1 0 0 |1 1 1 0 0
A0 0 0 1 1 0 1 3|0 0 1 1 1
f410 001 1 00 4|0 0 0 1 1
s 1 0 01 1 0 0 s|1 0 0 1 1

(b)

~~
Y
=

Figure 4.5: (a) Binary matrixM, with matched multirows. Len(1) =--- =
m(5) = 1 andm(a) = m(b) = 2: a andb are multicolumns andj, r3
andr4 are multirows. Rowg is not minimal, because it containg (b)
The corresponding matrikl. Since inM, by definitionr; = r; for all
multirowsr;, the matched multirows are discarded.

hasmatched multirowd, for every multirowr C Sthat contains at least two entries
1 in non-multicolumns, there exists a ravwwhich is a copy of where all entries
in multicolumns have been discarded (i.e., switched ftotm0). We denote by
the binary matrix obtained frorvl by discarding all multicolumns. In this work,
we assume that all matrices we deal with have matched muttitmless otherwise
stated. Figure 4.5 illustrates the above definitions.

We now have the important lemma about th€ 1P of matrices with matched
mutlirows, which leads to this tractability result.

Lemma 46. Every C1 order with multiplicity of M with multiplicity vemt m con-
tains a C1 order oM as a subsequence. As a consequence, if a binary matrix M
has the mC1P, theM has the C1P.

This lemma suggests that, to decid®lithas themC1P for a given multiplicity
vectorm, we can first check il has the C1P, and then extend a C1 ordekiof
into an C1 order with multiplicity oM by adding copies of multicolumns. Note
that the matrixM in Figure 4.5 does not have C1P, and hendegoes not have
mC1P. However, if we omit columns, then 12345 is a C1 order ®fi, which
can be extended to the following C1 order with multipliciti/\: ab1234%. To
account for the fact that there can be an exponential nunb@éf @rders of\M,
we use PQ-trees, a linear size structure that can desctibd alrders ofM, de-
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fined below. For a more complete treatment of PQ-trees, we thé reader to
Booth and Lueker [21] or Meidanis et &l. [1.06].

Thefrontier F(T) of a PQ-tre€el of a matrixM on columnsSis the sequence
of Sobtained by reading the labels of its leaves from left totigfhe frontier of
an internal (P- or Q-) nodBl in T is the frontier of the subtree rooted Idt Let
{F(N)} be the set of elements appearing in the sequéribd. Two PQ-trees are
equivalent if one can be obtained from the other by applyirgp@uence of the
following transformation rules: (RP) arbitrarily permutee children of a P-node;
(RQ) reverse the order of the children of a Q-node.

Theorem 47.Booth and Lueker [21[f a binary matrix M has the C1P, there exists
a unique equivalence class RQ@f PQ-trees with the property that there is a one-
to-one correspondence between the C1 orders of M and thédrsrof the PQ-
trees of PQ, and a PQ-tree belonging to Rcan be constructed in linear time.

Each PQ-tree in the equivalence cl&Q satisfies the following properties
(that are implicitly given in Booth and Lueker [21] and McQwt [102]) which
we will use in this section.

Property 48. Let M be a binary matrix that has the C1P withrows Rand T a
PQ-tree in the equivalence class RQThen

1. for every row re R, there is a node N in T such that eitRg¥(N)} =r, if N
is a P-node, or r is consecutive in(R), if N is a Q-node;

2. for every node N different from the root of T, there is a roR such that
{F(N)} Cr;and

3. for every Q-node N, and every two consecutive childreramdl N> of N,
there is a row re R such thafF (N1) } U{F(N2)} Crr.

Finally, we recall briefly the technique used to prove thatrivas with two
entries1 per row (usually called matrices diegree2) form a class of tractable
instances for deciding theC1P as we will use it to prove our main result. Such
matrices can be naturally represented as a collection atadgy constraints’ =
{{ai,bi}}]", on the setS, wherea; # bj and the collection is a set (no duplicate
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elements). Collectiory is consistenwith respect tan if there is a sequence on
Ssuch that each adjacency is consecutive itWe will refer to this sequence as a
consistency sequencé.« andm. Note that an C1 order with multiplicity d¥l is

a consistency sequence of the corresponding collecticemdm, and vice versa,
and hencelM has themC1P form if and only if <7 is consistent with respect to.
Given a collection of adjacencieg, we define the grap6,., with vertex seSand
edges given by adjacencies.

Theorem 49. Wittler and Stoye [151A collection of adjacencies? is consistent
with respect to a multiplicity vectan if and only if for all § € S,degreg (s) <
2m(s) and for each connected componentES of G, for at least one jsc B,
degreg  (s) <2m(s).

The above theorem relies on the fact that the gr@phsatisfying the above
conditions can be extended to a multigraphSan{ sy} that has an Eulerian cycle.
It can be easily seen that the proof presented in Wittler dodeS[151] applies to
generalized adjacencies, where we allpw- b; and the collection to be a multiset,
and we require that each adjacencyahappears iro in a unique position. Note
thatG,, is now a multigraph with self-loops. We have the followingaltary.

Corollary 50. A collection of generalized adjacenciesis consistent with respect
to a multiplicity vectorm if and only if for all § € S,degreg (s) < 2m(s) and
for each connected componentEs of G, for at least ones= B, degre%&{(s-) <
2m(s).

4.3.2 A Tractable Case of Deciding thenC1P

Our main result is that deciding timaC1P is tractable for a large family of matrices
with constraints on the maximum number of entriei® multicolumns a row can
have. The motivation for studying this particular family roftrices arises from
incorporating information on telomeres in ancestral gemkeioreconstruction (cf.
Chapter 1)

Theorem 51. Let M be a binary matrix andh a multiplicity vector such that

(1) M has matched multirows, and
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(2) each row contains either (i) at most one entryn multicolumns, or (ii) two
entries1 in multicolumns and no other entries. Deciding if M has theliaC
for m can be done in polynomial time and space.

We split the proof into two parts. First, we consider the q@dewhereM with
multiplicity vectorm contains a single multicolumn, and we show that deciding if
M has thenC1P form can be done efficiently using PQ-trees. Then we show how
to handle the general case using Corollary 50 which relieSwarian cycles. Fi-
nally, in Section 4.3.3, we give an algorithm for building@fee which describes
all sequences that satisfy the consecutivity requireneamtdition (i) of Property 3
defined in Chapter 1).

The Case of a Single Multicolumn

We assume that the multiplicity vectar defines only one multicolumn denoted
by ¢’. According to Lemma 48\ satisfies thenC1P only ifM has the C1P, which
can be checked in linear time (Theorem 47). AssumelNhais the C1P and let
T be a PQ-tree from the equivalence cl&€y;. We then aim at finding a PQ-tree
from PQy (by applying operations (RP) and (RQ) @1 whose frontier can be
extended to a valid C1 order with multiplicity by insertingpies ofc’. We say that
inserting a copy ot’ into F(T) breaksa rowr of M if r is not consecutive in the
resulting sequence. An example is given in Figure 4.6.

Recall that rows are subsets &f As M has matched multirows, all rows in
M are also rows iM. Since the consecutivity of thes in each row ofV in the
frontier F (T) has to be maintained when inserting copies pfioc’ can be inserted
into a position where it breaks any row . Lemma 52 below is a consequence
of this observation.

Lemma 52. Let M be a binary matrix with matched multirows, amdbe a multi-
plicity vector defining exactly one multicolumh éssume that M has the mC1P,
and let T be a PQ-tree from Rand T  an extension of T whose frontie(F) is
an mC1 order of M.

1. If the root of T is a P-node, then, for each child node N ofrdw, ¢ can
only appear as the first or last element of the frontiiNg in T'.
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1 2 3 45 6 7 8 9¢
rn{t 1 0 0 0 0 0O O O 1
fil]t 1 0 0 0 0 0 O O O
r,{t 1 1 0 0 0 O O O O
rs{o0 0 1.1 0 0 0O O O 1
fz/]0 0 1. 1. 0 0 0 0 0 O
r, {0 0 0 0 0 0 1 1 0 1
f4{]0 0 0 0 0 0 1 1 O O
rs{0 0 0 0 0 0 01 1 O
res{0 0 0 0 1 1 0 O O O

(b)

—
&

Figure 4.6: (a) Binary matrixM, with matched multirows. Lemn(c') = 2.
(b) PQ-tree belonging to the equivalence clag¥;. P-nodes are repre-
sented by circular nodes and Q-nodes by rectangular nogesxanple
of a valid C1 order with multiplicity is’ 1234c’ 78956 which is ob-
tained by taking the equivalent PQ-tree with frontier 128456 and
inserting two copies of’ into the corresponding positions. Notice that
insertingc’ between 2 and 3 would break raw.
lllustration of Algorithm 2. LCA(f1) and the respective segments of
LCA(f34) are highlighted in gray and the respective paths are debicte
by dashed lines. The upper left edge is contained in two patlese,
Ki=1andK; =1, thusKk =2<m(c) =2.

2. Ifthe root of T is a Q-node, the copies 6frtT’ can only appear as the first
and/or last element of the frontier(F’).

Proof. It follows by Property 48.2 that for every child of the root of T, any
pair of consecutive leaves B(N) belongs to a row oM, and hence, inserting
between these leaves breaks this row.

In addition, if the root ofT is a Q-node, then by Property 48.3, for any two con-
secutive childremN; andN, of the root, there is a row d¥l that contains elements
of F(N1) and of F(Ny). This prevents the insertion of into root betweerN; and
N, as this would break such a row. HenZeean appear only at the extremities of
F(T'). O

Lemma 52 rules out many positions F{T) where to insert copies a: in-
deed, copies of can only be inserted at extremities of the subsequencE$Tof
formed by children of the root (and only at the extremitie$¢T ), if the root is a

91



Q-node). On the other hand, each multirow specifies a positiere a copy of’
must be inserted. These two constraints give rise to a poliadalgorithm which
we describe in the following.

Algorithm 2 starts with a PQ-tree fél and works in two stages. First (Step 3),
based on Lemma 52, it checks if there is a way to permute nodiéeisubtrees
rooted at each child of the root such that for each multirow 7 U {c’}, rows
in f appear as a prefix or a suffix of the frontier of some child. TisBathe
consecutivity requirement for each multirowit is enough to add copies af to
F(T) before or after the frontier of the child of the root contami’. To satisfy
the multiplicity constraint imposed by, we need to permute the children of the
root and possibly reverse the order of the frontier of sonileien. The basic idea
is that we can save one copy dfif a child requiring a copy ot/ on the right is
followed by a child requiring a copy af on the left. Whether enough copiesaf
can be saved to satisfy the multiplicity constraint is cleeck Steps 4-5.

Letr =fU{c'} be a multirow. By Property 48.1, there isTheither a P-node
that contains exactly the columnsriinits subtree, or a Q-node with a segment of
two or more consecutive children which together contaircéixahe columns irr”
in their subtrees. This node is the least common ancesibiithe columns irr;”
and hence, will be denoted by LGCAH.

Now to argue that Algorithm 2 is correct. If condition 3.cppies,r would
require the insertion of a copy af within F(U) in any PQ-tree oPQy;, which
contradicts Lemma 52. The paths indicate positions whepeesmfc’ have to be
added to the frontier so that the consecutivity requireniesatisfied. Following
Lemma 52, we have to verify whether we can transfdrreuch that all paths lie
on the outside of the subtree of a child of the rooToflf conditions 3.c.ii—3.c.iv
apply, there are two or more competing multirows, and we gatmansformr such
that all of the corresponding paths lie on the outside of theree of a child of the
root of T. Paths that are sub-paths of one another are excluded bymsitiering
any multirowr = f U {c'} which contains another multirow = " U {c’} (line 3).
These rows do not need to be considered at this stage, beoaasg order with
¢ adjacent to the elements i Sincer” C f, ¢’ is also adjacent to the elements in
f. If the root of T is a P-node, we have to consider the children of the root node
separately: We could insert a copy®fon both sides of a frontier of a child of the
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Algorithm 2 Deciding themC1P for a matrixM with matched multirows and a
multiplicity vectorm defining a single multicolumna’.

1. Check ifM has themC1P.

2. If not, return false, else |8t be a PQ-tree fronRPQy;.
3. For each minimal multirow =fuU{c'} in M do

a. LocateN := LCA(F).
b. LetP be the path fronN to the root ofT.
c. Foreach edge={U,V} in P, whereU is the parent o do

i. If UisaQ-node an¥ is neither its first nor its last child, return false;

ii. Ifthe root of T is a Q-node ané also belongs to the paf defined by
another minimal multirow’, return false;

ii. If U isnotthe root ofl ande also belongs to the path defined by another
minimal multirow, return false;

iv. If U is the root ofT ande also belongs to the paths defined by at least
two other minimal multirows, return false.

4. If the root of T is a Q-node, returtrue.
5. If the root ofT is a P-node:

a. LetK; andKj; be the number of children of the root ©fbelonging to exactly
one or two paths defined by minimal multirows, respectively.

— [Kg 1 if K1:0andK2>O,
b K= FZW +K2+{ 0 otherwise.

c. ReturnK <m(c)

root, i.e., at most two paths can join above such a child nodévels below the
root, only one path can be moved to the border of the subtee no two edges
can join.

If conditions 3.c.i—iv do not apply for a multirow there is a way to transform
T (with rules (RP) and (RQ)) in the nodes on the pBtl{excluding the root) so
that the frontier oN = LCA(F) appears as a prefix or suffix of the frontierNf,
whereN’ is a child of the root lying on the path. Next, we will show that all
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these transformations can be performed simultaneoushowttany conflict. Ob-
viously, the conflicts could only occur if the patRsshare vertices other than root.
Condition 3.c.iv guarantees that there are never three oe manimal multirows

in the same subtree rooted at a ciNldof the root. Condition 3.c.iii guarantees that
if there are two minimal multirows in the same subtree roated childN’ of the
root, their paths must meet only M/, and hence, one can appear as a prefix and
one as a suffix of the frontier &f'. However, if the root is a Q-node, by Lemme 52,
columnc can be attached only on one side of the frontieNgfand hence, only
one minimal multirow can appear in the subtree rooteN’atvhich is checked in
condition 3.c.ii.

Hence, if Step 3 succeeds for all rows, there is a PQ-tré&jg from which
we can obtain a sequence of the columns fulfilling the cortséiyurequirement
of M by inserting copies of’ into its frontier at positions indicated by the paths
of multirows. Steps 4-5 check if the multiplicity constriaimposed bym can be
satisfied. Note, that if the root of is a Q-node (Step 4), then the multiplicity
constraint is satisfied sinee(c’) > 2.

In Step 5, we count the number of copiesofequired to satisfy all multirows.
The position where to insert these copies are given by thHespabince the root
of T is a P-node, we can rearrange the children of the root sutloitgacopy of
¢ would coincide with two paths (from neighboring childrerjor instance, we
can greedily pair nodes with one path each, usiig/2] copies and then include
nodes with two paths (one path on each side) in-betweenjriggjuwne further
copy eachKj in total. If K; = 0 andK; > 0, chaining the two-path nodes results
in K2+ 1 copies ofc'. It is easy to see that this joining process is optimal.

If the number of required copies af does not exceed the given maximum
multiplicity m(c’), the given matrixM with multiplicity vector m has themC1P.
Finally, to complete the proof of the correctness of the @ilgm, we only need to
notice that the result of Algorithm 2 does not depend on tlacehof the PQ-tree
T of PQy;, as the LCAs and paths are invariant under the transformaties (RQ)
and (RP).

The analysis of the time and space complexity of Algorithns 2$ follows.
First, Steps 1 and 2 can be completeddfm+ n+ ¢) time and space using the
algorithm described in McConnell [102]; note thiacan then be encoded @(n)
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space. Next, Step 3 is composed of at nmosterations, each of them requiring
time O(n), the maximum length of a path froh to the root ofT, as each path is
obviously processed in time linear in its length. This gie@O(mn) time com-
plexity for Step 3. For similar reasons, Step 4 can be acHi@vdime O(mn),
which gives an overall worst-case time complexityQifmn). This completes the
proof of the case of a single multicolumn in Theorem 51.

Completing the Proof of Theorem 51

Proof of Theorem 51Given matrix M with multiplicity vector m and having
matched multirows, |e8 be its set of multicolumns. A multirow containing mul-
ticolumnc' € S, will be called ac’-multirow. Algorithm 2 works in the same two
stages as Algorithrn' 2. However, the second stage is morelegmfi requires
building the collection of generalized adjacencigson setS U {sy} by replacing
each child of the root of the PQ-trdefor M by an adjacency and then applying
Corollary 50.

Algorithm 3 Deciding themC1P for a matrixM with matched multirows and a
multiplicity vectorm.

1. Run the first 4 steps of Algorithm 2, whereis any element o8.

2. Construct a multiset of generalized adjacenciesn setS U {sy} as follows.
For every childN of the root of T do

a. If N belongs to exactly one path defined by multirows, say by-a
multirow, add adjacencyc’, s} to <

b. If N belongs to two paths defined by multirows, say ly-enultirow and
ad’-multirow (¢ andd’ may be equal), add adjacenfy,d’} to <.

3. Report ifef is consistent with respect ta (use Corollary 50).

Correctness of Step 1 follows from the correctness of thediegye of Algo-
rithm 2. If Step 1 succeeds, we can assume that the robti®fa P-node (the case
when the root is a Q-node is handled in Step 1), and henceeiitdagh to satisfy
the multiplicity constraint by permuting the children okthoot and possibly re-
versing the order of the frontiers of some children. e this order of children
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of the root. In Step 2, the algorithm constructs the multifegjeneralized adja-
cencies# whose consistency sequence (produced in Step 3) desdnibegy to
do this as follows. Children that belong to zero paths defimednultirows will
not introduce any adjacency constraints and can be placé@ &nd ofrr in any
order and orientation. For any other child of the root, weehawnique position in
the consistency sequence, hence we can order and orieatdhiddren based on
these positions. Next, we insert copies of multicolumn®Hsviis. For each subse-
guencec; cycs of the consistency sequence, where adjacdgyc, } corresponds
to child N; and{cz,c3} to Ny, if ¢, # o, we insert a copy of, between the fron-
tiers of N; andN, in F(T). Hence, the number of copies of a multicolueire S
is equal to the number of its occurrences in the consisteagyence. Therefore,
the frontier F(T) with all required copies of multicolumns inserted satisties
multiplicity constraint given byn. It is easy to see that if there is anC1 order of
M, then we can extract from it an order of the children of the mlaich gives this
consistency sequence.

The analysis of the time complexity is as follows. The firsiggt of the algo-
rithm is a subroutine of Algorithrn' 2, and hence, has a timespate complexity
of orderO(mn). Since the number of children of the root Dfthat belong to at
least one path defined by multirows is at moesthe number of adjacencies .if
is at mostm, and hence, building7 takes timeO(m). Finally, checking the de-
gree conditions (applying Corollary 50) takes ti@&). Hence, the total time and
space complexity of the algorithm @(mn).

Finally, Algorithm & can also be easily extended to the casenathe matrix
also contains rows of degree 2 containing two multicolunassfollows. First, we
run Steps 1 and 2 where we ignore multirows containing twdicolimns. Then,
we add to« also an adjacency for every such multirow. Finally, we ruepS3 of
the algorithm on this new collectia®. It is easy to see that the time complexity
of this new algorithm is stilO(mn). Hence, the theorem holds. O
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Figure 4.7: Augmented PQ-tre@’ for the matrix given in Figure 4.6. (In
fact, to get an augmented PQ-tree from the original PQ-thesvs
in Figure 4.6, no modifications are necessary other thactatig leaf
nodes labeled’ at appropriate locations.) Only the trees in the equiva-
lence class of’ where the left side of the right Q-node is placed adja-
cent to the left Q-node have shortened frontiers that meatnthitiplic-
ity constraint (n(c’) = 2), for examplec’1234c' 78956.

4.3.3 Building a PQ-tree which Describes All Sequences th&atisfy
the Consecutivity Requirement

Here, we describe how a given PQ-tiee PQy; can be augmented to a PQ-tiEe
which represents the set of all sequengesip to “pumping” occurrences of mul-
ticolumns, that satisfy the consecutivity requiremenngiton (i) of Property 3 in
Chapter 1) in that the frontier of any tree in the equivaledess ofT’ is such a
sequencer. However, not all frontiers meet the multiplicity constria{condition
(i) of Property 3). For some trees in the equivalence clds§’pthe respective
frontier contains pairs of adjacent occurrences of a malliimn ¢/, each of which
can be replaced by one occurrenceg/ofvithout breaking any row o/ (violating
the consecutivity requirement). This reduces the numbased copies of the mul-
ticolumns. Only such shortened frontiers which meet theiplidity constraint are
valid mC1 orders, and, in fact, the set of such shortened frontseegactly the set
of valid mC1 orders oM. Figure 4.7 shows an example.

To construct an augmented PQ-trEe we process the original trek in a
bottom-up fashion along the pati® defined in Algorithm 2, starting with the
LCAs. We replace an LCA by a new Q-node which has a copy of itsesponding
multicolumn ¢’ as its first child and further children, depending on whether
LCA itself and its parent are P or Q-nodes. These intuitimagformation rules are
detailed in Figure 4.8. Then, any parent node of a newly nbthQ-node is refined
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Figure 4.8: Transformation rules for the LCAs to construct an augmented
PQ-tree. An LCA and its parent node are replaced by the ndurgrs
on the right. The LCA (or the segment of an LCA, respectively
highlighted in gray.

to a new Q-node, moving up the copydf as shown in Figure 4.9. This process
is iterated until we reach the root node. Since a node thatlisl@ of the root can
be contained in two paths, separate (but similar) rules eqaired, illustrated in
Figure 4.10.

Further specific rules which apply if an LCA is a child of thetof T or if the
root node is a Q-node are straightforward. In some cases,gdherating the tree
as described above, simplifications can be carried out, asichplacing a P-node
with a single child by a direct edge or substituting a Q-nodth two children by
a P-node. Analogously to Algorithm 2, that only checks if anméhas themC1P,
the above construction of an augmented PQ-Treean be carried out i®(mn)
time.
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Figure 4.9: Transformation rules for bottom-up iteration to constractaug-
mented PQ-tree. A newly created Q-node and its parent nadecar
placed by the nodes shown on the right.
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Figure 4.10: Special transformation rules for bottom-up iteration tostouct
an augmented PQ-tree. A newly created Q-node two levelsvitble

root node and its parent node are replaced by the nodes shotne o
right.
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Chapter 5

The Generalized Cladistic
Character Compatibility Problem

The authors of Benham etal. [11, 12] give a polynomial-tingoathm for the
case of the GCCC Problem where for each character, the séates 9of each
species forms a directed path in its character tree. It thllesAfs that if the charac-
ter trees are non-branching, then the Incomplete Cladi¥taracter Compatibility
Problem can be solved in polynomial time. The complexity lo icase when
each character has at most two states was further improvee'én et al. [123]. In
Benham et al. [11, 12], it was shown that the GCCC Problem isbiRplete using
a construction involving character trees that are bramchiowever, the authors
argued that in this setting the situation when a trait becohigden and then reap-
pears does not happen, henca in Benham et al. [12] they possaka case of the
GCCC Problem where each character tree has one braneh 6> 2 and the col-
lection of sets of states for each specie${i8},{1},{2},{0,2}}. We call this the
Benhan-Kannan-Warnow (BKW) Case. They then showed in Bardtal. [11]
that if a “wildcard” set{0,1,2} is added to the collection, the problem is NP-
complete.

Here, we study the complexity of cases of the GCCC Problemntor-
branching character trees with 3 states and set of stateserchipom the set
{{0},{1},{2},{0,2},{0,1,2}} when the phylogeny tree that is a solution to this
problem is restricted to be (a) any single-branch tree, @th pr (c) tree, cf. Ta-
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ble'5.1. In Gramm et al. [57], the authors state that seagcloinpath phylogenies
is strongly motivated by the characteristics of human ggredata: 70% of real
instances that admit a tree phylogeny also admit a path gagio

This chapter is structured as follows, with the results sanimad in Table 5.1.
In Section 5.1 we formally define the Generalized Cladisti@a@cter Compati-
bility Problem. In Section 5/2 we study several types of dridgproblems, some
being polynomial, while others are NP-complete; some ofmtlie then used to
determine the complexity of several cases in Table 5.1.i@eét3 contains the
tractability results of this chapter. Subsection £.3.1legia polynomial-time al-
gorithm based on that of Benham et al., Benham et al. [11,drZhke case of the
GCCC Problem for (a) where for each character, the set adsstafteach species
forms a directed path in its character tree, giving enti3eg &nd (7a) of Table 5.1.
In Subsection 5.3.2, we first show that (5a—b) of Table 5.kqravalent to decid-
ing the C1P. We then show that the BKW Case is polynomial-taoleable by
giving an algorithm based on PQ-treas [21, 106] associaitdthe C1P, giving
also the entries (6a), (8a) and (9a) of Teble 5.1. In Sulmse&ti3.3 we show that
case (8b) is polynomial by showing that any instance of thgg@an be reduced to
solving an instance of polynomial case (8a). Section 5.4aios the intractability
results of this chapter. Here we show that cases (10a—b)Rueoiplete by reduc-
tion from the Path Triple Consistency (PTC) Problem of SecE.2, and then how
NP-completeness of an instance of the GCCC Problem for (apedransformed
into certain instances of the same problem for (b) and (c)ally, we show that
cases (3b), (6b), (7b) and (9b) are NP-complete by redufrtiom the Left Element
Fixed Path Triple Consistency (LEF-PTC) Problem of Secidh Note that this
last result includes the fact that case (9b), the BKW CaseefGCCC Problem
for (b) is NP-complete.

5.1 The Generalized Cladistic Character
Compatibility (GCCC) Problem

Let She a set of species. generalized (cladistic) charactdltl, 12] onSis a pair
a = (a,Ty), such that:

(@) ais afunctiona : S— 2% whereQ, denotes the set of states@f
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2\soln (a) branch (b) path (c) tree

1) [ 2c{{o,{1,{2}} P 2] P2] P 2]

(2) | {{0,1,2}} C 2 C {{0},{1},{2},{0,1,2}}; |2| <2 trivial trivial trivial

3) | {{0,1,2}} € 2 {{0}.{1}.{2},{0,1,2}}; |2| >3 P (Th. 62) NP-c (Th. 72)| P[11, 12]
4) | 2 C{{0},{0,2},{0,1,2}} or 2 C {{2},{0,2},{0,1,2}} | trivial trivial trivial

6) | {{1},{0.2}} P (Lem.63) | P (Lem.63) | ?

(6) | {{0},{1}.{0.2}} P (Th.'66) NP-c (Th. 72)| ?

(7) | {{0},{2},{0,21}(U{{0,1,2}}) P (Th.[62) NP-c (Th.72)| P[11, 12]
(®) | {{1}.{2},{0.2}} P (Th. 66) P(Cor.69) |2

9) | {{9},{1},{2},{0,2}} * P (Th.[66) NP-c (Th. 72)| ?

(10) | {{1},{0,2},{0,1,2}} C 2 NP-c (Th. 70)| NP-c (Th. 70)| NP-c [11]

Table 5.1: Complexity of all cases of the GCCC Problem for the char-
acter tree 0—+ 1 — 2 and set of states chosen from the s2tC
{{0},{1},{2},{0,2},{0,1,2}}. The BKW Case is marked with *.

(b) T« = (V(Tq),E) is a rooted character tree with nodes bijectively labellgd b
the elements of),.

The GCCC Problem is to find a perfect phylogeny [20] of a sepetges with
generalized characters:

Problem 53 (Generalized Cladistic Character Compatibility (GCCCplitem)
Given a set S of species and a set C of generalized charaate @& there a
rooted tree T= (Vr,Ey) and a “state-choosing” function ¢V x C — Ugec Qa
such that the following holds:

(1) For each species s S there is a vertexgvin T such that for eachr € C,
c(vs, @) € a(9).

(2) For everya € C and i€ Qq, the set{ve Vr | c(v,a) =i} is a connected
component of T.

(3) For everya € C, the tree Ta) is an induced subtree of,T where Ta) is
the tree obtained from T by labelling the nodes of T only witkirta-states
(as chosen by c), and then contracting edges having the sastate at their
endpoints.

Essentially, the first condition is that each species isesgmted somewhere in
the treeT, and the second condition is that the set of nodes labelled fgiyen
state of a given character form a connected subtrdg pfst as with the Character

102



Compatibility Problem. Finally, condition three is thaétstate transitions for each
character@ must respect its character trée.

The GCCC Problem is NP-complete [11, 12], however it is poigral for
many special cases of the problem [11,/12, 98]. In particiddBenham et al. [11]
it was shown to be NP-complete for a case where for each speare character
a, a(s) € {{1},{0,2},{0,1,2}}, andT, is 0— 1 — 2. It was also shown to be
polynomial-time solvable in the case where for each species a (s) is a directed
path inT, for eacha = (a,Ty) € C [12]. We will consider the following variants
of the GCCC Problem. The GCCC with non-branching charactsst(GCCC-
NB) Problem is a special case of the GCCC Problem in whichaciter trees have
a single branch, i.e., each character fgés0— 1 — --- — |Tq| — 1. If we restrict
the solution of the GCCC-NB Problem (a phylogeny tree) tcehavy one, or two
branches starting at the root, we will call this problem theg&-Branch GCCC-
NB (SB-GCCC-NB) Problem, and the Path GCCC-NB (P-GCCC-N&pkRm,
respectively. In addition, if in any of these problems, saprioblemX, we restrict
the set of states to be from the s&t we will call this problem the2-X Problem.
Table 5.1 summarizes the cases studied here.

5.2 Ordering Problems

In this section, we discuss several different types of andeproblems. These
problems are related to the Single-Branch and P-GCCC-NBI&rs. We will
use one of these variants to obtain a hardness result irn8é&c.

The PTC Problem is a simplified version of the extensiveldisth Quartet
Consistency (QC) Problern [138]. In the QC Problem, givent &sad the collec-
tion of quarteta;, b; : ¢, d;), wherea;, b, ¢, d; € S the task is to construct a trée
containing verticeSsuch that for each quartet there is an edge whose removal
separates verticdsy, b; } from vertices{c;,d; }. This problem was shown to be NP-
complete in Steel [138]. Here, we show that the problem rambiP-complete
when we restrict the tree to be a path. In this case it is easgé¢othat (i) we
can assume the path contains only verticeS &amd (ii) each quarteta, b : ¢;, di)
can be replaced with the three triples,b; : ¢i), (&,bi : d) and(ci,di : &). The
PTC Problem can be viewed as the Total Ordering (TO) Problétm megative
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constraints; ¢ [a;,bi], where[a;, bj] is the set of all elements betweanandb; in
the total order. The TO Problem with positive constraimts [g;, bj] was shown to
be NP-complete in Opatrny [114]. The formal definition of #ieC Problem is as
follows.

Problem 54 (Path Triple Consistency (PTC) Problen@iven aset S {1,...,n},
and a set of tripleqa;, b; : ¢i|li = 1,...,k}, where g bj,c; € Sforevery = 1,... K,
is there a path (order) P on vertices S such that for eaehli ... k, there is an
edge eof P whose removal separates vertides b; } from vertex ¢

Lemma 55. The PTC Problem is NP-complete.

Proof. The PTC Problem is actually complementary to the TO Problehich
was shown to be NP-hard by Opairny in 1979 [114]. The TO Prohég given a
setQ={1,...,n} and a set of triple$a;, bj, ¢i|i = 1,...,k}, where fori=1,... k,
a,bi,c €S is there a path (order) o® such that for each = 1,... k, either

g <b<cgorg <hb <a. Itiseasy to see that the NP-completeness of the TO
Problem implies the NP-completeness of the PTC ProblemerGivstance of TO
ProblemQ = {1,...,n} and{a,b;,c|i = 1...,k}, for the corresponding instance
of the PTC Problem we |8 = Q, and for each triple, b, c of the instance of the
TO Problem, we introduce the triplesb : candc,b: a. O

Now, we study two subclasses of the PTC Problem and one sishaidhe TO
Problem in which one element of each constraint is fixed.

Problem 56 (Left Element Fixed Path Triple Consistency (LEF-PTC) Reab).
Given a set S= {1,...,n}, an element ¥ S, and a set of triple§(a,r : ¢)}¢ ;
where @ ¢ € S for every i€ {1,...,k}, is there a path (an order) P on vertices
SuU{r} such that for each € {1,...,k}, there is an edge of P whose removal
separateqr,a } from g.

Problem 57 (Right Element Fixed Path Triple Consistency (REF-PTChknm).
Given a set S= {1,...,n}, an element ¥ S, and a set of triple$(a;,bi : 1)1k ;
where g b; € S for every ic {1,...,k}, is there a path (an order) P on vertices
SuU{r} such that for each € {1,...,k}, there is an edge of P whose removal
separateqa;,b;} fromr.
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Problem 58(One Element Fixed Total Ordering (OEF-TO) Proble@jven a set
S={1,...,n},anelement ¥ S, and a set of triple§(a;, b;, ci)}Ll where for every
ie€{l,...,k}, eithera,c; € Sand b=r, or a,b; € Sand ¢=r, is there a path (a
Total Ordering) P on vertices S{r} such that for each & {1,... ,k}, by appears
between aand ¢ on P.

In what follows, we will show that the first problem LEF-PTCN®-complete,
while the other two problems REF-PTC and OEF-TO are solvabfmlynomial
time. Thus, the LEF-PTC Problem seems to be the simplesbwes$the problem
which is still intractable.

Lemma 59. The LEF-PTC Problem is NP-complete.

Proof. Here, we give a reduction from the Not-All-Equal-3SAT (NASAT)
Problem [53]. The NAE-3SAT Problem is: given a set of Boolaamniables
X ={x1,...,%} and a set of clauseg = {Cy,...,Cy}, where each clause con-
tains three literals, is there a truth assignment to the fseariables such that in
no clause, its three literals are all true or all false. Gie@ninstance of NAE-
3SAT, letSbe the union of variable symbo{x, X1, ..., Xn, X} @nd literal symbols
{302 03 ... 0L 02 03}

The basic principle of the reduction is the following obsdion. The triple
(a,r : c) is equivalent to the following condition on the elementSin{r}:

r<c<a<g. (5.1)

The Boolean value of predicate< x; will represent the value of variable, fori €
{1,...,n}. First, we introduce the triplesq, r : X)) and(xi,r : %), fori € {1,...,n}.
These triples are equivalent to the following logical staat:r < x < X < X <

X < r. Hence, they enforce < r iff r < x, and hence the Boolean value of
predicater < x; represents the value oix;.

Now, let clauseC; contain variablesq,, X, andxg,. We will use symbols
(7,03,03 to represent the values of the three literal<Cpf the Boolean value of
thei-th literal of C; will be equal to the value of predicate< E'J-. To achieve this,
we will reuse the above constraints. For each variapleith positive occurrence

in Cj, we introduce the triple/t, r : %) and (X, :K‘j), and for each variablgy
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with a negated occurrence @y, triples (Eij,r S X ) and (X, r - K‘j). These triples
will guarantee that predicate< E'J- represents the Boolean value of ik literal
of C;. The reason why we have a symbol for each literal is that tiséipo of the
literal symboIE‘j and the position of the variable symbg| (or i) are only very
weakly dependent: one is smaller thaif and only if the other is, but otherwise
they are independent. This is important, since the claudgega introduced in
the next paragraph might put some ordering restrictiongslitéral symbols, and
hence if we would use the variable symbgis(or xi) in several clause gadgets,
the ordering restrictions from different clause gadgetghiinot be compatible.

The clause gadget for clau€g will contain the three triplest},r : (%), (¢%,r :
613) and (613,r :E}). The purpose of these constraints is to guarantee that in any
order at least one and not all literals in the claGgare true. For instance, assume
that all literals are true, i.er,< K‘j fori e {1,2,3}. By (5.1), this is equivalent to
G < €12, EJ-Z < €J3 andé? < (7, which leads to a contradiction. Similarly, if literals
are false in the order, all three inequalities will revetseirtdirection, and we get
a contradiction again. Hence, each clause is satisfied adicptes < v; define a
solution to the instance of NAE-3SAT.

Now, assume that the instance of NAE-3SAT has a solutjon X —
{falsgtrue}. Consider the order of elements 8t {r} satisfying the following
conditions:

(a) foreachy € {v1,...,vn}, v appears to the right af i.e.,r < v; in the order, if
and only if () = true for thex; corresponding te;;

(b) for each claus€;, the relative order of the literal symbolg, (7,¢3 andr

is one of the following: (£},1,63,63), (63,2,1r,3), (2,r,63,45), (¢7,03,1,02),

(63,r,07,0%) and (¢3, (7, 1,63).
Note that for any valid combination of truth assignmentsliterals ofC;, there
is one order in the list above. This order imposes a resiriatn the relative order
of the two literal symbols appearing on the same side, dhe reason why we
created the literal symbols. It is easy to see that for s&B, other than on which
side ofr thesappears, there is at most one constraint specifying itéwelarder to
another element. Hence, it is always possible to find an @akisfying the above

conditions.
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Let us verify that this order satisfies all triple constrairithe constraintgs, r :
x) and(%,r : x;) (respectively(¢},r : xc) and(x, T : £); (€},1 : %) and(X.,r : £}))
are satisfied just by the placement of symbols to the corrées ®fr. For instance,
if r < x then the relative order of;,x,r is x,r,x and this order satisfies both
triples. For the constraints for clauSg only the relative order of elemerﬂﬁ 612,613
andr is important. It is easy to check that any of the six orderdese elements
listed above satisfies all three triples 6y. Hence, the constructed order is a

solution to the corresponding instance of the LEF-PTC Rmbl O

Lemma 60. Any instance of the REF-PTC Problem always has a solutiod, an
thus the problem is solvable in constant time.

Proof. Consider any order dU {r} with r as the first (resp., last) element. Then
the first (resp., last) edge separatésom any pair of elements i Thus, such an
order is a solution to any instance of the REF-PTC Problem. O

Lemma 61. The OEF-TO Problem can be solved in linear time.

Proof. The algorithm will work in two stages. In the first stage theneénts will
be clustered into parts each appearing on different sideslofthe second stage,
we will determine the ordering of the elements in each part.

Constraint(a;, r,¢;) is satisfied if and only iy andc; appear on opposite sides
of r. Constraint(a;, by, r) is satisfied if and only if (i) andb; appear on the same
side ofr, and (ii) bj is closer tor thanag;, which we write ady; < a. Consider
the graph with vertex se&d and edges between any two vertices € such thatu
andv appear together in some triple;, b;,c). LetC be a connected component
of this graph. It is easy to see that once we fix the side of cemeht in the
component, the side of all elements in the component willdterdhined. Hence,
we can uniquely partitiorC into two (paired) clusters such that all edges from
constraints of typéa;, r, ¢;) are between two clusters and all edges from constraints
of type (a;, by, r) are inside one of the two clusters. Now, pick one cluster feach
pair and place all its elements on one side aifd all other clusters to the other side.
Note that there can many ways how to do this, the number of vgagisponential
in the number of pairs of clusters.
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It remains to satisfy the precedence conditions. Theseitons (0 < &)
define a partial order on each siderof Any total order compatible with these
partial orders will form a solution to the problem. Such adesrcan be found in
time O(n+K). O

5.3 Tractability Results

5.3.1 An Algorithm for Cases of the Single-Branch GCCC Prob¢m

Here we show that when eact(s) induces a directed path ify, for eacha € C,

se S the Single-Branch GCCC (SB-GCCC) Problem is polynomraktsolvable.
The algorithm we use, while much simpler, is based on therighgo given in
Benham et al. [11].

Theorem 62. The SB-GCCC Problem is solvable in tim&®y 4.c|Qql), if each
a(s) induces a directed path ingT for eacha € C, s€ S.

Proof. Consider an instance of the SB-GCCC Problg®C) with the required
property. Let stag(s) and engd(s) be the first and the last node on the directed
path induced by (s). We define the partial order on the nodesTgfby saying
Vv <4 Wif the directed path from the roof of T, to w passes through Similarly,
for each solution(T,c) we define the partial ordegt on S based onT. Since
T has a single branchgy is a total order, i.e., for everg;, s, € S, s, ands, are
comparable byst. Hence, for everyx € C, c(s;, ) andc(sp, &) are comparable
by <q. Therefore, for als€ S c(s, &) lie on a single branch (directed path starting
in the root)P, of Ty. Since stag(s;) <4 ¢(s1,6) and starg (s2) <q ¢(S2,a), we
can assume that for ale S start, (s) lie on a subpati®, of P, starting in the root
rq of T, and ending in stagt(¢q), wherely € Sand starg(s) <o Stark (¢4) for
everyse S If that is not the case, there is no solution. This can beldgkm time
O(]9]|Qq|) for eaché e C.

Next, we will argue that it is enough to consider only solagian whichc maps
all elements irBto P,. Consider a solutio(iT,c). Any c(s, &) ¢ P, must lie on the
subpath ofP, ending at vertex stayt/,). Since stag(s) <4 Star;(¢¢), we can
remapc(s, @) to start; (/). Itis easy to check that conditions (1)—(3) of the GCCC
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Problem remain satisfied after mapping all se¢h &) to star, (/). Hence, we
can assume tha(s &) € a’(s) = a(s) NP, for eacha € C ands € S Note that
for all se S a’(s) induce directed subpaths Bf.

Now, we are ready to present the algorithm for solving theGBB=C Problem
with the required property. First, we will build a $€tof constraints on the ordering
of the nodes off which have to be satisfied in any soluti6h,c). If for 51,5, € S
anda € C, the paths induced hy’(s;) anda’(s,) are disjoint, and the path induced
by a’(s;) is closer to the root,, then we must have, <1 s,. Therefore, we
add this constraint to the s&t. Let T be a single branch tree that satisfies all
these constraints i’ and lets; <1 s, <1 -+ <1 Sg be the elements & ordered
according to this tree. (If such a tree does not exist, themoisolution.) For
each characted € C, we will mapc(s, &) to a’(s) using Algorithm' 4, where
max(a,b) is the elementg or b) further from the root ifa andb are comparable,
and undefined otherwise.

Algorithm 4 lIterative algorithm that assigns to each species a state.
. c(s1,0) + star (s1)
: fori=2upto|S do
c(s, ) + maxstart (s),c(s_1,a))
end for

[EEY

AR wbd

Let us verify that(T, c) is indeed a solution. First, note that since all stés)
lie on the pattP,,, the arguments of the max function are always comparable. Fu
thermore, it is easy to see that elk, &) are assigned to the sgttart, (s); s€ S},
and thaic(s, @) <a ¢($2,0) <a --- <Sa C(Sg, ). It remains to show that for each
i, c(s,a) € a’(s). Leti be the smallest index for whict(s, &) ¢ a’(s). We
must have that ends) <q (s, a). Sincec(s;, &) = star(sj) for somej < i, the
subpath of?, induced bya’(s) is closer to the root than the subpath induced by
a’(sj). Hence,% must contain the constraist <7 sj, which contradicts the fact
thatT satisfies all these constraints. It follows tii&tc) is a solution.

Finally, let us analyze the running time of the algorithm. &de verify whether
this set# of constraints defines a partial order and find a total ofdeompatible
with this partial order in timeD(|S| + m), wherem is the number of constraints.
For eachd € C, we can have at mo$Q, | disjoint induced paths, and it is enough
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to consider the constraint between the neighbouring disjoduced paths only.
Hencem= O(z&ec |Qa|) O

We remark that this type of theorem does not hold for the casmth phy-
logeny, cf. Table 5.1.

5.3.2 The BKW Case of the SB-GCCC-NB Problem is
Polynomial-Time Solvable
First, we show that th¢{1},{0,2}}-SB-GCCC-NB and{{1},{0,2} }-P-GCCC-
NB Problems are polynomial-time solvable, by showing thaytare equivalent to
deciding the C1P. We then build on the algorithm for consingca PQ-tree for
a binary C1P matrix [21] to show that tH€0},{1},{2},{0,2} }-SB-GCCC-NB
Problem (the BKW Case of the SB-GCCC-NB Problem) is also mpatyial-time
solvable.

Lemma 63. The {{1},{0,2}}-SB-GCCC-NB and{{1},{0,2}}-P-GCCC-NB
Problems are polynomial-time solvable.

Proof. The solutions to the{{1},{0,2}}-SB-GCCC-NB and{1},{0,2}}-P-
GCCC-NB Problems must fall on a single-branch tree and pagipectively. Be-
causeTy is 0— 1 — 2 for any characted, all species wheré@ has state 1 must
appear consecutively in this single-branch tree (resith) patherwise there would
be more than one transition from 0 to 1 in the phylogeny, fonscharactedr. In
this case of the SB-GCCC-NB Problem, all other species cpaaybefore (resp.,
after) this consecutive set of ones, because the “statesgigy’ functionc can map
these species to 0 (resp., 2). Hence, this problem is exigtlproblem of deter-
mining whether or not a binary (0/1-) matrix has the C1P, whaach species is a
column in this matrix. In this case of the P-GCCC-NB Probldrthere does exist
a solutionP, then there is always a “state-choosing” functithat reflects the fact
that the corresponding matrix has the C1P. Therefore tresesare polynomial-
time solvable. O

We now consider the{{0},{1},{2},{0,2}}-SB-GCCC-NB Problem, the
BKW case of the SB-GCCC-NB Problem. Here, for any charaatea species
swith a(s) = {0,2} can still appear before or after the consecutive set of ames (
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this single-branch tree), however a spesiasth a (s) = 0 has to appedreforethis

set, while the specieswith a(s) = 2 has to appeaafter this set. So essentially,
this is again the problem of determining whether a binarf-jOmatrix has the
C1P, however the matrix, in addition to containing zeros amels, contains some
special zeros, we call thenr Q0*), that must appear before (resp., after) the set
of consecutive ones of its row, in any C1 order. Hence, thé ¢a equivalent to
deciding the following generalized version of the C1P.

Property 64 (Extended Consecutive-Ones Property (E-C1R))matrix M on m
rows and n columns with entries from §&,1,0~,0"} has the E-C1P if there is
an order of the n columns such that, for any row, the set ofrnakithat have entry
1in that row are consecutive in the order, and any column tleat éntry0~ (resp.,
0") in that row appears before (resp., after) this consecusie®of ones.

Lemma 65. The E-C1P can be decided in polynomial-time.

Proof. We prove this by showing that a structure that encodes aénebetd
consecutive-ones (E-C1) orders of a matrix with entriemfsetE = {0,1,0,0"}
can be constructed in polynomial-time. Given maivbon mrows andn columns
with entries from seE, we first construct PQ-tree RQfor matrix M, where we
have “forgotten” the labels of the special zeros (we treatfid 0" simply as 0).
This can be done in tim®(m+n) [21]. Itis clear that P§Q encodes a superset of
the E-C1 orders dfl. We then associate to each P-node, the empty partial order on
its children, and to each Q-node, the set of directifieft, right}. Next, we obtain
a list of order constraints imposed by the special zerosl oby processing each
pair (0—,1), (0",1) and(0~,0"). For instance, if columnhas 0 andj has 1 in
some rowr, then we add constraint< j to the list. We now update these sets that
are associated with each P- and Q-node, one-by-one fronisthéol incorporate
these ordering constraints. The idea is that these seteegitict the configurations
each node in P can have to the set of E-C1 orders\éf

When adding constraint< j from the list to PQ, we find the least common
ancestora; ; of i and j in PQy, which takesO(n) steps. Fo; j, one of the two
cases holds:

1. & j is a Q-node. Then we eliminate from the set at this Q-nodegitieetion
that placeg beforei. If the set of directions is now empty, then the algorithm
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Figure 5.1: (a) A matrixM with entries from se{0,1,0~,0"}. (b) PQ-tree
PQy for M where the labels of the special zeros @hd 0°) have been
“forgotten”.

halts, outputting thaM does not have an E-C1 order. This can be done in
constant time.

2. g j is a P-node. This P-node stores some partial order on itslrehil
{v1,...,w} = V. First, we find the children o j: vx andvy such that the
subtrees rooted at them contaiand j, respectively. We add the constraint
Vx < Vy to the existing partial order at this P-node. If this constrés not
consistent with the existing partial order then the algonithalts, outputting
thatM does not have an E-C1 order. This partial order can be updated
time O(k?). Hence, this step takes tin@k?) C O(n?).

Since there ar®©(mr?) order constraints, and it takes tinG¥n®) to process
each constraint, the algorithm takes ti@émrf"). Furthermore, since the tree has
O(n) internal nodes, and each one sto@snr?) information, this structure is of
sizeO(mr?). O

For example, leM be the matrix with entries from s& = {0,1,071,0"}
shown in Figure 5.1a. The PQ-tree fQor M, where we have “forgotten” the
labels of the special zeroes is given in Figure 5.1b.

The special zeros d¥l then give rise to the following order constraints. In
the first row ofM, for example, since columh has entry 0 and columns and
g have entries 1 and'Orespectively, this introduces the order constralmts c
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andb < g. The list of order constraints given by the first rowMfis {b < c,b <
d,b< f,b<gc< f,c<g,d< f,d< g}, while the list given by the second row
is {a>c,a> d,a> e}. The third row introduces no order constraints.

After adding the above order constraints toP@f Figure 5.1b, the P-node
that is the root of this tree, with childrefvy,...,vs} stores the partial order
{V2 < V3,Vo < Vy4,V3 < Vg4,V1 > V3} on its children. The only Q-node of Rhas
associated with it the sétight}, and the other P-node stores the empty partial or-
der on its childrer{c,d}. Here, PQ,, with the following sets (resp., partial orders)
associated with its Q- (resp., P-) nodes encodes all E-CroafM.

For example, in the P-node that is the root ofyR@rder constraint, < v3
guarantees thdt < d, however this is also necessary. The Q-node has associated
with it set{right} to enforcec < f, or evend < f. Note that if instead of constraint
d < f, we hadd > f that this matrix would not have an E-C1 order. Finally, the
P-node of PG} with children{c,d} stores the empty partial order because there
are no constraints involvingandd.

Theorem 66. The {{0},{1},{2},{0,2}}-SB-GCCC-NB Problem is polynomial-
time solvable.

Proof. This follows from equivalence to deciding the E-C1P and Lexrgi. [
Since the{{0},{1},{2},{0,2} }-SB-GCCC-NB Problem is the BKW Case of
the SB-GCCC-NB Problem, we have the following corollary.

Corollary 67. The BKW Case of the SB-GCCC-NB Problem is polynomial-time
solvable.

Note that the constructed structure of Theorern 66 encotlsslations to the
problem, even if there are exponentially many of them.

5.3.3 The{{1},{2},{0,2}}-P-GCCC-NB Problem

We will show that if there is a solution to an instan@C) of the 2*-P-GCCC-
NB Problem then there is a solution to the insta(@€) of the 2*-SB-GCCC-NB
Problem, and vice versa, whe" = {{1},{2},{0,2}}. Since the single branch
version of this problem can be solved in polynomial time byditem 66, it follows
that also the path version is polynomial-time solvable.
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Lemma 68. An instancd S C) of the{{1},{2},{0,2} }-P-GCCC-NB Problem has
a solution if and only if the instandes, C) of the{{1},{2},{0,2}}-SB-GCCC-NB
Problem has a solution.

Proof. Let 2* = {{1},{2},{0,2}}. Obviously, a solution to the instan¢g C) of
the 2*-SB-GCCC-NB Problem is also a solution to the insta(@€) of the 2*-
P-GCCC-NB Problem. Now, assume tff&t c) is a solution to the instand&,C)
of the 2*-P-GCCC-NB Problem. LeP; andP, be two branches of starting at
the rootr. Let T’ be the tree obtained by attachif to the last vertex of.
To define the state-choosing functiohwe only need to determine the values of
c(s,a) whena(s) = {0,2}. Considers€ Sandéa € C such thato (s) = {0,2}. If
there is a species <t ssuch thaio (s') = {1} then we set’(s,a) = 2, otherwise
we setc/(s, &) = 0. We will show thafT’,c’) is a solution to the instand& C) of
the 2*-SB-GCCC-NB Problem.

For eachd € C, the set of specie$; (1) = {s€ Sa(s) = {1}} must induce a
connected component ih. Sincea (r) = 0, this component lies entirely iR, or
in P>. Hence, the se$; (1) induces a connected componéhin T’ as well. By
the definition ofc’, all species that lie below in T” are assigned value 2 and all
speciessuch thatr (s) = {0, 2} that lie aboveK in T’ are assigned value 0. Hence,
the only possible violation is if there is a specgsuch thata (s) = {2} that lies
aboveK in T'. This specieseither lies abov& in T or lies in the branch that does
not containK in T. In either case(T,c) cannot be a solution to the instan(&C)
of the 2*-P-GCCC-NB Problem, a contradiction. O

Corollary 69. The {{1},{2},{0,2}}-P-GCCC-NB Problem is polynomial-time
solvable.

5.4 Hardness Results

We first show that the {{1},{0,2},{0,1,2}}-SB-GCCC-NB and
{{1},{0,2},{0,1,2} }-P-GCCC-NB Problems are NP-complete by by reduction
from the PTC Problem (Lemma 55).

Theorem 70. The {{1},{0,2},{0,1,2} }-SB-GCCC-NB and
{{1},{0,2},{0,1,2} }-P-GCCC-NB Problems are NP-complete.
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Proof. Let 2 = {{1},{0,2},{0,1,2}}. LetSand{(a;,b; : ¢)}¥_; be an instance
of the PTC Problem. We will construct an instance of t#é-SB-GCCC-NB
(resp.,2°-P-GCCC-NB) Problem as follows. L&be the set of species af=
{a1,...,ay} the set of characters. For evarryc C, we leta;i(a) = ai(b;) = {1},
ai(c) = {0,2} and for allse S\ {&;,bi, ¢}, ai(s) = {0,1,2}.

We will show that the instance of the PTC Problem has a saolufiand only
if the constructed instance of th@”-SB-GCCC-NB (resp.,2°-P-GCCC-NB)
Problem has a solution. First, consider a single-bran@h(tesp., pathlp contain-
ing verticesSwhich is a solution to the constructed instance. Consideotder of
elements irBas they occur oR starting from the root (resp., leaf on one branch) of
P and ending with the leaf (resp., leaf on the other branch)efferyi € {1,... k},
all elements irfa;, bj] must have state 1 for charactar henceg; ¢ [a;,bi], i.e., this
order is a solution to the PTC Problem.

On the other hand, let ord€y be a solution to the PTC Problem. Consider a
tree T with a single branch consisting of the all-zero root follal®y vertices in
Sordered byO. Note that, for every € {1,...,k}, ¢; appears either above bath
andb;, or below them. The state-choosing function is defined daviisl For every
node inS, we choose for charactés state 0 if they are above boghandb;, state 1
if they are between; andb;, and state 2 otherwise. Clearly, this tree is compatible
with all character trees and it is easy to see that egsltr) € a(s), i.e., T is a
solution to the2”-SB-GCCC-NB (resp.2”-P-GCCC-NB) Problem. O

Next, we show that if for2 C 2{0--M  the 2-SB-GCCC-NB Problem is NP-
complete, then the? U {{m} }-(P-)GCCC-NB Problems are NP-complete.

then the2 U {{m}}-P-GCCC-NB and2 U {{m}}-GCCC-NB Problems are NP-
complete.

Proof. We will prove the claim by reduction from thg-SB-GCCC-NB Problem.
An instance of the SB-GCCC-NB Problem can be considered astance of the
(P-)GCCC-NB Problem, provided that we can force all spetidse on a single
branch. This can be done easily by adding the extra spedied has state s¢tn}
on all characters, and showing that all other species musthas a descendant,
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which forces any solution to this instance of the (P-)GCCEBroblem to be a
single-branch tree. We omit the details. O

As a corollary, we have that thg{1},{2},{0,2},{0,1,2}}-(P-)GCCC-NB
Problem is NP-complete. However, the complexity of the BKWse& posed
in Benham et l. [12] remains open.

Finally, we show that theg{0},{1},{0,1}}-P-GCCC-NB Problem is NP-
complete by reduction from the LEF-PTC Problem (Lemma 59).

Theorem 72. The{{0},{1},{0,1} }-P-GCCC-NB Problem is NP-complete.

Proof. Given an instance of the LEF-PTC Probl&n- {1,...,n}, r, and the set
of k triples (a,r : ¢;), let Sbe the set of species, a@= {a1,...,0x} be the set
of characters. For eadh € C, we letai(a) = {0} andai(ci) = {1}, while for all
otherse S\ {&,ci} we letai(s) = {0,1}.

Let path phylogenyl’ be a solution to this instance of th¢0}, {1},{0,1} }-P-
GCCC-NB Problem. Let be the root ofT, i.e.,r is the all-zero vertex. Consider
the ordering of elements iBU {r} based on the ordering of vertices on pdth
starting in the leaf of one branch and ending in the leaf obther branch. Assume
the triple (&,r : ¢;) is not valid, i.e.,c; appears betweesy andr. However, this is
not possible since vertex is then belowc; in T and we have a transition from 1
to 0 somewhere on the path fromto a for characterg;. Hence, the order is a
solution to the LEF-PTC Problem.

Conversely, let path/ordd? be a solution to the LEF-PTC Problem. Consider
the path phylogeny obtained fromby rooting it atr and the state-choosing func-
tion assigning 1 ta; and all nodes below; and O to all other nodes for character
a;. Clearly, this tree is compatible with all character treBse state choosing func-
tion could only fail, ifa is belowc;, in which cases(a;, &) = 1, butai(a) = {0}.
However, this is not possible as thenwould be betweem anda; on P which
violates the constrair(i,r : ¢;). The claim follows by Lemma 59. O

Note that Theorem 72 implies NP-completeness of severascasthe P-
GCCC-NB Problem. In fact, any case of the problem in which&@efontains two
distinct state singleton§a} and {b}, and a set containing states®andd such
thata <4 C<q bandb <, din Ty is NP-complete. For instance, far=c =0,
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b =1 andd = 2, we have that th¢{0}, {1},{0,2} }-P-GCCC-NB Problem is NP-
complete ((6b) in Table 5.1).
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Chapter 6

Conclusion

In this thesis, we have defined and studied several varidniseoConsecutive-
Ones Property (C1P) in order to model or solve several pnablénat arise in the
reconstruction of ancestral species.

We first define in Chapter 2 a way of relaxing the C1P of binaryfrices,
namely thek,4)-C1P, to model the problem of reconstructing AGOs in thepres
ence of small errors [27, 96]. We show that for most valudsarfdd, deciding the
(k,0)-C1P is NP-complete, as well as give a tractability resultafoelevant case
of the (2,1)-C1P. In light of this result, and the fact thattrices from real data
generally have low degree [27], in Chapter 3, we then consiaek, 5)-C1P for
matrices of bounded degredthe (d,k, d)-C1P). We then show that the, Kk, d)-
C1P is polynomial-time solvable when all three parameteesfiaed constants,
while other cases are NP-complete.

In Chapter 4, we then study a slightly different way to relag C1P: by al-
lowing columns to appear multiple times in an order, orrii&1P, which was first
introduced in Wittler and Stoye [151]. We improve upon thednass results of
Wittler and Stove to show that this problem is NP-completeniwst cases, while
also finding a tractable case of interest to handling telesyar the reconstruction
of AGOs.

Finally, in Chapter 5, we use the C1P, or more specificabya#isociated data
structure, the PQ-tree, to develop algorithms for seveasés of the Generalized
Cladistic Character Compatibility (GCCC) Problem. We nawnsnarize our re-

118



sults for these four chapters in more detail, along withveaié future work.

6.1 Chapter 2: The(k,0)-C1P

In Section 2.3 of this chapter, we show that for evieey 2,6 > 1, (k,d) # (2,1),
deciding the(k, 8)-C1P is NP-complete by first showing in Subsection 2.3.1 that
for everyk,d > 2, deciding thek,d)-C1P is NP-complete, and then in Subsec-
tion 2.3.2 that for everk > 3, deciding thgk,1)-C1P is NP-complete. Note that
this leaves open the case of the (2,1)-C1P, one that is stitegefor real applica-
tions such as the reconstruction of AGOs [27]. In Section®elgive an algorithm
that, given a binary matriM, either (a) decides i has the (2,1)-C1P when the
orders of the columns d¥l are restricted according to the block construction with
blocks of fixed constant size of the type which the two aboestioned construc-
tions are, or (b) finds a proof that deciding the (2,1)-C1Pksddémplete. In fact,
this algorithm is FPT in the maximum size of any block. We tlsbow that for
every 0 > 1, deciding the(e,5)-C1P is NP-complete in Section 2.5. We note
that deciding th&-C1P, or equivalently, thék, «)-C1P fork > 2 has been proved
NP-complete in Goldberg et al. [55]. This set of results iegpkhat deciding the
(k, &)-C1P is NP-complete for all bounded and unbounded valuksofld except
for (k,0) = (2,1).

The above study of this particular gapped C1P of binary wedrinamely the
(k,0)-C1P, immediately raises some open questions about closlaled proper-
ties. A more restricted version would be thed)-C1P where the number of gaps
in the entire matriXM is bounded by somi < m(k— 1) wherem is the number
of rows of M. Is such a property polynomial-time decidable? Thg)-C1P is
known to be NP-complete for all values lofind d except for(k,d) = (2,1): are
there any natural parameters such that)é)-C1P is FPT? One drawback of the
(k,0)-C1P (and th&-C1P, for that matter) is that it has the rigid limitlof- 1 gaps
per row. What if we allowed allowed rows to “share a pool” opgain the sense
that if one row has onlk— 2 gaps, then another may havgaps? A more general
version of theglk, §)-C1P is to bound the total number@$ in the gaps in all oM.

For example, given a matrid with mrows and at mos{l < m(k— 1)d 0’s can be
in the gaps oM (an average of one gap per row wh@gnd) = (2,1), which, in a

119



way, generalizes the (2,1)-C1P). Is this problem FPT foresaatural parameter?

From a purely combinatorial point of view, there has beemawed interest in
the characterization of matrices that do not have the C1€ting of forbidden sub-
matrices introduced by Tucker [145]. It has recently beeawshthat this charac-
terization could be used in the design of algorithms relédgtie C1P [18, 28, 36].
This then raises the following natural question: is theréca oharacterization of
matrices that do not have tlik, 6)-C1P in terms of forbidden submatrices? This
is of particular interest to the open (2,1)-C1P case: if ihdeed polynomial-time
decidable, trying to find a forbidden submatrix charaction may lead to an al-
gorithm for this case. If such a characterization does nist,exiven a matrix that is
not C1P, can thék, 5)-C1P be quickly determined if the set of all Tucker patterns
is known?

Finally, it is also natural to ask if there exists a structirat can represent all
orders that satisfy some gaps conditions related to the 8aéh a structure exists
for the C1P with no gaps: for a matrix that has the C1P, its R@+epresents all its
C1 orders, and can be computed in linear time [21]. This haa een extended
to matrices that do not have the C1P through the notion of @Re-Bee [106, 107],
or the Generalized PQ-tree of McConnell [102]. Although éxestence of such a
structure with nice algorithmic properties is ruled out bhg hardness of deciding
the (k,0)-C1P (except for maybe the (2,1)-C1P), it remains open todiasses of
matrices such that testing for this property is tractabhel, ia such case, to repre-
sent all possible orders in a compact way. Here again, thestaun is motivated
both by theoretical considerations (for example reprasgatl possible layouts of
a graph of bandwidth 2), but also by problems in computatigeaomics, such as
the reconstruction of AGOs [27, 96].

Recall that, in the approach of Chauve and Tannier [27], thesard the min-
imum number of rows of a given matrid using a branch-and-bound procedure,
until the remaining matrix has the C1P. In Chauve and Taisnésperiments, the
number of rows discarded is generally a very small fractibthe number of rows
of M. This motivates the following question. Given a PQ-tfeand a set of rows
R of bounded size, is there a permutatiarthat is generated by to which all
r € R map with at mosk gaps of sized? A variant of this would be to try and
map the seR onto 7T while trying to minimize the number of gaps, or the number
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of 0’s in the gaps (cf. a previous paragraph). In either caséagpsrthere is a way
to refine a PQ-tred@, as in Section 5.3 of Chapter 5, or everpartially refineT,
as in Section 4.3 of Chapter 4 to come up with a new strucftbat encodes or
(partially encodes) all permutatiomsthat meet the gaps constraintsRf Either
one would be a weak notion of a structure that enc@kgs)-C1 orders of a matrix
that has thek, 5)-C1P.

6.2 Chapter 3: The(d,k,0)-C1P

In this chapter we study thik, 6)-C1P for matrices of bounded degréeor the
(d,k,8)-C1P. This is motivated by the fact that we have observedrtiatices
from experimental data of the reconstruction of AGOs 27t have low degree.
In Section 3.1 we show that when all three parameters are @imadtants, the
(d,k,8)-C1P is related to the classical Graph Bandwidth Problerd,cam hence
be solved in polynomial-time using a variant of a relativetute-force algorithm
of Saxe [135].

Then, in Section 3.2.4 we show that, for every k> 2, deciding thed, k, c)-
C1P is NP-complete, by reducing from an NP-complete hypgfgrcovering
problem which is defined in Section 3.2.1, and then is showirgdctions 3.2/2
and 3.2.3, to be NP-complete. We comment that here we hadiedttne weakest
formulation of the C1P with gaps: indeed, in tfetd — 1,0)-C1P case, it is re-
quired that only two of thel 1's in each row are adjacent in any order, while the
other1’s can end up arbitrarily far away from this pair. It is thusmising that
deciding this property is still NP-complete for ady> 3 as implied by the gen-
eral result above. This chapter closes the case of the caitypte# deciding the
(d,k,8)-C1P, with the exception of theo,2 1)-C1P case, or just the (2,1)-C1P
case (cf. Chapter 2), which remains open.

We comment here that Goldberg et al. [55] poses the openigunesiout the
complexity of deciding the 2-C1P for sparse matrices (roesriwhere there is a
limit on the number of ones per row and per column). (&, «0)-C1P limits the
number of1’s per row only, that is, it is equivalent to the 2-C1P for bded de-
gree matrices. If we could determine the complexity of degdhe (d,2,)-C1P
for matrices with a bounded number 0§ per column, we could close this open
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guestion of Goldberg et al.. We do show, as a corollary of Té/ai32, that decid-
ing the (d, 2,0)-C1P is NP-complete for matrices with at most’g per column,
closing this open question of Goldberg et al. [55].

There are several open guestions and directions we wodddikollow in the
future work, some of them being parallel to open questiorse@an the context of
just the(k, 8)-C1P. One such question: is it possible to find a nice chaiaat®n
of matrices that do not have tlié, k, )-C1P in terms of forbidden structures, such
as Tucker submatrices [145], especially for small valueddfCan the(d, k, d)-
C1P be quickly determined if the set of all Tucker patterrigiswvn?

When all three parameters are fixed, tdek, 5)-C1P is related to the classi-
cal Graph Bandwidth Problem, and can hence be solved in paijal time [29]
using a variant of a relatively brute-force algorithim of 8§%35] for deciding if a
graph has bandwidtd + (k—1)0 — 1. This algorithm of Saxe decides if a given
graph has bandwidth in time O(n®*1). Caprara et al. [25] provide a linear time
algorithm for the special case of deciding if a grdpihas bandwidth 2. In this al-
gorithm, Caprara et al. first reduto a skeleton (called an auxiliary graph) that
all bandwidth 2 layouts must contain. The bandwidth 2 lagadteach component
of this auxiliary graph, irreducible subgraphs @fthat are independent of each
other, then determine the set of bandwidth 2 layoutS.of

Indeed, this auxiliary graph resembles somewhat a PQ-tfigen a C1P ma-
trix M, and its graptGy as defined in Section 3.1, how does the PQ-tredvfor
relate to the auxiliary graph fdgy? If M does not have the C1P, how does the
auxiliary graph relate to the set @, k,5)-C1 orders oM? How does the auxil-
iary graph relate to thactive regionscomputed in the algorithm of Saxe? Indeed,
since Caprara et al.’s algorithm is linear for graphs of adth 2, perhaps im-
provements can be made in the general bandwadthse (this is one of the open
guestions posed hy Saxe). Even for small valuels, #tiis would be useful in ap-
plications involving the reconstruction of AGCs [27]. Cédretauxiliary graph be
extended to a structure that all bandwidittayouts must contain, even if comput-
ing it involves a large time overhead? This could lead to awwedion of a PQ-tree
for all (d,k,5)-C1 orders of a matrix that has tle, k, &)-C1P.

Finally, assuming thak is close tod, for each row there are many orders of
columns which make this ro\d, k, «)-consecutive. Hence, for a small number of
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rows, random instances of matrices have (ttig, «)-C1P almost always. Con-
versely, for a large number of rows, random instances ofioestithat have the
(d,k,)-C1P would have very few column orders that witness this @rtyp We
would like to investigate the ratios between the number wfsrand columns for
which one or the other type of instance occurs, with the gbdeweloping heuris-
tics for both of these types of instances.

6.3 Chapter 4: ThemC1P

In Section 4.1 of this chapter, we have shown that decidimgnt@1P is NP-
complete for matrices with degree at most 3 am@) < 2 for eachs€ S, whereS

is the set of columns d¥l. In Section 4.2 we then show that the two restricted vari-
ants of themC1P given in Wittler and Stoye [151], namely th®€1P(fr) and the
mC1P(ne) are NP-complete for matrices with degree at most&@ (@e mC1P(fr)
case) andn(s) < 2 for eachs € S whereSis the set of columns dfl. In Sec-
tion 4.3, we have shown that, given a matkixand a multiplicity vectomm such
that (1)M has matched multirows, and (2) each row contains eithet (jost one
entry 1 in multicolumns, or (ii) two entrieg in multicolumns and no other entries,
that deciding ifM has themC1P form can be done in polynomial time and space
(cf. Theorem 51).

In light of the result of Section 4.3, we extend the domairraétable instances
of deciding themC1P for binary matrices. This approach relies on previousbkd
techniques to decide the C1P and simpler instances ah@®&P, and answers a
natural problem in reconstructing ancestral gene ordezgera@l questions remain
open. Naturally, one can ask to relax the condition Mdtas matched multirows,
which is crucial in our proofs. It seems however that the [@obbecomes hard in
this case, and some less rigid constraintd/owould then have to be introduced to
recover tractability. Also it is open to exhibit an extemsiaf the notion of the PQ-
tree that could encode aliC1P orders of a binary matrix that satisfies this property.
Even for the case of a matrix with matched multirows, our téghes lead to a data
structure which only captures the consecutivity requineinfef. Sectior 4.3) but
not the multiplicity requirement. From an algorithmic cdesity point of view,
our algorithm has a®(mn) time complexity, and it remains open to see if this
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case can be solved @(m+ n+ /) time, wheref is the number ot’s in the entire
matrix M.

The problem of covering hypergraphs with a collection ohpatlayed a key
role in the hardness results of Chapter 3, and, with sligfifferent conditions on
this collection of paths, played a key role in the hardnessltg of this chapter.
Other variants of hypergraph covering were also used to $iwitv hardness and
algorithmic results for the haplotyping problem via galtege networks [59—-61].
Perhaps considering other conditions on the covering cgivielrise to other new
and interesting problems. In fact, one could do a systensatitty of the covering
of hypergraphs with graphs to see which conditions (on bggietgraph and graph)
lead to interesting results.

6.4 Chapter 5: The GCCC Problem

In Section 5.2 we show that the PTC and the LEF-PTC ProbleenslBrcomplete,
while the OEF-TO Problem is polynomial-time solvable, ahe REF-PTC Prob-
lem always has a solution. In Section 5.3, we present soratabla cases of the
GCCC Problem, while in Section 5.4 we present some hardessits.

Here, we have characterized the complexity of cases of2h8B-GCCC-
NB and 2-P-GCCC-NB Problems fo2 C {{0},{1},{2},{0,2},{0,1,2}}. This
leaves open, however, some interesting cases of the GCCRrdliBem. Here we
show that when2’ = {{1},{0,2}}, the input corresponds to a binary mathik
hence the2’-SB-GCCC-NB Problem is equivalent to the C1P Problem. That i
the 2’-SB-GCCC-NB (resp.,2’-GCCC-NB) Problem is to find a single-branch
path (resp., tree) with vertex set containing the columnisl ¢gdnd possibly other
columns) such that for each row bf, the set of vertices labellet! by this row
forms a connected subpath (resp., subtree) M das the C1P (resp., a “connected-
ones property” of trees). Note also that for a tree to havedbinnected-ones prop-
erty, that sets of vertices labelledby any row must form at most 2 connected
subtrees, so that this tree can be contracted-to D— 2 for each row (this is au-
tomatically enforced in the case of the C1P, since the se¢wices labelled by
in each row is a path). If we can determine in polynomial-time this connected-
ones property holds (like we can for the C1P), it might prevah answer to the
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BKW Case. Preliminary study has shown that the set of suchigeatcorresponds
to a special class of chordal graphs: deeper study into thsection could be
useful.

Finally, it would be interesting to systematically studgsk problems for all
subsets of P12} as it would complete the study for all possible inputs to the
GCCC-NB Problem when character trees are @ — 2.
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