
Variants of the Consecutive-Ones Property Motivated by
the Reconstruction of Ancestral Species

by

Murray Patterson

BSc. (Honours) Computer Science, Acadia University, 2003

MSc. Computing Science, Simon Fraser University, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

January 2012

c© Murray Patterson, 2012

Abstract

The polynomial-time decidable Consecutive-Ones Property(C1P) of binary ma-

trices, formally introduced in 1965 by Fulkerson and Gross [52], has since found

applications in many areas. In this thesis, we propose and study several variants of

this property that are motivated by the reconstruction of ancestral species.

We first propose the Gapped C1P, or the(k,δ)-Consecutive-Ones Property

((k,δ)-C1P): a binary matrixM has the(k,δ)-C1P for integersk and δ if the

columns ofM can be permuted such that each row contains at mostk blocks of1’s

and no two neighboring blocks of1’s are separated by a gap of more thanδ 0’s.

The C1P is equivalent to the(1,0)-C1P. We show that for every bounded and un-

boundedk≥ 2,δ ≥ 1,(k,δ) 6= (2,1), deciding the(k,δ)-C1P is NP-complete [55].

We also provide an algorithm for a relevant case of the (2,1)-C1P.

We then study the(k,δ)-C1P with a boundd on the maximum number of1’s in

any row (the maximumdegree) of M. We show that the(d,k,δ)-Consecutive-Ones

Property ((d,k,δ)-C1P) is polynomial-time decidable when all three parameters

are fixed constants. Since fixingd also fixesk (k≤ d), the only case left to consider

is the(d,k,∞)-C1P (whenδ is unbounded). We show that for everyd > k≥ 2,

deciding the(d,k,∞)-C1P is NP-complete.

We also study the Consecutive-Ones Property with Multiplicity (mC1P), intro-

duced by Wittler and Stoye [151]: a binary matrixM on columnsS= {1, . . . ,n}

has themC1P formultiplicity vectorm : S→ N if there is a sequenceσ on Ssuch

that (i) σ contains eachs∈ Sat mostm(s) times, and (ii) for each rowr of M, the

set of columns that have entry1 in r form at least one subsequence ofσ . We show

that deciding themC1P, and two restricted variants thereof, are NP-complete,for

M having maximum degree 3 (6 for one of the variants), and form(s) ≤ 2 for all

ii

s∈ S. We also give a tractability result for themC1P that is motivated by handling

telomeres in the reconstruction of ancestral species.

Finally, we study the Generalized Cladistic Character Compatibility (GCCC)

Problem, a generalization of the Perfect Phylogeny Problem[137] introduced by

Benham et al. [12]. We use the structure of the PQ-tree [21] associated with the

C1P to give algorithms for several cases of the GCCC Problem.

iii

Preface

This thesis is structured into six chapters. The first chapter gives a general overview

of the C1P and the motivation for considering the four variants that we propose and

study here. This was written specifically for the thesis by mewith help from Cedric

Chauve in structuring the content. Each of the four subsequent chapters is then

dedicated to a particular variant. These four chapters formthe results of this thesis,

which have been published in several co-authored publications, as detailed below.

The sixth chapter concludes this thesis with open questionsand future work.

In Chapter 2, Cedric Chauve identified the(k,δ)-C1P and its motivation for

studying this variant. The results of Sections 2.2 and 2.3 were found by Ján Maňuch

and I, while Ján Maňuch wrote most of Section 2.2 and I wroteSection 2.3. The

ideas of Section 2.4, with exception of Condition 8 were found by me, and this sec-

tion was also written by me. Finally, the idea of the construction of Section 2.5 was

mine, while I wrote most of this with some help from Ján Maňuch. All the results,

with exception of Section 2.4 appear in our work Maňuch et al. [101]. Preliminary

results on this appear in our published work Chauve et al. [29].

In Chapter 3, Cedric Chauve came up with the idea for the algorithm of Sec-

tion 3.1, and also wrote most of this, which was expanded later by me. The re-

sults of Section 3.2 were then found by Ján Maňuch and I. Ján Maňuch came up

with the idea of using a hypergraph covering problem to show NP-completeness

of deciding the(3,2,∞)-C1P, and wrote this up as well (Sections 3.2.1, 3.2.2

and 3.2.4). Generalizing this construction (Section 3.2.3) was then found by Ján

Maňuch and I, while I wrote it up and Ján Maňuch supplied the figures. The re-

sult of Section 3.1 can be found in our work Maňuch et al. [101] (and in our work

Chauve et al. [29]). The results of Section 3.2 are the subject of our published

iv

work Maňuch and Patterson [100], while preliminary results on this appear in our

published work Maňuch and Patterson [99].

In Chapter 4, Wittler and Stoye [151] formally define the notion of themC1P,

and propose also the two variants of Section 4.2. All of the results of Sections 4.1

and 4.2 where found by Ján Maňuch and I, with some help from Roland Wittler.

The ideas and work for the tractability result of Section 4.3were then shared with

Cedric Chauve, Ján Maňuch, Roland Wittler and I. In particular, Cedric Chauve and

Roland Wittler worked on and wrote the subsection titled “The Case of a Single

Multicolumn”, while Ján Maňuch and I worked on and wrote the subsection titled

“Completing the Proof of Theorem 51”. All of the results of Sections 4.1 and 4.2

appear in our published work Wittler et al. [152], while the tractability result of

Section 4.3 is the subject of our published work [31].

The work of Chapter 5 was an equal contribution of Ján Maňuch and I. The

GCCC (at least its form) was first proposed in Benham et al. [12]. The results of

Section 5.2 were then found and written by Ján Maňuch and I.The algorithm of

Subsection 5.3.1 was found by me, and written with help from Ján Maňuch. In

Subsection 5.3.2, Ján Maňuch came up with the idea of Lemma63, while I came

up with the idea of this struture based on PQ-trees [21, 106] for Lemma 65. This

Subsection 5.3.2 was then written by me. Ján Maňuch and I then came up with the

idea of Subsection 5.3.3, and Ján Maňuch wrote this. The results of Section 5.4

were then found and written by Ján Maňuch and I.

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Tables . ix

List of Figures . x

Glossary . xvii

Acknowledgments . xix

Dedication . xxii

1 Introduction . 1

1.1 The Consecutive-Ones Property 2

1.1.1 An Introduction of the Consecutive-Ones Property 2

1.1.2 Background: Deciding the Consecutive-Ones Property. . 3

1.1.3 Applications of the Consecutive-Ones Property 6

1.2 The Reconstruction of Ancestral Gene Orders 8

1.2.1 A Basic Overview of the Reconstruction of Ancestral Gene

Orders . 8

1.2.2 Previous Approaches to Reconstructing Ancestral Gene

Orders . 11

vi

1.2.3 Binary Matrices, the C1P and the Reconstruction of An-

cestral Gene Orders (AGOs) 16

1.3 Computational Solutions for non-C1P Matrices 21

1.3.1 Transforming the Matrix to a C1P Matrix 21

1.3.2 Relaxing the C1P . 21

1.3.3 Matrices of Bounded Degree 24

1.3.4 Matrices with Columns of Multiplicity 26

1.4 The Generalized Cladistic Character Compatibility Problem . . . 30

2 The Gapped Consecutive-Ones Property 32

2.1 Notation and Conventions . 32

2.2 Fixing the Order of Selected Columns in a Matrix 33

2.3 The Complexity of Deciding the(k,δ)-C1P 34

2.3.1 The Complexity of Deciding the(k,δ)-C1P for every

k,δ ≥ 2 . 34

2.3.2 The Complexity of Deciding the(k,1)-C1P for everyk≥ 3 38

2.4 The (2,1)-C1P . 39

2.4.1 The Algorithm . 40

2.5 The Complexity of Deciding the(∞,δ)-C1P 46

2.5.1 The 3SAT(L:2,R:2) Problem 46

2.5.2 The Complexity of Deciding the(∞,1)-C1P 47

2.5.3 The Complexity of Deciding the(∞,δ)-C1P 51

3 The Gapped Consecutive-Ones Property for Matrices of Bounded

Maximum Degree . 53

3.1 An Algorithm for Matrices of Bounded Maximum Degree53

3.2 The(d,k,∞)-C1P . 61

3.2.1 A Hypergraph Covering Problem 61

3.2.2 The 3-Uniform Hypergraph 1-Covering by Paths Problem62

3.2.3 Thed-Uniform Hypergraphp-Covering by Paths Problem 65

3.2.4 The Complexity of Deciding the(d,k,∞)-C1P 70

4 The Consecutive-Ones Property with Multiplicity 73

4.1 The Consecutive-Ones Property with Multiplicity (mC1P) 73

vii

4.2 Two Variants of themC1P . 78

4.2.1 The Consecutive-Ones Property with Multiplicity for

Framed Rows (mC1P(fr)) Variant 78

4.2.2 The Consecutive-Ones Property with Multiplicity for

Nested Rows (mC1P(ne)) Variant 82

4.3 A Tractability Result for the Consecutive-Ones Property with

Multiplicity . 86

4.3.1 Preliminaries . 86

4.3.2 A Tractable Case of Deciding themC1P 89

4.3.3 Building a PQ-tree which Describes All Sequences that

Satisfy the Consecutivity Requirement 97

5 The Generalized Cladistic Character Compatibility Problem 100

5.1 The Generalized Cladistic Character Compatibility (GCCC) Problem101

5.2 Ordering Problems . 103

5.3 Tractability Results . 108

5.3.1 An Algorithm for Cases of the Single-Branch GCCC Prob-

lem . 108

5.3.2 The Benhan-Kannan-Warnow (BKW) Case of the

Single-Branch GCCC-NB (SB-GCCC-NB) Problem is

Polynomial-Time Solvable 110

5.3.3 The {{1},{2},{0,2}}-Path GCCC-NB (P-GCCC-NB)

Problem . 113

5.4 Hardness Results . 114

6 Conclusion . 118

6.1 Chapter 2: The(k,δ)-C1P . 119

6.2 Chapter 3: The(d,k,δ)-C1P . 121

6.3 Chapter 4: ThemC1P . 123

6.4 Chapter 5: The GCCC Problem 124

Bibliography . 126

viii

List of Tables

Table 5.1 Complexity of all cases of the GCCC Problem for the charac-

ter tree 0→ 1→ 2 and set of states chosen from the setQ ⊆

{{0},{1},{2},{0,2},{0,1,2}}. The BKW Case is marked

with *. 102

ix

List of Figures

Figure 1.1 (a) A binary matrixM that has the C1P. (b) A consecutive-

ones (C1) order ofM. (c) A binary matrix that does not have

the C1P [145]. 2

Figure 1.2 (a) A binary matrixM that has does not have the C1P. (b) The

bipartite graphGM corresponding toM where the black (resp.,

white) vertices correspond to the columns (resp., rows) ofM.

GraphGM contains the asteroidal tripleg,h, j. 4

Figure 1.3 (a) A binary C1P matrixM. (b) The PQ-treeTM for M. Here,

TM has internal (circular) P-nodes and (rectangular) Q-nodes,

and leaf nodes for the set of columns ofM. A leaf order of

TM obtained by taking any arbitrary (resp., forward or reverse)

permutation of the children of a P-node (resp., Q-node) repre-

sents a C1 order ofM. Note that the current configuration of

TM represents C1 order bdaecgf ofM. (c) Another configura-

tion of PQ-treeTM representing C1 order dgcaebf ofM. Note

that T(M) has 4!·2 ·2 = 96 configurations, and henceM has

96 C1 orders. 5

x

Figure 1.4 (a) A binary matrixM that does not have the C1P. Note thatM

is the matrix of Figure 1.3a with a fourth row added, causing

this matrix to not have the C1P. (Note also, thatM contains the

forbidden submatrix of Figure 1.2a). (b) The PQR-treeTM for

M. Here,TM has the additional third type of internal (diamond-

shaped) R-node. An R-node represents a part ofM which do

not have the C1P (contains a conflicting set of columns ofM).

Note that the PQR-tree of the matrix formed by the first three

lines ofM is equivalent to that shown in Figure 1.3b. 6

Figure 1.5 A Sequence Tagged Site (STS) physical map of the kallikrein

gene region. The positions of the markers are depicted

along the top, and the clones are shown as horizontal lines.

The markers were developed from clone insert ends (red)

and kallikrein genes (blue). The unfilled squares on clones

338F22 and 003F08 show markers not analysed. (source:

http://westnilevirus.okstate.edu/research/2004rr/13/13.htm) . 9

Figure 1.6 The alignment of a human genome against several mam-

mals and a chicken genome. Here, the regions of each

genome that code for the Apolipoprotein A1 gene (a gene

that has an important role in lipid metabolism) are highly

conserved, and hence similar, for all mammals. (source:

http://www.lbl.gov/tt/techs/lbnl1690.html) 10

Figure 1.7 An illustration of the inference of syntenies forthe ancestor

common to setS= {human, mouse, dog} of species with out-

group species chicken. A synteny is a group of markers that ap-

pears together in at least two species whose path goes through

the considered ancestor. Here, the first synteny appears in the

human and the dog, and the second is inferred from the chicken

and the mouse, while the fourth one appears in all three species

of S. These syntenies can be weighted according to how of-

ten they appear in the existing species, i.e, this fourth synteny

would be weighted more heavily than the first two. (animal

skeleton reproduced with permission fromwww.bigstock.com) 11

xi

http://westnilevirus.okstate.edu/research/2004rr/13/13.htm
http://www.lbl.gov/tt/techs/lbnl1690.html
www.bigstock.com

Figure 1.8 (a) Human-mouse nets [85] with human as the reference. Four

mouse intervals are depicted, as ordered and oriented by the

orthologous human segments. The second and third mouse in-

tervals are adjacent (and appropriately oriented) on a mouse

chromosome, and the intervening bases, if any, do not align to

human, and are depicted by a thin line connecting these inter-

vals. (b) The human-mouse, human-rat and human-dog nets

for a segment of the human sequence, which illustrates the

construction of orthology blocks (OB). (c) The construction

of conserved segments (CS) from the fusion of runs of con-

secutive orthology blocks whenever the order and orientation

of these blocks are conserved in each of the existing genomes.

(source: Ma et al. [96]) . 14

Figure 1.9 The set of Contiguous Ancestral Regions (CARs) for the Bore-

oeutherian ancestral genome (of human, rat, mouse and dog)

constructed from the experiments of Ma et al. [96]. Numbers

above bars indicate the corresponding human chromosomes.

(source: Ma et al. [96]) . 15

Figure 1.10 The binary matrixM corresponding to the set of sytenies in-

ferred in Figure 1.7 and the PQ-treeTM for M. Note that each

CAR is a child of the root P-noder of TM. 19

Figure 2.1 Possible positions of columns2δ +2 and2δ +3. 33

Figure 2.2 The structure ofMφ and the five rows encoding clausec2 =

{v2∨¬v3∨v1}. 37

xii

Figure 2.3 The structure of the construction for a 3CNF formula φ on the

setV of variables andC of clauses, along with the 3 rows en-

coding the clausec j = {v1∨v2∨¬v3}. The blocksb1, . . . ,b|V |
correspond to the variables ofφ in exactly the same way as in

the construction of Subsection 2.3.1. The blocksD1, . . . ,D|C|
correspond to the clauses. Here, fori ∈ {1,2,3}, r̂ i is row r i

restricted to the columns ofBt , andP1
t , P3

t (resp.,P2
t) are sets

of permutations that do not place any0 to the left (resp., right)

of any1 in Bt in rowsr1, r3 (resp.,r2). It follows that all truth

assignments to the literals ofc j are (2,1)-C1 orders except for

the case when all 3 literals are false (c j is not satisfied), since

P1
t ∩P2

t ∩P3
t = /0. Note that for eachi ∈ {1, . . . , |V|}, rows can

be added to force the copy of variable blockbi on the left and

right of the clause blocks to encode the same truth value. . . .45

Figure 2.4 The structure of matrixMφ 49

Figure 3.1 (a) A simple dependency on 1-coverings of two touching hy-

peredges enforced by a copy ofD (depicted as a diamond). (b)

The 2-clause and (c) 3-clause gadgets for clauseci 63

Figure 3.2 (a) The variable gadget for variable with positive occurrences

cp
i andcq

j and negated occurrencecr
k in the clauses. The dashed

edge is always picked in any valid 1-covering. (b) Grey edges

are picked when this variable is set tofalse in a satisfying as-

signment ofφ . (c) Grey edges are picked when the variable is

set totrue. 64

Figure 3.3 HypergraphDd,p: only one of the
(|S|

d−p

)
hyperedges is shown. 66

Figure 3.4 The pathG′ through vertex setS∪P that alternates between

subpaths completely inS and completely inP. Some of the

shown edges may be virtual. 67

Figure 3.5 Hyperedgeh of Dd,p which contains less thanp edges fromG′

depicted in Figure 3.4. 67

Figure 3.6 A validp-covering ofDd,p in which vertexv has degree 1. . . 68

xiii

Figure 3.7 Vertices and hyperedges added toH̄ to simulate the 3-edge

h= {a,b,c}. The grayed diamonds depict copies ofDd,p. . . . 69

Figure 4.1 Graphical representations of the (a) 2-clause gadget and (b) 3-

clause gadget for clauseci . The multiplicity of the columns

(resp., vertices) is indicated by the number of dots. Rows are

depicted by ellipses surrounding two vertices or trianglessur-

rounding three vertices, respectively. 75

Figure 4.2 Graphical representation of the variable gadgetfor variablexℓ
with positive occurrencescα

i andcβ
j and negated occurrencecγ

k

in the clauses. 76

Figure 4.3 Graphical representations of the (a) 2-clause gadget and (b) 3-

clause gadget for clauseci in themC1P(ne) case. 84

Figure 4.4 Graphical representation of the variable gadgetfor variablexℓ
with positive occurrencescα

i andcβ
j and negated occurrencecγ

k

in the clauses in themC1P(ne) case. 85

Figure 4.5 (a) Binary matrixM, with matched multirows. Letm(1) =

· · · = m(5) = 1 and m(a) = m(b) = 2: a and b are multi-

columns andr1, r3 andr4 are multirows. Rowr3 is not min-

imal, because it containsr4. (b) The corresponding matrix

M̂. Since inM̂, by definition ˆr i = r i for all multirows r i , the

matched multirows are discarded. 87

xiv

Figure 4.6 (a) Binary matrixM, with matched multirows. Letm(c′) = 2.

(b) PQ-tree belonging to the equivalence classPQM̂. P-nodes

are represented by circular nodes and Q-nodes by rectangular

nodes. An example of a valid C1 order with multiplicity is

c′1234c′ 78956 which is obtained by taking the equivalent

PQ-tree with frontier 123478956 and inserting two copies of

c′ into the corresponding positions. Notice that insertingc′ be-

tween 2 and 3 would break rowr2.

Illustration of Algorithm 2. LCA(r̂1) and the respective seg-

ments of LCA(r̂3,4) are highlighted in gray and the respec-

tive paths are depicted by dashed lines. The upper left edge

is contained in two paths. Here,K1 = 1 and K2 = 1, thus

K = 2≤m(c′) = 2. 91

Figure 4.7 Augmented PQ-treeT ′ for the matrix given in Figure 4.6. (In

fact, to get an augmented PQ-tree from the original PQ-tree

shown in Figure 4.6, no modifications are necessary other than

attaching leaf nodes labeledc′ at appropriate locations.) Only

the trees in the equivalence class ofT ′ where the left side of the

right Q-node is placed adjacent to the left Q-node have short-

ened frontiers that meet the multiplicity constraint (m(c′) = 2),

for example,c′1234c′ 78956. 97

Figure 4.8 Transformation rules for the LCAs to construct anaugmented

PQ-tree. An LCA and its parent node are replaced by the nodes

shown on the right. The LCA (or the segment of an LCA,

respectively) are highlighted in gray. 98

Figure 4.9 Transformation rules for bottom-up iteration toconstruct an

augmented PQ-tree. A newly created Q-node and its parent

node are replaced by the nodes shown on the right. 99

Figure 4.10 Special transformation rules for bottom-up iteration to con-

struct an augmented PQ-tree. A newly created Q-node two

levels below the root node and its parent node are replaced by

the nodes shown on the right. 99

xv

Figure 5.1 (a) A matrixM with entries from set{0,1,0−,0+}. (b) PQ-tree

PQM for M where the labels of the special zeros (0− and 0+)

have been “forgotten”. 112

xvi

Glossary

C1P Consecutive-Ones Property, a property of binary matricies

AGO Ancestral Gene Order

DNA Deoxyribonucleic Acid, a nucleic acid that contains the genetic instructions

used in the development and functioning of all known living organisms (with

the exception of RNA viruses)

RNA Ribonucleic Acid, one of the three major macromolecules (along with DNA

and proteins) that are essential for all known forms of life

STS Sequence Tagged Site mapping, a type of physical mapping of DNA [108,

119]

CAR Contiguous Ancestral Region, a set of genes that remain together in some

(reconstructed) ancestral genome [96]

k-C1P k-Consecutive-Ones Property

(k,δ)-C1P (k,δ)-Consecutive-Ones Property

(d,k,δ)-C1P (d,k,δ)-Consecutive-Ones Property

d-UH-p-CP d-Uniform Hypergraphp-Covering by Paths Problem

mC1P Consecutive-Ones Property with Multiplicity

mC1P(fr) Consecutive-Ones Property with Multiplicity for Framed Rows, a re-

stricted variant of themC1P

xvii

mC1P(ne) Consecutive-Ones Property with Multiplicity for Nested Rows, another

restricted variant of themC1P

GCCC Generalized Cladistic Character Compatibility Problem, ageneralization

of the Perfect Phylogeny Problem [137]

GCCC-NB GCCC with non-branching character trees Problem, a specialcase of

the GCCC Problem in which character trees have a single branch, i.e., each

character treeTα is 0→ 1→ ··· → |Tα |−1

SB-GCCC-NB Single-Branch GCCC-NB Problem, the case of the GCCC with

non-branching character trees (GCCC-NB) Problem where we restrict the

solution (a phylogeny tree) to have only one branch startingat the root

P-GCCC-NB Path GCCC-NB Problem, the case of the GCCC-NB Problem

where we restrict the solution (a phylogeny tree) to have only two branches

starting at the root

BKW Benhan-Kannan-Warnow Case, a case of the GCCC Problem that is of par-

ticular intrest to the biological setting that motivated this problem

FPT Fixed Parameter Tractable

PTC Path Triple Consistency Problem

LEF-PTC Left Element Fixed Path Triple Consistency Problem

REF-PTC Right Element Fixed Path Triple Consistency Problem

OEF-TO One Element Fixed Total Ordering Problem

QC Quartet Consistency Problem

TO Total Ordering Problem

NAE-3SAT Not-All-Equal-3SAT

E-C1P Extended Consecutive-Ones Property, a property of matrices with entries

from set{0,1,0−,0+}

xviii

Acknowledgments

First, I would like to thank the members of my supervisory committee, Ján

Maňuch, Cedric Chauve, Arvind Gupta and Anne Condon.

I am very grateful to Ján Maňuch for spending the time to regularly meet and

discuss or work on problems, as well as to help proofread and improve my writ-

ing. Ján’s dedication and great ideas have provided great motivation and direction

through tough problems, where a solution seemed nowhere in sight. Indeed, most

of what I know about doing scientific research has come through working with Ján,

and without him as a mentor, I would not have been able to writethis work, or even

obtain its results.

I would like to thank Cedric Chauve for providing a wealth of ideas, and ulti-

mately, problems that are relevant to the area of computational biology. Because

Cedric is always on the frontier of important research in computational biology,

this work contains results to many problems that are not onlyinteresting, but also

relevant to this area. Cedric’s involvement in the researchcommunity has also pro-

vided great networking opportunities, one which has led to the position that I plan

to hold after this degree.

I am grateful to Arvind Gupta for securing the majority of thefunding for this

research, as well as pointing me to viable career, research and funding opportu-

nities. Of the members in my committee, I have been working with Arvind the

longest, and during this time he has opened up many opportunities. I hope he

considers it as good of an investment as I have.

Finally, of my supervisory committee, I would like to thank Anne Condon for

helping to familiarize me with the Beta Lab and community at the University of

British Columbia (UBC) after my transfer to UBC with my senior supervisor and

xix

his other students halfway through this degree. Anne has also provided very helpful

feedback on my thesis.

I also wish to thank my external examiner Binhai Zhu, as well as university

examiners William Evans and Paul Pavlidis for their helpfulfeedback.

I gratefully acknowledge funding from the following sources. First, I would

like to thank the Natural Sciences and Engineering ResearchCouncil (NSERC)

of Canada for providing three years of funding with a PGS-D3 Scholarship. For

this, I also thank Arvind Gupta and Eugenia Ternovska (a supervisor of my masters

thesis) who wrote letters that have no doubt determined greatly the success of my

application for this award. I would like to thank the School of Computing Science

at Simon Fraser University (SFU), the university where I obtained my masters and

then began this degree, for its NSERC award top-up, as well asfor several graduate

fellowships. I also thank the Canadian Liquid Air Ltd. for a graduate scholarship.

I would like to thank UBC for the remainder of its NSERC award top-up when

I transferred there, as well as the tuition scholarship thatcomes with holding an

NSERC award.

Two co-authors whom I have not mentioned above, but were important to sev-

eral results in this work, are Roland Wittler and Jens Stoye,who introduced the

concept of the Consecutive-Ones Property (C1P) with Multiplicity (Chapter 4 of

this thesis). I thank them for this, as well as for helpful discussions about research

and career opportunities.

I would like to thank my friends and colleagues at, or affiliated with, the Beta

Lab at UBC, in particular Chris Thachuk for helping to familiarize me with UBC

when I transferred here, as well as for many insightful discussions about research

and career opportunities. I would also like to thank Bonnie Kirkpatrick, Jeff Sem-

ber and Frank Hutter at the Beta Lab for the helpful discussions, and for making

the lab a lively and engaging place to work.

I would also like to thank the many friends and colleagues I have made at

SFU, where I did my masters thesis, as well as a good amount of this degree.

In particular, I would like to thank Phuong Dao for the many discussions about

research and career opportunities as well as for all the social times we had, when

we wanted to take a break from all of the work. I would like to thank George Ma

for the encouragement and help during the low points of this degree, as well as

xx

for the helpful discussions about career and life. I would like to also thank Osama

Saleh and Jingyun Chen for the lively and insightful discussions on many subjects;

their senses of humour through tough times have been a good morale booster. I

would also like to thank Fereydoun Hormozdiari, Iman Hajirasouliha, as well as

the many other friends and colleagues at SFU whose discussions helped to shape

my research and career plans, as well as who helped to encourage and support a

community where such ideas can be discussed.

Finally, I am grateful to the many friends I have met in Vancouver, which does

not exclude those mentioned above, who made the time enjoyable as I did this

degree. I especially thank my family and friends back home inNova Scotia for

sticking with me and giving me the encouragement to undertake this challenging

venture for such a long time, and in such a far away and different place.

xxi

Dedication

To my father, Kenzie Patterson, who always pushed for highereducation. Since

a PhD is the highest form of education one can obtain, I hope that he would be

proud.

xxii

Chapter 1

Introduction

This thesis concerns variants of the Consecutive-Ones Property (C1P) of binary

matrices. In particular, we define and study here four ways ofgeneralizing the C1P

in order to better model various scenarios of the reconstruction of ancestral species

from a computational point of view. The first three of these are motivated by the

reconstruction of Ancestral Gene Orders (AGOs) [27], whilethe last is motivated

by the Generalized Cladistic Character Compatibility (GCCC) Problem [12].

First we give an overview of the C1P, some historical background of the prop-

erty, and its applications. We then give a detailed overviewof the reconstruction

of AGOs and show its relation to the C1P. We then show that, among many other

applications, the problem with the reconstruction of AGOs is that it often involves

handling matrices that do not have the C1P. This then leads tothe first contribution

of this thesis: to offer three ways of generalizing the C1P inorder to address this

problem raised in the reconstruction of AGOs. Finally we introduce and motivate

the GCCC Problem. We then propose our fourth and final variantof the C1P that

leads to an algorithm for a case of this problem.

1

a b c d e
1 1 0 1 0
1 0 1 0 0
0 1 0 1 1

(a)

c a b d e
0 1 1 1 0
1 1 0 0 0
0 0 1 1 1

(b)

f g h i j
1 1 0 1 0
1 0 0 0 1
1 0 1 1 0

(c)

Figure 1.1: (a) A binary matrixM that has the C1P. (b) A C1 order ofM. (c)
A binary matrix that does not have the C1P [145].

1.1 The Consecutive-Ones Property

1.1.1 An Introduction of the Consecutive-Ones Property

Let M be a binary (0,1)-matrix withm rows andn columns. Ablock in a row ofM

is a maximal sequence of consecutive entries containing1. A gap is a sequence of

consecutive0’s that separates two blocks, where the size of the gap is the length of

this sequence of0’s. Thedegreeof a row ofM is the number of1’s in the row. The

degree of a matrixM is the largest degree over all rows ofM. In the first row of the

matrix M of Figure 1.1a, the blocks are ab and d, while a gap of size one separates

these two blocks. The degree of the second row ofM in Figure 1.1a is 2, while the

degree ofM is 3.

A matrix M is said to have the C1P (for rows) if its columns can be permuted

such that each row contains only one block (there are no gaps in this case). We call

a permutationπ of the columns ofM that witnesses this property a consecutive-

ones (C1)order of M; that the matrixM′ resulting from this permutation iscon-

secutive, or that it isconsecutive with respect toπ; and thatM has the C1P, or is

C1P. Further, we call the problem of deciding whether or not abinary matrix has

the C1P the C1P Problem. Observe that the matrixM of Figure 1.1a has the C1P,

while permutation cabde of its columns is a C1 order of thisM, cf. Figure 1.1b,

while the matrix of Figure 1.1c does not have the C1P.

According to Kendall [84], this property was first mentionedby Petrie, an ar-

chaeologist, in 1899. In 1951, Robinson [129], also an archaeologist, proposed

several heuristic methods for the problem. The first polynomial-time algorithm for

deciding the C1P was then introduced by Fulkerson and Gross [52] in 1965. Inter-

2

estingly, it was a problem in genetics, cf. Benzer [13], thatmotivated these authors

to study the C1P.

1.1.2 Background: Deciding the Consecutive-Ones Property

The early attempts at deciding the C1P started with the algorithm of

Fulkerson and Gross [52]. In this work, Fulkerson and Gross [52] first compute

the overlap graphfor the set of rows of the binary matrixM. For each compo-

nent (a tree, otherwiseM does not have the C1P) of this graph, they then give a

quadratic-time algorithm to incrementally build a permuted form of this compo-

nent (which corresponds to a set of rows) that has the C1P. Following this, in

1969, Ryser [132] studied this problem and provided a generalization of the re-

sult of Fulkerson and Gross [52] for a class of matrices that have thecircular-ones

property.1 In 1972, Tucker [145] then presented a forbidden submatrix character-

ization of binary C1P matrices. In this work, Tucker [145] shows that a binary

matrix M has the C1P if and only if the bipartite graphGM corresponding toM

contains no asteroidal triple. Here,GM = (V1,V2,E), whereV1 (resp.,V2) is the set

of columns (resp., rows) ofM, and(v1,v2) ∈ E if and only if columnv1 contains

a 1 in row v2 (cf. Figure 1.2). An asteroidal triple of a graph is a set of three

vertices such that there is a path between any two of these vertices which avoids

the neighborhood of the third vertex, cf. Figure 1.2b. This set of forbidden sub-

mitrices then comes directly from the set of bipartite (sub)graphs which contain

an asteroidal triple. For example, the matrix of Figure 1.1cthat does not have the

C1P contains the submatrix obtained by removing column i, shown in Figure 1.2a,

which is a forbidden submatrix because its corresponding bipartite graph, shown

in Figure 1.2b, has an asteroidal triple. Until recently [18, 30, 39], the forbidden

submatrix approach of Tucker was not seen as computationally useful, which is

why people followed other approaches.

In 1976, Booth and Lueker [21] introduced the first linear-time algorithm for

deciding this property. In Booth and Lueker [21], the authors introduced also a

data structure called thePQ-tree, a linear-time constructible structure that encodes

all C1 orders of a binary C1P matrix. See Figure 1.3 for an example of a PQ-tree:

1While we focus here on generalizations of the C1P other than the circular-ones property, refer to
Dom [37] for details on this property.

3

f g h j
1 1 0 0
1 0 0 1
1 0 1 0

(a)

g

f

h j

(b)

Figure 1.2: (a) A binary matrixM that has does not have the C1P. (b) The
bipartite graphGM corresponding toM where the black (resp., white)
vertices correspond to the columns (resp., rows) ofM. GraphGM con-
tains the asteroidal tripleg,h, j.

In Figure 1.3a we have a binary C1P matrix, while Figures 1.3band 1.3c give two

configurations for the PQ-tree of this matrix. This work of Booth and Lueker [21]

was a significant achievement in the history of deciding the C1P. In particular, the

PQ-tree has since served as a useful tool in using the C1P for modelling problems

in many settings. In this thesis, we use the structure of the PQ-tree to obtain several

of our algorithmic results. There would then be a break in research on deciding the

C1P for more than ten years after this milestone result of Booth and Lueker [21].

Year 1989 showed a renewed interest in research on deciding the C1P with

the result of Korte and Möhring [87]. Indeed, while the structure of the PQ-tree

is very elegant and simple, the algorithm in Booth and Lueker[21] for construct-

ing it is quite complicated. This motivated Korte and Möhring [87] to introduce

MPQ-trees (modified PQ-trees), where the internal (P- and Q-) nodes contain some

additional information, which makes these trees simpler toconstruct. In 1992,

Hsu [73] ([76]) also presented a linear-time algorithm to test for the C1P without

using PQ-trees, however its implementation is still quite complicated. In 1998,

Meidanis et al. [106] proposed a new theory of the C1P which formalizes many

concepts alluded to in other works, such asorthogonality of two rows in a bi-

nary matrix [21, 52, 73, 76, 113]. In addition to this new theory, the authors of

Meidanis et al. [106] also introduce a new structure called the PQR-tree, which ex-

ists for any instance of a binary matrix; it generalizes the PQ-tree in that a PQR-tree

4

a b c d e f g
1 0 0 0 1 0 0
1 0 1 0 1 0 0
0 0 1 0 0 0 1

(a)
a

b

c

d

e

f

g

(b)
a

b

c

d

e

f

g

(c)

Figure 1.3: (a) A binary C1P matrixM. (b) The PQ-treeTM for M. Here,
TM has internal (circular) P-nodes and (rectangular) Q-nodes, and leaf
nodes for the set of columns ofM. A leaf order ofTM obtained by taking
any arbitrary (resp., forward or reverse) permutation of the children of a
P-node (resp., Q-node) represents a C1 order ofM. Note that the current
configuration ofTM represents C1 order bdaecgf ofM. (c) Another
configuration of PQ-treeTM representing C1 order dgcaebf ofM. Note
that T(M) has 4!· 2 · 2 = 96 configurations, and henceM has 96 C1
orders.

for a C1P matrix is a PQ-tree. See Figure 1.4a for an example ofa PQR-tree. In

2000, Habib et al. [64] gave a very simple algorithm for deciding the C1P which is

based on partition refinement.

In 2003, Hsu and McConnell [78] introduced a remarkable simplification for

building PQ-trees. Here, these authors introducedPC-trees, a structure that is much

more straightforward to construct, but which encodes all circular-ones orders of a

binary matrix that has the circular-ones property. However, a binary matrixM that

has the C1P has also the circular-ones property, and moreover, there is an easy

way to modify the PC-tree forM so that it yields the PQ-tree forM [37]. In 2004,

McConnell [102] proposed the first linear-time certifying algorithm for deciding

the C1P, that is, if a matrixM is not C1P, the algorithm outputs a certificate of

size linear inM that verifies this.2 In McConnell [102], the author also provided

a slightly different type of structure than the PQR-tree based on partitive families,

called the Generalized PQ-tree, which exists for any instance of a binary matrix;

again, a generalized PQ-tree is a PQ-tree for a C1P matrix. Most recently, in 2010,

Blin et al. [18] developed a faster algorithm for finding the forbidden submatrices

2Refer to Kratsch et al. [90] for more details on such certificates.

5

a b c d e f g
1 0 0 0 1 0 0
1 0 1 0 1 0 0
0 0 1 0 0 0 1
0 1 1 0 0 0 0

(a)

ab c

d

e

f

g

(b)

Figure 1.4: (a) A binary matrixM that does not have the C1P. Note thatM is
the matrix of Figure 1.3a with a fourth row added, causing this matrix to
not have the C1P. (Note also, thatM contains the forbidden submatrix
of Figure 1.2a). (b) The PQR-treeTM for M. Here,TM has the additional
third type of internal (diamond-shaped) R-node. An R-node represents
a part ofM which do not have the C1P (contains a conflicting set of
columns ofM). Note that the PQR-tree of the matrix formed by the first
three lines ofM is equivalent to that shown in Figure 1.3b.

of Tucker [145]. Refer to the works of Michael Dom [36, 37] fora nice survey of

the C1P and its algorithmic aspects, respectively.

1.1.3 Applications of the Consecutive-Ones Property

The Consecutive-Ones Property has had a rich set of applications since its in-

troduction. Indeed, according to Kendall [84], Petrie’s interest in this prop-

erty in 1899 was motivated by the application of the seriation of archaeological

data [72, 84, 129]. The C1P appears in many other practical applications, such as

scheduling [67, 70, 89, 147], information retrieval [54, 88] and circuit and railway

design/optimization [46, 104, 105, 131]. Essentially, theC1P finds applications

in any problem where one needs to linearly arrange a set of objects subject to the

constraint that objects in a given subset must appear consecutively in this order.

Since binary matrices can be represented as graphs and vice versa, the C1P has

close connections to graph theory, in particular to interval graphs and their recogni-

tion [34, 74, 77, 90]. Indeed, much of the progress in deciding the C1P was a result

of research on interval graphs [21, 52, 64, 87]. The C1P also plays an important

role in the area of solving (integer) linear programs, in terms of both its direct appli-

cation to practical linear programming problems [6, 70, 71,147], or how it relates

to linear programming from a more theoretical point of view [115, 116, 136]. From

6

a complexity theoretic point of view, there are many problems on matrices that are

in general NP-hard that become polynomial-time solvable when the input has the

C1P [33, 112], such as problems in railway optimization and scheduling [105, 147].

This has also been shown in the study of covering problems such as set cover, as

well as geometric covering problems such as rectangle stabbing [36, 43, 104, 131].

The C1P has also found applications in quite a few areas of (computational)

molecular biology as different technologies developed over time. Since this ap-

plication is the subject of this thesis, we illustrate this in more detail in the next

few paragraphs. One of its first applications to molecular biology was in the study

of the composition of genes [13, 52, 92]. By 1926, it was already known from

Morgan [109] that genes are arranged linearly on a chromosome. However, by

1959, genetic analysis technology was advanced enough [124] that Benzer [13]

was able to perform a series of experiments aimed at verifying whether a gene is

also a linear arrangement of its components. While the primitive genetic maps of

the set of components that Benzer [13] produced did not altogether exclude non-

linear arrangements, the assumption of a linear arrangement seemed to be the most

probable fit given this data. This would be the first, very crude, form of physical

mapping. It was six years later, in Fulkerson and Gross [52],in the study of this

problem by these authors that they formulated the set of these components from

the experiments of Benzer [13] as a binary matrixM, where each component rep-

resented a rowM. The set of components then has a linear arrangement exactly

when matrixM has the C1P, hence formally defining this notion of the C1P in

Fulkerson and Gross [52] and also introducing the first polynomial-time algorithm

for deciding the C1P. Of course, today it is common knowledgethat a gene is

a linear arrangement of its components, but in Benzer [13], this was an exciting

result that provided the first insights into the finer structure of genes.

More recently, when the technology allowed scientists to begin constructing, en

masse, highly accurate physical maps [93] of hybridizationdata, with the aim of se-

quencing specific DNA strands, it introduced new computational challenges [7, 8],

some of which have been overcome by very applied approaches [32, 58, 94], while

several theoretical works exist on the subject [4, 5, 55, 149]. Since a DNA strand

is too long to study in its entirety (i.e., the human chromosome contains about

108 base pairs [5]), it is broken into fragments, orclones, and the goal of physical

7

mapping is to reconstruct the DNA strand given a collection of overlapping clones

of the strand. A popular approach of the time was Sequence Tagged Site (STS)

mapping [108, 119]. In this approach, relatively short substrings calledmarkers

(or probes) are extracted from the DNA strand itself, but aresufficiently long,

however, that it is highly unlikely to occur twice on the samestrand. Given the

information as to which clones contain which markers, the goal is then to find an

order of markers in such a way that subsets of markers that appear on the same

clone appear consecutively in this order, i.e., one possible reconstruction of this

DNA strand. See Figure 1.5 for an example of an STS physical map. Consider

the binary matrixM where we have a column for each marker, and a row for each

subset of markers that appear on the same clone (i.e., a row with a1 in the column

corresponding to each marker in this subset). It follows that we can find an order

of markers satisfying the above condition if and only ifM has the C1P. In the

next section, we introduce in detail an application in the area of molecular biology,

namely the reconstruction of AGOs, the application that hasmotivated the defini-

tion and study of the several relaxed versions of the C1P thatare the subject of this

thesis.

1.2 The Reconstruction of Ancestral Gene Orders

1.2.1 A Basic Overview of the Reconstruction of Ancestral Gene
Orders

The area of comparative genomics concerns the relationshipbetween the structure

and function of genomes across sets of different species. This involves the analysis

of the information provided by the signatures of selection in an attempt to under-

stand the evolutionary processes that act on these genomes.Studies in this area

have shown that conserved regions between the genomes of a set of species often

contain functionally or evolutionarily associated genes [35, 118]. See Figure 1.6

for an example. From this discipline, and the existing data that has been generated,

comes the natural question of inferring the structure of ancestral genomes, or An-

cestral Gene Orders (AGOs). A set of closely related species, such as mammals in

Figure 1.6 have many regions that are common, or at least similar. We can use this

8

Figure 1.5: A STS physical map of the kallikrein gene region. The posi-
tions of the markers are depicted along the top, and the clones are
shown as horizontal lines. The markers were developed from clone
insert ends (red) and kallikrein genes (blue). The unfilled squares
on clones 338F22 and 003F08 show markers not analysed. (source:
http://westnilevirus.okstate.edu/research/2004rr/13/13.htm)

commonality to reconstruct the AGOs for this set of species.

Given the genomes for a setSof existing species and a set of genomic markers

(such as markers obtained from STS physical mapping, for example, genes), the

reconstruction of AGOs is to infer possible orders of these markers in the chromo-

somes of some ancestor common toS. This assumes that a phylogenetic treeT is

given, with the existing speciesSat the leaves of this tree, and the common ances-

tor is the extinct (unsequenced) species at the internal node ofT that is common to

setS. Note, thatT may contain some less closely relatedoutgroupspecies (leaves

that are not inS), and, in fact, this is a good practice, as the information they pro-

vide helps to produce more accurate reconstructions [27, 96]. As an auxiliary step

to reconstructing AGOs, we first infer a set ofsyntenies, taking from the terminol-

ogy of Chauve and Tannier [27], i.e., groups of markers that are believed to appear

together in this ancestor, cf. Figure 1.7 for an illustration of this. An AGOs is then

any order of the markers such that each group of markers in a synteny appears to-

9

http://westnilevirus.okstate.edu/research/2004rr/13/13.htm

Figure 1.6: The alignment of a human genome against several mammals and
a chicken genome. Here, the regions of each genome that code for
the Apolipoprotein A1 gene (a gene that has an important rolein lipid
metabolism) are highly conserved, and hence similar, for all mammals.
(source:http://www.lbl.gov/tt/techs/lbnl1690.html)

gether in this order. The value of reconstructing AGOs is that it can give us insights

into the biology, ecology, and evolution of extinct species[26, 56]. Experimentally,

at least for proteins, the reconstruction of ancestral proteins has led to the discov-

ery of new biochemical functions that have been lost in modern proteins [80, 133].

Since the input to this problem is a phylogeny treeT, this area is closely related to

phylogenetics [45] (constructing a phylogeny tree for a setof species, etc.). There

are also studies of reconstructing phylogenies for a set of existing species given

AGO data as well as computing both simultaneously [1].

10

http://www.lbl.gov/tt/techs/lbnl1690.html

Figure 1.7: An illustration of the inference of syntenies for the ancestor com-
mon to setS= {human, mouse, dog} of species with outgroup species
chicken. A synteny is a group of markers that appears together in at least
two species whose path goes through the considered ancestor. Here, the
first synteny appears in the human and the dog, and the second is in-
ferred from the chicken and the mouse, while the fourth one appears
in all three species ofS. These syntenies can be weighted according to
how often they appear in the existing species, i.e, this fourth synteny
would be weighted more heavily than the first two. (animal skeleton
reproduced with permission fromwww.bigstock.com)

1.2.2 Previous Approaches to Reconstructing Ancestral Gene Orders

While the problem of reconstructing AGOs has been studied even as early as 1936

for simpler organisms such as insects [140], cytogenetics technology such as chro-

mosome painting allowed scientists to start reconstructing more complex organ-

isms such as mammals [50, 127, 141, 142, 150, 153] in the earlyto mid 2000’s. At

roughly the same time, because physical maps for different species became avail-

able [5, 108, 119], many bioinformatics methods for reconstructing AGOs from

physical mapping data also began to appear [22–24, 111]. Thebenefit of bioinfor-

11

www.bigstock.com

matics methods over cytogenetics methods is that they produce AGOs at a much

higher resolution. However, since physical mapping is still a young field, there

are fewer such existing genome sequences available [44, 110, 126]. Since physical

maps continue to be generated at an explosive rate (one reason being the drop in

the cost of next generation sequencing technology) it is expected that bioinformat-

ics methods will be the dominating technology for reconstructing AGOs. These

bioinformatics methods use various differing approaches in processing data from

physical maps. However, scientists started to notice a divergence between some

of the bioinformatics methods that use a parsimony approachin terms of evolu-

tionary events (reversals, translocations, fusions and fissions), in particular, the

works [22, 111], with cytogenetics studies [51]. However, in 2006, the first bioin-

formatics approach to this problem appeared in Ma et al. [96]that, when applied

to mammalian genomes, gave results that were more in agreement with cytoge-

netics methods, while exhibiting few points of divergence [130]. We present this

important result in more detail in the next paragraph.

Given the genomes for a setS of existing species (in their experiments,S

consists of human, mouse, rat and dog, while they use the two outgroup species

chicken and opossum), and phylogeny treeT containing S, the approach of

Ma et al. [96] is to first segment the multispecies alignment of S with the human

genome as a reference (or more precisely, nets, cf. Kent et al. [85]) to build a set of

orthology blocks[96]. Orthology blocks are essentially regions that are common

(regions that are of some minimum size, here 50kb [96], that meet a certain similar-

ity threshold) among all species inS. From these orthology blocks, Ma et al. [96]

then computeconserved segments, that is, sequences of orthology blocks that re-

main together and in the same order in all species inS, see Figure 1.8. Finally,

from the set of pairs of conserved segments, where each pair appears adjacent in

some species ofS, they extract a maximal unambiguous subset of adjacencies to

construct Contiguous Ancestral Regions (CARs). In order todo this, they employ

a method analogous to Fitch [48] to find the most parsimoniousscenario for each

of these adjacencies. This has the effect of assigning each adjacency a weight

between 0 and 1, where the weight is the measure of confidence that this adja-

cency appears also in the ancestor. The set of outgroup species (here, chicken and

12

opossum) is used to improve the accuracy of this step. Consider now the graph3

G= (V,E), where the vertex setV is the set of conserved segments, and setE of

(weighted) edges is this set of weighted adjacencies. Sincethe goal to infer a set of

AGOs, they construct a graphG′ incrementally by selecting edges fromE in order

of decreasing weight, skipping over any edge in this order that creates either

(a) a vertex of degree larger than two, or

(b) a cycle,

in the currentG′. At the end of this process,G′ should be a union of disjoint paths,

where any layout of these paths on a line represents a potential AGO for this set

Sof species. Here, it is each disjoint path, or rather its set of conserved segments

that represents a CAR. Figure 1.9 represents the set of CARs constructed in the

experiments of Ma et al. [96]. The mapping of these CARs (cf. Figure 1.9) onto

the chromosomes of the human show quite a similarity, which is expected, as these

CARs essentially represent ancestral chromosomal segments.

While this approach of Ma et al. [96] uses a parsimony method to weight each

adjacency, there are no assumptions on any evolutionary events, nor is each CAR

even guaranteed to be an ancestral whole chromosome, rathertheir approach is

model-free, taking from the terminology of Adam et al. [1]. Indeed, the model-

free approach avoids computing any global parsimony in terms of evolutionary

events such as reversals, translocations, fusions and fissions, which is what all

the methods whose results diverge with those of cytogenetics studies [51] rely on.

This, and the fact that Ma et al. [96] is the first bioinformatics method to agree well

with cytogenetics methods [130], suggests that a model-free approach is a step in

the right direction. In the next subsection, we present a model-free framework

for reconstructing AGOs based on the C1P of binary matrices.Note that model

of adjacencies, used here in Ma et al. [96], is the special case of degree 2 binary

matrices. Indeed, with the method of Ma et al. [96], the link between the C1P and

the reconstruction of AGOs started to become explicit. The approach we propose

generalizes this method of Ma et al. [96] (in one sense, that it concerns matrices

3Note that in Ma et al. [96], they consider a directed graph, however the principle is the same.
This detail is left out to ease the summary of this method.

13

Figure 1.8: (a) Human-mouse nets [85] with human as the reference. Four
mouse intervals are depicted, as ordered and oriented by theortholo-
gous human segments. The second and third mouse intervals are ad-
jacent (and appropriately oriented) on a mouse chromosome,and the
intervening bases, if any, do not align to human, and are depicted by a
thin line connecting these intervals. (b) The human-mouse,human-rat
and human-dog nets for a segment of the human sequence, whichillus-
trates the construction of orthology blocks (OB). (c) The construction
of conserved segments (CS) from the fusion of runs of consecutive or-
thology blocks whenever the order and orientation of these blocks are
conserved in each of the existing genomes. (source: Ma et al.[96])

14

Figure 1.9: The set of CARs for the Boreoeutherian ancestral genome (of
human, rat, mouse and dog) constructed from the experimentsof
Ma et al. [96]. Numbers above bars indicate the corresponding human
chromosomes. (source: Ma et al. [96])

15

of degree larger than 2), and is the state of the art in terms ofmethodologies for

reconstructing AGOs.

1.2.3 Binary Matrices, the C1P and the Reconstruction of AGOs

We now outline the approach for reconstructing AGOs based onthe C1P of binary

matrices that formalizes and generalizes the principles used in several computa-

tional [1, 96] as well as the cytogenetics studies [127, 150,153]. This approach

can be broken down into the following two steps. The first is a data acquisition

phase: where we compute from the alignments of these genomesa set (or alpha-

bet) of genomic markersL = {1, . . . ,n}. From this setL of genomic markers we

then compute the groups of markers (syntenies) that are believed to be contiguous

in the ancestral genome. Here, we represent the set of syntenies with a binary ma-

trix M on the set of columnsL where for each syntenyX ⊆L , we have a row in

M with a 1 in every column ofX, and0’s everywhere else. In general each syn-

teny (row ofM) can also be weighted according to the confidence that it appears

in the ancestral genome. The second step of this approach consists of transforming

this matrixM into a C1P matrix. It is this second step that we concentrate on in

this thesis, however, we will see later that the way to approach this second phase

depends very much upon the data acquisition phase. Indeed, from a computational

point of view, this approach is closely related to physical mapping: if M has (or

can be transformed into a matrix that has) the C1P, then we canfind an order of

markers that represents an AGO. Because syntenies of markers are naturally repre-

sented by binary matrices in this way, it also follows that there can be many AGOs

that are consistent withM. This set of AGOs can be encoded in a compact way

with some uncertainty by the PQ-tree for (the possibly transformed)M, which is

another benefit of C1P-based approach.

The first work to represent AGOs with PQ-trees appeared in 2004.

Bergeron et al. [15] used a Fitch-like [48] approach to find a most parsimonious

scenario for the set of intervals (sytenies) defined by this PQ-tree. This work was

quite preliminary however, and the experiments were performed on fairly basic

chloroplast genome data. A year later, in 2005, Landau et al.[91] also use PQ-trees

for ancestral genomes, but also in a parsimony context. Here, Landau et al. [91]

16

also suggest a way of representing duplicated genes (genes with multiplicity, which

we will cover later in this thesis), but show only how this approach works on some

experimental data. Following this, in 2006, Parida [121] improved on the result of

Landau et al. [91] by using a PQ-tree where some of the internal nodes are oriented,

to help to uniquely construct the orders it encodes, as well as a branch-and-bound

scheme for outputting all solutions, rather than just the most parsimonious solution.

Again, while the concept of Parida [121] is on the right track, they only give prelim-

inary experimental results to test this concept. In 2007, the work of Adam et al. [1]

also considered representing AGOs with PQ-trees. Here, they are concerned with

computing the phylogeny and the AGOs, where they frame it as solving the Steiner

Tree Problem. While they perform experiments only on fairlybasic chloroplast

genome data as well, this is the paper that introduces the model-free approach to

using bioinformatics methods for reconstructing AGOs. Note that, while this is not

made explicit, Ma et al. [96] also represent AGOs with PQ-trees. In Ma et al. [96],

L is their set of conserved segments, andM stores the set of adjacencies (i.e.,M

has degree 2). This union of disjoint paths that they build isthen equivalent to a

PQ-tree with a P-node as the rootr, where each child ofr, containing only Q-nodes

(sinceM has degree 2) corresponds to a path (or CAR). Next we detail the work of

Chauve and Tannier [27], where this two step approach for reconstructing AGOs

based on the C1P and PQ-trees was first developped.

Here we give some details of the method of Chauve and Tannier [27].

While this approach generalizes the approach of Ma et al. [96] (for one thing,

Chauve and Tannier [27] consider matrices of degree larger than 2), these ap-

proaches are very similar in spirit. Here, given the markersfor setS of species

(and possibly some outgroup species) with phylogenetic tree T on S (and the out-

group species), they first compute the setL of markers. Here they mention that

markers can be genes from whole genome alignment methods, orthologous genes,

or various others (from comparative maps [111] or virtual hybridization [10] for

example). From the input representation ofS, Chauve and Tannier [27] compute

(maximal) sets of markers, i.e., syntenies, that appear consecutively4 in at least two

4Note that, more precisely, Chauve and Tannier [27] compute aset of gene teams [9, 95]: synte-
nies, as we have defined them here are gene teams forδ = 1 [27]. We leave these details out to ease
the explanation of the principles of this approach of Chauveand Tannier [27].

17

species fromS, where the path inT between these two species goes through the

node for the ancestor which we wish to reconstruct. These syntenies are weighted

using the same principle in Ma et al. [96] for weighting adjacencies, and outgroup

species are also used to improve this step. In fact, the set ofsyntenies inferred in

Figure 1.7 is exactly what the method of Chauve and Tannier [27] would obtain.

Note that, since an adjacency is a synteny of size two, this method is more general

than that of Ma et al. [96]. One reason for considering these more general syntenies

is that it is closer to the methods [127, 150, 153] on cytogenetics data. Indeed, the

inference of syntenies in Chauve and Tannier [27] is a bioinformatics version of

the hybridization used by cytogeneticists, which explainsthe convergence between

these two approaches. Chauve and Tannier [27] represent theset of syntenies with

a binary matrixM on the set of columnsL where for each syntenyX ⊆L , they

have a row inM with a1 in every column ofX, and0’s everywhere else. We now

outline the second step of the approach of Chauve and Tannier[27], transforming

M into a C1P matrix.

Given binary matrixM, constructing an AGO forSthen corresponds to finding

a linear order ofL , such that eachX appears consecutively in this order, i.e., a C1

order ofM. In fact, all AGOs forScan be represented by building the PQ-treeTM

for M. Here, the set of CARs forSwill be the children of the root noder of TM (as

it was in Ma et al. [96], however they can contain also P-nodesnow, as each row

of M has degree larger than 2 in general). It is here that the C1P plays an impor-

tant role in the reconstruction of AGOs of Chauve and Tannier[27], i.e., that they

can represent sets of CARs with a PQ-tree [21]. Indeed, for the set of syntenies

inferred in Figure 1.7, the matrix (which is C1P) for this setis given along with the

PQ-treeTM for M in Figure 1.10. However,M rarely has the C1P as we will see

later, and so Chauve and Tannier [27] do the following to build this PQ-tree (im-

plicitly transformingM into a C1P matrix). At this point, they could employ the

greedy heuristic of Ma et al. [96] of incrementally buildinga PQ-tree by selecting

syntenies in order of decreasing weight, and skipping over any synteny that creates

a conflicting set in the collection of currently selected syntenies. Rather than doing

this, however, they build first a generalized PQ-tree (a PQR-tree [106], or the gen-

eralized PQ-tree from McConnell [102]), and then find a subset of sytenies (rows

of M) of maximum cumulative weight, such that the matrixM′ of this subset has

18

Figure 1.10: The binary matrixM corresponding to the set of sytenies in-
ferred in Figure 1.7 and the PQ-treeTM for M. Note that each CAR is
a child of the root P-noder of TM.

the C1P, i.e., the generalized PQ-tree forM′ is a PQ-tree. While this approach is

not greedy, it is the combinatorial optimization problem known as the Consecutive-

Ones Submatrix Problem. Here, Chauve and Tannier [27] use the structure of this

generalized PQ-tree forM to design an efficient branch-and-bound algorithm for

this problem.

In experiments, the method of Chauve and Tannier [27] agreeswell with all of

the cytogenetics studies [50, 127, 141, 142, 150, 153] as well as with the work of

Ma et al. [96], while disagreeing with the same approaches (that are not model-

free) that Ma et al. [96] disagrees with. However, differentexperiments (from

data at different levels of resolution, or variations on theinput phylogenyT) show

that the approach of Chauve and Tannier [27] is more stable ingeneral than that

of Ma et al. [96]. One reason for this is due to the fact that, while CARs from

syntenies are less well-defined than those of adjacencies (they are degree larger

than two), they are better supported because every computedsynteny appears in

at least two existing species whose path inT goes through the considered ances-

tor. Another reason is likely due to the fact that in certain cases, the optimization

19

phase of Chauve and Tannier [27], can do much better than the greedy approach of

Ma et al. [96]. While both the greedy approach of Ma et al. [96]and the optimiza-

tion approach of Chauve and Tannier [27] tend to work well in practice (these are

the state of the art in bioinformatics methods for reconstructing AGOs), there is

much more work to be done in the area of handling a matrix that does not have the

C1P. The first step in this effort is to studywhymatrix M does not have the C1P.

Indeed, previous works [27, 96] point this out, which we go into more detail in the

next paragraph.

Indeed, the second step of this two step approach of reconstructing AGOs based

on the C1P of binary matrices, is to transform binary matrixM into one that has

the C1P. Ideally, if each synteny was atrue positiveancestral synteny, thenM

would be C1P, however matrices from real data are rarely C1P.Rather some of

the syntenies arefalse positives, i.e., not contiguous in the true ancestral genome.

The reason and nature of these false positives depends highly on the data acquisi-

tion method. Depending on the method used, the reasons for this can be errors in

constructing the set of markersL , such as errors in the assembly from the whole

genome alignments, such as paralogs being mistaken for orthologs in the construc-

tion of orthology blocks [96]. Other reasons come from the construction of incom-

plete syntenies due to the convergent loss of markers, and two syntenies joining

together (creating a “chimeric” synteny) due to the convergent fusion of chromo-

somal segments in several lineages. For example, this second case of chimeric

syntenies might happen especially in genomes of yeasts where we generally see

many translocations [81, 128]. Indeed, it is unavoidable that we must deal with

matrices that do not have the C1P. This is what motivates the work in this the-

sis. Why these matrices do not have the C1P depends on the nature of the errors

in the data acquisition phase. In the next section, we illustrate the several open

problems on such matrices, raised by these different types of errors, some of these

mentioned in Chauve and Tannier [27], and then propose several relaxations of the

C1P to address these problems, which is the contribution of this thesis. In some

cases, solving these generalizations is NP-complete, and in other cases, there are

algorithms for finding a solution.

20

1.3 Computational Solutions for non-C1P Matrices

1.3.1 Transforming the Matrix to a C1P Matrix

The first and most direct approach, taken in previous works [27, 96] is to transform

the binary matrixM into one that has the C1P. Indeed, because of the assump-

tions made on the nature of the errors expected in their datasets (that the markers,

i.e., columns, were inferred correctly), in Chauve and Tannier [27] they consider

all computed syntenies, and extract a maximum subset of rows, such that subma-

trix M′ of M defined by this set of rows is C1P. However, one could also remove

columns fromM if one was less confident on the correctness of the markers for

example, or flip some entries inM from 0 to 1, or from 1 to 0 to account for

approximate syntenies. It follows, however that all corresponding optimization

problems are NP-complete [36, 38, 66], even for sparse matrices [143]. For the

case of extracting a maximum subset fromM of rows or columns that is C1P, it

has been shown in Dom [36] that this is also APX-hard and W[1]-hard. Aside from

the work of Chauve and Tannier [27] and the reconstruction ofAGOs in general,

this problem of transforming a matrixM into one that has the C1P, while minimiz-

ing the modifications toM can be found in other applications [8, 143], as well as

physical mapping [7, 55, 94, 149]. The latter comes as no surprise, since, from a

computational point of view, physical mapping is also determining the C1P of a

binary matrix in the presence of errors (in assembly, computing markers, etc.). We

now introduce the contribution of this thesis: in the next three subsections, we out-

line three variants of the C1P motivated by this problem of reconstructing AGOs

that we have proposed and/or studied here.

1.3.2 Relaxing the C1P

Another approach for handling a binary matrixM that does not have the C1P is,

instead of transformingM, to relax the notion of the C1P, and then decide whether

M has this relaxed property. A natural relaxation of the C1P isto allow gaps in

each row of this “relaxed” C1 order ofM. Indeed Chauve and Tannier [27] they

claim that in their reconstructions, certain syntenic features are not captured with

the strict nature of the C1P. Rather, if some number of gaps were allowed [16, 122],

21

a significantly larger number of syntenies would be detected. However, allowing

gaps could radically change the combinatorial nature of this problem, which means

we cannot rely anymore on PQ-trees to encode all solutions, apowerful tool in

using an approach based on the C1P for reconstructing AGOs.

Indeed a relaxed form of the C1P with gaps was considered in 1995, motivated

by problems in the area of physical mapping [55]. Here Goldberg et al. [55] intro-

duce the notion of thek-Consecutive-Ones Property (k-C1P). A binary matrixM

has thek-C1P when its set of columns can be permuted such that each rowcon-

tains at mostk blocks. This is a fairly general form of relaxing the C1P, as it does

not put any restriction on the size of the gaps between blocks. Goldberg et al. pro-

posed this relaxation of the C1P to handle the case in physical mapping of chimeric

clones: when sets of markers from two distant clones appear as the same clone,

an artifact of hybridization [149]. Interestingly, from a computational standpoint,

this is identical to the case of Chauve and Tannier [27] when two syntenies join

together (creating a “chimeric” synteny) due to the convergent fusion of chromo-

somal segments in several lineages. Thek-C1P models this case well, as there is

no restriction on the distance between the two syntenies that join together to form

the chimeric clone. However, this relaxation is indeed radically different in combi-

natorial nature, as Goldberg et al. [55] show that deciding if a binary matrixM has

thek-C1P is NP-complete.

Chauve and Tannier [27] state, however, that a decision problem of

“consecutive-ones with allowed gaps” is still open, i.e., each row of the matrix

must have consecutive-ones, except that between each pair of ones, a fixed num-

ber of zeros is allowed. So, in this setting, it makes sense toconsider a limit on

the maximum size of any allowed gap. This idea has been motivated in other

works as well. Indeed, Pasek et al. [122] consider an arbitrary number of fixed-

sized gaps and are able to capture interesting conserved syntenic features. Further,

Ouangraoua et al. [117], in work on double-conserved syntenies, show that when

trying to transform their obtained matrixM into a C1P matrix, they must discard a

large number of syntenies, and conclude that the C1P is not the proper model here,

and that gaps are needed.

The first variant of this thesis is relaxation of the C1P with alimit on the max-

imum size of any gap. Here we define the Gapped C1P, or the(k,δ)-Consecutive-

22

Ones Property.

Property 1 ((k,δ)-Consecutive-Ones Property ((k,δ)-C1P)). A binary matrix M

has the(k,δ)-C1P for the two integers k andδ if the columns of M can be ordered

such that each row contains at most k blocks, and no two neighboring blocks of1’s

are separated by a gap of size more thanδ .

Notice that the classical C1P is equivalent to the(1,0)-C1P. If any of the two

parameters is unbounded, we replacek or δ with ∞. For instance, thek-C1P is

equivalent to the(k,∞)-C1P. Note also, then, that in the work of Pasek et al. [122]

they consider precisely the(∞,δ)-C1P. Here, we call a permutationπ of the

columns ofM that witnesses the(k,δ)-C1P a(k,δ)-consecutive-ones ((k,δ)-C1)

order of M; that the matrix resulting from this permutation is(k,δ)-consecutive,

or that it is(k,δ)-consecutive with respect toπ; and thatM is (k,δ)-C1P, or has

the (k,δ)-C1P. Note that, for smallk andδ , this is a stricter model than the ones

considered before, such as thek-C1P [55] or that of Pasek et al. [122]. A model

that is even more strict would be to consider the number of0’s in gaps in the entire

matrix (in addition to the constraintsk andδ) as a third parameter. This remains an

interesting open question. Although the(k,δ)-C1P is stricter than previous mod-

els, we show in this thesis, however, that deciding this property is computationally

hard for the most part.

We give our first set of results, the complexity of deciding the (k,δ)-C1P in

Chapter 2 of this thesis. In Section 2.3, we show that for every k≥ 2,δ ≥ 1,(k,δ) 6=
(2,1), deciding the(k,δ)-C1P is NP-complete, leaving open only case of the com-

plexity of the(2,1)-C1P. We show that this remains NP-complete even if one of

the two parameters is unbounded:

(i) for every k ≥ 2, deciding the(k,∞)-C1P is just the problem of deciding if

matrix M has thek-C1P, and is thus NP-complete by Goldberg et al. [55],

and

(ii) for every δ ≥ 1, deciding the(∞,δ)-C1P is NP-complete (Section 2.5).

While the complexity of the (2,1)-C1P remains open, we do provide an algorithmic

result for a relevant case of the (2,1)-C1P in Section 2.4. Wenow mention several

other versions of the C1P with gaps considered in other works.

23

Another slightly different version of the C1P with gaps was considered in

Haddadi [65], where they show that finding an order of the columns that mini-

mizes the number of gaps in the entire matrixM is NP-complete, even if each row

of M has degree at most two. While the works [75, 94] do not deal with the C1P

with gaps, they do propose algorithms for recognizing matrices that are “close”

to having the C1P in some sense. Aside from this, Dom [36, 37] presents an ap-

proximation algorithm as well as a fixed parameter algorithmfor instances of the

Set Cover Problem that are “close” to having the C1P, which basically means that

either the input matrices have been generated by starting with a matrix that has

the C1P and replacing randomly a certain percentage of the1’s by 0’s [104], that

the average number of blocks of1’s per row is much smaller than the number of

columns of the matrix [131], or that the maximum number of blocks of1’s per row

is small [105]. In light of this, approximation schemes remain to be considered for

the(k,δ)-C1P, as well as any natural parameter that could lead to a Fixed Param-

eter Tractable (FPT) result. In the next subsection, we consider the(k,δ)-C1P for

matrices of bounded degree which is the second variant of this thesis.

1.3.3 Matrices of Bounded Degree

The NP-completeness results on deciding the(k,δ)-C1P of Chapter 2 involve con-

structions with many rows of large degree. After examining some data from the

experiments of Chauve and Tannier [27], however, we found that this is not always

realistic. We considered here the ancestral syntenies dataset for the boreoeutherian

ancestor of Chauve and Tannier [27] at a resolution of 200kb,with 1651 markers

(i.e., columns) and 2515 syntenies (rows).5 In this dataset, we observed that 90%

of the syntenies have small degree (less than or equal to 16, which is less than

1% of the number of columns of this matrix). In addition to this, each of the re-

maining 10% of the syntenies (with degrees 17 to 99) containsbetween 16–144

of these syntenies of degree less than or equal to 16. Indeed this makes sense, as

a long common interval that does not contain any other commoninterval would

not be realistic. Hence, if the syntenies with large degree (10%) are discarded, the

majority of the information is preserved. Indeed, this has already been shown in

5This dataset can be found at
http://www.cecm.sfu.ca/∼cchauve/SUPP/ANCESTOR08/BOREO 200 u/index.html.

24

http://www.cecm.sfu.ca/~cchauve/SUPP/ANCESTOR08/BOREO_200_u/index.html

Chauve and Tannier [27]: when considering only adjacencies(matrices of degree

2), they obtain only slightly more CARs than in the general case of syntenies. This

illustrates again that most of the signal is captured in small common intervals. In

light of these two analyses, it makes sense to consider versions of the(k,δ)-C1P

where the degree is bounded, especially if this could resultin algorithms for these

versions. Note that this would apply to chimeric syntenies:that we would expect

that the individual syntenies that compose them will be detected as well, and then

we just need to remove the row corresponding to a chimeric synteny.

To take into account the above observations, we consider here the case of the

(k,δ)-C1P for matrices of bounded degree. This forms the second result of this

thesis, given in Chapter 3. Formally, we define the(d,k,δ)-Consecutive-Ones

Property.

Property 2 ((d,k,δ)-Consecutive-Ones Property ((d,k,δ)-C1P)). A binary matrix

M has the(d,k,δ)-C1P when the bound on the maximum degree of any row of M

is d, and M has the(k,δ)-C1P.

We call a permutationπ of the columns ofM that witnesses this property a

(d,k,δ)-consecutive-ones ((d,k,δ)-C1) order; that the matrixM′ resulting from

this permutation is(d,k,δ)-consecutive, or that it is(d,k,δ)-consecutive with re-

spect toπ; and thatM is (d,k,δ)-C1P, or has the(d,k,δ)-C1P. In Chapter 3,

Section 3.1, we first show that if all three parameters are fixed, deciding the

(d,k,δ)-C1P is related to the deciding the bandwidth of a graph, and can be de-

cided in polynomial time by slightly modifying an algorithmof Saxe [135] for

recognizing graphs with a fixed constant bandwidth. While this algorithm is only

practical for small values of the parameters, this is usually the case in practice

(cf. Chauve and Tannier [27] and discussion in previous paragraphs). Currently, an

implementation of this algorithm on biological data is in a preliminary stage. We

point out that for the case whered = 2, we can also take advantage of the faster

linear-time algorithm of Caprara et al. [25] for the bandwidth 2 case. An interest-

ing open question here is whether or not the techniques used in Caprara et al. [25]

can be extended to matrices of degree (and graphs of bandwidth) larger than two.

After obtaining this algorithmic result for the case of deciding the(d,k,δ)-C1P

when all three parameters are fixed, we began to study the complexity of deciding

25

this property when one or more of these parameters is unbounded. The case withd

unbounded is just the(k,δ)-C1P, and hence the complexity of deciding everything

except for the(∞,2,1)-C1P, or just the(2,1)-C1P is known. Since fixingd also

fixesk (k≤ d), the only case that remains for us to consider is the case when δ is

unbounded, or the(d,k,∞)-C1P. The motivation from a practical point of view to

consider this case is that it concerns chimeric syntenies (the gap size is unbounded)

where we assume that we do not lose too much information by considering only

syntenies with low degree as argued above. Here, in Chapter 3, Section 3.2.4, we

show that in every non-trivial case, deciding this propertyis NP-complete, i.e., for

everyd > k≥ 2, deciding the(d,k,∞)-C1P is NP-complete. Note that ifd= 2, the

this becomes the C1P, and ifd ≤ k, then any order of the columns ofM is a valid

solution, since no row can have more thand blocks of1’s. This case is also of

importance to physical mapping, since chimerism is a phenomenon that happens

here also. In particular, since the setting when clones are short and there is limited

coverage of the sequence by the clones is likely to be more realistic (similar to

how it is in the reconstruction of AGOs), Goldberg et al. [55]pose the question of

deciding the 2-C1P when the number of ones per row and per column is bounded.

Interestingly, the construction we use in Section 3.2.4 of Chapter 3 happens also

to use a bounded number of ones per column, and hence we answerthe above

question posed by Goldberg et al. [55]. In the next subsection, we present the third

variant of the C1P of binary matrices that we study in this thesis.

1.3.4 Matrices with Columns of Multiplicity

Here, we present the third variant of the C1P of binary matrices that we study in

this thesis, namely to allow columns to appear multiple times in a C1 order. While

this is technically another relaxation of the C1P, it is verydifferent than the ones

considered previously. It also models a very different phenomenon in the recon-

struction of AGOs, namely duplicated (or indistinguishable) markers. Indeed, a

preliminary approach for handling this was mentioned in Landau et al. [91]. Alter-

native ways of handling duplicated markers was also a line offuture research posed

in Chauve and Tannier [27]. The input to C1P based approach mentioned above for

reconstructing AGOs is a set of pairwise distinct markersL = {1, . . . ,n}. This as-

26

sumption is needed for the use of the C1P and, in particular, PQ-trees for the recon-

struction of AGOs (the columns of the binary matrixM that is the input to deciding

the C1P are pairwise distinct). In order to cope with datasets containing duplicate

markers (among other things like missing or overlapping markers which are beyond

the scope of this discussion), in Chauve and Tannier [27] they use approximate in-

tervals of markers in the detection phase. That is, a set of markers need only be ap-

proximately similar (e.g., 80% similar) between two species fromS, where the path

in T between these two species goes through the ancestor, for it to be considered

a synteny (a row inM). This approach in some sense allows the existence of du-

plications by relaxing the detection of syntenies. An alternate approach suggested

in Chauve and Tannier [27] would be to infer some pre-duplication AGO, which

has been considered in some rearrangment-based works such as [3, 41, 134].6

Chauve and Tannier [27] also mention that there exist algorithms for computing

syntenies between pairs of genomes with duplicate markers [16], or with dupli-

cate segments followed by losses in both copies [146]. However, because these

algorithms account for duplicates, the input is not assumedto be a set of pairwise

distinct markers anymore, and hence one cannot use the C1P tomodel AGOs here.

In 2009, a year after the important result of Chauve and Tannier [27],

Stoye and Wittler [139] present a parsimony approach for reconstructing AGOs7

that uses PQ-trees [139]. Here, they propose a framework based on

Bergeron et al. [15], which is what Chauve and Tannier [27] isbased on, and pro-

vide an efficient method for finding a most parsimonious AGO, which they show

works well in practice. In this work of Stoye and Wittler [139], they propose ex-

tending their models to allow markers to appear multiple times (to account for

duplications). A year after this, in Wittler and Stoye [151], the authors then for-

mally define a model that incorporates markers with multiplicity. This model is

equivalent to deciding the following property of binary matrices.

Property 3 (Consecutive-Ones Property with Multiplicity (mC1P)). Given a bi-

nary matrix M on columns S= {1, . . . ,n} and a functionm : S→ N, is there a

6Refer to Ma et al. [97] for a solution to handling duplicate markers in the case of physical map-
ping.

7More accurately, their work concerns models ofgene clusters, of which a set of syntenies used
to reconstruct an AGO is one such model. We only discuss theirwork in the scope of reconstructing
AGOs to remain within the subject of this thesis.

27

sequenceσ over alphabet S that

(i) σ contains each column s∈ S at mostm(s) times, and

(ii) for each row r of M, the set of columns that have entry1 in r form at least

onesubsequenceof σ .

Note that deciding this property becomes trivial if we allowany column to have

arbitrary multiplicity, i.e., we could takeσ to be the concatenation of all rows of

M. Of course, such a long AGO would be dubious, and hence a threshold on the

multiplicity of each marker is reasonable. This is why Wittler and Stoye [151] in-

troduce thismultiplicity constraint(i). This property generalizes the C1P: indeed

the C1P is the case whenm(s) = 1 for all s∈ S, i.e., that there simply is apermu-

tation π over the alphabetSsuch that (ii) holds. Here, we call this themC1P. Of

course, now that this problem has moved outside the domain ofpermutations into

sequences, the classical C1P and the associated PQ-tree do not apply anymore. A

natural question to ask then is the complexity of deciding the mC1P.

In Wittler and Stoye [151], they show that deciding themC1P can be done

in polynomial time if each row ofM has degree at most 2 (which is the model

of adjacencies) by showing that this problem is equivalent to deciding if a graph

is Eulerian. The authors of Wittler and Stoye [151] also showthat if each row

has degree at most 5, then themC1P, as well as two restricted variants motivated

by biological settings, is NP-complete. We mention that oneof these restricted

variants, the case of framed common intervals on permutation, was the first model

used to formally state the problem of reconstructing AGOs using PQ-trees [15].

In this thesis, we improve these NP-completeness results toeach row having

degree at most 3 (resp., at most 6 in the case of the framed common intervals

variant), whilem(s) ≤ 2 for eachs∈ S, whereS is the set of columns ofM. We

give these results in Section 4.1 and 4.2 of Chapter 4. The techniques used here to

improve these NP-completeness results are based on those introduced in Chapter 3

for showing NP-completeness of deciding the(d,k,∞)-Consecutive-Ones Property

((d,k,∞)-C1P).

Finally, in Section 4.3 of Chapter 4, we then present a tractability result which

is motivated in the following. The C1P based approach for reconstructing AGOs

28

introduced here (for example, by Chauve and Tannier [27]) involves computing

a set of ancestral syntenies represented by binary matrixM, and then building a

PQ-tree forM (by possibly transformingM to a C1P matrix). Here, each subtree

rooted at a child of the root of this PQ-tree represents a CAR.A CAR is an an-

cestral chromosomal segment, but it is not guaranteed to be acomplete ancestral

chromosome. In fact, it is common that the number of CARs obtained is larger than

the expected number of ancestral chromosomes. This raises the following natural

question: which CARs are believed to form complete ancestral chromosomes, or

more generally, to contain an extremity of an ancestral chromosome (an ancestral

telomere)? Indeed, a CAR with two ancestral telomeres is in fact a complete an-

cestral chromosome. Moreover, when CARs are grouped into syntenic sets, that is,

sets of CARs that are believed to belong to the same ancestralchromosome, each

such syntenic set of CARs can contain only two ancestral telomeres. We address

this question as follows. A columnc′ with multiplicity (bounded, for example, by

twice the maximum expected number of ancestral chromosomes, or more generally

with infinite multiplicity) can then be used to represent telomeres, that is, virtual

extremities of ancestral chromosomes. Then any ancestral synteny that contains

putatively a marker that is an extremity of an ancestral chromosome (for exam-

ple because the ancestral synteny is telomeric in two existing descendants of the

considered ancestor) can be represented by two rows inM: a row representing the

ancestral synteny, plus a copy of this row with an additionalentry 1 in column

c′. This structure ensures that ifM has themC1P, then the occurrences ofc′ are

located at the extremities of the CARs. Otherwise (M does not have themC1P),

some rows can be discarded to result in a matrixM′ that has themC1P, with the

same property. This assumption on the structure ofM is fundamental to leave open

the possibility for any ancestral synteny to be at the extremity of a CAR or to be

embedded inside a CAR. It follows that the tractable family of matrices considered

here meets precisely this assumption.

Formally, in Section 4.3 of Chapter 4, we present a tractability result for a

family of matrices where every row ofM has (i) at most one entry1 in columns

with multiplicity greater than one, or (ii) exactly two entries 1 in columns with

multiplicity greater than one and no other entries. Our proofs rely on the two

classical concepts of PQ-trees and Eulerian graphs. The final section of this thesis

29

outlines our study of the GCCC Problem, where we present our fourth and final

variant of the C1P that we use to develop an algorithm for a special case of this

problem.

1.4 The Generalized Cladistic Character Compatibility
Problem

In Chapter 5 we present our fourth and final variant of the C1P in order to develop

an algorithm for a case of a phylogeny problem that we consider here. We now

briefly motivate our study of this type of phylogeny problem.

Here we study the problem of constructing a phylogenetic tree for a set of

species [45]. Aqualitative characterassigns to each species astate from a set

of states, e.g., “is a vertebrate”, or “number of legs”. Whenthe evolution of the

states of the character is known, e.g., evolution from invertebrate to vertebrate

is only forward, the character is calledcladistic. This evolution of the states is

usually represented by a rooted tree, called acharacter tree, on the set of states.

TheQualitative Character CompatibilityProblem, orPerfect PhylogenyProblem,

is NP-complete [20, 138], while it is polynomial-time solvable when any of the

associated parameters is fixed [2, 82, 83, 103]. When characters are cladistic, the

problem, called theCladistic Character CompatibilityProblem, is the problem of

finding a perfect phylogeny tree on the set of species such that it can be contracted

to a subtree of each character tree. This problem is polynomial-time solvable [42,

62, 148].

Experimental research in molecular biology [47, 79, 86, 144] shows that traits

can disappear and then reappear during the evolution of a species, suggesting

that genes contain information about traits that are not always expressed. In

Benham et al. [11, 12], the authors argue that a new model for characters is needed

in order for the resultant phylogenetic trees to capture this phenomenon. The au-

thors thus devise thegeneralized character, which assigns to each species asubset

of a set of states, where we only know that the expressed trait(state) is in this sub-

set. The GCCC Problem is then the Cladistic Character Compatibility Problem on

a set of species with generalized characters where we first have to pick one state

from the subset for each character. Interestingly, generalized characters capture

30

also the case of qualitative characters with missing data (the “Incomplete Perfect

Phylogeny” Problem). Here, missing data can be replaced by a“wildcard” gener-

alized state containing all possible states of the character. This problem was shown

to be NP-complete even if the number of states is constant in [63].

In Chapter 5 we study the complexity of several cases of the GCCC Problem

that are motivated by the previous works of Benham et al. [11,12]. In Subsec-

tion 5.3.2, we introduce a variant of the C1P which gives us analgorithm for a case

of this problem.

31

Chapter 2

The Gapped Consecutive-Ones

Property

In this chapter we show that for every bounded and unboundedk ≥ 2,δ ≥
1,(k,δ) 6= (2,1), deciding the(k,δ)-C1P is NP-complete. Section 2.1 outlines

the notation used in this chapter. Section 2.2 provides a theorem that is central

to the results of Section 2.3: that for every boundedk≥ 2,δ ≥ 1,(k,δ) 6= (2,1),

deciding the(k,δ)-C1P is NP-complete. In Section 2.4, we then give an algorithm

for a case of the (2,1)-C1P that is motivated by the type of construction used to

obtain the results of Section 2.3. In the final Section 2.5 of this chapter we show

that for everyδ ≥ 1, deciding the(∞,δ)-C1P is NP-complete.

2.1 Notation and Conventions

First we introduce all notation and conventions used throughout this chapter. Given

integersa,b, wherea≤ b, 〈a,b〉 denotes the set{a,a+1, . . . ,b}. LetM be a binary

m×n matrix (on0’s and1’s) with columns labelled by〈1,n〉. In the constructions

used to show NP-completeness of deciding the(k,δ)-C1P, we will divide columns

of M into ordered sequences of blocksB1, . . . ,Bp by designing rows enforcing the

columns of each block to appear together and the blocks to appear in the order

B1, . . . ,Bp (resp., in the reversed order), i.e., for anyi < j, column c ∈ Bi and

d ∈ B j , c appears before (resp., after)d in any(k,δ)-C1 order ofM. The columns

32

1 2 . . . δ + 1 δ + 2 . . . 2δ 2δ + 1.

2δ + 2 2δ + 3

Figure 2.1: Possible positions of columns2δ +2 and2δ +3.

of a blockBi will be denotedB1
i , . . . ,B

|Bi |
i andB〈a,b〉i = {Ba

i ,B
a+1
i , . . . ,Bb

i }, where

a≤ b.

To specify a row in the a binary matrixM, we use the convention of only

listing in the square brackets, the columns that contain1 in this row. For example,

[1,8,5] represents a row with1’s in columns 1, 5, and 8, and0’s everywhere else.

We will also use blocks ofM to specify columns in the block, for example, if

B1 = {1,2,3,4,5}, then[B1,7] would mean[1,2,3,4,5,7], [B1 \{B2
1},6,7] would

mean[1,3,4,5,6,7], and[B〈2,4〉1 ,6] would mean[2,3,4,6].

2.2 Fixing the Order of Selected Columns in a Matrix

For everyk≥ 2,δ ≥ 1, we have the following important property of matrices that

have the(k,δ)-C1P. Note that the following construction does not depend on k as

it uses only two ones per row.

Theorem 4. For every k≥ 2 or k= ∞, δ ≥ 1 and s≥ 2δ +3, given binary matrix

M on n≥ s columns, s+δ +1 rows can be added to M to force s selected columns

to appear together and in fixed order (or the reverse order) inany(k,δ)-C1 order

of M.

Proof. Let k≥ 2 (ork=∞), δ ≥ 1,s≥ 2δ +3 andn≥ s. Without loss of generality,

let S= {1, . . . ,s} be the subset ofscolumns that we want to force to appear together

and in this order (or the reverse order) in any(k,δ)-C1 order ofM. We will show

by induction ons that there ares+δ +1 rows of the type[c,d], where 1≤ c< d≤ s

and|c−d| ≤ δ +1, which force this order.

For the base case, let us assume thats= 2δ +3. We will show the base case

33

by induction onδ . If δ = 1, thens= 2 ·1+3 = 5, and we add toM the follow-

ing 7 rows: [1,2], [2,3], [3,4], [4,5], [1,3], [2,4], and [3,5]. It is easy to check

that the claim holds and that the number of rows used is exactly s+ δ + 1. Now

assume that the claim holds forδ = δ0 ands= s0 = 2δ0+ 3, whereδ0 ≥ 1. We

will show that it holds also forδ = δ0+ 1 ands= 2δ + 3 = 2δ0+ 5. Using the

induction hypothesis, there ares0+ δ0+ 1= s− 2+ δ − 1+ 1= s+ δ − 2 rows,

which will force the correct order for columns1, . . . ,2δ +1. Note that all of these

rows [c,d] satisfy the condition|c− d| ≤ δ + 1, and hence, they can be added to

M for parametersδ = δ0 + 1 ands= 2δ0 + 5. In addition, we add toM three

new rows: [δ +1,2δ +2], [δ +2,2δ +3] and [2δ +2,2δ +3]. The total number

of rows added toM is now s+ δ + 1. Figure 2.1 shows the possible positions of

columns2δ +2 and2δ +3 forced by rows[δ +1,2δ +2] and[δ +2,2δ +3] if we

assume that rows1, . . . ,2δ +1 appear in the correct order. It is easy to see that

the row [2δ +2,2δ +3] is (k,δ)-consecutive only if columns2δ +2 and2δ +3

appear in the correct positions as well. This completes the induction onδ and we

have that the claim holds for anyδ ≥ 1 ands= 2δ +3, i.e., the base case for the

induction ons.

Now, assuming that the claim holds fors−1, wheres−1≥ 2δ +3, we show

that it holds also fors columns. By the induction hypothesis, there ares+δ rows

which will force columns1, . . . ,s−1 to appear in the correct order. We add one

new row: [s−δ −1,s]. Sinces− δ −1≥ δ +3, there is only one position where

columns can appear: next tos−1, i.e., all columns inS appear in correct order.

The number of rows used is exactlys+ δ +1. This completes the induction ons,

and the claim follows.

2.3 The Complexity of Deciding the(k,δ)-C1P

In this section we will show that for everyk≥ 2,δ ≥ 1,(k,δ) 6= (2,1), deciding

the(k,δ)-C1P is NP-complete.

2.3.1 The Complexity of Deciding the(k,δ)-C1P for everyk,δ ≥ 2

For everyk,δ ≥ 2, we use Theorem 4 in a reduction from 3SAT to the problem of

deciding the(k,δ)-C1P to show that this problem is NP-complete.

34

Theorem 5. For every k,δ ≥ 2, deciding the(k,δ)-C1P is NP-complete.

Proof. Consider k,δ ≥ 2. Let φ be a 3CNF formula over then variables

{v1, . . . ,vn}, with m clauses{c1, . . . ,cm}. We construct a matrixMφ with 2n+

d+ 6m columns andn+ 7m+ d+ δ + 1 rows, whered = max{2k− 1,2δ + 3},

such thatMφ has the(k,δ)-C1P if and only ifφ is satisfiable.

Goldberg et al. [55] show that for everyk≥ 2, given a 3CNF formulaφ , they

can construct a matrixMφ that has thek-C1P if and only ifφ is satisfiable. Our con-

struction is based on theirs. In our construction, we associate the first 2n columns

〈1,2n〉 of Mφ with the variables{v1, . . . ,vn}. In particular, we associate variablevi

with the pair of columnsbi = {2i−1,2i}, for i ∈ 〈1,n〉. Variablevi equal totrue

represents the statement about the order of the columns: “2i− 1 is before 2i” (vi

equal tofalserepresents statement: “2i−1 is after 2i”). Since a truth assignment

to the formulaφ represents a statement about a permutation of the columns ofMφ ,

we want to relateMφ to the clauses{c1, . . . ,cm} of φ in such a way that only the

permutations ofMφ that are(k,δ)-consecutive correspond to truth assignments that

satisfyφ and vice versa. This construction involves associating thelast 6mcolumns

〈2n+d+1,2n+d+6m〉 with the clauses{c1, . . . ,cm}. In particular, we associate

clausec j with the block of five columnsB j = 〈2n+d+6 j−4,2n+d+6 j〉, while

each blockB j is preceded by a columna j = {2n+ d+ 6 j − 5}. Finally, the set

〈2n+1,2n+d〉 of columns in the middle will be used to ensure that the construc-

tion works for parametersk andδ . The details are as follows.

The base of our construction is a subset of the columns ofMφ that we force to

be together and in fixed order in any(k,δ)-C1 order ofMφ , and then we will build

off of this base a construction similar to that of Goldberg etal. [55]. In particular,

we impose this fixed order on this subset〈2n+ 1,2n+ d〉 of the columns in the

middle of Mφ by addingd+ δ + 1 rows toMφ according to Theorem 4. While

thesed columns must be together and in fixed order (or the reverse) inany(k,δ)-
C1 order, we assume the former without loss of generality. Wenow build the

remaining construction off of this block ofd columns.

To force the blocksb1, . . . ,bn to appear together and in this order, and before

the set〈2n+1,2n+d〉 of d columns inMφ , we add then rows[bi ,bi+1, . . . ,bn,2n+

1,2n+3, . . . ,2n+2k−3,2n+2k−1] to Mφ , for i ∈ 〈1,n〉. Observe that, if block

35

bn is not immediately to the left of thed columns, then there are more thank−1

gaps in the row[bn,2n+1,2n+3, . . . ,2n+2k−3,2n+2k−1], while, for eachi ∈

〈1,n−1〉, if block bi is not immediately to the left ofbi+1, then there are more than

k−1 gaps in the row[bi ,bi+1, . . . ,bn,2n+1,2n+3, . . . ,2n+2k−3,2n+2k−1].

Next, to force the blocksa1,B1, . . . ,am,Bm to appear together and in this

order, andafter the set 〈2n + 1,2n + d〉 of d columns in Mφ , we add the

2m rows [2n+ d− (2k− 2),2n+ d− (2k− 4), . . . ,2n+ d− 4,2n+ d− 2,2n+

d,a1,B1, . . . ,a j−1,B j−1,a j] and[2n+d− (2k−2),2n+d− (2k−4), . . . ,2n+d−

4,2n+d−2,2n+d,a1,B1, . . . ,a j ,B j] to Mφ , for j ∈ 〈1,m〉.

Now the blocks of columns in any(k,δ)-C1 order of the matrixMφ are or-

dered as follows: the blocksb1, . . . ,bn associated with the variables ofφ , followed

by the d columns 2n+ 1, . . . ,2n+ d, followed by the blocksa1,B1, . . . ,am,Bm,

where the blocksB1, . . . ,Bm are associated with the clauses ofφ . Since the restric-

tions placed on variable blocks{b1, . . . ,bn} and the clause blocks{B1, . . . ,Bm}

are the same as in Goldberg et al. [55], we simply have to add rows, simi-

lar to those in Goldberg et al. [55], toMφ to associate each clause to its three

variables to properly simulate 3SAT. The difference from our construction to

that of Goldberg et al. [55], is what values the row takes within this segment

〈2n+1,2n+d〉 of d columns and them columnsa1, . . . ,am. We now present the

details.

Suppose that clausec j contains the literalvα . We add the following (corre-

sponding) row toMφ : [b2
α ,bα+1, . . . ,bn,2n+ 1,2n+ 3, . . . ,2n+ 2k− 7,2n+ 2k−

5,〈2n+2k−3,2n+d〉,a1,B1, . . . , ,a j ,B1
j]. If vα is false, this forcesB1

j to be the first

column of blockB j in any(k,δ)-C1 order ofMφ . Any other order of the columns

of B j would introduce ak-th gap in this row. Ifvα appears negated inc j , then we

add the row[b1
α ,bα+1, . . . ,bn,2n+1,2n+3, . . . ,2n+2k−7,2n+2k−5,〈2n+2k−

3,2n+d〉,a1,B1, . . . ,a j ,B1
j] instead. Suppose another literal inc j is vβ . We add the

row [b2
β ,bβ+1, . . . ,bn,2n+1,2n+3, . . . ,2n+2k−7,2n+2k−5, 〈2n+2k−3,2n+

d〉,a1,B1, . . . ,a j ,B
〈1,4〉
j]. If vβ is false, this forcesB5

j to be the last column of block

B j . Suppose the third literal ofc j is vγ . We add the rows[b2
γ ,bγ+1, . . . ,bn,2n+

1,2n+ 3, . . . ,2n+ 2k− 7,2n+ 2k− 5,〈2n+ 2k− 3,2n+ d〉,a1,B1, . . . ,a j ,B
〈1,2〉
j]

and[b2
γ ,bγ+1, . . . ,bn,2n+1,2n+3, . . . ,2n+2k−7,2n+2k−5,〈2n+2k−3,2n+

d〉,a1,B1, . . . ,a j ,B
〈1,3〉
j] to Mφ . If vγ is false, this forcesB3

j to be the middle col-

36

b1 b2 b3 b4 bn a1 a2 a3 amB1 B2 B1
3 Bm

.

.

.

.

.

.

〈2n+ 1, 2n+ d〉

0
0
0
0
0

0
0
1
1
0

0
0
1
1
0

1
0
1
1
0

1
1
1
1
0

1
0
1
1
0

1
1
1
1
0

1
1
1
1
0

1 1 1 0 1 0 . . .
1 1 1 0 1 0 . . .
1 1 1 0 1 0 . . .
1 1 1 0 1 0 . . .

0 0 0 0 1 0 . . .

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
0

1
1
1
1
1

0
1
1
1
0

0
1
0
1
1

0
1
0
0
0

0
0
0
0
1

0
0
0
0
0

0
0
0
0
0 0

0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

︸ ︷︷ ︸

k−3 gaps

Figure 2.2: The structure ofMφ and the five rows encoding clausec2 = {v2∨
¬v3∨v1}.

umn of blockB j . Finally, we add the row[2n+ 3,2n+ 5, . . . ,2n+ 2k− 7,2n+

2k−5,〈2n+2k−3,2n+d〉,a1,B1, . . . ,a j−1,B j−1,B1
j ,B

3
j ,B

5
j] to Mφ . This last row

is not (k,δ)-consecutive exactly whenB1
j , B3

j , andB5
j are the first, middle and

last columns of blockB j , as it containsk gaps then. This fifth row enforces the

constraint that not all three literals ofc j can befalse. Figure 2.2 illustrates the

structure of matrixMφ , along with these five rows that would be added toMφ for

clausec2 = {v2∨¬v3∨v1}.

It remains to show that if any literal inc j is true, then there is some order of the

columns of blockB j such that these five rows are(k,δ)-consecutive. Ifvα (resp.,

vβ) is true, we can order the columnsB2
j ,B

1
j ,B

3
j ,B

4
j ,B

5
j (resp.,B1

j ,B
2
j ,B

3
j ,B

5
j ,B

4
j).

If vγ is true, the columns can be in any order that placesB1
j (resp.,B5

j) in the first

(resp., last) position, while placingB2
j ,B

3
j ,B

4
j in any of the four orders that avoids

placingB3
j in the middle (as this fifth row would havek gaps in this case). Note that

these orders work even when the corresponding variable is the only one that istrue,

and that in all of these orders, no row has a gap of size larger than two. Finally,

we remark that ifvγ is the only variable that satisfies clausec j , for example, then

in all of the four (possible) orders of the columns where these five rows are(k,δ)-
consecutive, there is a gap of size two in the fifth row. Hence this construction does

not work forδ = 1.

Since, for everyk,δ ≥ 2, deciding the(k,δ)-C1P is clearly in NP, by the above

reduction from 3SAT, it follows that for everyk,δ ≥ 2, deciding the(k,δ)-C1P is

NP-complete.

37

2.3.2 The Complexity of Deciding the(k,1)-C1P for everyk≥ 3

We slightly modify the reduction from 3SAT in the proof of Theorem 5 to show

that, for everyk≥ 3, deciding the(k,1)-C1P is NP-complete.

Theorem 6. For every k≥ 3, deciding the(k,1)-C1P is NP-complete.

Proof. Considerk≥ 3. Letφ be a 3CNF formula over then variables{v1, . . . ,vn},

with m clauses{c1, . . . ,cm}. We construct a matrixMφ with 2n+d+4m columns

andn+4m+d+2 rows, whered = 2k−1, such thatMφ has the(k,1)-C1P if and

only if φ is satisfiable. We do this as follows.

We again use Theorem 4 to force the columns〈2n+ 1,2n+ d〉 to appear to-

gether and in fixed order in any(k,1)-C1 order ofMφ , and build a construction

off of this block. We again associate columns〈1,2n〉 with the variables ofφ , and

associate each clausec j with block B j . However,B j now has four columns rather

than five, that isB j = 〈2n+ d+ 4 j − 3,2n+ d+ 4 j〉. Note also that we do not

have the blocksa j in this construction. We again add the appropriate rows toMφ

so that the columns of any(k,1)-C1 order of the matrixMφ are orderedb1, . . . ,bn,

followed by 2n+1, . . . ,2n+d, followed byB1, . . . ,Bm. The only major difference

from Theorem 5 of this reduction is the manner in which we associate the clauses

to their variables to property simulate 3SAT. The details are as follows.

We need to introduce only three more rows to associate the clauses to their

variables to properly simulate 3SAT. Suppose that clausec j contains literalsvα ,vβ

andvγ . We add the row[b2
α ,bα+1, . . . ,bn,2n+1,2n+3, . . . ,2n+2k−9,2n+2k−

7,〈2n+2k−5,2n+d〉,B1, . . . ,B j−1,B
〈1,2〉
j] to Mφ . If vα is false, this forcesB1

j and

B2
j to be among the first three columns of blockB j in any (k,1)-C1 order ofMφ .

Note that any other order of the columns ofB j would introduce either a gap of

size 2, or ak-th gap in this row. Similarly, we add the rows[b2
β ,bβ+1, . . . ,bn,2n+

1,2n+ 3, . . . ,2n+ 2k− 9,2n+ 2k− 7,〈2n+ 2k− 5,2n+ d〉,B1, . . . ,B j−1,B1
j ,B

3
j]

and[b2
γ ,bγ+1, . . . ,bn,2n+1,2n+3, . . . ,2n+2k−9,2n+2k−7,〈2n+2k−5,2n+

d〉,B1, . . . ,B j−1,B1
j ,B

4
j] to Mφ . If vβ is false, this forcesB1

j andB3
j to be among

the first three columns of blockB j , and if vγ is false, this forcesB1
j and B4

j to

be among the first three columns of blockB j . Finally, sinceB1
j ,B

2
j ,B

3
j ,B

4
j cannot

simultaneously be among the first three columns of blockB j , we have that not all

three literals ofc j can befalsein any(k,1)-C1 order ofMφ .

38

It remains to show that if any literal inc j is true, then there is some order of the

columns of blockB j such that these four rows are(k,1)-consecutive. Ifvα (resp.,

vβ , andvγ) is true, we can order the columnsB3
j ,B

1
j ,B

4
j ,B

2
j (resp.,B2

j ,B
1
j ,B

4
j ,B

3
j , and

B2
j ,B

1
j ,B

3
j ,B

4
j). Note that these orders work even when the corresponding variable

is the only one that istrue.

Since, for everyk≥ 3, deciding the(k,1)-C1P is clearly in NP, by the above

reduction from 3SAT, it follows that for everyk ≥ 3, deciding the(k,1)-C1P is

NP-complete.

In summary, by Theorem 5 and Theorem 6, it follows that for every k≥ 2,δ ≥
1,(k,δ) 6= (2,1), deciding the(k,δ)-C1P is NP-complete. The only open question

that remains is the case of the complexity of deciding the (2,1)-C1P. In the next

section we give a result for a special case of the (2,1)-C1P.

2.4 The (2,1)-C1P

All of the constructions in this chapter used to show NP-completeness of deciding

the (k,δ)-C1P for k ≥ 2,δ ≥ 1,(k,δ) 6= (2,1) divided the columns of a binary

matrix M into an ordered sequence of blocksB1, . . . ,Bp by designing rows which

force the columns of each block to appear together and the blocks to appear in

the orderB1, . . . ,Bp (or in the reversed order), i.e., for anyt < u, columnd ∈ Bt

and e∈ Bu, d appears beforee in any (k,δ)-C1 order ofM. We will call any

permutation of the columns ofM that meets this condition a{B1, . . . ,Bp}-block-

structured order. Given any 3CNF formulaφ , we then represented each variable

and each clause with a block from{B1, . . . ,Bp}, where the permutations of the

columns within this block correspond to the configurations (a) true and false, if

it is a variable block, or (b) which of its literals is set totrue and false, if it is a

clause block. The above restriction of columns into blocks then provided enough

structure so that for each clausec, we could add some rows toM that introduce

dependencies only between the permutations of columns of the block forc and the

3 blocks corresponding to each ofc’s literals, such thatc is satisfied inφ if and

only if these rows have the(k,δ)-C1P, and no other dependencies, i.e., thatφ is

satisfiable if and only ifM has a(k,δ)-C1{B1, . . . ,Bp}-block-structured order.

Here we provide a polynomial-timeO(m2n(ℓ + 1)! + nℓ!23ℓ) and space

39

O(m2nℓ! +2ℓ) algorithm, given binaryn×m matrix M where its columns are di-

vided into an ordered sequence of blocksB1, . . . ,Bp and each block contains at

most some fixed constant numberℓ of columns (|Bt | ≤ ℓ for all t ∈ 〈1, p〉), which

either

(a) decides if it has a{B1, . . . ,Bp}-block-structured (2,1)-C1 order, or

(b) finds a proof that deciding the (2,1)-C1P is NP-complete.

Note that we can force any (2,1)-C1 order to be a{B1, . . . ,Bp}-block-structured

order by adding rows to the matrix similarly as it was done in Theorems 5 and 6.

One observation is that this algorithm is FPT in parameterℓ. Another motiva-

tion for this result is that if the (2,1)-C1P is NP-complete even in this{B1, . . . ,Bp}-

block-structured case, then this algorithm provides an automated tool which could

be used to prove this: with some instance of the problem, it would find the proof

that deciding the (2,1)-C1P is NP-complete. We now give the algorithm in the next

subsection.

2.4.1 The Algorithm

Let M be a binary matrix onm rows andn columns andB = {B1, . . . ,Bp} be sets

of columns ofM where|Bt | ≤ ℓ for all t ∈ 〈1, p〉. The basic idea of the algorithm is

as follows. First, it does some preprocessing onM to check if it has some necessary

properties for it to have aB-block-structured order that is also a (2,1)-C1 order.

If this succeeds, it then checks another condition of matrixM. If this condition

holds, it generates a set of 2-clauses of polynomial-size that is satisfiable if and

only if M has such an order. If this condition does not hold, it is able to find in

polynomial-time, proof that deciding the (2,1)-C1P is NP-complete.

GivenM andB = {B1, . . . ,Bp}, for t ∈ 〈1, p〉, let Ut denote the set of permu-

tations ofBt that are (2,1)-C1P with respect toM, for some order of the columns

outside ofBt . We will explain later exactly how to computeUt , but for now, we

observe the following property:

Property 7. The set of{B1, . . . ,Bt}-block-structured (2,1)-C1 orders of M is a

subset ofU = U1×·· ·×Up.

40

Let r i , for i ∈ 〈1,m〉 be a row ofM. For a setB of columns ofM, we useσ(B, i)

to denote the subset of columns ofB that contain a1 in row r i . Let si (resp.,ei)

∈ 〈1, p〉 be the index of the first (resp., last) block ofM such thatσ(Bsi , i) (resp.,

σ(Bei , i)) 6= /0, andBi = Bsi+1, . . . ,Bei−1, the sequence of blocks betweenBsi and

Bei (we can assume thatM does not contain any row on only0’s). Note thatBi

may be empty, however, i.e., the case whensi = ei , or ei = si +1. Since Property 7

holds, it follows that

(i) if Bi in row r i contains two or more0’s, thenr i , and hence,M is not (2,1)-

C1P; and

(ii) if Bi in row r i contains exactly one0, then, inBsi (resp.,Bei) in r i , there

cannot be a single0 to the right (resp., left) of any1 in any (2,1)-C1 or-

der of row r i , and hence, ofM. However, this effectively splits the block

Bsi (resp.,Bei) into the two blocks: B′si = σ(Bsi , i) (resp.,B′ei = σ(Bei , i));

and B′′si = Bsi \ σ(Bsi , i) (resp., B′′ei = Bei \ σ(Bei , i)). We can then re-

place the setB = {B1, . . . ,Bsi , . . . ,Bei , . . . ,Bp} of blocks with the new set

B′ = {B1, . . . ,B′′si ,B′si , . . . ,B′ei ,B′′ei , . . . ,Bp} of blocks, and the set ofB′-block-

structured(2,1)-C1 orders of matrixM with row r i removed (as this row is

always(2,1)-C1P in anyB′-block-structured order) will be the same as the

set ofB-block-structured(2,1)-C1 orders ofM.

Since both cases (i) and (ii) for rowr i can be determined in timeO(n) and space

O(1), and hence, in overall timeO(mn) and spaceO(1) for M, we can assume that,

in M, these cases do not apply, i.e., thatσ(Bi, i) = Bi.

We now explain how to computeUt for eacht ∈ 〈1, p〉. Since we ruled out

cases (i) and (ii) in the previous paragraph, it follows thatfor eacht ∈ 〈1, p〉 and

row r i for i ∈ 〈1,m〉, we have the following set of disjoint cases:

(1) σ(Bt , i) = /0, i.e.,t 6∈ 〈si ,ei〉;

(2) σ(Bt , i) = Bt , i.e.,t ∈ 〈si ,ei〉; or

(3) neither (1) nor (2), thent = si or ei , andBt contains some0’s and some1’s in

row r i , and

(a) si < ei , or

41

(b) si = ei , i.e.,Bt is the only block ofM whereσ(Bt , i) 6= /0

For t ∈ 〈1, p〉, we will denoteSi
t as the set of permutations of eachBt that are(2,1)-

C1P with respect to rowr i , for some order of the columns outside ofBt . If either

case (1) or (2) holds, then any permutation of the columns ofBt is in Si
t . In case

(3a), whent = si (resp.,ei), then, in rowr i, any permutation which does not place

more than one0 to the right (resp., left) of any1 in Bt is in Si
t . In case (3b), in row

r i , any(2,1)-C1 order ofBt is in Si
t . Since|Bt | ≤ ℓ, determining if a permutation is

in Si
t takes timeO(ℓ), and since there are at mostℓ! such permutations, computing

Si
t takes timeO((ℓ+1)!) and spaceO(ℓ!). Then, set

Ut =
⋂

i∈〈1,m〉

Si
t , (2.1)

and computingUt for a givent ∈ 〈1, p〉 takes timeO(mℓ!) and spaceO(ℓ!). Since

p is O(n), computingUt for all t ∈ 〈1, p〉 takes timeO(mnℓ!) and spaceO(nℓ!)

overall. Note that ifUt = /0 for somet, thenU = /0, and hence, by Property 7,M

does not have the(2,1)-C1P. We remark that if only one blockB1 is associated

with M, thenU1 is simply the set of(2,1)-C1 orders ofM. This completes the

details of the preprocessing phase onM to check if it has some necessary properties

for it to have a{B1, . . . ,Bp}-block-structured(2,1)-C1 order.

Up to this point, we have ruled out the trivial cases (i) and (ii) whenM does not

have such an order and we have computedUt for all t ∈ 〈1, p〉, and we can assume

thatUt 6= /0. The set ofB-block-structured(2,1)-C1 orders ofM is a subset ofU

(Property 7), however it may be the case that it is not equivalent toU , as a choice

of one permutation in someUi and another in someU j might lead to an order

which is not(2,1)-consecutive. In particular, for any rowr i for i ∈ 〈1,m〉 where

si < ei , Bsi andBei (or neither) can be permuted such that exactly one0 is to the

right (resp., left) of any1 in row r i , but both blocks cannot be in this state ifr i is to

be(2,1)-consecutive. We will express this dependency on the permutations ofBsi

andBei with a disjunction on two Boolean variables, defined below. For t ∈ 〈1, p〉,

let Pi
t be the set of permutationsπt ∈Ut that do not place any0 to the right (resp.,

left) of any 1 in Bt in row r i , in the case (3a) whent = si (resp.,ei). So thatPi
t

is defined for every block/row pair, we letPi
t = Ut in cases (1), (2) and (3b) for

42

t ∈ 〈1, p〉, i ∈ 〈1,m〉. Note that, for a givent ∈ 〈1, p〉 and i ∈ 〈1,m〉 (like with Si
t)

thatPi
t can also be constructed in timeO((ℓ+1)!) and spaceO(ℓ!), for overall time

O(mn(ℓ+ 1)!) and spaceO(mnℓ!) to computePi
t for all t ∈ 〈1, p〉 and i ∈ 〈1,m〉.

Let Boolean variableXt,i representπt ∈ Pi
t , for t ∈ 〈1, p〉, i ∈ 〈1,m〉. It follows that

r i is (2,1)-consecutive if and only if it satisfies

Xsi ,i ∨Xei ,i . (2.2)

Note that Equation 2.2 is defined for all rowsr i for i ∈ 〈1,m〉 (in the case that

si = ei , Equation 2.2 is a tautology by the fact thatUt 6= /0 for all t ∈ 〈1, p〉).

In the previous paragraph, we saw that, for any given rowr i , there is a one-

to-one correspondence between satisfying truth assignments to Equation 2.2 and

(2,1)-C1 orders ofr i . However, the same correspondence between(2,1)-C1 orders

of M and satisfying truth assignments of

∧

i∈〈1,m〉

Xsi ,i ∨Xei ,i (2.3)

does not hold in general. This is due to the fact that when a setA⊆ 〈1,m〉 of two or

more rows are involved, one of{si ,ei} for eachr i , i ∈ A can coincide on the single

block Bt , and
⋂

i∈A Pi
t = /0. This means that a truth assignmentτ to the pairs of

variablesXt,i corresponding to the rows ofA may not bevalid, where we say that a

truth assignmentτ is valid when there is aB-block-structured orderπ = π1, . . . ,πp

of the columns ofM such thatτ(Xt,i) = true if and only if πt ∈ Pi
t for all t ∈ 〈1, p〉,

i ∈ 〈1,m〉. So, in addition toτ satisfying Equation 2.3, we must also ensure that

τ is valid. This can be done simply by ensuring for any such set of rows A where
⋂

i∈A Pi
t = /0 for somet ∈ 〈1, p〉, that not allXt,i, i ∈ A are set to true, which can be

encoded by
∧

t∈〈1,p〉

∧

A⊆〈1,m〉
⋂

i∈A Pi
t = /0

∨

i∈A

¬Xt,i. (2.4)

While the (2,1)-C1 orders ofM correspond to the satisfying assignments of Equa-

tion 2.4, this SAT formulation can have clauses of size as large asm, sinceA can

be as large asm.

We now give the following condition ofM, which can be checked in

43

polynomial-timeO(mnℓ+ nℓ!23ℓ). If the condition holds, then Equation 2.4 can

be replaced by an equivalent set of 2-clauses, and if the condition does not hold,

then an NP-completeness proof can be constructed.

Condition 8. For every t∈ 〈1, p〉, and A⊆ 〈1,m〉,
⋂

i∈APi
t = /0 implies that there

exists i, j ∈ A such that Pit ∩P j
t = /0.

It follows that if this condition holds, then for everyt ∈ 〈1, p〉, it is sufficient to

forbid Xt,i andXt, j from both beingtrue in τ for every pairi, j ∈ 〈1,m〉 such that

Pi
t ∩P j

t = /0. We can hence replace Equation 2.4 with

∧

t∈〈1,p〉

∧

i, j∈〈1,m〉Pi
t ∩P j

t = /0

¬Xt,i ∨¬Xt, j . (2.5)

Clearly this is a 2SAT formulation of polynomial-sizeO(m2n). Note that Equa-

tion 2.5 can be constructed in polynomial-timeO(m2nℓ!).

We now show how to perform the polynomial-time check to see ifthis condi-

tion holds for the particular instanceM, and how to construct an NP-completeness

proof if Condition 8 does not hold. To check this condition, we have to check

for every t ∈ 〈1, p〉 if there is anA⊆ 〈1,m〉 with |A| > 2 such that
⋂

i∈APi
t = /0.

For a givent ∈ 〈1, p〉, |Bt | ≤ ℓ, and sinceM is a binary matrix, there are only

2ℓ unique rows inBt . It takes timeO(mℓ+ ℓ2ℓ) to find this set of unique rows

and spaceO(2ℓ) to store (or index) this set. From this set, there are 22ℓ choices

for A. For each choice ofA, we have to compute
⋂

i∈A⊆〈1,m〉P
i
t which takes time

O(ℓ!2ℓ). For each of these intersections, we have to computePi
t ∩P j

t for each

i, j ∈ A. Since computingPi
t ∩P j

t takes timeO(ℓ!), and there are 22ℓ pairsi, j, this

step takes timeO(ℓ!22ℓ). Hence, the time of this check for a givent ∈ 〈1, p〉 is

O(mℓ+ ℓ2ℓ+2ℓ · (ℓ!2ℓ+ ℓ!22ℓ)) which simplifies toO(mℓ+ ℓ!23ℓ). Again, sincep

is O(n), this check takes overall timeO(mnℓ+nℓ!23ℓ). SincePi
t for eacht ∈ 〈1, p〉

andi ∈ 〈1,m〉 has already been computed previously, the only additional space used

is O(2ℓ) to store the set of unique rows for the currentBt , andO(1) for the pairi, j,

and hence this check uses spaceO(2ℓ).

Now, suppose that we find a setA⊆ 〈1,m〉 with |A|> 2 such that
⋂

i∈A Pi
t = /0.

For simplicity, letA be the set of rows{r1, r2, r3}. If this is the case, it follows that

for somet ∈ 〈1, p〉, P1
t ∩P2

t ∩P3
t = /0, while for any pair{i, j} ⊂ {1,2,3} where

44

b1 b2 b3 b4 b|V | D1 Dj−1 Dj Dj+1 D|C| b|V | b3 b2 b1
.

.

.

.

.

0
0
0

1
0
0

1
0
0

1
0
0

1
0
1

1
0
0

1
0
1

1
0
1 1 1 11 0 0 0 0

0 0 00 1 1 1 1
1 1 11 0 0 0 0r̂1

r̂2
r̂3

0
1
0

0
1
0

0
1
0

0
0
0

0
0
0

0
0
0

Figure 2.3: The structure of the construction for a 3CNF formulaφ on the
setV of variables andC of clauses, along with the 3 rows encoding
the clausec j = {v1∨ v2∨¬v3}. The blocksb1, . . . ,b|V | correspond to
the variables ofφ in exactly the same way as in the construction of
Subsection 2.3.1. The blocksD1, . . . ,D|C| correspond to the clauses.
Here, for i ∈ {1,2,3}, r̂ i is row r i restricted to the columns ofBt , and
P1

t , P3
t (resp.,P2

t) are sets of permutations that do not place any0 to the
left (resp., right) of any1 in Bt in rowsr1, r3 (resp.,r2). It follows that all
truth assignments to the literals ofc j are (2,1)-C1 orders except for the
case when all 3 literals are false (c j is not satisfied), sinceP1

t ∩P2
t ∩P3

t =
/0. Note that for eachi ∈ {1, . . . , |V|}, rows can be added to force the
copy of variable blockbi on the left and right of the clause blocks to
encode the same truth value.

i 6= j, Pi
t ∩P j

t 6= /0. This property allows us to useA to build a 3-clause gadget,

for a reduction from 3SAT, similar to that of Subsection 2.3.1, to the problem of

deciding if M has aB-block-structured (2,1)-C1 order. Figure 2.3 illustratesthe

structure of this construction along with the 3 rows that would be added for the

clausec j = {v1∨ v2∨¬v3}. Note that if|A| > 3, then a|A|-clause gadget can be

built in a similar fashion. Since|A| ≤ 2ℓ, this construction is of size polynomial in

‖M‖, and hence deciding the (2,1)-C1P would be NP-complete if Condition 8 does

not hold for someM.

Finally, we summarize the time and space complexity of this algorithm. The

preprocessing phase, i.e., checking cases (i) and (ii) for each row ofM takes time

O(mn) and spaceO(1). For eacht ∈ 〈1, p〉 and i ∈ 〈1,m〉, computingSi
t (andPi

t)

takes timeO((ℓ+1)!) and spaceO(ℓ!), for overall timeO(mn(ℓ+1)!) and space

O(mnℓ!) for this step. ComputingUt for all t ∈ 〈1, p〉 takes timeO(mnℓ!) and

spaceO(nℓ!) overall. Performing the check for Condition 8 takes timeO(mnℓ+

nℓ!23ℓ) and spaceO(2ℓ). If the condition holds, then it computes Equation 2.5,

which takes timeO(m2nℓ!), generating a 2SAT formulation of sizeO(m2n). In

summary, it follows that this algorithm runs in timeO(m2n(ℓ+ 1)! + nℓ!23ℓ) and

45

spaceO(m2nℓ! +2ℓ).

Theorem 9. Given binary matrix M on n columns and m rows and a collection

B = {B1, . . . ,Bp} of sets of columns of M where|Bt | ≤ ℓ for all t ∈ 〈1, p〉 for

some fixed constant numberℓ, there is an algorithm that runs in polynomial-time

O(m2n(ℓ+1)! +nℓ!23ℓ) and space O(m2nℓ! +2ℓ) which either

(a) decides if there isB-block-structured order of M that is also a (2,1)-C1 order,

or

(b) finds a proof that deciding the (2,1)-C1P is NP-complete.

While this algorithm checks Condition 8 for the particular instanceM, we con-

jecture that Condition 8 holds for all binary matrices. If this is the case, as a corol-

lary of Theorem 9, we could omit the check of this condition for a faster algorithm.

Corollary 10. If Condition 8 holds for all binary matrices, then given binary ma-

trix M on n columns and m rows and a collectionB = {B1, . . . ,Bp} of sets of

columns of M where|Bt | ≤ ℓ for all t ∈ 〈1, p〉 for some fixed constant number

ℓ, there is an algorithm that runs in polynomial-time O(m2n(ℓ+ 1)!) and space

O(m2nℓ!) which decides if there isB-block-structured order of M that is also a

(2,1)-C1 order.

2.5 The Complexity of Deciding the(∞,δ)-C1P

Here we show that for everyδ ≥ 1, deciding the(∞,δ)-C1P is NP-complete. The

first step is to reduce 3SAT(3), the version of the 3SAT Problem where no variable

appears more than twice positively and more than once negatively to an auxiliary

version of the 3SAT Problem. We then reduce this auxiliary version to the problem

of deciding the(∞,δ)-C1P for the result.

2.5.1 The 3SAT(L:2,R:2) Problem

First we reduce from 3SAT(3), the version of the 3SAT Problemwith 2-clauses

and 3-clauses, and where no variable appears more than twicepositively and more

than once negatively [120, p. 183, Prop. 9.3], to an auxiliary version of the 3SAT

46

Problem, namely 3SAT(L:2,R:2): the version of the 3SAT Problem with 2-clauses

and 3-clauses, where each clause is assigned the labelL or R (for left or right) such

that for each label, no variable appears more than once positively and more than

once negatively in the corresponding set of clauses.1

Lemma 11. The 3SAT(L:2,R:2) Problem is NP-complete.

Proof. We are given an instance to the 3SAT(3) Problem: a setV of variables

andC of 2 and 3-clauses, such that for eachv∈V, v appears no more than twice

in C and¬v appears no more than once inC. For eachv ∈ V with two positive

occurrences, we replace one of the occurrences ofv with the new variablev′. We

then label all the clauses of this new instance withL. Note that in this set of

clauses labelled withL, no variable appears more than once positively and once

negatively. Now, for each appearance ofv′, we add the two new clausesc1
v =

v′ ∨¬v andc2
v = v∨¬v′, and label them both withR. These two clauses enforce

the constraint thatv = v′ in any satisfying assignment to this new instance of the

3SAT Problem, thus this new instance is satisfiable if and only if the original 3SAT

Problem instance is satisfiable. This new instance of the 3SAT Problem has 2- and

3-clauses, and for each of the labelsL andR, no variable appears more than once

positively and once negatively. Thus we have transformed inpolynomial time the

instance of the 3SAT(3) Problem to an instance of the 3SAT(L:2,R:2) Problem that

is satisfiable if and only if the original 3SAT(3) instance issatisfiable. Since the

3SAT(L:2,R:2) Problem is clearly in NP, it follows that the 3SAT(L:2,R:2) Problem

is NP-complete.

2.5.2 The Complexity of Deciding the(∞,1)-C1P

We now show that the problem of deciding the(∞,1)-C1P is NP-Complete by

giving a reduction from 3SAT(L:2,R:2). We will later generalize this reduction to

show that for everyδ ≥ 1, deciding the(∞,δ)-C1P is NP-Complete.

Theorem 12. Deciding the(∞,1)-C1P is NP-complete.

1We remark that the exact formulation of 3SAT(3) in Papadimitriou [120] allows also variables
with one positive and two negated occurrences, however these can easily be converted to the other
type of variables by replacing them with their negations in all clauses. Clearly, this does not affect
the complexity of the problem.

47

Proof. We are given an instanceφ of the 3SAT(L:2,R:2) Problem: a setV of vari-

ables and the setsCL andCR of 2- and 3-clauses, such that for eachv∈V, v and¬v

each appear no more than once inCS, for S∈ {L,R}. We useφ to build a matrix

Mφ such thatφ is satisfiable if and only ifMφ has the(∞,1)-C1P.

The idea of the construction is that for each variablevi ∈ V = {v1, . . . ,vn},

the matrixMφ will have the block of columnsbi , called thevariable block, to

represent the value of this variable. MatrixMφ will also contain the blocks of

columnsb0,1, . . . ,bn,n+1 of dummy blocksthat will interleave the variable blocks.

We will add some rows toMφ to force the individual columns of each of the variable

and dummy blocks to appear together and in fixed order, or the reverse order. The

direction of blockbi will represent the value of the variablevi . We will then add

some rows toMφ to force only the orderb0,1,b1,b1,2, . . . ,bn−1,n,bn,bn,n+1 (or the

reverse order) of these blocks, while the individual variable blocks may switch

direction relative to this order. If variable blockbi is in the same order relative

to this order of all of the blocks then its corresponding variablevi has valuetrue,

otherwise it has valuefalse. The matrixMφ will also have an additional 2n free

columns. To each clausec ∈ C = {CL ∪CR} we associate a unique empty free

column fc. This is possible since for everyS∈ {L,R}, each variable appears no

more than once positively and once negatively inCS, and eachc∈CS contains at

least 2 variables, and hence|CS| ≤ 2n/2= n. Thus|CL|+ |CR| ≤ 2n. We then add

some rows toMφ to force these 2n free columns to fall (in any order) between the

2n pairs of adjacentbi−1,i ,bi andbi ,bi,i+1 blocks, fori ∈ 〈1,n〉, such that there is

one free column for each hole.

For a clausec∈CL (resp.,CR) wherec contains variablesvα ,vβ (andvγ for a

3-clause), we assign this clause to columnfc of the 2n free columns, and we add

a row toMφ that forces the columnfc to be to the left (resp., right) of either block

bα ,bβ (or bγ for a 3-clause). However, columnfc can only go to the left (resp.,

right) of the block of a variable when its corresponding literal is set to the value

that satisfies clausec. Note by the construction that each variable can satisfy at

most one left and one right clause, which is sufficient because each literal appears

at most once in a right (resp., left) clause. These properties will imply that only

when, for everyc∈CL (resp.,CR), column fc can be placed to the left (resp., right)

of abi , for i ∈ 〈1,n〉, for avi that is set to a value that satisfiesc, i.e.,φ is satisfied,

48

. . .
b0,1 b1 b1,2 bn−1,n bn bn,n+1

free columns

Figure 2.4: The structure of matrixMφ .

is there a(∞,1)-C1 order ofMφ , and vice versa. We now give the full details of the

construction in what follows.

For each variablevi ∈ V = {v1, . . . ,vn}, we add the set of columnsbi =

{b1
i , . . . ,b

5
i } to Mφ . In addition, for everyi ∈ 〈1,n〉, we add the set of columns

bi−1,i = {b1
i−1,i , . . . ,b

5
i−1,i} to Mφ . For each set of columnsbi for i ∈ 〈1,n〉, and

bi−1,i for i ∈ 〈1,n+1〉, we add toMφ the rows according to Theorem 4 to force the

columns of each set to appear together and in fixed order (or the reverse) in any

(∞,1)-C1 order ofMφ , i.e., in any(∞,1)-C1 order ofMφ , setbi will appear either

as the sequenceb1
i , . . . ,b

5
i or b5

i , . . . ,b
1
i of consecutive columns, and similarly for

the columns in setsbi−1,i . We will refer to thebi asvariable blocksand thebi−1,i

asdummy blocks. Note that Theorem 4 requires that a set of columns must have

size 2δ +3 before such an order can be enforced on it, this is why each block is of

size five. In addition, we add 2n free columns toMφ .

Now, for each pair of blocksbi−1,i ,bi andbi ,bi,i+1 for i ∈ 〈1,n〉, we add rows

[bi−1,i \ {b1
i−1,i}∪ bi] and [bi ∪ bi,i+1 \ {b5

i,i+1}] to force these pairs to be together

with at most one free column in between them. This enforces that the blocks appear

in the orderb0,1,b1,b1,2, . . . ,bn−1,n,bn,bn,n+1 (or the reverse) in any(∞,1)-C1 order

of Mφ . The first (resp., last) column of the dummy blocks is omittedto fix their

direction (relative to the order of the blocks) under the assumption that there is a

free column between each pair of neighboring blocks, which we will now enforce

with the following row. We add toMφ the row[B∪F], whereB= b〈2,4〉0,1 ∪b〈2,4〉1 ∪

49

· · · ∪ b〈2,4〉n ∪ b〈2,4〉n,n+1}, and F is the set of 2n free columns. It now follows that

between eachbi−1,i ,bi andbi ,bi,i+1 pair for i ∈ 〈1,n〉, there must lie at least one

column fromF, in any (∞,1)-C1 order ofMφ . Since we have exactly 2n pairs,

between each pair there must be exactly one. Figure 2.4 depicts all (∞,1)-C1

orders of the current matrixMφ . Note that the columns in each variable block can

be oriented either in the same direction as the order of all ofthe blocks, or in the

reverse direction. If variable blockbi is oriented in the same direction as the order

of all of the blocks, this corresponds to the setting of the variablevi to true, while

the reverse direction corresponds tovi beingfalse. Now it remains to add rows to

Mφ to force the free column associated with each clause to fall next to only the

blocks of variables that are set to a value that satisfies the clause.

Let c∈CL (resp.,CR) contain the variablesxα ,xβ (andxγ for a 3-clause), and

let fc ∈ F be the free column associated with clausec. We add the row[B∪F \

{ fc}∪Sc] to Mφ , whereSc is defined as follows. Ifc∈CL, then for eachj ∈ {α ,β}
(j ∈ {α ,β ,γ} for a 3-clause), ifv j appears positively (resp., negatively) inc, set

Sc contains the columns{b5
j−1, j ,b

1
j} (resp.,{b5

j−1, j ,b
5
j}). Otherwise, ifc ∈ CR,

then for eachj, if v j appears positively (resp., negatively) inc, setSc contains

the columns{b5
j ,b

1
j, j+1} (resp.,{b1

j ,b
1
j, j+1}). Adding these extra ones around the

variable blocksb j for each j forces fc to fall only to the immediate left (resp.,

right) of theseb j in any (∞,1)-C1 order ofMφ . Furthermore,fc can only fall to

the immediate left (resp., right) of ab j if it is oriented in a direction such that

corresponding variablev j is set to a value that sets its literal totrue, i.e., if v j

satisfiesc. Hence, the satisfying assignments of any individual clausec correspond

to the (∞,1)-C1 orders of the submatrix ofMφ consisting of the row added for

clausec, and all of the rows previously added toMφ for the blocksbi for i ∈ 〈1,n〉,

andbi−1,i for i ∈ 〈1,n+1〉.

After adding the row for all clausesc∈CL∪CR, the set of remaining(∞,1)-C1

orders ofMφ (if there exist any) correspond to the cases where for every clausec∈

CL (resp.,CR), its corresponding columnfc is placed to the immediate left (resp.,

right) of a block of a variable that is set to a value (true or false) that satisfiesc,

that is, to satisfying assignments ofφ . Conversely, ifφ has a satisfying assignment,

then we can assign eachc∈CL (resp.,CR) to a uniquev∈V that satisfiesc, in the

sense that eitherv or ¬v satisfiesc, i.e., eachv∈V will satisfy at most one clause

50

from CL and at most one clause fromCR. We can make this claim becausev and

¬v each appear no more than once inCL (resp.,CR), and at most one ofv and¬v

satisfies a given clausec. Thus we can assign each columnfc of Mφ to a unique slot

to the immediate left (resp., right) of blockbi for i ∈ 〈1,n〉, for the corresponding

vi that satisfies the clausec. ThusMφ has a(∞,1)-C1 order. Hence,φ is satisfiable

if and only if Mφ has the(∞,1)-C1P.

In summary, given a 3SAT(L:2,R:2) formulaφ with n variables andm≤ 2n

clauses, we have constructed a matrixMφ with 12n+5 columns and 16n+m+8

rows such thatMφ has the(∞,1)-C1P if and only ifφ is satisfiable. Given that

deciding the(∞,1)-C1P is clearly in NP, and Lemma 11, it follows that deciding

the(∞,1)-C1P is NP-complete.

2.5.3 The Complexity of Deciding the(∞,δ)-C1P

We now generalize the construction given in Subsection 2.5.2 to show that for every

δ ≥ 1, the problem of deciding the(∞,δ)-C1P is NP-complete by reduction from

3SAT(L:2,R:2).

Theorem 13. For everyδ ≥ 1, deciding the(∞,δ)-C1P is NP-complete.

Proof. Considerδ ≥ 1. Here, given an instanceφ of 3SAT(L:2,R:2), we build a

matrix Mφ such thatφ is satisfiable if and only ifMφ has the(∞,δ)-C1P. The idea

of the construction is the same as that of the proof of Theorem12: it will again have

the blocksbi for i ∈ 〈1,n〉, andbi−1,i for i ∈ 〈1,n+1〉 as well as 2n free columns

for the clauses, only the blocks will need more columns, and we will need to add

more rows toMφ in order for it to behave in the same way for arbitraryδ .

For each blockbi for i ∈ 〈1,n〉, andbi−1,i for i ∈ 〈1,n+1〉 we again add toMφ

the rows according to Theorem 4 to force each individual block to be in fixed order

(or the reverse) in any(∞,δ)-C1 order ofMφ . Thus, each block will contain 2δ +3

columns. In order to force each pair of blocksbi−1,i ,bi andbi ,bi,i+1 for i ∈ 〈1,n〉,

to be together, with at most one free column in between them, thus enforcing a

total order on the blocks, we add the rows[b〈δ+1,δ+4〉
i−1,i ∪bi] and[bi ∪b〈δ ,δ+3〉

i,i+1]. Note

here, that the first (resp., last)δ columns of the dummy blocks are omitted to fix

their direction (relative to the order of the blocks) under the assumption that there

51

is a free column between each pair of neighboring blocks, which we enforce by

adding toMφ the row[B∪F], whereB= b〈δ+1,δ+3〉
0,1 ∪b〈δ+1,δ+3〉

1 ∪·· ·∪b〈δ+1,δ+3〉
n ∪

b〈δ+1,δ+3〉
n,n+1 , and F is a set of 2n free columns. NowMφ again has the desired

structure, as depicted in Figure 2.4. Now it remains to add rows to Mφ for the

clauses.

Let c∈CL (resp.,CR) contain the variablesxα ,xβ (andxγ for a 3-clause), and

let fc ∈ F be the free column associated with clausec. We add the row[B∪F \

{ fc}∪Sc] to Mφ , whereSc is defined as follows. Ifc∈CL, then for eachj ∈ {α ,β}
(j ∈ {α ,β ,γ} for a 3-clause), ifv j appears positively (resp., negatively) inc, set

Sc contains the columns{b2δ+3
j−1, j ,b

1
j} (resp.,{b2δ+3

j−1, j ,b
2δ+3
j }). Otherwise, ifc∈CR,

then for eachj, if v j appears positively (resp., negatively) inc, setSc contains the

columns{b2δ+3
j ,b1

j, j+1} (resp.,{b1
j ,b

1
j, j+1}). Now this matrixMφ will have the

same behavior as in the proof of Theorem 12, henceφ is satisfiable if and only if

Mφ has the(∞,δ)-C1P.

In summary, for everyδ ≥ 1, given a 3SAT(L:2,R:2) formulaφ with nvariables

and m≤ 2n clauses, we have constructed a matrixMφ with (4δ + 8)n+ 2δ + 3

columns and(6δ + 10)n+m+ 3δ + 4 rows such thatMφ has the(∞,δ)-C1P if

and only ifφ is satisfiable. Given that for everyδ ≥ 1, deciding the(∞,δ)-C1P is

clearly in NP, and Lemma 11, it follows that for everyδ ≥ 1, deciding the(∞,δ)-
C1P is NP-complete.

52

Chapter 3

The Gapped Consecutive-Ones

Property for Matrices of Bounded

Maximum Degree

In this chapter, we study the(k,δ)-C1P with a third parameterd, the bound on the

maximum degree ofM. In Section 3.1 we first provide an algorithm for the case

of the (d,k,δ)-C1P when all three parameters are fixed constants. In Section 3.2,

we show, in four subsections, that deciding the(d,k,∞)-C1P for everyd > k≥ 2

is NP-complete. First, in Subsection 3.2.1, we give the definition of a type of hy-

pergraph covering problem. In Subsection 3.2.2 we show thata special case of

this hypergraph covering problem is NP-complete, and then in Subsection 3.2.3

we generalize this construction to show that the general case of this hypergraph

covering problem is NP-complete. Finally, in Subsection 3.2.4 we show a direct

correspondence of the general case of this hypergraph covering problem to decid-

ing the(d,k,∞)-C1P for everyd > k≥ 2 to give the result of this Section 3.2.

3.1 An Algorithm for Matrices of Bounded Maximum
Degree

A binary matrixM has maximum degreed if every row contains at mostd entries

1. We show now that, whend and δ are constant (which implies thatk is also

53

constant, sincek ≤ d), then deciding the(k,δ)-C1P is tractable. We rely on a

connection to graph bandwidth, and an algorithm of Saxe [135] for deciding graph

bandwidth. We now give several definitions, theorems and eventually the algorithm

from Saxe [135], and our extensions to these to give an algorithm for deciding the

(d,k,δ)-C1P.

We first define alayout of a graph, or a mapping of its vertices to distinct

positive integers, and then thebandwidthof a layout.

Definition 14 (Layout of a Graph). Saxe [135]Let G= (V,E) be a graph with

|V|= n. A layoutof G is a one-to-one mapping f: V→ 〈1,n〉.

Definition 15 (Bandwidth of a Layout). Saxe [135]Given graph G= (V,E) with

|V|= n, and a layout f of G, thebandwidthof f is defined as the maximum distance

between the images under f of any two vertices that are connected by an edge in

G. That is,

bandwidth(f) = max{ f (u)− f (v) | {u,v} ∈ E}.

The bandwidth of a graph is then the smallest bandwidth for any of its layouts.

Definition 16 (Bandwidth of a Graph). Saxe [135]Given graph G(V,E) with |V|=

n,

bandwidth(G) = min{bandwidth(f) | f is a layout ofG}.

We now show the connection of graph bandwidth to the(d,k,δ)-C1P. LetM be

an m× n binary matrix andGM = (VM ,EM) be the undirected graph defined as

follows: VM = 〈1,n〉 (each vertex ofGM represents a column ofM), and there is an

edge{i, j} ∈ EM if and only if there is a row ofM with entries1 in columnsi and

j. The following property then follows immediately from thisdefinition:

Property 17. If M has maximum degree d and M has the(k,δ)-C1P, then

bandwidth(GM) is at most d+(k−1)δ −1.

We hence denote alayoutof a binary matrixM to be a layoutf of its GM, while the

bandwidthof such a layout is the bandwidth off (where the domain of this layout

of M is its columns〈1,n〉 corresponding to the vertices ofGM that form the domain

of f). We then denote that thebandwidth, bandwidth(M), of a binary matrixM

54

is bandwidth(GM). It is an algorithm for deciding for some given graphG, if

bandwidth(G)≤ b for some fixed constantb, that is the main result of Saxe [135].

In the following, we give the details of this algorithm, and how it can be extended

to give an algorithm for deciding the(d,k,δ)-C1P. This relies, of course, on the

above Property 17. We first need to give some of the preliminary assumptions,

definitions and theorems (and their extensions for our purposes) of Saxe [135].

First, we note that if graphG= (V,E) with |V|= n is not connected, thenG has

a layout of bandwidth≤ b if and only if each of its components has such a layout.

Also, it is clearly impossible forG to have such a layout ifG has any vertex of

degree greater than 2b. We therefore assume thatG is (i) connected and (ii) has no

vertex of degree greater than 2b. Sinceb is a fixed constant, we can determine (ii)

in linear timeO(n), and, given that (ii) holds, we can determine (i) in linear time

as well [135]. Similarly, we assume that any matrixM given as input to deciding

the(d,k,δ)-C1P emits a graphGM that has properties (i) and (ii).

We now introduce the key notion from Saxe [135] of apartial layout, some

related definitions with respect to deciding if a graph has bandwidth≤ b whereb

is a fixed constant, and our extensions of some of these definitions so that we can

later extend the algorithm of Saxe [135] to obtain an algorithm for deciding if a

binary matrix has the(d,k,δ)-C1P.

Definition 18 (Partial Layout of a Graph). Saxe [135]Let G= (V,E) be a graph

with |V|= n. Apartial layoutof G is a one-to-one mapping f: U → 〈1, p〉, where

U ⊆V and|U |= p, i.e.,0≤ p≤ n.

Definition 19 (Feasible Partial Layout). Saxe [135]We say that a partial layout

f of a graph G isfeasibleif it can be extended to a (total) layout g, such that

bandwidth(g)≤ b.

Definition 20 (Bandwidth of a Partial Layout). Saxe [135]The bandwidthof a

partial layout f of a graph G is the maximum distance between the images of any

two edge-connected vertices of G which are in the domain of f .

Definition 21 (Edge Dangling from a Partial Layout). Saxe [135]Given partial

layout f of a graph G= (V,E), if {u,v} ∈ E and u is in the domain of f and v is

not, then edge{u,v} is said to bedanglingfrom f .

55

Here we denote apartial layout of a binary matrixM to be a partial layout of its

GM. Note that this emits a submatrixM′ of M on the columnsU . The remainder

of these definitions carry over directly to matricesM, i.e., in terms ofGM, with the

exception of feasibility, which is a bit more complicated.

Definition 22 (Feasible Partial Layout of a Binary Matrix). We say that a partial

layout f of a binary matrix M isfeasibleif it is a feasible partial layout of GM,

and if it can be extended to a (total) layout g, such thatbandwidth(g)≤ b, and the

order of the columns of M given by g−1(1), . . . ,g−1(n) is a (k,δ)-C1 order.

We now introduce the notions from Saxe [135] of aplausible partial layout,

and theactive regionof a partial layout.

Definition 23 (Plausible Partial Layout of a Graph). Saxe [135]Given partial lay-

out f of a graph G= (V,E), where f is of size p, it is clear that f cannot be feasible

unless

(1) bandwidth(f)≤ b, and

(2) whenever u and v are vertices of G such that f(u)< p−b and{u,v} ∈ E, then

v is also in the domain of f .

If f satisfies both of these conditions, then f is said to be aplausible partial layout.

In order to extend this above definition so that it holds for also binary matrices, we

have to add to it the following third and fourth properties

(3) submatrixM′ given by f has the(k,δ)-C1P, and

(4) for each rowr of M, if the degree ofr in M′ is less than its degree inM, then

(a) r in M′ has the(k−1,δ)-C1P, and

(b) the rightmost1 in r of M′ is followed by at mostδ 0’s.

Note thatG = GM in (2) of the above property. Finally, we give the following

definition ofactive regionwhich carries over directly to the case of binary matrices.

56

Definition 24 (Active Region of a Partial Layout). Saxe [135]Given partial

layout f of a graph G, where f is of size p, the sequence(f−1(max(p− b+

1,1)), . . . , f−1(p)) taken together with the set of dangling edges of f is called the

active regionof f .

We now present the theorem of Saxe [135] on which Saxe’s principal algorithm

depends.

Theorem 25. Saxe [135]Let f and g be two plausible partial layouts of G having

identical active regions. Then,

(1) f and g have identical domains, and

(2) f is feasible if and only if g is feasible.

Proof. SinceG is connected, the domains off andg must each consist precisely

of those vertices which are path-connected to vertices in the active region by paths

not including any dangling edges. Thus, (1) holds. To see that (2) holds, we need

only note that any assignment of the remaining vertices which extends eitherf or g

to a total layout of bandwidth≤ b must also extend the other to such a layout.

Note that since we defined active region and what it means for apartial layout of a

binary matrix to be feasible and plausible, that Theorem 25 carries over to the case

of a binary matrixM also, whereG= GM and the assignment that extends eitherf

andg to a total layout of bandwidth≤ b also has the(k,δ)-C1P in the proof of this

theorem.

Finally, we present the notions from Saxe [135] of asuccessorandpredecessor

of a plausible partial layout.

Definition 26 (Successor of a Plausible Partial Layout). Saxe [135]Let f be a

plausible partial layout of G. Then asuccessorof f is a plausible partial layout

g which extends f by precisely one element. In this case, the active region of g is

also said to the be the successor of the active region of f .

Definition 27 (Predecessor of a Plausible Partial Layout). Saxe [135]If plausible

partial layout g is the successor of plausible partial layout f , then (the active region

of) f is apredecessorof (the active region of) g.

57

Again, because we have defined all of these notions in the caseof binary matrices,

these notions of successor and predecessor also carry over directly to the case of

binary matrices.

As in Saxe [135], Theorem 25 allows us to say that two plausible partial layouts

of a binary matrixM areequivalentif they have identical active regions. We can

now easily extend the algorithm of Saxe to obtain a breadth-first search over the

space of all induced equivalence classes of plausible partial layouts, i.e., the active

regions. Here, again, since each active region consists of at mostb vertices and

each vertex has no more than 2b edges, each of which may or may not be dangling,

the number of equivalence classes is bounded above by

∑
0≤i≤b

(
n
i

)

(i!)(22b)i = O(nb). (3.1)

We are now ready to present our extension of the algorithm of Saxe [135] for

deciding if a binary matrixM has the(d,k,δ)-C1P. Here, we need only extend

Saxe’s algorithm with a data structure that stores a submatrix M′ corresponding

to each active region, and some procedures associated with this submatrix to test

for the (k,δ)-C1P of this active region. Note that since we assume thatM has

bounded degreed, by Property 17 we can test here for bandwidth≤ b, where

b = d+(k−1)δ −1. Note also that, by the definition ofGM, it follows thatb is

greater than the distance between the leftmost1 and rightmost1 in any row of any

(k,δ)-C1 order ofM. Hence, it is sufficient to test for the(k,δ)-C1P of only the

submatrixM′ corresponding to each active region (of sizeb), and not all ofM.

The algorithm uses the following two data structures:

(1) A (fifo) queueQ whose elements are active regions.

(2) An arrayA which contains one element for each possible active region.Each

elementA[r] of A consists of a Boolean flagA[r].examined, telling whether

the active regionr has already been considered in the search, and a list

A[r].unplaced of vertices which is intended to list all verticesnot in the

domain of each plausible partial layout with active regionr. Here, we ex-

tend each elementA[r] so that it also contains an× b (sub-) matrixA[r].M′

which stores the submatrix ofM that corresponds (in this order) to the columns

58

f−1(max(p−b+1,1), . . . , f−1(p)) of active regionr.

At the start of the algorithm,Q is initialized to contain the single element repre-

senting the active region (henceforth denotedΦ) of the empty partial layout /0. The

flag A[Φ].examined is set totrue andA[Φ].unplaced is initialized to list all

the elements ofV. The remainingA[r].examined are initially false, and the re-

mainingA[r].unplaced are uninitialized. EachA[r].M′ is also set to the matrix

on zero columns (the empty matrix). The algorithm now proceeds as follows:

Algorithm 1 Algorithm of Saxe [135] for testing the bandwidth of a graph.

1. Extract an active regionr from the head ofQ.

2. FromA[r].unplaced, determine the successors ofr. To determine ifs, the
active region obtained by extendingr with somec∈ A[r].unplaced is a suc-
cessor, we first check (as in done in Saxe [135]) to see ifs is a the active region
of a plausible partial layout ofGM. In addition, we computeA[s].M′ by adding
columnc to the end ofA[r].M′. This new active regionscan only be a successor
if A[s].M′ satisfies properties (3) and (4) that extend Definition 23.

3. for each successors of r such thatA[s].examined is false, perform the fol-
lowing steps:

a. SetA[s].examined to true.

b. Compute A[s].unplaced by deleting the last vertex ofs from
A[r].unplaced.

c. If A[s].unplaced is the empty set, then halt, asserting that
bandwidth(G)≤ b.

d. Insertsat the end ofQ.

4. If Q is empty, then halt, asserting that bandwidth(G)> b. Otherwise, go to Step
1.

We now analyze the time and space complexity of the algorithm. Since

there areO(nb) active regionsr, and with eachr we associate theO(n) elements

A[r].unplaced, then×b matrixA[r].M′, which is of sizeO(mn), and some con-

stant size flags, the space required by the algorithm isO(mnb+2). For the running

time, we first note that (as in Saxe’s algorithm) that Steps 1 through 4 will be exe-

59

cutedO(nb) times. Again, each individual execution of Steps 1 and 4 takeconstant

time, so their contribution to the total running time isO(nb). In each execution

of Step 2,A[r].unplaced can haveO(n) elements, and the test thatA[s].M′ for

each potential successors in A[r].unplaced satisfies properties (3) and (4) that

extend Definition 23 takes timeO(mn), sinceA[s].M′ is of sizeO(mn). Hence Step

2 contributesO(mnb+2) to the total execution time. In each execution of Step 3,

again Steps 3.a through 3.d maybe executed as many asn times, and that Step 3.b

takes timeO(n), Step 3 takes timeO(nb+2) (which is already less than that of Step

2, so we leave out the analysis of Saxe [135] for bringing downthis upper bound).

We hence have our version of the following theorem from Saxe [135] for de-

ciding the bandwidth of a binary matrix.

Theorem 28. Let b be any positive integer. Then, given some binary matrixM,

there is an algorithm which decides if bandwidth(M) ≤ b using time and space

O(mnb+2).

Proof. To test the bandwidth ofM, we first perform a timeO(n) depth-first search

which either

(1) determines thatGM has some vertex of degree greater than 2b, or

(2) partitionsGM into connected components, none of which have any vertex of

degree greater than 2b.

In case (1), we know immediately that bandwidth(M) > k. In case (2), we apply

Algorithm 1 to the submatrices ofM that correspond to the connected components

of GM.

By the above Theorem 28 and Property 17, we have the followingtheorem

which gives us the result.

Theorem 29. Let M be an m× n binary matrix such that every row has at most

d entries1. Deciding if M has the(k,δ)-C1P can be done in time and space

O(mnd+(k−1)δ+1).

60

3.2 The(d,k,∞)-C1P

Here, we show that deciding the(d,k,∞)-C1P for everyd > k≥ 2 is NP-complete.

This proof is broken down into the following subsections. InSubsection 3.2.1 we

define first a hypergraph covering problem that will be used later to show NP-

completeness of this case. In Subsection 3.2.2 we then show that a special case

of this covering problem for 3-uniform hypergraphs is NP-complete. In Subsec-

tion 3.2.3 we use the NP-completeness construction of Subsection 3.2.2 to show

that this covering problem defined in Subsection 3.2.1 is NP-complete in general.

Finally, in Subsection 3.2.4, we give a correspondence of this covering problem of

Subsection 3.2.1 to the problem of deciding the(d,k,∞)-C1P for the result of this

section.

3.2.1 A Hypergraph Covering Problem

We first define the following hypergraph covering problem. Inthe sections that

follow, we will show that this problem is NP-complete, and that it corresponds

exactly to the problem of deciding the(d,k,∞)-C1P for the hardness result of this

chapter. Note that a hypergraphH = (V,E) is d-uniformwhen all its hyperedges

ared-edges, that is, hyperedges that contain exactlyd vertices.

Definition 30 (p-Covering of ad-Uniform Hypergraph). Given a d-uniform hy-

pergraph H= (V,E) and an integer p, let K|V| be a complete graph on V and let

Pp be the set of all subsets of E(K|V|) with exactly p edges. A p-coveringof H is

a graph G= (V,E′) such that there exists a mapc : E→Pp such that

(a) for every h∈ E, and for every e∈ c(h), e⊆ h; and

(b) E′ =
⋃

h∈E c(h).

Here, we say that setc(h) p-coversthe hyperedge h and that G p-coversH.

Informally, a p-covering of ad-uniform hypergraph is a graph constructed by

picking p edges from each hyperedge.

Problem 31 (d-Uniform Hypergraphp-Covering by Paths (d-UH-p-CP)). Given

a d-uniform hypergraph H= (V,E) and an integer p< d, is there a p-covering of

H which consists only of disjoint paths?

61

Variations of this problem were defined in previous works [59–61]. The first

variation allowed the hypergraph to have only 2, 3 and 4-edges, where 2- and 3-

edges were covered by picking one edge, while 4-edges were covered by two paral-

lel edges, and required that the covering contains only disjoint edges and vertices.

This variation was shown to be polynomial-time solvable which provided an algo-

rithm for a special version of haplotyping problem via galled-tree networks [59].

The second variation allowed only 3-uniform hypergraphs, and required all con-

nected components of the covering to be paths of length at most 3. This variation

was shown to be NP-complete [61]. A slightly more complex version of this was

then used to show that in general the haplotyping problem viagalled-tree networks

is NP-complete [60].

In the next section, we show that a special case of this problem, namely the

3-UH-1-CP Problem, is NP-complete, which is then generalized in Section 3.2.3

to show NP-completeness of thed-UH-p-CP Problem for everyd−2≥ p≥ 1.

3.2.2 The 3-Uniform Hypergraph 1-Covering by Paths Problem

We now show that the 3-Uniform Hypergraph 1-Covering by Paths (3-UH-1-CP)

Problem is NP-complete.

Theorem 32. The3-UH-1-CP Problem is NP-complete.

Proof. Clearly, the problem is in NP. We will show it is also NP-hard by

reduction from 3SAT(3), a restricted version of 3SAT, proved NP-complete

by Papadimitriou [120], in which every variable has exactlytwo positive and one

negative occurrence in the clauses.1 We will call a p-covering of a hypergraph

valid if it consists only of disjoint paths. Note that a validp-covering does not

contain vertices of degree 3 or more and does not contain cycles. Given 3SAT(3)

formula φ with variablesX = {x1, . . . ,xn} and clausesC = {c1, . . . ,cm}, we now

construct a 3-uniform hypergraphHφ on at most 12n+15mhyperedges which con-

tains, among other vertices, a vertex for each literal ofφ (there are 3n such vertices)

that has a valid 1-covering if and only ifφ is satisfiable.

1We remark that the exact formulation of 3SAT(3) in Papadimitriou [120] allows also variables
with one positive and two negated occurrences, but these caneasily be converted to the other type
of variables by replacing them with their negations in all clauses. Clearly, this does not affect the
complexity of the problem.

62

v

h1 h2

D

(a)

c1i

c2i
(b)

c1i

c2i

c3i
(c)

Figure 3.1: (a) A simple dependency on 1-coverings of two touching hyper-
edges enforced by a copy ofD (depicted as a diamond). (b) The 2-clause
and (c) 3-clause gadgets for clauseci .

First we give an important building block that is used throughout this construc-

tion: the complete 3-uniform hypergraphD on 4 vertices. In any valid 1-covering

of D, there is no isolated vertex. Indeed, assume for contradiction that v is the

isolated vertex in a valid coveringG of D. Let u1,u2,u3 be the remaining three

vertices. Then there is a pairui ,u j such that{ui ,u j} is not an edge inG. However,

no edge is 1-covering hyperedge{v,ui ,u j}, a contradiction. We will use several

copies ofD in the construction to introduce a dependency on 1-coverings of touch-

ing hyperedges and depict them as diamonds in the figures. Forinstance, consider

the hypergraph in Figure 3.1a. Since in any valid 1-coveringG of this hypergraph,

v is a member of an edge inD, at most one of the hyperedgesh1 andh2 can “pick”

an edge involvingv, otherwise vertexv would have degree 3 or more.

Now to the main construction. Consider the instanceφ of 3SAT(3) with vari-

ablesX = {x1, . . . ,xn} and clausesC= {c1, . . . ,cm}. In the construction, any valid

covering selects a set of literals (more precisely, the vertices corresponding to these

literals), i.e., positive and negative occurrences of variables. If this selection satis-

fies the following two properties:

(1) every clause selects at least one literal, and

(2) for everyx∈ X, at most one ofx and¬x is selected,

then this selection can be used to build a satisfying truth assignment forφ as fol-

lows: for everyi ∈ {1, . . . ,n} if xi (resp.,¬xi) is in the selection, set the value of

63

crk

cqj

cpi

(a)

crk

cqj

cpi

(b)

crk

cqj

cpi

(c)

Figure 3.2: (a) The variable gadget for variable with positive occurrencescp
i

andcq
j and negated occurrencecr

k in the clauses. The dashed edge is
always picked in any valid 1-covering. (b) Grey edges are picked when
this variable is set tofalse in a satisfying assignment ofφ . (c) Grey
edges are picked when the variable is set totrue.

xi to true (resp.,false). If neither xi and or¬xi is in the selection, pick the value

at random. We design a hypergraphHφ composed of clause gadgets which will

guarantee the first condition and variable gadgets which will ensure the second

condition.

Figures 3.1b and 3.1c depict the 2-clause and 3-clause gadgets, respectively.

Given a valid 1-coveringG of the clause gadget for clauseci with literals c1
i , c2

i

(and c3
i for a 3-clause), we say that a literal vertexc j

i is selectedin G, if c j
i is

contained in two edges of the coveringG. Note that in both clause gadgets at least

one of the literal vertices is selected in any valid covering. This is obvious for the

2-clause gadget. For the 3-clause gadget, if none of the literal vertices is selected

in a valid 1-covering of this gadget, then in the three hyperedges in Figure 3.1c, no

picked edge involvesc1
i ,c

2
i or c3

i . But this creates a cycle, a contradiction. Now,

each literal vertexc j
i will also appear in exactly one variable gadget described inthe

next paragraph. If a literal vertexc j
i is selected in a valid covering then it cannot be

contained in any edge that covers the hyperedges of the variable gadget, otherwise

c j
i has degree 3 or more in this covering. The variable gadget foreachx∈ X will

use this property to ensure that literal verticesx and¬x are not selected at the same

time.

Figure 3.2a depicts the variable gadget for variablex∈ X with the two positive

occurrencescp
i and cq

j , and one negated occurrencecr
k of this variablex in the

64

clauses. Note that if both a positive and the negated literalvertices ofx are selected

by a clause gadget in a valid 1-covering ofHφ , then it forces a cycle in the variable

gadget ofx, a contradiction. It follows that ifHφ has a valid 1-covering thenφ is

satisfiable.

Conversely, ifφ has a satisfying assignmentτ , let us pick one literal for each

clause which makes it satisfied inτ and build the 1-covering ofHφ as follows.

In each clause gadget, (i) in each hyperedge of this clause gadget that contains a

literal vertex, pick an edge containing the literal vertex if this literal was selected

for this corresponding clause, and (ii) for each diamond, choose any of the 3 valid

1-coverings of this diamond that consist of 2 parallel edges. In the variable gadgets,

pick the edges as depicted in Figure 3.2b if the variable has value false in τ and

otherwise, pick the edges as depicted in Figure 3.2c. By selecting edges in this

fashion, every hyperedge ofHφ is 1-covered by an edge, and each literal vertex is

adjacent to at most two edges in the 1-covering, one of them lying in the diamond.

Hence, there is no vertex of degree 3 and no cycles in this 1-covering, i.e., this

1-covering is valid.

Since the number of hyperedges used in the construction is atmost 12n+15m,

i.e., linear in the size ofφ , this construction can be built in polynomial-time, and

hence, the 3-UH-1-CP Problem is NP-hard.

In the following section, we generalize this construction to show that for every

d−2≥ p≥ 1, thed-UH-p-CP Problem is NP-complete.

3.2.3 Thed-Uniform Hypergraph p-Covering by Paths Problem

We now show how the construction of Section 3.2.2 can be generalized to show that

for everyd−2≥ p≥ 1, thed-Uniform Hypergraphp-Covering by Paths (d-UH-

p-CP) Problem is NP-complete. The main building block in thisnew construction

is the followingd-uniform hypergraph that generalizes the hypergraphD (the dia-

mond) from the previous construction of Section 3.2.2.

Lemma 33. For any d− 2≥ p≥ 1, there exists a d-uniform hypergraph Dd,p =

(V,E) with a distinguished vertex v∈V that has the following properties:

1. |V|= 2d− p−1 and |E|=
(2(d−p)−1

d−p

)
;

65

v

. . .

. . .

P

S

Figure 3.3: HypergraphDd,p: only one of the
(|S|

d−p

)
hyperedges is shown.

2. in any valid p-covering of Dd,p, v is not isolated; and

3. hypergraph Dd,p has a valid p-covering in which v has degree 1.

Proof. Let Dd,p = (V,E) be thed-uniform hypergraph on the vertex setV = S∪

P∪{v} where|S| = 2(d− p)− 1, |P| = p− 1, andv is the single distinguished

vertex. For every subsetS′ ⊆ Sof sized− p, we add a hyperedge on thed vertices

S′∪P∪{v} to E, i.e.,|E|=
(2(d−p)−1

d−p

)
. HypergraphDd,p is depicted in Figure 3.3.

We now show that this hypergraph satisfies conditions 2 and 3 of the lemma. Here,

again, we call a graphp-covering of a hypergraphvalid if it consists only of disjoint

paths.

Assume, for contradiction, thatv is isolated in a validp-coveringG of Dd,p.

SinceG is some collection of paths on the vertex setS∪P, virtual edges can always

be added toG to extend this collection to a single pathG′ on this set. In what

follows, we will find a hyperedge inDd,p and show that it contains less thanp

edges inG′, and hence, less thanp edges inG, and thus, is not covered byG.

PathG′ defines a total order on its vertex setS∪P (there are two such total

orders, but we can choose either one, without loss of generality). Let t : S∪P→N

be this total order. If we follow the vertices of pathG′ according tot, it starts at

some vertex in one ofSor P, alternates between the two sets, and then terminates

in one of these sets. Hence, the subgraphG′S (resp.,G′P) of G′ induced on vertex

set S (resp.,P) is some collection of paths onS (resp.,P), sayS1, . . . ,Sr (resp.,

P1, . . . ,Pℓ), where for anyi < j, vertexu ∈ Si (resp.,Pi) and u′ ∈ Sj (resp.,Pj),

66

v

S1 S2 S3 S4

P1 P2 P3

Figure 3.4: The pathG′ through vertex setS∪P that alternates between sub-
paths completely inS and completely inP. Some of the shown edges
may be virtual.

v
h

S1 S2 S3 S4

P1 P2
P3

Figure 3.5: Hyperedgeh of Dd,p which contains less thanp edges fromG′

depicted in Figure 3.4.

t(u) < t(u′), cf. Figure 3.4.

Let us order the elements ofS according to total ordert and letS′ be the odd

numbered elements ofS according to this order. Since|S| = 2(d− p)− 1, |S′| =

d− p. Now, consider thed-edgeh= S′∪P∪{v} of Dd,p. Hyperedgeh is indeed

an edge inDd,p since it containsP∪{v} and a subset, namelyS′, of sized− p of S.

Hyperedgeh for the example of Figure 3.4 is depicted in Figure 3.5. We will show

that this hyperedge contains less thanp edges fromG′.

Let us count the number of edges ofG′ that are contained inh. Each path

Pi, i = 1, . . . , ℓ is completely contained inh, and thus contributes toh the |Pi| − 1

edges that connect the vertices of this path. On the other hand, sinceS′ is the set

67

v

. . .

. . .

P

S

Figure 3.6: A valid p-covering ofDd,p in which vertexv has degree 1.

of odd numbered elements ofS according to total ordert, none of the edges in

Sj , j = 1, . . . , r is contained inh. Finally, we need to consider edges of the path

G′ crossing between the setsS and P. We will show that for eachi = 1, . . . , ℓ,

there is at most one crossing edge starting at a vertex ofPi and ending inS that is

contained inh. There are at most two edges starting at a vertex ofPi and ending in

some vertex ofS. If the number of these edges is less than two, the claim holds.

Assume there are two such edges. They must start at the endpoints ofPi and end

in the consecutive elements ofS (according tot). Hence, at most one of them is

ending in the odd numbered element ofS, i.e., contained inh. It follows that the

number of crossing edges contained inh is at mostℓ. Hence,h contains at most

ℓ+∑ℓ
i=1(|Pi|−1) = |P|= p−1 edges ofG′, and hence, at mostp−1 edges ofG,

thus it is notp-covered byG, a contradiction. We can conclude that in any valid

p-covering ofDd,p, vertexv has degree at least one.

Finally, we show thatDd,p has a validp-covering in which vertexv has degree

1. Consider the pathG that starts atv and then visits all vertices inP and then all

vertices inS, cf. Figure 3.6. Consider any hyperedgeh = S′ ∪P∪{v} whereS′

is some subset ofSof sized− p. The hyperedgeh containsP∪{v}, and thus the

subpath ofG induced by these vertices. This subpath hasp−1 edges. Consider the

subgraph ofG induced byS′. If this subgraph contains at least one edge, we pick

this edge forh, and hence,h is p-covered byG. Otherwise,S′ must consist only of

odd numbered elements of the subpath ofG induced byS, and thus it contains the

first vertex of this subpath. Hence,h contains the edge ofG connecting setsSand

P, and we pick this edge forh, i.e., it is p-covered byG.

68

. .
.

. .
.

a b

c

h1

hp−1

hp

hd−3

Figure 3.7: Vertices and hyperedges added tōH to simulate the 3-edgeh =
{a,b,c}. The grayed diamonds depict copies ofDd,p.

In the following theorem we will use many copies ofDd,p to simulate the be-

havior of a 3-edge in the 1-covering problem with ad-edge in thep-covering prob-

lem.

Theorem 34. For every d−2≥ p≥ 1, the d-UH-p-CP Problem is NP-complete.

Proof. Clearly, this problem is in NP. We will show that it is also NP-hard by

reduction from the 3-UH-1-CP Problem that was shown to be NP-complete in Sec-

tion 3.2.2.

Given a 3-uniform hypergraphH = (V,E), we will construct ad-uniform

hypergraphH̄ that has a validp-covering if and only if H has a valid 1-

covering. For each 3-edgeh = {a,b,c} ∈ E we add the correspondingd-edge

h̄= {a,b,c,h1, . . . ,hd−3} to H̄. To simulate inH̄, the behavior ofh, we then add

2(d− p− 2) copies ofDd,p to H̄, where the distinguished vertexv of each copy

is identified with one of the verticeshp, . . . ,hd−3 such that each of them is used

exactly twice. Figure 3.7 illustrates all vertices and hyperedges added tōH for this

3-edgeh in H. We note that all vertices other thana,b,c added toH̄ for h are

disjoint from all other vertices.

Now, assume that there is a validp-covering Ḡ of H̄. We will construct a

1-coveringG of H as follows. For eachh ∈ E, consider the subgraph̄Gh̄ of Ḡ

induced by the vertices in̄h. It must have at leastp edges. By Lemma 33, vertices

hp, . . . ,hd−3 are incident to some edges of̄G in two different diamonds, and since

there is no vertex of degree 3 in̄G, they are isolated vertices in̄Gh. Hence, we

have p edges in thep+ 2 element set{a,b,c,h1, . . . ,hp−1} which cannot create

69

a cycle. It hence follows that these vertices must form at most two components.

Therefore, at least one pair of the verticesa,b,c must lie in the same component.

If there is only one such pair, we add it toG as an edge. If all three verticesa,b,c

are connected, we add toG a pair which remains connected after removing the

third vertex. As a consequence of this choice, each edge{u,v} in G covering a

hyperedgeh in H corresponds to a path in̄G connectingu andv. In addition, all

internal vertices of these paths are not inV, and since hyperedges in̄H share only

vertices inV, they are pairwise internally vertex disjoint.

The graphG constructed above is obviously a 1-covering ofH. Let us check

that it is also valid. First, if there is a vertexu∈V with degree 3 or more, then there

are three internally disjoint paths starting atu in Ḡ, i.e.,uwould have degree at least

3 in Ḡ, a contradiction. Second, if there is a cycleu1,u2, . . . ,uk,u1 in G, then for

each edge{ui ,ui+1} in G, we have a path connectingui andui+1 in Ḡ. Since these

paths are internally vertex disjoint, they create a cycle inḠ, a contradiction.

Conversely, assume there is a 1-coveringG of H. We construct ap-covering

Ḡ of H̄ as follows. Cover each copy ofDd,p such that the distinguished vertex has

degree 1 (this is possible by Lemma 33). For each hyperedgeh = {a,b,c} ∈ E,

without loss of generality, let{a,b} be the edge that coversh in G. Then cover

hyperedgēh by a path starting ata, visiting all verticesh1, . . . ,hp−1 and ending at

b, while the vertexc is an isolated vertex. This is ap-coveringH̄ and it is easy to

verify that it is also valid.

Finally, let us check that the construction is polynomial. The number of vertices

of H̄ is |V|+ |E|[d− 3+ 2(d− p− 2)(2d− p− 2)] and the number of edges is

|E|
[

1+2(d− p−2)
(2(d−p)−1

d−p

)]

. Sinced and p are assumed to be constants, the

reduction is polynomial.

3.2.4 The Complexity of Deciding the(d,k,∞)-C1P

We now show that for everyd > k≥ 2, deciding the(d,k,∞)-C1P is NP-complete,

by showing the correspondence of this problem to thed-UH-(d−k)-CP Problem.

A d-uniform hypergraphH = (V,E) can be represented as a binary matrixBH with

|V| columns and|E| rows, where for each hyperedgeh ∈ E, we add a row with

1’s in the columns corresponding to vertices inh and0’s everywhere else. Obvi-

70

ously, the degree of every row ofBH is d and there is a one-to-one correspondence

betweend-uniform hypergraphs and such matrices.

Lemma 35. A d-uniform hypergraph H= (V,E) can be(d−k)-covered by disjoint

paths if and only if matrix BH has the(d,k,∞)-C1P.

Proof. Assume first thatH has a valid coveringG. SinceG consists of disjoint

paths, there is a Hamiltonian pathP on V containing all edges ofG. This path

defines an order on the vertices inV. Consider the order of the columns of matrix

BH based on this order (V is the set of columnsBH). We will show that this order is

(d,k,∞)-consecutive. Since each row ofBH contains exactlyd 1’s, it is enough to

show thatd−k pairs of thesed columns are adjacent in this order. Thed columns

containing1’s in each row form a hyperedge inH. SinceG is a valid (d− k)-

covering, there are edges betweend− k pairs of thesed columns inG. SinceP

contains all edges ofG, it contains also thesed− k edges and hence, each of the

correspondingd− k pairs of columns are adjacent in the order. It follows that the

order ofBH is (d,k,∞)-consecutive.

Conversely, assume that matrixBH is (d,k,∞)-consecutive. Letπ = vi1, . . . ,vin

be the order of the columns in a(d,k,∞)-consecutive order ofBH . Now, for any

hyperedgeh = {v j1,v j2, . . . ,v jd} of H, there is a row inBH with 1’s in thesed

columns, hence,d− k pairs of the columns inh must be adjacent in the order

π. Consider the following coveringG of H: for every hyperedge pick the edge

between each pair of adjacent columns/vertices. Note that every edge inG is

{vi j ,vi j+1} for somej. Hence,G has no vertex of degree 3 or higher, nor any cycle,

thusG is a collection of disjoint paths, i.e., a valid(d−k) covering ofH.

By Theorem 34 and Lemma 35 it follows that for everyd> k≥ 2, deciding the

(d,k,∞)-C1P is NP-complete.

Theorem 36. For every d> k≥ 2, deciding the(d,k,∞)-C1P is NP-complete.

We remark that the(d,k,∞)-C1P is thek-C1P [55] for matrices of bounded

degreed. Goldberg et al. [55] posed the open question of the complexity of decid-

ing the 2-C1P for matrices with a limitℓ on the number of ones per row,and per

column. This is motivated by a typical setting in physical mapping,where a clone

71

will only contain a small number of probes, and there is only limited coverage of

the entire sequence by the clones (cf. Chapter 1 for details on physical mapping).

Since our construction of Theorem 32 in Subsection 3.2.2 which implies that de-

ciding the 2-C1P for matrices of bounded degree 3 is NP-complete uses also only 7

ones per column, we have the following corollary which closes this open question

of Goldberg et al. [55].

Corollary 37. Deciding the 2-C1P with a limit 3 on the number of ones per row

and 7 on the number of ones per column is NP-complete.

72

Chapter 4

The Consecutive-Ones Property

with Multiplicity

In this chapter we show in Section 4.1 that deciding themC1P is NP-complete for

matrices with degree at most 3 andm(s) ≤ 2 for eachs∈ S, whereS is the set of

columns ofM. We then present in Section 4.2 the two restricted variants of the

mC1P given in Wittler and Stoye [151], namely the Consecutive-Ones Property

with Multiplicity for Framed Rows (mC1P(fr)) and the Consecutive-Ones Prop-

erty with Multiplicity for Nested Rows (mC1P(ne)). In Subsection 4.2.1 (resp.,

Subsection 4.2.2) we detail themC1P(fr) (resp.,mC1P(ne)) variant, its biological

motivation, and show that deciding themC1P(fr) (resp.,mC1P(ne)) is NP-complete

for matrices with degree at most 6 (resp., 3) andm(s) ≤ 2 for eachs∈ S. Then,

in Section 4.3 we give a tractability result for a case of themC1P, motivated by

handling ancestral telomeres in the reconstruction of AGO.

4.1 The Consecutive-Ones Property with
Multiplicity (mC1P)

Here, we show that deciding themC1P is NP-complete for matrices with degree at

most 3 andm(s)≤ 2 for eachs∈ S, whereS is the set of columns ofM.

Theorem 38. Given a degree 3 matrix M on set S of columns, deciding the mC1P

for M is NP-complete for a multiplicity vectorm wherem(s)≤ 2 for each s∈ S.

73

Before giving the proof, we would like to emphasize that thisis the strongest

possible result. If the maximum multiplicity would be one, this is just an instance

of the classical C1P. If the degree ofM is restricted to 2, then this corresponds

to the model of adjacencies, and can hence by solved using themethod based on

Eulerian graphs given in Wittler and Stoye [151].

Proof. One can easily formulate an algorithm that verifies a given solution, i.e.,

a C1 order with multiplicity in polynomial time, which showsthat the problem

belongs to the complexity class NP. We will show NP-hardnessof deciding the

mC1P by reduction from 3SAT(3), which has been proven to be NP-complete by

Papadimitriou [120]. 3SAT(3) is a restricted version of 3SAT in which every vari-

able has exactly two positive and one negative occurrence inthe clauses.1

Here, we again reduce from a type of hypergraph covering problem as we did

in Chapter 3 to show NP-hardness of deciding the(d,k,δ)-C1P. Given a 3SAT(3)

formula φ with variablesX = {x1, . . . ,xn} and clausesC = {c1, . . . ,cm}, we con-

struct a matrixMφ consisting of at most 5n+2m columns of multiplicity at most

two and at most 5n+3m rows of degree three or less for which a C1 orderσ with

multiplicity exists if and only ifφ is satisfiable.

For this instanceφ of 3SAT(3), we say that a clauseselectsone of its literals in

a truth assignment ofφ if this literal has valuetrue in this assignment. Obviously,

a truth assignment ofφ is a satisfying truth assignment if and only if every clause

selects at least one literal and for everyx∈ X, at most one ofx and¬x is selected.

We design an instanceMφ composed of clause gadgets which will guarantee the

first condition and variable gadgets which will ensure the second condition.

For each 2-clauseci with literalsc1
i andc2

i , we add toMφ the two columnsc1
i

andc2
i , each of multiplicity 2, and the two columnsc∗i andc∗∗i , each of multiplicity

1, and the rowsS1
i = [c1

i ,c
2
i ,c
∗
i] and S2

i = [c∗i ,c
∗∗
i]. This is referred to as the2-

clause gadget. For each 3-clauseci with literals c1
i ,c

2
i andc3

i , we add toMφ the

three columnsc1
i ,c

2
i andc3

i , each with multiplicity 2, and the rowSi = [c1
i ,c

2
i ,c

3
i].

This is referred to as the3-clause gadget.

1We remark that the exact formulation of 3SAT(3) in Papadimitriou [120] allows also variables
with one negated and two positive occurrences, but these caneasily be converted to the other type
of variables by replacing them with their negations in all clauses. Clearly, this does not affect the
complexity of the problem.

74

c1i

c2i

c∗i c∗∗i

(a)

c1i

c2i

c3i
(b)

Figure 4.1: Graphical representations of the (a) 2-clause gadget and (b) 3-
clause gadget for clauseci . The multiplicity of the columns (resp., ver-
tices) is indicated by the number of dots. Rows are depicted by ellipses
surrounding two vertices or triangles surrounding three vertices, respec-
tively.

Figure 4.1 shows graphical representations of these gadgets, which also high-

lights thatMφ can be viewed as a hypergraph with a vertex for each column anda

hyperedge for each row. A C1 order with multiplicity ofMφ is then a collection of

walks on this hypergraph thatcoverseach hyperedge (for each hyperedgee there

is a connected subwalk containing all vertices ine) such that no vertexv is visited

more thanm(v) times.

We say that in stringσ , a clause gadgetselectsa literal columnc j
i , if, in σ , c j

i

is enclosed on both the left and right side by at least one column of this gadget.

Note that in both clause gadgets, at least one of the literal columns is selected

in any valid stringσ . For the 2-clause gadget, stringσ has to contain one of the

substringsc1
i c2

i c∗i c∗∗i or c2
i c1

i c∗i c∗∗i , or one of their reversals. For the 3-clause gadget,

string σ has to contain one of the substringsc,ic
2
i c3

i or c2
i c1

i c3
i , or c1

i c3
i c2

i or one of

their reversals. Clearly a literal column is always selected in each of these gadgets

for any stringσ that is a C1 order with multiplicity ofMφ .

Now, all 3n literal columnsc j
i from the set of clause gadgets forC will appear

in the variable gadgets, where the variable gadgetselectsthis columnc j
i , if c j

i is

again enclosed on both the left and the right side by at least one column of the

gadget inσ . So if a literal columnc j
i is selected by a clause gadget, then it cannot

be selected by this variable gadget, sinceσ is a string and thusc j
i can be framed by

at most two other columns ofσ . The variable gadget for eachx∈ X will use this

property to ensure that literal verticesx and¬x are not selected at the same time.

75

x′
ℓ

cγk

cαi x′′
ℓ

cβj

Figure 4.2: Graphical representation of the variable gadget for variable xℓ
with positive occurrencescα

i andcβ
j and negated occurrencecγ

k in the
clauses.

For each variablexℓ with the two positive occurrencescα
i and cβ

j and the

negated occurrencecγ
k, we already added toMφ the columnscα

i , cβ
j andcγ

k, each of

multiplicity two in the corresponding clause gadgets for the clauses containingxℓ
and¬xℓ. We further add toMφ the two columnsx′ℓ andx′′ℓ , each of multiplicity one,

and the four rowsP1
ℓ = [cα

i ,c
γ
k,x
′
ℓ], P2

ℓ = [x′ℓ,c
β
j], P3

ℓ = [cβ
j ,c

γ
k], P4

ℓ = [cα
i ,x
′′
ℓ]. This

is referred to as thevariable gadgetfor xℓ, depicted in Figure 4.2.

Now, consider a C1 orderσ with multiplicity for Mφ where the literalcγ
k is

selected by some clause gadget. Since one copy ofcγ
k is used up by this clause

gadget,σ must contain the substringcβ
j cγ

kcα
i x′ℓ or its reversal because it is the only

way to ensure consistency inσ for rowsP1
ℓ andP3

ℓ in Mφ with the one remaining

copy of cγ
k. If literal cβ

j is also selected by some clause gadget, then there is no

way thatσ can be consistent withP2
ℓ in σ . While if literal cα

i is also selected by

some clause gadget, then there is no way thatσ can be consistent withP4
ℓ , which

contradicts the fact thatσ is a C1 order with multiplicity forMφ . It follows that if

Mφ has a C1 orderσ with multiplicity, thenφ is satisfiable.

We now show that the converse holds, namely ifφ has a satisfying truth as-

signmentτ , thenMφ has a C1 orderσ with multiplicity. Givenτ , we constructσ
as follows. For any variablexℓ with the two positive occurrencescα

i andcβ
j and the

negative occurrencecγ
k, in τ , either of the two cases must hold:

1. cα
i andcβ

j arefalseandcγ
k is true: In this case, we create the substringcµ

k cγ
kcν

k ,

satisfyingSk, or cµ
k cγ

kc∗kc∗∗k satisfyingS1
k andS2

k, depending on whethercγ
k is

part of a 3- or a 2-clause. Further, we create the substringscβ
j cγ

kcα
i x′ℓc

β
j and

cα
i x′′ℓ , fulfilling all P1,2,3,4

ℓ .

76

2. cα
i and cβ

j are true and cγ
k is false: In this case, we create the substrings

cµ
i cα

i cν
i , satisfyingSi (resp.,cµ

i cα
i c∗i ,c

∗∗
i satisfyingS1

i andS2
i) andcµ

j cβ
j cν

j ,

satisfyingSj (resp.,cµ
j ,c

β
j ,c
∗
j c
∗∗
j satisfyingS1

j andS2
j). Further, we create the

substringx′′ℓcα
i cγ

kx′ℓc
β
j cγ

k, fulfilling all P1,2,3,4
ℓ .

The requirements forσ imposed by all given rows ofMφ fulfilled. It remains

to be shown that the multiplicity constraint is met as well. None of the columnscγ
k,

(resp.,c∗k, c∗∗k), x′ℓ andx′′ℓ used in the first case are affected by the second case for

any other variable and none of the columnscα
i , (resp.,c∗i ,c

∗∗
i), cβ

j , (resp.,c∗j ,c
∗∗
j), x′ℓ

andx′′ℓ are affected by the first case for any other variable. For all of these columns,

the multiplicity constraint is met. The columncα
i is used twice in case one. The

same column will occur ascµ
i or cν

i in the second case for some other variable.

But since in both of the corresponding substrings, the column is the first or last

element, they can be merged into one substring using only twocopies ofcα
i . Here

we might have to reverse the substringcα
j x′′ℓ to x′′ℓcα

j , still fulfilling P4
ℓ . The same

argument holds forcβ
j .

Analogously, the columncγ
k is already used twice in case two. The same col-

umn will occur ascµ
k or cν

k in the first case for some other variable. But since in

both of the corresponding substrings, the column is the firstor last element, they

can be merged to one substring using only two copies ofcγ
k. Here we might have

to reverse one of the substrings, still fulfilling the restrictions by the rows ofMφ .

Since each column only occurs in one rowSi (resp.,S1
i) of Mφ , each substring

induced by rowsP1,2,3,4
ℓ has to be merged on one side, i.e., no cycles are created

in the set of walks covering the corresponding hypergraph. Eventually, any con-

catenation of the constructed substrings yields a stringσ that is a C1 order with

multiplicity of Mφ . Thus if φ has a satisfying assignmentτ , thenMφ has a C1

orderσ with multiplicity.

Since the number of columns used in the construction is at most 5n+2m, the

number of rows is at most 4n+2m, and each row is of degree at most 3, i.e., the

construction is linear in the size ofφ , it can be built in linear time, and hence,

deciding themC1P is NP-hard for matrices with degree at most 3, and no column

has multiplicity greater than two.

77

4.2 Two Variants of themC1P

Besides its classical definition, there are different generalizations of themC1P dis-

cussed in the literature, such as r-windows [40, 49], max-gap clusters [68, 69, 122],

and approximate gene clusters [19, 125]. Since deciding themC1P is NP-complete,

any generalization is NP-hard as well.

In contrast to generalizations, there are also restricted variants of themC1P that

are relevant to settings in the reconstruction of AGOs. In the following, we will

discuss such models, in particular the Consecutive-Ones Property with Multiplicity

for Framed Rows (mC1P(fr)) and Consecutive-Ones Property with Multiplicityfor

Nested Rows (mC1P(ne)).

4.2.1 ThemC1P(fr) Variant

The C1P of binary matrices where each row is framed by two columns, or the

model of common intervals framed by two genes (whose orientations have to be

conserved also), was first introduced asconserved intervalson permutations in

Bergeron and Stoye [14]. In the reconstruction of AGOs, framed rows on per-

mutations was the first model to formally state the problem offinding putative

AGOs [15]. Here, we define themC1P(fr), which models framed rows onse-

quences, to account for duplicate markers, for example.

Definition 39 (Framed Row of a Matrix). Let M be a binary matrix on the set of

columns S= {1, . . . ,n}. A framed row(for r ⊆ S) of M is denoted[a r b], where its

two extremities(or framing columns) a,b∈ S. We sometimes refer to the columns

of r as theinner columnsof this framed row. A framed row[a r b] is containedin a

sequenceσ on S if, somewhere inσ , a and b appear with the set of characters of

the substring between a and b taken only from r.

Definition 40 (Consecutive-Ones Property with Multiplicity for Framed Rows

(mC1P(fr))). A binary matrix M on the set of columns S= {1, . . . ,n} with framed

rows has the mC1P(fr) if there is a sequenceσ that contains each framed row of

M.

The obvious relationship of themC1P and themC1P(fr) allows us to infer an

important correlation of these properties: any instance ofthemC1P can be reduced

78

to an instance of themC1P(fr). Based on this, we can deduce the following state-

ment.

Theorem 41. Given a degree 6 matrix M on set of columns S, deciding the

mC1P(fr) is NP-complete for a multiplicity vectorm wherem(s) ≤ 2 for each

s∈ S.

Proof. Again, one can easily formulate an algorithm that verifies a given solution

for correctness in polynomial time, which shows that the problem belongs to the

complexity class NP. NP-hardness is shown by reducing the case for themC1P

used in the proof of Theorem 38 to themC1P(fr).

The basic idea is to replace each rowB = {e1, . . . ,em} by a framed rowB =

[B̃{e1, . . . ,em, . . .} B̄] containing, besides others, the columns ofBas inner columns.

Then, if this new instance allows for a valid sequenceσ , there is a sequenceσ ′

for the original instance of themC1P by simply removing all newly introduced

columns fromσ such that only the columns contained in the rowsB are left inσ ′.
Because the inner columns of all framed rows have to occur contiguously inσ , the

columns of the original rows occur contiguously inσ ′.
Since the rows of the matrix used in the proof of Theorem 38 overlap, the

framing columns have to be included into the set of inner columns of overlapping

framed rows. However, no row is included in another. This allows us to use the

following technique which ensures that, if there is a valid sequence for the original

matrix, there is a valid sequence for the constructed set of framed rows. Together

with the argument in the previous paragraph, this will yieldequivalence of the two

instances of the C1P with multiplicity.

For each rowB = {e1, . . . ,em} overlapping with rowsB1, . . . ,Bk, we create

a framed rowB = [B̃{e1, . . . ,em, B̃1, . . . , B̃k, B̄1, . . . , B̄k} B̄] containing the framing

columns ofB1, . . . ,Bk, the framed rows constructed forB1, . . . ,Bk. Note that

this means that the framing columns̃B and B̄ also appear as inner columns to

B1, . . . ,Bk. All rows used in the proof of Theorem 38 have the property that, for

a valid sequence (a C1 order with multiplicity), an occurrence of a given row can

overlap with the occurrence of only one other row on each side. Assume, the

occurrence of someB overlaps withBl in e1, . . . ,el on one side and withBr in

er , . . . ,em on the other side. Then, we can extend the substring that fulfills B to

79

B̃,e1, . . . ,el , B̄l , . . . , B̃r ,er , . . . ,em, B̄. BetweenB̄l and B̃r we include all remaining

inner columns ofB in an arbitrary order. The resulting substring fulfillsB and also

allows a realization of the framed rows created forBl andBr . This extension can

be performed for all rows such that, finally, all framed rows are contained in the

extended, overall string. What remains to be shown is that such a construction is

possible using at most six inner columns in each framed common row, as well as

that a maximum multiplicity of two is sufficient.

To minimize the number of inner columns, we do not always add both framing

columns to all overlapping rows. The structure of the rows used in the gadgets

of the proof of Theorem 38 restricts the possible overlaps oftheir occurrences in

a valid sequence. As can be seen in the proof of Theorem 38, if there is a valid

sequence, we can construct one using the following orders (or their reversals) of

row occurrences within the gadgets:

P3
ℓ ,P

1
ℓ ,P

2
ℓ or P4

ℓ ,P
1
ℓ ,P

2
ℓ ,P

3
ℓ , andS1

i ,S
2
i .

Within the gadget,P3
ℓ can only be followed byP1

ℓ . We thus addP̄3
ℓ (but notP̃3

ℓ) to

the inner columns ofP1
ℓ , andP̃1

ℓ (but notP̄1
ℓ) to those ofP3

ℓ . Analogously, we add

P̄1
ℓ to P

2
ℓ andP̃2

ℓ to P
1
ℓ , P̄4

ℓ to P
1
ℓ andP̃1

ℓ to P
4
ℓ , P̄2

ℓ to P
3
ℓ andP̃3

ℓ to P
2
ℓ , andS̄1

i to S
2
i

andS̃2
i to S

1
i .

A 2-clause gadget overlaps the gadgets of two variables, sayx j andxk. As can

be seen in the proof of Theorem 38, if there is a valid sequence, we can construct

one with one of the following orders (or their reversals) of row occurrences:

Pp
j ,S

1
i ,S

2
i , or Pq

k ,S
1
i ,S

2
i

wherep,q∈ {2,3,4}, depending on where it overlaps the variable gadgets. Thus,

we addS̃1
i to the inner columns ofPp

j andPq
k.

A 3-clause gadget overlaps the gadgets of three variables, say x j , xk andxℓ in

the columnc1
i , c2

i andc3
i , respectively. As can be seen in the proof of Theorem 38,

if there is a valid sequence, we can construct one with one of the following orders

(or their reversals) of row occurrences:

Pp
j ,Si ,P

q
k or Pp

j ,Si ,P
r
ℓ or Pq

k ,Si ,P
r
ℓ ,

80

wherep,q, r ∈ {2,3,4}, depending on where the variable gadgets are overlapped

by Si . We addS̃i to the inner columns ofPp
j , S̄i to the inner columns ofPq

k, andS̃i

andS̄i to the inner columns ofPr
ℓ. This way, in any of the three cases, there is at

least one copy of each framing column ofSi available on both sides.

In summary, we reduce a given set of rows as used in the proof ofTheorem 38

to a set of framed rows with at most six inner columns as follows. For the rows

P1,2,3,4
ℓ used in the variable gadget forxℓ, we create the framed rows

P
1
ℓ = [P̃1

ℓ {c
α
i ,c

γ
k,x
′
ℓ, P̃

2
ℓ , P̄

3
ℓ , P̄

4
ℓ } P̄1

ℓ],

P
2
ℓ = [P̃2

ℓ {x
′
ℓ,c

β
j , P̄

1
ℓ , P̃

3
ℓ }∪ Iβ

j P̄2
ℓ],

P
3
ℓ = [P̃3

ℓ {c
β
j ,c

γ
k, P̃

1
ℓ , P̄

2
ℓ }∪ I γ

k P̄3
ℓ] and

P
4
ℓ = [P̃4

ℓ {c
α
i ,x
′′
ℓ , P̃

1
ℓ }∪ Iα

i P̄4
ℓ], where

I µ
t =







{S̃t} (or {S̃1
t } if cα

t appears in a 2-clause) ifµ = α

{S̄t} (or {S̃1
t }) if µ = β

{S̃t , S̄t} (or {S̃1
t }) if µ = γ .

For the rowsS1,2
i used in the 2-clause gadget forci , we create the framed rows

S
1
i = [S̃1

i {c
1
i ,c

2
i ,c
∗
i , S̃

2
i , P̃(c

1
i), P̃(c

2
i)} S̄1

i] and

S
2
i = [S̃2

i {c
∗
i ,c
∗∗
i , S̄1

i } S̄2
i],

where we defineP̄(c j
i) to be the right framing column of the (unique)Pm

ℓ that

containsc1
i andc2

i as inner columns.

For the rowSi used as in the 3-clause gadget forci , we create the framed row

Si = [F̃i {c
1
i ,c

2
i ,c

3
i , P̃(c

1
i), P̃(c

2
i), P̃(c

3
i)} P̄i],

where we definẽP(c j
i) to be the left framing column of the (unique)Pm

ℓ that con-

tainsc1
i , andc2

i or c3
i as inner columns.

It remains to be shown that a maximum multiplicity of two for all newly added

columns suffices. This is true, because each new column is included in the inner

columns of at most two framed rows. In fact, we can assign a multiplicity of

81

one to some of these columns. We define:m(P̄1,2,4) = m(S̃2
i) = m(S̄2

i) = 1 and

m(P̃1,2,3,4) = m(P̄3) = m(S̃i) = m(S̄i) = 2.

Since the number of columns used in the construction is at most 6n+8m, the

number of framed rows is at most 4n+2m, and each framed rows contains at most

six inner columns, i.e., the construction is linear in the size ofφ , it can be built in

linear time, and hence, deciding themC1P(fr) is NP-hard for matrices with degree

at most 6, and no column has multiplicity greater than two.

Please note that, again, for a maximum multiplicity of one, polynomial solu-

tions exist. Framed rows with no inner columns are equivalent to adjacencies, for

which there is an efficient solution [151]. However, there isa gap left for framed

rows with one to five inner columns. For these, the complexityis still open.

4.2.2 ThemC1P(ne) Variant

Hoberman and Durand [69] discussed nestedness as a desired property of gene

clusters (ancestral syntenies in our case) and proposed a first algorithm to identify

respective clusters. Recently, Blin et al. [17] formally defined and studiednested

common intervals, and gave efficient algorithms to detect them in genomes mod-

eled both as permutations and as sequences. Here, we define a notion of themC1P

for nested rows.

Definition 42 (Nested Row of a Matrix). Let M be a binary matrix on the set of

columns S= {1, . . . ,n}. The structure of a nested row of M is defined recursively.

A nested rowin M is either

(i) a row {a,b} of degree 2, or

(ii) a tuple (c,a) of a nested row c and a column a.

A nested row(c,a) (resp.,{a,b}) is containedin a sequenceσ on S if a is adjacent

to a substringσ ′ of σ such that the character set of c isσ ′, and c is contained in

σ ′ (resp., a and b are adjacent inσ). Here, the character set CS of a nested row is

defined recursively as (i) CS({a,b}) = {a,b}, and (ii) CS((c,a)) = CS(c)∪{a}

82

Example 43. Consider the sequenceσ = 5421236. The nested row(({2,3},1),4)

is contained inσ as illustrated below, where the occurrences of the (nested)sub-

rows are indicated by lines:

(5,4,2,1,2,3,6) .

In contrast,(({1,3},2),4) is not contained inσ since, although4 is adjacent to a

substring with character set{1,2,3} in σ , none of the occurrences of2 is adjacent

to a substring with character set{1,3}.

Note that row({2,3},3) is not contained in s, because3 is not adjacent to a

substring with character set{2,3}, whereas row({1,2},2) is contained inσ :

(5,4,2,1,2,3,6) .

Definition 44 (Consecutive-Ones Property with Multiplicity for Nested Rows

(mC1P(ne))). A binary matrix M on the set of columns S= {1, . . . ,n} with nested

rows has the mC1P(ne) if there is a sequenceσ on S that contains each nested row

of M.

We show now that even the strict assumption of nestedness is not strong enough

to allow an efficient verification of this variant. In fact, similar to deciding the

mC1P, there is no gap left for fixed-parameter tractability inthe considered param-

eters.

Theorem 45. Given a degree 3 matrix M on the set of columns S, deciding the

mC1P(ne) for M is NP-complete for a multiplicity vectorm wherem(s) ≤ 2 for

each s∈ S.

Proof. NP-hardness is proven by reduction from 3SAT(3) using a construction

very similar to that of Theorem 38. Given 3SAT(3) formulaφ , we will again

design an instanceMφ of the matrix onnestedrows comprising of clause gadgets

and a variable gadget, and then argue why they simulate (or rather that deciding

themC1P(ne) for this instance simulates) exactly this instanceφ .

For each 2-clauseci with literalsc1
i andc2

i , we add toMφ the two columnsc1
i

83

c1i

c2i

c∗i

(a)

c̄1i

c̄2i

c̄3i

c1i

c2i

c3ic̃1i

c̃2i

c̃3i
(b)

Figure 4.3: Graphical representations of the (a) 2-clause gadget and (b) 3-
clause gadget for clauseci in themC1P(ne) case.

andc2
i , each of multiplicity two, and the columnc∗i of multiplicity one, and the

nestedrow S1
i = ({c1

i ,c
2
i },c

∗
i). The 2-clause gadget is depicted in Figure 4.3a.

For each 3-clauseci with literalsc1
i ,c

2
i andc3

i , we add toMφ the three columns

c1
i ,c

2
i andc3

i , each with multiplicity two, the three columns c̃1
i , c̃

2
i and c̃3i , each with

multiplicity one, the three columns c̄1
i , c̄2i and c̄3i , each with multiplicity two and

the six nested rowsS1
i = ({c1

i , c̄1i }, c̃
1
i),S

2
i = ({c2

i , c̄2i }, c̃
2
i),S

3
i = ({c3

i , c̄3i }, c̃
3
i),S

4
i =

{ c̄1i , c̄2i },S
5
i = { c̄2i , c̄3i },S

6
i = { c̄3i , c̄1i }. The 3-clause gadget is depicted in Fig-

ure 4.3b.

Note again that in both clause gadgets, at least one of the literal columns is

selected in any valid stringσ . For the 2-clause gadget, stringσ has to contain

one of the substringsc1
i ,c

2
i ,c
∗
i or c2

i ,c
1
i ,c
∗
i , or one of their reversals, thus a literal

columns is always selected in this case. In the 3-clause gadget, if no literal column

is selected in stringσ , i.e., σ contains substrings c̃q
i , c̄qi ,c

q
i (or their reversals) for

q ∈ {1,2,3}, there is only one remaining copy of c̄q
i for q ∈ {1,2,3} and hence

there is no way thatσ can be consistent with all ofS{4,5,6}i simultaneously, which

is a contradiction. Therefore at least one literal column isselected in this case as

well.

For each variablexℓ with the two positive occurrencescα
i and cβ

j and the

negated occurrencecγ
k, we already added toMφ the columnscα

i , cβ
j andcγ

k, each

of multiplicity two in the corresponding clause gadgets forthe clauses containing

84

x′
ℓ

cγk

cαi x′′
ℓ

cβj

Figure 4.4: Graphical representation of the variable gadget for variable xℓ
with positive occurrencescα

i andcβ
j and negated occurrencecγ

k in the
clauses in themC1P(ne) case.

xℓ and¬xℓ. We further add toMφ the two columnsx′ℓ andx′′ℓ , each of multiplicity

one, and the four nested rowsP1
ℓ = ({cα

i ,c
γ
k},x

′
ℓ), P2

ℓ = {x′ℓ,c
β
j }, P3

ℓ = {cβ
j ,c

γ
k},

P4
ℓ = {cα

i ,x
′′
ℓ}. The variable gadget is depicted in Figure 4.4.

Now, consider a valid stringσ where the literalcγ
k is selected by some clause

gadget. Since one copy ofcγ
k is used up by this clause gadget,σ must contain the

substringcβ
j ,c

γ
k,c

α
i ,x
′
ℓ or its reversal because it is the only way to ensure consis-

tency for nested rowsP1
ℓ andP3

ℓ with the one remaining copy ofcγ
k. If literal cβ

j is

also selected by some clause gadget, then there is no way thatσ can be consistent

with P2
ℓ . While if literal cα

i is also selected by some clause gadget, then there is no

way thatσ can be consistent withP4
ℓ , which is a contradiction to the fact thatσ is

valid. It follows that ifMφ has a valid stringσ , thenφ is satisfiable.

We now show that the converse holds, namely ifφ has a satisfying truth as-

signmentτ , thenMφ has a valid stringσ . Given τ , we constructσ as follows.

For any variablexℓ with the two positive occurrencescα
i andcβ

j and the negative

occurrencecγ
k, in τ , either of the two cases must hold:

1. cα
i and cβ

j are false and cγ
k is true: In this case, we create the substring

c̃γ
k,c

γ
k, c̄γk, c̄µk ,c

µ
k , c̃

µ
k , c̄µk , c̄νk ,c

ν
k , c̃

ν
k , c̄νk , c̄γk satisfyingS{1,...,6}k or cµ

k ,c
γ
kc∗k satisfy-

ing S1
k, depending on whethercγ

k is part of a 3- or 2-clause. Further, we again

create substringscβ
j ,c

γ
k,c

α
i ,x
′
ℓ,c

β
j andcα

i ,x
′′
ℓ , fulfilling all P{1,2,3,4}ℓ .

2. cα
i and cβ

j are true and cγ
k is false: In this case, we create the substrings

c̃α
k ,c

α
k , c̄αk , c̄µk ,c

µ
k , c̃

µ
k , c̄µk , c̄νk ,c

ν
k , c̃

ν
k , c̄νk , c̄αk satisfyingS{1,...,6}k (resp.,cµ

i ,c
α
i ,c
∗
i

satisfyingS1
i) and c̃βk ,c

α
k , c̄βk , c̄µk ,c

µ
k , c̃

µ
k , c̄µk , c̄νk ,c

ν
k , c̃

ν
k , c̄νk , c̄βk satisfyingS{1,...,6}k

(resp., cµ
j ,c

β
j ,c
∗
j satisfying S1

j). Further, we again create the substring

85

x′′,cα
i ,c

γ
kx′,cβ

j ,c
γ
k, fulfilling all P1,2,3,4

ℓ .

The requirements imposed by all given nested rows are fulfilled. Since none of

the columns used in the first (resp., second) case are affected by the second (resp.,

first) case for any other variable (this time,cα
i ,c

β
j andcγ

k appear only once in either

of the two cases), the multiplicity constraint is met as well. Eventually, again, any

concatenation of the constructed substrings yields a string σ that is valid w.r.t.Mφ .

Thus, ifφ has a satisfying assignmentτ , thenMφ has a valid stringσ .

Since the number of columns used in this construction is at most 5n+6m, the

number of nested rows is at most 5n+9m, and each nested row is of size at most

three, i.e., the construction is linear in the size ofφ , it can be built in linear time,

and hence, deciding themC1P(ne) is NP-hard for matrices with degree at most 3,

and no column has multiplicity greater than two.

Indeed, deciding themC1P is a hard problem, since even two restricted versions

of it are hard. In the next section, however, we present a class of deciding themC1P

that is tractable, motivated by handling telomeres in the reconstruction of AGOs.

4.3 A Tractability Result for the Consecutive-Ones
Property with Multiplicity

In this section, we present a tractability result for a family of matrices where every

row of M has (i) at most one entry1 in columns with multiplicity greater than

one, or (ii) exactly two entries1 in columns with multiplicity greater than one and

no other entries. Our proofs rely on the two classical concepts of PQ-trees and

Eulerian graphs. We first give the following technical preliminaries.

4.3.1 Preliminaries

Let M be a binary matrix, with rowsR= {r1, . . . , rm}, columnsS= {s1, . . . ,sn} and

ℓ entries1. We represent a rowr of M as a subset ofS, defined as the set ofsi such

that M[r,si] = 1. A columns with multiplicity m(s) > 1 is called amulticolumn

and a rowr containing a multicolumn (i.e.,M[r,s] = 1 for some columns with

m(s)> 1) is called amultirow. A multirow that does not contain any other multirow

is calledminimal. We say a binary matrixM with multiplicity vector m : S→ N

86

M 1 2 3 4 5 a b
r1 1 1 0 0 0 1 1

r̂1 1 1 0 0 0 0 0

r2 1 1 1 0 0 0 0

r3 0 0 1 1 1 0 1

r̂3 0 0 1 1 1 0 0

r4 0 0 0 1 1 0 1

r̂4 0 0 0 1 1 0 0

r5 1 0 0 1 1 0 0

(a)

M̂ 1 2 3 4 5
r1 1 1 0 0 0

r2 1 1 1 0 0

r3 0 0 1 1 1

r4 0 0 0 1 1

r5 1 0 0 1 1

(b)

Figure 4.5: (a) Binary matrixM, with matched multirows. Letm(1) = · · ·=
m(5) = 1 andm(a) = m(b) = 2: a andb are multicolumns andr1, r3

andr4 are multirows. Rowr3 is not minimal, because it containsr4. (b)
The corresponding matrix̂M. Since inM̂, by definition ˆr i = r i for all
multirowsr i , the matched multirows are discarded.

hasmatched multirowsif, for every multirowr ⊆Sthat contains at least two entries

1 in non-multicolumns, there exists a row ˆr which is a copy ofr where all entries

in multicolumns have been discarded (i.e., switched from1 to 0). We denote byM̂

the binary matrix obtained fromM by discarding all multicolumns. In this work,

we assume that all matrices we deal with have matched multirows unless otherwise

stated. Figure 4.5 illustrates the above definitions.

We now have the important lemma about themC1P of matrices with matched

mutlirows, which leads to this tractability result.

Lemma 46. Every C1 order with multiplicity of M with multiplicity vector m con-

tains a C1 order ofM̂ as a subsequence. As a consequence, if a binary matrix M

has the mC1P, then̂M has the C1P.

This lemma suggests that, to decide ifM has themC1P for a given multiplicity

vectorm, we can first check ifM̂ has the C1P, and then extend a C1 order ofM̂

into an C1 order with multiplicity ofM by adding copies of multicolumns. Note

that the matrixM̂ in Figure 4.5 does not have C1P, and hence,M does not have

mC1P. However, if we omit columnr5, then 12345 is a C1 order of̂M, which

can be extended to the following C1 order with multiplicity of M: ab12345b. To

account for the fact that there can be an exponential number of C1 orders ofM̂,

we use PQ-trees, a linear size structure that can describe all C1 orders ofM̂, de-

87

fined below. For a more complete treatment of PQ-trees, we refer the reader to

Booth and Lueker [21] or Meidanis et al. [106].

The frontier F(T) of a PQ-treeT of a matrixM on columnsS is the sequence

of Sobtained by reading the labels of its leaves from left to right. The frontier of

an internal (P- or Q-) nodeN in T is the frontier of the subtree rooted atN. Let

{F(N)} be the set of elements appearing in the sequenceF(N). Two PQ-trees are

equivalent if one can be obtained from the other by applying asequence of the

following transformation rules: (RP) arbitrarily permutethe children of a P-node;

(RQ) reverse the order of the children of a Q-node.

Theorem 47. Booth and Lueker [21]If a binary matrix M has the C1P, there exists

a unique equivalence class PQM of PQ-trees with the property that there is a one-

to-one correspondence between the C1 orders of M and the frontiers of the PQ-

trees of PQM, and a PQ-tree belonging to PQM can be constructed in linear time.

Each PQ-tree in the equivalence classPQM satisfies the following properties

(that are implicitly given in Booth and Lueker [21] and McConnell [102]) which

we will use in this section.

Property 48. Let M be a binary matrix that has the C1P with rows R and T a

PQ-tree in the equivalence class PQM. Then

1. for every row r∈R, there is a node N in T such that either{F(N)}= r, if N

is a P-node, or r is consecutive in F(N), if N is a Q-node;

2. for every node N different from the root of T , there is a row r∈ R such that

{F(N)} ⊆ r; and

3. for every Q-node N, and every two consecutive children N1 and N2 of N,

there is a row r∈ R such that{F(N1)}∪{F(N2)} ⊆ r.

Finally, we recall briefly the technique used to prove that matrices with two

entries1 per row (usually called matrices ofdegree2) form a class of tractable

instances for deciding themC1P as we will use it to prove our main result. Such

matrices can be naturally represented as a collection of adjacency constraintsA =

{{ai ,bi}}
m
i=1 on the setS, whereai 6= bi and the collection is a set (no duplicate

88

elements). CollectionA is consistentwith respect tom if there is a sequenceσ on

Ssuch that each adjacency is consecutive inσ . We will refer to this sequence as a

consistency sequenceof A andm. Note that an C1 order with multiplicity ofM is

a consistency sequence of the corresponding collectionA andm, and vice versa,

and hence,M has themC1P form if and only if A is consistent with respect tom.

Given a collection of adjacenciesA , we define the graphGA with vertex setSand

edges given by adjacencies.

Theorem 49. Wittler and Stoye [151]A collection of adjacenciesA is consistent

with respect to a multiplicity vectorm if and only if for all si ∈ S,degreeGA
(si)≤

2m(si) and for each connected component B⊆ S of GA , for at least one si ∈ B,

degreeGA
(si)< 2m(si).

The above theorem relies on the fact that the graphGA satisfying the above

conditions can be extended to a multigraph onS∪{s0} that has an Eulerian cycle.

It can be easily seen that the proof presented in Wittler and Stoye [151] applies to

generalized adjacencies, where we allowai = bi and the collection to be a multiset,

and we require that each adjacency inA appears inσ in a unique position. Note

thatGA is now a multigraph with self-loops. We have the following corollary.

Corollary 50. A collection of generalized adjacenciesA is consistent with respect

to a multiplicity vectorm if and only if for all si ∈ S,degreeGA
(si) ≤ 2m(si) and

for each connected component B⊆S of GA , for at least one si ∈B,degreeGA
(si)<

2m(si).

4.3.2 A Tractable Case of Deciding themC1P

Our main result is that deciding themC1P is tractable for a large family of matrices

with constraints on the maximum number of entries1 in multicolumns a row can

have. The motivation for studying this particular family ofmatrices arises from

incorporating information on telomeres in ancestral gene order reconstruction (cf.

Chapter 1)

Theorem 51. Let M be a binary matrix andm a multiplicity vector such that

(1) M has matched multirows, and

89

(2) each row contains either (i) at most one entry1 in multicolumns, or (ii) two

entries1 in multicolumns and no other entries. Deciding if M has the mC1P

for m can be done in polynomial time and space.

We split the proof into two parts. First, we consider the case(2i) whereM with

multiplicity vectorm contains a single multicolumn, and we show that deciding if

M has themC1P form can be done efficiently using PQ-trees. Then we show how

to handle the general case using Corollary 50 which relies onEulerian cycles. Fi-

nally, in Section 4.3.3, we give an algorithm for building a PQ-tree which describes

all sequences that satisfy the consecutivity requirement (condition (i) of Property 3

defined in Chapter 1).

The Case of a Single Multicolumn

We assume that the multiplicity vectorm defines only one multicolumn denoted

by c′. According to Lemma 46,M satisfies themC1P only ifM̂ has the C1P, which

can be checked in linear time (Theorem 47). Assume thatM̂ has the C1P and let

T be a PQ-tree from the equivalence classPQM̂. We then aim at finding a PQ-tree

from PQM̂ (by applying operations (RP) and (RQ) onT) whose frontier can be

extended to a valid C1 order with multiplicity by inserting copies ofc′. We say that

inserting a copy ofc′ into F(T) breaksa row r of M̂ if r is not consecutive in the

resulting sequence. An example is given in Figure 4.6.

Recall that rows are subsets ofS. As M has matched multirows, all rows in

M̂ are also rows inM. Since the consecutivity of the1’s in each row ofM̂ in the

frontierF(T) has to be maintained when inserting copies ofc′, noc′ can be inserted

into a position where it breaks any row ofM̂. Lemma 52 below is a consequence

of this observation.

Lemma 52. Let M be a binary matrix with matched multirows, andm be a multi-

plicity vector defining exactly one multicolumn c′. Assume that M has the mC1P,

and let T be a PQ-tree from PQ̂M and T′ an extension of T whose frontier F(T ′) is

an mC1 order of M.

1. If the root of T is a P-node, then, for each child node N of theroot, c′ can

only appear as the first or last element of the frontier F(N) in T ′.

90

1 2 3 4 5 6 7 8 9 c′

r1 1 1 0 0 0 0 0 0 0 1

r̂1 1 1 0 0 0 0 0 0 0 0

r2 1 1 1 0 0 0 0 0 0 0

r3 0 0 1 1 0 0 0 0 0 1

r̂3 0 0 1 1 0 0 0 0 0 0

r4 0 0 0 0 0 0 1 1 0 1

r̂4 0 0 0 0 0 0 1 1 0 0

r5 0 0 0 0 0 0 0 1 1 0

r6 0 0 0 0 1 1 0 0 0 0

(a) (b)

Figure 4.6: (a) Binary matrixM, with matched multirows. Letm(c′) = 2.
(b) PQ-tree belonging to the equivalence classPQM̂. P-nodes are repre-
sented by circular nodes and Q-nodes by rectangular nodes. An example
of a valid C1 order with multiplicity isc′1234c′ 78956 which is ob-
tained by taking the equivalent PQ-tree with frontier 123478956 and
inserting two copies ofc′ into the corresponding positions. Notice that
insertingc′ between 2 and 3 would break rowr2.
Illustration of Algorithm 2. LCA(r̂1) and the respective segments of
LCA(r̂3,4) are highlighted in gray and the respective paths are depicted
by dashed lines. The upper left edge is contained in two paths. Here,
K1 = 1 andK2 = 1, thusK = 2≤m(c′) = 2.

2. If the root of T is a Q-node, the copies of c′ in T ′ can only appear as the first

and/or last element of the frontier F(T ′).

Proof. It follows by Property 48.2 that for every childN of the root ofT, any

pair of consecutive leaves inF(N) belongs to a row ofM̂, and hence, insertingc′

between these leaves breaks this row.

In addition, if the root ofT is a Q-node, then by Property 48.3, for any two con-

secutive childrenN1 andN2 of the root, there is a row of̂M that contains elements

of F(N1) and ofF(N2). This prevents the insertion ofc′ into root betweenN1 and

N2 as this would break such a row. Hencec′ can appear only at the extremities of

F(T ′).

Lemma 52 rules out many positions inF(T) where to insert copies ofc′: in-

deed, copies ofc′ can only be inserted at extremities of the subsequences ofF(T)

formed by children of the root (and only at the extremities ofF(T), if the root is a

91

Q-node). On the other hand, each multirow specifies a position where a copy ofc′

must be inserted. These two constraints give rise to a polynomial algorithm which

we describe in the following.

Algorithm 2 starts with a PQ-tree for̂M and works in two stages. First (Step 3),

based on Lemma 52, it checks if there is a way to permute nodes in the subtrees

rooted at each child of the root such that for each multirowr = r̂ ∪ {c′}, rows

in r̂ appear as a prefix or a suffix of the frontier of some child. To satisfy the

consecutivity requirement for each multirowr it is enough to add copies ofc′ to

F(T) before or after the frontier of the child of the root containing r̂. To satisfy

the multiplicity constraint imposed bym, we need to permute the children of the

root and possibly reverse the order of the frontier of some children. The basic idea

is that we can save one copy ofc′ if a child requiring a copy ofc′ on the right is

followed by a child requiring a copy ofc′ on the left. Whether enough copies ofc′

can be saved to satisfy the multiplicity constraint is checked in Steps 4–5.

Let r = r̂ ∪{c′} be a multirow. By Property 48.1, there is inT either a P-node

that contains exactly the columns in ˆr in its subtree, or a Q-node with a segment of

two or more consecutive children which together contain exactly the columns in ˆr

in their subtrees. This node is the least common ancestor inT of the columns in ˆr,

and hence, will be denoted by LCA(r̂).

Now to argue that Algorithm 2 is correct. If condition 3.c.i applies, r would

require the insertion of a copy ofc′ within F(U) in any PQ-tree ofPQM̂, which

contradicts Lemma 52. The paths indicate positions where copies ofc′ have to be

added to the frontier so that the consecutivity requirementis satisfied. Following

Lemma 52, we have to verify whether we can transformT such that all paths lie

on the outside of the subtree of a child of the root ofT. If conditions 3.c.ii–3.c.iv

apply, there are two or more competing multirows, and we cannot transformT such

that all of the corresponding paths lie on the outside of the subtree of a child of the

root of T. Paths that are sub-paths of one another are excluded by not considering

any multirowr = r̂ ∪{c′} which contains another multirowr ′ = r̂ ′∪{c′} (line 3).

These rows do not need to be considered at this stage, becausein any order with

c′ adjacent to the elements in ˆr ′, since ˆr ′ ⊆ r̂ , c′ is also adjacent to the elements in

r̂ . If the root ofT is a P-node, we have to consider the children of the root node

separately: We could insert a copy ofc′ on both sides of a frontier of a child of the

92

Algorithm 2 Deciding themC1P for a matrixM with matched multirows and a
multiplicity vectorm defining a single multicolumnc′.

1. Check ifM̂ has themC1P.

2. If not, return false, else letT be a PQ-tree fromPQM̂.

3. For each minimal multirowr = r̂ ∪{c′} in M do

a. LocateN := LCA(r̂).

b. LetPr be the path fromN to the root ofT.

c. For each edgee= {U,V} in Pr , whereU is the parent ofV do

i. If U is a Q-node andV is neither its first nor its last child, return false;

ii. If the root of T is a Q-node andealso belongs to the pathPr ′ defined by
another minimal multirowr ′, return false;

iii. If U is not the root ofT andealso belongs to the path defined by another
minimal multirow, return false;

iv. If U is the root ofT ande also belongs to the paths defined by at least
two other minimal multirows, return false.

4. If the root ofT is a Q-node, returntrue.

5. If the root ofT is a P-node:

a. LetK1 andK2 be the number of children of the root ofT belonging to exactly
one or two paths defined by minimal multirows, respectively.

b. K :=
⌈

K1
2

⌉

+K2+

{
1 if K1 = 0 andK2 > 0,
0 otherwise.

c. ReturnK ≤m(c′)

root, i.e., at most two paths can join above such a child node.In levels below the

root, only one path can be moved to the border of the subtree, i.e., no two edges

can join.

If conditions 3.c.i–iv do not apply for a multirowr, there is a way to transform

T (with rules (RP) and (RQ)) in the nodes on the pathPr (excluding the root) so

that the frontier ofN = LCA(r̂) appears as a prefix or suffix of the frontier ofN′,

whereN′ is a child of the root lying on the pathPr . Next, we will show that all

93

these transformations can be performed simultaneously without any conflict. Ob-

viously, the conflicts could only occur if the pathsPr share vertices other than root.

Condition 3.c.iv guarantees that there are never three or more minimal multirows

in the same subtree rooted at a childN′ of the root. Condition 3.c.iii guarantees that

if there are two minimal multirows in the same subtree rootedat a childN′ of the

root, their paths must meet only inN′, and hence, one can appear as a prefix and

one as a suffix of the frontier ofN′. However, if the root is a Q-node, by Lemma 52,

columnc′ can be attached only on one side of the frontier ofN′, and hence, only

one minimal multirow can appear in the subtree rooted atN′, which is checked in

condition 3.c.ii.

Hence, if Step 3 succeeds for all rows, there is a PQ-tree inPQM̂ from which

we can obtain a sequence of the columns fulfilling the consecutivity requirement

of M by inserting copies ofc′ into its frontier at positions indicated by the paths

of multirows. Steps 4–5 check if the multiplicity constraint imposed bym can be

satisfied. Note, that if the root ofT is a Q-node (Step 4), then the multiplicity

constraint is satisfied sincem(c′)≥ 2.

In Step 5, we count the number of copies ofc′ required to satisfy all multirows.

The position where to insert these copies are given by the paths. Since the root

of T is a P-node, we can rearrange the children of the root such that one copy of

c′ would coincide with two paths (from neighboring children).For instance, we

can greedily pair nodes with one path each, using⌈K1/2⌉ copies and then include

nodes with two paths (one path on each side) in-between, requiring one further

copy each,K2 in total. If K1 = 0 andK2 > 0, chaining the two-path nodes results

in K2+1 copies ofc′. It is easy to see that this joining process is optimal.

If the number of required copies ofc′ does not exceed the given maximum

multiplicity m(c′), the given matrixM with multiplicity vector m has themC1P.

Finally, to complete the proof of the correctness of the algorithm, we only need to

notice that the result of Algorithm 2 does not depend on the choice of the PQ-tree

T of PQM̂, as the LCAs and paths are invariant under the transformation rules (RQ)

and (RP).

The analysis of the time and space complexity of Algorithm 2 is as follows.

First, Steps 1 and 2 can be completed inO(m+ n+ ℓ) time and space using the

algorithm described in McConnell [102]; note thatT can then be encoded inO(n)

94

space. Next, Step 3 is composed of at mostm iterations, each of them requiring

time O(n), the maximum length of a path fromN to the root ofT, as each path is

obviously processed in time linear in its length. This givesan O(mn) time com-

plexity for Step 3. For similar reasons, Step 4 can be achieved in time O(mn),

which gives an overall worst-case time complexity ofO(mn). This completes the

proof of the case of a single multicolumn in Theorem 51.

Completing the Proof of Theorem 51

Proof of Theorem 51.Given matrix M with multiplicity vector m and having

matched multirows, letS′ be its set of multicolumns. A multirow containing mul-

ticolumnc′ ∈ S′, will be called ac′-multirow. Algorithm 3 works in the same two

stages as Algorithm 2. However, the second stage is more complex. It requires

building the collection of generalized adjacenciesA on setS′∪{s0} by replacing

each child of the root of the PQ-treeT for M̂ by an adjacency and then applying

Corollary 50.

Algorithm 3 Deciding themC1P for a matrixM with matched multirows and a
multiplicity vectorm.

1. Run the first 4 steps of Algorithm 2, wherec′ is any element ofS′.

2. Construct a multiset of generalized adjacenciesA on setS′∪{s0} as follows.
For every childN of the root ofT do

a. If N belongs to exactly one path defined by multirows, say by ac′-
multirow, add adjacency{c′,s0} to A ;

b. If N belongs to two paths defined by multirows, say by ac′-multirow and
ad′-multirow (c′ andd′ may be equal), add adjacency{c′,d′} to A .

3. Report ifA is consistent with respect tom (use Corollary 50).

Correctness of Step 1 follows from the correctness of the first stage of Algo-

rithm 2. If Step 1 succeeds, we can assume that the root ofT is a P-node (the case

when the root is a Q-node is handled in Step 1), and hence, it isenough to satisfy

the multiplicity constraint by permuting the children of the root and possibly re-

versing the order of the frontiers of some children. Letπ be this order of children

95

of the root. In Step 2, the algorithm constructs the multisetof generalized adja-

cenciesA whose consistency sequence (produced in Step 3) describes the way to

do this as follows. Children that belong to zero paths definedby multirows will

not introduce any adjacency constraints and can be placed atthe end ofπ in any

order and orientation. For any other child of the root, we have a unique position in

the consistency sequence, hence we can order and orient these children based on

these positions. Next, we insert copies of multicolumns as follows. For each subse-

quencec1c2c3 of the consistency sequence, where adjacency{c1,c2} corresponds

to child N1 and{c2,c3} to N2, if c2 6= c0, we insert a copy ofc2 between the fron-

tiers ofN1 andN2 in F(T). Hence, the number of copies of a multicolumnc′ ∈ S′

is equal to the number of its occurrences in the consistency sequence. Therefore,

the frontierF(T) with all required copies of multicolumns inserted satisfiesthe

multiplicity constraint given bym. It is easy to see that if there is anmC1 order of

M, then we can extract from it an order of the children of the root which gives this

consistency sequence.

The analysis of the time complexity is as follows. The first stage of the algo-

rithm is a subroutine of Algorithm 2, and hence, has a time andspace complexity

of orderO(mn). Since the number of children of the root ofT that belong to at

least one path defined by multirows is at mostm, the number of adjacencies inA

is at mostm, and hence, buildingA takes timeO(m). Finally, checking the de-

gree conditions (applying Corollary 50) takes timeO(n). Hence, the total time and

space complexity of the algorithm isO(mn).

Finally, Algorithm 3 can also be easily extended to the case when the matrix

also contains rows of degree 2 containing two multicolumns,as follows. First, we

run Steps 1 and 2 where we ignore multirows containing two multicolumns. Then,

we add toA also an adjacency for every such multirow. Finally, we run Step 3 of

the algorithm on this new collectionA . It is easy to see that the time complexity

of this new algorithm is stillO(mn). Hence, the theorem holds.

96

Figure 4.7: Augmented PQ-treeT ′ for the matrix given in Figure 4.6. (In
fact, to get an augmented PQ-tree from the original PQ-tree shown
in Figure 4.6, no modifications are necessary other than attaching leaf
nodes labeledc′ at appropriate locations.) Only the trees in the equiva-
lence class ofT ′ where the left side of the right Q-node is placed adja-
cent to the left Q-node have shortened frontiers that meet the multiplic-
ity constraint (m(c′) = 2), for example,c′1234c′ 78956.

4.3.3 Building a PQ-tree which Describes All Sequences thatSatisfy
the Consecutivity Requirement

Here, we describe how a given PQ-treeT ∈PQM̂ can be augmented to a PQ-treeT ′

which represents the set of all sequencesσ , up to “pumping” occurrences of mul-

ticolumns, that satisfy the consecutivity requirement (condition (i) of Property 3 in

Chapter 1) in that the frontier of any tree in the equivalenceclass ofT ′ is such a

sequenceσ . However, not all frontiers meet the multiplicity constraint (condition

(ii) of Property 3). For some trees in the equivalence class of T ′, the respective

frontier contains pairs of adjacent occurrences of a multicolumnc′, each of which

can be replaced by one occurrence ofc′ without breaking any row ofM (violating

the consecutivity requirement). This reduces the number ofused copies of the mul-

ticolumns. Only such shortened frontiers which meet the multiplicity constraint are

valid mC1 orders, and, in fact, the set of such shortened frontiers is exactly the set

of valid mC1 orders ofM. Figure 4.7 shows an example.

To construct an augmented PQ-treeT ′, we process the original treeT in a

bottom-up fashion along the pathsPr defined in Algorithm 2, starting with the

LCAs. We replace an LCA by a new Q-node which has a copy of its corresponding

multicolumn c′ as its first child and further children, depending on whetherthe

LCA itself and its parent are P or Q-nodes. These intuitive transformation rules are

detailed in Figure 4.8. Then, any parent node of a newly obtained Q-node is refined

97

⇒

⇒

⇒

⇒

Figure 4.8: Transformation rules for the LCAs to construct an augmented
PQ-tree. An LCA and its parent node are replaced by the nodes shown
on the right. The LCA (or the segment of an LCA, respectively)are
highlighted in gray.

to a new Q-node, moving up the copy ofc′, as shown in Figure 4.9. This process

is iterated until we reach the root node. Since a node that is achild of the root can

be contained in two paths, separate (but similar) rules are required, illustrated in

Figure 4.10.

Further specific rules which apply if an LCA is a child of the root of T or if the

root node is a Q-node are straightforward. In some cases, after generating the tree

as described above, simplifications can be carried out, suchas replacing a P-node

with a single child by a direct edge or substituting a Q-node with two children by

a P-node. Analogously to Algorithm 2, that only checks if a matrix has themC1P,

the above construction of an augmented PQ-treeT ′ can be carried out inO(mn)

time.

98

⇒

⇒

Figure 4.9: Transformation rules for bottom-up iteration to constructan aug-
mented PQ-tree. A newly created Q-node and its parent node are re-
placed by the nodes shown on the right.

⇒

⇒

Figure 4.10: Special transformation rules for bottom-up iteration to construct
an augmented PQ-tree. A newly created Q-node two levels below the
root node and its parent node are replaced by the nodes shown on the
right.

99

Chapter 5

The Generalized Cladistic

Character Compatibility Problem

The authors of Benham et al. [11, 12] give a polynomial-time algorithm for the

case of the GCCC Problem where for each character, the set of states of each

species forms a directed path in its character tree. It thus follows that if the charac-

ter trees are non-branching, then the Incomplete CladisticCharacter Compatibility

Problem can be solved in polynomial time. The complexity of this case when

each character has at most two states was further improved inPe’er et al. [123]. In

Benham et al. [11, 12], it was shown that the GCCC Problem is NP-complete using

a construction involving character trees that are branching. However, the authors

argued that in this setting the situation when a trait becomes hidden and then reap-

pears does not happen, hence in Benham et al. [12] they posed an open case of the

GCCC Problem where each character tree has one branch 0→ 1→ 2 and the col-

lection of sets of states for each species is{{0},{1},{2},{0,2}}. We call this the

Benhan-Kannan-Warnow (BKW) Case. They then showed in Benham et al. [11]

that if a “wildcard” set{0,1,2} is added to the collection, the problem is NP-

complete.

Here, we study the complexity of cases of the GCCC Problem fornon-

branching character trees with 3 states and set of states chosen from the set

{{0},{1},{2},{0,2},{0,1,2}} when the phylogeny tree that is a solution to this

problem is restricted to be (a) any single-branch tree, (b) path or (c) tree, cf. Ta-

100

ble 5.1. In Gramm et al. [57], the authors state that searching for path phylogenies

is strongly motivated by the characteristics of human genotype data: 70% of real

instances that admit a tree phylogeny also admit a path phylogeny.

This chapter is structured as follows, with the results summarized in Table 5.1.

In Section 5.1 we formally define the Generalized Cladistic Character Compati-

bility Problem. In Section 5.2 we study several types of ordering problems, some

being polynomial, while others are NP-complete; some of them is then used to

determine the complexity of several cases in Table 5.1. Section 5.3 contains the

tractability results of this chapter. Subsection 5.3.1 gives a polynomial-time al-

gorithm based on that of Benham et al., Benham et al. [11, 12] for the case of the

GCCC Problem for (a) where for each character, the set of states of each species

forms a directed path in its character tree, giving entries (3a) and (7a) of Table 5.1.

In Subsection 5.3.2, we first show that (5a–b) of Table 5.1 areequivalent to decid-

ing the C1P. We then show that the BKW Case is polynomial-timesolvable by

giving an algorithm based on PQ-trees [21, 106] associated with the C1P, giving

also the entries (6a), (8a) and (9a) of Table 5.1. In Subsection 5.3.3 we show that

case (8b) is polynomial by showing that any instance of this case can be reduced to

solving an instance of polynomial case (8a). Section 5.4 contains the intractability

results of this chapter. Here we show that cases (10a–b) are NP-complete by reduc-

tion from the Path Triple Consistency (PTC) Problem of Section 5.2, and then how

NP-completeness of an instance of the GCCC Problem for (a) can be transformed

into certain instances of the same problem for (b) and (c). Finally, we show that

cases (3b), (6b), (7b) and (9b) are NP-complete by reductionfrom the Left Element

Fixed Path Triple Consistency (LEF-PTC) Problem of Section5.2. Note that this

last result includes the fact that case (9b), the BKW Case of the GCCC Problem

for (b) is NP-complete.

5.1 The Generalized Cladistic Character
Compatibility (GCCC) Problem

Let Sbe a set of species. Ageneralized (cladistic) character[11, 12] onS is a pair

α̂ = (α ,Tα), such that:

(a) α is a functionα : S→ 2Qα , whereQα denotes the set of states ofα̂ .

101

Q\soln (a) branch (b) path (c) tree
(1) Q ⊆ {{0},{1},{2}} P [2] P [2] P [2]
(2) {{0,1,2}} ⊆Q ⊆ {{0},{1},{2},{0,1,2}}; |Q| ≤ 2 trivial trivial trivial
(3) {{0,1,2}} ⊆Q ⊆ {{0},{1},{2},{0,1,2}}; |Q| ≥ 3 P (Th. 62) NP-c (Th. 72) P [11, 12]
(4) Q ⊆ {{0},{0,2},{0,1,2}} or Q ⊆ {{2},{0,2},{0,1,2}} trivial trivial trivial
(5) {{1},{0,2}} P (Lem. 63) P (Lem. 63) ?
(6) {{0},{1},{0,2}} P (Th. 66) NP-c (Th. 72) ?
(7) {{0},{2},{0,2}}(∪{{0,1,2}}) P (Th. 62) NP-c (Th. 72) P [11, 12]
(8) {{1},{2},{0,2}} P (Th. 66) P (Cor. 69) ?
(9) {{0},{1},{2},{0,2}} ∗ P (Th. 66) NP-c (Th. 72) ?
(10) {{1},{0,2},{0,1,2}} ⊆Q NP-c (Th. 70) NP-c (Th. 70) NP-c [11]

Table 5.1: Complexity of all cases of the GCCC Problem for the char-
acter tree 0→ 1 → 2 and set of states chosen from the setQ ⊆
{{0},{1},{2},{0,2},{0,1,2}}. The BKW Case is marked with *.

(b) Tα = (V(Tα),E) is a rooted character tree with nodes bijectively labelled by

the elements ofQα .

The GCCC Problem is to find a perfect phylogeny [20] of a set of species with

generalized characters:

Problem 53 (Generalized Cladistic Character Compatibility (GCCC) Problem).

Given a set S of species and a set C of generalized characters on S, is there a

rooted tree T= (VT ,ET) and a “state-choosing” function c: VT ×C→
⋃

α̂∈C Qα

such that the following holds:

(1) For each species s∈ S there is a vertex vs in T such that for eacĥα ∈ C,

c(vs, α̂) ∈ α(s).

(2) For everyα̂ ∈ C and i∈ Qα , the set{v ∈ VT | c(v, α̂) = i} is a connected

component of T .

(3) For everyα̂ ∈C, the tree T(α) is an induced subtree of Tα , where T(α) is

the tree obtained from T by labelling the nodes of T only with their α-states

(as chosen by c), and then contracting edges having the sameα-state at their

endpoints.

Essentially, the first condition is that each species is represented somewhere in

the treeT, and the second condition is that the set of nodes labelled bya given

state of a given character form a connected subtree ofT, just as with the Character

102

Compatibility Problem. Finally, condition three is that the state transitions for each

characterα̂ must respect its character treeTα .

The GCCC Problem is NP-complete [11, 12], however it is polynomial for

many special cases of the problem [11, 12, 98]. In particular, in Benham et al. [11]

it was shown to be NP-complete for a case where for each species s and character

α̂ , α(s) ∈ {{1},{0,2},{0,1,2}}, andTα is 0→ 1→ 2. It was also shown to be

polynomial-time solvable in the case where for each speciess∈S, α(s) is a directed

path inTα for eachα̂ = (α ,Tα) ∈C [12]. We will consider the following variants

of the GCCC Problem. The GCCC with non-branching character trees (GCCC-

NB) Problem is a special case of the GCCC Problem in which character trees have

a single branch, i.e., each character treeTα is 0→ 1→ ···→ |Tα |−1. If we restrict

the solution of the GCCC-NB Problem (a phylogeny tree) to have only one, or two

branches starting at the root, we will call this problem the Single-Branch GCCC-

NB (SB-GCCC-NB) Problem, and the Path GCCC-NB (P-GCCC-NB) Problem,

respectively. In addition, if in any of these problems, say in problemX, we restrict

the set of states to be from the setQ, we will call this problem theQ-X Problem.

Table 5.1 summarizes the cases studied here.

5.2 Ordering Problems

In this section, we discuss several different types of ordering problems. These

problems are related to the Single-Branch and P-GCCC-NB Problems. We will

use one of these variants to obtain a hardness result in Section 5.4.

The PTC Problem is a simplified version of the extensively studied Quartet

Consistency (QC) Problem [138]. In the QC Problem, given a set Sand the collec-

tion of quartets(ai ,bi : ci ,di), whereai ,bi ,ci ,di ∈ S, the task is to construct a treeT

containing verticesSsuch that for each quartet there is an edge ofT whose removal

separates vertices{ai ,bi} from vertices{ci ,di}. This problem was shown to be NP-

complete in Steel [138]. Here, we show that the problem remains NP-complete

when we restrict the tree to be a path. In this case it is easy tosee that (i) we

can assume the path contains only vertices inSand (ii) each quartet(ai ,bi : ci,di)

can be replaced with the three triples(ai ,bi : ci), (ai ,bi : di) and(ci ,di : ai). The

PTC Problem can be viewed as the Total Ordering (TO) Problem with negative

103

constraintsci /∈ [ai ,bi], where[ai ,bi] is the set of all elements betweenai andbi in

the total order. The TO Problem with positive constraintsci ∈ [ai ,bi] was shown to

be NP-complete in Opatrny [114]. The formal definition of thePTC Problem is as

follows.

Problem 54(Path Triple Consistency (PTC) Problem). Given a set S= {1, . . . ,n},

and a set of triples{ai ,bi : ci |i = 1, . . . ,k}, where ai ,bi ,ci ∈ S for every i= 1, . . . ,k,

is there a path (order) P on vertices S such that for each i= 1, . . . ,k, there is an

edge ei of P whose removal separates vertices{ai ,bi} from vertex ci .

Lemma 55. The PTC Problem is NP-complete.

Proof. The PTC Problem is actually complementary to the TO Problem,which

was shown to be NP-hard by Opatrny in 1979 [114]. The TO Problem is, given a

setQ= {1, . . . ,n} and a set of triples{ai ,bi ,ci |i = 1, . . . ,k}, where fori = 1, . . . ,k,

ai ,bi ,ci ∈ S, is there a path (order) onQ such that for eachi = 1, . . . ,k, either

ai < bi < ci or ci < bi < ai . It is easy to see that the NP-completeness of the TO

Problem implies the NP-completeness of the PTC Problem. Given instance of TO

ProblemQ= {1, . . . ,n} and{ai ,bi ,ci |i = 1. . . ,k}, for the corresponding instance

of the PTC Problem we letS= Q, and for each triplea,b,c of the instance of the

TO Problem, we introduce the triplesa,b : c andc,b : a.

Now, we study two subclasses of the PTC Problem and one subclass of the TO

Problem in which one element of each constraint is fixed.

Problem 56 (Left Element Fixed Path Triple Consistency (LEF-PTC) Problem).

Given a set S= {1, . . . ,n}, an element r6∈ S, and a set of triples{(ai , r : ci)}
k
i=1

where ai ,ci ∈ S for every i∈ {1, . . . ,k}, is there a path (an order) P on vertices

S∪ {r} such that for each i∈ {1, . . . ,k}, there is an edge of P whose removal

separates{r,ai} from ci .

Problem 57 (Right Element Fixed Path Triple Consistency (REF-PTC) Problem).

Given a set S= {1, . . . ,n}, an element r6∈ S, and a set of triples{(ai ,bi : r)}ki=1

where ai ,bi ∈ S for every i∈ {1, . . . ,k}, is there a path (an order) P on vertices

S∪ {r} such that for each i∈ {1, . . . ,k}, there is an edge of P whose removal

separates{ai ,bi} from r.

104

Problem 58(One Element Fixed Total Ordering (OEF-TO) Problem). Given a set

S= {1, . . . ,n}, an element r6∈S, and a set of triples{(ai ,bi ,ci)}
k
i=1 where for every

i ∈ {1, . . . ,k}, either ai ,ci ∈ S and bi = r, or ai ,bi ∈ S and ci = r, is there a path (a

Total Ordering) P on vertices S∪{r} such that for each i∈ {1, . . . ,k}, bi appears

between ai and ci on P.

In what follows, we will show that the first problem LEF-PTC isNP-complete,

while the other two problems REF-PTC and OEF-TO are solvablein polynomial

time. Thus, the LEF-PTC Problem seems to be the simplest version of the problem

which is still intractable.

Lemma 59. The LEF-PTC Problem is NP-complete.

Proof. Here, we give a reduction from the Not-All-Equal-3SAT (NAE-3SAT)

Problem [53]. The NAE-3SAT Problem is: given a set of Booleanvariables

X = {x1, . . . ,xn} and a set of clausesC = {C1, . . . ,Cm}, where each clause con-

tains three literals, is there a truth assignment to the set of variables such that in

no clause, its three literals are all true or all false. Givenan instance of NAE-

3SAT, letSbe the union of variable symbols{x1, x̄1, . . . ,xn, x̄n} and literal symbols

{ℓ1
1, ℓ

2
1, ℓ

3
1, . . . , ℓ

1
m, ℓ

2
m, ℓ

3
m}.

The basic principle of the reduction is the following observation. The triple

(ai , r : ci) is equivalent to the following condition on the elements inS∪{r}:

r < ci ⇔ ai < ci . (5.1)

The Boolean value of predicater < xi will represent the value of variablexi , for i ∈

{1, . . . ,n}. First, we introduce the triples(xi , r : x̄i) and(x̄i , r : xi), for i ∈ {1, . . . ,n}.

These triples are equivalent to the following logical statement: r < x̄i ⇔ xi < x̄i ⇔

xi < r. Hence, they enforce ¯xi < r iff r < xi , and hence the Boolean value of

predicater < x̄i represents the value of¬xi .

Now, let clauseCj contain variablesxk1,xk2 and xk3. We will use symbols

ℓ1
j , ℓ

2
j , ℓ

3
j to represent the values of the three literals ofCj : the Boolean value of

the i-th literal ofCj will be equal to the value of predicater < ℓi
j . To achieve this,

we will reuse the above constraints. For each variablexki with positive occurrence

in Cj , we introduce the triples(ℓi
j , r : x̄ki) and(x̄ki , r : ℓi

j), and for each variablexki

105

with a negated occurrence inCj , triples (ℓi
j , r : xki) and(xki , r : ℓi

j). These triples

will guarantee that predicater < ℓi
j represents the Boolean value of thei-th literal

of Cj . The reason why we have a symbol for each literal is that the position of the

literal symbolℓi
j and the position of the variable symbolxki (or x̄ki) are only very

weakly dependent: one is smaller thanr if and only if the other is, but otherwise

they are independent. This is important, since the clause gadgets introduced in

the next paragraph might put some ordering restrictions on its literal symbols, and

hence if we would use the variable symbolsxki (or x̄ki) in several clause gadgets,

the ordering restrictions from different clause gadgets might not be compatible.

The clause gadget for clauseCj will contain the three triples(ℓ1
j , r : ℓ2

j), (ℓ
2
j , r :

ℓ3
j) and (ℓ3

j , r : ℓ1
j). The purpose of these constraints is to guarantee that in any

order at least one and not all literals in the clauseCj are true. For instance, assume

that all literals are true, i.e.,r < ℓi
j for i ∈ {1,2,3}. By (5.1), this is equivalent to

ℓ1
j < ℓ2

j , ℓ
2
j < ℓ3

j andℓ3
j < ℓ1

j , which leads to a contradiction. Similarly, if literals

are false in the order, all three inequalities will reverse their direction, and we get

a contradiction again. Hence, each clause is satisfied and predicatesr < vi define a

solution to the instance of NAE-3SAT.

Now, assume that the instance of NAE-3SAT has a solutionψ : X →

{false, true}. Consider the order of elements ofS∪{r} satisfying the following

conditions:

(a) for eachvi ∈ {v1, . . . ,vn}, vi appears to the right ofr, i.e.,r < vi in the order, if

and only ifψ(xi) = true for thexi corresponding tovi ;

(b) for each clauseCj , the relative order of the literal symbolsℓ1
j , ℓ

2
j , ℓ

3
j and r

is one of the following:(ℓ1
j , r, ℓ

2
j , ℓ

3
j), (ℓ

3
j , ℓ

2
j , r, ℓ

1
j), (ℓ

2
j , r, ℓ

3
j , ℓ

1
j), (ℓ

1
j , ℓ

3
j , r, ℓ

2
j),

(ℓ3
j , r, ℓ

1
j , ℓ

2
j) and(ℓ2

j , ℓ
1
j , r, ℓ

3
j).

Note that for any valid combination of truth assignments to the literals ofCj , there

is one order in the list above. This order imposes a restriction on the relative order

of the two literal symbols appearing on the same side ofr, the reason why we

created the literal symbols. It is easy to see that for eachs∈ S, other than on which

side ofr thesappears, there is at most one constraint specifying its relative order to

another element. Hence, it is always possible to find an ordersatisfying the above

conditions.

106

Let us verify that this order satisfies all triple constraints. The constraints(xi , r :

x̄i) and(x̄i , r : xi) (respectively,(ℓi
j , r : xki) and(xki , r : ℓi

j); (ℓ
i
j , r : x̄ki) and(x̄ki , r : ℓi

j))

are satisfied just by the placement of symbols to the correct sides ofr. For instance,

if r < xi then the relative order ofxi , x̄i , r is x̄i , r,xi and this order satisfies both

triples. For the constraints for clauseCj , only the relative order of elementsℓ1
j , ℓ

2
j , ℓ

3
j

andr is important. It is easy to check that any of the six orders of these elements

listed above satisfies all three triples forCj . Hence, the constructed order is a

solution to the corresponding instance of the LEF-PTC Problem.

Lemma 60. Any instance of the REF-PTC Problem always has a solution, and

thus the problem is solvable in constant time.

Proof. Consider any order ofS∪{r} with r as the first (resp., last) element. Then

the first (resp., last) edge separatesr from any pair of elements inS. Thus, such an

order is a solution to any instance of the REF-PTC Problem.

Lemma 61. The OEF-TO Problem can be solved in linear time.

Proof. The algorithm will work in two stages. In the first stage the elements will

be clustered into parts each appearing on different sides ofr. In the second stage,

we will determine the ordering of the elements in each part.

Constraint(ai , r,ci) is satisfied if and only ifai andci appear on opposite sides

of r. Constraint(ai ,bi , r) is satisfied if and only if (i)ai andbi appear on the same

side of r, and (ii) bi is closer tor thanai , which we write asbi ≺ ai . Consider

the graph with vertex setSand edges between any two verticesu,v ∈ such thatu

andv appear together in some triple(ai ,bi ,ci). Let C be a connected component

of this graph. It is easy to see that once we fix the side of one element in the

component, the side of all elements in the component will be determined. Hence,

we can uniquely partitionC into two (paired) clusters such that all edges from

constraints of type(ai , r,ci) are between two clusters and all edges from constraints

of type(ai ,bi , r) are inside one of the two clusters. Now, pick one cluster fromeach

pair and place all its elements on one side ofr and all other clusters to the other side.

Note that there can many ways how to do this, the number of waysis exponential

in the number of pairs of clusters.

107

It remains to satisfy the precedence conditions. These conditions (bi ≺ ai)

define a partial order on each side ofr. Any total order compatible with these

partial orders will form a solution to the problem. Such an order can be found in

time O(n+k).

5.3 Tractability Results

5.3.1 An Algorithm for Cases of the Single-Branch GCCC Problem

Here we show that when eachα(s) induces a directed path inTα , for eachα̂ ∈C,

s∈S, the Single-Branch GCCC (SB-GCCC) Problem is polynomial-time solvable.

The algorithm we use, while much simpler, is based on the algorithm given in

Benham et al. [11].

Theorem 62. The SB-GCCC Problem is solvable in time O(|S|∑α̂∈C |Qα |), if each

α(s) induces a directed path in Tα , for eachα̂ ∈C, s∈ S.

Proof. Consider an instance of the SB-GCCC Problem(S,C) with the required

property. Let startα(s) and endα(s) be the first and the last node on the directed

path induced byα(s). We define the partial order on the nodes ofTα by saying

v4α w if the directed path from the rootrα of Tα to w passes throughv. Similarly,

for each solution(T,c) we define the partial order4T on S based onT. Since

T has a single branch,4T is a total order, i.e., for everys1,s2 ∈ S, s1 ands2 are

comparable by4T . Hence, for everŷα ∈C, c(s1, α̂) andc(s2, α̂) are comparable

by4α . Therefore, for alls∈ S, c(s, α̂) lie on a single branch (directed path starting

in the root)Pα of Tα . Since startα(s1) 4α c(s1, α̂) and startα(s2) 4α c(s2, α̂), we

can assume that for alls∈ S, startα(s) lie on a subpathP′α of Pα starting in the root

rα of Tα and ending in startα(ℓα), whereℓα ∈ S and startα(s) 4α startα(ℓα) for

everys∈ S. If that is not the case, there is no solution. This can be checked in time

O(|S||Qα |) for eachα̂ ∈C.

Next, we will argue that it is enough to consider only solutions in whichc maps

all elements inSto P′α . Consider a solution(T,c). Any c(s, α̂) /∈P′α must lie on the

subpath ofPα ending at vertex startα(ℓα). Since startα(s) 4α startα(ℓα), we can

remapc(s, α̂) to startα(ℓα). It is easy to check that conditions (1)–(3) of the GCCC

108

Problem remain satisfied after mapping all suchc(s, α̂) to startα(ℓα). Hence, we

can assume thatc(s, α̂) ∈ α ′(s) = α(s)∩P′α , for eachα̂ ∈C ands∈ S. Note that

for all s∈ S, α ′(s) induce directed subpaths ofP′α .

Now, we are ready to present the algorithm for solving the SB-GCCC Problem

with the required property. First, we will build a setC of constraints on the ordering

of the nodes ofT which have to be satisfied in any solution(T,c). If for s1,s2 ∈ S

andα̂ ∈C, the paths induced byα ′(s1) andα ′(s2) are disjoint, and the path induced

by α ′(s1) is closer to the rootrα , then we must haves1 ≺T s2. Therefore, we

add this constraint to the setC . Let T be a single branch tree that satisfies all

these constraints inC and lets1≺T s2≺T · · · ≺T s|S| be the elements ofSordered

according to this tree. (If such a tree does not exist, there is no solution.) For

each character̂α ∈ C, we will map c(si , α̂) to α ′(si) using Algorithm 4, where

max(a,b) is the element (a or b) further from the root ifa andb are comparable,

and undefined otherwise.

Algorithm 4 Iterative algorithm that assigns to each species a state.
1: c(s1, α̂)← startα(s1)
2: for i = 2 up to|S| do
3: c(si , α̂)←max(startα(si),c(si−1, α̂))
4: end for

Let us verify that(T,c) is indeed a solution. First, note that since all startα(si)

lie on the pathP′α , the arguments of the max function are always comparable. Fur-

thermore, it is easy to see that allc(si , α̂) are assigned to the set{startα(s); s∈ S},

and thatc(s1, α̂)4α c(s2, α̂)4α . . .4α c(s|S|, α̂). It remains to show that for each

i, c(si , α̂) ∈ α ′(si). Let i be the smallest index for whichc(si , α̂) /∈ α ′(si). We

must have that endα(si)≺α c(si , α̂). Sincec(si , α̂) = startα(sj) for some j < i, the

subpath ofP′α induced byα ′(si) is closer to the root than the subpath induced by

α ′(sj). Hence,C must contain the constraintsi ≺T sj , which contradicts the fact

thatT satisfies all these constraints. It follows that(T,c) is a solution.

Finally, let us analyze the running time of the algorithm. Wecan verify whether

this setC of constraints defines a partial order and find a total orderT compatible

with this partial order in timeO(|S|+m), wherem is the number of constraints.

For eachα̂ ∈C, we can have at most|Qα | disjoint induced paths, and it is enough

109

to consider the constraint between the neighbouring disjoint induced paths only.

Hence,m= O(∑α̂∈C |Qα |).

We remark that this type of theorem does not hold for the case of path phy-

logeny, cf. Table 5.1.

5.3.2 The BKW Case of the SB-GCCC-NB Problem is
Polynomial-Time Solvable

First, we show that the{{1},{0,2}}-SB-GCCC-NB and{{1},{0,2}}-P-GCCC-

NB Problems are polynomial-time solvable, by showing that they are equivalent to

deciding the C1P. We then build on the algorithm for constructing a PQ-tree for

a binary C1P matrix [21] to show that the{{0},{1},{2},{0,2}}-SB-GCCC-NB

Problem (the BKW Case of the SB-GCCC-NB Problem) is also polynomial-time

solvable.

Lemma 63. The {{1},{0,2}}-SB-GCCC-NB and{{1},{0,2}}-P-GCCC-NB

Problems are polynomial-time solvable.

Proof. The solutions to the{{1},{0,2}}-SB-GCCC-NB and{1},{0,2}}-P-

GCCC-NB Problems must fall on a single-branch tree and path,respectively. Be-

causeTα is 0→ 1→ 2 for any character̂α, all species wherêα has state 1 must

appear consecutively in this single-branch tree (resp., path), otherwise there would

be more than one transition from 0 to 1 in the phylogeny, for some character̂α . In

this case of the SB-GCCC-NB Problem, all other species can appear before (resp.,

after) this consecutive set of ones, because the “state-choosing” functionc can map

these species to 0 (resp., 2). Hence, this problem is exactlythe problem of deter-

mining whether or not a binary (0/1-) matrix has the C1P, where each species is a

column in this matrix. In this case of the P-GCCC-NB Problem,if there does exist

a solutionP, then there is always a “state-choosing” functionc′ that reflects the fact

that the corresponding matrix has the C1P. Therefore these cases are polynomial-

time solvable.

We now consider the{{0},{1},{2},{0,2}}-SB-GCCC-NB Problem, the

BKW case of the SB-GCCC-NB Problem. Here, for any characterα̂ , a species

swith α(s) = {0,2} can still appear before or after the consecutive set of ones (on

110

this single-branch tree), however a speciesswith α(s) = 0 has to appearbeforethis

set, while the speciess with α(s) = 2 has to appearafter this set. So essentially,

this is again the problem of determining whether a binary (0/1-) matrix has the

C1P, however the matrix, in addition to containing zeros andones, contains some

special zeros, we call them 0− (0+), that must appear before (resp., after) the set

of consecutive ones of its row, in any C1 order. Hence, this case is equivalent to

deciding the following generalized version of the C1P.

Property 64 (Extended Consecutive-Ones Property (E-C1P)). A matrix M on m

rows and n columns with entries from set{0,1,0−,0+} has the E-C1P if there is

an order of the n columns such that, for any row, the set of columns that have entry

1 in that row are consecutive in the order, and any column that has entry0− (resp.,

0+) in that row appears before (resp., after) this consecutiveset of ones.

Lemma 65. The E-C1P can be decided in polynomial-time.

Proof. We prove this by showing that a structure that encodes all extended

consecutive-ones (E-C1) orders of a matrix with entries from setE = {0,1,0−,0+}

can be constructed in polynomial-time. Given matrixM on m rows andn columns

with entries from setE, we first construct PQ-tree PQM for matrix M, where we

have “forgotten” the labels of the special zeros (we treat 0− and 0+ simply as 0).

This can be done in timeO(m+n) [21]. It is clear that PQM encodes a superset of

the E-C1 orders ofM. We then associate to each P-node, the empty partial order on

its children, and to each Q-node, the set of directions{left, right}. Next, we obtain

a list of order constraints imposed by the special zeros ofM, by processing each

pair (0−,1), (0+,1) and(0−,0+). For instance, if columni has 0− and j has 1 in

some rowr, then we add constrainti < j to the list. We now update these sets that

are associated with each P- and Q-node, one-by-one from the list, to incorporate

these ordering constraints. The idea is that these sets willrestrict the configurations

each node in PQM can have to the set of E-C1 orders ofM.

When adding constrainti < j from the list to PQM, we find the least common

ancestorai, j of i and j in PQM , which takesO(n) steps. Forai, j , one of the two

cases holds:

1. ai, j is a Q-node. Then we eliminate from the set at this Q-node, thedirection

that placesj beforei. If the set of directions is now empty, then the algorithm

111

a b c d e f g h
0 0− 1 1 0 0+ 0+ 0
0+ 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0

(a)

a b

c d

e f

g h
v1 v2

v3

v4 v5

(b)

Figure 5.1: (a) A matrix M with entries from set{0,1,0−,0+}. (b) PQ-tree
PQM for M where the labels of the special zeros (0− and 0+) have been
“forgotten”.

halts, outputting thatM does not have an E-C1 order. This can be done in

constant time.

2. ai, j is a P-node. This P-node stores some partial order on its children

{v1, . . . ,vk} =V. First, we find the children ofai, j : vx andvy such that the

subtrees rooted at them containi and j, respectively. We add the constraint

vx < vy to the existing partial order at this P-node. If this constraint is not

consistent with the existing partial order then the algorithm halts, outputting

that M does not have an E-C1 order. This partial order can be updatedin

timeO(k2). Hence, this step takes timeO(k2)⊆O(n2).

Since there areO(mn2) order constraints, and it takes timeO(n2) to process

each constraint, the algorithm takes timeO(mn4). Furthermore, since the tree has

O(n) internal nodes, and each one storesO(mn2) information, this structure is of

sizeO(mn3).

For example, letM be the matrix with entries from setE = {0,1,0−1,0+}

shown in Figure 5.1a. The PQ-tree PQM for M, where we have “forgotten” the

labels of the special zeroes is given in Figure 5.1b.

The special zeros ofM then give rise to the following order constraints. In

the first row ofM, for example, since columnb has entry 0− and columnsc and

g have entries 1 and 0+ respectively, this introduces the order constraintsb < c

112

andb< g. The list of order constraints given by the first row ofM is {b< c,b<

d,b< f ,b< g,c< f ,c< g,d < f ,d < g}, while the list given by the second row

is {a> c,a> d,a> e}. The third row introduces no order constraints.

After adding the above order constraints to PQM of Figure 5.1b, the P-node

that is the root of this tree, with children{v1, . . . ,v5} stores the partial order

{v2 < v3,v2 < v4,v3 < v4,v1 > v3} on its children. The only Q-node of PQM has

associated with it the set{right}, and the other P-node stores the empty partial or-

der on its children{c,d}. Here, PQM, with the following sets (resp., partial orders)

associated with its Q- (resp., P-) nodes encodes all E-C1 orders ofM.

For example, in the P-node that is the root of PQM, order constraintv2 < v3

guarantees thatb< d, however this is also necessary. The Q-node has associated

with it set{right} to enforcec< f , or evend< f . Note that if instead of constraint

d < f , we hadd > f that this matrix would not have an E-C1 order. Finally, the

P-node of PQM with children{c,d} stores the empty partial order because there

are no constraints involvingc andd.

Theorem 66. The{{0},{1},{2},{0,2}}-SB-GCCC-NB Problem is polynomial-

time solvable.

Proof. This follows from equivalence to deciding the E-C1P and Lemma 65.

Since the{{0},{1},{2},{0,2}}-SB-GCCC-NB Problem is the BKW Case of

the SB-GCCC-NB Problem, we have the following corollary.

Corollary 67. The BKW Case of the SB-GCCC-NB Problem is polynomial-time

solvable.

Note that the constructed structure of Theorem 66 encodes all solutions to the

problem, even if there are exponentially many of them.

5.3.3 The{{1},{2},{0,2}}-P-GCCC-NB Problem

We will show that if there is a solution to an instance(S,C) of theQ∗-P-GCCC-

NB Problem then there is a solution to the instance(S,C) of theQ∗-SB-GCCC-NB

Problem, and vice versa, whereQ∗ = {{1},{2},{0,2}}. Since the single branch

version of this problem can be solved in polynomial time by Theorem 66, it follows

that also the path version is polynomial-time solvable.

113

Lemma 68. An instance(S,C) of the{{1},{2},{0,2}}-P-GCCC-NB Problem has

a solution if and only if the instance(S,C) of the{{1},{2},{0,2}}-SB-GCCC-NB

Problem has a solution.

Proof. Let Q∗ = {{1},{2},{0,2}}. Obviously, a solution to the instance(S,C) of

theQ∗-SB-GCCC-NB Problem is also a solution to the instance(S,C) of theQ∗-

P-GCCC-NB Problem. Now, assume that(T,c) is a solution to the instance(S,C)

of theQ∗-P-GCCC-NB Problem. LetP1 andP2 be two branches ofT starting at

the root r. Let T ′ be the tree obtained by attachingP2 to the last vertex ofP1.

To define the state-choosing functionc′ we only need to determine the values of

c′(s, α̂) whenα(s) = {0,2}. Considers∈ Sandα̂ ∈C such thatα(s) = {0,2}. If

there is a speciess′ ≺T ssuch thatα(s′) = {1} then we setc′(s, α̂) = 2, otherwise

we setc′(s, α̂) = 0. We will show that(T ′,c′) is a solution to the instance(S,C) of

theQ∗-SB-GCCC-NB Problem.

For eachα̂ ∈C, the set of speciesSα̂ ,{1} = {s∈ S|α(s) = {1}} must induce a

connected component inT. Sinceα(r) = 0, this component lies entirely inP1 or

in P2. Hence, the setSα̂ ,{1} induces a connected componentK in T ′ as well. By

the definition ofc′, all species that lie belowK in T ′ are assigned value 2 and all

speciesssuch thatα(s) = {0,2} that lie aboveK in T ′ are assigned value 0. Hence,

the only possible violation is if there is a speciess such thatα(s) = {2} that lies

aboveK in T ′. This speciesseither lies aboveK in T or lies in the branch that does

not containK in T. In either case,(T,c) cannot be a solution to the instance(S,C)

of theQ∗-P-GCCC-NB Problem, a contradiction.

Corollary 69. The {{1},{2},{0,2}}-P-GCCC-NB Problem is polynomial-time

solvable.

5.4 Hardness Results

We first show that the {{1},{0,2},{0,1,2}}-SB-GCCC-NB and

{{1},{0,2},{0,1,2}}-P-GCCC-NB Problems are NP-complete by by reduction

from the PTC Problem (Lemma 55).

Theorem 70. The {{1},{0,2},{0,1,2}}-SB-GCCC-NB and

{{1},{0,2},{0,1,2}}-P-GCCC-NB Problems are NP-complete.

114

Proof. Let Q△ = {{1},{0,2},{0,1,2}}. Let Sand{(ai ,bi : ci)}
k
i=1 be an instance

of the PTC Problem. We will construct an instance of theQ△-SB-GCCC-NB

(resp.,Q△-P-GCCC-NB) Problem as follows. LetSbe the set of species andC=

{α̂1, . . . , α̂k} the set of characters. For everyα̂ ∈C, we letαi(ai) = αi(bi) = {1},

αi(ci) = {0,2} and for alls∈ S\{ai ,bi ,ci}, αi(s) = {0,1,2}.

We will show that the instance of the PTC Problem has a solution if and only

if the constructed instance of theQ△-SB-GCCC-NB (resp.,Q△-P-GCCC-NB)

Problem has a solution. First, consider a single-branch tree (resp., path)P contain-

ing verticesSwhich is a solution to the constructed instance. Consider the order of

elements inSas they occur onP starting from the root (resp., leaf on one branch) of

P and ending with the leaf (resp., leaf on the other branch). For everyi ∈ {1, . . . ,k},

all elements in[ai ,bi] must have state 1 for characterα̂i , hence,ci /∈ [ai ,bi], i.e., this

order is a solution to the PTC Problem.

On the other hand, let orderO be a solution to the PTC Problem. Consider a

treeT with a single branch consisting of the all-zero root followed by vertices in

Sordered byO. Note that, for everyi ∈ {1, . . . ,k}, ci appears either above bothai

andbi , or below them. The state-choosing function is defined as follows. For every

node inS, we choose for characterα̂i state 0 if they are above bothai andbi , state 1

if they are betweenai andbi , and state 2 otherwise. Clearly, this tree is compatible

with all character trees and it is easy to see that eachc(s, α̂) ∈ α(s), i.e., T is a

solution to theQ△-SB-GCCC-NB (resp.,Q△-P-GCCC-NB) Problem.

Next, we show that if forQ ⊆ 2{0,...,m}, theQ-SB-GCCC-NB Problem is NP-

complete, then theQ∪{{m}}-(P-)GCCC-NB Problems are NP-complete.

Theorem 71. If for Q ⊆ 2{0,...,m}, theQ-SB-GCCC-NB Problem is NP-complete,

then theQ∪{{m}}-P-GCCC-NB andQ∪{{m}}-GCCC-NB Problems are NP-

complete.

Proof. We will prove the claim by reduction from theQ-SB-GCCC-NB Problem.

An instance of the SB-GCCC-NB Problem can be considered as aninstance of the

(P-)GCCC-NB Problem, provided that we can force all speciesto be on a single

branch. This can be done easily by adding the extra speciesx that has state set{m}

on all characters, and showing that all other species must have x as a descendant,

115

which forces any solution to this instance of the (P-)GCCC-NB Problem to be a

single-branch tree. We omit the details.

As a corollary, we have that the{{1},{2},{0,2},{0,1,2}}-(P-)GCCC-NB

Problem is NP-complete. However, the complexity of the BKW case posed

in Benham et al. [12] remains open.

Finally, we show that the{{0},{1},{0,1}}-P-GCCC-NB Problem is NP-

complete by reduction from the LEF-PTC Problem (Lemma 59).

Theorem 72. The{{0},{1},{0,1}}-P-GCCC-NB Problem is NP-complete.

Proof. Given an instance of the LEF-PTC ProblemS= {1, . . . ,n}, r, and the set

of k triples (ai , r : ci), let S be the set of species, andC = {α̂1, . . . , α̂k} be the set

of characters. For eacĥαi ∈C, we letαi(ai) = {0} andαi(ci) = {1}, while for all

others∈ S\{ai ,ci} we letαi(s) = {0,1}.

Let path phylogenyT be a solution to this instance of the{{0},{1},{0,1}}-P-

GCCC-NB Problem. Letr be the root ofT, i.e., r is the all-zero vertex. Consider

the ordering of elements inS∪{r} based on the ordering of vertices on pathT

starting in the leaf of one branch and ending in the leaf of theother branch. Assume

the triple(ai , r : ci) is not valid, i.e.,ci appears betweenai andr. However, this is

not possible since vertexai is then belowci in T and we have a transition from 1

to 0 somewhere on the path fromci to ai for characterα̂i . Hence, the order is a

solution to the LEF-PTC Problem.

Conversely, let path/orderP be a solution to the LEF-PTC Problem. Consider

the path phylogeny obtained fromP by rooting it atr and the state-choosing func-

tion assigning 1 toci and all nodes belowci and 0 to all other nodes for character

α̂i . Clearly, this tree is compatible with all character trees.The state choosing func-

tion could only fail, ifai is belowci , in which casec(ai , α̂i) = 1, butαi(ai) = {0}.

However, this is not possible as thenci would be betweenr andai on P which

violates the constraint(ai , r : ci). The claim follows by Lemma 59.

Note that Theorem 72 implies NP-completeness of several cases of the P-

GCCC-NB Problem. In fact, any case of the problem in which setQ contains two

distinct state singletons{a} and{b}, and a set containing states 0,c andd such

that a 4α c4α b andb4α d in Tα is NP-complete. For instance, fora= c= 0,

116

b= 1 andd = 2, we have that the{{0},{1},{0,2}}-P-GCCC-NB Problem is NP-

complete ((6b) in Table 5.1).

117

Chapter 6

Conclusion

In this thesis, we have defined and studied several variants of the Consecutive-

Ones Property (C1P) in order to model or solve several problems that arise in the

reconstruction of ancestral species.

We first define in Chapter 2 a way of relaxing the C1P of binary matrices,

namely the(k,δ)-C1P, to model the problem of reconstructing AGOs in the pres-

ence of small errors [27, 96]. We show that for most values ofk andδ , deciding the

(k,δ)-C1P is NP-complete, as well as give a tractability result for a relevant case

of the (2,1)-C1P. In light of this result, and the fact that matrices from real data

generally have low degree [27], in Chapter 3, we then consider the(k,δ)-C1P for

matrices of bounded degreed (the(d,k,δ)-C1P). We then show that the(d,k,δ)-
C1P is polynomial-time solvable when all three parameters are fixed constants,

while other cases are NP-complete.

In Chapter 4, we then study a slightly different way to relax the C1P: by al-

lowing columns to appear multiple times in an order, or themC1P, which was first

introduced in Wittler and Stoye [151]. We improve upon the hardness results of

Wittler and Stoye to show that this problem is NP-complete inmost cases, while

also finding a tractable case of interest to handling telomeres in the reconstruction

of AGOs.

Finally, in Chapter 5, we use the C1P, or more specifically, its associated data

structure, the PQ-tree, to develop algorithms for several cases of the Generalized

Cladistic Character Compatibility (GCCC) Problem. We now summarize our re-

118

sults for these four chapters in more detail, along with relevant future work.

6.1 Chapter 2: The(k,δ)-C1P

In Section 2.3 of this chapter, we show that for everyk≥ 2,δ ≥ 1,(k,δ) 6= (2,1),

deciding the(k,δ)-C1P is NP-complete by first showing in Subsection 2.3.1 that

for everyk,δ ≥ 2, deciding the(k,δ)-C1P is NP-complete, and then in Subsec-

tion 2.3.2 that for everyk≥ 3, deciding the(k,1)-C1P is NP-complete. Note that

this leaves open the case of the (2,1)-C1P, one that is interesting for real applica-

tions such as the reconstruction of AGOs [27]. In Section 2.4, we give an algorithm

that, given a binary matrixM, either (a) decides ifM has the (2,1)-C1P when the

orders of the columns ofM are restricted according to the block construction with

blocks of fixed constant size of the type which the two above-mentioned construc-

tions are, or (b) finds a proof that deciding the (2,1)-C1P is NP-complete. In fact,

this algorithm is FPT in the maximum size of any block. We thenshow that for

every δ ≥ 1, deciding the(∞,δ)-C1P is NP-complete in Section 2.5. We note

that deciding thek-C1P, or equivalently, the(k,∞)-C1P fork≥ 2 has been proved

NP-complete in Goldberg et al. [55]. This set of results implies that deciding the

(k,δ)-C1P is NP-complete for all bounded and unbounded values ofk andδ except

for (k,δ) = (2,1).

The above study of this particular gapped C1P of binary matrices, namely the

(k,δ)-C1P, immediately raises some open questions about closelyrelated proper-

ties. A more restricted version would be the(k,δ)-C1P where the number of gaps

in the entire matrixM is bounded by someK ≤ m(k−1) wherem is the number

of rows of M. Is such a property polynomial-time decidable? The(k,δ)-C1P is

known to be NP-complete for all values ofk andδ except for(k,δ) = (2,1): are

there any natural parameters such that the(k,δ)-C1P is FPT? One drawback of the

(k,δ)-C1P (and thek-C1P, for that matter) is that it has the rigid limit ofk−1 gaps

per row. What if we allowed allowed rows to “share a pool” of gaps, in the sense

that if one row has onlyk−2 gaps, then another may havek gaps? A more general

version of the(k,δ)-C1P is to bound the total number of0’s in the gaps in all ofM.

For example, given a matrixM with m rows and at mostN≤m(k−1)δ 0’s can be

in the gaps ofM (an average of one gap per row when(k,δ) = (2,1), which, in a

119

way, generalizes the (2,1)-C1P). Is this problem FPT for some natural parameter?

From a purely combinatorial point of view, there has been a renewed interest in

the characterization of matrices that do not have the C1P in terms of forbidden sub-

matrices introduced by Tucker [145]. It has recently been shown that this charac-

terization could be used in the design of algorithms relatedto the C1P [18, 28, 36].

This then raises the following natural question: is there a nice characterization of

matrices that do not have the(k,δ)-C1P in terms of forbidden submatrices? This

is of particular interest to the open (2,1)-C1P case: if it isindeed polynomial-time

decidable, trying to find a forbidden submatrix characterization may lead to an al-

gorithm for this case. If such a characterization does not exist, given a matrix that is

not C1P, can the(k,δ)-C1P be quickly determined if the set of all Tucker patterns

is known?

Finally, it is also natural to ask if there exists a structurethat can represent all

orders that satisfy some gaps conditions related to the C1P.Such a structure exists

for the C1P with no gaps: for a matrix that has the C1P, its PQ-tree represents all its

C1 orders, and can be computed in linear time [21]. This has even been extended

to matrices that do not have the C1P through the notion of the PQR-tree [106, 107],

or the Generalized PQ-tree of McConnell [102]. Although theexistence of such a

structure with nice algorithmic properties is ruled out by the hardness of deciding

the(k,δ)-C1P (except for maybe the (2,1)-C1P), it remains open to findclasses of

matrices such that testing for this property is tractable, and in such case, to repre-

sent all possible orders in a compact way. Here again, this question is motivated

both by theoretical considerations (for example representing all possible layouts of

a graph of bandwidth 2), but also by problems in computational genomics, such as

the reconstruction of AGOs [27, 96].

Recall that, in the approach of Chauve and Tannier [27], theydiscard the min-

imum number of rows of a given matrixM using a branch-and-bound procedure,

until the remaining matrix has the C1P. In Chauve and Tannier’s experiments, the

number of rows discarded is generally a very small fraction of the number of rows

of M. This motivates the following question. Given a PQ-treeT and a set of rows

R of bounded size, is there a permutationπ that is generated byT to which all

r ∈ R map with at mostk gaps of sizeδ? A variant of this would be to try and

map the setR ontoπ while trying to minimize the number of gaps, or the number

120

of 0’s in the gaps (cf. a previous paragraph). In either case, perhaps there is a way

to refine a PQ-treeT, as in Section 5.3 of Chapter 5, or even topartially refineT,

as in Section 4.3 of Chapter 4 to come up with a new structureT ′ that encodes or

(partially encodes) all permutationsπ that meet the gaps constraints ofR. Either

one would be a weak notion of a structure that encodes(k,δ)-C1 orders of a matrix

that has the(k,δ)-C1P.

6.2 Chapter 3: The(d,k,δ)-C1P

In this chapter we study the(k,δ)-C1P for matrices of bounded degreed, or the

(d,k,δ)-C1P. This is motivated by the fact that we have observed thatmatrices

from experimental data of the reconstruction of AGOs [27] tend to have low degree.

In Section 3.1 we show that when all three parameters are fixedconstants, the

(d,k,δ)-C1P is related to the classical Graph Bandwidth Problem, and can hence

be solved in polynomial-time using a variant of a relativelybrute-force algorithm

of Saxe [135].

Then, in Section 3.2.4 we show that, for everyd> k≥ 2, deciding the(d,k,∞)-

C1P is NP-complete, by reducing from an NP-complete hypergraph covering

problem which is defined in Section 3.2.1, and then is shown, in Sections 3.2.2

and 3.2.3, to be NP-complete. We comment that here we have studied the weakest

formulation of the C1P with gaps: indeed, in the(d,d− 1,∞)-C1P case, it is re-

quired that only two of thed 1’s in each row are adjacent in any order, while the

other1’s can end up arbitrarily far away from this pair. It is thus surprising that

deciding this property is still NP-complete for anyd ≥ 3 as implied by the gen-

eral result above. This chapter closes the case of the complexity of deciding the

(d,k,δ)-C1P, with the exception of the(∞,2,1)-C1P case, or just the (2,1)-C1P

case (cf. Chapter 2), which remains open.

We comment here that Goldberg et al. [55] poses the open question about the

complexity of deciding the 2-C1P for sparse matrices (matrices where there is a

limit on the number of ones per row and per column). The(d,2,∞)-C1P limits the

number of1’s per row only, that is, it is equivalent to the 2-C1P for bounded de-

gree matrices. If we could determine the complexity of deciding the(d,2,∞)-C1P

for matrices with a bounded number of1’s per column, we could close this open

121

question of Goldberg et al.. We do show, as a corollary of Theorem 32, that decid-

ing the(d,2,∞)-C1P is NP-complete for matrices with at most 71’s per column,

closing this open question of Goldberg et al. [55].

There are several open questions and directions we would like to follow in the

future work, some of them being parallel to open questions posed in the context of

just the(k,δ)-C1P. One such question: is it possible to find a nice characterization

of matrices that do not have the(d,k,δ)-C1P in terms of forbidden structures, such

as Tucker submatrices [145], especially for small values ofd? Can the(d,k,δ)-
C1P be quickly determined if the set of all Tucker patterns isknown?

When all three parameters are fixed, the(d,k,δ)-C1P is related to the classi-

cal Graph Bandwidth Problem, and can hence be solved in polynomial time [29]

using a variant of a relatively brute-force algorithm of Saxe [135] for deciding if a

graph has bandwidthd+(k−1)δ −1. This algorithm of Saxe decides if a given

graph has bandwidthb in time O(nb+1). Caprara et al. [25] provide a linear time

algorithm for the special case of deciding if a graphG has bandwidth 2. In this al-

gorithm, Caprara et al. first reduceG to a skeleton (called an auxiliary graph) that

all bandwidth 2 layouts must contain. The bandwidth 2 layouts of each component

of this auxiliary graph, irreducible subgraphs ofG that are independent of each

other, then determine the set of bandwidth 2 layouts ofG.

Indeed, this auxiliary graph resembles somewhat a PQ-tree:given a C1P ma-

trix M, and its graphGM as defined in Section 3.1, how does the PQ-tree forM

relate to the auxiliary graph forGM? If M does not have the C1P, how does the

auxiliary graph relate to the set of(d,k,δ)-C1 orders ofM? How does the auxil-

iary graph relate to theactive regionscomputed in the algorithm of Saxe? Indeed,

since Caprara et al.’s algorithm is linear for graphs of bandwidth 2, perhaps im-

provements can be made in the general bandwidthb case (this is one of the open

questions posed by Saxe). Even for small values ofb, this would be useful in ap-

plications involving the reconstruction of AGOs [27]. Can the auxiliary graph be

extended to a structure that all bandwidthb layouts must contain, even if comput-

ing it involves a large time overhead? This could lead to a weak notion of a PQ-tree

for all (d,k,δ)-C1 orders of a matrix that has the(d,k,δ)-C1P.

Finally, assuming thatk is close tod, for each row there are many orders of

columns which make this row(d,k,∞)-consecutive. Hence, for a small number of

122

rows, random instances of matrices have the(d,k,∞)-C1P almost always. Con-

versely, for a large number of rows, random instances of matrices that have the

(d,k,∞)-C1P would have very few column orders that witness this property. We

would like to investigate the ratios between the number of rows and columns for

which one or the other type of instance occurs, with the goal of developing heuris-

tics for both of these types of instances.

6.3 Chapter 4: ThemC1P

In Section 4.1 of this chapter, we have shown that deciding the mC1P is NP-

complete for matrices with degree at most 3 andm(s) ≤ 2 for eachs∈ S, whereS

is the set of columns ofM. In Section 4.2 we then show that the two restricted vari-

ants of themC1P given in Wittler and Stoye [151], namely themC1P(fr) and the

mC1P(ne) are NP-complete for matrices with degree at most 3 (6for themC1P(fr)

case) andm(s) ≤ 2 for eachs∈ S, whereS is the set of columns ofM. In Sec-

tion 4.3, we have shown that, given a matrixM and a multiplicity vectorm such

that (1)M has matched multirows, and (2) each row contains either (i) at most one

entry1 in multicolumns, or (ii) two entries1 in multicolumns and no other entries,

that deciding ifM has themC1P form can be done in polynomial time and space

(cf. Theorem 51).

In light of the result of Section 4.3, we extend the domain of tractable instances

of deciding themC1P for binary matrices. This approach relies on previouslyused

techniques to decide the C1P and simpler instances of themC1P, and answers a

natural problem in reconstructing ancestral gene orders. Several questions remain

open. Naturally, one can ask to relax the condition thatM has matched multirows,

which is crucial in our proofs. It seems however that the problem becomes hard in

this case, and some less rigid constraints onM would then have to be introduced to

recover tractability. Also it is open to exhibit an extension of the notion of the PQ-

tree that could encode allmC1P orders of a binary matrix that satisfies this property.

Even for the case of a matrix with matched multirows, our techniques lead to a data

structure which only captures the consecutivity requirement (cf. Section 4.3) but

not the multiplicity requirement. From an algorithmic complexity point of view,

our algorithm has anO(mn) time complexity, and it remains open to see if this

123

case can be solved inO(m+n+ ℓ) time, whereℓ is the number of1’s in the entire

matrix M.

The problem of covering hypergraphs with a collection of paths played a key

role in the hardness results of Chapter 3, and, with slightlydifferent conditions on

this collection of paths, played a key role in the hardness results of this chapter.

Other variants of hypergraph covering were also used to showboth hardness and

algorithmic results for the haplotyping problem via galledtree networks [59–61].

Perhaps considering other conditions on the covering couldgive rise to other new

and interesting problems. In fact, one could do a systematicstudy of the covering

of hypergraphs with graphs to see which conditions (on both hypergraph and graph)

lead to interesting results.

6.4 Chapter 5: The GCCC Problem

In Section 5.2 we show that the PTC and the LEF-PTC Problems are NP-complete,

while the OEF-TO Problem is polynomial-time solvable, and the REF-PTC Prob-

lem always has a solution. In Section 5.3, we present some tractable cases of the

GCCC Problem, while in Section 5.4 we present some hardness results.

Here, we have characterized the complexity of cases of theQ-SB-GCCC-

NB andQ-P-GCCC-NB Problems forQ ⊆ {{0},{1},{2},{0,2},{0,1,2}}. This

leaves open, however, some interesting cases of the GCCC-NBProblem. Here we

show that whenQ′ = {{1},{0,2}}, the input corresponds to a binary matrixM,

hence theQ′-SB-GCCC-NB Problem is equivalent to the C1P Problem. That is,

the Q′-SB-GCCC-NB (resp.,Q′-GCCC-NB) Problem is to find a single-branch

path (resp., tree) with vertex set containing the columns ofM (and possibly other

columns) such that for each row ofM, the set of vertices labelled1 by this row

forms a connected subpath (resp., subtree), i.e.,M has the C1P (resp., a “connected-

ones property” of trees). Note also that for a tree to have this connected-ones prop-

erty, that sets of vertices labelled0 by any row must form at most 2 connected

subtrees, so that this tree can be contracted to 0→ 1→ 2 for each row (this is au-

tomatically enforced in the case of the C1P, since the set of vertices labelled by1

in each row is a path). If we can determine in polynomial-timethat this connected-

ones property holds (like we can for the C1P), it might provide an answer to the

124

BKW Case. Preliminary study has shown that the set of such matrices corresponds

to a special class of chordal graphs: deeper study into this connection could be

useful.

Finally, it would be interesting to systematically study these problems for all

subsets of 2{0,1,2}, as it would complete the study for all possible inputs to the

GCCC-NB Problem when character trees are 0→ 1→ 2.

125

Bibliography

[1] Z. Adam, M. Turmel, C. Lemieux, and D. Sankoff. Common intervals and
symmetric difference in a model-free phlogenomics, with anapplication to
streptophyte evolution.Journal of Computational Biology, 14:436–445,
2007.→ pages10, 13, 16, 17

[2] R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm for the
perfect phylogeny problem when the number of character states is fixed.
SIAM Journal on Computing, 26(6):1216–1224, 1994.→ pages30, 102

[3] M. Alekseyev and P. Pevzner. Colored de bruijn graphs andthe genome
halving problem.IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 4:98–107, 2007.→ pages27

[4] F. Alizadeh, R. Karp, L. Newberg, and D. Weisser. Physical mapping of
chromosomes: A combinatorial problem in molecular biology. In
Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1991.→ pages7

[5] F. Alizadeh, R. Karp, D. Weisser, and G. Zweig. Physical mapping of
chromosomes using unique probes.J. Comput. Biol., 2(2):159–184, 1995.
→ pages7, 11

[6] E. Althaus, S. Canzar, M. Emmett, A. Karrenbauer, A. Marshall,
A. Meyer-Baese, and H.-M. Zhang. Computing H/D-exchange speeds of
single residues from data of peptic fragments. InProceedings of the 23rd
ACM Symposium on Applied Computing (SAC 2008), pages 1273–1277.
ACM Press, 2008.→ pages6

[7] J. Atkins and M. Middendorf. On physical mapping and the consecutive
ones property for sparse matrices.Discrete Applied Mathematics, 71(1-3):
23–40, 1996.→ pages7, 21

126

[8] J. Atkins, E. Boman, and B. Hendrickson. A spectral algorithm for
seriation and the consecutive ones problem.SIAM Journal on Computing,
28(1):297–310, 1998.→ pages7, 21

[9] M. Beal, A. Bergeron, S. Corteel, and M. Raffinot. An algorithmic view of
gene teams.Theoretical Computer Science, 320:395–418, 2004.→ pages
17

[10] M. Belcaid, A. Bergeron, A. Chateau, C. Chauve, Y. Gingras, G. Poisson,
and M. Vendette. Exploring genome rearrangments using virtual
hybridization. In D. Sankoff, L. Wang, and F. Chin, editors,Proceedings of
the 5th Asia-Pacific Bioinformatics Conference (APBC), volume 5 of
Advances in Bioinformatics and Computational Biology, pages 205–214.
Imperial College Press, 2007.→ pages17

[11] C. Benham, S. Kannan, M. Paterson, and T. Warnow. Hen’s teeth and
whale’s feet: Geralized characters and their compatibility. Computational
Biology, 2(4):515–525, 1995.→ pages30, 31, 100, 101, 102, 103, 108

[12] C. Benham, S. Kannan, and T. Warnow. Of chicken teeth andmouse eyes,
or generalized character compatibility.Combinatorial Pattern Matching,
pages 17–26, 1995.→ pagesiii, v, 1, 30, 31, 100, 101, 102, 103, 116

[13] S. Benzer. On the topology of genetic fine structure. InProceedings of the
National Academy of Sciences, volume 45, pages 1607–1620, U.S.A.,
1959.→ pages3, 7

[14] A. Bergeron and J. Stoye. On the similarity of sets of permutations and its
applications to genome comparison.Journal of Computational Biology, 13
(7):1340–1354, 2006.→ pages78

[15] A. Bergeron, M. Blanchette, A. Chateau, and C. Chauve. Reconstructing
ancestral genomes using conserved intervals. In I. Jonassen and J. Kim,
editors,Proceedings of the 4th International Workshop on Algorithms in
Bioinformatics, volume 3240 ofLecture Note in Bioinformatics, pages
14–25, 2004.→ pages16, 27, 28, 78

[16] A. Bergeron, Y. Gingras, and C. Chauve.Bioinformatics Algorithms:
Techniques and Applications, chapter 8 Formal Models of Gene Clusters,
pages 177–202. 2008.→ pages21, 27

[17] G. Blin, D. Faye, and J. Stoye. Finding nested common intervals efficiently.
Journal of Computational Biology, 17(9):1183–1194, 2010.→ pages82

127

[18] G. Blin, R. Rizzi, and S. Vialette. A faster algorithm for finding minimum
tucker submatrices. In F. Ferreira, B. Löwe, E. Mayordomo,and L. Gomes,
editors,In Proceedings of Program, Proofs, Processes, the Sixth
Conference on Computability in Europe (CiE), volume 6158 ofLNCS,
pages 69–77. Springer, 2010.→ pages3, 5, 120

[19] S. Böcker, K. Jahn, J. Mixtacki, and J. Stoye. Computation of median gene
clusters.Journal of Computational Biology, 16(8):1085–1099, 2009.→
pages78

[20] H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect
phylogeny. InICALP, pages 273–283, 1992.→ pages30, 102

[21] K. S. Booth and G. S. Lueker. Testing for the consecutiveones property of,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of
Computer and System Sciences, 13(3):335–379, 1976.→ pagesiii, v, 3, 4,
6, 18, 88, 101, 110, 111, 120

[22] G. Bourque and P. Pevzner. Genome-scale evolution: reconstructing gene
orders in the ancestral species.Genome Research, 12:26–36, 2002.→
pages11, 12

[23] G. Bourque, P. Pevzner, and G. Tesler. Reconstructing the genomic
architecture of ancestral mammals: lessons from human, mouse and rat
genomes.Genome Research, 14:507–516, 2004.→ pages

[24] G. Bourque, E. Zdobnov, P. Bork, P. Pevzner, and G. Tesler. Comparative
architectures of mammalian and chicken genomes reveal highly rates of
genomic rearrangements across different lineages.Genome Research, 15:
98–110, 2005.→ pages11

[25] A. Caprara, F. Malucelli, and D. Petrolani. On bandwidth-2 graphs.
Discrete Applied Mathematics, 34:477–495, 2002.→ pages25, 122

[26] B. Chang, K. Jönsson, M. Kazmi, M. Donoghue, and T. Sakmar.
Recreating a functional ancestral archosaur visual pigment. Molecular
Biology and Evolution, 19(9):1483–1489, 2002.→ pages10

[27] C. Chauve and E. Tannier. A methodological framework for the
reconstruction of contiguous regions of ancestral genomesand its
application to mammalian genomes.PLoS Comput. Biol., 4(e1000234),
2008.→ pages1, 9, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 118, 119,
120, 121, 122

128

[28] C. Chauve, U.-W. Haus, T. Stephen, and V. You. Minimal conflicting sets
for the consecutive-ones property in ancestral genome reconstruction. In
Proc. of RECOMB-CG, volume 5817 ofLNBI, pages 48–58, 2009.→
pages120

[29] C. Chauve, J. Maňuch, and M. Patterson. On the gapped consecutive-ones
property. InProc. of European Conference on Combinatorics, Graph
Theory and Applications (EUROCOMB), volume 34 ofENDM, pages
121–125, 2009.→ pagesiv, 122

[30] C. Chauve, U.-W. Haus, T. Stephen, and V. You. Minimal conflicting sets
for the consecutive-ones property in ancestral genome reconstruction.
Journal of Computational Biology, 17(9):1167–1181, 2010.→ pages3

[31] C. Chauve, J. Maňuch, M. Patterson, and R. Wittler. Tractability results for
the consecutive-ones property with multiplicity. InProceedings of the 22nd
Annual Symposium on Combinatorial Pattern Matching (CPM), volume
6661 ofLecture Notes in Computer Science, pages 90–103. Springer, 2011.
→ pagesv

[32] T. Christof, M. Jnger, J. Kececioglu, P. Mutzel, and G. Reinelt. A
branch-and-cut approach to physical mapping of chromosomes by unique
end-probes.Journal of Computational Biology, 4:433–447, 1997.→ pages
7

[33] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to
Algorithms. MIT Press, 2001.→ pages7

[34] D. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph
recognition algorithm? InProceedings of the 9th Symposium on Discrete
Algorithms (SODA), pages 175–180. ACM/SIAM, 1998.→ pages6

[35] T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order:
A fingerprint of proteins that physically interact.Trends in Biochemical
Sciences, 23(9):324–328, 1998.→ pages8

[36] M. Dom. Recognition, generation, and application of binary matrices with
the consecutive-ones property. PhD thesis, Institut für Informatik,
Friedrich-Schiller-Universität, Jena, 2008.→ pages6, 7, 21, 24, 120

[37] M. Dom. Algorithmic aspects of the consecutive-ones property. Bullentin
of the European Association of Theoretical Computer Science (EATCS), 98
(2759), 2009.→ pages3, 5, 6, 24

129

[38] M. Dom, J. Guo, and R. Niedermeier. Approximability andparameterized
complexity of the consecutive ones submatrix problems. InProceedings of
the 4th International Conference on the Theory and Applications of Models
of Computation (TAMC), volume 4484 ofLNCS, pages 680–691.
Springer-Verlag, 2007.→ pages21

[39] M. Dom, J. Guo, and R. Niedermeier. Approximation and fixed-parameter
algorithms for consecutive ones submatrix problems.Journal of Computer
and System Sciences, 2009.→ pages3

[40] D. Durand and D. Sankoff. Tests for gene clustering. pages 144–154. ACM
Press, 2002.→ pages78

[41] N. El-Mabrouk and D. Sankoff. The reconstruction of doubled genomes.
SIAM Journal of Computing, 32:754–792, 2003.→ pages27

[42] G. Estabroowk and F. McMorris. When is one estimate of evolutionary
relationships a refinement of the another?J. Math. Biosci., 10:327–373,
1980.→ pages30

[43] G. Even, R. Levi, D. Rawitz, B. Schieber, S. Shahar, and M. Sviridenko.
Algorithms for capacitated rectangle stabbing and lot sizing with joint
set-up costs.ACM Transactions on Algorithms, 4(3), 2008. Article 34.→
pages7

[44] T. Faraut. Adressing chromosome evolution in the whole-genome sequence
era.Chromosome Research, 16:5–16, 2008.→ pages12

[45] J. Felsenstein.Inferring Phylogenies. Sinauer Associates, 2003.→ pages
10, 30

[46] A. Ferreria and S. Song. Achieving optimality for gate matrix layout and
PLA folding: a graph theoretic approach. In I. Simon, editor, Proceedings
of the 1st Latin American Symposium on Theoretical Informatics (LATIN),
volume 583 ofLNCS, pages 139–153, São Paulo, Brasil, 1992.
Springer-Verlag.→ pages6

[47] L. Figuera, M. Pandolfo, P. Dunne, J. Cantu, and P. Patel. Mapping the
congenital generalized hypertrichosis locus to chromosome Xq24-q27.1.
Nature (London), 10:202–207, 1995.→ pages30

[48] W. Fitch. Towards defining the course of evolution: Minimum change for a
specific tree topology.Systematic Zoology, 20:406–416, 1971.→ pages
12, 16

130

[49] R. Friedman and A. Hughes. Gene duplication and the structure of
eukaryotic genomes.Genome Research, 11(3):373–381, 2001.→ pages78

[50] L. Froenicke, J. Wienberg, G. Stone, L. Adams, and R. Stanyon. Towards
the delineation of the ancestral eutherian genome organization: comparitive
genome maps of human and the african elephant (loxodonta africana)
generated by chromosome painting. InProceedings of the Royal Society B
Biological Sciences, volume 270, pages 1331–1340, 2003.→ pages11, 19

[51] L. Froenicke, M. Caldés, A. Graphodatsky, S. Müller,L. Lyons,
T. Robinson, M. Volleth, F. Yang, and J. Wienberg. Are molecular
cytogenetics and bioinformatics suggesting diverging models of ancestral
mammalian genomes?Genome Research, 16:306–310, 2006.→ pages12,
13

[52] D. Fulkerson and O. Gross. Incidence matrices and interval graphs.Pacific
Journal of Mathematics, 15:835–855, 1965.→ pagesii, 2, 3, 4, 6, 7

[53] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.→ pages105

[54] S. Ghosh. File organization: the consecutive retrieval property.
Communcations of the ACM, 15(9):802–808, 1972.→ pages6

[55] P. Goldberg, M. Golumbic, H. Kaplan, and R. Shamir. Fourstrikes against
physical mapping of DNA.J. Comput. Biol., 2(1):139–152, 1995.→ pages
ii, 7, 21, 22, 23, 26, 35, 36, 71, 72, 119, 121, 122

[56] J. Gordon, K. Byrne, and K. Wolfe. Additions, losses, and rearrangements
on the evolutionary route from a reconstructed ancestor to the modern
Saccharomyces cerevisiae genome.PLoS Genetics, 5(5), 2009.→ pages10

[57] J. Gramm, T. Nierhoff, R. Sharan, and T. Tantau. Haplotyping with missing
data via perfect path phylogenies.Discrete Applied Mathematics, 155:
788–805, 2007.→ pages101

[58] D. Greenberg and S. Istrail. Physical mapping by STS hybridization:
algorithmic strategies and the challenge of software evaluation. Journal of
Computational Biology, 2(2):219–274, Summer 1995.→ pages7

[59] A. Gupta, J. Maňuch, L. Stacho, and X. Zhao. Algorithm for haplotype
inferring via galled-tree networks with simple galls. InProc. of Int.
Symposium on Bioinformatics Research and Applications (ISBRA), volume
4463 ofLNBI, pages 121–132, 2007.→ pages62, 124

131

[60] A. Gupta, J. Maňuch, L. Stacho, and X. Zhao. Haplotype inferring via
galled-tree networks is NP-complete. InProc. of Annual Int. Computing
and Combinatorics Conference (COCOON), volume 5092 ofLNCS, pages
287–298, 2008.→ pages62

[61] A. Gupta, J. Maňuch, L. Stacho, and X. Zhao. Haplotype inferring via
galled-tree networks using a hypergraph covering problem for special
genotype matrices.Discr. Appl. Math., 157(10):2310–2324, 2009.→
pages62, 124

[62] D. Gusfield. Efficient algorithms for inferring evolutionary trees.
Networks, 21:19–28, 1991.→ pages30

[63] D. Gusfield. The multi-state perfect phylogeny problemwith missing and
removable data: Solutions via integer-programming and chordal graph
theory. InProc. of RECOMB 2009, volume 5541 ofLNCS, pages 294–310,
2009.→ pages31

[64] M. Habib, R. M. McConnell, C. Paul, and L. Viennot. Lex-BFS and
partition refinement, with applications to transitive orientation, interval
graph recognition and consecutive ones testing.Theoretical Computer
Science, 234(1-2):59–84, 2000.→ pages5, 6

[65] S. Haddadi. A note on the NP-hardness of the consecutiveblock
minimization problem.International Transactions on Operational
Research, 9(6):775–777, 2002.→ pages24

[66] M. T. Hajiaghayi and Y. Ganjali. A note on the consecutive ones submatrix
problem.Information Processing Letters, 83(3):163–166, 2002.→ pages
21

[67] R. Hassin and M. Megiddo. Approximation algorithms forhitting objects
with straight lines.Discrete Applied Mathematics, 30:29–42, 1991.→
pages6

[68] X. He and M. Goldwasser. Identifying conserved gene clusters in the
presence of homology families.Journal of Computational Biology, 12(6):
638–656, 2005.→ pages78

[69] R. Hoberman and D. Durand. The incompatible desiderataof gene cluster
properties. InProceedings of RECOMB Comparitive Genomics, volume
3678 ofLecture Notes in Bioinformatics, pages 73–87. Springer Verlag,
2005.→ pages78, 82

132

[70] D. Hochbaum and A. Levin. Cyclical scheduling and multi-shift
scheduling: Complexity and approximation algorithms.Discrete
Optimization, 3(4):327–340, 2006.→ pages6

[71] D. Hochbaum and P. Tucker. Minimax problems with bitonic matrices.
Networks, 40(3):113–124, 2002.→ pages6

[72] F. Hole and M. Shaw.Computer analysis of chronological seriation,
volume 53. 1967.→ pages6

[73] W.-L. Hsu. A simple test for the consecutive ones property. In T. Ibaraki,
Y. Inagaki, and K. Iwama, editors,ISAAC, volume 650 ofLNCS, pages
459–468, 1992.→ pages4

[74] W.-L. Hsu. A simple test for interval graphs. InProceedings of the 18th
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), volume 657 ofLNCS, pages 11–16. Springer, 1992.→ pages6

[75] W.-L. Hsu. On physical mapping algorithms – an error-tolerant test for the
consecutive-ones property. volume 1276 ofLecture Notes in Computer
Science, pages 242–250. Springer, 1997.→ pages24

[76] W.-L. Hsu. A simple test for the consecutive ones property. Journal of
Algorithms, 43(1):1–16, 2002.→ pages4

[77] W.-L. Hsu and T.-H. Ma. Fast and simple algorithms for recognizing
chordal comparability graphs and interval graphs.SIAM Journal on
Computing, 28(3):1004–1020, 1999.→ pages6

[78] W.-L. Hsu and R. McConnell. PC tress and circular-ones arragements.
Theoretical Computer Science, 296(1):99–116, 2003.→ pages5

[79] C. Janis. The sabertooth’s repeat performances.Natural History, 103:
78–82, 1994.→ pages30

[80] T. Jermann, J. Opitz, J. Stackhouse, and S. Benner. Reconstructing the
evolutionary history of the artiodactyl ribonuclease superfamily. Nature,
374(6517):57–59, 1995.→ pages10

[81] S. Jinks-Robertson and T. Petes. Chromosomal translocations generated by
high-frequency meiotics recombination between repeated yeast genes.
Genetics, 114(3):731–752, 1986.→ pages20

133

[82] S. Kannan and T. Warnow. Inferring evolutionary history from DNA
sequences.SIAM Journal on Computing, 23(4):713–737, 1994.→ pages
30

[83] S. Kannan and T. Warnow. A fast algorithm for the computation and
enumeration of perfect phylogenies. InSODA, pages 595–603, 1995.→
pages30

[84] D. Kendall. Incidence matrices, interval graphs and seriation in
archaeology.Pacific Journal of Mathematics, 2(28):219–274, 1995.→
pages2, 6

[85] W. Kent, R. Baertsch, A. Hinrichs, W. Miller, and D. Haussler.
Evolutions’s cauldron: Duplication, deletion, and rearrangement in the
mouse and human genomes. InProceedings of the National Academy of
Sciences USA, volume 100, pages 11484–11489.→ pagesxii, 12, 14

[86] E. Kollar and C. Fisher. Tooth induction in chick epithelium: Expression of
quiescent genes for enamel synthesis.Science, 207:993–995, 1980.→
pages30

[87] N. Korte and R. Möhring. An incremental linear-time algorithm for
recognizing interval graphs.SIAM Journal on Computing, 18(1):68–81,
1989.→ pages4, 6

[88] L. Kou. Polynomial complete consecutive information retrieval problems.
SIAM Journal on Computing, 6(1):67–75, 1977.→ pages6

[89] S. Kovaleva and F. Spieksma. Approximation of a geometric set covering
problem. InProceedings of the 12th International Society for Analysis,
Applications and Computation (ISAAC), volume 2223 ofLNCS, pages
493–501. Springer, 2001.→ pages6

[90] D. Kratsch, R. McConnell, K. Mehlhorn, and J. Spinrad. Certifying
algorithms for recognizing interval graphs and permutation graphs.SIAM
Journal on Computing, 36(2):326–353, 2006.→ pages5, 6

[91] G. Landau, L. Parida, and O. Weimann. Gene proximity analysis across
whole genomes via PQ trees.Journal of Computational Biology, 12(10):
1289–1306, 2005.→ pages16, 17, 26

[92] C. Lekkerkerker and J. Boland. Representation of a finite graph by a set of
intervals on the real line.Fundamentals of Mathematics, 51:45–64, 1962.
→ pages7

134

[93] H. Lewin, D. Larkin, J. Pontius, and S. O’Brien. Every genome sequence
needs a good map.Genome Research, 19:1925–1928, 2009.→ pages7

[94] W.-F. Lu and W.-L. Hsu. A test for the consecutive ones property on noisy
data – application to physical mapping and sequence assembly. Journal of
Computational Biology, 10(5):709–735, 2003.→ pages7, 21, 24

[95] N. Luc, J. Risler, A. Bergeron, and M. Raffinot. Gene teams: A new
formalization of gene clusters for comparative genomics.Computational
Biology and Chemistry, 27:59–67, 2003.→ pages17

[96] J. Ma, L. Zhang, B. Suh, B. Raney, R. Burhans, W. Kent, M. Blanchette,
D. Haussler, and W. Miller. Reconstructing contiguous regions of an
ancestral genome.Genome Research, 16(12):1557–1565, 2006.→ pages
xii, xvii, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 118, 120

[97] J. Ma, A. Ratan, B. Raney, B. Suh, L. Zhang, W. Miller, andD. Haussler.
DUPCAR: Reconstructing contiguous ancestral regions withduplications.
Journal of Computational Biology, 15:1007–1027, 2008.→ pages27

[98] J. Maňuch, M. Patterson, and A. Gupta. On the generalised character
compatibility problem for non-branching character trees.In H. Q. Ngo,
editor,Proceedings of the 15th Annual International Conference on
Computing and Combinatorics (COCOON), pages 268–276, 2009.→
pages103

[99] J. Maňuch and M. Patterson. The complexity of the gapped
consecutive-ones property problem for matrices of boundedmaximum
degree. InProceedings of the 8th Annual RECOMB Satellite Workshop on
Comparative Genomics (RECOMB-CG), volume 6398 ofLecture Notes in
Bioinformatics, pages 278–289. Springer, 2010.→ pagesv

[100] J. Maňuch and M. Patterson. The complexity of the gapped
consecutive-ones property problem for matrices of boundedmaximum
degree.Journal of Computational Biology, 18(9):1243–1253, 2011.→
pagesv

[101] J. Maňuch, M. Patterson, and C. Chauve. Hardness results for the gapped
consecutive-ones property.Discrete Applied Mathematics, 2011. to appear.
→ pagesiv

[102] R. McConnell. A certifying algorithm for the consecutive-ones property. In
Proc. of the Fifth Annual Symposium on Discrete Algorithms (SODA),
pages 761–770. SIAM, 2004.→ pages5, 18, 88, 94, 120

135

[103] F. McMorris, T. Warnow, and T. Wimer. Triangulating vertex colored
graphs.SIAM Journal of Discrete Mathematics, 7(2):296–306, 1994.→
pages30

[104] S. Mecke and D. Wagner. Solving geometric covering problems by data
reduction. InProceedings of the 12th European Symposium on Algorithms
(ESA), volume 3221 ofLNCS, pages 760–771. Springer, 2004.→ pages6,
7, 24

[105] S. Mecke, A. Schöbel, and D. Wagner. Station location– complexity and
approximation. InProceedings of the 5th Algorithmic Methods and Models
for Optimization of Railways (ATMOS), IBFI. Dagstuhl, Germany, 2005.
→ pages6, 7, 24

[106] J. Meidanis, O. Porto, and G. Telles. On the consecutive ones property.
Discrete Applied Mathematics, 88(1-3):325–354, 1998.→ pagesv, 4, 18,
88, 101, 120

[107] J. Meidanis, O. Porto, and G. P. Telles. On the consecutive ones property.
Discrete Applied Mathematics, 155:788–805, 2007.→ pages120

[108] T. Mizukami, W. Chang, I. Garkavtsev, N. Kaplan, D. Lombardi,
T. Matsumoto, O. Niwa, A. K. andM. Yanagida, T. Marr, and D. Beach. A
13kb resolution cosmid map of the 14mb fission yeast genome by
nonrandom sequence-tagged site mapping.Cell, 73:121–132, 1993.→
pagesxvii, 8, 11

[109] T. Morgan.The Theory of the Gene. Yale University Press, New Haven,
1926.→ pages7

[110] M. Muffato and H. Roest-Crollius. Paleogenomics, or the recovery of lost
genomes from the mist of times.Bioessays, 30:122–134, 2008.→ pages12

[111] W. Murphy, D. Larkin, A. E. van der Wind, G. Bourque, G. Tesler,
L. Auvil, J. Beever, B. Chowdhary, F. Galibert, L. Gatzke, C.Hitte,
S. Meyers, D. Milan, E. Ostrander, G. Pape, H. Parker, T. Raudsepp,
M. Rogatcheva, L. Schook, L. Skow, M. Welge, J. Womack, S. O’Brien,
P. Pevzner, and H. Lewin. Dynamics of mammalian chromosome evolution
inferred from multispecies comparative maps.Science, 309(5734):
613–617, July 2005.→ pages11, 12, 17

[112] G. Nemhauser and L. Wolsey.Integer and Combinatorial Optimization.
Discrete Mathematics and Optimization. Wiley, 1988.→ pages7

136

[113] M. Novick. Generalized pq-trees. Technical Report 89-1074, Cornell
University, 1989.→ pages4

[114] J. Opatrny. Total ordering problem.SIAM Journal of Computing, 8(1):
111–114, 1979.→ pages104

[115] M. Oswald and G. Reinelt. Polyhedral aspects of the consecutive ones
problem. InProceedings of the 6th Annual International Computing and
Combinatorics Conference (COCOON), volume 1858 ofLNCS, pages
373–382. Springer, 2000.→ pages6

[116] M. Oswald and G. Reinelt. Constructing new facets of the consecutive ones
polytope. InProceedings of the 5th International Workshop on
Combinatorial Optimization–”Eureka, You Shrink!”, volume 2570 of
LNCS, pages 147–157. Springer, 2003.→ pages6

[117] A. Ouangraoua, F. Boyer, A. McPherson, E. Tannier, andC. Chauve.
Prediction of contiguous regions in the amniote ancestral genome. In
Proceedings of the International Symposium on Bioinformatics Research
and Applications (ISBRA), Lecture Notes in Computer Science, pages
173–185. Springer, 2009.→ pages22

[118] R. Overbeek, M. Fonstein, M. D’Souza, G. Pusch, and M. Maltsev. The use
of gene clusters to infer functional coupling. InProceedings of the National
Academy of Sciences USA, volume 96, pages 2896–2901, 1999.→ pages8

[119] M. Palazzolo, S. Sawyer, C. Martin, D. Smoller, and D. Hartl. Optimized
strategies for sequence-tagged-site selection in genome mapping. In
Proceedings of the National Academy of Sciences, volume 88, pages
8034–8038, U.S.A., 1991.→ pagesxvii, 8, 11

[120] C. Papadimitriou.Computational Complexity. Addison Wesley, 1994.→
pages46, 47, 62, 74

[121] L. Parida. Using PQ structures for genomic rearrangement phylogeny.
Journal of Computational Biology, 13(10):1685–1700, 2006.→ pages17

[122] S. Pasek, A. Bergeron, J. Risler, A. Louis, E. Ollivier, and M. Raffinot.
Identification of genomic features using microsyntenies ofdomains:
domain teams.Genome Research, 15(6):867–874, 2005.→ pages21, 22,
23, 78

[123] I. Pe’er, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect
phylogeny.SIAM J. Computing, 33:590–607, 2004.→ pages100

137

[124] G. Pontecorvo.Trends in Genetic Analysis. Columbia University Press,
New York, 1958.→ pages7

[125] S. Rahmann and G. Klau. Integer linear programs for discovering
approximate gene clusters. InProceedings of the Workshop on Algorithms
in Bioinformatics (WABI), volume 4175 ofLecture Notes in Bioinformatics,
pages 298–306. Springer Verlag, 2006.→ pages78

[126] V. Rascol, P. Pontarotti, and A. Levasseur. Ancestralanimal genomes
reconstruction.Current Opinions in Immunology, 19(5):542–546, 2007.→
pages12

[127] F. Richard, M. Lombard, and B. Dutrillaux. Reconstruction of the ancestral
karyotype of eutherian mammals.Chromosome Research, 11:605–618,
2002.→ pages11, 16, 18, 19

[128] C. Richardson and M. Jasin. Frequent chromosomal translocations induced
by DNA double-strand breaks.Nature, 405:697–700, 2000.→ pages20

[129] W. Robinson. A method for chronologically ordering archaeological
deposits.American Antiquity, 16:293–301, 1951.→ pages2, 6

[130] M. Rocchi, N. Archidiacono, and R. Stanyon. Ancestralgenome
reconstruction: an integrated, multi-disciplinary approach is needed.
Genome Research, 16:1441–1444, 2006.→ pages12, 13

[131] A. Ruf and A. Schöbel. Set covering with almost consecutive ones
property.Discrete Optimization, 1(2):215–228, 2004.→ pages6, 7, 24

[132] H. Ryser. Combinatorial configurations.SIAM Journal on Applied
Mathematics, 17(3):593–602, 1969.→ pages3

[133] M. Sadqi, E. de Alba, R. Pérez-Jiménez, J. Sanchez-Ruiz, and B. M. noz.
A designed protein as experimental model of primordial folding. In
Proceedings of the National Academy of Sciences USA, volume 106, pages
4127–4132, 2009.→ pages10

[134] D. Sankoff, C. Zheng, and Q. Zhu. Polyploids, genome halving and
phylogeny.Bioinformatics, 23:433–439, 2007.→ pages27

[135] J. B. Saxe. Dynamic-programming algorithms for recognizing
small-bandwidth graphs in polynomial time.SIAM J. on Alg. and Discr.
Meth., 1(4):363–369, 1980.→ pages25, 54, 55, 56, 57, 58, 59, 60, 121,
122

138

[136] A. Schrijver.Theory of Linear and Integer Programming. Wiley, 1986.→
pages6

[137] C. Semple and M. Steel.Phylogenetics. Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, 2003.→ pages
iii, xviii

[138] M. Steel. The complexity of reconstructing trees fromqualitative characters
and subtrees.Journal of Classification, 9:91–116, 1992.→ pages30, 103

[139] J. Stoye and R. Wittler. A unified approach for reconstructing ancient gene
clusters.IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 2009.→ pages27

[140] A. Sturtevant and T. Dobzhansky. Inversions in the third chromosome of
wild races of drosophilia pseudoobsura, and their use in thestudy of the
history of the species. InProceedings of the National Academy of Sciences,
number 22, pages 448–450, 1936.→ pages11

[141] M. Svartman, G. Stone, J. Page, and R. Stanyon. A chromosome painting
test of the basal eutherian karyotype.Chromosome Research, 12:45–53,
2004.→ pages11, 19

[142] M. Svartman, G. Stone, and R. Stanyon. The ancestral eutherian karyotype
is present in xenarthra.PLoS Genetics 2, (e109), 2006.→ pages11, 19

[143] J. Tang and L. Zhang. The consecutive ones submatrix problem for sparse
matrices.Algorithmica, 48:287–299, 2007.→ pages21

[144] J. Trowsdale. Genomic structure and function in the MHC. Trends Genet.,
9:117–122, 1993.→ pages30

[145] A. C. Tucker. A structure theorem for the consecutive 1’s property.J. of
Comb. Theory, Series B, 12:153–162, 1972.→ pagesx, 2, 3, 6, 120, 122

[146] Y. van de Peer. Computational approaches to unveilingancient genome
duplications.Nature Reviews, 5:752–763, 2004.→ pages27

[147] A. Veinott and H. Wagner. Optimal capacity scheduling. Operational
Research, 10:518–547, 1962.→ pages6, 7

[148] T. Warnow. Tree compatibility and inferring evolutionary history.J.
Algorithms, 16:388–407, 1994.→ pages30

139

[149] S. Weis and R. Reischuk. The complexity of physical mapping with strict
chimerism. InProceedings of the Sixth Annual COCOON, volume 1858 of
LNCS, pages 383–395. Springer, 2000.→ pages7, 21, 22

[150] J. Wienberg. The evolution of eutherian chromosomes.Current Opinion in
Genetics and Development, (6):657–666, 2004.→ pages11, 16, 18, 19

[151] R. Wittler and J. Stoye. Consistency of sequence-based gene clusters. In
Proceedings of RECOMB Comparitive Genomics, volume 6398 ofLecture
Note in Bioinformatics, pages 252–263. Springer, 2010.→ pagesii, v, 27,
28, 73, 74, 82, 89, 118, 123

[152] R. Wittler, J. Maňuch, M. Patterson, and J. Stoye. Consistency of
sequence-based gene clusters.Journal of Computational Biology, 18(9):
1023–1039, 2011.→ pagesv

[153] F. Yang, E. Alkalaeva, P. Perelman, A. Pardini, W. Harrison, P. O’Brien,
B. Fu, A. Graphodasky, M. Ferguson-Smith, and T. Robinson. Reciprocal
chromosome painting among human, aardvark, and elephant (superorder
afrotheria) reveals the likely eutherian ancestral karyotype. InProceedings
of the National Academy of Sciences, volume 100, pages 1062–1066,
U.S.A., 2003.→ pages11, 16, 18, 19

140

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	Dedication
	1 Introduction
	1.1 The Consecutive-Ones Property
	1.1.1 An Introduction of the Consecutive-Ones Property
	1.1.2 Background: Deciding the Consecutive-Ones Property
	1.1.3 Applications of the Consecutive-Ones Property

	1.2 The Reconstruction of Ancestral Gene Orders
	1.2.1 A Basic Overview of the Reconstruction of Ancestral Gene Orders
	1.2.2 Previous Approaches to Reconstructing Ancestral Gene Orders
	1.2.3 Binary Matrices, the C1P and the Reconstruction of AGOs

	1.3 Computational Solutions for non-C1P Matrices
	1.3.1 Transforming the Matrix to a C1P Matrix
	1.3.2 Relaxing the C1P
	1.3.3 Matrices of Bounded Degree
	1.3.4 Matrices with Columns of Multiplicity

	1.4 The Generalized Cladistic Character Compatibility Problem

	2 The Gapped Consecutive-Ones Property
	2.1 Notation and Conventions
	2.2 Fixing the Order of Selected Columns in a Matrix
	2.3 The Complexity of Deciding the (k,)-C1P
	2.3.1 The Complexity of Deciding the (k,)-C1P for every k,2
	2.3.2 The Complexity of Deciding the (k,1)-C1P for every k3

	2.4 The (2,1)-C1P
	2.4.1 The Algorithm

	2.5 The Complexity of Deciding the (,)-C1P
	2.5.1 The 3SAT(L:2,R:2) Problem
	2.5.2 The Complexity of Deciding the (,1)-C1P
	2.5.3 The Complexity of Deciding the (,)-C1P

	3 The Gapped Consecutive-Ones Property for Matrices of Bounded Maximum Degree
	3.1 An Algorithm for Matrices of Bounded Maximum Degree
	3.2 The (d,k,)-C1P
	3.2.1 A Hypergraph Covering Problem
	3.2.2 The 3-Uniform Hypergraph 1-Covering by Paths Problem
	3.2.3 The d-Uniform Hypergraph p-Covering by Paths Problem
	3.2.4 The Complexity of Deciding the (d,k,)-C1P

	4 The Consecutive-Ones Property with Multiplicity
	4.1 The Consecutive-Ones Property with Multiplicity (mC1P)
	4.2 Two Variants of the mC1P
	4.2.1 The mC1P(fr) Variant
	4.2.2 The mC1P(ne) Variant

	4.3 A Tractability Result for the Consecutive-Ones Property with Multiplicity
	4.3.1 Preliminaries
	4.3.2 A Tractable Case of Deciding the mC1P
	4.3.3 Building a PQ-tree which Describes All Sequences that Satisfy the Consecutivity Requirement

	5 The Generalized Cladistic Character Compatibility Problem
	5.1 The Generalized Cladistic Character Compatibility (GCCC) Problem
	5.2 Ordering Problems
	5.3 Tractability Results
	5.3.1 An Algorithm for Cases of the Single-Branch GCCC Problem
	5.3.2 The BKW Case of the SB-GCCC-NB Problem is Polynomial-Time Solvable
	5.3.3 The {{1},{2},{0,2}}-P-GCCC-NB Problem

	5.4 Hardness Results

	6 Conclusion
	6.1 Chapter 2: The (k,)-C1P
	6.2 Chapter 3: The (d,k,)-C1P
	6.3 Chapter 4: The mC1P
	6.4 Chapter 5: The GCCC Problem

	Bibliography

