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Abstract

Protein-protein interactions are important catalystsni@ny biological functions. The interaction
networks of different organisms may be compared to invasighe process of evolution through
which these structures evolve. The parameters used farimfe models for such evolutionary
processes are usually hard to estimate.

This thesis explores approaches developed in algebrdistista for parametric inference in
probabilistic models. Here, we apply the parametric infeesapproach to Bayesian networks rep-
resenting the evolution of protein interaction networkr#precisely, we modify the belief prop-
agation algorithm for Bayesian inference for a polytopdirsgt We apply our program to analyze
both simulated and real protein interaction data and coenber results to two well known discrete
parsimony inference methods.
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Introduction

Protein-protein interactions are important biologicakpbmena, which participate in many major
functions in cells [[1l1]. Most proteins carry out their fuiocts by interacting with other proteins.

The interactions in a single species form a biological nétwd he study of these interactions is
crucial to understanding such networks.

Evolution is an important field of research in biology, anthig in biology makes sense except in
the light of evolution [[13]. However, understanding thelationary history of biological networks,
such as the network of protein-protein interactions, Ikatividely open problem[[26].

There has been tremendous progress in data acquisitionolecatar biology, and through this, the
protein-protein interaction networks for current spetiase been made available to us 1[27]. This
opens the way for methods in computational biology to be tsédfer the evolutionary history of
protein-protein interactions networks.

The purpose of this thesis is to give a brief overview of thekndone on the inference of the
evolutionary history of these interaction networks, anddove as a preliminary exploration of an

algebraic statistics approach to the problem of inferrment [33].

The first part of the thesis is an introduction to mathemhtiwadels in molecular and evolution-
ary biology. The basic concepts of protein-protein inteoa@s and structures used to model their
evolution are given here. Furthermore, we discuss vargetsiques used to infer ancestral protein-
protein interactions.

The main emphasis is on probabilistic graphical models aitigular Bayesian networks on trees,
which are the objects of interest for the thesis. A probsiiiliapproach to inference is desirable
as probabilistic models are more realistic models of ei@miutBayesian networks have been used
for the prediction of ancestral protein-protein interacs, and have compared well with other tech-



niques [35]. Apart from probabilistic techniques, we al@zdss some deterministic approaches to
the problem, and the principles that govern them.

The use of probabilistic models also implies that a varidtgfiicient algorithms are available to us
for inference. For example, the forward algorithm for hiddéarkov models is a special case of a
family of algorithms known as sum-product algorithms. Ageom simple inference, there are also
optimization techniques available to us on probabilistmdels. This makes these models versatile
and relatively easy to use.

The second part of the thesis an algebraic statistics pbiiew on probabilistic inference, intro-
duced by Sturmfels et al.[ [33]. Approaching computationaldgy through algebraic statistics is
a relatively new idea, which develops naturally from the oprobabilistic models for inference,
and has been applied to sequence alignment using hidderoMar&dels [[5]. The main motiva-
tion behind this approach is that sum-product algorithnesdypolynomials when the parameters
are treated as formal variables, and every probabilistidehoan be represented by a polynomial
map. The algorithms for probabilistic graphical modelsistate well when we move the problem
of inference to algebraic statistics, which leads to patdémimference algorithms.

The final part of the thesis applies methods in algebraidcstita to Bayesian networks which de-
scribe the evolution of protein-protein interactions. Tinethods are applied to both simulated data
and data from real interactions. The results are comparagtlidknown deterministic approaches
to inference, and to theoretical calculations of compjekibunds. A brief summary of our results

and the major issues we face is given at the end.
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Chapter 1

Introduction to Computational
Molecular Biology

The objective of the thesis is to reconstruct ancestrakpranteraction networks. To do so, we need
a working definition of certain biological terms which ocdrequently in bioinformatics research,

and which serve as a basis to the system we are concerned with.

1.1 Genomes, genes and proteins

A genomas a molecule of DNA made of four nucleic acids. It is composechromosomeswvhich
carry genes. The genome is present in the nucleus of eaatf esllorganism[[23]. It is the support

of genetic material.

A geneis a genome segment that encodes a protein [23]. Genes cagdok through a process
known astranscription to create anessenger-RNArhe RNA molecule igranslatedthen into a
protein.

Proteinsare macromolecules formed by sequences of amino acids.araéyportant units for bio-
logical functions, often used as catalysts for biologiealations, providing structure to components,

or signalling cells etc.

As stated before, proteins are formed by translation of al Ridlecule. Substrings of siz& of
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(a) Transcription from DNA to create m-RNA (b) Translation of m-RNA to protein

Figure 1.1: From genes to proteins

the RNA, known agodons encode amino acids, and a series of codons encodes the pvbtda.

1.2 Protein-protein interactions

A protein-protein interaction occurs when two or more pretédind together to carry out a biologi-
cal function [11],25]. Protein-protein interactions (whiwve shall refer to by protein interaction for
convenience) participate in many major biological proessand this makes their study interesting.

herfere Protein 2

Protein 1

Figure 1.2: A Protein-Protein Interaction_[43]

Protein interactions are an examplengftworksin biology [26]. Each protein is represented by a
vertex, and an edge is present between two vertices if aiydfahe corresponding proteins interact.
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Figure 1.3: A Protein-Protein Interaction network in thestgmn-Barr virus [[6]

Some proteins that evolve from the same ancestral prot@iedcaprotein family may show a large

number of interactions with proteins of the same type.

1.3 Evolution

Evolution is the process through which inherited traitsngamisms change over time. Evolutionary

information is stored in the genome, and is inherited by thikeldrom the parent.

Speciation is the process through which a species evolteswo or more descendant species.
Each species has its representative genome. Once a spedatiurs, each species evolves along

its own branch, independently of the other species.

Genes within a genome evolve through duplication, speciaand loss [[23]. Duplication creates
two copies of the gene in the same genome. Through spegi#ti®otwo new genomes inherit the

gene.
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H. sapiens

M. musculus

G. gallus

D. melanogaster

A. mellifera

Figure 1.4: Evolution of humans, mice, chicken, fruit fliegldoees from a common ancestor

Gene A
Ancestral . .
species Duplication
Gene Al Gene A2
Speciation
Gene All Gene A21 Gene Al2 Gene A22
Species A Species B

Figure 1.5: Gene evolution through speciation and duptinat

Gene loss occurs after a species inherits a gene. The geamljgmgets duplicated, and, due to
the accumulation of mutations on one of the duplicated glee copy either loses its function
and becomes pseudogeneor it develops a new function_[23]. Genes, through messeRHA,
produce proteins. It is reasonable to assume that chandgles gene sequence will lead to changes
in the protein produced by that gene. So, proteins are asktoreyolve in parallel with genes.

The evolution of proteins also affects protein-proteireiattions. Following a speciation event of
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Figure 1.6: Gene loss. Genes have been lost over the bramarksd with L at the leaves.

two proteins which may have interacted in the ancestralispetheir immediate descendants in
each of the new species may start interacting. If a protdisisin a new species during speciation,
then no new interactions with that protein are possible. digication of a protein means that the
two resulting copies of the protein in the species can p@ininteract with every other protein
that their parent was interacting with.

A major question asked by biologists is what biological miation we can infer about species
that are now extinct. The main obstacle to answering thistipre is that we do not know the
evolutionary process well enough to predict the path ofugiah with certainty.

1.4 Mathematical models in evolutionary biology

This section discusses basic mathematical models thasaceto represent the evolution of species,
genes, proteins, and protein interactions.

1.4.1 Phylogenetic trees

The main combinatorial object of interest in phylogeneiicthe tree.

Definition 1. A tree is a connected, undirected, acyclic graph.

Nodes of a tree with degree greater thaare calledinternal nodesand nodes with degreeare
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calledleaf nodesIf a node of the tree is oriented in such a way that all edgesaentated towards

or away from it, the node is called tihgot of the tree. We can also define directed trees, by assigning
a direction to each edge. The source of a directed edge edcaflarent and the sink is called a
child of the parent.

We say that a tre€ is defined on the alphabet of leavkdf the setL forms the set of leaves of the
tree.

Trees are a very natural and simple models for evolutioneé/ rooted tree, and an orientation of
the edges such that each edge is directed away from the koo, @ach edge, the child is assumed
to evolve from the parent. For an internal nadia the tree, its descendants are defined to be the set
of nodes that lie on the directed paths frono the leaves in the subtree rootedvatncluding the

leaves.

Species tree

In biology, the set of species that are currently alive atleda@xtant speciesThe set of species
that have died out, and through which evolution progressecaalledextinct speciesWe define a
species tree as follows.

Definition 2. Let X be a set of extant species. species treés a tree defined on the alphabet of
leavesX.

Alternately, a species tree is a tree defined on a set of hgpicth extinct specie¥’, with leaves
X, such thaty N X = (), and a directed edge exists between each pair of nodes € X UY
when the species, is a direct descendant of the specigsThus, every internal node in the species
tree represents an ancestral species, and the branchingraemal node to two edges represents
a speciation. For example, Figurfe 1.4 is a species tree logpecies. Species trees with full
information about the species are rooted and binary. Homvéwi information might be hard to
obtain, and very often, we resort to non-binary or unroofeeties trees on a set of extant species.

Gene tree

The evolution of individual genes can also be modelled byea.t"We can define a gene tree as
follows.
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Definition 3. Let X be a set of genes belonging to extant speciegerfe treds a tree defined on
the alphabet of leaveX'.

Each internal node in the gene tree represents an ancestig| and the branching at each internal
node is either a speciation event or a duplication event.

Gene trees, like species trees, may be rooted or unrooted.rdidt of a gene tree, if it exists,

corresponds to the most recent common ancestral gene béakines at the leaf nodes.

Gene trees are often constructed with weights on the eddreseTweights represent the amount of
sequence divergence between the two genes on either ergleddge.

Reconciliation

An important problem is the identification of the specied #wch gene in the gene tree belongs to.
For the leaves, this is straightforward, since we only hagtarg genes, and we know the source.
However, the internal nodes of the gene tree are not labeftddspecies names. Thus, we use the
species tree for the set of extant species, and identifynteenal nodes with ancestral species in the
tree.

At each of the internal nodes in the gene tree, we could hadelggene duplication, speciation, or
loss. If we had a duplication, the children will belong to #ame species as the parent. If the node
was a speciation node, its children will belong to differepécies. Losses occur at nodes in which

one of the two children is lost, i.e. the gene is not presetttahbranch of the tree.

The process of reconciliation identifies each internal rafdegene tree with a species in the species
tree, and associates a speciation or duplication eventcto made in the tree[ [7+-9]. This is often
done with respect to some optimization criterion.

In the following example, the gene tree is given, with whitexds labelled with small letters
a,b,c,d, e representing ancestral genes, and the solid boxes represextant genes. In the
species tree, the capital letteds, A5, A3 represent ancestral species, and the numbers represent
extant species. The numbers at the leaves of the gene tra#yidsach gene to the species it be-
longs to. Denote the species tree$yand the gene tree liyy. The edges of a tre€ will be given

by E (T'), and the vertices by (T'). Let Lg (X) be the set of species of the leaves in the subtree
rooted atX € V () of the species tree. Similarly, I&i; (X) be the set of species of the leaves in
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Figure 1.7: Reconciliation of a gene tree with a species Bedd nodes are speciations, and empty

nodes are duplications.

the subtree rooted & < V' (G) of the gene tree.

Definition 4. [9] A reconciliation is a mappind.C A : V (G) — V (S) such thatLCA (X) =U
for X € V (G),andU € V (S) is the lowest node &f such thatL¢ (X) = Lg (U).

This reconciliation technique minimizes the number of tigilons, losses, and the total number of
duplication and loss events][9]. In the reconciled geneitrége example, solid internal nodes rep-
resent speciating genes, and white ones represent dimgicggnes. Branches markédrepresent
losses. Nodéd in the gene tree has to at least map to spediz@ the species tree or higher, since
genes of specie3 could not have evolved from3. If d was mapped toll, however, the number

of duplication and loss events would increase.

1.4.2 Protein interaction networks

The protein interaction network for a set of proteins in acgg®can be modelled by a@meraction
graph
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Interaction graph

Definition 5. LetV be a set of proteins in some organism, anidbe the set of all interactions, such
that for any two proteins andv in V, we say thafu, v} € E if we have an interaction between
andv. The interaction graph for that set of proteins is the graphk= (V, E) with vertex se¥” and
edge seft.

If the setV is the entire set of proteins in the organism, then we get titieeeprotein interaction
network for the organism. Small families of proteins maywldense subgraphs with few edges
with proteins in other families.

Proteins can also interact with copies of themselves. Shiehactions are calledomodimer inter-
actions If proteins interact with other proteins, the interaci@re calledheterodimer interactions

Given a set of protein interaction networks of different@ps, finding the protein interaction net-
work in the ancestor would naively translate into identifyisimilar proteins in all species, and
finding the induced subgraph. This is almost akin to solvimg gubgraph isomorphism problem,
which is NP-complete. This, of course, does not take int@actprotein duplication and loss.

Interaction tree

A more useful idea to model the evolution of protein intei@tt involves making the assumption
that each protein interaction is independent of other awliewns. This leads to the concept of an
interaction tree, first described by Pinney et(al] [35].

Definition 6. An interaction tree is a rooted, directed tree of maximunreegutdegres, which
describes the evolution of protein interactions. The naafean interaction tree represent possi-
ble protein interactions. The branches of an interactiometrepresent the effect of duplication,
speciation and loss of proteins on the evolution of prof@itein interactions.

Interaction trees are constructed for one or more familfggrateins over the same set of extant
species from the corresponding gene trees that represeavdiution for these families. The max-

imum outdegree condition stems from using rooted gene tuitbsbranch lengths given for each

edge, as will be seen during the construction of the intenadtee.
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Given a rooted, edge-weighted, reconciled gene t*der a gene family, and the corresponding
proteins, it is possible to construct the interaction ti@dlie proteins in this family as follows.

(i) For every two proteinsi, B € V (G), not necessarily distinct, in the same species, add the
node{ A, B} to the vertex set of a new grafih

(i) For a duplication, where the edge to nodeis shorter than the edge to nodkin the gene

tree, to give proteinsl; and Ay, add edges from the noded, B} to the nodeg A;, B} and
{AQ, B} toZ.

(iif) For a speciation of nodel to A; and As, and of nodeB to B; and Bsy, where the proteins la-
belled1 and2 belong to different species, add edges from B} to { A1, B1} and{ Az, Bs}.

(iv) Foranode{A, A}, if A duplicates to gived; and A5, add edges fromM A, A} to {A;, A },
{Al, AQ} and{Ag, AQ}

(v) Delete all isolated nodes.

d Reconciled gene tree b Interaction tree representing evolution of all
for a family of dimerising proteins. potential protein-protein interactions.

FL 5% FEN] N ES #E%

evolutionary " observation a/. homodimer o olo heterodimer
process grng s s process interaction interaction

Figure 1.8: Constructing an interaction tree from a gene {&5]

The treeZ thus constructed is the interaction tree of the two protamilies. The evolution of
homodimer duplications is represented in the tree by nodibsan outdegree df.



CHAPTER 1. INTRODUCTION TO COMPUTATIONAL MOLECULAR BIOLOG 14

Similar models have also been proposed for describing tlesictions between two different fam-
ilies of proteins [15]. In the next chapter, we shall see hbeseé models are used to infer the

evolutionary history of ancestral protein-protein intgians.



Chapter 2

Inference of Ancestral Characters

Inference of ancestral characters in evolutionary biologykes use of the tree structure of evolution.
Such a structure implies that the evolution of two disjoirdrzhes is independent of each other.
Inference techniques can be broadly classified into detestiu and probabilistic approaches.

2.1 Deterministic Approaches- Parsimony

The principle of parsimony states that the process of exslwtould be carried out with the minimal
number of character changes in the evolutionary tfeé¢ [1[é dhange of a character from a parent

to a child is called a transition.

2.1.1 Fitch Parsimony

Fitch parsimony is a simple concept which states that thie gia¢volution is the one with the least
number of changes_[18]. This means that there is no preferfemany transition. The algorithm
for constructing an evolutionary scenario which obeyshH-pgarsimony minimizes the number of

such transitions in the model.

15
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Algorithm for Fitch Parsimony

Input: TreeT, charactelC, at each leaf. in the tree, sef x of possible characters at each
nodeX.
Output: CharacteilCx at each internal nod& of the tree, such that the number of
transitions is minimized.
foreach NodeX in 7 do
if X ¢ Leaves (T) then

if Ny echidren ot x Cv 7 0 then
| Cx = yechidren ofx Cv
end
else if(y cchidren ofx Cv == 0 then
| Cx = Uyechildren ofx Cv
end
end

end

changes = 0;

foreach NodeX in 7 do

if X == Root (T) then
Choose characterc Cx;
Cx ={c};

end

else

if Cx N CParent(X) 7é 0 then
Choose charactere Cx N Cpgrent(x);:

CX = {C};
end

else
Choose characterc Cx;

CX = {C};
changes+;
end

end

end
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The algorithm for Fitch parsimony on a tree is executed in @ $tep process. The upward pass
compiles a set of all possible characters at a node. The dawhpass chooses characters from

these sets that minimize the number of transitions. The pkagiven shows a Fitch parsimonious

{0}

Figure 2.1: A tree labelled with Fitch parsimony, given thbdls at the leaves

labelling of the tree obtained from the algorithm. Given évidence at the leaves, we have only

two gains in the entire tree.

Fitch parsimony is the term used for applying the concepinary trees. For non-binary trees, the

corresponding concept is called Fitch-Hartigan parsimony

2.1.2 Sankoff Parsimony

The main drawback of Fitch-Hartigan parsimony is that theditions of all characters are consid-
ered equally likely. Sankoff parsimony seeks to remedy lthigation by assigning costs to each
transition, and stating that the most likely scenario wddde been one which yields the least total

cost [37.38].

The Sankoff parsimony scenario can be computed using dgnamgramming. It then remains to
determine the cost of each transition. In particular, theeda which all transitions are assigned

equal costs reduces to Fitch-Hartigan parsimony.
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2.1.3 Dollo Parsimony

Another special case of Sankoff parsimony is called Dollsipaony. The Dollo principle states
that complex charactersvhich were formed during evolution are very hard to gain, felgtively
easy to lose. Dollo parsimony is a condition on the existarcabsence of a complex character.
Thus, we only have binary transitions, frditabsence) ta(existence), or vice-versa. Furthermore,
since characters are considered hard to gain, evolutis@ayarios are restricted to have at most

one gain, while minimizing the number of losses.

In terms of Sankoff parsimony costs, the Dollo argumentasponds to the condition that the cost
of going fromO to 1 is infinite. On a tree describing evolution, this means th#te character is
present at two leaves, since we could have had at most ongthainharacter must be present at
each node which lies on the path between the two leaves.

{1}

Figure 2.2: A tree labelled with Dollo parsimony, given thbéls at the leaves

The example given is the same tree and leaf characters ugkstiate Fitch parsimony. However,
since Dollo parsimony does not allow more than one gain, wdaced to have three losses instead
of just two gains. Also note that all the nodes on a path betviwe nodes with the charactérlso
have the charactdr.
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Algorithm for Dollo Parsimony

The following algorithm for Dollo parsimony takes advardagf the fact that the character is present

at every node on a path between two nodes that already havadhacter.

Input: Tree7T, binary character€’;, at each leaf. in the tree.
Output: Binary character§’'x at each internal nod& of the tree, such that the number of
0 — 1 transitions is at most, and the number of — 0 transitions is minimized.

foreach Leaf X in 7 do
if Cx == {1} then
foreachLeafY in 7,Y # X do
if Cy == {1} then

foreach Node/N on the path fromX to Y do

| COn =A{1};
end

end

end

end
end
foreach NodeK in T do

if Cx # {1} then
| Cx ={0}

end

end

2.2 Probabilistic Approaches- Bayesian networks on Trees

Probabilistic inference techniques aim to compute theatoiity of existence of an ancestral char-
acter. The key idea is that characters in evolutionary gilevolve along the branches of a tree,

and each character evolves from its parent through specsgtduplications and losses.

Along a branch, the character at the parent node will affectharacter at the other end of the edge.
Evolution over the edge can be modelled by a stochasticiti@msnatrix, by associating each end
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of the edge with a random variable. For example, on an €dges Y, we can associat& and
Y to a random variable, where the characteXatan take values, x1, x2 and the character at
can take the valueg, andy,. The transition matrix over the edge, which describesmrditional
probability distributionfunction, is

Zo T x2

Yo | Szo—yo  Szi—wyo  Sza—wo

Y1 \ Szo—y1 Szi—yr Sza—uyn

where eacly,, ., which we may also cal,,,, for convenience, represents the probability

Pr (Y =y;|X = ;) (See Appendix[B for a short introduction to notation used fiabpbility
theory). It is immediately apparent that the columns sur ice. Zj Sz;—y; = 1. Atthe root, we
have aprior probability table [p1p2 ... p;] instead of the matrix, which gives us the probability of
each state of the root. This table meets the conditionXhat, p; = 1.

The object we now have is a directed, rooted tree, with eadh associated with a random variable,
a conditional probability distribution over each edge, amior probability distribution at the root.
This is aprobabilistic graphical modelMore precisely, the model we obtain iBayesian network
on a rooted, directed tre¢_[30].

Probabilistic graphical models, which include hidden Marknodels and Markov chains, have been
widely studied, and applied to problems in machine learnsagial networks etc. In the field of
computational biology, these models are used for sequdigcereent, inferring ancestral population
structures etc[]1]. Algorithms to apply on these models lase been well developed, and make
them very attractive to use.

The directed edges on the underlying graph of a Bayesianonket&present a causal relationship
between the two events associated with the nodes. For ezaapledge from nod& to nodeY
means that the outcome of eveXitdirectly influences the outcome of eveyit Also, for a path

X — Y — Z, if there is no other path fronX to Z and the outcome oY is fixed, then the
outcome of evenfX does not influence the outcome of eveéht Since we shall be working with
directed rooted tree models, there is at most one uniquebgditveen any two nodes, and each node
(except the root) has a unique parent.
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2.2.1 Joint and prior probability distributions

Thejoint probability distributionof the Bayesian network describes the probability of aldam

variables in the network being assigned a specific valuen&lby,

Definition 7. [30] Let a set ofn discrete random variable¥ = {X;, X, ..., X,,} be specified
such that eachX; has a countably infinite space. A function, that assigns armember

Pr (X, =x1,Xy = x9,...,X,, = x,) to everyn-tuple (z1,zo,...,z,), such thatz; is chosen
from the space oK, is called a joint probability distribution of the randomniablesV if it satisfies

the following conditions.

(i) For everyn-tuple(xy1,xzs,...,x,),

0§PT’(X1 :.Il,X2:$2,...,Xn:l‘n)<1.

(i) If we sum over all possible-tuples(zy,zo, ..., x,),

Z Pr(Xl:wl,ngwg,...,Xn:xn)zl.
(m17m27~~~7$n)
For a general case, when we do not have a Bayesian netwolkjrihprobability
Pr (X, =x1,Xo = 29,...,X,, = x,,) can be written as follows,

Pr(X)y=z1,Xo=29,..., X, =x,) = HPT (X = 2| Xip1 = Tig1, .., X = ).
i=1

For a Bayesian network, however, since the outcome of eamtt évdirectly dependent only on its

parent,

Pr(X,=a1,Xo=a9,..., X, =x,) = HPr (X; = x;]X,, = x,, whereX,, is the parent off;).
=1

Using the conditional probability distribution matriceisen along each edge, we can find the joint
probability distribution of all the random variabl&sin the Bayesian network.

Having completely defined a Bayesian network, we can proteedtract information from it. In
the absence of any evidence, i.e. when every random vaiGabl¢éake any possible value, we can
create a prior probability distribution over the networkig can be done by iterating the following

steps.
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1. Foranedg& — Y, find Pr (X = x) for every valuer that the random variabl& can take.

2. SetPr (Y = y) for every valuey that Y can take to be

> vatuesof = 7 (Y = y|X = z) .Pr (X = z), where the conditional probability
Pr (Y = y|X = x) can be looked up from the probability matrix on the edge.

3. Repeat for every child df .

This gives us the probability of every value at each node wierdo not know the state of any
random variable in the system. This is known asyihier probability distribution of the network.
The next section deals with the case when we do have someniafion about the state of the

system.

2.2.2 Inference of marginal probabilities

An evidences an assignment to a random variabl& . It corresponds to saying th&r (X = z) =
landPr (X # x) = 0. An evidence seY is a set of random variables which have been assigned
some evidence. We will use the notatiefor a|Y| — tuple that represents the assignment of each
random variable ifY’, and will denote this by¥ = e. The entire set of possible assignmentbat

can be given t&” will be denoted by¢. This set is called thetate spacef the model.

Definition 8. Themarginal posterior probabilitgf a nodeX being in stater, given an evidence
setY and evidence, is the probability that we observe the random varialMeto be in stater,

conditioned on the evidence, & (X = z|Y =e).

Given a Bayesian network on a trgeon the set of nodeg’, with evidence seY, and evidence,

it is possible to find the marginal posterior probability afeeadom variable/nod&” ¢ Y being in
statex. This is equivalent to letting the other variables (il€\Y U {X'}) attain any value, which
can be done by summing over all other cases, and restridtmgalues ofX and the variables in
Y. To understand this, let us introduce some notation. Ingéion, unless stated, the random
variable of interest at nod& will also be calledX, and the evidence set will Bg.

We define dabelling of the nodes of the graph as an assignment of all random lesiali hus,
labellings ardV |—tuples that represent the outcomes for all possible ev@htsset of all possible
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labellings will be denoted by. For any labelling € £, the label of a single nod@, i.e. the value
of the random variable associated@aaccording to that labelling, will be denoted by .

An e-consistent labellings a labellingl in the setl : e, which denotes the set of all labellings in
L such that the evidence nodes¥Yhhave been labelled with € £. We can extend this definition
to ane U {z} consistent labelling in the sé : e U {z}, the subset of labellings if : e such that
the nodeX is labelledz in all elements of that set. We define the probability of allatxp! € £ as
follows

Pr(l) = pi,oo H Siplo> (2.1)
P—QEeFE

wheres;,;, denotes the transition probability of going from the lahedf the nodel, to the label
of its child J, andp;,...; is the probability that the labelling of the rootiis,;. We can then define
the marginal probability ok = z as

1
PriX=z]Y=¢)==————+ Pr(l).
Diece Pr(l) zec%;{x}
Thus, the marginal probability of = x is simply the probability of observing at X conditional
on the evidence. We sum over all possible states of the ravdoiables except foX and for the

evidence nodes.

Example

In the following example, the edges are oriented away froertiot. Each random variable is
binary, the conditional probability distribution matrik, is assumed to be the same over each edge,
and the prior probability at the root is taken tob&. The evidence nodes ¥ are(A, B), and the
evidence ig1,0). The probability of nodeD being in statel and the evidence, is

Pr(D=1,(A,B)=(1,0)= » > Pr(D=1,A=1,B=0,RC).
R={0,1} C={0,1}

On normalizing this with the following term, we get the maxgi probability of D being in statel
conditioned on the evidence.

Pr(A=1,B=0)= > > Y Pr(D=1,A=1B=0,RC).
D={0,1} R={0,1} C={0,1}
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T= 0.1 0.7)

0.9 0.3

Prior = (0.5 0.5)

A {1} C B {0}

Figure 2.3: A small Bayesian network, with the conditionadlgability matrix over each node, prior

probability at the root, and evidence.

Thus the marginal probability dD being in state conditioned on the evidence is

Pr(D=1/(A,B)=(1,0) = £

The normalization term is called thearginal probability of the evidenc®r (Y = e). Formally,
the marginal probability of the evidence for any evideite- e is given by
Pr(Y =e) = Z Pr(X=zY=e) = Z Pr(l). (2.2)
xeSample space ok leL:e

This is a constant for an evidenegirrespective of the nod& we are summing over.

Since all the steps, excluding the normalization, congienty sums and products, we can infer the
marginal probabilityPr (X = z,'Y = e) through repeated sums and products. By using the fact
that an initialized node induces conditional independexfcedes connected through through it, to
consider the probability oK = z, we can take the product of the probability of the tree roeted
X, whenX = z, and the probability of the rest of the graph, both conddloon Y = e. Each

of these can be recursively calculated. The stopping dondibr the recursion is specified by the
evidence, which fixes the probability at the nodes in theewig set. Thus, we getsam-product
algorithmto infer marginal probabilities. One variant of this algbm, proposed by Peafl [34], is
the belief-propagation algorithm, which passes the outptite sums and products as information
to be used for the next level of recursion.
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Sum-product algorithms are generalizations of many wided algorithms for probabilistic graph-
ical models, such as the forward algorithm for Hidden Markmdels.

2.2.3 Inference of maximum a posteriori labelling

We defined the marginal probability of an evideras) . ... Pr (I). Since the probability of a la-
bellinglis Pr (1) = [[p_gcp Siplg, €aCh summand ifPr (Y = e) corresponds to an explanation
of the evidence. We get a unique marginal probability of enik if and only if we have no directed
path from one evidence node to another. Otherwise, due tiul#inkov property, the probability of
the evidence of those two nodes will be independent of edwr.ot

One optimization question that we could ask is which labgllinaximizes the probability of seeing
the evidence. This question is almost equivalent to findiregrhost probable evidence consistent
labelling. The second question is answered by the largestsund in) ;... Pr (1). This labelling

is not necessarily unigue.

Definition 9. Themaximum a posteriori probability labellingf an evidence (M AP (e)) is a la-
belling of the nodes of the Bayesian network which maxintiiegrobability of seeing the evidence.
MAP (e) = argmax {Pr (1)} (2.3)
lEL:e
There can be more than one internal labelling which giveh@same maximum a posteriori prob-
ability for a given evidence. This is can be seen from the tlaat Pr (1) is simply the product of

the transition probabilities along each edge, and if we ghahe order of these transitions, we will
still get the same probability.

There may be also be more labellings that maximize the pilityadf the evidence than evidence
consistent labellings of maximum probability. To illugeathis, let us look at the case of the
Bayesian network in Figuré_2.3. The labelling of the intémmades which maximizes the prob-
ability of the evidence iR = 1 andD = 0. Notice thatC is not an evidence node, nor is it an

internal node.

Since both labellings give us a maximum probability of ewicke, which equal§.2205, and since
this probability is independent of the label@t we can effectively prune the tree@t and look at
the rest of the tree. At the same time, the probabilities eflétellings are different. Whefi' is
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R {1} (01 o7 R {1} (01 o7
=\os o3 =\os 03
Prior = (0.5 0.5) Prior = (0.5 0.5)

A {1} c {1} B {0} A {1} c {0} B {0}
(a) C labelled witht (b) C labelled with0

Figure 2.4: Example of non-unigueness of optimal labedling

labelled1, the probability of the labelling i6.19845, while the probability of the labelling witld’
labelled0 is 0.02205.

One way to resolve this ambiguity is to take the most probé&dbelling instead of looking for

labellings that maximize the probability of the evidence.

The belief-propagation algorithm can be adapted to do shieeMAP problem, by using a max-
product formulation or a max-sum formulation on the loggmaeter space instead of the sum-
product formulation. Then, the probabilities at the roategi us the maximum a posteriori proba-
bility of the evidence. By backtracking, we can find the pblssiabellings that give us the same
maximum a posteriori probability. As in the case of the suwdpct algorithm, the max-product
formulation of belief propagation is a generalization dfartalgorithms used in probabilistic graph-

ical models, such as the Viterbi algorithm.

2.3 Inference in Ancestral Protein-Protein Interaction Neéworks

The inference techniques discussed in the previous semdioall be used for inference of ancestral
protein interactions. To apply them, we work on the intacerctree, which is created from a rooted,
binary gene tree which has been reconciled with the spe@es The critical point is that the tree

structure removes the dependence of an interaction orbliags.
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2.3.1 Input

The binary information at the leaves, indicating the preseor absence of an interaction in the
extant species, is usually computed using sequence aligrigahniques. A cut-off score is decided
using statistical data representing the strength of intiEnas as a function of the score. If the score
of an interaction is greater than the cut-off, then the atBon is assumed to be present (binary label
1), else it is assumed to be absent (binary laheSuch techniques can also be used to reconstruct
ancestral protein sequences, and estimate the strengthaoicastral interaction [19,35].

2.3.2 Parsimony on the interaction tree

Parsimonious techniques can be directly applied to theaaten tree using the evidence. It is
common to use non-parametric versions of parsimony, suétites or Dollo parsimony, for infer-
ence. Other non-parametric variants have been used forarisop against probabilistic models
and inference through sequencing datal [[29, 35].

2.3.3 Bayesian inference

A probabilistic approach to the inference of ancestralggmprotein interactions is desirable since
we have to infer data that we can not compare to what actualbpéned. Thus, a probabilistic
inference technique gives us an estimate of whether arattten was present or absent, instead of

outright postulating its existence, as in parsimony.

The work of Pinney et al. on bZIP transcription factors |[3§]based on a well studied family
of proteins. These are proteins that bind to specific DNA sages and control the transcription
process from DNA to messenger RNA.

Dutkowski and Tiuryn [[14, 15] worked on protein-proteingrdctions in many families of proteins,
and differentiated between duplicating and speciatingeaod

The graph

The probabilistic inference technigue is centred aroumdféict that the interaction tree we con-
structed in Chaptel] 1 forms the underlying graph of a Bayes&work. Each node represents an
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interaction, and we associate it with a binary random végiabhus, an interaction is present if the

random variable ig, and it is absent if it i$).

Since we assumed during construction that the interactioasgiven species are independent of
each other, we have no causal relations between them, aiaah geiderlying cycle free undirected
graph. Since there is an identified root, and a natural dimeatf evolution from the root, we
can assign a direction to each edge, pointing away from tbe rbhis enforces the property that
interactions within a single species evolve independeotlgach other, which is critical to the
construction of a Bayesian network. The paper by Dutkowski Biuryn [15] does not explicitly
construct an interaction tree, but their model can be intteol as one.

Parameter selection

A major obstacle in computational biology in general is ttinreate parameters to fit a model. This
is especially true for evolutionary models, since we haveata to infer from. So, we have to rely
on experimental data that we often hope is back compatitile thve true evolutionary scenario.

In the case of protein-protein interactions, given an axtgon tree, we can fit the following param-

eters to our model.

() We can estimate the gain and loss probabilities of arracteon over each edge. So, the

number of parameters in our model is twice the number of edges

(i) We can distinguish duplicating and speciating nodes] fit 2 parameters to each of them.

The number of parameters in this casd.is

(i) We can treat all edges as identical, an®2fjparameters to the whole model.

Pinney et al used sequencing data based on the paper by Featind<and Singhl [19] to fit param-
eters to all edges in their interaction tree. Experimertales were calculated for the strength of
human protein-protein interactions, and the probalgliégain and loss fitted to their model were
estimated from this by modelling these probabilities asskigfunctions of sequence divergence on
the gene tree. The interactions predicted by the scores alsvaused as a basis to compare their
probabilistic techniques. The parameters used by themiaea g Appendix[A.
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The paper by Dutkowski and Tiuryn used data based on the pageite et al.[[40], which considers
a specified model of evolution, and estimates parameteesilmasthat model instead of using direct

empirical data.

In the absence of reliable empirical data, the probalilisference techniques available to us cannot
be used. It is, therefore, desirable to have some methodttangeverall, parametric view of the
Bayesian network, using which we can make an informed chaliceit the parameters to use for
the model. This leads us to the field of algebraic statistics.



Part |l

Algebraic Statistics
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A major issue in evolutionary biology is the inference ofgraeters for evolutionary models. These
parameters may be the cost matrices for a discrete algqrithtine transition matrices or probability
distributions for Markov models and Bayesian networks aReater estimation is often done through

empirical methods, such as sequence analysis.

The goal of this part is to introduce the field of algebraitistizs and related terminology. Viewing
statistical models as algebraic objects allows us to exaihi@ parameter space of these models. In
particular, a translation of the modelsttopical geometryprovides nice geometric interpretations
of the MAP problem.

Chapter [B discusses the algebraic interpretation of stafisnodels. It lays emphasis on toric
models, such as the one we deal with. It also lays the founrddtehind algebraic statistics, and

discusses some basic algebraic concepts that we will need.

Chapter[# introduces tropical geometry, and provides dioal®etween it and polytopes. In par-
ticular, this chapter is intended to provide a natural fitaors from classical arithmetic to tropical

arithmetic for polynomials. The Newton polytopes of polymials are established to be objects
that can be interpreted as generalizations of the tropérairing in one dimension. It is also made
clear that the Newton polytope of a given polynomial can bestroicted using Minkowski sum and
convex hull operations on the Newton polytopes of the factdthe polynomial.

Chapter[b uses tropical geometry to answer a parametric MABlgm on statistical models. It
establishes our problem and the approach we use in the mques section. Bounds for the size
of the polytopes constructed are provided in this chapted, the translation of the sum-product
algorithm to polytope algebra is made clear.



Chapter 3

Statistical models as Algebraic objects

Parameter estimation in evolutionary biology is an impartnd generally hard problem. A novel
way to approach it is to compute algebraic varieties thahdediatistical models of evolution. These
allow us to obtain a parameter independent representatithese models.

3.1 Polynomial maps of statistical models

Formally, a statistical model is a family of probability tlibutions on a set of possible observed
outcomes, called state spaceFor our purposes, we shall only consider finite state spa&eaow-
ing the convention of Chaptéd 2, we shall call our state sphobservations’, and the cardinality
of the state space will be denoted oy An element of this space € £ will be called anevidence

configuration

Definition 10. A probability distributionon the state spacé is a point (p1, p2,...,pm) in the
probability simplex inm — 1 dimensionsA,,, 1
m
Ay = {(phpz,---,pm) DY pi=1,0<p <1 Vi}.
i=1
The elemenp, in a probability distribution in the simplex denotes the fpability of thei*” outcome

in the state spacé.

Recall that we defined the marginal probability for the ek in a tree-like Bayesian network
G = (V, E), with evidence seY C V and a parameter matri¥ to be the given by the following

32
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expression

PriY=ec&)=> [] su-u (3.1)

leL:euveE(Y)

whereE (Y) denotes the set of all edgesihwhich belong to a directed path from the root to one
of the evidence nodes ¥, and each distinct;_, ; is an entry inS. For convenience, we shall refer
to s;; by s;;.

Now, assuming that we do not have preset paramegra/e can treat these as formal variabieg

and obtain a polynomial in these variables. Let us represgrit a polynomial by.. Thus,

fezz H Tiyl,- (3.2)

leLiewveE(Y)

If each node inY can take one ot values, then we can say that the total number of possible
evidence configurations € &, i.e. the cardinality of, which we calledn, is ¢/¥!. Thus, we can
define at leastn polynomials f.. Formally, and more generally for all statistical modelg @an
state the following:

For a statistical model defined ai parameters, and state spaée with cardinality m, we can
define a positive polynomial mdp R¢ — R™.

Since eacly, corresponds to the probability of a possible evidence, we laave the property that
> cce fe = 1 and the condition thaf. > 0. The structure of the statistical model may impose
other conditions on the polynomial map. The functiodefines aralgebraic statistical modekith
d-parameters. This definition holds even if we do not have aterying graphical model.

Toric models

Consider the probabilistic tree model = (V, E') with 4 parametersgg, so1, S10, S11, and a prior
of 0.5 at the root. An explanatioh corresponds to a fixed labelling of the underlying tree . Its
probability, as stated in Chapt&f 2, is given by

Priy=05 J] swio
P—QeFE
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On multiplying this out, we get a monomidl5sh)sh:s73s94. Taking the logarithm, we get the

following log-probability,
In (PT (l)) =In (05) + 61 In (800) + 65 In (801) + 63 1n (810) +6041n (811) .

This is a linear function in the logarithm of the model pargen® Many graphical probabilistic
models have polynomial maps that are exhibit this property.

Definition 11. Algebraic models in which the logarithm of the probabilifyaosingle explanation
of an evidence € £ can be expressed as a linear function of the model paramatersalledtoric

models

Since this is a linear function in tHeg-space, toric models are also called-linear models.

Our interest in these models arises from the fact that thegritee a wide range of graphical prob-
abilistic models, including acyclic Bayesian networks. discuss the algebraic properties of these

models, we shall first discuss some basic algebraic concepts

In order to work with a more general class of polynomials, Wallsassume that each polynomial
fe belongs to the polynomial rin@ [z1, xo, . . ., 24], Where the variables can take values from the
field of complex numbers. Thus, the map we shall study:i€<? — C™. This lets us discuss the
algebraic interpretation of a statistical model withouingointo methods involving real algebraic
geometry.

3.2 ldeals and Varieties

Let Q [x] = Q[z1,z2,...,zy,] be the polynomial ring with coefficients in the rational nward)
and overm variables,z1, o, ..., z,,, € C. Since this ring also behaves like @avector space, we

can define alistinguishedQ-linear basisof this ring as the set of monomials
{x‘{lx‘;? L T U s N} .
3.2.1 Variety

For every polynomialf € Q [x], we can define a zero sBt(f)

V(f)={z=(21,22,...,2m) € C" : f(z)=0}.
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V (f) is a hypersurface i€™. For a subsef of C™, we defineVs (f) = V (f) N S as the set of
points inS that belong to the zero set.

AssumeF C Q|x] is a subset of the polynomial ring. Then, we can define ansatgion of

hypersurfaces ic™
V(F)={z=(z1,22,...,2m) : f(z2)=0V feF}.

Alternately,

V(F)= { N V(f)}-

fer

This set is called theariety of the setF over the seC™ [10]. We can define a restricted variety
Vs as a subset of the variety such that all elements lie in th8 setC™. Whenm = 1, the variety
is simply the set of all zeros of a polynomial in one variable.

3.2.2 ldeal

For a subsefF C Q [x], the ideal generated b¥, denoted by F) is defined as follows[[10]
(F) = Z hifi + Vh € Q[x] p.
fieF

Ideals are not unique to the set, i.e. it is possiblefotF’ € Q[x] F # F' to exist such that
(F) = (F'). If so, then we have the following relation between the \taeof the two sets

V(F)=V(F).
A major result in algebraic geometry is Hilbert’s basis tfezo.

Theorem 1. (Hilbert's basis theorem) Every infinite sefF of polynomials in a rindQ [x] contains
a finite subsef’ such that(F) = (F').

This implies that every variety can be represented as teesittion of finitely many hypersurfaces.

An idealI is called gprime idealif, for two polynomialsg, h € Q [x] such thatf = g-h € I, then
eitherg € I or h € 1. This generalizes the concept of prime numbers to polynismia
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3.3 Algebraic interpretation

Having defined the polynomial mdp: C? +— C™,m = |

, Of a statistical model, the image of the
mapf is the following set

f ((Cd) = {(p1,p2,...,pm) € C™ : Set of conditions om;’s defined by the statistical model

This set can be interpreted as a Boolean combination of @gebarieties, i.e. composed of unions,
intersections and exclusions. If we take the topologicasate of the set, we get another algebraic
variety.

For example, let us look at the polynomial mép C? — C3, (z1,22) — (2%, 21 -z, 21 - 22).

The image of this map is the following set,

£ (C?) = {(p1,p2.p3) € C*: py = py andp, = 0if p; =0} .

In terms of varieties,

£ (C?) = (V(p2—p3) \V (p1,p2 — p3)) UV (p1,p2,p3) ,

which is not an algebraic variety. Geometrically, this ige flanep, — ps = 0, excluding its

projection onp; = 0, but including the origin. However, the closuf¢C?) = V (ps — p3), which
contains the limit points of (C?), which satisfyp, # 0, p; = 0, is an algebraic variety.

This result, which holds over the complex numbers, but net dve reals, can be stated as follows.

Theorem 2. [33] The image of a polynomial map: C¢ — C™ is a Boolean combination of

algebraic varieties irC™. The topological closuré (C?) of the imagef ((Cd) in C™ is an algebraic
variety.

The elements of this variety correspond to points thatfyatie conditions imposed by the model.
The real elements of this variety are those that lie in théadity simplex} ;" , p; = 1. Methods
to find these elements lie in the domainrefl algebraic geometry[4]. It is also common to
disregard points that lie in the closure, but not in the imafjthe mapf, to simplify arguments

[33].
If we consider all polynomials i [p1, p2, - . . , P that vanish on the image 6f we can compactly
represent them by an ide®d in Q [p1, po, ..., pm]. Thus, a point in the simplex will always send
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the polynomials in this ideal to zero. Furthermore, thisgeays to be a prime ideal which represents

the closuref (C?) by definition. The members dt are callednodel invariants

The problem of finding the probability distributions in thenplex that satisfy a given statistical
model is well defined and translates to finding a finite set ofegators,F, which generate the
ideal Ir. These generators are independent of the model paramleggng, defined only in terms
of polynomials in the rindQ [p1, p2, - . ., pm]. These generators will completely describe a param-
eter independent version of the statistical model, i.ey thiél be be the same set of conditions
imposed by the statistical model on the polynomial map,asgmted in terms of polynomials in

P1,P25- -3 Pm-

The main problem is to find these generators, and in partidtiia desirable to get &rébner basis
of the ideal. This is a set of generators such constructédhibadeading terms of the polynomials in
I¢, according to some term ordering, are generated by thenlgadrms of the polynomials in the
generating set. However, this is usually hard when the nuiiqgarameters anch are large.

Since we can describe the statistical model as a polynonagl, nve can also look at these poly-
nomials in themin-plus algebra, taking parameters in tlog-space. While the map in classical
algebra provides us with solutions to the marginal prolitghilroblem, themin-plus algebra, as

we stated before, is used to solve the maximum a posteradbpapility problem. To discuss the
algebraic interpretation of the MAP problem, the next chejtroduces the concept of tropical
geometry.



Chapter 4

Tropical Geometry

The maximum a posteriori problem for statistical models t@se of moving the marginal proba-
bility problem to atropical setting. By this, it means we replace the classical algéRra-.x) by
the tropical semiringR, min, +). This algebra has a well defined geometric interpretatiod,this
property can be exploited to solve parametric inferencélpros. This chapter introduces some
concepts in tropical geometry and about polytopes.

4.1 The tropical semiring

The object we shall be working with is the tropical semirif@6] It is defined as follows.

Definition 12. The tropical semiring over a totally ordered fiel (K U {o0} , ®, ®) is defined by
the following operations

x @y =min{z,y} and rOy=x+y (4.1)

Va,yek.

Since we need a total order on the elements of the field, weraigneork over the field of reals.
The operatiors is called the tropical sum, while the operatiagnis called the tropical product.

Both operations are commutative.

rTDYy=ydbax and TOYy=y0Ox.

38
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The tropical product is distributive over the tropical sum.
20@@ey)=(20y)0(0).
Each operation has an identity element, or a neutral element
TPoo=zx and z®0 =z

We can, define a polynomial over the tropical semiring. ketrs, ..., x4 be elements in the
tropical semiring. Atropical monomiais a finite tropical product of these elements, with repmtiti
allowed. For example

HANONANON SNOR LIS w%mgxg.
In terms of classical arithmetic, this translates into thiofving expression
1+ 21 + T2+ x3 = 221 + 2 + T3.
This is always a linear function with integer coefficients.

Definition 13. A tropical polynomial is a finite tropical linear combinaticof tropical monomials,

with coefficients in the real numbers
g(z1,29,...,2q) =1 @aMay? . x} @ .. DO ay? .l
whereiqq,i12,...,1%1, Ji2, - - - @re nON-negative integers.

In terms of classical arithmetic, we get a functigthat returns the minimum of a finite number of
linear functions

g(x1,22,...,2q) = min (1 + 41121 + G1222 + ... +14Ta, - .., 0 Finx1 +ipT2 + ..+ igxq) -
Thus, the functiory : R? — R has the following properties:

(i) Itis continuous.
(i) Itis piece-wise linear.

(iii) Itis concave.
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Based on this, we can define the tropical hypersurfa¢e) of g.

Definition 14. Thetropical hypersurfac§ (g) of a tropical polynomialg is the set of all points
s € R? at whichg attains a minimum value at least twice.

Thus, it is the set of points at whighis non-linear. A points € R¢ that lies on theJ (g) exhibits
the following property

Cp + z'plsl + ip282 + ...+ z'pdsd =cq+ iqlsl + tiSQ + ...+ iqud
<cp 4+ k151 + 15252 + - . . + 1kdSq-

wherei,, i,, i, € N¢ such that the monomial, © %' x> ... ® =} (respectively fori, andi,)
occurs ing, i, # i4, andiy is not equal ta,, or i,,.

4.2 Polytopes

The geometric representation of tropical hypersurfaceeleéted to the cones and fans of poly-

topes. Furthermore, the operations in the tropical seminawve very natural analogous operations
when we deal with polytopes. The notation and terminologyet@een borrowed from the book by

Sturmfels [41].

4.2.1 Definitions and notation

Definition 15. Givenn pointsvy, vs, . . . , v, in RY, the convex hull of this set of points is the set

P:{Z)\zvz S Rd:Al,Ag,...,)\nZoandZ)\izl}‘

i=1 i=1
This set is called @onvex polytope Thedimensionof the polytopeP, dim(P), is the dimension of
its affine spar{d """, \iv; © > A =1}

In this thesis, we shall always talk about convex polytopesl so we may use the more general
term ‘polytope’ to refer to them.

A polytope can be represented by either a unique set of paihtse convex hull yields us the
polytope, or by the finite set of closed half-spaces whosergaettion includes all the points in
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Figure 4.1: A convex polytope

the convex hull. Given am x d matrix A, and a column vectob € R™, each row ofA and
the corresponding entry ibwill define a half-space iiR?. Thus, we can define an intersection
of the half-spaces defined by andb, which may or may not be bounded, by the equatior=
{z e R?: Az >b}. A subset ofR? of this form is called aconvex polyhedranThe following

theorem establishes the alternative definition of convéytppes.

Theorem 3(Weyl-Minkowski Theorem) Convex polytopes are bounded convex polyhedrons.

A polytope also defines other objects, namely faces, noror@<and a normal fan.

Definition 16. Given a polytope”? ¢ R¢, and a vectorw € R?, we define théaceof the polytope
with respect tow as the set of all pointg in P at which the linear functionat — x.w attains a

minimum,

face,(P)={z € P : zw<ywVye P}.
Since this is a subset of the polytope itself, each facE &f a polytope. Ifw = 0, then we recover
P. Thus, every polytope is a face of itself. A face of dimengiasa called a vertex of the polytope,

and a face of dimensioh is called an edge of the polytope. A face of dimension dith — 1 is
called a facet of the polytopE.

Definition 17. Let F' be a face of the polytopB. Thenormal coneof P at I is the following set

Np (F) = {w cR¢ : face, (P) :F}.
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The normal cone af’ contains all linear functionale that are minimized at every point ifi. The
dimension of the normal cone, diftWp (F)) is given byd — dim (F'). Thus, if F' is chosen to be
a vertex, then the normal cone has dimensio©€ones which are not contained in cones of higher

dimension, are callethaximal cones

Definition 18. The union of all cone&/p (F') asF runs over all faces oP is called thenormal fan
of P,

N (P) = {UNP(F) . F = face, (P) Vwe]R{d}.

Since the union of all cones will cover the whole space, thenabfan A/ (P) is a partition ofR?
into maximal cones, which are in bijection with the verticés.

4.2.2 Polytope algebra

Let P, be the set of all polytopes iR?. We can define the polytope algebi®;, ©, ®) as the
commutative ring with the following operations for aiy @ € P;. The sum of two polytopes is
defined as the convex hull of the union of the point set® @ind(Q),

P®Q =conv(PUQ) (4.2)
:{Ap+(1—A)qeRd:peP,qu,ogAgl}. (4.3)

The product of two polytopes is defined as the Minkowski surtheftwo polytopes,

PoQQ=P+Q (4.4)

:{p+q€Rd:p€P,q€Q}. (4.5)

Both operations yield convex polytopesi{, so we get a closed algebra. This algebra is commu-
tative in both sum and product, and holds the distributiv@pprty of multiplication over addition,
8. PO(Q®R)=(POQ)® (PeR)forall P,Q,R e Py.

4.2.3 Relation to the tropical semiring

The one-dimensional polytope algeb(®;, @, ®), is the geometric interpretation of the tropical
semiring(R, ®, ®). A member ofP; can be represented by, b],a < b,a,b € R, a segment on
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the real line. Then, fofa, b] , [c, d] € P, we can define the polytope algebra operations of convex
hull and Minkowski sum as follows,

[a,b] & [c,d] = [min (a, c), max (b, d)]
[a,b] ® [c,d] =[a+c,b+d].

This yields a definition that agrees with the correspondipgrations on the tropical semiring. In
higher dimensions, polytope algebra simply becomes a ghration of the tropical semiring.

4.2.4 Tropical varieties and polytopes

The concept of varieties in polynomial rings can be definedoat analogously for the tropical
semiring. We have already defined the tropical hypersurface) of a tropical polynomialg in
Definition [14.

i . . . . . 0;, 0; 0;
We first have to define the tropicalization of a polynomial.t lfe= >~ a2 2,2 ... 2 /? €

Q [x], be a classical polynomial with real variables and constasfficients. Then, we can define
thetropicalizationof f to be the following operation,

trop (f) = @l © 1oy O102 ©... 0 lo2,
i=1
wherel,, l;,, s, - - -, 12, €1C., are the tropical semiring analoguesutor;, z2, ..., z4. Thus, we
simply replace the products in the original polynomial bynsyand the sums hyiin. This defines
a tropical hypersurfac& (trop (f)) for any tropicalized polynomiatrop (f).

We can define an idedl in Q [x] as the ideal generated by a set of polynomigls The tropical
variety 7 (trop (I)) of the ideall is defined as follows[[42].
T (trop (I)) = () T (trop (f)).

fer
Since every ideal can be finitely generated, the tropicakiacan be described as the intersec-
tion of finitely many tropical hypersurfaces. It is known tliae tropical variety of an ideal in
some polynomial rin@ [x1, xo, . . ., 24] is a polyhedral fan irl-dimensions [[36]. This means that
the cones of the polytope indicate which tropical polyndriniahe ideal attains minimum value.
In particular, this definition establishes a connectioreetn tropical polynomials and polytopes,
which proves important in the techniques used in algebtatistics. A more general definition of
the tropical variety exists[ [42], but for our purposes, wallhot require it.
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4.3 Newton Polytopes

Let us define the polynomial rin@ [x], wherex is the set of variables, zs,...,z4. Let us
also represent a monomial in any polynomfak Q [x] by ¢;x%, which represents the monomial
iz . 2%, wherec; is a constant belonging to the fielel Then, the polynomiaf, with m

monomials can be represented by

m
fx)=> ex? (4.6)
i=1
where none of the; is zero, and); € N¢ fori = 1,2,...,m. Eachd; is called an exponent vector

of f (x).

Definition 19. The Newton polytope Nf) of the polynomialf (x) is the convex hull of the expo-
nent vectors of (x),

Np(f) = Conv<{02- = (02‘1,02‘2, e 70id) ,0<: < m} : f(X) = ZCiX0i> .
i=1

For example, the Newton polytope of the polynomial o¥esariables,f (x1,z2) = 1 + 192§ +
22322 — x3x3 + x12% is given below. Note that the poili2, 3) is hidden within the polytope. It is

Figure 4.2: Newton polytope

important to note that there is no way to retrieve the coeifits of the polynomial from the Newton
polytope.
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4.3.1 Tropical geometry of Newton Polytopes

0

: . 0;
Given a polynomialf = >~ a;x4

Ny xzd € Q[x] in d variables, we can ask the question:
which monomial of attains the maximum value for some valuéqf, zo, .. ., z4)? Letus consider

a set of values = (s1, s2,...,s4) for which we are asking this question. Then, the problem
becomes finding a monomialsuch that,

) ) 0;
g = max {ais?”ng . .sdd}.
2
We can also formulate this question as follows: finsuch that
—Ing=min{—Ina; —0;; Ins; —0;,Insy —... —0; Insg}.
7

We have a one-to-one mapping betweein () andz, define—1In (z) = ., and rewrite this as
follows:

lg =min{ly, +6;,ls, +0;,ls, +...+0;,ls,}

The key point is to notice that this can be reformulated asablpm on the tropical semiring
(R, ®,0),

i i 0;
=Pl ol ol o... ol 4.7)

At the same time, we can define a Newton polytope,( N> whose vertices will be a subset of
the set{ei : xfilxgil . .xzid is a monomial inf}. Since vertices are defined as faces of dimension
zero, this means that the vertexminimizes the functional - v for some vectorw € R%. This is
precisely the tropical monomial for the valuesassigned to the variables. Thus, the vertices of the

Newton polytope of a polynomiagf encode the exponent vectors for which the tropical polymbmi

is minimized.
Let us call the vertex sét. Then, forv = (v1,ve,...,v4) € V, the normal cone will include those
vectorsw at which the linear functional.v is minimized. Taking a pointw,, wa, . .., wg) from the

cone, the linear functional will become vy + wovs + ... + wyvg. Sincev is a set of exponents of
a monomial off, this is equivalent to the value of the tropical polynomi the variables given by
w. Thus, the cone of a vertex gives us the set of variables farhwthe tropical polynomial is equal
to the monomial corresponding to the vertexassuming that all the coefficients dre~urthermore,
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if we take the union of all the cones, the entire parametecesjgacovered, and the different cones
will provide a partition of the space into regions that yiditferent optimal solutions. As stated in

Section[4.2.14, this is a consequence of the correspondeteeén tropical varieties and polyhedral
fans. Thus, the cones in the normal fan of (yP are the regions over which the tropical polynomial

trop (f) is linear.

4.3.2 Construction of Newton Polytopes from other Newton Hgtopes

Suppose we are given a finite set of polynomigisp-,...,p;. Then, we can find the Newton
polytope corresponding to any sum-product combinatiorhe$¢ polynomials without calculating
the polynomial itself. The main theorem which we use to fdataithe process for this is as follows.

Theorem 4. [33] Let f and g be polynomials ifQ [z1, 2, ..., x4]. Then,
NP(f-g) =NP(f)ONP(g)  and  NP(f+g) CNP(f)&NP(g).  (4.8)

If all the coefficients of and g are positive, then NPf + g) = NP (f) & NP (g).

Proof. Let f = 37, e;x%, andg = 3", ¢/x?%. For any vectow € R¢, define thenitial form of

f,iny (f) as the subsum of all the monomiajs’:, such tha#); - w is minimized. By the definition
of a face of a polytope, we get the following identity

NP(in,, (f)) = face, (NP(f)). (4.9)

The initial form of the product of andg can be obtained by taking the product of the initial forms

of f andg individually, as follows

i () = iy (f) - iy (g). (4.10)

Each monomial will be of the form;c/;x” 7, the coefficient being the product of the coefficients
of the corresponding monomials frofnandg, and the exponent being the sum of the exponents of

the same monomials. For anyc R¢, we will get a single monomial of this form, which minimizes
(92 + 9;) s w.

Consider the operator fagé-). If we apply this operator on the polytope NP) ® NP (g), then
we get the set of poini + ¢} which minimize the functiona(¢; -+ 6/ ) - w. We can distribute this
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product over the sum of vectors. Thus, we get the followirantidy

face, (NP(f) ® NP(g)) = face, (NP(f)) ® face, (NP(g)) . (4.11)

These three identities lead to the following resultdoe R

NP (iny, (f - g)) = NP(iny, (f)) © NP(iny (g)) .

But since this holds for allv, we can surmise that both NP - g) and NP(f) ® NP(g) have the
same set of vertices, this proving the first identity.

To prove the second identity, we notice that (\B @& NP (g) gives us the convex hull of the set
{01,02,...,0,,,01,05,....0.,}. Since every monomial irff + ¢ has its exponent in this set, their
convex hull will contain NR f + g), proving the identity. If bothf andg consist of only positive
coefficients, then there are no cancellations, and we gefjaatlity. O

This theorem allows us to substitute any sequence of opagin the tropical semiring by the
corresponding polytope algebra. This also means that gsdsmwe have a polynomial consisting
of only positive coefficients, and which can be factored pdtynomials of smaller degree, we can
construct its Newton polytope from the Newton polytopesteffactors. Furthermore, while each
addition-multiplication operation could have caused thmber of monomials in the polynomial to
grow exponentially, the number of vertices at each stegstaut to be polynomial in the number of

operations.

We can now use the concepts discussed in this chapter antbekie interpretation of statistical
objects as algebraic varieties to tropical arithmetic aolgtppe algebra. This provides us with a
technique to attack the problem of parametric inferencerababilistic graphical models, as we
shall see in Chaptél] 5.



Chapter 5

Tropical Geometry of Probabilistic
Graphical Models

In Chapter [B, we discussed the polynomials associated wiffaphical model as the marginal
probability of the evidence. We now try to interpret each oraial in the probability polynomial,

and in doing so, move to an optimization problem.

5.1 Inference functions

For a modelG = (V, E), with an evidence s€Y and a parameter sétwith d parameters, with
none of the parameters determined, we can define a positlyagmoial mapf. : R? — R for
each assignment given to the nodes ifY'. This polynomial will correspond to the probability
Pr (Y =e). Since we sum up over all possible internal labellings ofrtdevant hidden nodeX
that are consistent with the observatigrwe can write this as,

Pr(Y=e = Y Pr(X=0N\eY=e).
\e€L:e

EachPr (X =1[,& = e) can be written as a monomial in the elementsSpsuch that the degree
of all such monomial is equal. A labelling of the fortge : £ : e is called anexplanationof e.
Consequently, we can say that each monomial corresponds ég@anation ofe. The question
we are interested in is which monomial maximizes the prdiabiPr,,.. (Y = e) of seeing the

48
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evidencee. This is the maximum a posteriori probability problem foe thraphical model given
the evidences. Naively, the answer to this question will almost be the sawdhe answer to
the question of the most probable labelling consistent wWithevidence. However, as stated in
Chaptef®, there may be more labellings that maximize thegtitity of seeing the evidence than
the number of labellings of maximum probability that aredevice consistent. In the case when
we treat the parameters as formal variables, these are nwb&nt. We shall consider the former

probabilities as the ones we want to maximize.

Thus, we can formulate the problem as follows
Prpa: (Y =€) = max {Pr(X =10l\e,Y =e¢)}.
N\e:L:e
Alternatively, we can take the negative logarithms on bades and formulate this as a minimiza-
tion problem. Furthermore, we can writer (X = l\e, Y = ¢) as a monomiak{"'s5? . .. 5%,

wherezfz1 0;; is a constant, as stated before. Thus,

—In Prype. (Y =€) = l\IIllﬁIl {=0nIns; —Oplnsy — ... — Ogln sy} (5.1)

Let us call this functiony.. It is continuous, piecewise linear in the variabletn s1, —In so, . . . |
— In s4, and concave, satisfying all the properties of a tropichipamial. The vecto(6;, 6,5, . .., 6;4)
represents the number of times each event of probability, . . ., s4 occurs.

So, our problem reduces to finding the tropical hypersuri#dbe functiong.. Such a function,
which gives us the explanation that maximizes the prolighili seeing the evidence is called an
inference function

An elegant result by Elizalde and Wood _[16] states that thaber of inference functions of a
probabilistic graphical model is polynomially bounded.

Theorem 5. [16] In a graphical model withZ edges andl parameters, the number of inference
functions for the graphical model is at mast(E44~1)).

Vertices in the Newton polytope of an inference function

Since an inference functiaop. of a statistical model witld-parameters is basically a tropicalization
of the marginal probability polynomiaf., we can encode the inference function in a space- of
dimensions by constructing the Newton polytopefafEach exponent vect@®;y, 6;o, . .., 6;4), @s
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stated in the previous section, represents the number estaach event of probability , so, . . . , s4
occurs, and the vertices of the Newton polytope will encodetaof transition events which yield

the evidence.

It can be proved that the number of vertices in the Newtontpply of f. is at most polynomial in
the size of the model. The result depends on the followingréma by Andrews il 963.

Theorem 6. [2] If P is a D-dimensional strictly convex lattice polytope, withvertices, then

D—-1

N < Cp -vol(P)p+1 |
where vol(P) is the volume of the polytope, ang, is a constant that depends only éh

1”, whereE is the number

Since the polytope of an inference functiinmust lie in the spac@, £
of edges in the graphical model, afds the number of parameters in the model, we can thus bound
the number of vertices by, - EP(P—1)/(D+1) However, this result only holds for full dimensional
polytopes. If the polytopé lies in ad-dimensional affine subspace®f, then we need to consider

the following lemma.

Lemma 1. [33] LetS be ad-dimensional linear subspace &”. Then, there exists a subset
{i1,i9,...,iq} of the D coordinate axes oR” such that the projection : S — R?, given by

¢ ((x1,22,...,2p)) = (®iy, Tiy, . .., 4,) IS INjECtiVE.

Proof. Choosev, vs, . .. ,v4 € R” to be a basis for the subspageThen, we can construct/a x d
matrix A of rank d, whose columns are the vectarg vs, ..., v4. Assume that for any choice of
indices{iy, 2, ...,1q}, there does not exist a mappigg (z1, x2,...,2p)) = (Tiy, Tig, - - -, Tiy)
which is injective onS. Then, thed x d minor of A, choosing the rows indexed Hy;, is, ..., i4},
must necessarily have a rank strictly less tHasince we can find two vectors &” with the same

entries ini1, i, . . ., i4. This contradicts the fact that the rank4fis d, thus proving the lemma.

This lemma leads us to the next theorem.

Theorem 7. [33] Let f be a polynomial of degreein D variables. If the dimension @ = NP(f)
is d, then the total number of vertices in the Newton polytopebgibounded by, - n(d—1)/(d+1),
where(Cy is a constant that depends only @n
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Proof. ConsiderS to be ad-dimensional affine span of the polytope. Using Lenfina 1, wefical

a set ofd coordinate axes dk” such that the projection of S onto the space determined by those
d axes is injective. Thus) (P), the image of all points of the polytof@, will be a d-dimensional
polytope with integer coordinate vertices, every pointme-4o-one correspondence with a point of
P, and the vertices dP mapping to the vertices of the projection. Sirfckas degree, ¢ (P) must

lie in the d-dimensional hypercube of volume. Using Theorerfil6, the total number of vertices in
P will be bounded byC,; - nd(@—1)/(d+1), O

Putting these results together, we get the following thadiar the number of vertices in the Newton

polytope of an inference function of a graphical model.

Theorem 8. [32] Consider a graphical model with' edges, withi parameters, and state spa€e
For a fixed evidence < &, the number of vertices in the Newton polytope of the polyslamap

fe, is bounded above as follows

Number of vertices in NPf,) < ¢ - pdd=1)/(d+1)

d—1
<ec- E( )7
wherec is a constant.

Thus, while the number of monomials in the polynonjiatan grow exponentially with the number
of sum and product operations, only a polynomial numberesétterms can be maximal, and those

are the terms we are interested in.

Interpretation of the cones and the fans

In Section[4.311, we discussed the interpretation of cohesvertexv in a Newton polytope inl
dimension as the set of poindép (v) such that they minimize the functional- v = w; v, +wavs +

...+ wqug forallw € Np (v).

Since the vertices now represent sets of transitions, the oba vertexd; represents points that
yield the minimum value ofningc.z.. {—0nw1 — Opwz — ... — Ojqwa}, Wwherew is a point in the
cone. Comparing with Equatioh 5.1, this means that the conedes the set of parameters for
which the set of transitions represented by the vertex isggimal solution. These parameters are
encoded as negative logarithms of the actual probabilitees] in the model. Furthermore, from
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Section[4.211, we also see that the the cones of the vertitesh form a fan, partition the entire
parameter space. This leads to an elegant method to expegatameter space for probabilistic
models, which involves constructing the Newton polytops® marginal probability polynomials.

5.2 Computation

In Chapter (2, we discussed the maximum a posteriori prabalpitoblem. It is a natural tropi-
calization of the sum product algorithm, in which we replétoe products by sums in the negative
log-parameter space, and sums by taking the minimum. If webegktrack through the algo-
rithm, then we get the labelling which maximizes the prolighof the evidence. Since there is an
established relation between the tropical semiring andotigtope algebra, the algorithm can be
modified to a polytope setting, and this gives us a useful waxplore the parameter space.

5.2.1 Polytope propagation

The sum-product algorithm to compute the marginal postgriobability of an event was an oper-
ation carried out on the classical arithmetic semiriRg+, x). A similar algorithm, carried out on
the tropical semiring, solves the MAP problem. An exampléheflatter is the Viterbi algorithm for

sequence alignment.

In order to solve the parametric a posteriori maximum likedid problem, golytope propagation
algorithm was proposed by Sturmfels and Pachfer! [32]. Thiserplizes the tropical semiring
algorithm to the space of all parameters in the negativeriibgiic space. It involves the same
dynamic programming technique as the sum-product algorithut moves to polytope algebra by
constructing the Newton polytopes of the marginal proligbgolynomials. The switch between
algebras is illustrated in Table_5.1.

There is some loss of information when we use polytope aigedimce we cannot encode the coeffi-
cients of the polynomials in the Newton polytope. Howevdhe coefficient of a certain monomial
happens to be greater thanit simply means that that there is more than one evidencsistent
labelling that can be obtained through the same set of transi Thus, the probability of a single
consistent labelling, when represented through a monomithhave coefficientl.
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Sum-product Polytope algebra analogue

Transition probability| Unit vector along a coordinate ax|s

X Minkowski Sum
+ Convex hull

1 Origin

0 Empty polytope

Table 5.1: From sum-product to polytope propagation

5.2.2 \Vertices of a subset of the parameters

As stated in Sectiofl_5.1, the cone of a vertex encodes thé patameters that would yield a max-
imum a posteriori labelling which is consistent with thensgions encoded by the vertex. Often,
we might have a rough idea about the parameters used for thelpamd would like to find the sets
of transitions that would be optimal for a certain subsetarbmeters. The naive method of doing
this would be to sample a large number of parameters and finll&P labelling for each of them.

However, this gives us no guarantee that all optimal scesdor that subset will be covered.

In a polytope setting, this problem would correspond to figdihe vertices of the polytope whose
cones contain the subset of parameters. A preliminary exatioh seems to suggest that this is a
hard problem, even if we are given the cones that cover theesubecause the construction of a
cone depends not only on its vertexwhich minimizes the functionab - v for all pointsw in the
cone, but also on all the other points in the polytope, whielen includes a point that might yield

a smaller functional.

Polytope propagation has been used successfully for segudignment [[B, 12, 31]. The elegance
of this framework is that it can be applied to all sum-prodonn-plus algorithms. The work of
Dewey et al. on Drosophilia genomes [12] used a non-prostibiframework and found optimal
scenarios for the Needleman-Wunsch algorithm for variarsupeters. The strength of taking a
non-probabilistic point of view is that they do not have t@aldeith parameter dependencies, and
can work in a lower dimensional space. By discarding a sutfggarameters which is biologically
unreasonable, they were able to get a small set of optimahsics for sequence alignment. These
scenarios were then compared with scenarios provided bkn@lvn sequence alignment software
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called BLASTZ [39], and were shown to agree well. This congmar also lets allows other users
of BLASTZ to assess if the default parameters used by thevaodtis reasonable for their data. The

cones of the vertices also provide robustness measuregtitiopang the parameter space.

Finally, the paper of Dewey et al. also discusses the reaarigin of phylogenetic trees. Since
this reconstruction depends on the branch length, whichrimis inferred through the alignment
of the genomes at the leaves for a given set of parametersuitvbe useful to have a parametric
view of the problem. With this in mind, they compute the sebptimal alignments of the genomes,
i.e. at the vertices of the alignment polytope they obtamg ase this to propose a parametric
reconstruction scheme for phylogenetic trees.

In the case of Bayesian networks, and for most probabiligtiphical models, we have to deal with
intersections of the polytope space with non-algebraigeasir The next three chapters will discuss
the implementation of polytope propagation for Bayesiamvoeks and application to both real and
simulated data.
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The final section of the thesis expands on Chapler 5, andsdissihe implementation of a polytope
propagation scheme for Bayesian networks used in evohutjohiology. The work builds upon
applications of polytope propagation to hidden Markov miedler sequence alignment.

Chapter[6 discusses the well known belief propagation #lgorfor inference of marginal proba-

bilities in Bayesian networks. This algorithm is transthte an algorithm in polytope algebra using
the scheme provided in Table_b.1. The chapter also disctissasput for the problem and issues
that we face when applying the algorithm to a Bayesian nétwor

Chapter[¥ uses the techniques discussed in the previoutechapxplore the evolutionary scenar-
ios of the bZIP transcription factors. Statistics for rumiand the size of the polytope are provided,
and the output is compared to Dollo and Fitch parsimony tesul the same data.

Chapter 8 includes the last set of experiments to be perfyrmkgich involves generating simulated
evolutionary scenarios for the bZIP network, and applyiotytope propagation on these scenarios.
The same statistics for runtime and polytope size are peolidlong with comparisons with deter-
ministic approaches. In addition, the simulated data isl tieeexamine the effect of a model with
greater number of parameters on the polytope propagatimmitim for Bayesian networks.



Chapter 6

Implementation

The polytope propagation algorithm for acyclic Bayesiatwoeks with binary nodes was imple-
mented in polymake, a C++ and perl based interactive sodtvi@r handling complex polytopes
[22]. The main advantages of using polymake were that it wanaource, and allowed us to
program at a high level, without bothering about the bacdkgdoalgorithms for convex hulls and
Minkowski sums. The current SVN version of polymake alsovjated tools to construct cones and
fans, which would be the ultimate goal of the whole project.

6.1 Algorithm

The algorithm used for the sum-product decomposition foytppes was a direct translation of the
belief propagation algorithm for marginal probabiliti&y using the dictionary provided in Chapter
[, we could program polytope propagation in perl script.

6.1.1 Classical belief propagation

In the classical belief propagation algorithrh [[30, 34], @etdata structure is created, with each
node A having the following attributes. For the rest of the disomsswe shall always assume
binary random variables at each node.

1. X values: The probabilities df or 1 at A based purely on evidence from nodes in the tree
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rooted atA. Denoted by\ (A = a) for nodeA in statea.

2. = values: The probabilities df or 1 at A based purely on evidence from nodes in the tree
aboveA. Denoted byr (A = a) for nodeA in statea.

3. Alambda messagg, (p) to the parent, assuming the parent is in stat@forming it about
the evidence coming from the nodes in the tree rootedl at

4. A pi messagerc (a) to a childC of A, assuming nodel is in statea, informing them about

the evidence coming from the nodes in the tree abbve

5. The value of the random variable, settd, or some other value, indicating that the node is
not initialized, i.e. it is not an evidence node.

To illustrate the algorithm, we show the messages needednpute the probability of nod®
being in statd in the following example. In this examplg;+ ¢ = 1 andsgg + so1 = s10+s11 = 1.

s10 s11

R T= (sOO 501)

Prior=(q p)

A {1} c{0} B {0}

Figure 6.1: Example for belief propagation

After initializing node A as1, we pass a lambda message freio D for every possible value

of the random variable &. This lambda message, in the case whetakes the valué, A4 (1),
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will be s1oPr(A=0,D =1) + s11Pr (A =1,D = 1). The first term goes to zero, since nade
can never take the valug according to the evidence. The lambda message &ram D, whenD
takes the valué, A¢ (1), will be s1oPr (C =0,D = 1) + s Pr(C = 1,D = 1). In this case, the
second term goes ) sinceC' can never bé. The probability that is in statel, based on evidence
from the nodes in the tree rootediat i.e. A (D = 1), is the product of these two messages.

The lambda message fraBhto R, for the case wheR = 0, i.e. A (0), willbe spo Pr (B = 0, R = 0)
+ so1 Pr (B =1, R = 0), with the second term vanishing. For the case wRe# 1, the message
Ap (1) willbe s1gPr (B =0,R=1)+s1:Pr(B =1, R = 1), and the second term vanishes again.
The pi-message from® to D, in the casek = 1, 7p (1), willbe 7 (R =1) - A (1). In terms of
the prior probabilities, this ip - Ap (1). This is the probability thaR is in statel based solely
on evidence from branches other than the branch going.td’he corresponding message when
R =0, mp (0), will be ¢ - Ap (0). To calculate ther-value of nodeD whenD = 1, 7 (D = 1),

we multiply the pi-messages by transition probabilitiest tiake the nodé to the statel, and add
them up, which gives usy; 7p (0) + s117p (1). This is the probability of> = 1 based on evidence
coming from the parent.

The marginal probability of nod® being in statd, and the evidence, willb®(D = 1)-7 (D = 1).
Similarly, the marginal probability fol> = 0 can also be calculated. Furthermore, when the evi-
dence is restricted to the leaves, the marginal probalifithe evidence i$ ;. 13 A (4) - 7 (j) at

any non-evidence node. So, we can just calculate this valine aoot.

If we treat the parameters are formal variables, then itdardhat we will get a polynomial for the
marginal probability of the evidence. The lambda and pi mgss are factors of the final marginal
probability polynomial at any node. Grouping the factorshis fashion allows the construction of
a polynomial time algorithm to infer the marginal probai® at each node in the tree.

6.1.2 Belief propagation for polytope-propagation

The polytope propagation algorithm for Bayesian netwosksimply the belief propagation algo-
rithm, with all the values and messages replaced by convkgpes. We also change the opera-
tions according to the dictionary. Then, the operatid0) ® = (0) & A (1) © 7 (1) gives us the final
propagated polytope at any node.

For our purposes, we make a major modification in the beliebggation algorithm. Since we are
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not interested in the individual labels at the nodes, we pnbpagate evidence messages towards
the root. There is no feedback from a node to its children,thack is no need for the pi-messages.
While this means that the nice ‘universal marginal prohigbdf evidence’ structure that we got
while using conventional belief propagation is lost, thases considerably on computational time,
since we only need to cover each edge once, and the polytophe aibot gives us the correct
propagated polytope.

6.1.3 Input and output

The algorithm takes a tree and the binary evidence at thedemwinput. The tree is provided in the
form of an adjacency list, and the evidence is a list of nodéstieir labelling given alongside. This
model assumes that the same transition matrix is presemg a&eery edge, and that all nodes are
binary. The transition matrix has four entriagy, s19, so1 andsi1, where the subscripts follow the
convention of Chapter] 2. Then, since there are four paras)ete make the following substitutions
when moving to polytope algebra.

1000 0100
S0 S0 | (1000) (0100)

Spo1 S11 (0010) (0001)
As an option, a third input, which indicates whether eachendublicates or speciates, can be pro-
vided. In this case, the program moves tosgmarameter setting, with different transition matrices

for duplicating and speciating nodes.

The program output is a polytope in eitigt or R®, depending on the input. This is the propagated
polytope at the root.

6.1.4 Constructing the fan

After running the algorithm, the cones of the vertices of laéytope can be found. The maximal
cones of the polytope, i.e. the cones of maximal dimensidrichvare not contained in any other
cones and are in bijection with the vertices, partition theameter space. For each vertex, a set
of parameters chosen from its cone will give an evidenceistamg labelling which maximizes the
probability of seeing the evidence and has a transition bathwis represented by the vertex.
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6.1.5 Restricting the space of parameters

When using polytope propagation, we disregard the depeieebetween parameters, and work
outside the probability simplex, i.e. the parameters nexdbe in the regiori0, 1]. Thus, while the
fan gives us a partition of the whole parameter space intes;some of these will be redundant.

In order to restrict the parameter space to the probabilitpkex, we note that, in a single parameter,
taking the negative logarithm will map the pointo the origin, and will map all the points i), 1]

to the sef0, c0). The sef(1, o), which is outside the probability simplex, maps onto theatieg
real line.

Since all our parameters are probabilities, the positieedn d-dimensions0, 1]d, will map onto
the first quadrant when we tropicalize the statistical mo@kus, we only need to consider maximal

cones that lie in the first quadrant.

The second problem we face is that of including dependebegeen the parameters. In particular,
we need only consider parameters in which the columns ada up tn the tropical space, the
parameterssy, s10, So1, s11 Would translate into the parametergy, z10, zo1, 11, Wherezx;; =
—1In s;;. Then, we would have to consider the conditions that+ so; = si9 + s11 = 1, since the
columns in the stochastic matrix along each edge should guim iu

Including this in the polytope propagation scheme is haegalse the tropical semiring and poly-
tope algebra have no analogous operation for subtractibis mMeans that we have to move to a
non-algebraic setting to resolve this problem, and takersetctions of the cone encoding the pa-
rameters with the curves ispaceeg %00 +e~%01 = 1 ande %10 +e~ %11 = 1, would give us the set
of parameters which are probabilities that yield an MAP liaige which agrees with the transitions
represented by the vertex.

6.2 Computational complexity

Worst case complexity results for the polytope propagadigorithm are derived by studying the
sum-product decomposition of the marginal probabilityypoimial. This tells us exactly how many

Minkowski sum and convex hull operation we will have to penfo

Theoreni 8, tells us that the polytopes generated duringgloeithm for a model withD parameters
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cannot have more thafi;n®4-1)/(4+1) vertices, where: is the degree of the final marginal poly-
nomial, and d is the dimension of the affine space that the dlepwlytope of this polynomial lies
on. Let us call this boundv. Assume, now, that we havesteps in the sum-product decomposition
of the polynomial, with at most additions and multiplications. This translates foconvex hull
operations and Minkowski additions. The value df will vary with the model.

The bound on the number of vertices in the polytopes meartstiibanumber of points in the
Minkowski sum of two polytopes will be at most2. Calculating the sum will tak€© (N2D)
time, since we hav® components to add in each vector. The problem with naivé&ingethis sum

is that the number of points will grow exponentially with thember of sum operations. This causes
a memory overflow error, even on very small models. To avagl the take the convex hull of the

N? points after each summing operation.

The same bound works for stand alone convex hull operatginse the convex hull of two poly-
topes can have at moaiV different vertices. Clearly, the Minkowski sum operatioitl @ominate

the convex hull operation, since, in a worst case scenaiiwglves a convex hull o® (N?) points.

In the case of convex hull operations following a Minkowsking we have to check a set of at most
N? points, and see which of these points lies on a hyperplaé’iwhich separates it from the rest
of the set. This translates to a series of linear constraamd yields a linear optimization problem
with N? linear programs irnD variables andV? constraints. There are a number of algorithms to
solve this problem, and in particular, the algorithm by Mietgi [28] solves it in linear time iV?

for a fixed number of parameters, albeit with a constant gpgriionality which is exponential in
D. Another algorithm by Kachiyan [24], solves it in polynorniine in N2, with a constant which

is polynomial inD. Depending on the algorithm, we can assume that the contyleixcomputing
the convex hull ofV2 points will bevp, (N?).

The overall complexity for the sum-product algorithm whien beO (kIDN? + kivp (N?)), since
stand alone convex hull operations on at st points will never dominate the Minkowski sum
operation. The complexity will vary, since polymake useamsty of convex hull algorithms [3,20]
depending on the case it is being applied to.



Chapter 7

Experiments on the bZIP network

The first part of our experiments was to apply the methodsudsed to real data. For this, we used
the bZIP interaction network. We include the details of tEéFonetwork, including the parameters

used by Pinney et al.[[[35], in Appendix] A. For this dataset,restricted ourselves to the four-

parameter model. The eight-parameters model proved cetignally intractable to be applied on

our data.

7.1 Input

The bZIP gene tree ha&83 genes, over species in the species tree. The extant specie€iare
intestinalis Takifugu rubripeg(pufferfish), Danio rerio (zebrafish), andHomo sapienghumans).
The internal species a@hordatg which is the common ancestor for all the spechkstebrata
which is the common ancestor to humans and the two fishesTalrdsti which is the common
ancestor to both fishes. The gene tree is reconciled, ancehjasrsce divergence scores over each
edge.

The interaction tree constructed from this 16850 nodes. This tree is too large for efficient com-
putation. In order to continue with the analysis, the tres twaken down int®327 smaller trees,
rooted at a speciatinGhordatainteraction. The parameters and initialization of the nhodked
on the work of Fong, Keating and Singh_[19]. The bZIP data reenbwell studied and there are
sequence-based methods to infer the strength of intenactio
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The interactions at the extant species were initializeéthan Fong-Singh interaction scores |[19].
These scores are based on sequencing data, and were useditd Ipoth the extant interactions,
as well as the interactions in extinct species based on segueconstruction. The scheme is
explained in AppendiX_A. The sequencing data is considezbdhle enough to use as a standard
to measure other techniques against.

The approach used by Pinney et al. fixed the parameters farathgtion matrices over each node
using the interaction scores, as explained in Appendix A,w@sed classical belief propagation to
calculate the marginal probabilities at each node of thelevimberaction tree.

The input to the algorithm was given in the form of an adjagdist for the tree, and a list of leaves
with the evidence on them.

7.2 Output

Ideally, the model should have on®/parameters, i.e. the probabilities of gain or loss over an
edge. However, as stated in Sectlon 8.1.5, the absence obiogae for subtraction in the tropical
semiring and polytope algebra means that expressions sugh & 1 — sg; cannot be represented
nicely. The polytope that was created through polytope ggapon for the model, thus, lay in
4-dimensional space.

7.3 Results

The runtime for the algorithm and the size of the polytopeawmi®d were the main statistics of
interest. Apart from them, we also compared the output tddCaid Fitch parsimony results on the

tree.

7.3.1 Runtime

The computation time, on a system with Quad-soc&etpre AMD Istanbul processor, withs6
GB of memory, takes abo8thours. The runtime for different trees in our set, in secor®islotted
against the size of the tree in Figure 17.2. The plot has besrceal to trees of siz€) or lower, to
emphasize the variation of runtime.
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Runtime vs tree size for bZIP data
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Figure 7.1: Distribution of runtime vs tree size

The runtime increased with tree depth, and for trees of coampa size, polytope propagation took
longer on trees with greater depth. This was expected betwa\as greater depth would indicate

Minkowski sums of progressively larger polytopes as thesagss are passed to the root.

Runtime vs tree depth vs tree size for bZIP data

Runtime (s)

Number of nodes in the tree

Maximum depth of the tree

Figure 7.2: Distribution of runtime vs tree depth
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It was also expected that the runtime would increase witmthmber of homodimer duplications,
since we nee@ Minkowski addition operations at each such node, but noexpgiole increase was

noticed.

Runtime vs homodimer duplications vs tree size for bZIP data

Runtime (s)
. 8 8 B B B 8

Number of homodimer duplications

Figure 7.3: Distribution of runtime vs homodimer dupliceis

7.3.2 Polytope size

The number of vertices in the polytope, in the worst caseulshoot exceed) (n?), wheren is
the size of the tree. This follows from Theorelmh 8. In factcsiour polytope will lie on a three-
dimensional affine space in four dimensions, we can say lieahtimber vertices will be bounded
by O (n?), wheren is the number of edges in the tree, using Lenitha 1. On runnimgltforithm,
we find experimental evidence for this bound. The number diices also depends on the tree
topology. Thus, trees with smaller size may be associatqubligtopes with greater number of

vertices than trees of comparatively larger size.
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Polytope size vs tree size for bZIP data
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Figure 7.4: Distribution of polytope size vs tree size

Interestingly, the size of the polytope also increases thightree depth. Greater depth would mean
that the number of Minkowski sum operations along the bramithincrease, and the subsequent
polytopes generated by them will be larger.

Polytope size vs tree depth vs tree size for bZIP data

Number of vertices in the polytope

0
Maximum depth Number of nodes in the tree

Figure 7.5: Distribution of polytope size vs tree depth

This corroborates our runtime results, since larger pplgoat any stage would imply that the
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Minkowski sum and subsequent convex hull operations wikk t@nger.

7.3.3 Comparison to Dollo parsimony

It was also of interest to contrast the results for polytopgppgation with the results for Dollo
parsimony on the same trees. The idea was to find the numberof, 0 — 1, 1 — 0, and1 — 1
transitions in the labelling obtained through Dollo parsip. This was called thBollo signature

of the tree for that evidence.

Since the vertices of the polytope corresponded to simidgnagures that, in some sense, maximize
the probability of seeing the evidence, we computed the Hiagnatistance from each vertex to the

Dollo signature, and found the minimum distance over allives. We plotted this against tree size
and the number of vertices in the polytope.

When comparing the Dollo signatures of the data to the \etaf the polytope, there are a large
number of cases with at least one vertex corresponding tDdtle signature, the maximum ham-
ming distance ig, for a 26 node tree which yields 24 vertex polytope. In total, there af22

Hamming distance from the Dollo signature to the polytope vs tree size for bZIP data
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Figure 7.6: Distribution of Dollo hamming distance vs treses

trees with a Dollo hamming distance @f This means that there is one vertex in their polytopes
whose cone encodes parameters that have a low probabigigirof This indicates that there is often
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Hamming distance from the Dollo signature to the polytope vs polytope size for bZIP data
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Figure 7.7: Distribution of Dollo hamming distance vs poly¢ size

a scenario in which there is a single gain, since Dollo pasayronly allows a single gain during

evolution.

7.3.4 Comparison to Fitch-Hartigan parsimony

As in the case of Dollo parsimony, we define thi&ch signatureof the tree to be the vector of the
number of transitions of each type when we compute a Fitcsipanious scenario.

Hamming distance from the Fitch signature to the polytope vs tree size for bZIP data
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Figure 7.8: Distribution of Fitch hamming distance and size
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The Fitch signatures of the trees using the bZIP data yietped results when compared to the
vertices of the propagated polytopes. There were a verg langnber of trees with a vertex corre-
sponding to the Fitch signature.

Hamming distance from the Fitch signature to the polytope vs polytope size for bZIP data
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Figure 7.9: Distribution of Fitch hamming distance and pobe size

In all, there ares trees with non-zero Hamming distance. The maximum hammistgrite wag,

on atree of siz88, with 96 vertices in the polytope. As far as the experiments are cordethere is
often a probable set of transitions which is an optimal MARtson for some set of parameters, and
also corresponds to a Fitch-Hartigan parsimonious repari&in of the trees. It is also interesting
that there are onl§ cases in which the Fitch and Dollo hamming distances do nathmesch other,
and there ar@ cases when they do match, but have non-zero hamming distahie means that
in most cases, the Fitch and Dollo signatures are the sardehare is a vertex in the propagated
polytope which is equal to that signature.

Intersecting the cones of these verticesdof the largest polytopes, with more than 14 vertices,
we get a subspace of the affidespace in which the parameters might yield an MAP transition
signature which is equivalent to the Fitch and Dollo sigredgu Intersections of this space with
the non-algebraic curves ifrspace, as stated in Sectidn_611.5, would give us the acttialfs
parameters that yield a parsimonious MAP labelling and etscespond to transition probabilities.
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7.4 Summary

These results tell us that a parsimonious scenario for bZdRigon often corresponds to a maxi-
mum a posteriori probability scenario for some set of patamse In view of the fact that there are
an exponential number of possible evolutionary scenagiod,thus, a possibly exponential number

of monomials in the marginal probability polynomial, thésa surprising result.

Since the number of vertices is polynomial in the number afasoin the Bayesian network, it is
also possible to explore the space of all optimal scenadosvolution and compare the effect of
the parameters from the cones of these vertices when useldé$sical belief propagation. The next
chapter discusses polytope propagation on simulated temaduy scenarios.



Chapter 8

Simulations

The polytope propagation algorithm was also run on simdldega generated from the bZIP tran-
scription factor interaction tree. The experimental datenfthe paper from Pinney et al.[_[35]
had concluded that the probability of gain and loss are gdigesmall, with the probability of gain
tending to be smaller. The aim of the simulation was to comple results over simulated data
with the real data.

8.1 Four parameter model

For the first run of simulations, we assumed that all the edge$ed the samé parameters. Thus,
the statistical model was defined dparameters.

8.1.1 Random data

The probabilities of gain and loss (note that we need @nparameters to generate a simulation
scenario) were picked with uniform probability over te1] interval. The prior probability was
taken to be).5. At the root, we picked a number [f, 1] with uniform probability and labelled the
root 1 if the number was greater thans and labelled it0 otherwise. Then, over each edge, we
picked a number if0, 1] with uniform probability, and depending on the label of tferemt, we
labelled the childl if the parent was labelletland the number picked was less than the probability
of loss, or if the parent was labellédand the number was greater than the probability of gain.
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Similarly, if the parent was labelle@land the number was less than the probability of gain, or if the
parent was labelled, and the number was greater than the probability of lossabellled the child
0.

The process mentioned above gives us a complete labellitligeafet of interaction trees we had
mentioned in the previous chapter. The input we were intedeis was the labelling at the leaves
which represented interactions in the extant species. Wastaken to be our evidence, and the
labelling on the rest of the tree was hidden.

8.1.2 Results

The polytope propagation algorithm was carried out on tkeraction trees using the evidence set

created above.

Runtime

The input is provided as an adjacency list of the edges irréiee &ind a list of leaves with evidence.
The computing specifications are the same as that for the diatde The computation took a max-
imum of 18 hours. As in the previous case, the graph is truncated fes tup to the size af0 to
show the runtime trend.

Runtime vs tree size for simulated data
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Figure 8.1: Distribution of runtime vs tree size for 4 paréeng
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Here again, the size of the tree is not the only parameteaffesits the computation time. A major
parameter to consider was the depth of the tree. A plot ofuh@#me versus the tree depth again
shows that for trees of comparable size, the polytope pagfmagalgorithm takes longer to run on

the tree with greater depth.

Runtime vs tree depth vs tree size

Runtime (s)

Maximum depth of the tree Number of nodes in the tree

Figure 8.2: Distribution of runtime vs tree depth for 4 paetens

We also expected the runtime to increase with the number mibkamer duplications in the tree,
since each homodimer duplication is a node of outdegraead there would be two Minkowski sum
operations at each such node. But such a correlation, ifvearyweak.

Polytope size

The polytope size shows great similarity to the resultsiobthfrom the bZIP data.
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Polytope size vs tree size for simulated data
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Figure 8.3: Distribution of polytope size vs tree size foradgmeters

Again, we have support for the (nz) upper bound for number of vertices. This statistic also
shows a gradual upward trend as we keep the size of the trekdincvary the tree depth. This is

illustrated in the following graph.

Polytope size vs tree depth vs tree size for simulated data
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Figure 8.4: Distribution of polytope size vs tree depth fggadameters
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As stated before, this is a result of progressively largenkdivski sum operations.

8.1.3 Comparison to Dollo parsimony

As with the bZIP data, the Dollo signatures were computee&ah tree with simulated input. This
signature was compared to the vertices of the propagatgtbpel of the tree.

Hamming distance from the Dollo signature to the polytope vs tree size for simulated data
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Figure 8.5: Distribution of Hamming distance from Dollosegure vs tree size

The Hamming distance for many trees was greater thavhich meant that there were fewer cases
in which at least one optimal scenario with only a single gaiisted than in the case of the real

data.

The maximum Hamming distance wés for four trees, the largest of which had nodes and
yielded a polytope witl4 vertices, and the smallest of which h2dnodes and had a propagated

polytope with29 vertices.

8.1.4 Comparison to Fitch-Hartigan parsimony

As in the case of the bZIP data, we also computed Fitch siggmfor the simulated scenarios and

compared them to the vertices of the polytope.
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Hamming distance from the Dollo signature to the polytope vs polytope size for simulated data
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Figure 8.6: Distribution of Hamming distance for Dollo siare vs polytope size

Hamming distance from the Fitch signature to the polytope vs tree size for simulated data
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Figure 8.7: Distribution of Hamming distance from Fitchrsagure vs tree size

The maximum Hamming distance observed for Fitch-Hartigaisimony, compared to the vertices
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Hamming distance from the Fitch signature to the polytope vs polytope size for simulated data
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Figure 8.8: Distribution of Hamming distance for Fitch sagure vs polytope size

of the polytope, wag2, was found for a tree on judtd nodes, which implied that the simulation
for that tree did not yield a parsimonious scenario whichimired the number of transitions along
the edges.

There were301 trees in which there was a vertex corresponding to the Fitgtatures, i.e. they had
a Fitch hamming distance 6f while 295 trees had a vertex corresponding to their Dollo signatures.
Thus, parsimonious MAP scenarios of evolution were rarettfe simulated data.

8.2 Eight parameter model

The eight parameter model is based on the scheme provideditiy\iski and Tiuryn [[15]. The
probabilities of gain and loss are taken to be different fuarcating and duplicating interactions,
giving rise to two different transition matrices. Thus,teed of4 parameters for the entire model,
we haves.
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8.2.1 Random data

The process for simulation in theparameter model was almost exactly the same as that for the
4 parameter model. However, we kept track of the additionfrimation on whether an interac-
tion duplicated or if it evolved into two new species. Insted 2 numbers in[0, 1], we picked

4, representing the probabilities of gain and loss for a spiegj interaction, and for a duplicating

interaction.

8.2.2 Polytope propagation for eight parameters

The algorithm took an extra input parameter for &q@mrameter model. We had to provide informa-
tion on whether a node was duplicating or speciating. Alse gropagated polytope for this model
was constructed iiR®, and it lay on an affine space &. The number of vertices was bound by
O (n%). Furthermore, the complexity increases considerablyghtedimensions, and the compu-
tation for even small trees (less thah nodes) takes ove} weeks on an Intel(R) Xeon(R) E5520

processor, clocked &t27 GHz, with37 GB of memory.

8.2.3 Runtime

The runtime taken for polytope propagation using the eigitameter model was considerably
greater than that for the four parameter model. The plombshow the trend as the size of the tree
grows from0 to 20 nodes, and frond to 40 nodes.
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Figure 8.9: Runtime characteristics for the eight paramatedel

Note the rapid increase in runtime. While computations fier four parameter model finished in
under500 seconds for trees smaller thdfi nodes, the same computation here takes as long as
30000 seconds. This is in agreement with the theoretical resattrimtime is exponential in the

dimension of the affine space that the polytope lies in.
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8.2.4 Polytope size

The number of vertices in the propagated polytope also sth@veoticeable increase. The trend
was no longer sub-quadratic, as we had observed in the trareter model. However, ondg of

Number of vertices in the polytope
T
I

Figure 8.10: Polytope size vs tree size for eight parameters

the 327 trees were used to generate these statistics, as the caimpyieoved to be too intractable
for trees of size larger thatb nodes.

8.3 Summary

Experiments on simulated data show a marked differenceeiffriftth signature results when com-
pared to the results from the bZIP data. The bZIP data almastya had a vertex corresponding
to the Fitch signature of the tree, while that is not true &f stmulations. This indicates that the
probabilities of gaining or losing a character was probadaly during bZIP evolution.

Other trends on the statistics of polytope size and runtireewn agreement with the real data. The
eight parameter model was an interesting example of thelgmmsbinvolved in moving polytope
propagation to higher dimensions. At the moment, there doeseem to be a tractable way to use
polytope propagation on probabilistic models with a largenber of parameters.



Chapter 9

Conclusions

In this thesis, we discussed the main computational teclesigised for the inference of ancestral
protein-protein interactions and the preliminary use oframework algebraic statistics framework

to analyze their evolutionary history.

Inference techniques in computational biology are gehectdssified into deterministic and prob-
abilistic techniques. Both of them are very well studied] aave been applied to the inference of
ancestral protein-protein interactions. The crux of thesihlies in the interpretation of probabilistic

models, such as those used for evolutionary models on teedgebraic varieties.

The work of Sturmfels et al[ [21, 32] also extended this intetqtion to an interpretation of proba-

bilistic models in tropical algebra. Such an interpretatygelds a natural translation of the model
into polytopes, with the cones of the vertices of the polggencoding parameters that yield optimal
scenarios. Furthermore, it is possible to construct thebggpes through successive Minkowski

sum and convex hull calculations.

The technique of polytope propagation, which is an extensiathe belief propagation algorithm
to polytopes, was applied to both, real data on the bZIPastemn networks, and simulated data
for protein-protein interactions, and the results were garad to the theoretical bounds that were
known. They were also compared to well known deterministixlets of evolution on trees. This
comparison gave us an insight into the possible evolutiopath of the interactions. The experi-
ments also included an extension of the polytope propagatigorithm to an evolutionary model

with a larger number of parameters.
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The results obtained indicate that while polytope progagaprovides an elegant mathematical
framework, using it on Bayesian networks for evolution suight with difficulties. Evolutionary
tree models in biology usually rely on branch lengths to Bpgarameters. For example, in the
paper by Pinney et al. [ [35], the branch length of each edgédernnteraction tree is used as a
parameter to compute the probabilities of gain and loss thngredge. The current implementation
of polytope propagation for the same tree cannot incorpdfas scale of complexity.

There are other models, such as the one by Dutkowski andTi{it$], which do not use branch
length to estimate evolutionary parameters. However, thepect of extending polytope propaga-
tion to a full-fledged parametric inference technique, doersmall Bayesian trees, seems distant
at the moment.

The extension of linear hidden Markov models to polytopeppgation has been well studied and
has been used successfully on real data [%, 12, 31]. Howievidre absence of a linear graphical
structure, such as one for sequence alignment or recordinas in Bayesian networks that model
evolution, this extension is encumbered by the necessitgke intersections with non-algebraic
hypersurfaces in the space of the parameters. This was a afgtacle in the approach taken, and

warrants further research to find a scheme that can reduceithber of parameters.

Another area of further research would be to identify a metiechandle probabilistic models with
a large number of parameters. Convex hull and Minkowski sampaitation in higher dimensions
is a field of major research, and it may be possible to exteal sesults to polytope propagation.

The problem of finding the set of optimal evolutionary sc@sfor a subset of the parameter space
is still open, as stated in Section_5J]2.2. The naive expatiahanethod of finding the optimal
solutions is not guaranteed to give all the possible scesaaind it might be useful, though difficult,
to find an algebraic statistics approach to the same.

Finally, the translation of belief propagation to polytgm®pagation also means that while we get
possible transition scenarios in the Bayesian networkrtteat have led to the evidence, we cannot
know which or how many internal labellings yield the sam&sraon scenario. It would be useful
to devise a backtracking algorithm which associates eatbxwim the propagated polytope with the
internal labellings that yield the set of transitions resgrgted by the vertex.

To summarize, an algebraic statistics approach to inferenevolutionary biology is still far from

complete. While the mathematical background is well laig, implementation of efficient meth-
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ods to compute and analyze relevant statistics for the tblelggn needs further investigation. A
few possible directions to approach this include massivalletization of the polytope propagation
algorithm and the implementation of more efficient Minkowslm solvers. It would be interest-
ing to examine how a low parameter model computed througébadic statistics compares with
high parameter models of evolution. Apart from this, a noobpbilistic approach to parametric
inference, such as the one taken by Dewey et al.1 [12], maym»ade an idea which lets us
handle parametric inference in evolutionary models. @edé&crete algorithms, such as Sankoff
parsimony, can be naturally translated to polytope profi@yeand this solves the problems of high

dimensionality and non-algebraic intersections.



Appendix A

The bZIP transcription factors

The data set of interest to us is the protein interactionsmicg in the family of the bZIP transcrip-
tion factors. They are a family of proteins involved in thgukation of development, metabolism,
circadian rhythm, and other cellular processes. The faexhjibits a high rate of gene duplication,
and the bZIP subfamilies have broadly conserved intenagiatterns with each other. There are
accurate genome-scale experimental data for the famity,agorocess to estimate the strength of
interactions based on amino acid sequences exists, whikbstizae bZIP family particularly useful

for investigating methods for reconstruction ancestralvoess.

The paper by Pinney et al. [35] investigates the reconstnucif ancestral protein interactions in
the bZIP family by using a Bayesian network modelled by thergrction tree.

A.1 The interaction tree

The reconciled gene tree for the bZIP family is already piesi Using this, we can easily construct
the interaction tree, starting with the assumption thatpifugein at the root could have been self-
interacting. The gene tree ha83 nodes, and yields an interaction tree wégt0 nodes, of which

2227 are interactions in extant species.
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A.2 Parameters

The paper selects parameters for gain and loss experityef@éed on the true-positive and true-
negative extant human bZIP interactions, by considerihgassible moves in the sequence space,
from each strongly interaction pair, or each non-interactpair, and modelling the probabilities
of loss and gain, respectively. as a function of the sum afidirdengths of the two genes corre-
sponding to the interacting proteins. Then, they fitted ttata to logistic functions of the sum
of branch lengths. At the root, the prior was chosen toOlde The functions that were fit-

1A

X P(loss of interaction)
© P(gain of interaction)

probability
o
«n

0.4 -

sum of evolutionary distances

Figure A.1: Probabilities of gain and loss for human intéoas versus sum of evolutionary dis-

tances [[35]

ted to the data wer6.0809/ (1 + exp (—2.9495 (d — 1.6409))) for the probability of gain and
0.9219/ (1 + exp (—5.886 (d — 1.2887))) for the probability of loss, wheré is the sum of evo-
lutionary distances from their parents for both proteinaririnteraction. This yield6849 different
stochastic matrices along each edge, with different gain@ss percentages over each edge.
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A.3 Evidence

Using the true-positive and true-negative human intesasti score distributions were derived for
strongly interaction and non-interacting protein pairshe3e distributions were fitted to normal
distributions that varied over the Fong-Singh scorgs| [b8]te interaction protein pairs in the

extant species. 70 -

non-interactions (data)
strong interactions (data)
60 - === non-interactions (fit)
strong interactions (fit)

frequency
A
(=]

w
o
L

20 A

10 +

Figure A.2: Fong-Singh predictions for strong and weakratéons [35].

A score 0f30.6 was found to correspond to the probability of an interactieing0.5, and it was
taken as the cut-off score for the binary evidence.



Appendix B

Basics of probability

This appendix is supposed to provide a brief overview of phility theory, and the terminology
used in it.

B.1 Probability space

Suppose we define an experiment with finite sample sPaee{e;, e, ..., e,}, where eacle; is

an outcome of the experiment. A subset of this sample spaszglézl anevent

Definition 20. [30] A function that assigns a real numb&- (E) to each eventy C €, is called
a probability function on the set of subset<bif it satisfies the following conditions:

1. 0< Pr({e;}) <1lforl<i<n.
2.5 Pr({e}) =1.
3. For eachE, as long ast/ is not a singleton set,

Pr(FE) = Z Pr({ex}).

er€E

We say that(2, P) define a probability space.

The numberPr (E) assigned to an everit C (2 is called the probability o/, and Pr is said to be
a map ort?.
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A random variableis a function orf2 which assigns a unique value to each element in the sample
space. The set of values a random variallean assume is called tispaceof X .

The following theorem holds for all probability spaces.

Theorem 9. [30] For any probability spacé2, Pr,

1. Pr(Q)=1.
2.0< Pr(FE)<1foranyE C Q.
3. ForEcQandF c Q,if ENnF =0, then,

Pr(EUF)=Pr(E)+ Pr(F).

These properties are called tw@oms of probability

B.2 Conditional probability and independence

Definition 21. For any two eventd” and F' in Q, if Pr (F) # 0, the conditional probabilityof £
givenF', Pr (E|F), is given by

Pr(ENF)

Pr(E|F) = Pr(F)

If the conditionE N F' = () holds, the two event& and F' are said to be mutually exclusive.

In terms of probability functions, two evenisand F' are independent if one of the following holds.
1. Pr(E|F) = Pr(FE)andPr (E) # 0,Pr (F) #0.
2. Pr(E)=0o0rPr(F)=0.

If two eventsE and F' are independent, thelr (E N F) = Pr (E) - Pr (F).

Based on the definitions of conditional probability and ipgledence, we can now define conditional
independence as follows.

Definition 22. [30] Two eventds and F' are said to be conditionally independent given another
eventG and Pr (G) # 0 if one of the following holds:
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1. Pr(E|FNG) = Pr(E|G)andPr (E|G) # 0, Pr (F|G) # 0.

2. Pr(E|G) = 0or Pr(F|G) = 0.

B.3 Bayes Theorem

Using the definitions of conditional probabilities and ciiadial independence, we can prove the
following theorem.

Theorem 10. [30] [Bayes’ theorem] Given two evenfs and F, such thatPr (E) # 0 and
Pr(F) # 0, then

Pr(F|E)Pr(E)

Pr(E|F) = Pr(F)

This is the central theorem in Bayesian inference. It sta#y roughly, that given the outcome of
a certain event, it is possible to find the probability of aargwvhich may have led to that outcome.
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