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Abstract

Protein-protein interactions are important catalysts formany biological functions. The interaction

networks of different organisms may be compared to investigate the process of evolution through

which these structures evolve. The parameters used for inference models for such evolutionary

processes are usually hard to estimate.

This thesis explores approaches developed in algebraic statistics for parametric inference in

probabilistic models. Here, we apply the parametric inference approach to Bayesian networks rep-

resenting the evolution of protein interaction networks. More precisely, we modify the belief prop-

agation algorithm for Bayesian inference for a polytope setting. We apply our program to analyze

both simulated and real protein interaction data and compare the results to two well known discrete

parsimony inference methods.
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Introduction

Protein-protein interactions are important biological phenomena, which participate in many major

functions in cells [11]. Most proteins carry out their functions by interacting with other proteins.

The interactions in a single species form a biological network. The study of these interactions is

crucial to understanding such networks.

Evolution is an important field of research in biology, and nothing in biology makes sense except in

the light of evolution [13]. However, understanding the evolutionary history of biological networks,

such as the network of protein-protein interactions, is still a widely open problem [26].

There has been tremendous progress in data acquisition for molecular biology, and through this, the

protein-protein interaction networks for current specieshave been made available to us [27]. This

opens the way for methods in computational biology to be usedto infer the evolutionary history of

protein-protein interactions networks.

The purpose of this thesis is to give a brief overview of the work done on the inference of the

evolutionary history of these interaction networks, and toserve as a preliminary exploration of an

algebraic statistics approach to the problem of inferring them [33].

The first part of the thesis is an introduction to mathematical models in molecular and evolution-

ary biology. The basic concepts of protein-protein interactions and structures used to model their

evolution are given here. Furthermore, we discuss various techniques used to infer ancestral protein-

protein interactions.

The main emphasis is on probabilistic graphical models, in particular Bayesian networks on trees,

which are the objects of interest for the thesis. A probabilistic approach to inference is desirable

as probabilistic models are more realistic models of evolution. Bayesian networks have been used

for the prediction of ancestral protein-protein interactions, and have compared well with other tech-

1



niques [35]. Apart from probabilistic techniques, we also discuss some deterministic approaches to

the problem, and the principles that govern them.

The use of probabilistic models also implies that a variety of efficient algorithms are available to us

for inference. For example, the forward algorithm for hidden Markov models is a special case of a

family of algorithms known as sum-product algorithms. Apart from simple inference, there are also

optimization techniques available to us on probabilistic models. This makes these models versatile

and relatively easy to use.

The second part of the thesis an algebraic statistics point of view on probabilistic inference, intro-

duced by Sturmfels et al. [33]. Approaching computational biology through algebraic statistics is

a relatively new idea, which develops naturally from the useof probabilistic models for inference,

and has been applied to sequence alignment using hidden Markov models [5]. The main motiva-

tion behind this approach is that sum-product algorithms yield polynomials when the parameters

are treated as formal variables, and every probabilistic model can be represented by a polynomial

map. The algorithms for probabilistic graphical models translate well when we move the problem

of inference to algebraic statistics, which leads to parametric inference algorithms.

The final part of the thesis applies methods in algebraic statistics to Bayesian networks which de-

scribe the evolution of protein-protein interactions. Themethods are applied to both simulated data

and data from real interactions. The results are compared towell known deterministic approaches

to inference, and to theoretical calculations of complexity bounds. A brief summary of our results

and the major issues we face is given at the end.

2



Part I

Computational Biology
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Chapter 1

Introduction to Computational

Molecular Biology

The objective of the thesis is to reconstruct ancestral protein interaction networks. To do so, we need

a working definition of certain biological terms which occurfrequently in bioinformatics research,

and which serve as a basis to the system we are concerned with.

1.1 Genomes, genes and proteins

A genomeis a molecule of DNA made of four nucleic acids. It is composedof chromosomes, which

carry genes. The genome is present in the nucleus of each cellof an organism [23]. It is the support

of genetic material.

A geneis a genome segment that encodes a protein [23]. Genes can be ‘read’, through a process

known astranscription, to create amessenger-RNA. The RNA molecule istranslatedthen into a

protein.

Proteinsare macromolecules formed by sequences of amino acids. Theyare important units for bio-

logical functions, often used as catalysts for biological reactions, providing structure to components,

or signalling cells etc.

As stated before, proteins are formed by translation of an RNA molecule. Substrings of size3 of

4
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(a) Transcription from DNA to create m-RNA (b) Translation of m-RNA to protein

Figure 1.1: From genes to proteins

the RNA, known ascodons, encode amino acids, and a series of codons encodes the wholeprotein.

1.2 Protein-protein interactions

A protein-protein interaction occurs when two or more proteins bind together to carry out a biologi-

cal function [11,25]. Protein-protein interactions (which we shall refer to by protein interaction for

convenience) participate in many major biological processes, and this makes their study interesting.

Protein 1 Protein 2

Figure 1.2: A Protein-Protein Interaction [43]

Protein interactions are an example ofnetworksin biology [26]. Each protein is represented by a

vertex, and an edge is present between two vertices if and only if the corresponding proteins interact.
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Figure 1.3: A Protein-Protein Interaction network in the Epstein-Barr virus [6]

Some proteins that evolve from the same ancestral protein, called aprotein family, may show a large

number of interactions with proteins of the same type.

1.3 Evolution

Evolution is the process through which inherited traits in organisms change over time. Evolutionary

information is stored in the genome, and is inherited by the child from the parent.

Speciation is the process through which a species evolves into two or more descendant species.

Each species has its representative genome. Once a speciation occurs, each species evolves along

its own branch, independently of the other species.

Genes within a genome evolve through duplication, speciation, and loss [23]. Duplication creates

two copies of the gene in the same genome. Through speciation, the two new genomes inherit the

gene.
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Figure 1.4: Evolution of humans, mice, chicken, fruit flies and bees from a common ancestor

Gene A

Gene A2Gene A1

Duplication

Gene A11 Gene A21 Gene A12 Gene A22

Speciation

Species BSpecies A

Ancestral

species 

Figure 1.5: Gene evolution through speciation and duplication

Gene loss occurs after a species inherits a gene. The gene generally gets duplicated, and, due to

the accumulation of mutations on one of the duplicated copies, the copy either loses its function

and becomes apseudogene, or it develops a new function [23]. Genes, through messenger RNA,

produce proteins. It is reasonable to assume that changes inthe gene sequence will lead to changes

in the protein produced by that gene. So, proteins are assumed to evolve in parallel with genes.

The evolution of proteins also affects protein-protein interactions. Following a speciation event of
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A1

A2

A3

1 2 3 4

L L

L

a

b

dc

e

Figure 1.6: Gene loss. Genes have been lost over the branchesmarked with L at the leaves.

two proteins which may have interacted in the ancestral species, their immediate descendants in

each of the new species may start interacting. If a protein islost in a new species during speciation,

then no new interactions with that protein are possible. Theduplication of a protein means that the

two resulting copies of the protein in the species can potentially interact with every other protein

that their parent was interacting with.

A major question asked by biologists is what biological information we can infer about species

that are now extinct. The main obstacle to answering this question is that we do not know the

evolutionary process well enough to predict the path of evolution with certainty.

1.4 Mathematical models in evolutionary biology

This section discusses basic mathematical models that are used to represent the evolution of species,

genes, proteins, and protein interactions.

1.4.1 Phylogenetic trees

The main combinatorial object of interest in phylogeneticsis the tree.

Definition 1. A tree is a connected, undirected, acyclic graph.

Nodes of a tree with degree greater than1 are calledinternal nodes, and nodes with degree1 are
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calledleaf nodes. If a node of the tree is oriented in such a way that all edges are orientated towards

or away from it, the node is called theroot of the tree. We can also define directed trees, by assigning

a direction to each edge. The source of a directed edge is called aparent, and the sink is called a

child of the parent.

We say that a treeT is defined on the alphabet of leavesL if the setL forms the set of leaves of the

tree.

Trees are a very natural and simple models for evolution. Given a rooted tree, and an orientation of

the edges such that each edge is directed away from the root, along each edge, the child is assumed

to evolve from the parent. For an internal nodev in the tree, its descendants are defined to be the set

of nodes that lie on the directed paths fromv to the leaves in the subtree rooted atv, including the

leaves.

Species tree

In biology, the set of species that are currently alive are called extant species. The set of species

that have died out, and through which evolution progressed are calledextinct species. We define a

species tree as follows.

Definition 2. LetX be a set of extant species. Aspecies treeis a tree defined on the alphabet of

leavesX.

Alternately, a species tree is a tree defined on a set of hypothetical extinct speciesY , with leaves

X, such thatY ∩ X = ∅, and a directed edge exists between each pair of nodesv1, v2 ∈ X ∪ Y

when the speciesv2 is a direct descendant of the speciesv1. Thus, every internal node in the species

tree represents an ancestral species, and the branching at an internal node to two edges represents

a speciation. For example, Figure 1.4 is a species tree over5 species. Species trees with full

information about the species are rooted and binary. However, full information might be hard to

obtain, and very often, we resort to non-binary or unrooted species trees on a set of extant species.

Gene tree

The evolution of individual genes can also be modelled by a tree. We can define a gene tree as

follows.
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Definition 3. LetX be a set of genes belonging to extant species. Agene treeis a tree defined on

the alphabet of leavesX.

Each internal node in the gene tree represents an ancestral gene, and the branching at each internal

node is either a speciation event or a duplication event.

Gene trees, like species trees, may be rooted or unrooted. The root of a gene tree, if it exists,

corresponds to the most recent common ancestral gene of all the genes at the leaf nodes.

Gene trees are often constructed with weights on the edges. These weights represent the amount of

sequence divergence between the two genes on either end of the edge.

Reconciliation

An important problem is the identification of the species that each gene in the gene tree belongs to.

For the leaves, this is straightforward, since we only have extant genes, and we know the source.

However, the internal nodes of the gene tree are not labelledwith species names. Thus, we use the

species tree for the set of extant species, and identify the internal nodes with ancestral species in the

tree.

At each of the internal nodes in the gene tree, we could have had a gene duplication, speciation, or

loss. If we had a duplication, the children will belong to thesame species as the parent. If the node

was a speciation node, its children will belong to differentspecies. Losses occur at nodes in which

one of the two children is lost, i.e. the gene is not present inthat branch of the tree.

The process of reconciliation identifies each internal nodeof a gene tree with a species in the species

tree, and associates a speciation or duplication event to each node in the tree [7–9]. This is often

done with respect to some optimization criterion.

In the following example, the gene tree is given, with white boxes labelled with small letters

a, b, c, d, e representing ancestral genes, and the solid boxes representing extant genes. In the

species tree, the capital lettersA1, A2, A3 represent ancestral species, and the numbers represent

extant species. The numbers at the leaves of the gene tree identify each gene to the species it be-

longs to. Denote the species tree byS, and the gene tree byG. The edges of a treeT will be given

by E (T ), and the vertices byV (T ). Let LS (X) be the set of species of the leaves in the subtree

rooted atX ∈ V (S) of the species tree. Similarly, letLG (X) be the set of species of the leaves in
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Figure 1.7: Reconciliation of a gene tree with a species tree. Solid nodes are speciations, and empty

nodes are duplications.

the subtree rooted atX ∈ V (G) of the gene tree.

Definition 4. [9] A reconciliation is a mappingLCA : V (G) 7→ V (S) such thatLCA (X) = U

for X ∈ V (G), andU ∈ V (S) is the lowest node ofS such thatLG (X) = LS (U).

This reconciliation technique minimizes the number of duplications, losses, and the total number of

duplication and loss events [9]. In the reconciled gene treein the example, solid internal nodes rep-

resent speciating genes, and white ones represent duplicating genes. Branches markedL represent

losses. Noded in the gene tree has to at least map to speciesA2 in the species tree or higher, since

genes of species3 could not have evolved fromA3. If d was mapped toA1, however, the number

of duplication and loss events would increase.

1.4.2 Protein interaction networks

The protein interaction network for a set of proteins in a species can be modelled by aninteraction

graph.
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Interaction graph

Definition 5. LetV be a set of proteins in some organism, andE be the set of all interactions, such

that for any two proteinsu andv in V , we say that{u, v} ∈ E if we have an interaction betweenu

andv. The interaction graph for that set of proteins is the graphG = (V,E) with vertex setV and

edge setE.

If the setV is the entire set of proteins in the organism, then we get the entire protein interaction

network for the organism. Small families of proteins may show dense subgraphs with few edges

with proteins in other families.

Proteins can also interact with copies of themselves. Such interactions are calledhomodimer inter-

actions. If proteins interact with other proteins, the interactions are calledheterodimer interactions.

Given a set of protein interaction networks of different species, finding the protein interaction net-

work in the ancestor would naively translate into identifying similar proteins in all species, and

finding the induced subgraph. This is almost akin to solving the subgraph isomorphism problem,

which is NP-complete. This, of course, does not take into account protein duplication and loss.

Interaction tree

A more useful idea to model the evolution of protein interactions involves making the assumption

that each protein interaction is independent of other interactions. This leads to the concept of an

interaction tree, first described by Pinney et al. [35].

Definition 6. An interaction tree is a rooted, directed tree of maximum degree outdegree3, which

describes the evolution of protein interactions. The nodesof an interaction tree represent possi-

ble protein interactions. The branches of an interaction tree represent the effect of duplication,

speciation and loss of proteins on the evolution of protein-protein interactions.

Interaction trees are constructed for one or more families of proteins over the same set of extant

species from the corresponding gene trees that represent the evolution for these families. The max-

imum outdegree condition stems from using rooted gene treeswith branch lengths given for each

edge, as will be seen during the construction of the interaction tree.
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Given a rooted, edge-weighted, reconciled gene treeG for a gene family, and the corresponding

proteins, it is possible to construct the interaction tree for the proteins in this family as follows.

(i) For every two proteinsA,B ∈ V (G), not necessarily distinct, in the same species, add the

node{A,B} to the vertex set of a new graphI.

(ii) For a duplication, where the edge to nodeA is shorter than the edge to nodeB in the gene

tree, to give proteinsA1 andA2, add edges from the node{A,B} to the nodes{A1, B} and

{A2, B} to I.

(iii) For a speciation of nodeA toA1 andA2, and of nodeB toB1 andB2, where the proteins la-

belled1 and2 belong to different species, add edges from{A,B} to {A1, B1} and{A2, B2}.

(iv) For a node{A,A}, if A duplicates to giveA1 andA2, add edges from{A,A} to {A1, A1},

{A1, A2} and{A2, A2}.

(v) Delete all isolated nodes.

Figure 1.8: Constructing an interaction tree from a gene tree [35]

The treeI thus constructed is the interaction tree of the two protein families. The evolution of

homodimer duplications is represented in the tree by nodes with an outdegree of3.
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Similar models have also been proposed for describing the interactions between two different fam-

ilies of proteins [15]. In the next chapter, we shall see how these models are used to infer the

evolutionary history of ancestral protein-protein interactions.



Chapter 2

Inference of Ancestral Characters

Inference of ancestral characters in evolutionary biologymakes use of the tree structure of evolution.

Such a structure implies that the evolution of two disjoint branches is independent of each other.

Inference techniques can be broadly classified into deterministic and probabilistic approaches.

2.1 Deterministic Approaches- Parsimony

The principle of parsimony states that the process of evolution would be carried out with the minimal

number of character changes in the evolutionary tree [17]. The change of a character from a parent

to a child is called a transition.

2.1.1 Fitch Parsimony

Fitch parsimony is a simple concept which states that the path of evolution is the one with the least

number of changes [18]. This means that there is no preference for any transition. The algorithm

for constructing an evolutionary scenario which obeys Fitch parsimony minimizes the number of

such transitions in the model.

15
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Algorithm for Fitch Parsimony

Input : TreeT , characterCL at each leafL in the tree, setCX of possible characters at each

nodeX.

Output : CharacterCX at each internal nodeX of the tree, such that the number of

transitions is minimized.

foreach NodeX in T do

if X /∈ Leaves (T ) then

if
⋂

Y ∈Children ofX CY 6= ∅ then
CX =

⋂

Y ∈Children ofX CY ;

end

else if
⋂

Y ∈Children ofX CY == ∅ then
CX =

⋃

Y ∈Children ofX CY ;

end

end

end

changes = 0;

foreach NodeX in T do

if X == Root (T ) then
Choose characterc ∈ CX ;

CX = {c};

end

else

if CX ∩ CParent(X) 6= ∅ then
Choose characterc ∈ CX ∩ CParent(X);

CX = {c};

end

else
Choose characterc ∈ CX ;

CX = {c};

changes++;

end

end

end
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The algorithm for Fitch parsimony on a tree is executed in a two step process. The upward pass

compiles a set of all possible characters at a node. The downward pass chooses characters from

these sets that minimize the number of transitions. The example given shows a Fitch parsimonious

Figure 2.1: A tree labelled with Fitch parsimony, given the labels at the leaves

labelling of the tree obtained from the algorithm. Given theevidence at the leaves, we have only

two gains in the entire tree.

Fitch parsimony is the term used for applying the concept to binary trees. For non-binary trees, the

corresponding concept is called Fitch-Hartigan parsimony.

2.1.2 Sankoff Parsimony

The main drawback of Fitch-Hartigan parsimony is that the transitions of all characters are consid-

ered equally likely. Sankoff parsimony seeks to remedy thislimitation by assigning costs to each

transition, and stating that the most likely scenario wouldhave been one which yields the least total

cost [37,38].

The Sankoff parsimony scenario can be computed using dynamic programming. It then remains to

determine the cost of each transition. In particular, the case in which all transitions are assigned

equal costs reduces to Fitch-Hartigan parsimony.
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2.1.3 Dollo Parsimony

Another special case of Sankoff parsimony is called Dollo parsimony. The Dollo principle states

that complex characterswhich were formed during evolution are very hard to gain, butrelatively

easy to lose. Dollo parsimony is a condition on the existenceor absence of a complex character.

Thus, we only have binary transitions, from0(absence) to1(existence), or vice-versa. Furthermore,

since characters are considered hard to gain, evolutionaryscenarios are restricted to have at most

one gain, while minimizing the number of losses.

In terms of Sankoff parsimony costs, the Dollo argument corresponds to the condition that the cost

of going from0 to 1 is infinite. On a tree describing evolution, this means that if the character is

present at two leaves, since we could have had at most one gain, the character must be present at

each node which lies on the path between the two leaves.

Figure 2.2: A tree labelled with Dollo parsimony, given the labels at the leaves

The example given is the same tree and leaf characters used toillustrate Fitch parsimony. However,

since Dollo parsimony does not allow more than one gain, we are forced to have three losses instead

of just two gains. Also note that all the nodes on a path between two nodes with the character1 also

have the character1.
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Algorithm for Dollo Parsimony

The following algorithm for Dollo parsimony takes advantage of the fact that the character is present

at every node on a path between two nodes that already have thecharacter.

Input : TreeT , binary charactersCL at each leafL in the tree.

Output : Binary charactersCX at each internal nodeX of the tree, such that the number of

0 → 1 transitions is at most1, and the number of1 → 0 transitions is minimized.

foreach LeafX in T do

if CX == {1} then

foreach LeafY in T , Y 6= X do

if CY == {1} then

foreach NodeN on the path fromX to Y do
CN = {1};

end

end

end

end

end

foreach NodeK in T do

if CK 6= {1} then
CK = {0};

end

end

2.2 Probabilistic Approaches- Bayesian networks on Trees

Probabilistic inference techniques aim to compute the probability of existence of an ancestral char-

acter. The key idea is that characters in evolutionary biology evolve along the branches of a tree,

and each character evolves from its parent through speciations, duplications and losses.

Along a branch, the character at the parent node will affect the character at the other end of the edge.

Evolution over the edge can be modelled by a stochastic transition matrix, by associating each end
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of the edge with a random variable. For example, on an edgeX → Y , we can associateX and

Y to a random variable, where the character atX can take valuesx0, x1, x2 and the character atY

can take the valuesy0 andy1. The transition matrix over the edge, which describes aconditional

probability distributionfunction, is





x0 x1 x2

y0 sx0→y0 sx1→y0 sx2→y0

y1 sx0→y1 sx1→y1 sx2→y1



,

where eachsxi→yj , which we may also callsxiyj for convenience, represents the probability

Pr (Y = yj|X = xi) (See Appendix B for a short introduction to notation used in probability

theory). It is immediately apparent that the columns sum to1, i.e.
∑

j sxi→yj = 1. At the root, we

have aprior probability table [p1p2 . . . pt] instead of the matrix, which gives us the probability of

each state of the root. This table meets the condition that
∑t

i=1 pi = 1.

The object we now have is a directed, rooted tree, with each node associated with a random variable,

a conditional probability distribution over each edge, anda prior probability distribution at the root.

This is aprobabilistic graphical model. More precisely, the model we obtain is aBayesian network

on a rooted, directed tree [30].

Probabilistic graphical models, which include hidden Markov models and Markov chains, have been

widely studied, and applied to problems in machine learning, social networks etc. In the field of

computational biology, these models are used for sequence alignment, inferring ancestral population

structures etc [1]. Algorithms to apply on these models havealso been well developed, and make

them very attractive to use.

The directed edges on the underlying graph of a Bayesian network represent a causal relationship

between the two events associated with the nodes. For example, an edge from nodeX to nodeY

means that the outcome of eventX directly influences the outcome of eventY . Also, for a path

X → Y → Z, if there is no other path fromX to Z and the outcome ofY is fixed, then the

outcome of eventX does not influence the outcome of eventZ. Since we shall be working with

directed rooted tree models, there is at most one unique pathbetween any two nodes, and each node

(except the root) has a unique parent.
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2.2.1 Joint and prior probability distributions

The joint probability distributionof the Bayesian network describes the probability of all random

variables in the network being assigned a specific value. Formally,

Definition 7. [30] Let a set ofn discrete random variablesV = {X1,X2, . . . ,Xn} be specified

such that eachXi has a countably infinite space. A function, that assigns a real number

Pr (X1 = x1,X2 = x2, . . . ,Xn = xn) to everyn-tuple (x1, x2, . . . , xn), such thatxi is chosen

from the space ofXi, is called a joint probability distribution of the random variablesV if it satisfies

the following conditions.

(i) For everyn-tuple(x1, x2, . . . , xn),

0 ≤ Pr (X1 = x1,X2 = x2, . . . ,Xn = xn) ≤ 1.

(ii) If we sum over all possiblen-tuples(x1, x2, . . . , xn),

∑

(x1,x2,...,xn)

Pr (X1 = x1,X2 = x2, . . . ,Xn = xn) = 1.

For a general case, when we do not have a Bayesian network, thejoint probability

Pr (X1 = x1,X2 = x2, . . . ,Xn = xn) can be written as follows,

Pr (X1 = x1,X2 = x2, . . . ,Xn = xn) =

n
∏

i=1

Pr (Xi = xi|Xi+1 = xi+1, . . . ,Xn = xn).

For a Bayesian network, however, since the outcome of each event is directly dependent only on its

parent,

Pr (X1 = x1,X2 = x2, . . . ,Xn = xn) =
n
∏

i=1

Pr (Xi = xi|Xp = xp, whereXp is the parent ofXi).

Using the conditional probability distribution matrices given along each edge, we can find the joint

probability distribution of all the random variablesV in the Bayesian network.

Having completely defined a Bayesian network, we can proceedto extract information from it. In

the absence of any evidence, i.e. when every random variablecan take any possible value, we can

create a prior probability distribution over the network. This can be done by iterating the following

steps.
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1. For an edgeX → Y , findPr (X = x) for every valuex that the random variableX can take.

2. SetPr (Y = y) for every valuey that Y can take to be
∑

∀ values of x Pr (Y = y|X = x) .P r (X = x), where the conditional probability

Pr (Y = y|X = x) can be looked up from the probability matrix on the edge.

3. Repeat for every child ofY .

This gives us the probability of every value at each node whenwe do not know the state of any

random variable in the system. This is known as theprior probability distributionof the network.

The next section deals with the case when we do have some information about the state of the

system.

2.2.2 Inference of marginal probabilities

An evidenceis an assignmentx to a random variableX. It corresponds to saying thatPr (X = x) =

1 andPr (X 6= x) = 0. An evidence setY is a set of random variables which have been assigned

some evidence. We will use the notatione for a |Y| − tuple that represents the assignment of each

random variable inY, and will denote this byY = e. The entire set of possible assignmentse that

can be given toY will be denoted byE . This set is called thestate spaceof the model.

Definition 8. Themarginal posterior probabilityof a nodeX being in statex, given an evidence

setY and evidencee, is the probability that we observe the random variableX to be in statex,

conditioned on the evidence, orPr (X = x|Y = e).

Given a Bayesian network on a treeT on the set of nodesV , with evidence setY, and evidencee,

it is possible to find the marginal posterior probability of arandom variable/nodeX /∈ Y being in

statex. This is equivalent to letting the other variables (i.e.V \Y ∪ {X}) attain any value, which

can be done by summing over all other cases, and restricting the values ofX and the variables in

Y. To understand this, let us introduce some notation. In thissection, unless stated, the random

variable of interest at nodeX will also be calledX, and the evidence set will beY.

We define alabelling of the nodes of the graph as an assignment of all random variables. Thus,

labellings are|V |−tuples that represent the outcomes for all possible events.The set of all possible
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labellings will be denoted byL. For any labellingl ∈ L, the label of a single nodeQ, i.e. the value

of the random variable associated toQ according to that labelling, will be denoted bylQ .

An e-consistent labellingis a labellingl in the setL : e, which denotes the set of all labellings in

L such that the evidence nodes inY have been labelled withe ∈ E . We can extend this definition

to ane ∪ {x} consistent labelling in the setL : e ∪ {x}, the subset of labellings inL : e such that

the nodeX is labelledx in all elements of that set. We define the probability of a labelling l ∈ L as

follows

Pr (l) = plroot
∏

P→Q∈E

slP lQ , (2.1)

whereslI lJ denotes the transition probability of going from the labellI of the nodeI, to the labellJ

of its child J , andplroot is the probability that the labelling of the root islroot. We can then define

the marginal probability ofX = x as

Pr (X = x|Y = e) =
1

∑

l∈L:e Pr (l)

∑

l∈L:e∪{x}

Pr (l).

Thus, the marginal probability ofX = x is simply the probability of observingx atX conditional

on the evidence. We sum over all possible states of the randomvariables except forX and for the

evidence nodes.

Example

In the following example, the edges are oriented away from the root. Each random variable is

binary, the conditional probability distribution matrix,T , is assumed to be the same over each edge,

and the prior probability at the root is taken to be0.5. The evidence nodes inY are(A,B), and the

evidence is(1, 0). The probability of nodeD being in state1 and the evidence, is

Pr (D = 1, (A,B) = (1, 0)) =
∑

R={0,1}

∑

C={0,1}

Pr (D = 1, A = 1, B = 0, R,C).

On normalizing this with the following term, we get the marginal probability ofD being in state1

conditioned on the evidence.

Pr (A = 1, B = 0) =
∑

D={0,1}

∑

R={0,1}

∑

C={0,1}

Pr (D = 1, A = 1, B = 0, R,C).
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Figure 2.3: A small Bayesian network, with the conditional probability matrix over each node, prior

probability at the root, and evidence.

Thus the marginal probability ofD being in state1 conditioned on the evidence is

Pr (D = 1| (A,B) = (1, 0)) =
1

6

The normalization term is called themarginal probability of the evidencePr (Y = e). Formally,

the marginal probability of the evidence for any evidenceY = e is given by

Pr (Y = e) =
∑

x∈Sample space ofX

Pr (X = x,Y = e) =
∑

l∈L:e

Pr (l). (2.2)

This is a constant for an evidencee, irrespective of the nodeX we are summing over.

Since all the steps, excluding the normalization, consist of only sums and products, we can infer the

marginal probabilityPr (X = x,Y = e) through repeated sums and products. By using the fact

that an initialized node induces conditional independenceof nodes connected through through it, to

consider the probability ofX = x, we can take the product of the probability of the tree rootedat

X, whenX = x, and the probability of the rest of the graph, both conditional onY = e. Each

of these can be recursively calculated. The stopping condition for the recursion is specified by the

evidence, which fixes the probability at the nodes in the evidence set. Thus, we get asum-product

algorithm to infer marginal probabilities. One variant of this algorithm, proposed by Pearl [34], is

the belief-propagation algorithm, which passes the outputof the sums and products as information

to be used for the next level of recursion.
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Sum-product algorithms are generalizations of many widelyused algorithms for probabilistic graph-

ical models, such as the forward algorithm for Hidden Markovmodels.

2.2.3 Inference of maximum a posteriori labelling

We defined the marginal probability of an evidencee as
∑

l∈L:e Pr (l). Since the probability of a la-

belling l is Pr (l) =
∏

P→Q∈E slP lQ , each summand inPr (Y = e) corresponds to an explanation

of the evidence. We get a unique marginal probability of evidence if and only if we have no directed

path from one evidence node to another. Otherwise, due to theMarkov property, the probability of

the evidence of those two nodes will be independent of each other.

One optimization question that we could ask is which labelling maximizes the probability of seeing

the evidence. This question is almost equivalent to finding the most probable evidence consistent

labelling. The second question is answered by the largest summand in
∑

l∈L:e Pr (l). This labelling

is not necessarily unique.

Definition 9. Themaximum a posteriori probability labellingof an evidencee (MAP (e)) is a la-

belling of the nodes of the Bayesian network which maximizesthe probability of seeing the evidence.

MAP (e) = argmax
l∈L:e

{Pr (l)}. (2.3)

There can be more than one internal labelling which gives us the same maximum a posteriori prob-

ability for a given evidence. This is can be seen from the factthatPr (l) is simply the product of

the transition probabilities along each edge, and if we change the order of these transitions, we will

still get the same probability.

There may be also be more labellings that maximize the probability of the evidence than evidence

consistent labellings of maximum probability. To illustrate this, let us look at the case of the

Bayesian network in Figure 2.3. The labelling of the internal nodes which maximizes the prob-

ability of the evidence isR = 1 andD = 0. Notice thatC is not an evidence node, nor is it an

internal node.

Since both labellings give us a maximum probability of evidence, which equals0.2205, and since

this probability is independent of the label atC, we can effectively prune the tree atC, and look at

the rest of the tree. At the same time, the probabilities of the labellings are different. WhenC is



CHAPTER 2. INFERENCE OF ANCESTRAL CHARACTERS 26

(a) C labelled with1 (b) C labelled with0

Figure 2.4: Example of non-uniqueness of optimal labellings

labelled1, the probability of the labelling is0.19845, while the probability of the labelling withC

labelled0 is 0.02205.

One way to resolve this ambiguity is to take the most probablelabelling instead of looking for

labellings that maximize the probability of the evidence.

The belief-propagation algorithm can be adapted to do solvethe MAP problem, by using a max-

product formulation or a max-sum formulation on the log-parameter space instead of the sum-

product formulation. Then, the probabilities at the root gives us the maximum a posteriori proba-

bility of the evidence. By backtracking, we can find the possible labellings that give us the same

maximum a posteriori probability. As in the case of the sum-product algorithm, the max-product

formulation of belief propagation is a generalization of other algorithms used in probabilistic graph-

ical models, such as the Viterbi algorithm.

2.3 Inference in Ancestral Protein-Protein Interaction Networks

The inference techniques discussed in the previous sectioncan all be used for inference of ancestral

protein interactions. To apply them, we work on the interaction tree, which is created from a rooted,

binary gene tree which has been reconciled with the species tree. The critical point is that the tree

structure removes the dependence of an interaction on its siblings.
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2.3.1 Input

The binary information at the leaves, indicating the presence or absence of an interaction in the

extant species, is usually computed using sequence alignment techniques. A cut-off score is decided

using statistical data representing the strength of interactions as a function of the score. If the score

of an interaction is greater than the cut-off, then the interaction is assumed to be present (binary label

1), else it is assumed to be absent (binary label0). Such techniques can also be used to reconstruct

ancestral protein sequences, and estimate the strength of an ancestral interaction [19,35].

2.3.2 Parsimony on the interaction tree

Parsimonious techniques can be directly applied to the interaction tree using the evidence. It is

common to use non-parametric versions of parsimony, such asFitch or Dollo parsimony, for infer-

ence. Other non-parametric variants have been used for comparison against probabilistic models

and inference through sequencing data [29,35].

2.3.3 Bayesian inference

A probabilistic approach to the inference of ancestral protein-protein interactions is desirable since

we have to infer data that we can not compare to what actually happened. Thus, a probabilistic

inference technique gives us an estimate of whether an interaction was present or absent, instead of

outright postulating its existence, as in parsimony.

The work of Pinney et al. on bZIP transcription factors [35] is based on a well studied family

of proteins. These are proteins that bind to specific DNA sequences and control the transcription

process from DNA to messenger RNA.

Dutkowski and Tiuryn [14,15] worked on protein-protein interactions in many families of proteins,

and differentiated between duplicating and speciating nodes.

The graph

The probabilistic inference technique is centred around the fact that the interaction tree we con-

structed in Chapter 1 forms the underlying graph of a Bayesian network. Each node represents an
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interaction, and we associate it with a binary random variable. Thus, an interaction is present if the

random variable is1, and it is absent if it is0.

Since we assumed during construction that the interactionsin a given species are independent of

each other, we have no causal relations between them, and getan underlying cycle free undirected

graph. Since there is an identified root, and a natural direction of evolution from the root, we

can assign a direction to each edge, pointing away from the root. This enforces the property that

interactions within a single species evolve independentlyof each other, which is critical to the

construction of a Bayesian network. The paper by Dutkowski and Tiuryn [15] does not explicitly

construct an interaction tree, but their model can be interpreted as one.

Parameter selection

A major obstacle in computational biology in general is to estimate parameters to fit a model. This

is especially true for evolutionary models, since we have nodata to infer from. So, we have to rely

on experimental data that we often hope is back compatible with the true evolutionary scenario.

In the case of protein-protein interactions, given an interaction tree, we can fit the following param-

eters to our model.

(i) We can estimate the gain and loss probabilities of an interaction over each edge. So, the

number of parameters in our model is twice the number of edges.

(ii) We can distinguish duplicating and speciating nodes, and fit 2 parameters to each of them.

The number of parameters in this case is4.

(iii) We can treat all edges as identical, and fit2 parameters to the whole model.

Pinney et al used sequencing data based on the paper by Fong, Keating and Singh [19] to fit param-

eters to all edges in their interaction tree. Experimental scores were calculated for the strength of

human protein-protein interactions, and the probabilities of gain and loss fitted to their model were

estimated from this by modelling these probabilities as logistic functions of sequence divergence on

the gene tree. The interactions predicted by the scores werealso used as a basis to compare their

probabilistic techniques. The parameters used by them are given in Appendix A.
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The paper by Dutkowski and Tiuryn used data based on the paperof Sole et al. [40], which considers

a specified model of evolution, and estimates parameters based on that model instead of using direct

empirical data.

In the absence of reliable empirical data, the probabilistic inference techniques available to us cannot

be used. It is, therefore, desirable to have some method to get an overall, parametric view of the

Bayesian network, using which we can make an informed choiceabout the parameters to use for

the model. This leads us to the field of algebraic statistics.



Part II

Algebraic Statistics
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A major issue in evolutionary biology is the inference of parameters for evolutionary models. These

parameters may be the cost matrices for a discrete algorithm, or the transition matrices or probability

distributions for Markov models and Bayesian networks. Parameter estimation is often done through

empirical methods, such as sequence analysis.

The goal of this part is to introduce the field of algebraic statistics and related terminology. Viewing

statistical models as algebraic objects allows us to examine the parameter space of these models. In

particular, a translation of the models totropical geometryprovides nice geometric interpretations

of the MAP problem.

Chapter 3 discusses the algebraic interpretation of statistical models. It lays emphasis on toric

models, such as the one we deal with. It also lays the foundation behind algebraic statistics, and

discusses some basic algebraic concepts that we will need.

Chapter 4 introduces tropical geometry, and provides a relation between it and polytopes. In par-

ticular, this chapter is intended to provide a natural transition from classical arithmetic to tropical

arithmetic for polynomials. The Newton polytopes of polynomials are established to be objects

that can be interpreted as generalizations of the tropical semiring in one dimension. It is also made

clear that the Newton polytope of a given polynomial can be constructed using Minkowski sum and

convex hull operations on the Newton polytopes of the factors of the polynomial.

Chapter 5 uses tropical geometry to answer a parametric MAP problem on statistical models. It

establishes our problem and the approach we use in the experiments section. Bounds for the size

of the polytopes constructed are provided in this chapter, and the translation of the sum-product

algorithm to polytope algebra is made clear.



Chapter 3

Statistical models as Algebraic objects

Parameter estimation in evolutionary biology is an important and generally hard problem. A novel

way to approach it is to compute algebraic varieties that define statistical models of evolution. These

allow us to obtain a parameter independent representation of these models.

3.1 Polynomial maps of statistical models

Formally, a statistical model is a family of probability distributions on a set of possible observed

outcomes, called astate space. For our purposes, we shall only consider finite state spaces. Follow-

ing the convention of Chapter 2, we shall call our state spaceof observationsE , and the cardinality

of the state space will be denoted bym. An element of this spacee ∈ E will be called anevidence

configuration.

Definition 10. A probability distributionon the state spaceE is a point (p1, p2, . . . , pm) in the

probability simplex inm− 1 dimensions,∆m−1

∆m−1 =

{

(p1, p2, . . . , pm) :
m
∑

i=1

pi = 1, 0 ≤ pi ≤ 1 ∀ i

}

.

The elementpi in a probability distribution in the simplex denotes the probability of theith outcome

in the state spaceE .

Recall that we defined the marginal probability for the evidence in a tree-like Bayesian network

G = (V,E), with evidence setY ⊂ V and a parameter matrixS to be the given by the following

32
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expression

Pr (Y = e ∈ E) =
∑

l∈L:e

∏

uv∈E(Y)

slu→lv , (3.1)

whereE (Y) denotes the set of all edges inE which belong to a directed path from the root to one

of the evidence nodes inY, and each distinctsi→j is an entry inS. For convenience, we shall refer

to si→j by sij.

Now, assuming that we do not have preset parameterssij, we can treat these as formal variablesxij,

and obtain a polynomial in these variables. Let us representsuch a polynomial byfe. Thus,

fe =
∑

l∈L:e

∏

uv∈E(Y)

xlulv . (3.2)

If each node inY can take one ofc values, then we can say that the total number of possible

evidence configurationse ∈ E , i.e. the cardinality ofE , which we calledm, is c|Y|. Thus, we can

define at leastm polynomialsfe. Formally, and more generally for all statistical models, we can

state the following:

For a statistical model defined ond parameters, and state spaceE , with cardinality m, we can

define a positive polynomial mapf : Rd 7→ Rm.

Since eachfe corresponds to the probability of a possible evidence, we also have the property that
∑

e∈E fe = 1 and the condition thatfe > 0. The structure of the statistical model may impose

other conditions on the polynomial map. The functionf defines analgebraic statistical modelwith

d-parameters. This definition holds even if we do not have an underlying graphical model.

Toric models

Consider the probabilistic tree modelG = (V,E) with 4 parameterss00, s01, s10, s11, and a prior

of 0.5 at the root. An explanationl corresponds to a fixed labelling of the underlying tree . Its

probability, as stated in Chapter 2, is given by

Pr (l) = 0.5
∏

P→Q∈E

slP lQ .
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On multiplying this out, we get a monomial0.5sθ100s
θ2
01s

θ3
10s

θ4
11. Taking the logarithm, we get the

following log-probability,

ln (Pr (l)) = ln (0.5) + θ1 ln (s00) + θ2 ln (s01) + θ3 ln (s10) + θ4 ln (s11) .

This is a linear function in the logarithm of the model parameters. Many graphical probabilistic

models have polynomial maps that are exhibit this property.

Definition 11. Algebraic models in which the logarithm of the probability of a single explanation

of an evidencee ∈ E can be expressed as a linear function of the model parametersare calledtoric

models.

Since this is a linear function in thelog-space, toric models are also calledlog-linear models.

Our interest in these models arises from the fact that they describe a wide range of graphical prob-

abilistic models, including acyclic Bayesian networks. Todiscuss the algebraic properties of these

models, we shall first discuss some basic algebraic concepts.

In order to work with a more general class of polynomials, we shall assume that each polynomial

fe belongs to the polynomial ringQ [x1, x2, . . . , xd], where the variables can take values from the

field of complex numbers. Thus, the map we shall study isf : Cd 7→ Cm. This lets us discuss the

algebraic interpretation of a statistical model without going into methods involving real algebraic

geometry.

3.2 Ideals and Varieties

Let Q [x] = Q [x1, x2, . . . , xm] be the polynomial ring with coefficients in the rational numbers,

and overm variables,x1, x2, . . . , xm ∈ C. Since this ring also behaves like anQ-vector space, we

can define adistinguishedQ-linear basisof this ring as the set of monomials
{

xθ11 xθ22 . . . xθmm : θ1, θ2, . . . , θm ∈ N

}

.

3.2.1 Variety

For every polynomialf ∈ Q [x], we can define a zero setV (f)

V (f) = {z = (z1, z2, . . . , zm) ∈ Cm : f (z) = 0} .
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V (f) is a hypersurface inCm. For a subsetS of Cm, we defineVS (f) = V (f) ∩ S as the set of

points inS that belong to the zero set.

AssumeF ⊂ Q [x] is a subset of the polynomial ring. Then, we can define an intersection of

hypersurfaces inCm

V (F) = {z = (z1, z2, . . . , zm) : f (z) = 0 ∀ f ∈ F} .

Alternately,

V (F) =







⋂

f∈F

V (f)







.

This set is called thevariety of the setF over the setCm [10]. We can define a restricted variety

VS as a subset of the variety such that all elements lie in the setS ⊆ Cm. Whenm = 1, the variety

is simply the set of all zeros of a polynomial in one variable.

3.2.2 Ideal

For a subsetF ⊂ Q [x], the ideal generated byF , denoted by〈F〉 is defined as follows [10]

〈F〉 =







∑

fi∈F

hifi : ∀ hi ∈ Q [x]







.

Ideals are not unique to the set, i.e. it is possible forF ,F ′ ∈ Q [x] F 6= F ′ to exist such that

〈F〉 = 〈F ′〉. If so, then we have the following relation between the varieties of the two sets

V (F) = V
(

F ′
)

.

A major result in algebraic geometry is Hilbert’s basis theorem.

Theorem 1. (Hilbert’s basis theorem) Every infinite setF of polynomials in a ringQ [x] contains

a finite subsetF ′ such that〈F〉 = 〈F ′〉.

This implies that every variety can be represented as the intersection of finitely many hypersurfaces.

An idealI is called aprime idealif, for two polynomialsg, h ∈ Q [x] such thatf = g · h ∈ I, then

eitherg ∈ I or h ∈ I. This generalizes the concept of prime numbers to polynomials.
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3.3 Algebraic interpretation

Having defined the polynomial mapf : Cd 7→ Cm,m = |E|, of a statistical model, the image of the

mapf is the following set

f

(

Cd
)

= {(p1, p2, . . . , pm) ∈ Cm : Set of conditions onpi’s defined by the statistical model} .

This set can be interpreted as a Boolean combination of algebraic varieties, i.e. composed of unions,

intersections and exclusions. If we take the topological closure of the set, we get another algebraic

variety.

For example, let us look at the polynomial mapf : C2 7→ C3, (x1, x2) 7→
(

x21, x1 · x2, x1 · x2
)

.

The image of this map is the following set,

f
(

C2
)

=
{

(p1, p2, p3) ∈ C3 : p2 = p3 andp2 = 0 if p1 = 0
}

.

In terms of varieties,

f
(

C2
)

= (V (p2 − p3) \V (p1, p2 − p3)) ∪ V (p1, p2, p3) ,

which is not an algebraic variety. Geometrically, this is the planep2 − p3 = 0, excluding its

projection onp1 = 0, but including the origin. However, the closuref (C2) = V (p2 − p3), which

contains the limit points off
(

C2
)

, which satisfyp2 6= 0, p1 = 0, is an algebraic variety.

This result, which holds over the complex numbers, but not over the reals, can be stated as follows.

Theorem 2. [33] The image of a polynomial mapf : Cd 7→ Cm is a Boolean combination of

algebraic varieties inCm. The topological closuref (Cd) of the imagef
(

Cd
)

in Cm is an algebraic

variety.

The elements of this variety correspond to points that satisfy the conditions imposed by the model.

The real elements of this variety are those that lie in the probability simplex
∑m

i=1 pi = 1. Methods

to find these elements lie in the domain ofreal algebraic geometry[4]. It is also common to

disregard points that lie in the closure, but not in the imageof the mapf , to simplify arguments

[33].

If we consider all polynomials inQ [p1, p2, . . . , pm] that vanish on the image off , we can compactly

represent them by an idealIf in Q [p1, p2, . . . , pm]. Thus, a point in the simplex will always send
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the polynomials in this ideal to zero. Furthermore, this happens to be a prime ideal which represents

the closuref (Cd) by definition. The members ofIf are calledmodel invariants.

The problem of finding the probability distributions in the simplex that satisfy a given statistical

model is well defined and translates to finding a finite set of generators,F , which generate the

ideal If . These generators are independent of the model parameters,being defined only in terms

of polynomials in the ringQ [p1, p2, . . . , pm]. These generators will completely describe a param-

eter independent version of the statistical model, i.e. they will be be the same set of conditions

imposed by the statistical model on the polynomial map, represented in terms of polynomials in

p1, p2, . . . , pm.

The main problem is to find these generators, and in particular, it is desirable to get aGröbner basis

of the ideal. This is a set of generators such constructed that the leading terms of the polynomials in

If , according to some term ordering, are generated by the leading terms of the polynomials in the

generating set. However, this is usually hard when the number of parameters andm are large.

Since we can describe the statistical model as a polynomial map, we can also look at these poly-

nomials in themin-plus algebra, taking parameters in thelog-space. While the map in classical

algebra provides us with solutions to the marginal probability problem, themin-plus algebra, as

we stated before, is used to solve the maximum a posterori probability problem. To discuss the

algebraic interpretation of the MAP problem, the next chapter introduces the concept of tropical

geometry.



Chapter 4

Tropical Geometry

The maximum a posteriori problem for statistical models is acase of moving the marginal proba-

bility problem to atropical setting. By this, it means we replace the classical algebra(R,+.×) by

the tropical semiring(R,min,+). This algebra has a well defined geometric interpretation, and this

property can be exploited to solve parametric inference problems. This chapter introduces some

concepts in tropical geometry and about polytopes.

4.1 The tropical semiring

The object we shall be working with is the tropical semiring [36]. It is defined as follows.

Definition 12. The tropical semiring over a totally ordered fieldK, (K ∪ {∞} ,⊕,⊙) is defined by

the following operations

x⊕ y = min {x, y} and x⊙ y = x+ y (4.1)

∀ x, y ∈ K.

Since we need a total order on the elements of the field, we generally work over the field of reals.

The operation⊕ is called the tropical sum, while the operation⊙ is called the tropical product.

Both operations are commutative.

x⊕ y = y ⊕ x and x⊙ y = y ⊙ x.

38
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The tropical product is distributive over the tropical sum.

z ⊙ (x⊕ y) = (z ⊙ y)⊕ (z ⊙ x) .

Each operation has an identity element, or a neutral element.

x⊕∞ = x and x⊙ 0 = x.

We can, define a polynomial over the tropical semiring. Letx1, x2, . . . , xd be elements in the

tropical semiring. Atropical monomialis a finite tropical product of these elements, with repetition

allowed. For example

x1 ⊙ x1 ⊙ x2 ⊙ x3 = x21x2x3.

In terms of classical arithmetic, this translates into the following expression

x1 + x1 + x2 + x3 = 2x1 + x2 + x3.

This is always a linear function with integer coefficients.

Definition 13. A tropical polynomial is a finite tropical linear combination of tropical monomials,

with coefficients in the real numbers

g (x1, x2, . . . , xd) = c1 ⊙ xi111 xi122 . . . xi1dd ⊕ . . . ⊕ cl ⊙ xil11 xil22 . . . xildd ,

wherei11, i12, . . . , il1, jl2, . . . are non-negative integers.

In terms of classical arithmetic, we get a functiong that returns the minimum of a finite number of

linear functions

g (x1, x2, . . . , xd) = min (c1 + i11x1 + i12x2 + . . . + i1dxd, . . . , cl + il1x1 + il2x2 + . . .+ ildxd) .

Thus, the functiong : Rd 7→ R has the following properties:

(i) It is continuous.

(ii) It is piece-wise linear.

(iii) It is concave.
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Based on this, we can define the tropical hypersurfaceT (g) of g.

Definition 14. The tropical hypersurfaceT (g) of a tropical polynomialg is the set of all points

s ∈ Rd at whichg attains a minimum value at least twice.

Thus, it is the set of points at whichg is non-linear. A points ∈ Rd that lies on theT (g) exhibits

the following property

cp + ip1s1 + ip2s2 + . . . + ipdsd = cq + iq1s1 + iq2s2 + . . . + iqdsd

≤ck + ik1s1 + ik2s2 + . . . + ikdsd.

whereip, iq, ik ∈ Nd, such that the monomialck ⊙ xik11 xik22 . . . ⊙ xikdd (respectively forip andiq)

occurs ing, ip 6= iq, andik is not equal toip or iq.

4.2 Polytopes

The geometric representation of tropical hypersurfaces isrelated to the cones and fans of poly-

topes. Furthermore, the operations in the tropical semiring have very natural analogous operations

when we deal with polytopes. The notation and terminology have been borrowed from the book by

Sturmfels [41].

4.2.1 Definitions and notation

Definition 15. Givenn pointsv1, v2, . . . , vn in Rd, the convex hull of this set of points is the set

P =

{

n
∑

i=1

λivi ∈ Rd : λ1, λ2, . . . , λn ≥ 0 and
n
∑

i=1

λi = 1

}

.

This set is called aconvex polytope. Thedimensionof the polytopeP , dim(P ), is the dimension of

its affine span{
∑n

i=1 λivi :
∑n

i=1 λi = 1}.

In this thesis, we shall always talk about convex polytopes,and so we may use the more general

term ‘polytope’ to refer to them.

A polytope can be represented by either a unique set of pointswhose convex hull yields us the

polytope, or by the finite set of closed half-spaces whose intersection includes all the points in
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Figure 4.1: A convex polytope

the convex hull. Given anm × d matrix A, and a column vectorb ∈ Rm, each row ofA and

the corresponding entry inb will define a half-space inRd. Thus, we can define an intersection

of the half-spaces defined byA andb, which may or may not be bounded, by the equationP =
{

x ∈ Rd : A.x ≥ b
}

. A subset ofRd of this form is called aconvex polyhedron. The following

theorem establishes the alternative definition of convex polytopes.

Theorem 3(Weyl-Minkowski Theorem). Convex polytopes are bounded convex polyhedrons.

A polytope also defines other objects, namely faces, normal cones and a normal fan.

Definition 16. Given a polytopeP ⊂ Rd, and a vectorw ∈ Rd, we define thefaceof the polytope

with respect tow as the set of all pointsx in P at which the linear functionalx 7→ x.w attains a

minimum,

facew (P ) = {x ∈ P : x.w ≤ y.w ∀ y ∈ P} .

Since this is a subset of the polytope itself, each face ofP is a polytope. Ifw = 0, then we recover

P . Thus, every polytope is a face of itself. A face of dimension0 is called a vertex of the polytope,

and a face of dimension1 is called an edge of the polytope. A face of dimension dim(P ) − 1 is

called a facet of the polytopeP .

Definition 17. LetF be a face of the polytopeP . Thenormal coneof P at F is the following set

NP (F ) =
{

w ∈ Rd : facew (P ) = F
}

.
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The normal cone atF contains all linear functionalsw that are minimized at every point inF . The

dimension of the normal cone, dim(NP (F )) is given byd − dim (F ). Thus, ifF is chosen to be

a vertex, then the normal cone has dimensiond. Cones which are not contained in cones of higher

dimension, are calledmaximal cones.

Definition 18. The union of all conesNP (F ) asF runs over all faces ofP is called thenormal fan

of P ,

N (P ) =
{

⋃

NP (F ) : F = facew (P ) ∀ w ∈ Rd
}

.

Since the union of all cones will cover the whole space, the normal fanN (P ) is a partition ofRd

into maximal cones, which are in bijection with the verticesof P .

4.2.2 Polytope algebra

Let Pd be the set of all polytopes inRd. We can define the polytope algebra(Pd,⊕,⊙) as the

commutative ring with the following operations for anyP,Q ∈ Pd. The sum of two polytopes is

defined as the convex hull of the union of the point sets ofP andQ,

P ⊕Q = conv(P ∪Q) (4.2)

=
{

λp+ (1− λ) q ∈ Rd : p ∈ P, q ∈ Q, 0 ≤ λ ≤ 1
}

. (4.3)

The product of two polytopes is defined as the Minkowski sum ofthe two polytopes,

P ⊙Q = P +Q (4.4)

=
{

p+ q ∈ Rd : p ∈ P, q ∈ Q
}

. (4.5)

Both operations yield convex polytopes inRd, so we get a closed algebra. This algebra is commu-

tative in both sum and product, and holds the distributive property of multiplication over addition,

i.e. P ⊙ (Q⊕R) = (P ⊙Q)⊕ (P ⊙R) for all P,Q,R ∈ Pd.

4.2.3 Relation to the tropical semiring

The one-dimensional polytope algebra,(P1,⊕,⊙), is the geometric interpretation of the tropical

semiring(R,⊙,⊕). A member ofP1 can be represented by[a, b] , a ≤ b, a, b ∈ R, a segment on
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the real line. Then, for[a, b] , [c, d] ∈ P1, we can define the polytope algebra operations of convex

hull and Minkowski sum as follows,

[a, b]⊕ [c, d] = [min (a, c),max (b, d)]

[a, b]⊙ [c, d] = [a+ c, b+ d] .

This yields a definition that agrees with the corresponding operations on the tropical semiring. In

higher dimensions, polytope algebra simply becomes a generalization of the tropical semiring.

4.2.4 Tropical varieties and polytopes

The concept of varieties in polynomial rings can be defined almost analogously for the tropical

semiring. We have already defined the tropical hypersurfaceT (g) of a tropical polynomialg in

Definition 14.

We first have to define the tropicalization of a polynomial. Let f =
∑m

i=1 aix
θi1
1 x

θi2
2 . . . x

θid
d ∈

Q [x], be a classical polynomial with real variables and constantcoefficients. Then, we can define

the tropicalizationof f to be the following operation,

trop (f) =
m
⊕

i=1

lai ⊙ l
θi1
x1

⊙ l
θi2
x2

⊙ . . .⊙ l
θid
xd

,

wherelai , lx1
, lx2

, . . . , lxd
etc., are the tropical semiring analogues toai, x1, x2, . . . , xd. Thus, we

simply replace the products in the original polynomial by sums, and the sums bymin. This defines

a tropical hypersurfaceT (trop (f)) for any tropicalized polynomialtrop (f).

We can define an idealI in Q [x] as the ideal generated by a set of polynomialsF . The tropical

varietyT (trop (I)) of the idealI is defined as follows [42].

T (trop (I)) =
⋂

f∈I

T (trop (f)).

Since every ideal can be finitely generated, the tropical variety can be described as the intersec-

tion of finitely many tropical hypersurfaces. It is known that the tropical variety of an idealI in

some polynomial ringQ [x1, x2, . . . , xd] is a polyhedral fan ind-dimensions [36]. This means that

the cones of the polytope indicate which tropical polynomial in the ideal attains minimum value.

In particular, this definition establishes a connection between tropical polynomials and polytopes,

which proves important in the techniques used in algebraic statistics. A more general definition of

the tropical variety exists [42], but for our purposes, we shall not require it.
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4.3 Newton Polytopes

Let us define the polynomial ringQ [x], wherex is the set of variablesx1, x2, . . . , xd. Let us

also represent a monomial in any polynomialf ∈ Q [x] by cix
θi , which represents the monomial

cix
θi1
1 xθi22 . . . xθidd , whereci is a constant belonging to the fieldQ. Then, the polynomialf , with m

monomials can be represented by

f (x) =

m
∑

i=1

cix
θi , (4.6)

where none of theci is zero, andθi ∈ Nd for i = 1, 2, . . . ,m. Eachθi is called an exponent vector

of f (x).

Definition 19. The Newton polytope NP(f) of the polynomialf (x) is the convex hull of the expo-

nent vectors off (x),

NP(f) = conv

(

{θi = (θi1, θi2, . . . , θid) , 0 ≤ i ≤ m} : f (x) =

m
∑

i=1

cix
θi

)

.

For example, the Newton polytope of the polynomial over2 variables,f (x1, x2) = x41 + 19x62 +

2x31x
2
2 − x21x

3
2 + x1x

2
2 is given below. Note that the point(2, 3) is hidden within the polytope. It is
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Figure 4.2: Newton polytope

important to note that there is no way to retrieve the coefficients of the polynomial from the Newton

polytope.
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4.3.1 Tropical geometry of Newton Polytopes

Given a polynomialf =
∑m

i=1 aix
θi1
1 x

θi2
2 . . . x

θid
d ∈ Q [x] in d variables, we can ask the question:

which monomial off attains the maximum value for some value of(x1, x2, . . . , xd)? Let us consider

a set of valuess = (s1, s2, . . . , sd) for which we are asking this question. Then, the problem

becomes finding a monomialg such that,

g = max
i

{

ais
θi1
1 s

θi2
2 . . . s

θid
d

}

.

We can also formulate this question as follows: findg such that

− ln g = min
i

{− ln ai − θi1 ln s1 − θi2 ln s2 − . . .− θid ln sd}.

We have a one-to-one mapping between− ln (x) andx, define− ln (x) = lx, and rewrite this as

follows:

lg = min
i

{lai + θi1 ls1 + θidlsd + . . .+ θidlsd}.

The key point is to notice that this can be reformulated as a problem on the tropical semiring

(R,⊕,⊙),

lg =
⊕

i

lai ⊙ l
θi1
s1 ⊙ l

θi2
s2 ⊙ . . .⊙ l

θid
sd . (4.7)

At the same time, we can define a Newton polytope, NP(f), whose vertices will be a subset of

the set
{

θi : x
θi1
1 x

θi1
2 . . . x

θid
d is a monomial inf

}

. Since vertices are defined as faces of dimension

zero, this means that the vertexv minimizes the functionalw · v for some vectorw ∈ Rd. This is

precisely the tropical monomial for the valuesw assigned to the variables. Thus, the vertices of the

Newton polytope of a polynomialf encode the exponent vectors for which the tropical polynomial

is minimized.

Let us call the vertex setV . Then, forv = (v1, v2, . . . , vd) ∈ V , the normal cone will include those

vectorsw at which the linear functionalw.v is minimized. Taking a point(w1, w2, . . . , wd) from the

cone, the linear functional will becomew1v1 +w2v2 + . . .+wdvd. Sincev is a set of exponents of

a monomial off , this is equivalent to the value of the tropical polynomial for the variables given by

w. Thus, the cone of a vertex gives us the set of variables for which the tropical polynomial is equal

to the monomial corresponding to the vertexv, assuming that all the coefficients are1. Furthermore,



CHAPTER 4. TROPICAL GEOMETRY 46

if we take the union of all the cones, the entire parameter space is covered, and the different cones

will provide a partition of the space into regions that yielddifferent optimal solutions. As stated in

Section 4.2.4, this is a consequence of the correspondence between tropical varieties and polyhedral

fans. Thus, the cones in the normal fan of NP(f) are the regions over which the tropical polynomial

trop (f) is linear.

4.3.2 Construction of Newton Polytopes from other Newton Polytopes

Suppose we are given a finite set of polynomialsp1, p2, . . . , pl. Then, we can find the Newton

polytope corresponding to any sum-product combination of these polynomials without calculating

the polynomial itself. The main theorem which we use to formulate the process for this is as follows.

Theorem 4. [33] Letf andg be polynomials inQ [x1, x2, . . . , xd]. Then,

NP(f · g) = NP(f)⊙ NP(g) and NP(f + g) ⊆ NP(f)⊕ NP(g) . (4.8)

If all the coefficients off andg are positive, then NP(f + g) = NP(f)⊕ NP(g).

Proof. Let f =
∑m

i=1 cix
θi , andg =

∑n
i=1 c

′
ix

θ′i . For any vectorw ∈ Rd, define theinitial form of

f , inw (f) as the subsum of all the monomialscixθi , such thatθi ·w is minimized. By the definition

of a face of a polytope, we get the following identity

NP(inw (f)) = facew (NP(f)) . (4.9)

The initial form of the product off andg can be obtained by taking the product of the initial forms

of f andg individually, as follows

inw (f · g) = inw (f) · inw (g) . (4.10)

Each monomial will be of the formcic′jx
θi+θ′j , the coefficient being the product of the coefficients

of the corresponding monomials fromf andg, and the exponent being the sum of the exponents of

the same monomials. For anyw ∈ Rd, we will get a single monomial of this form, which minimizes
(

θi + θ′j

)

· w.

Consider the operator facew (·). If we apply this operator on the polytope NP(f) ⊙ NP(g), then

we get the set of pointsθi + θ′j which minimize the functional
(

θi + θ′j

)

·w. We can distribute this
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product over the sum of vectors. Thus, we get the following identity

facew (NP(f)⊙ NP(g)) = facew (NP(f))⊙ facew (NP(g)) . (4.11)

These three identities lead to the following result forw ∈ Rd.

NP(inw (f · g)) = NP(inw (f))⊙ NP(inw (g)) .

But since this holds for allw, we can surmise that both NP(f · g) and NP(f) ⊙ NP(g) have the

same set of vertices, this proving the first identity.

To prove the second identity, we notice that NP(f) ⊕ NP(g) gives us the convex hull of the set

{θ1, θ2, . . . , θm, θ′1, θ
′
2, . . . , θ

′
n}. Since every monomial inf + g has its exponent in this set, their

convex hull will contain NP(f + g), proving the identity. If bothf andg consist of only positive

coefficients, then there are no cancellations, and we get an equality.

This theorem allows us to substitute any sequence of operations in the tropical semiring by the

corresponding polytope algebra. This also means that as long as we have a polynomial consisting

of only positive coefficients, and which can be factored intopolynomials of smaller degree, we can

construct its Newton polytope from the Newton polytopes of its factors. Furthermore, while each

addition-multiplication operation could have caused the number of monomials in the polynomial to

grow exponentially, the number of vertices at each step turns out to be polynomial in the number of

operations.

We can now use the concepts discussed in this chapter and extend the interpretation of statistical

objects as algebraic varieties to tropical arithmetic and polytope algebra. This provides us with a

technique to attack the problem of parametric inference in probabilistic graphical models, as we

shall see in Chapter 5.



Chapter 5

Tropical Geometry of Probabilistic

Graphical Models

In Chapter 3, we discussed the polynomials associated with agraphical model as the marginal

probability of the evidence. We now try to interpret each monomial in the probability polynomial,

and in doing so, move to an optimization problem.

5.1 Inference functions

For a modelG = (V,E), with an evidence setY and a parameter setS with d parameters, with

none of the parameters determined, we can define a positive polynomial mapfe : Rd 7→ R for

each assignmente given to the nodes inY. This polynomial will correspond to the probability

Pr (Y = e). Since we sum up over all possible internal labellings of therelevant hidden nodesX

that are consistent with the observatione, we can write this as,

Pr (Y = e) =
∑

l\e∈L:e

Pr (X = l\e,Y = e).

EachPr (X = l, E = e) can be written as a monomial in the elements ofS, such that the degree

of all such monomial is equal. A labelling of the forml\e : L : e is called anexplanationof e.

Consequently, we can say that each monomial corresponds to an explanation ofe. The question

we are interested in is which monomial maximizes the probability, Prmax (Y = e) of seeing the

48
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evidencee. This is the maximum a posteriori probability problem for the graphical model given

the evidencee. Naively, the answer to this question will almost be the sameas the answer to

the question of the most probable labelling consistent withthe evidence. However, as stated in

Chapter 2, there may be more labellings that maximize the probability of seeing the evidence than

the number of labellings of maximum probability that are evidence consistent. In the case when

we treat the parameters as formal variables, these are not equivalent. We shall consider the former

probabilities as the ones we want to maximize.

Thus, we can formulate the problem as follows

Prmax (Y = e) = max
l\e:L:e

{Pr (X = l\e,Y = e)}.

Alternatively, we can take the negative logarithms on both sides, and formulate this as a minimiza-

tion problem. Furthermore, we can writePr (X = l\e,Y = e) as a monomialsθl11 sθl22 . . . sθldd ,

where
∑d

i=1 θli is a constant, as stated before. Thus,

− lnPrmax (Y = e) = min
l\e:L:e

{−θl1 ln s1 − θl2 ln s2 − . . . − θld ln sd}. (5.1)

Let us call this functionge. It is continuous, piecewise linear in the variables− ln s1,− ln s2, . . . ,

− ln sd, and concave, satisfying all the properties of a tropical polynomial. The vector(θl1, θl2, . . . , θld)

represents the number of times each event of probabilitys1, s2, . . . , sd occurs.

So, our problem reduces to finding the tropical hypersurfaceof the functionge. Such a function,

which gives us the explanation that maximizes the probability of seeing the evidence is called an

inference function.

An elegant result by Elizalde and Wood [16] states that the number of inference functions of a

probabilistic graphical model is polynomially bounded.

Theorem 5. [16] In a graphical model withE edges andd parameters, the number of inference

functions for the graphical model is at mostO
(

Ed(d−1)
)

.

Vertices in the Newton polytope of an inference function

Since an inference functionge of a statistical model withd-parameters is basically a tropicalization

of the marginal probability polynomialfe, we can encode the inference function in a space ofd-

dimensions by constructing the Newton polytope offe. Each exponent vector(θl1, θl2, . . . , θld), as
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stated in the previous section, represents the number of times each event of probabilitys1, s2, . . . , sd

occurs, and the vertices of the Newton polytope will encode aset of transition events which yield

the evidence.

It can be proved that the number of vertices in the Newton polytope offe is at most polynomial in

the size of the model. The result depends on the following theorem by Andrews in1963.

Theorem 6. [2] If P is aD-dimensional strictly convex lattice polytope, withN vertices, then

N < CD · vol (P )
D−1

D+1 ,

where vol(P ) is the volume of the polytope, andCD is a constant that depends only onD.

Since the polytope of an inference functionfe must lie in the space[0, E]D, whereE is the number

of edges in the graphical model, andD is the number of parameters in the model, we can thus bound

the number of vertices byCD ·ED(D−1)/(D+1). However, this result only holds for full dimensional

polytopes. If the polytopeP lies in ad-dimensional affine subspace ofRD, then we need to consider

the following lemma.

Lemma 1. [33] Let S be ad-dimensional linear subspace ofRD. Then, there exists a subset

{i1, i2, . . . , id} of theD coordinate axes ofRD such that the projectionφ : S 7→ Rd, given by

φ ((x1, x2, . . . , xD)) = (xi1 , xi2 , . . . , xid) is injective.

Proof. Choosev1, v2, . . . , vd ∈ RD to be a basis for the subspaceS. Then, we can construct aD×d

matrix A of rankd, whose columns are the vectorsv1, v2, . . . , vd. Assume that for any choice of

indices{i1, i2, . . . , id}, there does not exist a mappingφ ((x1, x2, . . . , xD)) = (xi1 , xi2 , . . . , xid)

which is injective onS. Then, thed× d minor ofA, choosing the rows indexed by{i1, i2, . . . , id},

must necessarily have a rank strictly less thand, since we can find two vectors inRD with the same

entries ini1, i2, . . . , id. This contradicts the fact that the rank ofA is d, thus proving the lemma.

This lemma leads us to the next theorem.

Theorem 7. [33] Letf be a polynomial of degreen in D variables. If the dimension ofP = NP(f)

is d, then the total number of vertices in the Newton polytope will be bounded byCd ·n
d(d−1)/(d+1),

whereCd is a constant that depends only ond.
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Proof. ConsiderS to be ad-dimensional affine span of the polytope. Using Lemma 1, we can find

a set ofd coordinate axes ofRD such that the projectionφ of S onto the space determined by those

d axes is injective. Thus,φ (P), the image of all points of the polytopeP, will be ad-dimensional

polytope with integer coordinate vertices, every point in one-to-one correspondence with a point of

P, and the vertices ofP mapping to the vertices of the projection. Sincef has degreen, φ (P) must

lie in thed-dimensional hypercube of volumend. Using Theorem 6, the total number of vertices in

P will be bounded byCd · n
d(d−1)/(d+1).

Putting these results together, we get the following theorem for the number of vertices in the Newton

polytope of an inference function of a graphical model.

Theorem 8. [32] Consider a graphical model withE edges, withd parameters, and state spaceE .

For a fixed evidencee ∈ E , the number of vertices in the Newton polytope of the polynomial map

fe, is bounded above as follows

Number of vertices in NP(fe) ≤ c ·Ed(d−1)/(d+1)

≤ c ·E(d−1),

wherec is a constant.

Thus, while the number of monomials in the polynomialfe can grow exponentially with the number

of sum and product operations, only a polynomial number of these terms can be maximal, and those

are the terms we are interested in.

Interpretation of the cones and the fans

In Section 4.3.1, we discussed the interpretation of cones of a vertexv in a Newton polytope ind

dimension as the set of pointsNP (v) such that they minimize the functionalw ·v = w1v1+w2v2+

. . .+ wdvd for all w ∈ NP (v).

Since the vertices now represent sets of transitions, the cone of a vertexθl represents points that

yield the minimum value ofminl\e:L:e {−θl1w1 − θl2w2 − . . .− θldwd}, wherew is a point in the

cone. Comparing with Equation 5.1, this means that the cone encodes the set of parameters for

which the set of transitions represented by the vertex is an optimal solution. These parameters are

encoded as negative logarithms of the actual probabilitiesused in the model. Furthermore, from
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Section 4.2.1, we also see that the the cones of the vertices,which form a fan, partition the entire

parameter space. This leads to an elegant method to explore the parameter space for probabilistic

models, which involves constructing the Newton polytopes of the marginal probability polynomials.

5.2 Computation

In Chapter 2, we discussed the maximum a posteriori probability problem. It is a natural tropi-

calization of the sum product algorithm, in which we replacethe products by sums in the negative

log-parameter space, and sums by taking the minimum. If we can backtrack through the algo-

rithm, then we get the labelling which maximizes the probability of the evidence. Since there is an

established relation between the tropical semiring and thepolytope algebra, the algorithm can be

modified to a polytope setting, and this gives us a useful way to explore the parameter space.

5.2.1 Polytope propagation

The sum-product algorithm to compute the marginal posterior probability of an event was an oper-

ation carried out on the classical arithmetic semiring(R,+,×). A similar algorithm, carried out on

the tropical semiring, solves the MAP problem. An example ofthe latter is the Viterbi algorithm for

sequence alignment.

In order to solve the parametric a posteriori maximum likelihood problem, apolytope propagation

algorithm was proposed by Sturmfels and Pachter [32]. This generalizes the tropical semiring

algorithm to the space of all parameters in the negative logarithmic space. It involves the same

dynamic programming technique as the sum-product algorithm, but moves to polytope algebra by

constructing the Newton polytopes of the marginal probability polynomials. The switch between

algebras is illustrated in Table 5.1.

There is some loss of information when we use polytope algebra, since we cannot encode the coeffi-

cients of the polynomials in the Newton polytope. However, if the coefficient of a certain monomial

happens to be greater than1, it simply means that that there is more than one evidence consistent

labelling that can be obtained through the same set of transitions. Thus, the probability of a single

consistent labelling, when represented through a monomial, will have coefficient1.
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Sum-product Polytope algebra analogue

Transition probability Unit vector along a coordinate axis

× Minkowski Sum

+ Convex hull

1 Origin

0 Empty polytope

Table 5.1: From sum-product to polytope propagation

5.2.2 Vertices of a subset of the parameters

As stated in Section 5.1, the cone of a vertex encodes the set of parameters that would yield a max-

imum a posteriori labelling which is consistent with the transitions encoded by the vertex. Often,

we might have a rough idea about the parameters used for the model, and would like to find the sets

of transitions that would be optimal for a certain subset of parameters. The naive method of doing

this would be to sample a large number of parameters and find the MAP labelling for each of them.

However, this gives us no guarantee that all optimal scenarios for that subset will be covered.

In a polytope setting, this problem would correspond to finding the vertices of the polytope whose

cones contain the subset of parameters. A preliminary examination seems to suggest that this is a

hard problem, even if we are given the cones that cover the subset, because the construction of a

cone depends not only on its vertexv, which minimizes the functionalw · v for all pointsw in the

cone, but also on all the other points in the polytope, which never includes a point that might yield

a smaller functional.

Polytope propagation has been used successfully for sequence alignment [5, 12, 31]. The elegance

of this framework is that it can be applied to all sum-productmin-plus algorithms. The work of

Dewey et al. on Drosophilia genomes [12] used a non-probabilistic framework and found optimal

scenarios for the Needleman-Wunsch algorithm for various parameters. The strength of taking a

non-probabilistic point of view is that they do not have to deal with parameter dependencies, and

can work in a lower dimensional space. By discarding a subsetof parameters which is biologically

unreasonable, they were able to get a small set of optimal scenarios for sequence alignment. These

scenarios were then compared with scenarios provided by well known sequence alignment software
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called BLASTZ [39], and were shown to agree well. This comparison also lets allows other users

of BLASTZ to assess if the default parameters used by the software is reasonable for their data. The

cones of the vertices also provide robustness measures by partitioning the parameter space.

Finally, the paper of Dewey et al. also discusses the reconstruction of phylogenetic trees. Since

this reconstruction depends on the branch length, which in turn is inferred through the alignment

of the genomes at the leaves for a given set of parameters, it would be useful to have a parametric

view of the problem. With this in mind, they compute the set ofoptimal alignments of the genomes,

i.e. at the vertices of the alignment polytope they obtain, and use this to propose a parametric

reconstruction scheme for phylogenetic trees.

In the case of Bayesian networks, and for most probabilisticgraphical models, we have to deal with

intersections of the polytope space with non-algebraic curves. The next three chapters will discuss

the implementation of polytope propagation for Bayesian networks and application to both real and

simulated data.



Part III

Experiments
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The final section of the thesis expands on Chapter 5, and discusses the implementation of a polytope

propagation scheme for Bayesian networks used in evolutionary biology. The work builds upon

applications of polytope propagation to hidden Markov models for sequence alignment.

Chapter 6 discusses the well known belief propagation algorithm for inference of marginal proba-

bilities in Bayesian networks. This algorithm is translated to an algorithm in polytope algebra using

the scheme provided in Table 5.1. The chapter also discussesthe input for the problem and issues

that we face when applying the algorithm to a Bayesian network.

Chapter 7 uses the techniques discussed in the previous chapter to explore the evolutionary scenar-

ios of the bZIP transcription factors. Statistics for runtime and the size of the polytope are provided,

and the output is compared to Dollo and Fitch parsimony results on the same data.

Chapter 8 includes the last set of experiments to be performed, which involves generating simulated

evolutionary scenarios for the bZIP network, and applying polytope propagation on these scenarios.

The same statistics for runtime and polytope size are provided, along with comparisons with deter-

ministic approaches. In addition, the simulated data is used to examine the effect of a model with

greater number of parameters on the polytope propagation algorithm for Bayesian networks.



Chapter 6

Implementation

The polytope propagation algorithm for acyclic Bayesian networks with binary nodes was imple-

mented in polymake, a C++ and perl based interactive software for handling complex polytopes

[22]. The main advantages of using polymake were that it was open source, and allowed us to

program at a high level, without bothering about the background algorithms for convex hulls and

Minkowski sums. The current SVN version of polymake also provided tools to construct cones and

fans, which would be the ultimate goal of the whole project.

6.1 Algorithm

The algorithm used for the sum-product decomposition for polytopes was a direct translation of the

belief propagation algorithm for marginal probabilities.By using the dictionary provided in Chapter

5, we could program polytope propagation in perl script.

6.1.1 Classical belief propagation

In the classical belief propagation algorithm [30, 34], a tree data structure is created, with each

nodeA having the following attributes. For the rest of the discussion, we shall always assume

binary random variables at each node.

1. λ values: The probabilities of0 or 1 at A based purely on evidence from nodes in the tree
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rooted atA. Denoted byλ (A = a) for nodeA in statea.

2. π values: The probabilities of0 or 1 at A based purely on evidence from nodes in the tree

aboveA. Denoted byπ (A = a) for nodeA in statea.

3. A lambda messageλA (p) to the parent, assuming the parent is in statep, informing it about

the evidence coming from the nodes in the tree rooted atA.

4. A pi messageπC (a) to a childC of A, assuming nodeA is in statea, informing them about

the evidence coming from the nodes in the tree aboveA.

5. The value of the random variable, set to0, 1, or some other value, indicating that the node is

not initialized, i.e. it is not an evidence node.

To illustrate the algorithm, we show the messages needed to compute the probability of nodeD

being in state1 in the following example. In this example,p+q = 1 ands00+s01 = s10+s11 = 1.

{0}

s00   s01

s10   s11
    ( )T=

Prior=(q   p)

Figure 6.1: Example for belief propagation

After initializing nodeA as1, we pass a lambda message fromA to D for every possible value

of the random variable atD. This lambda message, in the case whenD takes the value1, λA (1),
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will be s10Pr (A = 0,D = 1) + s11Pr (A = 1,D = 1). The first term goes to zero, since nodeA

can never take the value0, according to the evidence. The lambda message fromC to D, whenD

takes the value1, λC (1), will be s10Pr (C = 0,D = 1)+ s11Pr (C = 1,D = 1). In this case, the

second term goes to0, sinceC can never be1. The probability thatD is in state1, based on evidence

from the nodes in the tree rooted atD, i.e.λ (D = 1), is the product of these two messages.

The lambda message fromB toR, for the case whenR = 0, i.e.λB (0), will be s00Pr (B = 0, R = 0)

+ s01Pr (B = 1, R = 0), with the second term vanishing. For the case whenR = 1, the message

λB (1) will be s10Pr (B = 0, R = 1)+s11Pr (B = 1, R = 1), and the second term vanishes again.

The pi-message fromR to D, in the caseR = 1, πD (1), will be π (R = 1) · λB (1). In terms of

the prior probabilities, this isp · λB (1). This is the probability thatR is in state1 based solely

on evidence from branches other than the branch going toD. The corresponding message when

R = 0, πD (0), will be q · λB (0). To calculate theπ-value of nodeD whenD = 1, π (D = 1),

we multiply the pi-messages by transition probabilities that take the nodeD to the state1, and add

them up, which gives uss01πD (0)+s11πD (1). This is the probability ofD = 1 based on evidence

coming from the parent.

The marginal probability of nodeD being in state1, and the evidence, will beλ (D = 1)·π (D = 1).

Similarly, the marginal probability forD = 0 can also be calculated. Furthermore, when the evi-

dence is restricted to the leaves, the marginal probabilityof the evidence is
∑

j∈{0,1} λ (j) · π (j) at

any non-evidence node. So, we can just calculate this value at the root.

If we treat the parameters are formal variables, then it is clear that we will get a polynomial for the

marginal probability of the evidence. The lambda and pi messages are factors of the final marginal

probability polynomial at any node. Grouping the factors inthis fashion allows the construction of

a polynomial time algorithm to infer the marginal probabilities at each node in the tree.

6.1.2 Belief propagation for polytope-propagation

The polytope propagation algorithm for Bayesian networks is simply the belief propagation algo-

rithm, with all the values and messages replaced by convex polytopes. We also change the opera-

tions according to the dictionary. Then, the operationλ (0)⊙π (0)⊕λ (1)⊙π (1) gives us the final

propagated polytope at any node.

For our purposes, we make a major modification in the belief propagation algorithm. Since we are
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not interested in the individual labels at the nodes, we onlypropagate evidence messages towards

the root. There is no feedback from a node to its children, andthere is no need for the pi-messages.

While this means that the nice ‘universal marginal probability of evidence’ structure that we got

while using conventional belief propagation is lost, this saves considerably on computational time,

since we only need to cover each edge once, and the polytope atthe root gives us the correct

propagated polytope.

6.1.3 Input and output

The algorithm takes a tree and the binary evidence at the leaves as input. The tree is provided in the

form of an adjacency list, and the evidence is a list of nodes with their labelling given alongside. This

model assumes that the same transition matrix is present along every edge, and that all nodes are

binary. The transition matrix has four entries,s00, s10, s01 ands11, where the subscripts follow the

convention of Chapter 2. Then, since there are four parameters, we make the following substitutions

when moving to polytope algebra.




s00 s10

s01 s11



→





(1000) (0100)

(0010) (0001)





As an option, a third input, which indicates whether each node duplicates or speciates, can be pro-

vided. In this case, the program moves to an8 parameter setting, with different transition matrices

for duplicating and speciating nodes.

The program output is a polytope in eitherR4 orR8, depending on the input. This is the propagated

polytope at the root.

6.1.4 Constructing the fan

After running the algorithm, the cones of the vertices of thepolytope can be found. The maximal

cones of the polytope, i.e. the cones of maximal dimension, which are not contained in any other

cones and are in bijection with the vertices, partition the parameter space. For each vertex, a set

of parameters chosen from its cone will give an evidence consistent labelling which maximizes the

probability of seeing the evidence and has a transition set which is represented by the vertex.
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6.1.5 Restricting the space of parameters

When using polytope propagation, we disregard the dependencies between parameters, and work

outside the probability simplex, i.e. the parameters need not be in the region[0, 1]. Thus, while the

fan gives us a partition of the whole parameter space into cones, some of these will be redundant.

In order to restrict the parameter space to the probability simplex, we note that, in a single parameter,

taking the negative logarithm will map the point1 to the origin, and will map all the points in(0, 1]

to the set[0,∞). The set(1,∞), which is outside the probability simplex, maps onto the negative

real line.

Since all our parameters are probabilities, the positive cube in d-dimensions,(0, 1]d, will map onto

the first quadrant when we tropicalize the statistical model. Thus, we only need to consider maximal

cones that lie in the first quadrant.

The second problem we face is that of including dependenciesbetween the parameters. In particular,

we need only consider parameters in which the columns add up to 1. In the tropical space, the

parameterss00, s10, s01, s11 would translate into the parametersx00, x10, x01, x11, wherexij =

− ln sij. Then, we would have to consider the conditions thats00 + s01 = s10 + s11 = 1, since the

columns in the stochastic matrix along each edge should sum up to1.

Including this in the polytope propagation scheme is hard, because the tropical semiring and poly-

tope algebra have no analogous operation for subtraction. This means that we have to move to a

non-algebraic setting to resolve this problem, and take intersections of the cone encoding the pa-

rameters with the curves in4-space,e−x00+e−x01 = 1 ande−x10+e−x11 = 1, would give us the set

of parameters which are probabilities that yield an MAP labelling which agrees with the transitions

represented by the vertex.

6.2 Computational complexity

Worst case complexity results for the polytope propagationalgorithm are derived by studying the

sum-product decomposition of the marginal probability polynomial. This tells us exactly how many

Minkowski sum and convex hull operation we will have to perform.

Theorem 8, tells us that the polytopes generated during the algorithm for a model withD parameters
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cannot have more thanCdn
d(d−1)/(d+1) vertices, wheren is the degree of the final marginal poly-

nomial, and d is the dimension of the affine space that the Newton polytope of this polynomial lies

on. Let us call this boundN . Assume, now, that we havek steps in the sum-product decomposition

of the polynomial, with at mostl additions andl multiplications. This translates tol convex hull

operations andl Minkowski additions. The value ofk will vary with the model.

The bound on the number of vertices in the polytopes means that the number of points in the

Minkowski sum of two polytopes will be at mostN2. Calculating the sum will takeO
(

N2D
)

time, since we haveD components to add in each vector. The problem with naively taking this sum

is that the number of points will grow exponentially with thenumber of sum operations. This causes

a memory overflow error, even on very small models. To avoid this, we take the convex hull of the

N2 points after each summing operation.

The same bound works for stand alone convex hull operations,since the convex hull of two poly-

topes can have at most2N different vertices. Clearly, the Minkowski sum operation will dominate

the convex hull operation, since, in a worst case scenario, it involves a convex hull ofO
(

N2
)

points.

In the case of convex hull operations following a Minkowski sum, we have to check a set of at most

N2 points, and see which of these points lies on a hyperplane inRD which separates it from the rest

of the set. This translates to a series of linear constraints, and yields a linear optimization problem

with N2 linear programs inD variables andN2 constraints. There are a number of algorithms to

solve this problem, and in particular, the algorithm by Megiddo [28] solves it in linear time inN2

for a fixed number of parameters, albeit with a constant of proportionality which is exponential in

D. Another algorithm by Kachiyan [24], solves it in polynomial time inN2, with a constant which

is polynomial inD. Depending on the algorithm, we can assume that the complexity of computing

the convex hull ofN2 points will beνD
(

N2
)

.

The overall complexity for the sum-product algorithm will then beO
(

klDN2 + klνD
(

N2
))

, since

stand alone convex hull operations on at most2N points will never dominate the Minkowski sum

operation. The complexity will vary, since polymake uses a variety of convex hull algorithms [3,20]

depending on the case it is being applied to.



Chapter 7

Experiments on the bZIP network

The first part of our experiments was to apply the methods discussed to real data. For this, we used

the bZIP interaction network. We include the details of the bZIP network, including the parameters

used by Pinney et al. [35], in Appendix A. For this dataset, werestricted ourselves to the four-

parameter model. The eight-parameters model proved computationally intractable to be applied on

our data.

7.1 Input

The bZIP gene tree has383 genes, over7 species in the species tree. The extant species areCiona

intestinalis, Takifugu rubripes(pufferfish),Danio rerio (zebrafish), andHomo sapiens(humans).

The internal species areChordata, which is the common ancestor for all the species,Vertebrata,

which is the common ancestor to humans and the two fishes, andTeleosti, which is the common

ancestor to both fishes. The gene tree is reconciled, and has sequence divergence scores over each

edge.

The interaction tree constructed from this has6850 nodes. This tree is too large for efficient com-

putation. In order to continue with the analysis, the tree was broken down into327 smaller trees,

rooted at a speciatingChordatainteraction. The parameters and initialization of the model relied

on the work of Fong, Keating and Singh [19]. The bZIP data has been well studied and there are

sequence-based methods to infer the strength of interactions.
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The interactions at the extant species were initialized based on Fong-Singh interaction scores [19].

These scores are based on sequencing data, and were used to predict both the extant interactions,

as well as the interactions in extinct species based on sequence reconstruction. The scheme is

explained in Appendix A. The sequencing data is considered reliable enough to use as a standard

to measure other techniques against.

The approach used by Pinney et al. fixed the parameters for thetransition matrices over each node

using the interaction scores, as explained in Appendix A, and used classical belief propagation to

calculate the marginal probabilities at each node of the whole interaction tree.

The input to the algorithm was given in the form of an adjacency list for the tree, and a list of leaves

with the evidence on them.

7.2 Output

Ideally, the model should have only2 parameters, i.e. the probabilities of gain or loss over an

edge. However, as stated in Section 6.1.5, the absence of an analogue for subtraction in the tropical

semiring and polytope algebra means that expressions such ass00 = 1− s01 cannot be represented

nicely. The polytope that was created through polytope propagation for the model, thus, lay in

4-dimensional space.

7.3 Results

The runtime for the algorithm and the size of the polytope obtained were the main statistics of

interest. Apart from them, we also compared the output to Dollo and Fitch parsimony results on the

tree.

7.3.1 Runtime

The computation time, on a system with Quad-socket,6-core AMD Istanbul processor, with256

GB of memory, takes about8 hours. The runtime for different trees in our set, in seconds, is plotted

against the size of the tree in Figure 7.2. The plot has been reduced to trees of size60 or lower, to

emphasize the variation of runtime.
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Figure 7.1: Distribution of runtime vs tree size

The runtime increased with tree depth, and for trees of comparable size, polytope propagation took

longer on trees with greater depth. This was expected behaviour, as greater depth would indicate

Minkowski sums of progressively larger polytopes as the messages are passed to the root.
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It was also expected that the runtime would increase with thenumber of homodimer duplications,

since we need3 Minkowski addition operations at each such node, but no appreciable increase was

noticed.
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Figure 7.3: Distribution of runtime vs homodimer duplications

7.3.2 Polytope size

The number of vertices in the polytope, in the worst case, should not exceedO
(

n3
)

, wheren is

the size of the tree. This follows from Theorem 8. In fact, since our polytope will lie on a three-

dimensional affine space in four dimensions, we can say that the number vertices will be bounded

by O
(

n2
)

, wheren is the number of edges in the tree, using Lemma 1. On running the algorithm,

we find experimental evidence for this bound. The number of vertices also depends on the tree

topology. Thus, trees with smaller size may be associated topolytopes with greater number of

vertices than trees of comparatively larger size.
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Figure 7.4: Distribution of polytope size vs tree size

Interestingly, the size of the polytope also increases withthe tree depth. Greater depth would mean

that the number of Minkowski sum operations along the branchwill increase, and the subsequent

polytopes generated by them will be larger.
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This corroborates our runtime results, since larger polytopes at any stage would imply that the
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Minkowski sum and subsequent convex hull operations will take longer.

7.3.3 Comparison to Dollo parsimony

It was also of interest to contrast the results for polytope propagation with the results for Dollo

parsimony on the same trees. The idea was to find the number of0 → 0, 0 → 1, 1 → 0, and1 → 1

transitions in the labelling obtained through Dollo parsimony. This was called theDollo signature

of the tree for that evidence.

Since the vertices of the polytope corresponded to similar signatures that, in some sense, maximize

the probability of seeing the evidence, we computed the Hamming distance from each vertex to the

Dollo signature, and found the minimum distance over all vertices. We plotted this against tree size

and the number of vertices in the polytope.

When comparing the Dollo signatures of the data to the vertices of the polytope, there are a large

number of cases with at least one vertex corresponding to theDollo signature, the maximum ham-

ming distance is7, for a 26 node tree which yields a24 vertex polytope. In total, there are322
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Figure 7.6: Distribution of Dollo hamming distance vs tree size

trees with a Dollo hamming distance of0. This means that there is one vertex in their polytopes

whose cone encodes parameters that have a low probability ofgain. This indicates that there is often
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Figure 7.7: Distribution of Dollo hamming distance vs polytope size

a scenario in which there is a single gain, since Dollo parsimony only allows a single gain during

evolution.

7.3.4 Comparison to Fitch-Hartigan parsimony

As in the case of Dollo parsimony, we define theFitch signatureof the tree to be the vector of the

number of transitions of each type when we compute a Fitch parsimonious scenario.
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The Fitch signatures of the trees using the bZIP data yieldedgood results when compared to the

vertices of the propagated polytopes. There were a very large number of trees with a vertex corre-

sponding to the Fitch signature.
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Figure 7.9: Distribution of Fitch hamming distance and polytope size

In all, there are5 trees with non-zero Hamming distance. The maximum hamming distance was4,

on a tree of size98, with 96 vertices in the polytope. As far as the experiments are concerned, there is

often a probable set of transitions which is an optimal MAP solution for some set of parameters, and

also corresponds to a Fitch-Hartigan parsimonious reconstruction of the trees. It is also interesting

that there are only5 cases in which the Fitch and Dollo hamming distances do not match each other,

and there are2 cases when they do match, but have non-zero hamming distance. This means that

in most cases, the Fitch and Dollo signatures are the same, and there is a vertex in the propagated

polytope which is equal to that signature.

Intersecting the cones of these vertices for90 of the largest polytopes, with more than 14 vertices,

we get a subspace of the affine4-space in which the parameters might yield an MAP transition

signature which is equivalent to the Fitch and Dollo signatures. Intersections of this space with

the non-algebraic curves in4-space, as stated in Section 6.1.5, would give us the actual set of

parameters that yield a parsimonious MAP labelling and alsocorrespond to transition probabilities.
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7.4 Summary

These results tell us that a parsimonious scenario for bZIP evolution often corresponds to a maxi-

mum a posteriori probability scenario for some set of parameters. In view of the fact that there are

an exponential number of possible evolutionary scenarios,and thus, a possibly exponential number

of monomials in the marginal probability polynomial, this is a surprising result.

Since the number of vertices is polynomial in the number of nodes in the Bayesian network, it is

also possible to explore the space of all optimal scenarios for evolution and compare the effect of

the parameters from the cones of these vertices when used forclassical belief propagation. The next

chapter discusses polytope propagation on simulated evolutionary scenarios.



Chapter 8

Simulations

The polytope propagation algorithm was also run on simulated data generated from the bZIP tran-

scription factor interaction tree. The experimental data from the paper from Pinney et al. [35]

had concluded that the probability of gain and loss are generally small, with the probability of gain

tending to be smaller. The aim of the simulation was to compare the results over simulated data

with the real data.

8.1 Four parameter model

For the first run of simulations, we assumed that all the edgescarried the same4 parameters. Thus,

the statistical model was defined on4 parameters.

8.1.1 Random data

The probabilities of gain and loss (note that we need only2 parameters to generate a simulation

scenario) were picked with uniform probability over the[0, 1] interval. The prior probability was

taken to be0.5. At the root, we picked a number in[0, 1] with uniform probability and labelled the

root 1 if the number was greater than0.5 and labelled it0 otherwise. Then, over each edge, we

picked a number in[0, 1] with uniform probability, and depending on the label of the parent, we

labelled the child1 if the parent was labelled1 and the number picked was less than the probability

of loss, or if the parent was labelled0 and the number was greater than the probability of gain.
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Similarly, if the parent was labelled0 and the number was less than the probability of gain, or if the

parent was labelled1, and the number was greater than the probability of loss, we labelled the child

0.

The process mentioned above gives us a complete labelling ofthe set of interaction trees we had

mentioned in the previous chapter. The input we were interested in was the labelling at the leaves

which represented interactions in the extant species. Thiswas taken to be our evidence, and the

labelling on the rest of the tree was hidden.

8.1.2 Results

The polytope propagation algorithm was carried out on the interaction trees using the evidence set

created above.

Runtime

The input is provided as an adjacency list of the edges in the tree, and a list of leaves with evidence.

The computing specifications are the same as that for the bZIPdata. The computation took a max-

imum of 18 hours. As in the previous case, the graph is truncated for trees up to the size of60 to

show the runtime trend.
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Figure 8.1: Distribution of runtime vs tree size for 4 parameters
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Here again, the size of the tree is not the only parameter thataffects the computation time. A major

parameter to consider was the depth of the tree. A plot of the runtime versus the tree depth again

shows that for trees of comparable size, the polytope propagation algorithm takes longer to run on

the tree with greater depth.
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Figure 8.2: Distribution of runtime vs tree depth for 4 parameters

We also expected the runtime to increase with the number of homodimer duplications in the tree,

since each homodimer duplication is a node of outdegree3, and there would be two Minkowski sum

operations at each such node. But such a correlation, if any,was weak.

Polytope size

The polytope size shows great similarity to the results obtained from the bZIP data.
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Figure 8.3: Distribution of polytope size vs tree size for 4 parameters

Again, we have support for theO
(

n2
)

upper bound for number of vertices. This statistic also

shows a gradual upward trend as we keep the size of the tree fixed and vary the tree depth. This is

illustrated in the following graph.
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As stated before, this is a result of progressively larger Minkowski sum operations.

8.1.3 Comparison to Dollo parsimony

As with the bZIP data, the Dollo signatures were computed foreach tree with simulated input. This

signature was compared to the vertices of the propagated polytope of the tree.
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Figure 8.5: Distribution of Hamming distance from Dollo signature vs tree size

The Hamming distance for many trees was greater than0, which meant that there were fewer cases

in which at least one optimal scenario with only a single gainexisted than in the case of the real

data.

The maximum Hamming distance was6, for four trees, the largest of which had76 nodes and

yielded a polytope with64 vertices, and the smallest of which had27 nodes and had a propagated

polytope with29 vertices.

8.1.4 Comparison to Fitch-Hartigan parsimony

As in the case of the bZIP data, we also computed Fitch signatures for the simulated scenarios and

compared them to the vertices of the polytope.
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Figure 8.6: Distribution of Hamming distance for Dollo signature vs polytope size
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The maximum Hamming distance observed for Fitch-Hartigan parsimony, compared to the vertices
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Figure 8.8: Distribution of Hamming distance for Fitch signature vs polytope size

of the polytope, was12, was found for a tree on just44 nodes, which implied that the simulation

for that tree did not yield a parsimonious scenario which minimized the number of transitions along

the edges.

There were301 trees in which there was a vertex corresponding to the Fitch signatures, i.e. they had

a Fitch hamming distance of0, while295 trees had a vertex corresponding to their Dollo signatures.

Thus, parsimonious MAP scenarios of evolution were rarer for the simulated data.

8.2 Eight parameter model

The eight parameter model is based on the scheme provided by Dutkowski and Tiuryn [15]. The

probabilities of gain and loss are taken to be different for speciating and duplicating interactions,

giving rise to two different transition matrices. Thus, instead of4 parameters for the entire model,

we have8.
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8.2.1 Random data

The process for simulation in the8 parameter model was almost exactly the same as that for the

4 parameter model. However, we kept track of the additional information on whether an interac-

tion duplicated or if it evolved into two new species. Instead of 2 numbers in[0, 1], we picked

4, representing the probabilities of gain and loss for a speciating interaction, and for a duplicating

interaction.

8.2.2 Polytope propagation for eight parameters

The algorithm took an extra input parameter for the8 parameter model. We had to provide informa-

tion on whether a node was duplicating or speciating. Also, the propagated polytope for this model

was constructed inR8, and it lay on an affine space ofR7. The number of vertices was bound by

O
(

n6
)

. Furthermore, the complexity increases considerably in eight dimensions, and the compu-

tation for even small trees (less than45 nodes) takes over3 weeks on an Intel(R) Xeon(R) E5520

processor, clocked at2.27 GHz, with37 GB of memory.

8.2.3 Runtime

The runtime taken for polytope propagation using the eight parameter model was considerably

greater than that for the four parameter model. The plots below show the trend as the size of the tree

grows from0 to 20 nodes, and from0 to 40 nodes.
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Figure 8.9: Runtime characteristics for the eight parameter model

Note the rapid increase in runtime. While computations for the four parameter model finished in

under500 seconds for trees smaller than40 nodes, the same computation here takes as long as

30000 seconds. This is in agreement with the theoretical result that runtime is exponential in the

dimension of the affine space that the polytope lies in.
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8.2.4 Polytope size

The number of vertices in the propagated polytope also showed a noticeable increase. The trend

was no longer sub-quadratic, as we had observed in the four-parameter model. However, only93 of
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Figure 8.10: Polytope size vs tree size for eight parameters

the327 trees were used to generate these statistics, as the computation proved to be too intractable

for trees of size larger than45 nodes.

8.3 Summary

Experiments on simulated data show a marked difference in the Fitch signature results when com-

pared to the results from the bZIP data. The bZIP data almost always had a vertex corresponding

to the Fitch signature of the tree, while that is not true of the simulations. This indicates that the

probabilities of gaining or losing a character was probablylow during bZIP evolution.

Other trends on the statistics of polytope size and runtime were in agreement with the real data. The

eight parameter model was an interesting example of the problems involved in moving polytope

propagation to higher dimensions. At the moment, there doesnot seem to be a tractable way to use

polytope propagation on probabilistic models with a large number of parameters.



Chapter 9

Conclusions

In this thesis, we discussed the main computational techniques used for the inference of ancestral

protein-protein interactions and the preliminary use of anframework algebraic statistics framework

to analyze their evolutionary history.

Inference techniques in computational biology are generally classified into deterministic and prob-

abilistic techniques. Both of them are very well studied, and have been applied to the inference of

ancestral protein-protein interactions. The crux of the thesis lies in the interpretation of probabilistic

models, such as those used for evolutionary models on trees,as algebraic varieties.

The work of Sturmfels et al [21, 32] also extended this interpretation to an interpretation of proba-

bilistic models in tropical algebra. Such an interpretation yields a natural translation of the model

into polytopes, with the cones of the vertices of the polytopes encoding parameters that yield optimal

scenarios. Furthermore, it is possible to construct these polytopes through successive Minkowski

sum and convex hull calculations.

The technique of polytope propagation, which is an extension of the belief propagation algorithm

to polytopes, was applied to both, real data on the bZIP interaction networks, and simulated data

for protein-protein interactions, and the results were compared to the theoretical bounds that were

known. They were also compared to well known deterministic models of evolution on trees. This

comparison gave us an insight into the possible evolutionary path of the interactions. The experi-

ments also included an extension of the polytope propagation algorithm to an evolutionary model

with a larger number of parameters.

82



CHAPTER 9. CONCLUSIONS 83

The results obtained indicate that while polytope propagation provides an elegant mathematical

framework, using it on Bayesian networks for evolution is fraught with difficulties. Evolutionary

tree models in biology usually rely on branch lengths to specify parameters. For example, in the

paper by Pinney et al. [35], the branch length of each edge on the interaction tree is used as a

parameter to compute the probabilities of gain and loss overthat edge. The current implementation

of polytope propagation for the same tree cannot incorporate this scale of complexity.

There are other models, such as the one by Dutkowski and Tiuryn [15], which do not use branch

length to estimate evolutionary parameters. However, the prospect of extending polytope propaga-

tion to a full-fledged parametric inference technique, evenfor small Bayesian trees, seems distant

at the moment.

The extension of linear hidden Markov models to polytope propagation has been well studied and

has been used successfully on real data [5, 12, 31]. However,in the absence of a linear graphical

structure, such as one for sequence alignment or recombination, as in Bayesian networks that model

evolution, this extension is encumbered by the necessity totake intersections with non-algebraic

hypersurfaces in the space of the parameters. This was a major obstacle in the approach taken, and

warrants further research to find a scheme that can reduce thenumber of parameters.

Another area of further research would be to identify a method to handle probabilistic models with

a large number of parameters. Convex hull and Minkowski sum computation in higher dimensions

is a field of major research, and it may be possible to extend such results to polytope propagation.

The problem of finding the set of optimal evolutionary scenarios for a subset of the parameter space

is still open, as stated in Section 5.2.2. The naive experimental method of finding the optimal

solutions is not guaranteed to give all the possible scenarios, and it might be useful, though difficult,

to find an algebraic statistics approach to the same.

Finally, the translation of belief propagation to polytopepropagation also means that while we get

possible transition scenarios in the Bayesian network thatmay have led to the evidence, we cannot

know which or how many internal labellings yield the same transition scenario. It would be useful

to devise a backtracking algorithm which associates each vertex in the propagated polytope with the

internal labellings that yield the set of transitions represented by the vertex.

To summarize, an algebraic statistics approach to inference in evolutionary biology is still far from

complete. While the mathematical background is well laid, the implementation of efficient meth-
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ods to compute and analyze relevant statistics for the the problem needs further investigation. A

few possible directions to approach this include massive parallelization of the polytope propagation

algorithm and the implementation of more efficient Minkowski sum solvers. It would be interest-

ing to examine how a low parameter model computed through algebraic statistics compares with

high parameter models of evolution. Apart from this, a non-probabilistic approach to parametric

inference, such as the one taken by Dewey et al. [12], may alsoprovide an idea which lets us

handle parametric inference in evolutionary models. Certain discrete algorithms, such as Sankoff

parsimony, can be naturally translated to polytope propagation, and this solves the problems of high

dimensionality and non-algebraic intersections.



Appendix A

The bZIP transcription factors

The data set of interest to us is the protein interactions occurring in the family of the bZIP transcrip-

tion factors. They are a family of proteins involved in the regulation of development, metabolism,

circadian rhythm, and other cellular processes. The familyexhibits a high rate of gene duplication,

and the bZIP subfamilies have broadly conserved interaction patterns with each other. There are

accurate genome-scale experimental data for the family, and a process to estimate the strength of

interactions based on amino acid sequences exists, which makes the bZIP family particularly useful

for investigating methods for reconstruction ancestral networks.

The paper by Pinney et al. [35] investigates the reconstruction of ancestral protein interactions in

the bZIP family by using a Bayesian network modelled by the interaction tree.

A.1 The interaction tree

The reconciled gene tree for the bZIP family is already provided. Using this, we can easily construct

the interaction tree, starting with the assumption that theprotein at the root could have been self-

interacting. The gene tree has383 nodes, and yields an interaction tree with6850 nodes, of which

2227 are interactions in extant species.
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A.2 Parameters

The paper selects parameters for gain and loss experimentally, based on the true-positive and true-

negative extant human bZIP interactions, by considering all possible moves in the sequence space,

from each strongly interaction pair, or each non-interacting pair, and modelling the probabilities

of loss and gain, respectively. as a function of the sum of branch lengths of the two genes corre-

sponding to the interacting proteins. Then, they fitted thisdata to logistic functions of the sum

of branch lengths. At the root, the prior was chosen to be0.5. The functions that were fit-

Figure A.1: Probabilities of gain and loss for human interactions versus sum of evolutionary dis-

tances [35]

ted to the data were0.0809/ (1 + exp (−2.9495 (d− 1.6409))) for the probability of gain and

0.9219/ (1 + exp (−5.886 (d− 1.2887))) for the probability of loss, whered is the sum of evo-

lutionary distances from their parents for both proteins inan interaction. This yields6849 different

stochastic matrices along each edge, with different gain and loss percentages over each edge.
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A.3 Evidence

Using the true-positive and true-negative human interactions, score distributions were derived for

strongly interaction and non-interacting protein pairs. These distributions were fitted to normal

distributions that varied over the Fong-Singh scores [19] for the interaction protein pairs in the

extant species.

Figure A.2: Fong-Singh predictions for strong and weak interactions [35].

A score of30.6 was found to correspond to the probability of an interactionbeing0.5, and it was

taken as the cut-off score for the binary evidence.



Appendix B

Basics of probability

This appendix is supposed to provide a brief overview of probability theory, and the terminology

used in it.

B.1 Probability space

Suppose we define an experiment with finite sample spaceΩ = {e1, e2, . . . , en}, where eachei is

an outcome of the experiment. A subset of this sample space iscalled anevent.

Definition 20. [30] A function that assigns a real numberPr (E) to each eventE ⊆ Ω, is called

a probability function on the set of subsets ofΩ if it satisfies the following conditions:

1. 0 ≤ Pr ({ei}) ≤ 1 for 1 ≤ i ≤ n.

2.
∑n

i=1 Pr ({ei}) = 1.

3. For eachE, as long asE is not a singleton set,

Pr (E) =
∑

ek∈E

Pr ({ek}).

We say that(Ω, P ) define a probability space.

The numberPr (E) assigned to an eventE ⊆ Ω is called the probability ofE, andPr is said to be

a map onΩ.
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A random variableis a function onΩ which assigns a unique value to each element in the sample

space. The set of values a random variableX can assume is called thespaceof X.

The following theorem holds for all probability spaces.

Theorem 9. [30] For any probability spaceΩ, P r,

1. Pr (Ω) = 1.

2. 0 ≤ Pr (E) ≤ 1 for anyE ⊆ Ω.

3. ForE ⊂ Ω andF ⊂ Ω, if E ∩ F = ∅, then,

Pr (E ∪ F ) = Pr (E) + Pr (F ) .

These properties are called theaxioms of probability.

B.2 Conditional probability and independence

Definition 21. For any two eventsE andF in Ω, if Pr (F ) 6= 0, theconditional probabilityof E

givenF , Pr (E|F ), is given by

Pr (E|F ) =
Pr (E ∩ F )

Pr (F )

If the conditionE ∩ F = ∅ holds, the two eventsE andF are said to be mutually exclusive.

In terms of probability functions, two eventsE andF are independent if one of the following holds.

1. Pr (E|F ) = Pr (E) andPr (E) 6= 0, P r (F ) 6= 0.

2. Pr (E) = 0 or Pr (F ) = 0.

If two eventsE andF are independent, thenPr (E ∩ F ) = Pr (E) · Pr (F ).

Based on the definitions of conditional probability and independence, we can now define conditional

independence as follows.

Definition 22. [30] Two eventsE andF are said to be conditionally independent given another

eventG andPr (G) 6= 0 if one of the following holds:
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1. Pr (E|F ∩G) = Pr (E|G) andPr (E|G) 6= 0, P r (F |G) 6= 0.

2. Pr (E|G) = 0 or Pr (F |G) = 0.

B.3 Bayes Theorem

Using the definitions of conditional probabilities and conditional independence, we can prove the

following theorem.

Theorem 10. [30] [Bayes’ theorem] Given two eventsE and F , such thatPr (E) 6= 0 and

Pr (F ) 6= 0, then

Pr (E|F ) =
Pr (F |E)Pr (E)

Pr (F )

This is the central theorem in Bayesian inference. It states, very roughly, that given the outcome of

a certain event, it is possible to find the probability of an event which may have led to that outcome.
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