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Abstract

Several recent works have explored the deep structure between arc diagrams, their nest-

ings and crossings, and several other combinatorial objects including permutations, graphs,

lattice paths, and walks in the Cartesian plane.

This thesis inspects a range of related combinatorial objects that can be represented

by arc diagrams, relationships between them, and their connection to nestings and cross-

ings. We prove a direct connection between nestings in involutions and the shape of Young

tableaux, clarify Knuth transformations in terms of Young tableaux, present a local transfor-

mation on arc diagrams of involutions that we term involutive transformations, and describe

variants to the well-known RSK correspondence.

Keywords: Arc diagrams, Ferrers filling, Young tableaux, Lattice paths, Bijections, Nest-

ings, Crossings, RSK, Knuth transformations
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Preface

Everything starts with the paper of Chen et al. [8]. It describes interesting properties of

nestings and crossings and their statistics in a representation of matchings and set partitions

in terms of arc diagrams. In particular it links these objects to vacillating tableaux, that

can be described as paths in the Young lattice, and to the classical RSK construction, that

relates Young tableaux and permutations. The paper of Chen was then greatly generalized

by Krattenthaler [29] in terms of Ferrers fillings and their growth diagrams.

Since then, several other works have followed, exploring the deep structure between arc

diagrams, their nestings and crossings, and several other combinatorial objects including

permutations [10], graphs [12], lattice paths [26], walks in the Cartesian plane [37, 33],

generating functions, and more.

From these works, arc diagrams appear to be a very general way to represent several

families of combinatorial objects. In addition to the myriad of opportunities for new math-

ematical discoveries in this area, research is motivated by connections to RNA secondary

structures and genome rearrangement scenarios. Two RNA secondary structures in par-

ticular are pseudoknots, which correspond to crossings, and helices, which correspond to

nestings. There is, therefore, a strong connection between nestings and crossings and the

analysis of RNA structures, which has been the subject of many recent works. See, for

example, Jin et al. [24], Jin et al. [25], Huang et al. [23] and Chen et al. [9].

This thesis inspects a range of related combinatorial objects, relationships between them,

and their connection to nestings and crossings. In the process, we clarify Knuth transfor-

mations in terms of Young tableaux, present involutive transformations, and extend one of

the results in the Chen et al. paper.

xiii



Chapter 1

Introduction

In this chapter, we introduce a number of combinatorial objects which are used in the

following chapters, and some fundamental relationships between them. Section 1.5 gives

a summary of the objects and prior work in this research area, and an overview of the

following chapters.

1.1 Integer Partitions, Ferrers Diagrams, and Young’s Lat-

tice

An integer partition can be represented by a Ferrers diagram consisting of cells in left-aligned

rows of non-increasing length. We say that the shape of such a partition is λ = λ1, λ2, . . .,

where λi is the length of the ith row. (The empty partition is represented by ∅ = 0, 0, . . .)

The conjugate or transposition of λ, λT , is constructed by exchanging the rows and

columns of λ. More formally, we can consider positions (r, c) in the diagram, with (r, c) ∈

λ⇐⇒ 1 ≤ c ≤ λr. Then, (i, j) ∈ λT ⇐⇒ (j, i) ∈ λ. Figure 1.1 gives an example.

Figure 1.1: The Ferrers diagrams of an integer partition λ = 5, 3, 2, 2 and its conjugate

λT = 4, 4, 2, 1, 1

1



CHAPTER 1. INTRODUCTION 2

Given two integer partitions λ and µ, we say that λ contains µ and write µ � λ if, for all

i, µi ≤ λi. Strict containment is analogously defined for ≺. This relation defines a poset over

all integer partitions. The Hasse diagram on this poset is known as Young’s lattice; see, for

example, [45]. Here, we refer to the sublattice induced by the integer partitions contained

in λ as Yλ, and to the number of integer partitions thus contained as |Yλ|. Figure 1.2 shows

one such sublattice.

∅

Figure 1.2: The lattice Yλ for λ = 3, 2, 1. |Yλ| = 14

Cells of a Ferrers diagram that can be removed to form a new Ferrers diagram are

called corners, and positions where a cell can be added are called co-corners. Note that any

removed corner becomes a co-corner, and any cell added at a co-corner becomes a corner.

Examples are given in Figure 1.3.
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d
c

c d
d

(a) A Ferrers diagram of λ = 3, 3, 2 with cor-

ners labeled c and co-corners labeled d.

c
d

d c
c

(b) A skew shape λ/µ with λ = 6, 5, 4, 3, 2 and µ =

4, 4, 2. Inner corners are labeled with c and inner

co-corners with d.

Figure 1.3: Examples of corners and co-corners

Finally, given µ ≺ λ, we define the skew shape λ/µ as {(r, c)|(r, c) ∈ λ ∧ (r, c) /∈ µ}.

Corners of µ that are not corners of λ are called inner co-corners of λ/µ, and co-corners of

µ that are not co-corners of λ are called inner corners of λ/µ, as shown in Figure 1.3.

1.2 Young Tableaux and the Robinson-Schensted-Knuth Cor-

respondence

Filling each cell of a Ferrers diagram with numbers results in an object referred to as a

tableau or Ferrers filling. The numbers are collectively called the contents of the tableau.

Restricting the content leads to combinatorial objects with remarkable properties. In this

thesis, we are primarily interested in two types of fillings, strict 0-1 Ferrers fillings (presented

in Section 1.4) and Young tableaux (presented below).

1.2.1 Young Tableaux

A tableau P on shape sh(P ) = λ and size n = |λ| is defined as the Ferrers diagram of λ

in which every cell is filled with a number. The numbers are collectively referred to as the

contents of the tableau. If the numbers increase from left to right in each row, and increase

downward in each column, it is defined as an increasing Young tableau. Decreasing Young

tableaux and skew Young tableaux are analogously defined. If the numbers are [n], we say

that P is a standard Young tableau or SYT. Here, we usually work with increasing tableaux,

and thus do not specify the direction of a Young tableau unless it is decreasing.

Note that the smallest number of a Young tableau must be located at the origin (1, 1),

and the largest number must be located at a corner. Inductively, the cells containing the
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smallest k numbers form a sub-Young tableau, and those containing the largest n−k numbers

form a skew Young tableau. As a result, a Young tableau P with sh(P ) = λ can also be

defined as a monotonic walk in Yλ from ∅ to λ. An example is given in Figure 1.4.

∅, , , , ,
1 2 4

3 5

Figure 1.4: A monotonic walk in Y3,2 from ∅ to 3, 2 and the corresponding SYT

Given a Young tableau P with contents p1 < p2 < . . . < pn, we define the negation of P ,

PN , to be the decreasing Young tableau obtained by replacing pi with pn−i+1. We similarly

define negation for decreasing Young tableaux, and note that PNN = P . We define the

transposition of a Young tableau P similarly to that of integer partitions, and write P T .

Note that P TT = P and PNT = P TN . If a value α is less than (resp. greater than) any

value in the Young tableau, we write α < P (resp. α > P ). See Figure 1.5 for examples.

1 2 4

3 5

5 4 2

3 1

1 3

2 5

4

5 3

4 1

2

Figure 1.5: From left to right: A standard Young tableau P , PN , P T , and PNT = P TN

There are two well-known pairs of operations for adding or removing numbers from

a Young tableau, namely jeu de taquin and row insertion/deletion. Jeu de taquin can

also be used to define a transformation on Young tableaux called evacuation. Although

the operations may seem unrelated on the surface, it has been shown that they in fact have

deep connections to one another. The operations can also be used to show many correlations

between standard Young tableaux, permutations, and other related structures.

We explore row insertion/deletion in the following section, as it is essential in showing a

strong connection between permutations and Young tableaux via the Robinson-Schensted-

Knuth correspondence. Jeu de taquin and evacuation are presented in Chapter 3, where

they are used to generalize the Robinson-Schensted-Knuth correspondence and describe

transformations of Young tableaux.
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1.2.2 Robinson-Schensted-Knuth and Permutations

One pair of operations for adding and removing numbers from a Young tableau is row

insertion and row deletion. Given a Young tableau P , we define the row insertion rins(P,α)

as Algorithm 1.1.

Algorithm 1.1 rins(P,α): Row insertion of α into Young tableau P

Let r ← 1

while α is not larger than all values in row r do

Let β be the smallest number in row r such that β > α

Let c be the column where β is located

Replace β in (r, c) with α, then let α← β and r← r + 1

end while

Create a new cell at the end of row r and set the value to α

The operation is referred to as row insertion as a number is inserted into the first row,

potentially “bumping” another number into the second row; the algorithm then continues

recursively, bumping numbers from their original row to the row below. Figure 1.6 shows

an example of a row insertion.

1 4 8
2 5 9
6

1 3 8
2 5 9
6

1 3 8
2 4 9
6

1 3 8
2 4 9
5

1 3 8
2 4 9
5
6

Figure 1.6: A row insertion of 3 into a Young tableau. Row deleting the new corner (con-

taining 6) would reverse the process

It can be shown that this algorithm results in a new Young tableau. Moreover, the

algorithm is reversible; rdel(P, r, c) is defined as Algorithm 1.2.
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Algorithm 1.2 rdel(P, r, c): Row deletion of corner (r, c) from Young tableau P

Require: (r, c) is a corner in P

Let α be the contents of (r, c)

Remove corner (r, c) from P

while r > 1 do

Let r ← r − 1

Let β be the largest number in row r such that β < α

Let c be the column where β is located

Place α into cell (r, c), then let α← β

end while

{The algorithm terminates and α is removed from P}

Although it is conventional to use the row-based operations defined above, column-based

variants cins(P,α) and cdel(P, r, c) can also be defined.

cins(P,α) = rins(P T , α)T (1.1)

cdel(P, r, c) = rdel(P T , c, r)T (1.2)

It is also possible to prove (Schensted [38]) that column-base insertion and row-based

insertion are remarkably independent; namely,

rins(cins(P, x), y) = cins(rins(P, y), x) (1.3)

This property can in turn be used to prove some of the connections between Young tableaux

and permutations explored in Chapter 3.3.

Row insertion can be used to prove a bijection between two-line arrays of a certain

form with pairs of Young tableaux of the same shape. The bijection was first discovered

for permutations by Robinson [11], and then independently rediscovered by Schensted [38].

Knuth later [27] generalized the Robinson-Schensted algorithm using two-line arrays. We

do not use Knuth’s generalization in this thesis, but still refer to the construction as the

RSK algorithm due to the use of two-line arrays.

Theorem 1.1 (Robinson[11], Schensted[38], Knuth[27]). Two-line arrays of the form

A =

(

q1 q2 . . . qn

p1 p2 . . . pn

)

pi distinct and qi < qi+1, 1 ≤ i < n
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are in bijection with pairs of Young tableaux P with contents p1, . . . , pn and Q with contents

q1, . . . , qn such that sh(Q) = sh(P ).

Proof. The proof is constructive. Algorithm 1.3 gives the process for constructing the two

tableaux from the two-line array.

Algorithm 1.3 RSK construction of tableaux from a two-line array

Require: pi distinct and qi < qi+1, 1 ≤ i < n

Let P0 ← ∅ and Q0 ← ∅

for i = 1 to n do

Let Pi ← rins(Pi−1, pi) and let (ri, ci) be the resulting new corner

Let Qi be the same as Qi−1, and then place qi into a new cell at position (ri, ci)

{Note that sh(Qi) = sh(Pi)}

end for

Conventionally, P = Pn is called the insertion tableau of A, and Q = Qn is called the

recording tableau. If A corresponds to P and Q, we write A ∼ (P,Q), and let sh(A) =

sh(P ) = sh(Q). Figure 1.7 gives an example of the algorithm.

(
1 3 5 7 9
4 8 2 0 6

)

(a) A two-line array A

∅, ∅

(b) P0, Q0

4 , 1

(c) P1, Q1

4 8 , 1 3

(d) P2, Q2

2 8

4 ,

1 3

5

(e) P3, Q3

0 8

2

4 ,

1 3

5

7

(f) P4, Q4

0 6
2 8
4 ,

1 3
5 9
7

(g) P5, Q5

Figure 1.7: An example of Algorithm 1.3

Because the content of (ri, ci) in Q is qi, it is simple to reverse the construction of

Algorithm 1.3, yielding Algorithm 1.4.
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Algorithm 1.4 RSK construction of a two-line array from tableaux

Require: sh(Q) = sh(P )

Let Pn ← P and Qn ← Q

for i = n down to 1 do

Let qi be the largest number in Qi and let (ri, ci) be its location

Let Qi−1 be the same as Qi, and then remove the corner at position (ri, ci)

Let Pi−1 ← rdel(Pi, ri, ci) and let pi be the number removed from Pi

end for

Let the two-line array be

(

q1 q2 . . . qn

p1 p2 . . . pn

)

This completes the bijection.

Corollary 1.1.1. Permutations of [n] are in bijection with pairs of SYTs of size n and

identical shape.

1.3 Arc Diagrams, Nesting, and Crossing

In this section, we present arc diagrams, and show how they can represent a number of com-

binatorial objects, such as permutations, set partitions, and matchings. We also introduce

natural statistics on arc diagrams, namely nestings and crossings. In the following chapter,

bijections involving these objects are explored. Figure 1.14 gives a table of notations and a

hierarchy for these classes.

1.3.1 Arc Diagrams

An arc diagram is a multigraph with labeled vertices in which the vertices are placed on

the x axis in increasing order, and edges are drawn as arcs between the vertices.

1 2 3 4 5 6 7 8

Figure 1.8: An example of an arc diagram
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There are deep connections between general Ferrers fillings and general arc diagrams, as

explored by de Mier [12].

Various classes of arc diagrams can represent many combinatorial objects. For example,

a permutation σ can be represented by an arc diagram with bicoloured arcs; one colour for

edge (i, σ(i)) when σ(i) ≥ i, and another for edge (σ(i), i) when σ(i) < i. (Every vertex will

have degree 2 and there are no multi-edges; a vertex attached only to a loop is considered

to have degree 2.) Conventionally, arcs of the first colour are drawn above the x axis and

arcs of the second colour are drawn below, as shown in Figure 1.9.

1 2 3 4 5

Figure 1.9: The arc diagram of the permutation 42153

This thesis is primarily concerned with the arc diagrams of set partitions, and subsets

of set partitions. Set partitions can be represented by an arc diagram wherein elements in

the same part are connected by a sequence of arcs, from the smallest element to the largest.

Additionally, parts of size one can be represented by a vertex with a loop. Set partitions

themselves can be considered a subset of permutations. For example, each part of a set

partition can be reinterpreted as a cycle, as demonstrated in Figure 1.10.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 1.10: The set partition {1, 7}{2, 4, 8}{3}{5, 6} and the permutation with cycles

[1, 7][2, 4, 8][3][5, 6]

Restricting each part in a set partition to size 1 or 2 results in an involution, i.e. a

permutation that is its own inverse. As can be seen in Figure 1.11, the arc diagram consists

of vertices with loops (and no other arcs), and pairs of vertices with degree 1 connected by

an arc. Involutions are also known as partial matchings.



CHAPTER 1. INTRODUCTION 10

1 2 3 4 5 6 7 8 9

Figure 1.11: The arc diagram of an involution

Forbidding loops in a permutation results in a derangement, forbidding loops in a set

partition results in a singleton-free set partition, and forbidding loops in an involution results

in a (perfect) matching. Examples are given in Figure 1.12.

1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8

Figure 1.12: The arc diagrams of a derangement, a singleton-free set partition, and a match-

ing

A balanced matching with 2n vertices is a matching which consists of arcs (i, j) such

that i ≤ n and j > n. In other words, all arcs start on the left half of the diagram and end

on the right half, as shown in Figure 1.13.

1 2 3 4 5 6 7 8

Figure 1.13: The arc diagram of a balanced matching

Together, these objects form a hierarchy; each one can be considered to be a subset of

permutations, as illustrated in Figure 1.14. However, as we will demonstrate in Section 1.4,

permutations of size k are in bijection with balanced matchings of size 2k. Therefore,

permutations can also be seen as a special case of matchings.
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Sn Permutations on [n]
Dn Derangements on [n]
Pn Set partitions of [n]

FPn Singleton-free set partitions of [n]
In Involutions (self-inverse permutations) on [n]

Mn Matchings on [n] (n must be even)
BMn Balanced matchings on [n] (n must be even)

Sn ⊃ Pn ⊃ In

∪ ∪ ∪
Dn ⊃ FPn ⊃ Mn = M2k ⊃ BM2k ↔ Pk

Figure 1.14: Notations and a hierarchy for families of combinatorial objects that can be

represented as arc diagrams

Most of this thesis concerns arc diagrams of one colour, in particular, set partitions

and their subsets, such as matchings. These arc diagrams have four types of vertices,

as illustrated in Figure 1.15. Namely, the four types are left endpoints, right endpoints,

transitory vertices, and singletons.

1 2 3 4

Figure 1.15: A left endpoint (1), transitory vertex (2), singleton (3), and right endpoint (4)

1.3.2 Nestings and Crossings

Following Chen et al. [8], we are primarily interested in the relationship between arcs in

the diagram. In terms of a permutation σ, nesting can be defined as i and j such that

i < j < σ(j) < σ(i). In an arc diagram, nesting has the intuitive meaning of one arc being

completely underneath another. Examples can be seen in Figure 1.16.

When considering singletons, there are at least two popular interpretations that have

been considered. Under the strong nesting interpretation, singletons cannot be part of

a nesting. Under the weak nesting interpretation, however, they may. In this case, the

requirement can be stated as i < j ≤ σ(j) < σ(i). (In Chapter 4, we introduce a third

interpretation.)
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The concept of nesting can be generalized. A k-nesting is a set of k pairwise nesting

arcs. In terms of the permutation, we have i1 < i2 < . . . < ik < σ(ik) < . . . < σ(i2) < σ(i1)

for strong k-nestings, and similar for weak k-nestings. When unqualified, the term nesting

refers to 2-nestings.

Note that, in terms of a permutation, a k-nesting involving v vertices is a decreasing

subsequence of length v.

1 2 3 4

(a) A nesting

1 2 3

(b) A weak nesting that

is not a strong nesting

1 2 3 4 5 6 7
(c) A weak 4-nesting that is a

strong 3-nesting

Figure 1.16: Examples of nestings and k-nestings

Crossings and k-crossings can be similarly defined. In terms of a permutation, a strong

k-crossing consists of k indices such that i1 < i2 < . . . < ik < σ(i1) < σ(i2) < . . . <

σ(ik). Within the arc diagram, crossings again have the intuitive meaning of two arcs

that overlap (cross). There are also weak and strong interpretations for crossings; the

weak crossing interpretation considers a transitory vertex to be a crossing, while the strong

crossing interpretation does not. Examples are given in Figure 1.17.

1 2 3 4

(a) A crossing

1 2 3

(b) A weak crossing that

is not a strong crossing

1 2 3 4 5 6 7

(c) A weak 4-crossing that is a

strong 3-crossing

Figure 1.17: Examples of crossings and k-crossings

In this thesis, we define an alignment to be two arcs that neither nest nor cross. (There

is no standard interpretation of this term in the literature; for example, in [10] nestings are

considered to be alignments, while in [26] they are not.) Figure 1.18 gives examples.



CHAPTER 1. INTRODUCTION 13

1 2 3 4

(a) An alignment

1 2 3

(b) One type of

strong alignment

1 2 3

(c) Another type of

strong alignment

Figure 1.18: Examples of alignments

1.4 Strict 0-1 Ferrers Filling and Permutation Matrices

In this section, we present another type of Ferrers filling. Krattenthaler [29] explores both

general and restricted Ferrers fillings in depth. In particular he devotes a section to pre-

senting evidence that Ferrers fillings are but a part of a much larger theory, encompassing

such shapes as stack polyominoes and moon polyominoes.

A strict 0-1 Ferrers filling is a Ferrers diagram in which each cell contains either a 0 or a

1, and moreover, every column and every row contains exactly one 1. For ease of legibility,

the diagrams for these objects are presented with ‘X’ replacing 1 and the 0s omitted, as

demonstrated in Figure 1.19.

For the rest of this thesis, the term Ferrers filling will refer to a strict 0-1 Ferrers filling,

unless explicitly noted otherwise.

X
X

X
X

X

Figure 1.19: A strict 0-1 Ferrers filling

Given a permutation σ ∈ Sn, the permutation matrix of σ is a square n × n grid such

that if σ(i) = j, then there is a mark in row i (counting from the left), column j (counting

from the bottom). Clearly, a permutation matrix is a special case of a Ferrers filling. An

example is given in Figure 1.20.
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(
1 2 3 4 5

1 5 2 4 3

)

(a) A permutation σ = 15243

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(b) The corresponding permutation matrix

Figure 1.20: An example of a permutation matrix, a special case of a strict 0-1 Ferrers filling

A matching is a permutation consisting solely of cycles of length two; such permutations

must necessarily have an even number of elements. There is also a bijection between Ferrers

fillings with n 1s, and matchings on [2n], as implied by Krattenthaler [29] (theorem 1) and

clarified by de Mier [12]. We supply our own proof here to emphasize the connection between

the Ferrers filling and the permutation matrix of matchings.

Theorem 1.2. Strict 0-1 Ferrers fillings with n 1s are in bijection with matchings on [2n].

Proof. A property of any matching µ is that if µ(i) = j, then µ(j) = i and i 6= j. This

means that the permutation matrix must be symmetric around the main diagonal, with

no marks on the diagonal itself. Therefore, a matching can be represented by a triangular

matrix with n marks, as shown in Figure 1.21b.

Removing the columns and rows which do not contain marks leaves a Ferrers filling. The

mapping can be reversed by following the border from the lower-left corner to the upper-

right corner as numbered in Figure 1.21c, inserting a blank row below each horizontal step,

and a blank column to the right of every vertical step.
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X

X

X

X

X

X

X

X

X

X

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(a) The permutation matrix of a matching µ ∈ M10.

The matrix is symmetric around the main diagonal,

with no marks on the main diagonal

X

X

X

X

X

1

2

3

4

5

6

7

8

9

10

(b) The top half of the permutation matrix, with

blank rows and columns highlighted. Every la-

beled diagonal step has a mark in the adjacent

column or row, but not both

X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

(c) The strict 0-1 Ferrers filling that remains

after removing blank rows and columns

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(d) The permutation matrix of f(µ) ∈ S5 (See

comments following Theorem 1.3)

Figure 1.21: An example of the bijection between matchings on [2n] and strict 0-1 Ferrers

fillings with n marks

For any permutation σ, if σ(i) > i, i is referred to as an excedance. A matching µ ∈M2n

must have exactly n excedances, corresponding to the smaller value in each of the n cycles

of length 2. A matching β is a balanced matching if and only if it begins with n excedances

(β(i) > i for 1 ≤ i ≤ n). This leads to a simple proof of the following well-known result.

Theorem 1.3. BM2n is in bijection with Sn.

Proof. Note that if µ(i) > i in the bijection of Theorem 1.2, then the ith step along the

border is horizontal, and otherwise it is vertical. Therefore the Ferrers filling of a balanced
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matching β ∈ BM2n is a permutation matrix of some permutation σ ∈ Sn, and vice-versa.

The bijection between σ ∈ Sn and β ∈ BM2n can also be described numerically:

σ(i) = j ⇐⇒ β(i) = n + j ∧ β(n + j) = i (1.4)

If σ ∈ Sn is in bijection with β ∈ BM2n, we use the following notations.

g(σ) = β

g−1(β) = σ

Later, it will be useful to have an extension of this bijection to a surjection from M2n to

Sn. The Ferrers filling of a matching in M2n has n marks, and thus necessarily has n rows

and n columns. Thus, the Ferrers filling is contained within an n × n square, even if it is

not a square.

Given a matching µ ∈M2n, define f(µ) as follows. First form the corresponding Ferrers

filling, and then extend the Ferrers filling to be an n× n square by adding blank cells. Let

σ ∈ Sn be the permutation corresponding to the resulting permutation matrix, and define

f(µ) = σ. Note that for β ∈ BM2n, f(β) = g−1(β). Figure 1.21d gives an example.

There are actually deep connections between the arc diagram of a matching and its

Ferrers filling, as illustrated in Figure 1.22.

X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

(a) Ferrers filling of µ ∈ M10,

with arcs

1 2 3 4 5 6 7 8 9 10
(b) The arc diagram of µ

Figure 1.22: The connection between Ferrers fillings and arc diagrams

When reading the border of the Ferrers filling from the lower left corner to the upper

right corner as numbered, horizontal edges correspond to left endpoints in the arc diagram,
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and vertical edges correspond to right endpoints. By connecting lines between the border

and the marks, the arc diagram can be seen within the Ferrers filling.

1.5 Object Summary and Overview

1.5.1 Object Summary

Figure 1.23 summarizes some of the many objects and families of objects which are related

to the study of arc diagrams, nestings, and crossings.

Bicoloured
Weighted
Motzkin Paths

Asymmetric
PDSAWs

Symmetric
PDSAWs

Weighted
Dyck Paths

Weighted
Motzkin
Paths

Involutions Permutations Matchings Set Partitions

Standard
Young
Tableaux

Standard
Young
Tableau
Pairs

Permutation
Matrices
(0-1 Filling)

Strict
0-1 Fillings

Triangular
0-1 Fillings

Lattice Paths

Arc Diagrams

Ferrers Fillings and types of Young Lattice Walks

Solid: Direct bijection
Dashed: Bicolouring
bijection principle

Blue: Not presented in this thesis

Figure 1.23: Some objects and their relationships

Many classical results involving Young tableaux revolve around the bijection between

permutations (typically in their sequential form) and pairs of standard Young tableaux.

This includes the work of Robinson [11], Schensted [38], Schützenberger [39], Knuth [27],

Greene [22], and Reifegerste [35].
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Chen et al. [8] use triangular 0-1 matrices to represent set partitions, and use an RSK-

like algorithm to produce walks in Young’s lattice which they term vacillating tableaux.

They then use these objects to show the equidistribution of maximal nesting and maximal

crossing for set partitions, among other results. Their main results were greatly generalized

in terms of Ferrers fillings by Krattenthaler [29], whose work was further explored in terms

of arc diagrams by de Mier [12].

Kasraoui and Zeng [26] use weighted Motzkin paths and weighted Dyck paths to show

the equidistribution of (the total number of) nestings and crossings in set partitions and

matchings. Corteel [10] then extended this work to permutations, and also showed connec-

tions to patterns in the sequential form of permutations.

Rubey [37] and Poznanović [33] also show connections between the nestings of matching

and permutations and another type of lattice walk, partially-directed self-avoiding walks

(PDSAWs).

The main result of this thesis involves the bijection between involutions and standard

Young tableaux. Specifically, in Chapter 5 we show a direct correlation between nestings

in the arc diagram of an involution and the shape of the associated tableau (Theorem 5.2).

The result mirrors that of Greene [22], who showed the same connection between decreasing

subsequences of a permutation and the shape of the associated tableaux.

In Section 2.4, we also find identities between statistics of families of objects that are

in bijection, provided the bijection meets certain requirements. We term the requirements

of the bijection and the resulting identities the bicolouring bijection principle, presented as

Theorem 2.9. Concrete examples of such bijections are also presented, including bijections

between a type of weighted Dyck path and derangements (singleton-free permutations),

and also between a (different) type of weighted Dyck path and singleton-free set partitions

(Sections 2.4.4 and 2.4.2 respectively).

1.5.2 Overview

The main goals of Section 2.1 are to set the stage for Sections 2.2–2.4, and to supply some

tools for use later in the thesis. We present weighted Dyck paths and weighted Motzkin

paths, as well as two bicolouring bijections between the two. We also present some surjec-

tions related to the bijections which are later used to prove some of the results in Chapter 5.

The bijections of Section 2.1 are part of a larger bicolouring bijection principle, which
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gives identities between statistics of families of objects. The families of objects in the bi-

colouring bijection principle can be represented by sets of structures. Section 2.2 introduces

sets of structures and shows their close connection to semilabeled structured trees, extend-

ing the results of Diaconis and Holmes [14], and of Erdös and Székely [15]. The cases for

unlabeled and fully-labeled structured trees, also called enriched trees, have been studied by

Labelle [31] and Bergeron et al. [3] in the context of combinatorial species. Series-reduced

semilabeled plane trees and semilabeled unordered trees are also considered in [17], where

they are called hierarchies.

Section 2.3 explores a system of statistics that applies to sets of structures. In Section 2.4

we develop the bicolouring bijection principle (Theorem 2.9) in terms of sets of structures

and identities in terms of the statistics explored in Section 2.3. Concrete examples of

bijections under the principle are also presented, which involve such well-known sequences

as the Stirling numbers of the first and second kind, the second-order Eulerian numbers, and

the Narayana numbers. Section 2.3 and Equation 2.30 include statistics of set partitions by

the number of arcs in their arc diagram, which may be useful in the study of nestings and

crossings. The other results of Sections 2.2–2.4 are not used outside of Chapter 2.

Chapter 3 examines the connection between the natural global transformations on per-

mutations and global transformations on pairs of standard Young tableaux. The chapter is

mainly a presentation of prior results by Robinson, Schensted, Schützenberger, and Knuth.

However, four new variations of RSK (in addition to the four variations of Knuth) are also

presented (Algorithm 3.4 and Theorem 3.3). The main result used in the following chapters

is the classical result showing that involutions are in bijection with standard Young tableaux

(Corollary 3.3.2).

In contrast, Chapter 4 examines local transformations of objects which preserve the

shape of the corresponding tableaux. In particular, Knuth’s classical result of Knuth trans-

formations is explored. Knuth transformations relate local relationships and transformations

in permutations to the global RSK correspondence. The results of Reifegerste [35] in de-

scribing these relationships in terms of Young tableaux are clarified (Theorem 4.2), and used

to present involutive transformations in Section 4.2. Involutive transformations are local

relationships and transformations in arc diagrams, analogous to Knuth transformations in

permutations. Involutive transformations provide the main tool for proving the results of

Chapter 5, and are also used in parts of Chapter 6. Figure 4.11 provides an exhaustive

enumeration of involutive transformations in terms of arc diagrams.
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Chapter 5 presents our main result, a Greene-like correspondence for the arc diagrams of

involutions. In particular, Theorem 5.2 shows that the nestings of an involution correspond

to the shape of its Young tableau under RSK. The result is important in that it shows

a direct connection between the nestings of an object and the RSK shape of the same

object, for involutions. The result is then extended to set partitions for both the weak and

strong nesting interpretations (Corollary 5.5.2), giving an extension of one of the results of

Chen et al. [8].

Chapter 6 examines graphs on all Young tableaux of the same shape implied by the

results of Chapter 4. The results of Reifegerste [35] indicate that these graphs are in fact

lattices. Some properties of these graphs for specific shapes are explored in Section 6.3.

Finally, Chapter 7 notes topics touched upon in this thesis that could be fruitful areas

for further research.



Chapter 2

Bijections and Surjections

In this chapter, we present a number of bijections and surjections on set partitions, match-

ings, permutations, and related objects.

Section 2.1 introduces weighted Dyck paths and weighted Motzkin paths, and uses them

to define bijections and surjections which will be useful in Chapter 5. In particular, two

surjections are defined from set partitions to involutions which preserve all nestings. This

will allow us to extend results on involutions in Chapter 5 to set partitions. Two surjections

from set partitions to matchings are also defined: one which preserves strong nestings and

crossings, and one which preserves weak nestings and crossings. These surjections will allow

us to state the results of Chapter 5 in terms of either strong nestings or strong crossings, as

is conventional.

The bijections are defined between weighted Dyck paths with bicoloured peaks or valleys

and weighted Motzkin paths. They are part of a larger picture of bijections related to sets of

structures. Section 2.2 sets the stage by presenting new bijections between sets of structures

and semilabeled trees and forests. The contents of this section are related to the study of

combinatorial species and enriched trees, as presented by Labelle [31] and Bergeron et al. [3].

Section 2.3 explores the statistics of these families of objects.

Finally, Section 2.4 presents a general bicolouring bijection principle (Theorem 2.9) which

gives identities between the statistics of families of objects, such as matchings and singleton-

free set partitions. The bicolouring bijection principle encompasses the bijections of Sec-

tion 2.1. Examples of bijections encompassed by the principle are also presented, including

some new combinatorial interpretations of known identities (Equations 2.31 and 2.35). The

identities include such well-known sequences as the Stirling numbers of the first and second

21
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kind, the second-order Eulerian numbers, and the Narayana numbers.

Section 2.3 and Equation 2.30 include statistics of set partitions by the number of arcs

in their arc diagram, which may be useful in the study of nestings and crossings. The other

results of Sections 2.2–2.4 are not used outside of this chapter.

2.1 Weighted Dyck and Motzkin Paths

2.1.1 Weighted Dyck Paths

As noted in Section 1.4, when reading the border of a Ferrers filling from the bottom

left corner to the top right corner, horizontal edges correspond to left endpoints in the arc

diagram and vertical edges correspond to right endpoints. Every right endpoint is connected

by an arc to a preceding left endpoint. Therefore, the number of vertical edges seen during

the reading never exceeds the number of horizontal edges seen.

This shows that the shape of a Ferrers filling with n marks describes a Dyck path of

semilength n. A Dyck path of semilength n is a walk from (0, 0) to (2n, 0) using only up

steps (1, 1) and down steps (1,-1), and never going below the x-axis. A step with its lowest

point at (x, y) has height y. There are necessarily n up steps and n down steps. Figure 2.1

gives an example.

X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

0

1

2 2 2

3 3

2

1

0

Figure 2.1: A Ferrers filling and the Dyck path that the border of the Ferrers filling describes.

The Dyck path has steps (from left to right) up, up, up, down, up, up, down, down, down,

down. The steps are labeled with their heights

A weighted Dyck path is a Dyck path in which each down step with height h has been

given a weight w such that 0 ≤ w ≤ h. Figure 2.2 gives an example.
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0

1

2

1

0

Figure 2.2: A weighted Dyck path

It is well-known that weighted Dyck paths correspond to matchings; see, for exam-

ple, [16]. Figure 2.3 demonstrates the bijection. Kasraoui and Zeng [26] explore the bijection

in more detail.

0 1 2 0 1 2 1 0

(a) The left endpoints are tem-

porarily labeled left to right. The

left-most right endpoint has label

0; this means it is connected to the

left endpoint with label 0

0 1 0 2 3 1 2 1 0

(b) The left endpoints not con-

nected to arcs are relabeled. The

left-most right endpoint not con-

nected to an arc will connect to the

left endpoint labeled 1

0 1 2 1 2 1 0

(c) The process continues, using

the weights of right endpoints from

left to right

0 1 2 1 0

(d)

0 1 0

(e)

0

(f)

Figure 2.3: Construction of a matching from the weighted Dyck path in Figure 2.2. The

up and down steps of the Dyck path indicate which vertices are left endpoints (black) and

right endpoints (white). The right endpoints are labeled with their weights

Note that up steps in the weighted Dyck path correspond to left endpoints in the arc

diagram, and down steps to right endpoints.

The weighted Dyck path of a matching can easily be recovered from the Ferrers filling,

as demonstrated in Figure 2.4.
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X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

(a) The Ferrers filling in

bijection with the match-

ing of Figure 2.3f

U U U

D
U U

D

D

D

D

(b) The shape describes

a Dyck path

X
0 1 2

0

(c) There are three

columns in the bottom

row. The mark goes in

column 0

X

X

0 1 2 3

0

1

(d) In the next row,

there are four unfilled

columns. The mark goes

in column 1

X

X

X

0 1 2

0

1

2

(e) There are three un-

filled columns, and the

mark goes in column 2

X

X

X

X

0 1

0

1

2

1

(f) There are two un-

filled columns, and the

mark goes in column 1

X

X

X

X

X

0

0

1

2

1

0

(g) There is only one

unfilled column for the

last mark, column 0

Figure 2.4: Construction of a weighted Dyck path from a Ferrers filling by filling rows from

bottom to top, weighting the down steps. The result (Figure 2.4g) is the weighted Dyck

path of Figure 2.2

For each weight w on a down step at height h, define the complementary weight to be

h − w. Kasraoui and Zeng [26] proved that the sum of the weights in a weighted Dyck

path equals the number of nestings in the corresponding arc diagram, and that the sum

of the complementary weights is the number of crossings. It immediately follows that for

every matching with n nestings and c crossings, there is a matching with c nestings and n

crossings, as demonstrated in Figure 2.5.
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1

1

0

(a) A weighted Dyck path and the corresponding matching, with 2 nestings and 1 crossing

1

0

0

(b) The weighted Dyck path with complemented weights, having 1 nesting and 2 crossings

Figure 2.5: Exchanging the number of nestings and crossings in a matching

2.1.2 Weighted Motzkin Paths

A Motzkin path is a generalization of a Dyck path. A Motzkin path of length n is a walk

from (0, 0) to (n, 0) with up steps (1, 1), down steps (1,−1) and horizontal steps (1, 0). Like

a Dyck path, a Motzkin path cannot go below the x-axis.

A weighted Motzkin path is a Motzkin path in which each down or horizontal step with

height h has been given a weight w such that 0 ≤ w ≤ h. As weighted Dyck paths are in

bijection with matchings, weighted Motzkin paths are in bijection with set partitions. The

bijection is very similar to that between weighted Dyck paths and matchings, illustrated in

Figure 2.3 above. A horizontal step with maximum weight corresponds to a singleton, and

a horizontal step with non-maximal weight corresponds to a transitory vertex. In terms of

the construction, horizontal steps with non-maximal weight behave both like down steps

(with the weight determining which arc connects to the left of the vertex), and like up steps

(with another arc connected to the right of the vertex). Figure 2.6 gives an example.
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0

3
0

1

0

Figure 2.6: A weighted Motzkin path and the corresponding set partition

Note: An alternative representation that appears in the literature is to have two colours

of horizontal steps, one colour for singletons (which are unweighted) and another for transi-

tory vertices (which can never have maximal weight). The results for nestings and crossings

that apply to matchings also apply to set partitions, for both weak nestings and crossings,

and strong nestings and crossings. Details can be found in Kasraoui and Zeng’s paper [26]

and in Corteel’s paper [10] regarding permutations.

2.1.3 Bijections

In this section, we present two simple bijections between weighted Dyck paths with bi-

coloured points and weighted Motzkin paths. First, some terminology related to Dyck

paths is required. A Dyck path with semilength n has n up steps, n down steps, and 2n− 1

places strictly between the steps. The places between steps are categorized as peaks, valleys,

strong rises, or strong falls as demonstrated in Figure 2.7. Two up steps correspond to a

strong rise, two down steps to a strong fall, an up step followed by a down step is a peak,

and a down step followed by an up step is a valley. For matchings, we apply the same labels

to places inbetween the vertices based on the corresponding weighted Dyck path. (Recall

that left endpoints correspond to up steps, and right endpoints to down steps.)

r

p

v

p

f

r p v p f

Figure 2.7: Objects with labeled strong rises (r), peaks (p), valleys (v), and strong falls (f).

For clarity, left endpoints in the arc diagram are coloured black, and right endpoints, white
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If a Dyck path has semilength n and p peaks, then it also has p− 1 valleys, n− p strong

rises, and n− p strong falls. Deutsch [13] provides a deeper study of these statistics.

We are now ready for the bijections. (While we are unaware of any specific citation for

these bijections, those familiar with weighted Dyck paths and weighted Motzkin paths will

find them intuitive. The approach of these bijections in terms of arc diagrams is the same

that de Mier [12] (Lemma 3.4) uses for a more general family of arc diagrams.)

Proposition 2.1. There is a bijection between weighted Dyck paths with bicoloured peaks

and weighted Motzkin paths, such that if a Dyck path has semilength n and has k coloured

peaks, the corresponding Motzkin path has length 2n − k and exactly k horizontal steps.

Proof. The bijection simply replaces the up step and down step of a peak at height h with

a horizontal step at height h, preserving the weight of the down step. Figure 2.8 gives an

example. The reverse mapping is trivial. The horizontal step has the same height as the

original down step, and thus the same range of weights is possible for both steps.

In terms of arc diagrams, Proposition 2.1 induces a bijection between matchings with

bicoloured peaks and set partitions. Note that the number of arcs is preserved, as illustrated

in Figure 2.8. Additionally, weak crossings and weak nestings are preserved. The exact

transformation in terms of arc diagrams is explored more deeply in the following section.

↑ ↑0 1

0

↑ ↑

(a) A weighted Dyck path with two coloured peaks, and the corresponding matching

0 1
0

(b) The weighted Motzkin path after applying the bijection of Proposition 2.1, and the

corresponding set partition

Figure 2.8: An illustration of Proposition 2.1

Proposition 2.2. There is a bijection between weighted Dyck paths with bicoloured valleys

and weighted Motzkin paths where all horizontal steps have non-maximal weight, such that
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if a Dyck path has semilength n and has k coloured valleys, the corresponding Motzkin path

has length 2n − k and exactly k horizontal steps.

Proof. The bijection simply replaces the down step and up step of a valley at height h with

a horizontal step at height h+1, preserving the weight of the down step. Figure 2.9 gives an

example. The reverse mapping is trivial. As the height of the horizontal step is one higher

than that of the original down step, the horizontal step never has maximal weight. This

also forbids horizontal steps at height 0.

In terms of arc diagrams, Proposition 2.2 is a bijection between matchings with bi-

coloured valleys and singleton-free set partitions. Note that the number of arcs is preserved,

as illustrated in Figure 2.9. Additionally, strong crossings and nestings are preserved.

↑

1 1

0

↑

(a) A weighted Dyck path with a coloured valley, and the corresponding matching

1
1

0

(b) The weighted Motzkin path after applying the bijection of Proposition 2.2, and the cor-

responding singleton-free set partition

Figure 2.9: An illustration of Proposition 2.2

2.1.4 Surjections

The bijections of Propositions 2.1 and 2.2 have useful properties when translated into the

arc diagrams of matchings and set partitions. In particular, Proposition 2.1 preserves weak

crossings and nestings, Proposition 2.2 preserves strong crossings and nestings, and both

preserve the number of arcs, as will be illustrated below. The surjections are used in

Chapter 5 to extend results on involutions to set partitions, for both the weak and strong

interpretations.

We define two surjections from set partitions with k transitory vertices to involutions,
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η̌ : Pn+k → In+2k and η̂ : Pn+k → In+2k. Let η̌ be defined by “breaking apart” tran-

sitory vertices into a right endpoint followed by a left endpoint, and let η̂ be defined by

instead breaking apart transitory vertices into a left endpoint followed by a right endpoint.

Figure 2.10 gives examples.

1 2 3 4 5 6 7 8
(a) ν ∈ P8

1 2 3 4 5 6 7 8 9
(b) η̌(ν) ∈ I9

1 2 3 4 5 6 7 8 9
(c) η̂(ν) ∈ I9

Figure 2.10: Examples of the surjections from set partitions to involutions

In terms of the corresponding weighted Motzkin paths, η̌ turns horizontal steps with

non-maximal weight into a valleys (analogous to Proposition 2.2), and η̂ turns them into

peaks (analogous to Proposition 2.1). Additionally, η̌ preserves strong crossings (as the arcs

attached to transitory vertices become unambiguously non-crossing), and η̂ preserves weak

crossings (as the arcs attached to transitory vertices become unambiguously crossing). As

the only changes are at transitory vertices, both surjections also preserve all nestings (weak

and strong). The number of arcs is also preserved.

We also define two surjections from involutions with k singletons to matchings, ȟ :

In+s → Mn and ĥ : In+s → Mn+2s. Let ȟ be defined by removing singletons, and let ĥ be

defined by turning singletons into a left endpoint and right endpoint connected by an arc.

In terms of the corresponding weighted Motzkin paths, ȟ removes horizontal steps with

maximal weight, while ĥ turns them into peaks (analogous to Proposition 2.1). Note that

ȟ preserves strong nestings (as singletons are removed), while ĥ preserves weak nestings

(by making singletons into arcs between two vertices). Additionally, and both preserve all

crossings. The number of arcs is also preserved by ĥ.

These surjections are extended to set partitions by letting ȟ(ν) = ȟ(η̌(ν)) and ĥ(ν) =
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ĥ(η̂(ν)) for any set partition ν. Figure 2.11 gives examples.

1 2 3 4 5 6 7 8
(a) ȟ(ν) ∈ M8

1 2 3 4 5 6 7 8 9 10

(b) ĥ(ν) ∈ M10

Figure 2.11: Examples of the surjections to matchings. (ν is shown in Figure 2.10)

Note that ĥ(ν) corresponds to the bijection of Proposition 2.1. The bijection of Propo-

sition 2.2 is between matchings and singleton-free set partitions; if ν is a singleton-free set

partition, then ȟ(ν) = η̌(ν) corresponds to the bijection of Proposition 2.2.

The usefulness of these surjections stems from their property of preserving weak or strong

nestings and crossings. Given a set partition ν, ĥ(ν) gives a matching with the same weak

k-nestings and k-crossings. Similarly, ȟ(ν) gives a matching with the same strong k-nestings

and k-crossings. Therefore proofs regarding nestings and crossings of matchings can often be

automatically extended to set partitions. This is the same approach as de Mier [12] (Lemma

3.4) uses for strict nesting and crossing in the more general context of general Ferrers fillings

and singleton-free arc diagrams.

Finally, we follow Chen et al.’s lead and define surjections from set partitions to per-

mutations. Recall the surjection f : M2n → Sn from Section 1.4, wherein the Ferrers

filling of a matching is extended to be a permutation matrix. We define two surjections

f̌ : Pn+j+k → S(n+2j)/2 and f̂ : Pn+j+k → S(n+2j+2k)/2 by letting f̌(ν) = f(ȟ(ν)) and

f̂(ν) = f(ĥ(ν)) for any set partition ν having j transitory vertices and k singletons. Note

that for µ ∈M2n, f̌(µ) = f̂(µ) = f(µ).

Chen et al. [8] (Proposition 8) define a similar surjection from set partitions to matchings,

α(ν). Our definition of f̌ is such that f̌(ν) = α(ν)−1. f̌ and f̂ will be used in Chapter 5

to give an alternate proof of the results of Chen et al. [8] (Proposition 8 and Corollary 9),

which involve the strong nesting interpretation, as well as the analogous result for the weak

nesting interpretation (Corollary 5.5.2).
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2.2 Structured Trees and Forests

In [15], Erdös and Székely present a bijection between unordered trees with labeled leaves

and set partitions. Diaconis and Holmes later [14] gave a similar bijection between matchings

and binary unordered trees with labeled leaves. In this chapter, we show how these bijections

can be extended to combinatorial objects other than unordered trees and set partitions.

The particular families of objects we consider in this section are semilabeled structured

forests, semilabeled structured trees, and sets of structures. The related families of unlabeled

and fully-labeled structured trees, also called enriched trees or R-enriched trees, have been

studied by Labelle [31] and Bergeron et al. [3] in the context of combinatorial species.

Series-reduced semilabeled plane trees and series-reduced semilabeled unordered trees are

also considered by Flajolet and Sedgewick in [17], where they are called hierarchies. Series-

reduced semilabeled unordered trees are also known as phylogenetic trees. Taking sets

of structures (cycles, sequences, . . . ) is a common theme in combinatorics, as also seen

in [3, 17].

2.2.1 Notations and Terminology

A set partition can be viewed as a set of parts; each part is itself a set. A permutation

can similarly be seen as a set of cycles. In this section, a structure is any arrangement of

labeled objects, such as a set or cycle. The internals of the structure will not matter for the

bijections presented; we need only be concerned with how many distinct structures there are

for a given size. Let φ(k) be the number of structures given an underlying set of size k. For

sets, φ(k) = 1; for cycles, φ(k) = (k − 1)!. Structures of size 1 are referred to as singletons,

and structures of size greater than 1 are called non-singleton structures or NSS s.

The bijections will involve sets of structures and semilabeled structured trees (and forests).

A semilabeled tree is a rooted tree with labeled leaves (but unlabeled internal nodes). A

structured tree is a rooted tree wherein a structure is imposed on all siblings except the

root. For example, a tree structured by sets is an unordered tree (as the order of siblings

is irrelevant), while a tree structured by sequences is a plane (ordered) tree (as the order

of siblings is completely relevant). Sometimes the trees will be restricted to series-reduced

trees, meaning that there are no internal nodes with only one child. A forest is considered

to be a set of trees, regardless of the structure imposed on the trees. Figure 2.12 gives

examples.
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5

1 4 6 2 3 7

(a) A semilabeled tree

4

3 2 6

7 5 9 1 10 8 11

(b) A semilabeled series-reduced forest

Figure 2.12: Examples of semilabeled objects

2.2.2 The Bijections

Here, we present two similar bijections which are both extensions of mappings given by Dia-

conis and Holmes [14]. The first bijection is an alternative to that of Erdös and Székely [15],

and transports the same statistics. The second bijection is a variant of the first, using

series-reduced forests in place of trees; as it is more constrained (φ(1) must be 1), we state

the theorem separately. It is also interesting to note that in general, the bijections do not

preserve the number of labels.

Theorem 2.1. For any structure, there is a bijection between semilabeled structured trees

and sets of structures such that for all k > 0, the number of internal nodes with k children

in the tree is the same as the number of structures of size k in the corresponding set of

structures.

Theorem 2.1 clearly implies that the number of internal nodes in a tree is the same as

the number of structures in the corresponding set of structures. Because every node in the

tree except the root has one parent, Theorem 2.1 also implies that the number of nodes in

the tree is one greater than the number of elements in the corresponding set of structures.

Theorem 2.2. For any structure with φ(1) = 1, there is a bijection between semilabeled

series-reduced structured forests and sets of structures such that for all k > 1, the number of

internal nodes with k children in the forest is the same as the number of structures of size k

in the corresponding set of structures. Additionally, the number of trees in the forest is one

greater than the number of singleton structures in the corresponding set of structures.

Theorem 2.2 clearly implies that the number of internal nodes in a tree is the same as

the number of NSSs in the corresponding set of structures. Because every node in the forest
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except the roots have one parent, and because the number of singletons is one less than the

number of roots (trees), Theorem 2.2 also implies that the number of nodes in the forest is

one greater than the number of elements in the corresponding set of structures.

Note that the theorems are identical when considering only singleton-free sets of struc-

tures.

The two theorems can be combined to give the following corollary.

Corollary 2.2.1. For any structure with φ(1) = 1, there is a bijection between semilabeled

series-reduced structured forests and semilabeled structured trees such that for all k > 1, the

number of internal nodes with k children in the forest is the same as the number of internal

nodes with k children in the corresponding tree. Additionally, the number of trees in the

forest is one greater than the number of internal nodes with 1 child in the corresponding

tree.

The corollary implies that the forest and the tree have the same number of nodes, but

not necessarily the same number of leaves (or internal nodes).

Proof. The proofs are constructive. For both bijections, the labeling is first extended to the

entire forest (tree) by the following algorithm.

Algorithm 2.1 Extending the labeling of a semilabeled forest

Let Fv and Fl be the number of nodes and leaves in the forest, respectively

Let k ← Fl + 1

while k ≤ Fv do

Let u be the node which

1. is unlabeled,

2. has no unlabeled children,

3. has the child with the leastmost value out of all nodes satisfying the previous two

requirements

Label u with k

Let k ← k + 1

end while

The result of the algorithm is a fully-labeled decreasing forest with certain properties

enforced by the method of labeling, as shown in Figure 2.13.
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14

12 11 13

8 5 9 10

1 4 6 2 3 7

(a) A tree with extended labeling

14 4 16

13 3 2 12 6 15

7 5 9 1 10 8 11

(b) A series-reduced forest with extended labeling

Figure 2.13: Extended labeling of the objects from Figure 2.12

For the bijection of Theorem 2.1, the structures of the tree, now fully-labeled, become

the set of structures. The root is omitted.

For the bijection of Theorem 2.2, the structures of the forest, now fully-labeled, become

the NSSs in the set of structures. Each root except for the one with the highest value

become singletons in the set of structures. (The correspondence between roots (which are

not structured) and singletons is the reason why φ(1) must be 1 for this bijection.)

Figure 2.14 gives examples, using sets as the structures.

1 2 3 4 5 6 7 8 9 10 11 12 13
(a) The set partition corresponding to Figure 2.13a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) The set partition corresponding to Figure 2.13b

Figure 2.14: Set partitions corresponding to Figure 2.13

Recovering the forest (or tree) from the set of structures is accomplished by constructing

the decreasing forest from the set of structures. The constructions are similar for both

bijections.
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Algorithm 2.2 Recovering the decreasing tree of Algorithm 2.1

Let Gv and Gb be the number of elements and structures in the set of structures, respec-

tively

Let k ← Gv −Gb + 2

{k − 1 is the number of leaves in the tree}

while k ≤ Gv + 1 do

Let s be the structure that

1. has not yet been chosen,

2. consists of elements strictly less than k,

3. has the element with the leastmost value out of all structures satisfying the pre-

vious two requirements

Give s the parent k in the tree

Let k ← k + 1

end while

We need to show that we can always find an appropriate structure s in Algorithm 2.2.

Namely, there must be at least c structures with largest element ≤ Gv−Gb+c for 1 ≤ c ≤ Gb.

When c = Gb, there are trivially Gb structures with largest element ≤ Gv. Next consider

c = Gb− i. There are exactly i vertices greater than Gv− i, so there are at most i structures

with an element greater than Gv−i. This implies that there are at least Gb−i = c structures

with an element less than or equal to Gv − i, and the condition is still satisfied.

In Algorithm 2.2, the method of choosing parents mirrors the method of labeling in

Algorithm 2.1; the labels of the internal nodes are determined completely by the labels of

the leaves. Discarding the labels of internal nodes results in a semilabeled structured tree.

Figure 2.15 gives an example of Algorithm 2.2, using sets as the structure.
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8

1 4 6

(a) k = 8

9

28

1 4 6

(b) k = 9

9

8 2 10

1 4 6 3 7

(c) k = 10

11

8 5 9 10

1 4 6 2 3 7

(d) k = 11

12 11

8 5 9 10

1 4 6 2 3 7

(e) k = 12

12 11 13

8 5 9 10

1 4 6 2 3 7

(f) k = 13

14

12 11 13

8 5 9 10

1 4 6 2 3 7

(g) k = 14

Figure 2.15: Recreating the tree from the set partition of Figure 2.14a

Algorithm 2.3 Recovering the decreasing series-reduced forest of Algorithm 2.1

Let Gv and Gh be the number of elements and NSSs in the set of structures, respectively

Let k ← Gv −Gh + 2

{k − 1 is the number of leaves in the forest}

Add all singletons with value < k as trees of size 1 in the forest

while k ≤ Gv + 1 do

Let s be the NSS that

1. has not yet been chosen,

2. consists of elements strictly less than k,

3. Has the element with the leastmost value out of all NSSs satisfying the previous

two requirements

Give s the parent k in the forest

Let k ← k + 1

end while

We need to show that we can always find an appropriate NSS s in Algorithm 2.3. Namely,

there must be at least c NSSs with largest element ≤ Gv − Gh + c for 1 ≤ c ≤ Gh. When

c = Gh, there are trivially Gh NSSs with largest element ≤ Gv. Next consider c = Gh − i.
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There are exactly i vertices greater than Gv− i, so there are at most i NSSs with an element

greater than Gv − i. This implies that there are at least Gh − i = c NSSs with an element

less than or equal to Gv − i, and the condition is still satisfied.

In Algorithm 2.3, the method of choosing parents mirrors the method of labeling in

Algorithm 2.1; the labels of the internal nodes are determined completely by the labels of

the leaves. Discarding the labels of internal nodes results in a semilabeled series-reduced

structured forest.

Figure 2.16 gives an example of Algorithm 2.3, using sets as the structure.

4

(a) Before the loop

4 12

1 10

(b) k = 12

4 12 13

1 10 5 7 9

(c) k = 13

4 14

12 3 13

1 10 5 7 9

(d) k = 14

4 14 15

12 3 13 8 11

1 10 5 7 9

(e) k = 15

14 4 16

13 3 2 12 6 15

7 5 9 1 10 8 11

(f) k = 16, the final forest

Figure 2.16: Recreating the forest from the set partition of Figure 2.14b

Note that at no point do the constructions rely on the internals of the structures. Struc-

tures are merely preserved on both sides of each bijection.

The results presented in this section, namely bijections between semilabeled structured

trees and structured arc diagrams, can be related to the Lagrange formal power series

inversion formula (see [31] for example). This formula is one of the main tools to enumerate

tree-like structures where all nodes are labeled (fully-labeled trees). The main combinatorial

proofs rely on bijections between fully-labeled structured trees and structured sequential

structures (endofunctions or words) [31, 34]. These bijections are very similar, both in

principle and in their properties, to the bijections we described here. It would then be

interesting to investigate the use of our bijections in the inversion of formal power series and

in the extraction of the coefficients of the generating functions of semilabeled structured

trees.
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2.3 Statistics

In this section, we describe two methods of enumerating statistics on sets of structures, both

in terms of the number of elements in the set of structures, and in terms of the number of

labeled leaves in the corresponding semilabeled structured trees and series-reduced forests.

2.3.1 Statistics on Sets of Structures

We are mainly interested in the number of sets of k structures over n total elements, which

we denote as Vb(n, k). Another important statistic is the number of singleton-free sets of k

structures over n total elements. We define this statistic as V 0
b (n, k).

Other statistics include the number of of sets of structures on n elements with k singletons

(Vs(n, k)), those with k NSSs (Vh(n, k)), and those with k NSSs and l singletons (V (n, k, l)).

The following theorem gives recursive identities for these statistics, using the classical

approach of counting the ways to add a new structure to an existing set of structures.

Theorem 2.3.

Vb(n, k) =
∑

i

φ(i)

(
n− 1

i− i

)

Vb(n− i, k − 1) (2.1)

V 0
b (n, k) =

∑

i>1

φ(i)

(
n− 1

i− i

)

V 0
b (n− i, k − 1) (2.2)

Vs(n, k) = φ(1)Vs(n− 1, k − 1)+
∑

i>1

φ(i)

(
n− 1

i− 1

)

Vs(n− i, k) (2.3)

Vh(n, k) = φ(1)Vh(n− 1, k)+
∑

i>1

φ(i)

(
n− 1

i− 1

)

Vh(n− i, k − 1) (2.4)

V (n, k, l) = φ(1)V (n − 1, k, l − 1)+
∑

i>1

φ(i)

(
n− 1

i− 1

)

V (n − i, k − 1, l) (2.5)

Proof. These statistics can be generated recursively by counting the number of sets of struc-

tures in which the largest element is in a structure of size i. To illustrate for Vb(n, k), we

first choose i− 1 of the smaller n− 1 elements to be part of the structure. Next, there are

φ(i) structures involving the chosen i elements. Finally, there are Vb(n − i, k − 1) ways to

arrange the remaining k − 1 structures amongst the remaining n− i elements.

For the first summation, i may take any non-zero value. However, the summand is 0

when i < 0, so we can leave the index unrestricted. For the second equation, i must be

larger than 1, as singletons are forbidden.
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The other statistics follow similarly. For example, the term φ(1)Vs(n − 1, k − 1) in

the recursion for Vs(n, k) covers the case when the largest element is a singleton, and the

remaining summation covers all other sizes.

With the additional observation that there are only φ(1) ways to create a single set of

structures from a single element, Theorem 2.3 implies that all of the statistics discussed can

be calculated from φ alone.

We also define the statistics in terms of V 0
b (n, k), as there are some situations where the

recursive approach cannot be applied. Similar to the preceding theorem, this is a classical

combinatorial technique.

Theorem 2.4.

V (n, k, l) = φ(1)l
(

n

l

)

V 0
b (n− l, k) (2.6)

Vb(n, k) =
∑

i

φ(1)i
(

n

i

)

V 0
b (n− i, k − i) (2.7)

Vh(n, k) =
∑

i

φ(1)i
(

n

i

)

V 0
b (n− i, k) (2.8)

Vs(n, k) = φ(1)k
(

n

k

)
∑

i

V 0
b (n− k, i) (2.9)

Proof. Equation 2.6 comes from choosing l of the n elements to be singletons, and then

arranging the remaining n− l elements into k NSSs. Equation 2.7 builds on Equation 2.6 by

holding the total number of structures constant and sums over varying numbers of singletons.

Equation 2.8 similarly holds the number of NSSs constant and sums over the number of

singletons, and Equation 2.9 holds the number of singletons constant and sums over the

number of NSSs.

The derivation of all four equations can be seen as adding singletons to a singleton-free

set of structures.

2.3.2 Statistics on Semilabeled Structured Trees

It is natural to enumerate labeled objects by the number of labels. In the case of semilabeled

trees (and forests), this is the number of leaves. In this section, we consider the statistics of

semilabeled series-reduced structured trees with n leaves and k internal nodes (E0
p(n, k)),

semilabeled structured trees with n leaves and k internal nodes (Ep(n, k)), those with n



CHAPTER 2. BIJECTIONS AND SURJECTIONS 40

leaves and k internal nodes with one child (Es(n, k)), and those with n leaves and k internal

nodes, l of which have one child (E(n, k, l)).

The bijection of Theorem 2.1 allows us to translate the classical results of the previous

section to semilabeled structured trees.

Theorem 2.5.

E0
p(n, k) = V 0

b (n + k − 1, k) (2.10)

Ep(n, k) = Vb(n + k − 1, k) (2.11)

E(n, k, l) = V (n + k − 1, k − l, l) (2.12)

Proof. In all three cases, the number of leaves (n) and the number of internal nodes (k) is

known, and by the bijection of Theorem 2.1 these objects correspond to sets of structures

with n + k − 1 elements and k structures.

Note that in the case of Es(n, k), the total number of internal nodes (and thus the number

of nodes) is not known. However, we can also describe statistics in terms of E0
p(n, k).

Theorem 2.6.

Ep(n, k) =
∑

i

φ(1)i
(

n + k − 1

i

)

E0
p(n, k − i) (2.13)

Es(n, k) = φ(1)k
∑

i

(
n + i− 1

k

)

E0
p(n, i− k) (2.14)

E(n, k, l) = φ(1)l
(

n + k − 1

l

)

E0
p(n, k − l) (2.15)

Proof. For E(n, k, l), the equation can be derived from V (n, k, l) in terms of sets of struc-

tures. Analogously to the proof of Theorem 2.4, the other statistics follow by holding the

number of internal nodes or the number of internal nodes with one child constant.

2.3.3 Statistics on Semilabeled Series-Reduced Structured Forests

The statistics for this section are similar to the last section. The statistics for semilabeled

series-reduced trees with n leaves and k internal nodes are L0
p(n, k) = E0

p(n, k). The statistics

for semilabeled series-reduced forests with n leaves and k internal nodes are Lp(n, k), those

with n leaves and k trees are Lt(n, k), and those with n leaves, k internal nodes, and l trees

are L(n, k, l).
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It is also of note that when the structure is a set (and thus the set of structures is

a set partition), there is a direct relationship between the number of leaves in the semil-

abeled series-reduced structured forest and the number of arcs in the arc diagram of the

corresponding set partition. A singleton has one arc, and a NSS of size m has m− 1 arcs.

Therefore, the arc diagram of a set partition G with Gv vertices and Gh NSSs has Gv −Gh

arcs. If G corresponds to the forest F , then by as implied by Theorem 2.2, the number of

leaves in the forest F is Gv + 1−Gh. (The forest has one more node than the set partition

has elements, and the number of NSSs is the same as the number of internal nodes.) In

other words, F has one more leaf than G has arcs. Note that as the structure is a set, the

forest is a set of phylogenetic trees.

As the number of arcs determines the number of possible nestings and crossings, we are

also interested in the statistics of semilabeled series-reduced structured forests with n leaves

corresponding to sets of structures with k structures, Lb(n, k). (We will also revisit this

statistic in Equation 2.30 below.)

The bijection of Theorem 2.2 allows us to translate the classical results of the previous

section to semilabeled structured trees. Recalling that φ(1) = 1 for this case, the following

equations hold.

Theorem 2.7.

L0
p(n, k) = E0

p(n, k) = V 0
b (n + k − 1, k) (2.16)

Lp(n, k) = Vh(n + k − 1, k) (2.17)

L(n, k, l) = V (n + k − 1, k, l − 1) (2.18)

Proof. In all of these cases, n is the number of leaves and k is the number of internal nodes,

so n + k− 1 is the number of elements in the set of structures and k is the number of NSSs.

The equations follow.



CHAPTER 2. BIJECTIONS AND SURJECTIONS 42

Theorem 2.8.

Lp(n, k) =
∑

i

(
n + k − 1

i− 1

)

L0
p(n− i + 1, k) (2.19)

Lt(n, k) =
∑

i

(
n + i− 1

k − 1

)

L0
p(n− k + 1, i) (2.20)

Lb(n, k) =
∑

i

(
n + k − i

i− 1

)

L0
p(n− i + 1, k − i + 1) (2.21)

L(n, k, l) =

(
n + k − 1

l − 1

)

L0
p(n − l + 1, k) (2.22)

Proof. For L(n, k, l), the equation can be derived from V (n, k, l) in terms of sets of struc-

tures. Analogously to the proof of Theorem 2.4, the other statistics follow by holding the

number of internal nodes, the number of trees, or the number of NSSs constant.

2.4 Bicolouring Bijection Principle

The bijection between singleton-free set partitions and weighted Dyck paths with bicoloured

valleys presented in Section 2.1 is part of a more general group of bicolourings which leads

to an interesting class of identities. In this section we explore certain bijections between

structured matchings and singleton-free sets of structures. Examples of bijections under

the principle are also shown, including some new combinatorial interpretations of known

identities (Equations 2.31 and 2.35). The identities include such well-known sequences as

the Stirling numbers of the first and second kind, the second-order Eulerian numbers, and

the Narayana numbers.

A structured matching is a set of structures consisting of n structures of size 2, or in

other words, a matching with a structure applied to each arc. When φ(2) = 1, these objects

correspond directly to matchings and there are (2n− 1)!! =
∏n

i=1 2i− 1 such objects. When

φ(2) = 2, there are 2n(2n − 1)!! = (n + 1)!Cn such objects, where Cn is a Catalan number.

In general, there are φ(2)n(2n− 1)!! such objects.

We are interested in bijections wherein certain features of the structured matchings are

bicoloured. What exactly constitutes a feature depends on the specific bijection in question.

Examples of such bijections are given in the following sections. The following theorem is,

to the best of our knowledge, a new result.
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Theorem 2.9 (Bicolouring Bijection Principle). Suppose that there exists a bijection be-

tween structured matchings with bicoloured features and singleton-free sets of structures such

that a structured matching on [2n] with m coloured features is in bijection with a singleton-

free set of n−m structures over 2n−m total elements, and also that φ(1) = 1.

Then, if B(n, k) gives the number of structured matchings on [2n] with k features, the

following identities hold.

L0
p(n + 1, k) = E0

p(n + 1, k) =

V 0
b (n + k, k) =

∑

j

(
j

n− k

)

B(n, j) (2.23)

∑

k

E0
p(n + 1, k) =

∑

j

2jB(n, j) (2.24)

Ep(k + 1, n− k) = Vb(n, n − k) =
∑

j

(
n + j

2k

)

B(k, j) (2.25)

B(n, k) =
∑

i

(−1)n−k+i

(
n− i

k

)

V 0
b (n + i, i) (2.26)

B(n, n− k) =
∑

i

(−1)i
(

2n + 1

i

)

Vb(n + k − i, k − i) (2.27)

Proof. Equation 2.23 holds due to the constraints imposed on the bijection. Because n+k =

2n − (n − k) and k = n − (n − k), V 0
b (n + k, k) must count structured matchings on [2n]

with n− k coloured features. The summation on the right chooses n− k features to colour

for all structured matchings on [2n].

Equation 2.24 follows from Equation 2.23 as
∑

k

(j
k

)
= 2j .

Equation 2.25 follows from Equation 2.7 and Equation 2.23 through a manipulation of
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the sums:

Vb(n, n− k) =
∑

i

(
n

i

)

V 0
b (n− i, n − k − i)

=
∑

i

(
n

i

)
∑

j

(
j

2k − n + i

)

B(k, j)

=
∑

i

∑

j

(
n

n− i

)(
j

2k − n + i

)

B(k, j)

=
∑

j

B(k, j)
∑

i

(
n

n− i

)(
j

2k − n + i

)

=
∑

j

B(k, j)

(
n + j

2k

)

Equations 2.26 and 2.27 are simply the inversions of Equations 2.23 and 2.25, respec-

tively.

The requirements on the bijection can also be stated as follows: Every coloured feature in

the structured matching must reduce both the number of structures and the number of total

elements by one. Identities between many well-known numbers can be proved by finding a

bijection that satisfies the bicolouring bijection principle, as demonstrated by example in

the following sections.

Note that Equations 2.26 and 2.27 define B(n, k) in terms of V 0
b (m, l) and Vb(m, l). These

equations can be used to calculate the statistics of structured matchings and their features

related to a hypothetical bijection which falls under the bicolouring bijection principle. This

can be a useful aid to discovering new bijections, such as the example given in Section 2.4.4.

2.4.1 Counting Peaks in Weighted Dyck Paths

Before proceeding to the examples, it will be useful to prove some statistics of weighted

Dyck paths in terms of the second-order Eulerian numbers,
〈〈n

k

〉〉
.

The second-order Eulerian numbers and their connection to Stirling numbers seems to

have first appeared in the 1920s (Ginsburg [20]). They later reappeared as coefficients of

polynomials in the analysis of the approximation of a class of formal power series (Buck-

holtz [4]). Carlitz [6] used generating functions to determine a formula for the coefficients

in terms of Stirling numbers of the second kind (the number of set partitions on [n] with k
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parts). With the initial conditions of
〈〈1

0

〉〉
= 1,

〈〈1
k

〉〉
= 0 (k 6= 0), the second-order Eulerian

numbers can be defined recursively as follows (Ginsburg [20], Carlitz [6]):

〈〈n

k

〉〉

= (k + 1)

〈〈
n− 1

k

〉〉

+ (2n− 1− k)

〈〈
n− 1

k − 1

〉〉

(2.28)

Combinatorial interpretation of these numbers did not arise until much later. First

Riordan [36] and then Gessel and Stanley [19] gave interpretations involving the statistics of

multiset permutations. Our approach for relating statistics of weighted Dyck paths mirrors

the approach of Gessel and Stanley. Namely, the recursion for the second-order Eulerian

numbers implies a generation tree for combinatorial objects, as illustrated in Figure 2.17.

〈〈
n−1
k−1

〉〉
〈〈n−1

k

〉〉

〈〈n
k

〉〉

〈〈n+1
k

〉〉
〈〈

n+1
k+1

〉〉

2n− 1− k
k + 1

k + 1 2n− k

Figure 2.17: The recursion (on top) implies a generation tree profile (on bottom)

The following theorem provides another combinatorial interpretation of the second-order

Eulerian numbers. The result was independently discovered by Callan [5].

Theorem 2.10. There are
〈〈n

k

〉〉
weighted Dyck paths with semilength n having k strong rises

(or strong falls), and thus
〈〈

n
n−k−1

〉〉

with k valleys, and
〈〈

n
n−k

〉〉

with k peaks.

Proof. We show a generation tree for matchings wherein the corresponding weighted Dyck

path with semilength n having k strong rises has k + 1 children of semilength n + 1 and

k strong rises, and 2n − k children of semilength n + 1 and k + 1 rises. The generation

tree corresponds to the recursion of the second-order Eulerian numbers and thus proves the

result.

Recall that a weighted Dyck path with semilength n is in bijection with the arc diagram

of a matching with n arcs such that the up steps correspond to left endpoints, and the down
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steps to right endpoints. Consider the generation tree of matchings wherein new matchings

are formed by inserting an arc with the left endpoint occupying the left-most position. (See

Figure 2.18.)

r p v p f

(a) The original matching

p v r p v p f

(b) Inserting at the beginning

r p v p v p f

(c) Inserting at a strong rise

r r p f v p f

(d) Inserting at a peak

r r p f v p f

(e) Inserting at a valley

r r p v p f f

(f) Inserting at a strong fall

Figure 2.18: Insertion of a new leftmost arc at various positions. Inserting the right endpoint

at the far right, a peak, a strong fall, or a valley increases the number of strong rises by

one, as the new right endpoint will border an existing right endpoint. However, inserting at

a strong rise or at the far left will not change the number of strong rises

There are 2n + 1 possible locations to insert the right endpoint of the new arc. When

the right endpoint is inserted immediately following the left endpoint of the new arc, the

number of peaks and valleys in the corresponding weighted Dyck path increase by one (and

the rest of the statistics do not change). The same changes occur if the right endpoint is

inserted at a strong rise.

If the right endpoint is inserted at any other location, however, the number of strong

rises and falls increases by 1, while the other statistics stay the same.

Therefore when there are n arcs and k strong rises, there are k+1 children with k strong

rises, and 2n + 1 − (k + 1) = 2n − k children with k + 1 strong rises. This completes the

proof.
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Note: Together with the bijections of Propositions 2.1 and 2.2 (which preserve the num-

ber of arcs), these statistics give a simple form for the number of singleton-free set partitions

with n arcs (Equation 2.29) and the number of set partitions with n arcs (Equation 2.30).

These also correspond to the number of phylogenetic trees and forests with n + 1 leaves,

respectively.

∑

k

L0
p(n + 1, k) =

∑

j

2j

〈〈
n

n− j − 1

〉〉

(2.29)

∑

k

Lb(n + 1, k) =
∑

j

2j

〈〈
n

n− j

〉〉

(2.30)

To illustrate the bicolouring bijection principle, we next present some examples. Al-

though the identities in the examples are not new, they serve to illustrate the scope of the

bicolouring bijection principle. There are some new combinatorial interpretations, namely

Equations 2.31 and 2.35.

2.4.2 Example: Stirling Numbers of the Second Kind

Let
{

n
k

}
denote the Stirling numbers of the second kind, that is, the number of set partitions

of n elements into k parts. Also let
{{n

k

}}
denote the associated Stirling numbers of the second

kind, that is, the number of set partitions of n elements into k parts, all parts having size

2 or greater.

Theorem 2.11 (Smiley [42], Ginsburg [20], Carlitz [6]).
{{

n + k

k

}}

=
∑

j

(
j

n− k

)〈〈
n

n− j − 1

〉〉

(2.31)

{
n

n− k

}

=
∑

j

(
n + j

2k

)〈〈
k

k − j − 1

〉〉

=
∑

j

(
n + k − 1− j

2k

)〈〈
k

j

〉〉

(2.32)

Proof. The bijection of Section 2.1 between weighted Dyck paths with bicoloured valleys and

singleton-free set partitions meets the requirements of the bicolouring bijection principle.

By Theorem 2.10, B(n, k) =
〈〈

n
n−k−1

〉〉

, and the results follow from Theorem 2.9.

Equation 2.31 is known; see, for example, Smiley [42] (Corollary 4). The bicolouring

bijection gives a combinatorial interpretation of the equation; to the best of our knowledge,

this is the first combinatorial interpretation.
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Equation 2.32 is also known, as explored by Ginsburg [20] and Carlitz [6].

2.4.3 Example: Strongly Non-crossing Set Partitions

Let U(n, k) be the number of strongly non-crossing set partitions on n elements with k

parts, and let H(n, k) be the number of strongly non-crossing set partitions on n elements

with k parts, all of size 2 or greater. Also let N(n, k) =
(n−1
k−1

)( n
k−1

)
/k. (N(n, k) are known

as the Narayana numbers.)

Theorem 2.12 (Kreweras [30]).

H(n + k, k) =
∑

j

(
j

n− k

)

N(n, n− j) (2.33)

U(n, k) = N(n, k) (2.34)

Proof. The weighted Dyck path corresponding to a non-crossing matching must have all

weights equal to 0, as shown by Kasraoui and Zeng [26]. Therefore, there is a bijection

between (unweighted) Dyck paths and non-crossing matchings.

The bijection of Theorem 2.11 does not create any strong crossings. Therefore, when

applied to a non-crossing matching, the result is a singleton-free strongly non-crossing set

partition. Similarly, applying the bijection to any singleton-free strongly non-crossing set

partition results in a non-crossing matching. Therefore we can restrict the bijection of The-

orem 2.11 to be between singleton free strongly non-crossing set partitions and (unweighted)

Dyck paths with bicoloured valleys.

It is well-known ([41] A001263) that the number of Dyck paths with k peaks is N(n, k).

It is also known that N(n, k) = N(n, n−k+1). So the number of Dyck paths with k valleys

is N(n, k + 1) = N(n, n− k) = B(n, k).

Not only does the bijection hold, but Equation 2.7 also holds, as adding singletons to

a strongly non-crossing set partition can not cause any crossings. Equation 2.33 follows

immediately from Theorem 2.9.
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For Equation 2.34, some reduction is required.

U(n, n− k) =
∑

j

(
n + j

2k

)

N(k, k − j)

=
∑

j

(
n + j

2k

)

N(k, j + 1)

=
∑

j

(
n + j

2k

)(
k − 1

j

)(
k

j

)

/(j + 1)

(k + 1)U(n, n − k) =
∑

j

(
n + j

2k

)(
k − 1

j

)(
k + 1

j + 1

)

=
∑

j

(
n + j

k + k

)(
k − (n) + (n− 1)

j

)(
k + (n)− (n− 1)

k − j

)

=

(
n

k

)(
n− 1

k

)

U(n, n− k) =

(
n

k

)(
n− 1

k

)

/(k + 1) = N(n, n− k)

Equation 2.34 was first discovered by Kreweras [30].

This example is notable in that the recursive equations of Theorem 2.3 do not apply to

non-crossing partitions. However, the equations of Theorem 2.4 do apply, and we can define

V 0
b (n, k) in terms of the bijection with Dyck paths. By this method, all of the statistics

discussed can be calculated.

It is also notable that the Narayana number are in some sense robust under the bi-

colouring bijection principle. The “input” was B(n, k) = N(n, n−k), and the “output” was

U(n, n− k) = N(n, n− k).

2.4.4 Example: Stirling Numbers of the First Kind

Let
[n
k

]
denote the Stirling numbers of the first kind, that is, permutations of n elements

with k cycles. Also let
[[

n
k

]]
denote the associated Stirling numbers of the first kind, that is,

derangements of n elements with k cycles.

Here we demonstrate how Equations 2.26 and 2.27 can be useful in discovering new

bijections. If one applies Equation 2.27 to the well-known numbers
[n
k

]
(or alternatively

applies Equation 2.26 to
[[n

k

]]
), the resulting numbers seem to satisfy B(n, k) =

〈〈n
k

〉〉
. Given
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the statistics of Theorem 2.10, this immediately suggests a bijection under the bicolouring

bijection principle wherein the structured matchings correspond to weighted Dyck paths,

and the bicoloured features are strong rises. There does in fact exist such a bijection (as

demonstrated in the proof), leading to the following identities.

Theorem 2.13 (Ginsburg [20]).
[[

n + k

k

]]

=
∑

j

(
j

n− k

)〈〈
n

j

〉〉

(2.35)

[
n

n− k

]

=
∑

j

(
n + j

2k

)〈〈
k

j

〉〉

(2.36)

Proof. We present a bijection between weighted Dyck paths with bicoloured strong rises

and derangements that meets the requirements of the bicolouring bijection principle. By

Theorem 2.10, B(n, k) =
〈〈n

k

〉〉
, and the results follow from Theorem 2.9.

In terms of matchings, a strong rise indicates two consecutive left endpoints. This can

be rephrased as having two cycles with minimum elements a1 and a2 such that a1 = a2− 1.

We call this a strong rise relationship, and generalize the relationship to all derangements

by allowing any cycle sizes greater than 1.

Consider the following operation to combine two cycles with a strong rise relationship:

1. In the standard notation, let the cycles be [x1, x2, . . . , xi][y1, y2, . . . , yj ]. We require

that x1 = y1 − 1.

2. Replace both cycles with a new cycle, [x1, x2, . . . , xi, y2, . . . , yj]. Note that y1 has been

removed.

3. For any number j > y1 in the derangement, renumber as j − 1 to account for the

removal of y1. (The new cycle is now [x1, x2 − 1, . . . , xi − 1, y2 − 1, . . . , yj − 1]).

The operation preserves any other strong rise relationships which may exist in the de-

rangement, and does not create any new strong rise relationships. The operation is clearly

associative and also removes one vertex and one cycle, and thus meets the requirements of

the bicolouring bijection principle.

The operation is also easily reversed:

1. Consider a cycle with length 3 or greater, [x1, x2, . . . , xi]. First, for any number in the

derangement j > x1, renumber as j + 1. The cycle is now [x1, x2 + 1, . . . xi + 1].
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2. Choose an inner element xk + 1 (1 < k < i) to be the new final element in the cycle.

Replace the cycles with two cycles, [x1, . . . , xk + 1][x1 + 1, xk+1 + 1, . . . , xi + 1]. Note

that a new element, x1 + 1, has been inserted.

The requirements on k ensure that the new cycles both have size 2 or greater.

An example is given in Figure 2.19.

↑

↑

↑ ↑

2

3

0

0

2

0

0

(a) A weighted Dyck path with 4 coloured strong rises.

[1, 8] ∗ [2, 11] ∗ [3, 6] ∗ [4, 13][5, 7][9, 14] ∗ [10, 12]

[1, 7, 10] ∗ [2, 5] ∗ [3, 12][4, 6][8, 13] ∗ [9, 11]

[1, 6, 9, 4] ∗ [2, 11][3, 5][7, 12] ∗ [8, 10]

[1, 5, 8, 3, 10][2, 4][6, 11] ∗ [7, 9]

[1, 5, 7, 3, 9][2, 4][6, 10, 8]

(b) The associated matching in cycle notation with ‘∗’ marking coloured strong rises.

The operations of the bijection are performed to yield the final derangement

Figure 2.19: An example of the bijection in the proof of Theorem 2.13

Equation 2.36 is known; see for example [20, 21]. To the best of our knowledge, the

given bijection is the first combinatorial interpretation of Equation 2.35.



Chapter 3

Permutation and Young Tableau

Transformations

The connection between natural global transformations on permutations and on pairs of

identically shaped increasing standard Young tableaux is one of the most interesting prop-

erties of the RSK correspondence. This chapter provides a systematic review of the prop-

erties, providing a complete classification of the symmetries in permutations and pairs of

standard Young tableaux.

Of particular importance in this chapter is the fact that there is a bijection between

involutions and standard Young tableaux (Corollary 3.3.2). This well-known result, as well

as some properties of the global transformations, are used in Chapter 4 to develop shape-

preserving transformations on the arc diagrams of involutions.

The bijection between involutions and standard Young tableaux, and most other results

in this chapter, are classical results of Robinson, Schensted, Schützenberger, and Knuth.

However, we also give four variations of the RSK algorithm (as indicated in the comments

between Algorithm 3.4 and Theorem 3.3) which, to the best of our knowledge, have not

appeared in the literature. The variations involve an operation we call the transposition of

a permutation, which is related to the vacillating tableaux of Chen et al. [8] as described

below Figure 3.4.

Section 3.1 introduces another method for adding and removing elements to a Young

tableau called jeu de taquin, developed by Schützenberger [39]. Section 3.2 uses this method

to define a transformation called evacuation on Young tableaux. Evacuation is also known

52
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as Schützenberger’s involution.

Section 3.3 gives the correspondence between the transformations on permutations and

those on pairs of standard Young tableaux. Section 3.4 gives the analogous correspondence

for variations of the RSK algorithm. The proofs of both correspondences are given in

Section 3.5.

3.1 Jeu de Taquin

Section 1.2.2 introduced the operations row insertion and row deletion for adding and re-

moving numbers from a Young tableau. Another such pair of operations is called jeu de

taquin, after the sliding puzzle.

Let P be a Young tableau of size n and shape λ, and let (r, c) be a co-corner of P .

We write jins(P, r, c, i) for the jeu de taquin insertion of a number i at (r, c); the result is a

Young tableau of size n+1 and shape λ∪(r, c). The algorithm is described as Algorithm 3.1,

and an example is given in Figure 3.1.

Algorithm 3.1 jins(P, r, c, i): Jeu de taquin insertion of i into Young tableau P at co-corner

(r, c)

Require: (r, c) is a co-corner

Let (0, z) = (z, 0) = −∞ for all z, x← r, and y ← c

Create a new cell at position (r, c) and let it have the value i

while the values at (x− 1, y) and (x, y − 1) are not both less than i do

Let (x′, y′) be the position with the larger of the two values

Swap the values at (x′, y′) and (x, y) {i is now in cell (x′, y′)}

Let x← x′ and y ← y′

end while

1 4 6 7
3 8
5 9

1 4 6 7
3 8 2
5 9

1 4 6 7
3 2 8
5 9

1 2 6 7
3 4 8
5 9

Figure 3.1: A jeu de taquin insertion of 2 into co-corner (2,3)

The algorithm slides the new number i up and left from a corner until a proper Young
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tableau is formed. Jeu de taquin deletion jdel(P, i) reverses the algorithm, sliding any

chosen number within the tableau down and right by swapping the lesser of two values until

a corner is reached, at which point the corner and value are removed from the tableau (see

Algorithm 3.2 for details). The operations are analogous for decreasing tableaux and skew

tableaux.

Algorithm 3.2 jdel(P, i): Jeu de taquin deletion of value i from Young tableau P

Require: i is contained in tableau P

Let the value of all cells to the right of or below P be ∞

Let (r, c) be the location of i in P

while (r, c) is not a corner do

Consider the two cells (r+1, c) and (r, c+1). Let (x, y) be the cell containing the lesser

value.

Swap the values of (x, y) and (r, c) {i is now located at (x, y)}

Let r ← x and c← y

end while

Remove corner (r, c) and value i from the tableau

3.2 Evacuation

Repeated jeu de taquin deletion of the origin can be used to defined a transformation on

Young tableaux called evacuation, given in Algorithm 3.3.

Algorithm 3.3 Evacuation of a Young tableau

Let the contents of P be p1 < p2 < . . . < pn and let λ = sh(P )

Let P ′
0 ← P and Q′

0 ← ∅

for i = 1 to n do

Let P ′
i ← jdel(P ′

i−1, pi) and λ′
i ← sh(P ′

i )

Let (r, c) be the cell that was removed during the deletion of pi from P ′
i−1

Let Q′
i ← Q′

i−1 and then let position (r, c) in Q′
i have value pi

{Q′
i is a decreasing skew tableau with shape λ/λ′

i}

end for

Define Q′
n to be the evacuation of P
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P ′
i :

1 3 5

2 4 ,

2 3 5

4 ,

3 5

4 ,

4 5

,

5

,

Q′
i: , 1 ,

2

1 ,

2

3 1 ,

4 2

3 1 ,

5 4 2

3 1

Figure 3.2: An evacuation by repeated jeu de taquin deletion of the origin

After n deletions, P ′
n is empty and Q′

n is a decreasing Young tableau with shape λ,

as illustrated in Figure 3.2. We define the evacuation of P to be PE = Q′
n, and define

evacuation for decreasing Young tableaux analogously. We also define PS = PEN = PNE.

Figure 3.3 give examples.

1 3 5

2 4

(a) A Young tableau P

5 4 2

3 1

(b) P E

1 2 4

3 5

(c) P S = P EN = P NE

6 3 1
5 2
4

(d) A decreasing Young

tableau Q

1 2 4
3 5
6

(e) QE

6 5 3
4 2
1

(f) QS = QEN = QNE

Figure 3.3: Examples of the transformations PE and PS

In the following sections, we rely on the fact that evacuation is an involutive transfor-

mation; a sketch of a proof is provided here.

Theorem 3.1 (Schützenberger [39]). Evacuation is involutive; that is, for any Young

tableau P ,

PEE = P (3.1)

Proof sketch. It can be shown (for both increasing and decreasing Young tableaux) that

jins(P, r, c, α)E = jins(PE , r, c, α) (α > P or α < P ) (3.2)

This allows us to prove the theorem inductively on the size of the tableau. The base

case of an empty tableau is trivial. For the inductive step, let α be the largest value in a
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Young tableau P , and let α be located at corner (r, c). Then,

PEE = jins(jdel(P,α), r, c, α)EE

= jins(jdel(P,α)E , r, c, α)E

= jins(jdel(P,α)EE , r, c, α) (3.3)

= jins(jdel(P,α), r, c, α)

= P

3.3 Transformations of Permutations and Young Tableaux

There are 8 natural transformations of the square when considering rotation and reflection.

When applied to a permutation matrix, these can be interpreted in terms of 3 involutive

transformations on a permutation.

Let ρ ∈ Sn be the permutation such that ρ(i) = n−i+1. Given a permutation σ ∈ Sn, let

σ−1 be the inverse permutation (such that σσ−1 and σ−1σ yield the identity permutation),

and define σN and σR as follows:

σN = ρσ (3.4)

σR = σρ (3.5)

σN is called the negation of σ, and σR is called the reversal of σ.

These 8 transformations on a permutation matrix correspond to

Original matrix : σ = σNN = σRR = σ−1−1 (3.6)

Horizontal reflection : σR (3.7)

Vertical reflection : σN (3.8)

Diagonal reflection : σ−1 (3.9)

Antidiagonal reflection : σ−1RN = σ−1NR = σNR−1 = σRN−1 (3.10)

90◦ clockwise rotation : σ−1N = σR−1 (3.11)

180◦ clockwise rotation : σRN = σNR (3.12)

270◦ clockwise rotation : σ−1R = σN−1 (3.13)

See also Figure 3.4.
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X

X

X

X

X
1 2 3 4 5

1

2

3

4

5

(a) σ = 34251

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(b) σR = 15243

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(c) σN = 32415

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(d) σ−1 = 53124

X

X

X

X

X
1 2 3 4 5

1

2

3

4

5

(e) σ−1RN = 24531

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(f) σ−1N = 13542

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(g) σRN = 51423

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(h) σ−1R = 42135

Figure 3.4: Symmetries of the square and transformations on permutations

To complete the connection between transformations on permutations and transforma-

tions on pairs of standard Young tableaux, we define a fourth transformations on permuta-

tions, σT . If σ ∼ (P,Q), then σT is defined as the permutation corresponding to (P T , QT ).

We define σT in terms of the associated Young tableaux as there is no known definition in

terms of the permutation itself.

There is also a connection to Chen et al.’s paper [8]. Consider a balanced matching

β ∈ BM2n in bijection with a permutation f(β) ∈ Sn. Chen et al. observe (using different

notation) that applying their vacillating tableaux transformation to β results in a balanced

matching in bijection with f(β)T ∈ Sn. However, Chen et al.’s vacillating tableaux are con-

structed using row insertion and deletion, similar to RSK; again there is no direct definition

in terms of permutations.

We can show close connections between the transformations on permutations and trans-

formations on the corresponding tableaux. Firstly, note the following 4 involutive transfor-

mations on a pair of Young tableaux (P,Q) of the same shape which preserve direction of

the tableaux: exchanging P and Q, transposing both P and Q, evacuating and negating P ,

and evacuating and negating Q. Together, these give 16 total transformations.
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The connections between the 16 transformations of tableaux and permutations are stated

in the following theorem.

Theorem 3.2 (Robinson [11], Schensted [38], Schützenberger [39], Knuth [27]). Given that

σ ∼ (P,Q) for a permutation σ, the following correspondences hold:

σ ∼ (P,Q) (3.14)

σR ∼ (P T , QST ) (3.15)

σN ∼ (PST , QT ) (3.16)

σRN ∼ (PS , QS) (3.17)

σT ∼ (P T , QT ) (3.18)

σTR ∼ (P,QS) (3.19)

σTN ∼ (PS , Q) (3.20)

σTNR ∼ (PST , QST ) (3.21)

σ−1 ∼ (Q,P ) (3.22)

σR−1 ∼ (QST , P ) (3.23)

σN−1 ∼ (QT , PST ) (3.24)

σRN−1 ∼ (QS , PS) (3.25)

σT−1 ∼ (QT , P T ) (3.26)

σTR−1 ∼ (QS , P ) (3.27)

σTN−1 ∼ (Q,PS) (3.28)

σTRN−1 ∼ (QST , PST ) (3.29)

The proof will be given in terms of two-line arrays and variations of the RSK algorithm

below.

Note that Equations 3.18–3.21 and 3.26–3.29 follow immediately from the other equa-

tions and the definition of σT , and are included above for completeness.

Before proceeding to the proof, we introduce the RSK variations.

3.4 Variations on RSK

Here, we present the RSK construction using the jeu de taquin (Algorithm 3.4 below), which

is more general than the classical row insertion/row deletion presentation. Indeed, it leads

to 8 variations of RSK on a two-line array A by allowing either of the Young tableaux to be

decreasing instead of increasing, and also allowing the elements of the array to be inserted

in reverse (from right to left) instead of forward.

4 of these variations do not require jeu de taquin and are well-known in the literature;

see, for example, [28]. The other 4 variations do require jeu de taquin, and complete the

connection between RSK and the 16 transformations on pairs of Young tableaux presented

above.
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Algorithm 3.4 Generalized RSK construction of tableaux from a two-line array

Let P0 ← ∅ and Q0 ← ∅

if reading the two-line array forward then

Let ji = i

else

Let ji = n− i + 1

end if

for i = j1 to jn do

Let Pi ← rins(Pi−1, pi) and let (ri, ci) be the resulting new corner

Let Qi ← jins(Qi−1, ri, ci, qi)

{Note that sh(Qi) = sh(Pi)}

end for

Two changes have been made: The for loop can read the array either forwards or back-

wards, and modifications to the recording tableau Q are done using jins(Qi−1, ri, ci, qi). Note

that when Q is increasing and the array is being read forward, jins(Qi−1, ri, ci, qi) does not

shift any elements as qi > Qi−1. (This is similarly true when Q is decreasing and the array

is being read in reverse.) In these cases, jins(Qi−1, ri, ci, qi) is the same as creating a new

cell at location (ri, ci) with value qi, as was done in the original algorithm.

The four variations where jins(Qi−1, ri, ci, qi) does not shift any elements are known in

the literature; see, for example, [28]. However, to the best of our knowledge the other four

variations are not in the literature.

The notation for these RSK variations is as follows. Define F I
I (A) ∼ (P,Q) to be the

normal RSK correspondence obtained by reading the two-line array A Forward from i = 1

to i = n, with both P and Q Increasing. Define RD
I (A) to be the correspondence obtained

by reading A in Reverse from i = n to i = 1, with P Increasing but Q Decreasing. The six

other variations are similarly defined: FD
I (A), F I

D(A), FD
D (A), RD

D(A), RI
I (A), RI

D(A).

The following theorem is analogous to Theorem 3.2. Equations 3.30–3.33 and 3.38–3.41

are well-known (Knuth [27, 28]). Equations 3.34–3.37 and 3.42–3.45 do not appear in the

literature, and are to the best of our knowledge a new result.

Theorem 3.3. Given that F I
I (A) ∼ (P,Q) for a two-line array A, the following correspon-

dences hold:
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F I
I (A) ∼ (P,Q) (3.30)

RD
I (A) ∼ (P T , QET ) (3.31)

F I
D(A) ∼ (PET , QT ) (3.32)

RD
D(A) ∼ (PE , QE) (3.33)

RI
I(A) ∼ (P T , QT ) (3.34)

FD
I (A) ∼ (P,QE) (3.35)

RI
D(A) ∼ (PE , Q) (3.36)

FD
D (A) ∼ (PET , QET ) (3.37)

F I
I (A−1) ∼ (Q,P ) (3.38)

RD
I (A−1) ∼ (QT , PET ) (3.39)

F I
D(A−1) ∼ (QET , P T ) (3.40)

RD
D(A−1) ∼ (QE , PE) (3.41)

RI
I(A

−1) ∼ (QT , P T ) (3.42)

FD
I (A−1) ∼ (Q,PE) (3.43)

RI
D(A−1) ∼ (QE , P ) (3.44)

FD
D (A−1) ∼ (QET , PET ) (3.45)

3.5 Proof of Theorems 3.2 and 3.3

Here, we prove Theorems 3.2 and 3.3. The results of this section up to Lemma 3.3 are

well-known (see, for example, Schensted [38] and Schützenberger [39]), and are therefore

largely sketched within this thesis.

The beginning of the proof will show that inverting a two-line array exchanges the

insertion and recording tableaux in the bijection.

First, we need to generalize inversion of a permutation to inversion of a two-line array.

Define ji for 1 ≤ i ≤ n such that pj1 < pj2 < . . . < pjn . Then

A−1 =

(

pj1 pj2 . . . pjn

qj1 qj2 . . . qjn

)

We are now ready to state the relation.

Lemma 3.1 (Schensted [38]). Inverting a two-line array A exchanges the corresponding

Young tableaux P and Q; that is

A ∼ (P,Q)⇐⇒ A−1 ∼ (Q,P ) (3.46)

Proof sketch. Let (r, c) be the location of pjn in P . It is possible to show the following effect

of removing qjn and pjn from A:

(

q1 . . . qjn−1 qjn+1 . . . qn

p1 . . . pjn−1 pjn+1 . . . pn

)

∼ (jdel(P, pjn), rdel(Q, r, c)) (3.47)
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The theorem holds for the trivial empty tableau. For the inductive step, let A′ be the

two-line array after the removal of qjn and pjn . Then we have

A′ ∼ (jdel(P, pjn), rdel(Q, r, c)) (3.48)

A′−1 ∼ (rdel(Q, r, c), jdel(P, pjn)) (3.49)

A−1 ∼ (rins(rdel(Q, r, c), qjn ), jins(jdel(P, pjn), pjn)) (3.50)

= (Q,P )

Corollary 3.3.1. For permutation σ, σ ∼ (P,Q)⇐⇒ σ−1 ∼ (Q,P )

Corollary 3.3.2. Involutions are in bijection with SYT.

Next, we use one of the RSK variations introduced above.

Lemma 3.2 (Schützenberger [39], Knuth [27, 28]). F I
I (A) ∼ (P,Q)⇐⇒ RD

I (A) ∼ (P T , QET )

Proof sketch. From the RSK algorithm, it is clear that if qn is located at r, c, then

(

q1 . . . qn−1 qn

p1 . . . pn−1 pn

)

∼ (P,Q)⇐⇒

(

q1 . . . qn−1

p1 . . . pn−1

)

∼ (rdel(P, r, c), jdel(Q, qn))

(3.51)

and rdel(P, r, c) removes pn.

It can also be shown that if the jeu de taquin deletion of q1 from Q removes corner r, c,

then
(

q1 q2 . . . qn

p1 p2 . . . pn

)

∼ (P,Q)⇐⇒

(

q2 . . . qn

p2 . . . pn

)

∼ (cdel(P, r, c), jdel(Q, q1)) (3.52)

and cdel(P, r, c) removes p1.

The theorem is trivial for the base case of an empty tableau. For the inductive case, let

A′ be A with p1 and q1 removed, and let the removed corner be (r, c). We then have

F I
I (A′) ∼ (cdel(P, r, c), jdel(Q, q1)) (3.53)

RD
I (A′) ∼ (cdel(P, r, c)T , jdel(Q, q1)

ET )) (3.54)

= (rdel(P T , c, r), jdel(QET , q1))

RD
I (A) ∼ (rins(rdel(P T , c, r), p1), jins(jdel(QET , q1), q1, c, r)) (3.55)

= (P T , QET )
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From Lemmas 3.2 and 3.1, we can prove Theorem 3.2. Equation 3.22 follows from

Lemma 3.1. Reversing a permutation is the same as reading the corresponding array in

reverse with the top row decreasing and the bottom row increasing, except the top row

has negated values. Therefore Equation 3.15 follows from Lemma 3.2. σ−1R = σN−1, so

applying Lemma 3.1 yields Equation 3.24. σ−1N−1 = σN , and therefore another applica-

tion of Lemma 3.1 results in Equation 3.16. Yet another application of Lemma 3.1 gives

Equation 3.23. Combining Equation 3.15 and Equation 3.16 results in Equation 3.17, and a

final application of Lemma 3.1 gives Equation 3.25. As mentioned above, Equations 3.18–

3.21 and 3.26–3.29 follow immediately from the other equations and the definition of σT .

This concludes the proof of Theorem 3.2.

We can also prove half of Theorem 3.3 from Theorem 3.2. Lemma 3.2 is the same as

Equation 3.31. Negation of a permutation is the same as applying RSK with the insertion

tableau decreasing, and then negating the insertion tableau at the end; therefore Equa-

tion 3.16 proves Equation 3.32. Similarly, simultaneously reversing and negating a per-

mutation is equivalent to applying RSK to a two-line array in reverse with both tableaux

decreasing, and then negating the tableaux afterwards. Therefore Equation 3.17 proves

Equation 3.33. Applying Lemma 3.1 to Equations 3.30–3.33 gives Equations 3.38–3.41.

However, Equations 3.34–3.37 and 3.42–3.45 do not immediately follow. The following

lemma (to the best of our knowledge, a new result) provides the missing piece.

Lemma 3.3. Reversing the direction of the recording tableau evacuates the recording tableau.

Proof. For concreteness, we prove that

F I
I (A) ∼ (P,Q)⇐⇒ FD

I (A) ∼ (P,QE)

However, the proof applies in all cases.

The theorem is true for the trivial empty array. For a two-line array of size n, the

insertion tableaux of F I
I (A) and FD

I (A) are the same by definition of the RSK algorithm.

Let Q be the recording tableau of F I
I (A) and Q′ that of FD

I (A); Q is increasing and Q′ is
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decreasing. Also let (r, c) be the location of qn in Q. By the inductive hypothesis, we have

jdel(Q′, qn) = jdel(Q, qn)E (3.56)

Q′ = jins(jdel(Q′, qn), qn, r, c)

= jins(jdel(Q, qn)E, qn, r, c) (3.57)

= jins(jdel(QE , qn), qn, r, c)

= QE

The equality jdel(Q, qn)E = jdel(QE, qn) holds as qn > jdel(QE , qn), so we can apply

Equation 3.2.

This completes the proof of Theorem 3.3.



Chapter 4

Involutive Transformations

In this chapter, we investigate permutations and involutions whose corresponding Young

tableaux have the same shape. Section 4.1 introduces local operations on permutations

discovered by Knuth which alter the contents of either the recording tableau or insertion

tableau, but not their shapes. The results of Reifegerste, which describe these operations

in terms of the tableaux instead of the permutation, are also presented and clarified. In

particular, Theorem 4.2 and Corollary 4.2.1 show that the Knuth relations and dual Knuth

relations of permutations presented in Section 4.1 can be completely identified by relations

inside the corresponding Young tableaux.

Section 4.2 uses these results to describe analogous local operations on the arc diagrams

of involutions, which alter the contents of the corresponding Young tableau without altering

the shape. The involutive transformations are useful in proving results on involutions related

to nestings and crossings, as described in Section 4.2.1. They are in fact the key tool used

to prove our main result, Theorem 5.2 of Chapter 5. The transformations are also used

to show connections between matchings and permutations (Proposition 5.1) and to explore

properties of lattices of tableaux in Chapter 6.

4.1 Knuth Transformations in Young Tableaux

Knuth transformations were introduced in [27] in order to describe the row insertion algo-

rithm in terms of local transformations on permutations. The results are now considered

fundamental to the study of the RSK correspondence. In this section, we follow Reifegerste’s

lead in describing Knuth transformations in terms of Young tableaux.

64
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4.1.1 Knuth Relations and Transformations

Let three consecutive positions of a permutation have the values a, b, and c such that

a < b < c. The values are considered to be a Knuth relation if they are not in monotonic

order, i.e., the order of the values is acb, bac, bca, or cab. A Knuth transformation exchanges

the a and c values of a Knuth relation, as shown in Figure 4.1.

(
. . . i− 1 i i + 1 . . .
. . . b a c . . .

)

↔

(
. . . i− 1 i i + 1 . . .
. . . b c a . . .

)

(
. . . i− 1 i i + 1 . . .
. . . a c b . . .

)

↔

(
. . . i− 1 i i + 1 . . .
. . . c a b . . .

)

Figure 4.1: Knuth transformations (a < b < c)

Two permutations that can be transformed into one another by a sequence of Knuth

transformations are called Knuth-equivalent.

Let i−1, i and i+1 be three consecutive integers. σ has a dual Knuth relation involving

values i − 1, i, and i + 1 if σ−1 has a Knuth relation defined by its elements in positions

i− 1, i and i + 1. A dual Knuth transformation exchanges the values of either i + 1 and i

if i− 1 is between i and i + 1 in σ, or i− 1 and i if i + 1 is between i and i− 1 in σ. (See

Figure 4.2.)

It follows that applying a Knuth transformation to σ, and then inverting the resulting

permutation is equivalent to first inverting σ, and then applying a dual Knuth transforma-

tion on the resulting permutation σ−1.

(
. . . a . . . b . . . c . . .
. . . i . . . i− 1 . . . i + 1 . . .

)

↔

(
. . . a . . . b . . . c . . .
. . . i + 1 . . . i− 1 . . . i . . .

)

(
. . . a . . . b . . . c . . .
. . . i− 1 . . . i + 1 . . . i . . .

)

↔

(
. . . a . . . b . . . c . . .
. . . i . . . i + 1 . . . i− 1 . . .

)

Figure 4.2: Dual Knuth transformations corresponding to the inverse permutation of that

in Figure 4.1

Knuth transformations were introduced in [27], where the following important theorem

is proved.
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Proposition 4.1 (Knuth [27]). Knuth transformations alter the contents of the recording

tableau but not the contents of the insertion tableau. Dual Knuth transformations alter the

contents of the insertion tableau but not the contents of the recording tableau. Neither type

of transformation changes the shape of the tableaux.

Proposition 4.2 (Knuth [27]). Any two permutations whose tableaux have the same shape

can be transformed into one another through a sequence of Knuth transformations and dual

Knuth transformations.

Theorem 4.1 (Knuth [27]). Two permutations are Knuth-equivalent if and only if they

have the same insertion tableau.

4.1.2 Reifegerste’s Results and Enclosures

In [35], Reifegerste examines the affect of Knuth transformations on the corresponding SYTs

in deeper detail. To discuss these results, we first need a few definitions. Figure 4.3 below

will be used for illustration.

Let us first define two positions (x1, y1) and (x2, y2) in a Ferrers diagram λ to be an-

tidiagonal if x1 > x2 and y1 < y2 or vice-versa. In Figure 4.3, the positions of 5 and 7 are

antidiagonal, but the positions of 1 and 9 are not. Any two positions in the same row or

column are also not antidiagonal.

Next, define an inversion in a Young tableau to be two elements i and j such that

j < i and j is in a row below that of i. The two elements must necessarily be antidiagonal.

Figure 4.3 contains 3 inversions, listed in the caption.

We also define the number of inversions in a Young tableau P to be inv(P ), and the

number of antidiagonal pairs of positions as maxInv(P ). Note that maxInv(P ) is determined

by the shape of P .

Given two antidiagonal positions (x1, y1) and (x2, y2), let position (u, v) be enclosed by

(x1, y1) and (x2, y2) if and only if x1 ≥ u ≥ x2 and y1 ≤ v ≤ y2. In such a situation, we

refer to (x1, y1) and (x2, y2) as the corners. (If we draw a rectangle in the tableau with

the lower-left corner being at (x2, y2) and the upper-right corner at (x1, y1), then (u, v) is

enclosed within the rectangle.)

If the positions of i− 1, i, and i + 1 in a standard Young tableau are such that either i

and i + 1 enclose i− 1, or i− 1 and i enclose i + 1, we say that i− 1, i, and i + 1 form an

enclosure. (See Figure 4.3.)
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1 2 4 5
3 6 8
7 9

Figure 4.3: A standard Young tableau λ with enclosures (1, 2, 3), (2, 3, 4), (4, 5, 6),

(6, 7, 8), and (7, 8, 9). (5, 6, 7) is not an enclosure as the corners are 5 and 7. inv(λ) = 3

due to inversions (3, 4), (3, 5), and (7, 8)

We are now ready to present the connection between Knuth and dual Knuth relations in

a permutation and enclosures in the corresponding SYTs. The following well-known lemma

(see, for example, Fulton [18]) will be particularly useful.

Lemma 4.1. If α is inserted into P before α − 1 during the RSK process, then α − 1 will

remain strongly above and weakly to the right of α through any further insertion. If instead

α− 1 is inserted before α, then α− 1 will remain weakly below and strictly to the left of α

through any further insertion.

Proof. First, recall that if a number j bumps another number j′, then j < j′. Therefore, as

the algorithm continues, the values at a given position monotonically decrease. Furthermore,

RSK requires that j′ is the smallest number in the row that is greater than j. Because the

number immediately below j′ (if present) must be greater than j′ by the properties of the

Young tableau, the column position of j′ can never increase. That is, the position of any

number j′ at any point during the insertion algorithm must be weakly below and to the left

of its original insertion position.

Consider two numbers α and α− 1, inserted in that order (but not necessarily consecu-

tively). If α is still in the first row of the Young tableau when α− 1 is inserted, then α− 1

will bump α. Otherwise, the value at the original insertion position of α must now be less

than α − 1, and thus α − 1 will be inserted to the right of this position. In either case, a

recursive argument shows that α− 1 must remain weakly to the right of α so long as α− 1

is in a row above α. But α − 1 must always be above α, as if α − 1 is bumped into a row

containing α, it will in turn bump α to the next row.

Equation 3.15 shows that if instead α− 1 is inserted before α, then α− 1 will always be

weakly below and strictly to the left of α.

Theorem 4.2 (Reifegerste [35]). Values i − 1, i, and i + 1 form a dual Knuth relation in

a permutation if and only if the cells containing i − 1, i, and i + 1 form an enclosure in
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the corresponding insertion tableau P . Moreover, applying a dual Knuth transformation to

values i−1, i, and i+1 alters the insertion tableau by swapping the corners of the enclosure

formed by i− 1, i, and i + 1.

Reifegerste’s results in [35] are stated less strongly, but a careful reading shows this

theorem to be true. In particular, the structure of enclosures is not highlighted, and the

fact that any three values i−1, i, and i+1 which do not form a dual Knuth relation cannot

form an enclosure is not shown. For convenience, we supply a full proof here.

Proof. Firstly, any three values i− 1, i, and i + 1 which do not form a dual Knuth relation

must be in monotonic order (either increasing or decreasing). Lemma 4.1 shows that three

such values can never form an enclosure, as either i− 1 is left of i which is left of i + 1 (in

the increasing case), or i− 1 is above i which is above i + 1 (in the decreasing case).

Now consider the dual Knuth transformation

(

q1 . . . qa . . . qb . . . qc . . .

p1 . . . i . . . i− 1 . . . i + 1 . . .

)

↔

(

q1 . . . qa . . . qb . . . qc . . .

p1 . . . i + 1 . . . i− 1 . . . i . . .

)

which exchanges values i + 1 and i. Following the RSK algorithm, we let P0 = ∅, and Pk

be the insertion tableau after the insertion of pk from the left two-line array, and define P ′
k

similarly for the right two-line array.

Clearly, Pk = P ′
k for k < a. Within Pa−1 = P ′

a−1, the smallest number less than i in the

first row must be the same as the smallest number less than i + 1. Therefore, Pa and P ′
a

are identical except for one cell in the first row, which is i in Pa and i + 1 in P ′
a. As pk for

a < k < b are inserted, Pk and P ′
k similarly stay identical except for the square containing

i or i + 1, as shown in Figure 4.4. (If i is the smallest number less than some other number

j in Pk, then i + 1 must be the smallest number less than j in P ′
k, and vice versa.)

i i + 1

Figure 4.4: Tableaux Pb−1 and P ′
b−1 differ only in the value of one square
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We next insert i− 1 into Pb−1 and P ′
b−1. If i and i + 1 are still in the first rows of Pb−1

and P ′
b−1 (respectively), then i − 1 will bump i and i + 1, after which point the algorithm

will run identically in both tableaux. Otherwise, i − 1 is inserted at the same position in

both Pb−1 and P ′
b−1, and the algorithm still runs identically. Therefore, Pb and P ′

b remain

identical except for the values of i and i + 1.

Recall from Lemma 4.1 that i − 1 must stay strictly above and weakly to the right of

i. As pk for b < k < c is inserted, i − 1 can never occupy the same row as i or i + 1, as it

would bump these values into the next row. The algorithm continues to run identically in

both tableaux.

Next, i + 1 is inserted into Pc−1 and i is inserted into P ′
c−1: i (resp. i + 1) cannot be in

the first row of Pc−1 (resp. P ′
c−1), and thus the insertion once again runs identically. In P ′

c,

i must be weakly above and strictly to the right of i− 1, and so i + 1, i, and i− 1 form an

enclosure in P ′
c, and swapping the corners of this enclosure yields Pc. (See Figure 4.5.)

i i − 1 i + 1 i + 1 i − 1 i

Figure 4.5: Tableaux Pc and P ′
c differ by swapping i and i + 1, which enclose i− 1

As pk for k > c is inserted, the enclosure holds, as i − 1 must remain strongly above i

in Pk and i must remain weakly above i− 1 in P ′
k. If i and i− 1 are in the same row in P ′

k,

then i cannot be bumped by construction; any j < i must also be less than i − 1. In this

situation, i + 1 must remain below both i and i− 1. (i and i + 1 can occupy the same row

in neither Pk nor P ′
k.)

This proves the theorem for the first type of dual Knuth transformation. Next we

consider the second type of dual Knuth transformation:
(

q1 . . . qa . . . qb . . . qc . . .

p1 . . . i− 1 . . . i + 1 . . . i . . .

)

↔

(

q1 . . . qa . . . qb . . . qc . . .

p1 . . . i . . . i + 1 . . . i− 1 . . .

)

Using similar reasoning to above, we can show that i − 1 and i enclose i + 1 in Pc and

P ′
c, as illustrated in Figure 4.6.
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i − 1 i + 1 i i i + 1 i − 1

Figure 4.6: Tableaux Pc and P ′
c differ by swapping i− 1 and i, which enclose i + 1

For the remaining insertions, i must remain strictly above and weakly to the right of i+1

in Pk, and i must remain weakly below and strictly to the left of i + 1 in P ′
k. It is possible

for the values to remain in this enclosure configuration through the remaining insertions, in

which case the theorem is complete.

However, in this case, it is possible for the configuration to change. If i and i + 1 are in

the same row in P ′
k, then i+1 cannot be bumped, and i−1 must be above both i and i+1.

At the same time in Pk, i− 1 would be next to i + 1, and i + 1 can only be bumped by i. If

some value j 6= i − 1, i bumps i in P ′
k and i − 1 in Pk, then the configuration is preserved.

However, if i−1 bumps i in P ′
k and i bumps i+1 in Pk, the configuration changes, as shown

in Figure 4.7.

i

i-1 i+1

i-1

i i+1

i-1 i

i+1

i-1 i+1

i

Figure 4.7: If the lower two enclosure elements end up in the same row, they must be

side-by-side. If the third element also enters the same row, a new enclosure configuration

results

The new configuration is still an enclosure, and Pk and P ′
k can still be transformed into
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one another by exchanging the corners of the enclosure. The configuration is now the same

that was encountered with the first type of dual Knuth relation, so the values must stay

in this configuration through any further insertions. Therefore, the theorem holds in all

cases.

Corollary 4.2.1 (Reifegerste [35]). Positions i− 1, i, and i + 1 form a Knuth relation in

a permutation if and only if the cells containing i− 1, i, and i + 1 form an enclosure in the

corresponding recording tableau Q. Moreover, applying a Knuth transformation to positions

i−1, i, and i+1 alters the recording tableau by swapping the corners of the enclosure formed

by i− 1, i, and i + 1.

Proof. If positions i − 1, i, and i + 1 form a Knuth relation in σ, then values i − 1, i, and

i + 1 form a dual Knuth relation in σ−1. Performing a Knuth transformation on positions

i − 1, i, and i + 1 in σ is equivalent to inverting σ, applying a dual Knuth transformation

on values i− 1, i, and i + 1 in σ−1, and then inverting the result.

By Corollary 3.3.1, inversion of a permutation exchanges the insertion and recording

tableaux. This corollary follows.

Corollary 4.2.2 (Reifegerste [35]). Applying a Knuth transformation changes inv(Q) by

±1, and applying a dual Knuth transformation changes inv(P ) by ±1.

An example of Theorem 4.2 and Corollary 4.2.1 is given in Figure 4.8.

(
1 2 3 4 5 6 7 8
7 3 4 6 8 2 5 1

)

1 4 5 8
2 6
3
7

1 3 4 5
2 7
6
8

Figure 4.8: A permutation and the associated tableaux. The enclosures in the insertion

tableau correspond to the values in dual Knuth relations in the permutation: (2, 3, 4),

(4, 5, 6), and (6, 7, 8). The enclosures in the recording tableau correspond to the positions

in Knuth relations in the permutation: (1, 2, 3), (4, 5, 6), (5, 6, 7), and (6, 7, 8)

It is also easy to show that enclosures are robust with regard to transformations on

tableaux. The following proposition can be seen as a translation of properties of Knuth

transformations and dual Knuth transformations (Knuth [27]) to the context of enclosures.
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Proposition 4.3. i − 1, i and i + 1 form an enclosure in P if and only if they also form

an enclosure in PE, P T , and PET .

Proof. The proof is trivial for transposition.

For evacuation, consider a permutation σ ∼ (P,Q). We also know that σR ∼ (P T , QST ) =

(P T , QENT ). If σ(i) = j and σ ∈ Sn, then σR(n − i + 1) = j. Any positions p − 1, p and

p+1 that originally formed a Knuth relation in σ will result in positions n−p+2, n−p+1,

and n− p forming a Knuth relation in σR. Positions which are not in a Knuth relation are

similarly preserved. It follows that taking Q to (the decreasing, non-negated tableau) QET

preserves enclosures. As transposition preserves enclosures, evacuation must also preserve

enclosures.

4.2 Involutive Transformations

4.2.1 The Case for Involutions

We will next next introduce transformations on arc diagrams of involutions based on the

Knuth transformations of permutations. Central to this section is Corollary 3.3.2, which

states that involutions are in bijection with standard Young tableaux (i.e. the insertion and

recording tableaux of an involution are identical).

Our motivation is to define local shape-preserving transformations on involutions in

terms of arc diagrams. Involutions are the natural choice as they are in bijection with

standard Young tableaux. A property of Knuth transformations which will be inherited by

involutive transformations is that any two involutions with the same shape can be trans-

formed into one another through a sequence of involutive transformations.

This property allows for a type of induction on the arc diagrams of involutions. For

example, it can be shown that for every tableau shape, there as at least one non-crossing

involution having that shape. A theorem can be proved for all involutions by first proving

the result for non-crossing involutions (as a base case for each shape), and then showing that

all involutive transformations preserve the result. Proving that involutive transformations

preserve the result acts as the inductive step, and extends the theorem to all involutions.

Using this form of induction is, in fact, the method used to prove the main result of

this thesis, Theorem 5.2. The rest of this chapter defines involutive transformations and

gives a complete enumeration of involutive transformations in terms of the arc diagrams of
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involutions.

4.2.2 Definitions and Enumeration

Let a permutation σ have a Knuth relation at (consecutive) positions i − 1, i, and i + 1

involving the respective values σ(i−1), σ(i), and σ(i+1). Then by definition, its inverse σ−1

has a dual Knuth relation involving values i− 1, i, i+ 1 at the (not necessarily consecutive)

positions σ(i− 1), σ(i), and σ(i + 1).

Let π be an involution. If the value at position j is π(j), then the value at position π(j)

must be j. Consider a set S = {s1, . . . , sk, π(s1), . . . , π(sk)}. S contains between k and 2k

numbers. In terms of the two-line array of π, for any i, qi ∈ S ⇔ pi ∈ S. In terms of the arc

diagram defined by π, there is no arc with one endpoint in the set and the other outside.

In other words, any such set is a sub-involution of π. (See Figure 4.9.)

(
1 2 3 4 5 6 7
4 6 3 1 7 2 5

) (
1 3 4
4 3 1

)

1 2 3 4 5 6 7

Figure 4.9: An involution and a sub-involution involving (1, 3, 4)

Because the insertion and recording tableaux of an involution are identical, they must

contain exactly the same enclosures. Due to Theorem 4.2, this means that if positions i−1,

i, and i + 1 are in a Knuth relation, then the values i − 1, i, and i + 1 must be in a dual

Knuth relation. Applying the Knuth transformation defined by i− 1, i, and i + 1 will swap

the corners of the corresponding enclosure in the recording tableau, and applying the dual

Knuth transformation defined by i − 1, i, and i + 1 will swap the corners in the insertion

tableau (see Figure 4.10).
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(
1 2 3 4 5 6 7
4 6 3 1 7 2 5

) 1 2 5
3 6 7
4

1 2 5
3 6 7
4 1 2 3 4 5 6 7

(
1 2 3 4 5 6 7
4 6 3 7 1 2 5

) 1 2 5
3 6 7
4

1 2 4
3 6 7
5

(
1 2 3 4 5 6 7
5 6 3 1 7 2 4

) 1 2 4
3 6 7
5

1 2 5
3 6 7
4

(
1 2 3 4 5 6 7
5 6 3 7 1 2 4

) 1 2 4
3 6 7
5

1 2 4
3 6 7
5 1 2 3 4 5 6 7

Figure 4.10: In the first row, an involution, its insertion tableau, recording tableau, and its

arc diagram. In the second row, a Knuth transformation has been applied to the original

involution at positions 3, 4, 5. In the third row, a dual Knuth transformation has been

applied to the original involution at values 3, 4, 5. In the final row, both the Knuth and

dual Knuth transformations have been applied. The tableaux are again identical, and the

arc diagram of the resulting involution is shown

Because Knuth transformations change only the recording tableau, and dual Knuth

transformations only the insertion tableau, applying a Knuth transformation to positions

i−1, i, and i+1 does not remove the dual Knuth transformation at values i−1, i, and i+1

(and vice versa). If both transformations are applied (in either order), the same changes

will be made to the insertion and recording tableaux, and a new involution will result.

We define such compound transformations as involutive transformations. More formally,

if positions i− 1, i, and i+ 1 form a Knuth transformation in an involution π, an involutive

transformation on i−1, i, and i+1 consists of applying a Knuth transformation to positions

i− 1, i, and i + 1 followed by a dual Knuth transformation to values i− 1, i, and i+ 1. The

result is another involution.

In terms of arc diagrams, an exhaustive examination reveals 10 involutive transforma-

tions up to left-to-right reflection, shown in Figure 4.11 below.

Involutive transformations inherit some useful properties from Knuth and dual Knuth

transformations. The following theorem is key to the use of involutive transformations as a
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form of induction.

Theorem 4.3. Any two involutions whose tableaux have the same shape can be transformed

into one another through a sequence of involutive transformations.

Proof. The theorem is directly implied by Proposition 4.2.

Finally, Figure 4.11 below provides a complete enumeration of involutive transformations

in terms of arc diagrams, up to left-to-right reflection. They will be used in the following

chapter in the proof of our main result, Theorem 5.2, as well as Proposition 5.1. They are

also used throughout Chapter 6.
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c

c

i3
. . .

↔

i1

b

i2

c

i3

a

c

i2
. . .

(h)

i1

a

i2

c

i3

b

c

i2
. . .

↔

i1

c

i2

a

i3

b

c

i1
. . .

(i)

i1

b

i2

a

i3

c ↔

i1

a

i2

c

i3

b

(j)

Figure 4.11: The 10 involutive transformations, up to left-to-right reflection



Chapter 5

A Greene-like Correspondence for

Nestings

Greene proved in [22] a surprising result that links sets of increasing subsequences of a per-

mutation to the shape of the corresponding Young tableaux given by the RSK construction,

extending the work of Schensted [38]. Since then, similar results have been found for several

variants of the RSK construction, such as the one described in [8] for set partitions.

In the present chapter, we first use involutive transformations to prove an analogous re-

sult that relates decreasing sequences in involutions and the k-nestings in the corresponding

arc diagrams (Theorem 5.2). By way of Greene’s result, this shows that the nestings of

involutions directly correspond to the shape of its associated tableau.

We then extend these results to arc diagrams that represent set partitions for both the

weak and strong nesting interpretations (Theorem 5.4). We also show a connection with

permutations by surjection (Corollary 5.5.2), which both extends and gives an alternate

proof to some of the results of Chen et al. [8]. The surjection from matchings to permutations

is also examined in terms of involutive transformations in Proposition 5.1; the results of the

proposition are later used in Section 6.4.

5.1 Greene’s Result for Permutations

To state Greene’s result, we first we need some notation. Given a permutation σ, let di be

the maximal combined length of i disjoint decreasing subsequences of σ. Also let d0 = 0,

77
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and define the maximal decreasing structure of σ to be the vector mds(σ) = d1 − d0, d2 −

d1, . . . , di − di−1, . . ..

For example, the permutation σ = 5416327 has a decreasing sequence 5432, but there are

no decreasing subsequences of longer length, so d1 = 4. Similarly, the two disjoint decreasing

subsequences 541 and 632 have a combined length of 6, and no other two disjoint decreasing

subsequences can exceed this length, so d2 = 6. All 7 elements of σ can be contained in

three disjoint decreasing subsequences: 541, 632, and 7. Thus d3 = 7, and di = 7 for i > 3

as well. Combining the results, mds(σ) = 4− 0, 6− 4, 7 − 6, 7− 7, . . . = 4, 2, 1, 0, 0, . . ..

Analogously define the maximal increasing structure, mis(σ), in terms of disjoint increas-

ing subsequences of σ.

Theorem 5.1 (Greene [22]). For any permutation σ, mis(σ) = sh(σ) and mds(σ) = sh(σ)T

In other words, the maximal increasing structure of a permutation corresponds to its

shape, and the maximal decreasing structure to the conjugate shape. This result general-

izes in a very natural way Schensted’s result [38] that the length of the longest increasing

subsequence of a permutation is the length of the largest row of the corresponding Young

tableaux shape.

5.2 Maximal Nesting Structures

Recall that a k-nesting is a set of k pairwise nested arcs. In this section, we interpret

singletons within an involution to be 1
2-nestings. Note that under this interpretation, a

k-nesting involves 2k vertices, and thus corresponds to a decreasing subsequence of length

2k. A k-nesting under this interpretation corresponds to a strong ⌊k⌋-nesting and to a weak

⌈k⌉-nesting. An example is given in Figure 5.1.

1 2 3 4 5 6 7 8 9

Figure 5.1: A 4.5-nesting
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Our goal is a Greene-like result for matchings that relates the shape of a Young tableau

to the k-nestings in the arc diagram of some class of objects. By Corollary 3.3.2, involutions

are in bijection with standard Young tableaux, and thus are the natural class of objects to

consider.

Given an involution π, let mi be the maximal combined size of i disjoint k-nestings

within π. Also let m0 = 0, and define the maximal nesting structure of π to be the vector

mns(π) = m1 −m0,m2 −m1, . . . ,mi −mi−1, . . .. Also define a certificate of mi to be any

maximal set of i disjoint k-nestings with combined size mi.

With these definitions, we can state our main results, which are proved together.

Theorem 5.2. For any involution π, mds(π) = 2mns(π) = 2(m1 − m0), . . . , 2(mi −

mi−1), . . ..

Theorem 5.3 (Odd column property). Let π be an involution corresponding to the SYT

P , and let oi be the number of columns of odd height from the first i columns of P . Any

certificate of mi must contain oi singletons.

Proof. Note that by Greene’s result, if an involution π corresponds to the SYT P , then

mds(π) = sh(π)T . Therefore Theorem 5.2 states that all involutions with the same shape

also have the same maximal nesting structure.

We prove both theorems using the same method. First, we show that the theorems hold

for at least one involution of each shape. Next, we show that involutive transformations

preserve the results. This form of induction is possible due to Theorem 4.3, which states

that any two involutions with the same shape can be transformed into one another through

a sequence of involutive transformations.

For the base case, consider an involution π which consists of a sequence of j k-nestings,

such that the ith nesting is a ki-nesting. Moreover, order the sequence of k-nestings such

that ki ≥ ki+1. In terms of a permutation, the ith k-nesting is a decreasing sequence of

length 2ki such that all elements are greater than those in the (i−1)th nesting and less than

those in the (i+ 1)th nesting. The result is that each k-nesting in the sequence corresponds

directly to a column in the standard Young tableau. More specifically, the ith k-nesting,

which is a ki-nesting, corresponds to the ith column from the left, which contains 2ki cells.

Therefore, both theorems hold. An example is given in Figure 5.2.
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1 4 6 8
2 5 7
3 1 2 3 4 5 6 7 8

Figure 5.2: The unique SYT with maxInv(λ) inversions for λ = 4, 3, 1 and the corresponding

involution

For the inductive case, we can show that the involutive transformations preserve both

the maximal nesting structure and the odd column property. As an example, the proof for

Involutive Transformation 4.11a follows.

. . . . . . . . .

α

β
γ

↔
. . . . . . . . .

α γ

β

Figure 5.3: Involutive Transformation 4.11a with labeled arcs

Consider Figure 5.3. The only difference between the two involutions is that arc β is

nested inside of arc γ on the right, but not on the left. We need to show that we can preserve

the certificates of ml, for any l, when transforming the right hand side to the left hand side.

(Recall that a certificate of ml is a set of l k-nestings.)

If γ and β are not contained within the same k-nesting on the right, the certificate is

trivially preserved.

Next we consider certificates in which both γ and β appear in the same k-nesting. No

other arcs in the k-nesting may appear between γ and β, as their left endpoints are adjacent.

Therefore, any such k-nesting consists of some number of arcs nested above γ, then γ, β,

and some number of arcs nested below β. We represent this k-nesting by G+γβB−.

That fact that the left endpoints of α and γ are adjacent also means that any arcs which

are nested above γ are also nested above α, and any arcs which are nested below α are also

nested below γ.

In the first case, consider certificates which do not contain α. α is nested above β in

the arc diagram as well, so for these certificates, we can simply replace γ with α to obtain

another certificate of the same size that does not have γ and β in the same k-nesting.

For the second case we must consider certificates that contain both α and G+γβB−.

α must be part of a different k-nesting than G+γβB−, as α crosses γ. We represent the



CHAPTER 5. A GREENE-LIKE CORRESPONDENCE FOR NESTINGS 81

k-nesting containing α by A+αA−, where A+ are arcs in the k-nesting which are above α,

and A− are those which are below α. For any such certificate, we replace the k-nestings

G+γβB− and A+αA− by two new k-nestings G+γA− and A+αβB−. The k-nestings are

valid as β is nested below α, and any arc nested below α must also be nested below γ.

In either case, in the new certificate α and γ are not in the same k-nesting, and thus it

is preserved on the left side as well as the right side. This proves that Involutive Transfor-

mation 4.11a preserves mns(π).

The proofs for the other 9 involutive transformations are analogous. Because the number

of singletons in each certificate is preserved, the odd column property is also preserved. The

odd column property must hold in the base case and it is always possible to reach a base case

through a sequence of involutive transformations, and therefore the odd column property

must always hold.

Remark: An alternative proof of Theorem 5.2 is possible using permutation matrices.

The key facts are that involutions are reflective around the main diagonal, and that k-

nestings correspond to decreasing subsequences that are also reflective around the main

diagonal.

Corollary 5.3.1 (Schützenberger [40]). The number of singletons in an involution corre-

sponds to the number of odd columns in its shape.

Note: The odd column property is a refinement of Corollary 5.3.1. Corollary 5.3.1 is

itself a well-known result of Schützenberger [40]. A more direct proof of this result was also

given by Beissinger [1].

5.3 Set Partitions, Matchings, and Permutations

The results of the previous section are important in that they provide a Greene-like result

between nestings in involutions and the shape of the same involutions under RSK. However,

maximal nesting structure is defined in terms of 1
2 -nestings. Our goal in this section is to

both extend the results to the larger class of set partitions, and to restate the results in

terms of weak nestings and strong nestings, as is conventional.

This section relies heavily on the surjections of Section 2.1.4. Recall that η̌(ν) is a surjec-

tion to involutions which preserves strong crossings and all nestings; η̂(ν) is a surjection to

involutions which preserves weak crossings and all nestings; ȟ(ν) is a surjection to matchings
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which preserves strong nestings and crossings; and ĥ(ν) is a surjection to matchings which

preserves weak nestings and crossings.

The following theorem gives results for set partitions in the 1
2 -nesting, strong nesting,

and weak nesting interpretations.

Theorem 5.4. For any set partition ν,

mns(ν) = mns(η̌(ν)) = mns(η̂(ν))

mns(ȟ(ν)) = ⌊mns(ν)⌋ = ⌊m1 −m0⌋, . . . , ⌊mi −mi−1⌋, . . .

mns(ĥ(ν)) = ⌈mns(ν)⌉ = ⌈m1 −m0⌉, . . . , ⌈mi −mi−1⌉, . . .

2mns(ν) = ⌊mns(ν)⌋+ ⌈mns(ν)⌉

Proof. The first equation is trivially true, as η̌(ν) and η̂(ν) do not alter k-nestings in any

way. This extends Theorem 5.2 to set partitions under the 1
2 -nesting interpretation.

ȟ(ν) changes k-nestings into ⌊k⌋-nestings, and ĥ(ν) changes them into ⌈k⌉-nestings. The

odd column property allows us to extend this to the maximal nesting structure as a whole,

as mi−mi−1 is not an integer if and only if certificate mi involves one more singleton than

certificate mi−1.

Therefore the second equation states that the maximal nesting structure of a set partition

ν under the strong nesting interpretation is ⌊mns(ν)⌋. Similarly, under the weak nesting

interpretation, it is ⌈mns(ν)⌉.

The final equation is true as 2(mi − mi−1) is always an integer, so 2(mi − mi−1) =

⌊mi −mi−1⌋+ ⌈mi −mi−1⌉.

The above theorem describes the maximal nesting structures of a set partition ν purely

in terms of matchings (ĥ(ν) or ȟ(ν) for the weak and strong interpretations, respectively).

We next follow the lead of Chen et al. [8] and show a connection between the maximal

nesting structure of a matching µ and the maximal decreasing structure of a permutation

f(µ). The following theorem can be considered a special case of Corollary 5.5.2 below; as

later noted, Corollary 5.5.2 includes one of the results of Chen et al. [8]. We provide an

alternate proof that uses the relatively simple connection between the Ferrers filling and the

permutation matrix of a matching.

Theorem 5.5 (Chen et al. [8]).

mns(µ) = mds(f(µ)) (µ ∈M2n)
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Proof. Recall the relationship between a matching µ and its Ferrers filling. The Ferrers filling

corresponds to the upper triangular half of the permutation matrix of µ. A k-nesting in the

matching is in bijection with a decreasing subsequence in the upper half of the permutation

matrix, as can be evidenced in the Ferrers filling. (See Figure 5.4.)

X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

Figure 5.4: A Ferrers filling of a matching, with arcs

f(µ) is defined by extending the Ferrers filling of µ to be an n× n permutation matrix.

The contents of the filling are not changed, and thus the decreasing subsequences of f(µ)

correspond to the decreasing subsequences in the upper half of the permutation matrix of

µ, which in turn are in bijection with the k-nestings of µ.

The theorem implies that applying involutive transformations to a matching µ does not

change the shape of f(µ). The following proposition (a new result) makes the relationship

more explicit, and is later used in Section 6.4.

Proposition 5.1. Given a matching µ,

1. applying Involutive Transformations 4.11a or 4.11b to µ applies a Knuth transforma-

tion on f(µ),

2. applying the reflections of Involutive Transformations 4.11a or 4.11b to µ applies a

dual Knuth transformation on f(µ),

3. all other involutive transformations on µ have no effect on f(µ).

Proof. We originally formulated f(µ) in terms of the Ferrers filling of µ. To prove the

proposition, we note some properties of the surjection. Figure 5.5 is included for reference.
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l1 l2 l3 r1 l4 l5 r2 r3 r4 r5

(a) A matching µ with labeled left and right

endpoints

X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

(b) The Ferrers filling of

µ

X

X

X

X

X

1 2 3 4 5

1

2

3

4

5

(c) The permutation

matrix of f(µ)

Figure 5.5: The relationship between µ and f(µ) for a matching µ

Let µ ∈ M2n be a matching and let f(µ) = σ ∈ Sn. Label the left endpoints of µ from

left to right as l1, . . . , ln, and label the right endpoints from left to right as r1, . . . , rn. The

key property is that σ(i) = j if and only if there is an arc between li and rj in µ.

Involutive Transformations 4.11a and 4.11b involve three consecutive left endpoints li−1,

li, and li+1, two of which are exchanged. Due to the above property and the definition of

involutive transformations, positions i − 1, i, and i + 1 form a Knuth transformation in

σ. Applying the involutive transformation to µ results in the Knuth transformation being

applied in σ.

Similarly, the reflections of Involutive Transformations 4.11a and 4.11b involve three

consecutive right endpoints, which correspond to a dual Knuth relation in σ.

Involutive Transformations 4.11c, 4.11d, 4.11h, and their reflections exchange the posi-

tions of a left and a right endpoint, and this has no affect on σ as shown by the property

above. (The relative positions of all left points is not affected, nor is the relative positions

of all right points.)

The remaining transformations do not apply to matchings, and thus the proof is com-

plete.

Next, we state two corollaries of the preceding theorems. Corollary 5.5.1 is new, and

Corollary 5.5.2 is partially new (as discussed following the proof).

Corollary 5.5.1.

mds(π) = 2mns(π) = mds(f̌(π)) + mds(f̂(π)) (π ∈ In) (5.1)

mds(µ) = 2mns(µ) = 2mds(f(µ)) (µ ∈M2n) (5.2)



CHAPTER 5. A GREENE-LIKE CORRESPONDENCE FOR NESTINGS 85

Corollary 5.5.2.

⌊mns(ν)⌋ = mns(ȟ(ν)) = mds(f̌(ν)) (ν ∈ Pn) (5.3)

⌈mns(ν)⌉ = mns(ĥ(ν)) = mds(f̂(ν)) (ν ∈ Pn) (5.4)

Proof. Equation 5.1 follows from Theorems 5.2 and 5.4.

Equation 5.2 follows from Equation 5.1, as for matchings µ, f̌(µ) = f̂(µ) = f(µ).

Corollary 5.5.2 follows from Theorems 5.4 and 5.5.

The practical result is that the maximal nesting structures of matchings can be described

in terms of their Ferrers fillings. In combination with the previous results, the maximal

nesting structures of set partitions under the weak or strong interpretations can also be

described in terms of Ferrers fillings after applying the surjections of Section 2.1.4.

Note: Recall that ȟ(ν) corresponds to the strong nesting interpretation of a set parti-

tion. In [8] (Proposition 8 and Corollary 9), Chen et al. use the machinery of vacillating

tableaux to prove (using a different notation) that

mns(ȟ(ν)) = mds(f̌(ν)−1) (ν ∈ Pn) (5.5)

Inversion of a permutation preserves the maximal decreasing structure, so this is equivalent

to the second equality of Equation 5.3.

Corollary 5.5.2 provides an alternate proof Chen et al.’s result, and also gives an analo-

gous result for the weak nesting interpretation. Additionally, it extends the result to show

an explicit connection with the 1
2 -nesting interpretation (⌊mns(ν)⌋ and ⌈mns(ν)⌉).

The authors also state that “[i]t would be interesting to get a result for crr(P ) [(maximal

crossing structure)] analogous to Corollary 9.” However, as the shape of an involution is de-

termined completely by its maximal nesting structure while the maximal crossing structure

varies, this seems unlikely in the general case.

The exception is for β ∈ BM2n. Similar to decreasing subsequences and nestings,

g(σ) translates increasing subsequences in permutation σ to crossings in g(σ). That is,

mcs(g(σ)) = mis(σ) = sh(σ) where mcs represents maximal crossing structure.
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Knuth Graphs

In Chapter 4 we used the results of Knuth [27] and Reifegerste [35] to show that all standard

Young tableaux of a constant shape can be transformed into one another through a sequence

of transformations on enclosures within the tableaux.

In this section, we use the enclosure transformations to define graphs on Young tableaux

of a constant shape. The graphs can be interpreted as the Hasse diagram of a poset; two

examples of such posets are given. Some graph theoretical properties are also explored, with

the aid of involutive transformations.

To the best of our knowledge, these graphs are unexplored in the literature. In Section 6.3

we prove some results for special shapes of Young tableaux.

6.1 Introducing Knuth Graphs

Consider a graph on all involutions of a given shape λ, where there is an edge between

two involutions if and only if they differ by a single involutive transformation. We define

such a graph to be Kλ. Kλ is equivalent to a graph on all SYTs with shape λ. Under this

interpretation, the edges correspond to two SYT that can be transformed into one another

by swapping the corners of an enclosure. By Corollary 4.2.1, Kλ can also be considered

to be a graph on Knuth-equivalent permutations, wherein the edges correspond to Knuth

transformations.

As transposition of a Young tableau preserves enclosures, Kλ is isomorphic to KλT . If

λ = λT , then Kλ is automorphic around transposition. Evacuation and negation of a Young

tableau preserves the shape of the tableau, and corresponds to the left-to-right reflection

86
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of the arc diagram of an involution, as shown in Figure 6.1. The values of the enclosures

are negated, but still exist, so Kλ (for any shape λ) is automorphic around evacuation and

negation. Examples of Knuth graphs appear in Figures 6.3 and 6.4.

1 2 3 4 5 6 7 8 9
(a) An involution π ∼ (P, P )

1 2 3 4 5 6 7 8 9
(b) πRN

∼ (P S, P S)

Figure 6.1: Reflecting the arc diagram of an involution is equivalent to evacuating and

negating the tableau

6.2 Posets

The study of partially ordered sets or posets is an active research area. We refer the interested

reader to the works of Stanley [43, 44].

First, let us introduce some terminology of posets. A poset is a tuple (S,≤) where S

is a set and ≤ is a reflexive, antisymmetric, and transitive relation. The relation does not

need to apply to all pairs of elements in S. s2 covers s1 if s1 < s2 and there does not exist

any element x such that s1 < x < s2. The Hasse diagram of a poset is a graph wherein the

vertices are elements of S, and there is an edge between x and y if and only if y covers x.

x is a maximal element of the poset if there does not exist a y ∈ S such that x < y;

minimal elements are analogously defined. A poset has a least element x if x ≤ y for all

y ∈ S. Greatest element is analogously defined. A bounded poset is a poset with both a

least and greatest element.

A graded poset is a poset with a rank function ρ : S → Z such that if x ≤ y, then

ρ(x) ≤ ρ(y). A ranked poset has the additional property that all maximal elements have

the same rank, and all minimal elements have the same rank. A bounded, graded poset is

necessarily ranked, and has the property that any three elements in the Hasse diagram can

be contained in a single path.

It is possible to define statistics on Young tableaux which change by ±1 whenever the

corners of an enclosure are swapped. As a result, Knuth graphs can be interpreted as the
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Hasse diagram of a graded poset defined by both the statistic (which acts as a rank function),

and the restriction that tableau P covers tableau Q if and only if they differ only by a swap

of the corners of an enclosure.

One such statistic which applies to any shape λ is the number of inversions within the

tableau, as discussed in Section 4.1.2. We refer to this poset as the inversion poset. Although

for any shape λ there is only one SYT with inv(P ) = maxInv(λ) and one with inv(P ) = 0,

the poset is not necessarily ranked, as demonstrated in Figure 6.2. In fact, there exist Knuth

graphs which cannot be the Hasse diagram of any bounded and graded poset, as noted in

Figure 6.3. However, the poset may be ranked in special cases, as discussed in Section 6.3.1.

1 2 3 4 5 6 7 8
1 2 5 6
3 4 7 8

Figure 6.2: An involution and the corresponding SYT P ; inv(P ) = 4. There are four

enclosures in the tableau, two of which have the corners 2 and 3, and two of which have the

corners 6 and 7. Swapping 2 and 3 or swapping 6 and 7 would both increase the number

of inversions. Therefore, P is minimal in the inversion poset, even though inv(P ) > 0, and

thus the poset is not ranked

If we restrict λ to have columns of even height, we can define statistics in terms of

matchings. There are only 5 involutive transformations (up to reflection) for matchings,

namely 4.11a, 4.11b, 4.11c, 4.11d, and 4.11h. Clearly, each of these transformations changes

the number of crossings by 1. Therefore, the number of crossings defines another poset

corresponding to Kλ when all columns of λ have even height. We refer to this poset as the

crossing poset. In general the number of crossings does not equal the number of inversions

(or its complement), as shown in Figure 6.3. However, they are related in special cases, as

discussed in Section 6.3.3.
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1 2
3 4
5
6

1 3
2 4
5
6

1 2
3 5
4
6

1 3
2 5
4
6

1 2
3 6
4
5

1 4
2 5
3
6

1 3
2 6
4
5

1 4
2 6
3
5

1 5
2 6
3
4

Figure 6.3: The inversion poset and the crossing poset as defined on Kλ, λ = 2, 2, 1, 1. The

number of crossings increases from 0 to 2, left to right. The number of inversions increases

from 0 to 5, top to bottom. The two posets are not isomorphic; for example the crossing

poset has 4 minimal elements, while the inversion poset has 1. Also note that the three

non-crossing involutions have degree 1. Therefore, no single path can contain them, and

thus Kλ cannot be the Hasse diagram of any bounded, graded poset

6.3 Special Shapes

By restricting the class of Young tableaux to specific shapes, we can find specialized results

on Knuth graphs which are not applicable in the general case.
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6.3.1 Hook Shapes and Young’s Lattice

There is a bijection between Young’s lattice and Knuth graphs in certain cases. Let ρr,c be

a rectangular integer partition with r rows and c columns, and let Yρr,c be the sublattice

of Young’s lattice induced by the Ferrers diagrams contained within ρr,c. Let Rr,c be the

L-shaped integer partition

(c + 1)

r copies
︷ ︸︸ ︷

11 . . . 1

(which has r + 1 rows and c + 1 columns), and KRr,c be the Knuth graph of Rr,c. (Shapes

conforming to Rr,c are also referred to as hook shapes.) We then have the following theorem.

Theorem 6.1. There is a bijection between SYTs with shape Rr,c and partitions contained

within ρr,c which preserves the edges of Yρr,c and KRr,c .

Proof. The bijections are as follows. Define a grid G from (1, 1) to (r + 1, c + 1), with

an SYT of shape R in the northwest corner such that it fills column and row 1. For all

1 < i ≤ r + 1, 1 < j ≤ c + 1, the positions (i, j) are marked as full or empty. If positions

(i, 1) and (1, j) form an inversion in the SYT, then mark position (i, j) as full; else as empty.

The full positions define an integer partition contained within ρr,c, with the origin to the

northeast. (See Figure 6.4 for an example.)

1 2 3 4
5
6

1 2 3 5
4 X
6

1 2 3 6
4 X
5 X

1 2 4 5
3 X X
6

1 2 4 6
3 X X
5 X

1 3 4 5
2 X X X
6

1 2 5 6
3 X X
4 X X

1 3 4 6
2 X X X
5 X

1 3 5 6
2 X X X
4 X X

1 4 5 6
2 X X X
3 X X X

Figure 6.4: An example with r = 2, c = 3
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First we show that the vertices are in bijection. Let i′ < i and let j′ > j. Then

(i′, 1) < (i, 1) and (1, j′) > (1, j). Therefore if (i, 1) and (1, j) are inverted, so are (i′, 1) and

(1, j′). This shows that the shape defined by the marked positions is a Ferrers diagram.

Following an edge in a Knuth graph changes the number of inversions in the correspond-

ing SYT by 1, so edges in KRr,c correspond to edges in Yρr,c .

It remains to show that edges in Yρr,c also correspond to edges in KRr,c . Let position

(i, j) be a corner in the Ferrers diagram. Then (1, j − 1) < (i, 1) < (1, j) < (i + 1, 1). If

(i, 1) and (1, j) are exchanged, the result will still be a SYT. We need to show that (i, 1)

and (1, j) are the corners of an enclosure; that is, we must prove that (1, j) − (i, 1) = 1.

The proof is by contradiction. Assume that there exists a value x such that (i, 1) <

x < (1, j). If x is at location (i′, 1), then i′ > i and position (i′, j) must be filled. But this

contradicts with (i, j) being a corner in the Ferrers filling. Similarly, x cannot be at any

position (1, j′).

Therefore we must have (i, 1) = k and (1, j) = k + 1 for some k > 1. k − 1 must be

above (i, 1) or to the left of (1, j), so (i, 1) and (1, j) form an enclosure and thus correspond

to an edge in KRr,c .

6.3.2 Crossings and Inversions in Non-nesting Matchings

Here we show that the crossing poset and inversion poset are isomorphic in the special case

of non-nesting matchings, modulo a complement of rank.

Note that by Theorem 5.2, the standard Young tableau corresponding to a non-nesting

matching is a two row tableau having shape λ = n, n.

Lemma 6.1. Given a non-nesting matching µ that corresponds to the standard Young

tableau P , i is at position (1, k) in P and j is at position (2, k) if and only if there is an arc

between i and j in the arc diagram of µ.

Proof. We prove the lemma by considering the recording tableau during the RSK algorithm.

Recall that the value of the left endpoint of an arc is the position of the right endpoint, and

vice versa.

When the value of a left endpoint is inserted, it must be larger than any other value seen

beforehand. A left endpoint must have a value greater than any previous right endpoint

(in any arc diagram), and it must also have a value greater than that of any previous
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left endpoint (or it would be nested underneath the arc associated with the previous left

endpoint). Therefore, the values of left endpoints enter the Young tableau at the far end of

the top row, and do not bump any elements.

The shape of the final tableau is (n, n), which implies that the values of the right end-

points always bump elements. A right endpoint must similarly have a value greater than

any previous right endpoint, and thus the position of bumped elements in the top row must

proceed from left to right. Together, these observations imply that the final tableau will

consist of the values of the right endpoints (the positions of the left endpoints) from left

to right in the top row, and of the values of the left endpoints (the positions of the right

endpoints) from left to right in the bottom row.

In order to avoid nesting, the kth left endpoint from the left must be connected by an

arc to the kth right endpoint from the left. This completes the proof.

Figure 6.5 gives an example of the lemma.

1 2 3 4 5 6 7 8

1 2 4 5
3 6 7 8

Figure 6.5: A non-nesting matching with arcs (1, 3), (2, 6), (4, 7), and (5, 8) corresponds to

the standard Young tableau with columns (1, 3), (2, 6), (4, 7), and (5, 8)

Theorem 6.2. Given a non-nesting matching µ ∈ M2n that corresponds to the standard

Young tableau P , the number of crossings in µ is
(n
2

)
− inv(P ).

Proof. A non-nesting matching with n arcs has shape λ = n, n. By definition, every one

of the
(
n
2

)
pairs of arcs are either crossing or in alignment. There are also

∑

1≤i<n i =
(
n
2

)

possible inversions in λ.

Consider two arcs (i, i′) and (j, j′) with i < j. These arcs correspond to two columns

with i above i′ and j above j′. By the properties of Young tableaux, i′ < j′.

If there is an inversion between the two columns, then i < i′ < j < j′. In terms of the

arc diagram, the two arcs must form alignment. (See Figure 6.6.)

If there is not an inversion, then i < j < i′ < j′. In terms of the arc diagram, the two

arcs must cross.
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Therefore, a non-nesting matching on [2n] whose corresponding SYT has c inversions

must have c alignments and thus
(
n
2

)
− c crossings.

1 2 3 4 5 6
1 2 4
3 5 6

Figure 6.6: 3 and 4 are inverted, and the corresponding arcs (13) and (46) are in alignment.

3 and 2 are not inverted, and the corresponding arcs (13) and (25) are crossed

6.3.3 Knuth Graph Diameter of Non-nesting Involutions

We next consider the two row shape (k + c), k with c > 0. By Theorem 5.2, these tableaux

correspond to weakly non-nesting involutions with c singletons and k non-singleton arcs.

Figure 6.7 gives an example.

1 2 3 6 7
4 5 8 1 2 3 4 5 6 7 8

Figure 6.7: A standard Young tableau with shape 5, 3 = (3 + 2), 3, and corresponding

involution with 2 singletons and 3 non-singleton arcs

Theorem 6.3. Let λ be a two row shape (k + c), k with c > 0. Then the diameter of Kλ is

k(k + c− 1).

Proof. Consider the length of the path between the involution with c singletons to the right

of a k-crossing and the one with c singletons to the left of a k-crossing, as demonstrated in

Figure 6.8.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 6.8: An example for k = 3 and c = 2. The path between these two involutions has

length k(k + c− 1) = 12

Because there are no weak nestings, the only involutive transformation that can change
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the position of the singletons is Involutive Transformation 4.11j. Involutive Transforma-

tion 4.11j allows a singleton to “jump” a non-singleton arc, but only if both endpoints of

the non-singleton arc are immediately adjacent to the singleton; in other words, the arc

must not be crossed by any other arc.

An arc can be removed from a m-crossing by one application of Involutive Transfor-

mation 4.11c followed by m − 2 applications of Involutive Transformation 4.11d (or their

reflections); thus an entire m-crossing can be deconstructed (or reconstructed) in
(
m
2

)
trans-

formations.

The total number of transformations required for the path described is
(k
2

)
to deconstruct

the k-crossing, ck to move each of the c singletons over all k non-singleton arcs, and then

another
(
k
2

)
to reconstruct the k-crossing. The total is k(k − 1) + ck = k(k + c− 1), giving

a lower bound for the diameter of the path.

An m-crossing consists of m pairwise crossing arcs, and thus consists of
(m

2

)
total cross-

ings. This is maximum number of crossings possible in an arc diagram with m non-singleton

arcs. Because there are no weak nestings, it is always possible to use Involutive Transfor-

mation 4.11c or 4.11d to reduce the number of crossings present, if any. Therefore
(
k
2

)
is the

maximum number of transformations needed to deconstruct (or construct) any arc crossings

in the arc diagram. Likewise, ck is the maximum number of transformations needed to move

the singletons, as this involves moving every singleton to the opposite side of every non-

singleton arc. Therefore, k(k + c− 1) is also the maximum path in, and thus the diameter

of, Kλ.

It is also interesting to note that the difference between the diameter and the number

of possible inversions is independent of the number of singletons.

The number of possible inversions is

k+c−1∑

i=c

i =
k(k + 2c− 1)

2
(6.1)

And the difference is

2k(k + c− 1)

2
−

k(k + 2c− 1)

2
=

k2 − k

2
=

(
k

2

)

(6.2)

When c = 0, i.e. for matchings,
(k
2

)
is still a valid lower bound for the diameter, and
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2
(k
2

)
= k(k−1) is still a valid upper bound. However these bounds are not tight. Empirically,

the diameter appears to be closer to
(
k
2

)
than 2

(
k
2

)
, yet is not always equal to

(
k
2

)
.

6.4 Permutations and Knuth Graphs

Given two permutations with the same shape λ, Proposition 4.2 states that it is possible

to transform them into each other through a sequence of Knuth transformations and dual

Knuth transformations. Knuth relations correspond to enclosures in the recording tableau

and dual Knuth transformations to those in the insertion tableau. Therefore the graph of

all Knuth and dual Knuth transformations for permutations of shape λ is the box product

of Kλ with itself, Kλ�Kλ = K2
λ.

K2
λ also appears within the Knuth graphs of shapes related to λ.

Theorem 6.4. Given a shape λ with column heights (c1, c2, . . . , ck), let µ be the shape with

column heights (2c1, 2c2, . . . , 2ck). Then Kµ contains an induced copy of K2
λ.

Proof. Recall the bijection g between permutations on [n] and balanced matchings on [2n].

Let the permutation σ ∼ (P,Q) be in bijection with the balanced matching β ∼ (R,R). By

Theorem 5.2, the column heights of R are exactly twice those of P .

Also recall that f(β) = g−1(β) for β ∈ BM2n. By Proposition 5.1, applying Involu-

tive Transformations 4.11a or 4.11b to β applies a Knuth transformation to g−1(β), and

applying the reflections of 4.11a or 4.11b to β applies a dual Knuth transformation to

g−1(β).

Any other involutive transformation exchanges a left and right endpoint of β, and thus

transforms β into a matching which is not balanced. Therefore, the vertices of Kµ which

correspond to balanced matchings induce a subgraph which is isomorphic to K2
λ.

A similar result applies to the Knuth graph of tableau shapes which consist entirely of

odd columns.

Theorem 6.5. Given a shape µ with odd column heights (2c1+1, 2c2+1, . . . , 2cn+1, 1, 1, . . . , 1),

let j be the number of columns of height 1 (j ≥ 0), and let λ be the shape with column heights

(c1, c2, . . . , cn). Then Kµ contains
(j+2

2

)
induced copies of K2

λ.

Proof. Let π be a balanced matching whose corresponding Young tableau has column heights

(2c1, 2c2, . . . , 2cn). Let π′ be the involution that results from inserting n singletons in the

middle of the arc diagram, between the left and right endpoints, as illustrated in Figure 6.9.
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1 2 3 4 5 6 7 8 9 10 11

1 2 4
3 6 7
5 10 11

8
9

Figure 6.9: A balanced matching with singletons inserted in the middle, and the correspond-

ing Young tableau

By inserting singletons in the center of π, they are nested below every non-singleton arc

in the diagram. Therefore, it is possible to extend every maximal nesting structure certificate

mi by adding i singletons, one for each k-nesting, for 1 ≤ i ≤ n. Therefore, by Theorem 5.2,

the Young tableau corresponding to π′ must have column heights (2c1+1, 2c2+1, . . . , 2cn+1).

By Corollary 5.3.1, the number of odd columns in the shape of the Young tableau must

equal the number of singletons in the arc diagram. If more singletons are inserted into π′,

they cannot extend the maximal nesting structure certificates any further, as there is at

most one singleton in every k-nesting. Therefore, if j additional singletons are inserted, the

resulting shape of the Young tableau will be (2c1 + 1, 2c2 + 1, . . . , 2cn + 1, 1, 1, . . . , 1) with

j columns of height 1.

If the j additional singletons are inserted either at the far left of the arc diagram, the

far right of the arc diagram, or with the other singletons in the middle of the arc diagram,

all left endpoints will remain adjacent and all right endpoints will remain adjacent.

By keeping the left endpoints adjacent, the possible Involutive Transformations 4.11a and 4.11b

are maintained, and by keeping the right endpoints adjacent, their reflections of 4.11a and 4.11b

are also maintained. Therefore, every arrangement of singletons which preserves these prop-

erties induces a subgraph that is isomorphic to K2
λ.

There are
(
j+2

j

)
=
(
j+2
2

)
ways to insert j additional singletons into the three viable

locations, and thus the theorem is proved.

Note: Similar results are possible for shapes whose columns, from left to right, consist

of columns of odd height, then columns of even height, and finally 0 or more columns of

height 1.



Chapter 7

Conclusions and Perspectives

In this chapter, we highlight topics encountered in this thesis that are promising areas for

further research.

7.1 Transposition of a Pair of SYT in Terms of Permutations

Section 3 defined the transformation σT on σ ∈ Sn such that if σ ∼ (P,Q) then σT ∼

(P T , QT ).

Given µ ∈ M2n, let µV be the result of applying Chen et al.’s [8] transposition trans-

formation on vacillating tableaux to µ. If β ∈ BM2n and f(β) = σ, then f(βV ) = σT .

(This observation appears in the Chen et al. paper, using different terminology.) Therefore,

σT could be defined in terms of vacillating tableaux, or Krattenthaler’s generalization to

growth diagrams [29].

However, both of these definitions rely on some form of tableaux and their shapes,

and thus at least indirectly on RSK. To our knowledge, there is no formulation of the

transformation in terms of permutations themselves.

Such a formulation could lead to a better understanding of oscillating tableaux, vacil-

lating tableaux, and growth diagrams. For example, consider the definition of oscillating

tableaux presented in Figure 7.1.

97
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1 2 3 4 5 6 7 8 9 10↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ∅, , , , , , , , , , ∅

Figure 7.1: For µ ∈M2n, consider the 2n+1 places between the vertices of the arc diagram.

The arcs above each place i form a balanced matching, βi. Let the oscillating tableau of µ

be a sequence of 2n + 1 Ferrers diagrams such that the ith diagram has the shape sh(f(βi))

Under this formulation, transposing the oscillating tableau is the same as transposing

the permutations f(βi) at each place i in the oscillating tableau.

7.2 Transformations on Ferrers Fillings

Complementing the previous section, it is possible generalize the transformations on per-

mutations presented in Section 3 to transformations on Ferrers fillings. As discussed above,

Chen et al.’s [8] transposition transformation generalizes σT . Any Ferrers diagram may

also be reflected around the antidiagonal, generalizing the transformation σRN−1. (See

Figure 7.2.) Denote this transformation on µ ∈M2n as µF .

X

X

X

X

X

1 2 3

4
5 6

7

8

9

10

(a) A matching µ

X

X

X

X

X

1 2 3 4

5

6
7

8

9

10

(b) µF

Figure 7.2: An example of transformation µF on a matching µ. Note that f(µF ) = f(µ)RN−1

Let D be a weighted Dyck path, and let D′ be the Dyck path with complemented weights,

as discussed in Kasraoui and Zeng’s paper [26]. If µ ∈ M2n is in bijection with D, define

µK to be the matching in bijection with D′. It can be shown that if β ∈ BM2n such that

f(β) = σ, then f(βK) = σR.
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Instead of weighting the down steps of Dyck paths, it is possible to weight the up steps,

as shown in Figure 7.3. Let µZ be the transformation of complementing these alternate

weights. Note that µZ = µFKF . For β ∈ BM2n such that f(β) = σ, f(βZ) = σN .

X

X

X

X

X

0

1

2

1

0

(a) A matching and its weighted Dyck path

after filling rows from bottom to top, weighting

the down steps

X

X

X

X

X

0 0 1

1 2

(b) Alternatively, columns can be filled from

right to left, weighting the up steps

Figure 7.3: Weighting up steps in a Dyck path

Together, these four transformations – µV , µF , µK , and µZ – generalize the four trans-

formations on permutations (σT , σ−1, σR, and σN ).

µK and µZ are of particular interest. Although σRN = σNR, it is not always true that

µKZ = µZK . Figure 7.4 provides an example.
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X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

(a) µ = µKZKZKZ =

µZKZKZK

X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

(b) µK = µZKZKZ

X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

(c) µKZ = µZKZK

X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

(d) µKZK = µZKZ

X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

(e) µKZKZ = µZK

X

X

X

X

X

1 2 3

4
5

6
7

8

9

10

(f) µKZKZK = µZ

Figure 7.4: Repeated application of µZ and µK

Repeated application of the compound transformation µKZ results in an equivalence

class of matchings with the same Ferrers shape, same number of nestings, and same number

of crossings. In the example above, Figures 7.4a, 7.4c, and 7.4e have 2 crossings and 5

nestings, while Figures 7.4b, 7.4d, and 7.4f have 5 crossings and 2 nestings.

7.3 Extending Results on Matchings

Many of the recent results on nestings and crossings, including those of Kasraoui and

Zeng [26] and Chen et al. [8], can first be formulated in terms of matchings and then

automatically extended to set partitions with the weak nesting and crossing interpretations

using the bijection of Proposition 2.1, or to singleton-free set partitions with the strong

nesting and crossing interpretations using the bijection of Proposition 2.2. This approach

can be generalized to apply to unrestricted Ferrers fillings and unrestricted arc diagrams,

as explored (for the strong interpretations) by de Mier [12].

If statistics could be found for the number of Dyck paths with semilength n and p peaks
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in bijection with matchings having c crossings and m nestings, for example, the bicolouring

bijections would immediately extend the results to set partitions and singleton-free set

partitions with the weak and strong interpretations, respectively.

Recall the arc diagrams for permutations briefly introduced in Section 1.3; Figure 7.5a

gives another example. In Corteel’s paper [10], the arcs above the axis (which are analogous

to a set partition) are considered under the weak nesting and crossing interpretation, and

the arcs below the axis (which are analogous to a singleton-free set partition) are considered

under the strong nesting and crossing interpretation. This is equivalent to creating two

Ferrers fillings from the permutation matrix by dividing the matrix using a zig-zag pattern

immediately below the main diagonal, as illustrated in Figure 7.5b. The cells strictly below

the main diagonal correspond to the arcs below the axis, and the cells weakly above the

diagonal, to the arcs above the axis. Similarly, Chen et al.’s triangular matrices can be

considered to be the part of a permutation matrix contained strictly above the main diagonal.

1 2 3 4 5 6 7 8 9

(a) The arc diagram of a permutation σ =

584296137

X

X

X

X

X

X

X

X

X

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(b) The permutation matrix of σ, divided

near the diagonal

Figure 7.5: Dividing a permutation matrix

This suggests dividing permutation matrices by walks on the grid of a permutation

matrix which are allowed to stray further from the main diagonal.
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7.4 Trees, Structured Matchings, and the Bicolouring Bijec-

tion Principle

Section 2.2 gives bijections between sets of structures and semilabeled structured trees, and

between sets of structures and series-reduced semilabeled structured forests. Section 2.3

examines the statistics of all three of these families of objects. The bicolouring bijection

principle of Section 2.4 is presented in terms of singleton-free sets of structures and struc-

tured matchings, but by the bijections of Section 2.2, can be restated in terms of semilabeled

structured binary trees and series-reduced semilabeled structured trees.

The connection between semilabeled structured trees and sets of structures could ben-

efit from further development. As mentioned before, the bijections can be related to the

Lagrange formal power series inversion formula (such as in [31]), one of the main tools to

enumerate fully-labeled tree-like objects. Our bijections may be of use in the inversion of

formal power series and in the extraction of the coefficients of the generating functions of

semilabeled structured trees. One interesting property of these bijections, however, is that

they do not in general preserve the number of labeled objects.

There are also connections with fully-labeled trees which deserve deeper study. Mah-

moud [32] has shown that the number of fully-labeled increasing plane trees with n + 1

nodes and k − 1 leaves is enumerated by the second-order Eulerian numbers
〈〈

n
k

〉〉
(see also

Bergeron et al. [2]). This implies a bijection between fully-labeled increasing plane trees

with n+1 nodes and k internal nodes and matchings on [2n] whose corresponding weighted

Dyck paths have k peaks. (Chen and Ni [7] give a bijection between fully-labeled increasing

plane trees with n + 1 nodes and matchings on [2n]; their bijection does not transport the

statistic between internal nodes and peaks as presented, but can be modified such that it

does.)

The bijections of Chen and Ni [7] and of Diaconis and Holmes [14] (or alternatively Erdös

and Székely [15]) can be combined to create a bijection between fully-labeled increasing plane

trees with n + 1 nodes and unordered semilabeled binary trees with n + 1 leaves.

These numerous connections suggest, for example, that there may be a form of the

bicolouring bijection principle that applies to bijections between families of trees, or that a

more general framework of bijections between families of semilabeled and fully-labeled trees

could be developed.
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