
ALGORITHMS FOR FINDING TUCKER PATTERNS

by

Maria Tamayo

B. Sc., Universidad de los Andes (Bogota), 2010

THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

c© Maria Tamayo 2013
SIMON FRASER UNIVERSITY

Spring 2013

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for

"Fair Dealing". Therefore, limited reproduction of this work for the purposes of
private study, research, criticism, review, and news reporting is likely to be

in accordance with the law, particularly if cited appropriately.

APPROVAL

Name: Maria Tamayo

Degree: Master of Science

Title of thesis: Algorithms for finding Tucker patterns

Examining Committee: Dr. Karen Yeats

Assistant Professor (Chair)

Dr. Cedric Chauve (Senior supervisor)

Associate Professor

Dr. Tamon Stephen (Supervisor)

Associate Professor

Dr. Jonathan Jedwab (Examiner)

Professor

Date Approved: January 22 , 2013

ii

Abstract

The Consecutive-Ones Property (C1P) in binary matrices is a combinatorial concept with applica-

tions in several area, from graph planarity testing to computational biology. Tucker patterns are

families of submatrices that characterize non-C1P matrices, and thus represent natural certificates

of non-C1P matrices. However, there are very few algorithmic results regarding Tucker patterns. In

the present work, that is part of a systematic study of Tucker patterns, we present several algorith-

mic and structural results about Tucker patterns in binary matrices that do not satisfy the C1P. The

results obtained are the following:

• An output-sensitive enumeration algorithm for Tucker patterns.

• A detailed study of the link between partition refinement and Tucker patterns.

iii

To my parents, my sister and my husband!

iv

Acknowledgments

I would like to thank my senior supervisor Dr. Cedric Chauve who gave me the opportunity to dis-

cover two new worlds: discrete mathematics and computational biology. His example and wisdom,

were always encouraging and motivating. I also want to thank him for his endless corrections and

suggestions, that made this thesis possible.

I also want to thank my supervisor Dr. Tamon Stephen for his guidance, knowledge and inspi-

ration; as well as for his many corrections to this thesis.

I want to thank Brad Jones for his help with the implementation of the algorithm proposed in

the last chapter, as well as for his patience and knowledge.

I would like to thank my husband for his incredible support, encouragement, guidance and

enlightenment.

Also, I would like to thank my mom and my sister because I wouldn’t be here if it wasn’t for

them. Thank you so much for your love, inspiration, company and dedication.

Finally, I want to thank all of my friends for contributing in this journey some way or another.

v

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables viii

List of Figures ix

I Background 1

1 Introduction 2

1.1 Ancestral Genomes . 3

1.2 Results and Plan . 7

2 Background on the C1P 9

2.1 The C1P and related concepts . 9

2.1.1 Binary Matrices and Bipartite Graphs . 9

2.1.2 The Consecutive Ones Property . 12

2.1.3 Overlap Graph . 14

2.2 Algorithms and Certificates for Deciding the C1P 16

vi

CONTENTS vii

2.2.1 Certificates . 16

2.2.2 The Early Approaches . 17

2.2.3 Tucker Patterns and Asteroidal Triples . 21

2.2.4 Finding Tucker Patterns . 28

2.2.5 The Incompatibility Graph . 31

2.2.6 Partition Refinement . 33

2.2.7 PQ-trees and PQR-trees . 43

II New Results 52

3 Structural and Algorithmic Results on Partition Refinement 53

3.1 Matrices that are Tucker Patterns . 53

3.1.1 Simple algorithms . 54

3.1.2 Algorithms based on Partition Refinement 54

3.2 Extracting a cycle from a non-C1P binary matrix 62

3.3 Conclusion . 71

4 Enumerating all Tucker Patterns 74

4.1 Theoretical Results . 74

4.2 Analyzing Real Data . 84

4.3 Conclusion . 93

Appendix A Appendix 94

Bibliography 99

List of Tables

4.1 Number of Tucker patterns of each type in each of the five matrices. 86

4.2 Number of Tucker patterns each row belongs to in M1. Only rows that belong to at

least one Tucker pattern are shown. 86

4.3 Number of Tucker patterns in M1 with number of rows as specified on the first

column of the table. That is, there are 40 GMI
with 4 rows as well as 16 GMII

with

4 rows. 87

4.4 List of rows and their corresponding markers in M1. 88

4.5 List of marker orders in each species. 89

4.6 The table illustrates the number of Tucker patterns each row belongs to in M2. . . 91

4.7 The table illustrates the number of Tucker patterns in M2 with number of rows as

specified on the first column of the table. 91

4.8 The table illustrates the number of Tucker patterns each row belongs to in M3. . . 92

4.9 The table illustrates the number of Tucker patterns in M3 with number of rows as

specified on the first column of the table. 92

A.1 List of rows and their corresponding markers in M2. 95

A.2 List of marker orders in each species. 96

A.3 List of rows and their corresponding markers in M3. 97

A.4 List of marker orders in each species. 98

viii

List of Figures

1.1 [42] Eomaia . 3

1.2 [42]Phylogenetic tree of chicken, human, mouse and dog. The ancestor that is

being reconstructed is Eomaia. Each genome is represented by a set of sequences

of markers, where each marker is represented by a coloured label. 5

1.3 [42] Binary matrixM constructed from the phylogenetic tree of Figure 1.2. Every

column represents a marker and every row represents a set of contiguous markers. . 6

2.1 [30] The top diagram is a black box program, the bottom diagram is a certifying program 17

2.2 Tucker patterns MIk , MIIk , MIIIk , MIV and MV 24

2.3 Bipartite graphs of the five Tucker patterns. 25

2.4 GM contains a Tucker pattern of type V. 26

2.5 An ordered partition of the support of the processed columns with a single part. . . 36

2.6 An ordered partition of the support of the processed columns with three parts. . . . 36

2.7 A failed partition refinement of the support of the processed columns with three parts. 36

2.8 Universal PQ-tree . 47

3.1 Failed partition refinement for MIk . 55

3.2 Failed partition refinement of MIIk for various choices of final row processed. . . . 56

3.3 Failed partition refinement of MIIIk for various choices of final row processed. . . 57

3.4 Failed partition refinement of MIV . 58

3.5 Failed partition refinement of MV . 59

4.1 A cycle with a chord from vertex 4 to vertex 7. 79

4.2 A chordless cycle. 79

ix

LIST OF FIGURES x

4.3 A cycle with a chord returned by Read and Tarjan’s algorithm. 81

4.4 A chordless cycle returned by the modified version of Read and Tarjan’s alforithm. 81

4.5 Enumerating Tucker pattern GMII
: Enumerate the vertices a, b (in orange), then

find the green set Va,b of vertices adjacent to both a and b. Later, pick x, y and

z (orange vertices). Then, find the blue set Vy,z of vertices adjacent to either two

vertices in Va,b, or adjacent to y and a vertex in Va,b or adjacent to z and a vertex in

Va,b. Finally, find a path between y and z. 82

4.6 Tucker pattern GMII
. 82

4.7 Enumerating Tucker pattern GMIII
: Enumerate the vertex a (in orange), then find

the green set Va of vertices adjacent to a. Later, we pick x from Va arbitrarily and

y and z not in Va. Then, find the blue set Vy,z of vertices adjacent to either two

vertices in Va,b, y and a vertex in Va,b or z and a vertex in Va,b. Finally, find a path

between y and z. 83

4.8 Tucker pattern GMIII
. 83

4.9 [12] Phylogenetic tree of mammals, marsupials and avian genomes. The common

ancestor of amniote genomes is being illustrated and reconstructed. 85

Part I

Background

1

Chapter 1

Introduction

A binary matrix is a matrix such that all its elements are either 0 or 1. A binary matrix has the

Consecutive Ones Property if there exists a permutation of the columns such that all the 1’s in every

row are consecutive. A valid permutation orders the columns of a binary matrix so that all the 1’s

are consecutive in every row. A consecutive ones ordering represents an order of the columns after

applying a valid permutation. Binary matrices that have the Consecutive Ones Property are called

C1P matrices, and binary matrices that do not have the Consecutive Ones Property are called non-

C1P matrices. The Consecutive Ones Property has many applications, where a group of objects

needs to be organized consecutively. Some applications of the Consecutive Ones Property include

graph theory (interval graphs, planar graphs) [22], [7], archaeology [25], radiotherapy [28] and

genomics (physical mapping, paleogenomics) [32].

In this thesis, the motivation for studying the Consecutive Ones Property comes from an application

in computational biology, namely ancestral genomes reconstruction. In this application, the Con-

secutive Ones Property gives information about the genome organization of an ancestral species.

The rest of this chapter describes the main motivation for this work, ancestral genomes reconstruc-

tion. We will end with a description of the main results and an outline for the remaining chapters.

2

CHAPTER 1. INTRODUCTION 3

1.1 Ancestral Genomes

The study of extinct species (Paleontology) aims at understanding the evolution of animal bodies.

Since the sequencing of the human genome,1 a genomic revolution has developed, generating the

sequence of several genomes of other species. This has led to considering questions in biology

from genomics. At the same time, these naturally translate into questions about genomes of extinct

species [39], those leading to the field of paleogenomics [34].

Later, several techniques were developed by biologists and computational biologists to address

questions in paleogenomics. Some of the techniques include cytogenetics, that rely on experi-

mental in-vitro approaches, and bioinformatics, which relies on in-silico analysis of sequencing

data [19], [21]. Recent achievements in paleogenomics have been developed such as the sequencing

of the Neanderthal [16], the mammoth [18] and the bubonic plague genomes [10].

The DNA molecule degrades after a few hundred thousand years [24], which prevents sequencing

from old fossils such as mammalian ancestors [14]. Nowadays, fossils are still found; for example,

within the recent past, a fossil of eomaia was discovered [24]. Figure 1.1 illustrates the reconstruc-

tion of the skeleton, shape and characteristics of eomaia.

Figure 1.1: [42] Eomaia

It corresponds to an eutherian mammal dating from 125 million years ago. It is believed that eomaia

was the ancestor of all placental mammals. Since the DNA molecule degrades, computational

techniques are necessary to reconstruct ancient genomes. These computational techniques are based

on the comparison of extant genomes, where extant genomes are currently existing genomes.

Some computational techniques for reconstructing ancestral genomes are well advanced, such as
1We will not describe in detail biology and genomic concepts, the reader can refer to [9] for more information.

CHAPTER 1. INTRODUCTION 4

computing ancient DNA sequences for single genes [27]. Other techniques are still a relatively

recent problem, including ordering genes along ancestral chromosomes [12], [5]. The problem of

ordering genes along a set of ancestral chromosomes can be defined in the following way: given

a putative set of ancestral genes, how were they located along the chromosomes of the ancestral

genome?

As mentioned above, there are several methodologies for reconstructing ancestral genomes. Some

are based on parsimony in a genome evolution model [8] while others are based on methodology

inspired from assembly and genome mapping techniques [38]. The former has been the subject of

intense research and has lead to many interesting combinatorial problems [20]. The latter is more

recent and the research behind this manuscript follows it. In the rest of this section we describe one

particular methodology for reconstructing ancestral genomes that is based on the C1P [12].

The problem we are interested in is reconstructing ancestral genomes. We will see that this problem

can be translated into another problem, namely, determining if a given binary matrix is C1P or

not. The idea of the methodology is that, given a set of ancestral genes, we encode partial ordering

information into a binary matrix, where each row describes a set of ancestral genes believed to be

contiguous and each column describes a gene. Then, we ask whether the matrix has the C1P or not

to use this information to find a possible order for the ancestral genome. To construct this matrix,

the phylogenetic tree is used as described below.

The methodology takes as input a set of extant genomes with a phylogenetic tree describing their

evolutionary relationship.

Figure 1.2 represents the phylogenetic tree of several species (this example is purely illustrative

and does not represent real data). The node with the picture of eomaia represents the ancestor of

all mammals of the tree. A gene is a sequence of nucleic acids and a marker is a gene with a

known location on a chromosome. Each genome in the phylogenetic tree is represented as a set

of sequences of markers. Each sequence represents the markers order along a single chromosome.

Markers that passed down from the ancestor to the descendants are called homologous markers.

Each marker belongs to a family of homologous markers identified with a unique label. Then, each

chromosome is a sequence of labels, that represent markers. The alphabet of markers is denoted as

L = {1, . . . , n}, where n is the number of labels [12]. In Figure 1.2, each marker is represented

by a coloured label and each genome is represented as a set of sequences of coloured labels. In this

case, the alphabet of markers is the list of different colors.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: [42]Phylogenetic tree of chicken, human, mouse and dog. The ancestor that is being

reconstructed is Eomaia. Each genome is represented by a set of sequences of markers, where each

marker is represented by a coloured label.

The methodology for reconstructing ancestral genomes consists of two parts. First, the genomes

of the extant species are used to construct ancestral syntenies, which are sets of markers that were

possibly contiguous in the ancestor. Once the ancestral syntenies are constructed it is necessary

to arrange them into a set of totally ordered subsets (that is, arrange the ancestral syntenies into

sequences), that will represent one of the possible orders of the genome.

The rule that is followed to construct ancestral syntenies is the following: if a subset of the alphabet

of marker labels is contiguous in at least two extant species, whose path on the phylogenetic tree

goes through the ancestral node that is being reconstructed, then that set of markers could be a set

of contiguous markers in the ancestral genome [12]. Then, a binary matrix M is constructed with

the ancestral syntenies, where every column represents a marker and every row represents a set of

contiguous markers, that is, an ancestral synteny. Therefore, there is a one in the matrix on position

(i, j) if marker j is present in the ancestral synteny i.

The approach described to construct ancestral syntenies is based on a parsimony principle known as

Dollo parsimony [1], that assumes that a complex character (such as a set of conserved co-localized

genes) is unlikely to be gained independently. This principle is moreover backed up by theoretical

study about the probability of observing groups of conserved elements in random permutations [1].

CHAPTER 1. INTRODUCTION 6

Figure 1.3: [42] Binary matrixM constructed from the phylogenetic tree of Figure 1.2. Every

column represents a marker and every row represents a set of contiguous markers.

Figure 1.3 represents the binary matrix constructed using the methodology described above for the

phylogenetic tree of Figure 1.2. The sequence of markers with labels grey, orange, red and blue is

an ancestral synteny because it is contiguous in species chicken, human and dog. The first row of

the binary matrix M represents this ancestral synteny and the first four columns of M represent the

markers that are present in this ancestral synteny.

After the binary matrix M is constructed, we analyze it. We use the C1P to organize the ancestral

syntenies into possible orders of the genome. If M is C1P, then every consecutive ones ordering

represents a possible order for the ancestral genome. However, ifM is C1P it does not imply that all

the ancestral syntenies are correct, that is, that all the sets of genes that are believed to be contiguous

in the ancestor were actually contiguous. But if all the ancestral syntenies are correct, then there is

a consecutive ones ordering of the markers. So, if M is non-C1P then there is at least one ancestral

synteny that is not correct. Typically, when M is constructed with real data it is usually non-C1P.

This leads to the problem of transforming M into a matrix M ′ that is C1P. We want to construct

M ′ so that it is as close as possible to M , in order to lose the minimum information possible.

Also, because we want to understand exactly why M is non-CIP. We want to identify the rows and

columns that causeM to be non-C1P. This can be done by finding all minimal obstacles that prevent

M from being C1P.

In 1976, Tucker defined the minimal obstacles that prevent a binary matrix for being C1P as Tucker

patterns [43]. Therefore, in order to reconstruct ancestral genomes, we want to analyze the prop-

CHAPTER 1. INTRODUCTION 7

erties of binary matrices. In particular, we want to determine if a given binary matrix is C1P or

not, and in the case where is non-C1P we want to transform it into a matrix that is C1P. Therefore,

finding Tucker patterns can be seen as part of a general methodology for reconstructing ancestral

genomes.

1.2 Results and Plan

We use several basic concepts of Graph Theory throughout the manuscript. The reader can refer

to [44] for classical notions of Graph Theory.

The remaining chapters are organized as follows: in section 2.1 we introduce binary matrices and

bipartite graphs, we give a formal definition of the C1P and show the relationship between binary

matrices and bipartite graphs. We follow by introducing the overlap graph and how it is related to

testing the C1P. We end this section by introducing the PQ-tree and the use of it to represent all

valid permutations of a C1P matrix.

In section 2.2 we discuss algorithms for deciding the C1P. We describe the notion of certifying

algorithms introduced by McConnell [31]. Then, we describe previous works on deciding if a

binary matrix is C1P and show how they are or are not certifying algorithms for the non-C1P. We

describe the algorithms for C1P of Fulkerson and Gross [22], and of Booth and Lueker [7]. Then,

we present Tucker’s theorem that shows the characterization of C1P in terms of Tucker patterns,

and how this turns into a certificate for the non-C1P. We follow with McConnell’s certificate for the

non-C1P, the incompatibility graph. Finally, we describe partition refinement, a general algorithmic

technique that applies to deciding the C1P.

In chapter 3 we describe our results for partition refinement, and show how to use partition refine-

ment for finding a certificate for the non-C1P. Also, we present an algorithm for finding a Tucker

pattern of type I in a binary matrix in quadratic time.

In chapter 4 we describe our results for Tucker patterns. We describe how to find all Tucker patterns

in a binary matrix in polynomial time in the size of the output. Finally, we present the results

of analyzing real data with the algorithm presented above to a binary matrix that resulted from

reconstructing the ancestral genome of a set of several mammalian amniotes species (mammalians,

marsupials and avian species).

CHAPTER 1. INTRODUCTION 8

We analyzed the data from the set of genomes of the phylogenetic tree, consisting of the follow-

ing species: Homo sapiens (humans), Pan troglodytes (chimpanzee), Pongo pygmaeus (orangutan),

Macaca mulatta (monkey), Mus musculus (mouse), Rattus norvegicus (rat), Equus caballus (horse),

Canis familiaris (dog), Bos taurus (cows), Monodelphis domestica (opossum), Gallus gallus (chicken),

and Taeniopygia guttata (zebra finch). The results obtained are described in section 4.2.

Chapter 2

Background on the C1P

This chapter consists of two sections. The first section defines the Consecutive Ones Property and

other related concepts such as binary matrices and overlap graphs. The second section presents

several algorithms for deciding the C1P and certificates for matrices that do not satisfy the C1P,

their complexities and their relationship with certifying algorithms.

2.1 The C1P and related concepts

We begin this section by defining binary matrices and bipartite graphs. We follow with a formal def-

inition of the Consecutive Ones Property and overlap graphs, and show that connected components

of these graphs are independent regarding the C1P. We finish by introducing PQ-trees and show that

they can be used to represent all possible consecutive ones orderings of a C1P matrix.

2.1.1 Binary Matrices and Bipartite Graphs

Definition 2.1.1. Let m and n be two positive integers. An m×n binary matrix M is a matrix with

m rows and n columns, such that all its entries are equal to 0 or 1. The size of a binary matrix M is

the number of entries 1 in M , that is, e.

Notation 2.1.2. Let M be a m × n binary matrix. We denote by Mi,j the value of the entry of M

in row i and column j.

9

CHAPTER 2. BACKGROUND ON THE C1P 10

Notation 2.1.3. Let M be a m× n binary matrix. We denote by RM = {r1, r2, . . . , rm} the set of

rows of M and by CM = {c1, c2, . . . , cn} the set of columns of M .

M = (RM , CM) denotes the matrix with set of rows RM = {r1, r2, . . . , rm} and set of columns

CM = {c1, c2, . . . , cn}.

Each row ri can be represented by a subset of {1, . . . , n} describing the indices of the columns cj

such that Mi,j = 1. From now on we assume that rows are represented in such a way.

Example 2.1.4. Let M be the binary matrix defined as

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 0 1

r3 1 0 1 1

Then RM = {r1, r2, r3} = {{c1, c2}, {c2, c4}, {c1, c3, c4}} and CM = {c1, c2, c3, c4}. Also, the

rows of M can be represented as RM = {r1, r2, r3} = {{1, 2}, {2, 4}, {1, 3, 4}}

Definition 2.1.5. The degree of a binary matrix is the maximum number of entries equal to 1 in a

row, denoted as ∆.

Definition 2.1.6. Let M be a binary matrix and r a row of M (respectively, column c). We denote

by M − r (respectively M − c) the matrix obtained by removing a row (respectively column) from

M .

Definition 2.1.7. A submatrix of a binary matrix M is defined by a subset of its rows and/or of its

columns.

Example 2.1.8. The matrix M ′ defined by r1 = {1, 2}, r2 = {2}, r3 = {1, 3} is a submatrix of the

matrix M of example 2.1.4.

Definition 2.1.9. Let M be a binary matrix. The graph GM is the bipartite graph with vertex set

{RM ∪ CM} and edge set {(ri, cj) : j ∈ ri}. That is, M is the adjacency matrix of GM .

Note 2.1.10. Formally we cannot really say thatM is the adjacency matrix ofGM because it should

be of size (m+ n)× (m+ n). But it is a perfectly valid "abuse".

CHAPTER 2. BACKGROUND ON THE C1P 11

Notation 2.1.11. When we draw a bipartite graph, we will represent row vertices as black vertices

and column vertices as grey vertices.

Example 2.1.12. Let M be the following binary matrix of size 6× 6 and 18 entries equal to 1

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 1 1 0 0 0

r3 0 0 1 1 0 0

r4 0 0 0 1 1 0

r5 0 1 1 1 1 1

r6 1 1 1 1 0 1

Then, the corresponding bipartite graph GM of M is the following graph with 12 vertices and 18

edges

c1 c2 c3 c4 c5 c6

r1 r2 r3 r4 r5 r6

Rearranging the position of the vertices in the graph, we obtain the following drawing

c1 c2 c3 c4 c5

c6

r1 r2 r3 r4

r5r6

Definition 2.1.13. Let M and N be binary matrices. M is equivalent to N if and only if M and N

encode the same bipartite graph.

CHAPTER 2. BACKGROUND ON THE C1P 12

Example 2.1.14. Let M be the binary matrix defined by r1 = {1, 2}, r2 = {1, 3, 4} and r3 =

{1, 2, 3}. Then,M is equivalent to the binary matrixN defined by r1 = {2, 1}, r2 = {1, 3, 4}, r3 =

{2, 1, 3}, since GM = GN .

2.1.2 The Consecutive Ones Property

The Consecutive Ones Property was introduced by Fulkerson and Gross in 1965 [22]. The moti-

vation for studying the Consecutive Ones Property comes from deciding whether a given matrix

encodes an interval graph or not. This problem itself was motivated by a biological application re-

garding the structure of genes [3]. We will illustrate the application with an example, taken from [3].

Consider a perfect tape recording of a piece of music. An alteration in the tape (blemished part),

such as an unintentional blank space damages the tape (mutation). Given two mutant tapes it is

possible to produce a perfect tape by recombination of the two tapes, only if the mutations do not

intersect. If the mutations do not intersect, it is possible to replace the segment of the mutation on

a tape by cutting and pasting the same segment from the other tape. Given several mutant tapes, it

is possible to compare them pairwise to see if they can be recombined to form a perfect tape. Then,

this information can be stored in a binary matrix, where every row and every column represents a

mutant version of the tape. There is a 1 in the matrix in position (i, j) if mutant i and mutant j

can be recombined to form a perfect tape, that is, if the blemished segments of mutant i and j do

not intersect. Then, determining if the information is compatible with a linear order is equivalent to

deciding if the constructed binary matrix is C1P.

In general, the application mentioned above looks for mutants of a portion of the genetic structure

of a virus, where mutants are new genetic characters arising from a change in the DNA of the

organism. The goal of this application is the following: given a large number of mutants as well

as information for when the blemished portions of pairs of mutants intersect, to determine if the

information is compatible with a linear order of the gene or not. The blemished portion of a mutant

is a defect that is not found on the original organism.

Note 2.1.15. Without loss of generality, we assume that for the rest of this document the binary

matrices that are considered do not have identical rows or columns, that they have degree at least 2

(every row has at least two entries equal to 1), and at least one entry equal to 1 per column.

Below we give a formal definition of the Consecutive Ones Property.

CHAPTER 2. BACKGROUND ON THE C1P 13

Definition 2.1.16. An m × n binary matrix M = (RM , CM) has the Consecutive Ones Property

(C1P) if there exists a permutation of its columns such that after ordering the columns according to

this permutation, all the entries equal to 1 in each row are consecutive. Binary matrices that have

the C1P are called C1P matrices, and binary matrices that do not have the C1P are called non-C1P

matrices.

Example 2.1.17. The following matrix is C1P

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 0

r3 1 1 1 0

as we can see that all the ones are consecutive in every row.

Example 2.1.18. The following matrix is C1P

c1 c2 c3 c4

r1 1 1 0 0

r2 1 0 1 1

r3 1 1 1 0

as we can see that if we exchange columns c1 and c2,

c2 c1 c3 c4

r1 1 1 0 0

r2 0 1 1 1

r3 1 1 1 0

then all the ones are consecutive in every row.

Example 2.1.19. The following matrix is non-C1P

c1 c2 c3

r1 1 1 0

r2 0 1 1

r3 1 0 1

CHAPTER 2. BACKGROUND ON THE C1P 14

as none of the possible orders of the columns produces all the ones consecutive in every row.

Definition 2.1.20. A permutation π of the columns of M is valid for M if after ordering the ele-

ments of the columns of M according to this permutation, the 1s in each row are consecutive. We

denote by Mπ the matrix M after ordering the columns of M according to π.

Example 2.1.21. A valid permutation π for the matrix M of example 2.1.18 is 2, 1, 3, 4 since all

the 1’s are consecutive after ordering the columns according to this permutation.

Definition 2.1.22. Let M be a binary matrix and π a permutation of the columns of M . A gap

in Mπ is a sequence of consecutive zeros that separates two sequences of consecutive ones in a

row. The size of the gap is the number of consecutive zeros that separates the two sequences of

consecutive ones in a row.

Example 2.1.23. In example 2.1.19 there is a gap of size 1 in row r3, that separates the ones of that

row.

Definition 2.1.24. LetM be a binary matrix. A valid permutation (c1, . . . , cn) defines a consecutive

ones relation R = {(ci, cj) | i < j}.

A consecutive ones relation allow us to compare elements in a valid permutation. Then, the pair

(ci, cj) means that ci is to the left of cj in the valid permutation.

2.1.3 Overlap Graph

Definition 2.1.25. Two sets ri and rj are said to overlap if ri ∩ rj 6= ∅, ri 6⊆ rj , rj 6⊆ ri.

The notion of overlap defines a relation on the rows of a binary matrix, and therefore a graph.

Definition 2.1.26. Let M = (RM , CM) be a binary matrix. The overlap graph OM has vertex set

RM and edge set {{ri, rj} : ri and rj overlap}.

Example 2.1.27. Consider the binary matrix M from example 2.1.12. The overlap graph O(M) is

the following graph

CHAPTER 2. BACKGROUND ON THE C1P 15

r1

r2

r3

r4

r5

r6

with vertices {r1, r2, r3, r4, r5, r6} and edges the rows that overlap in M . For example,since r1

overlaps r2 and r5 (only) in M , then r1 is adjacent to r2 and r5 (only) in O(M).

Example 2.1.28. Let M be the binary matrix defined by

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 0 0 0

r2 0 1 1 0 0 0 0

r3 0 0 0 1 1 0 0

r4 0 0 0 0 1 0 1

r5 0 0 0 1 1 1 0

Consider the overlap graph O(M) of M .

r1

r2

r3

r4

r5

Then, we can see that the graph O(M) has two connected components, namely C1 = {r1, r2} and

C2 = {r3, r4, r5}.

CHAPTER 2. BACKGROUND ON THE C1P 16

Definition 2.1.29. The support of a set of rows {r1, r2, . . . , rn} is the union of the columns where

at least one of the rows has a 1.

Each connected component naturally defines a submatrix of M , the submatrix composed of the

rows forming the component and their support. The overlap graph O(M) of a binary matrix M can

be useful for deciding if M is C1P. Indeed, each connected component of the overlap graph can

be analyzed independently, and if every connected component is C1P, then M is C1P. This will be

shown in detail in section 2.2.6.

2.2 Algorithms and Certificates for Deciding the C1P

In this section we discuss the problem of deciding if a binary matrix has the Consecutive Ones

Property. We present several algorithms that have been proposed by different authors to decide if a

matrix is C1P. While doing so, we follow two different paths: the first one, how to decide if a matrix

is C1P; the second one, if a matrix is non-C1P to give a certificate that verifies that the answer is

correct. Also, we address a related problem: if a given binary matrix is claimed to be non-C1P, how

to verify that this answer is indeed correct.

We start the section by introducing certificates. Then, we show an algorithm to decide if a matrix is

C1P, given by Fulkerson and Gross [22]. After, we introduce asteroidal triples and Tucker patterns.

Then, we introduce the incompatibility graph and show how it is used to decide if a matrix is C1P.

We follow by introducing partition refinement and how to construct PQ-trees and PQR-trees.

2.2.1 Certificates

A certificate is a witness that can be used to check if the solution to an algorithm is correct. A

certifying algorithm is an algorithm that produces, with each output, a certificate or witness that

the particular output is correct [31]. The concept of certifying algorithm is important, for example

when dealing with complex algorithms whose implementation is hard and prone to contain bugs;

the case of deciding the C1P is such an example that we will discuss below. Certificates should be

able to be checked easily, that is, with a simple program, whose implementation is straightforward;

and efficiently, that is, within the time and space of the initial algorithm.

CHAPTER 2. BACKGROUND ON THE C1P 17

An example of a certifying algorithm is the extended Euclidean algorithm for deciding the greatest

common divisor of two numbers a and b. The algorithm returns g = GCD(a, b) as well as a

certificate: two integers x and y such that g = ax+ by. This is a certifying algorithm since to check

the correctness of the algorithm it suffices to verify that g = ax+ by and that g divides both a and

b.

Figure 2.1: [30] The top diagram is a black box program, the bottom diagram is a certifying program

Figure 2.1 illustrates the difference between a standard and a certifying algorithm. A standard

algorithm inputs x for an algorithm for computing f and outputs y = f(x). There is no way to

know that y is correct and that it corresponds to f(x). One has to trust the algorithm. In contrast, a

certifying algorithm inputs x for an algorithm for computing f and outputs y and the certificate w.

Then, one can check that w proves that y is the correct result for f(x).

We now consider certifying algorithms for the C1P. If a matrix is C1P, a certificate for the C1P is a

valid permutation. If a matrix is non-C1P, there are no natural or intuitive certificates for the non-

C1P that have been used efficiently. The first certifying algorithm for the non-C1P was introduced

by McConnell in 2004 [30], and is presented in section 2.2.5.

2.2.2 The Early Approaches

The first algorithm for deciding the C1P was introduced by Fulkerson and Gross in 1965 [22].

As mentioned before, Fulkerson and Gross introduced the C1P and proposed a polynomial time

algorithm for deciding if a matrix is C1P. The algorithm proposed by Fulkerson and Gross attempts

to build a permuted matrix by impossing inner product requirements [22].

CHAPTER 2. BACKGROUND ON THE C1P 18

The algorithm proceeds as follows: let M be a binary matrix. Find the connected components of M

and for each connected component find a spanning subtree. For each spanning subtree, apply a con-

figuration building process that relies on calculating inner products. We illustrate this configuration

building process with an example from [22]. Let M be the binary matrix

c1 c2 c3 c4 c5 c6

r1 1 0 1 0 1 1

r2 0 0 1 0 1 0

r3 0 1 1 0 1 0

r4 1 0 1 0 1 0

r5 1 0 0 1 1 1

r6 0 1 1 0 0 0

with overlap graph

r1

r2

r3 r4

r5

r6

Consider the spanning subtree of the overlap graph

r1

r2

r3 r4

r5

r6

chosen arbitrarily from the overlap graph.

We will consider triples of rows ri, rj , rk, for i, j, k ∈ {1, . . . , 6}, such that ri overlaps rj and rj

overlaps rk. Consider the triple r3, r1, r5. Since M is a binary matrix, the inner product of r1 and

r5 is r1 · r5 =
n∑
i=1

M1iM5i and represents the number of columns where r1 and r5 both contain a 1.

There is a permutation of the columns of M where either r1 · r5 < min(r1 · r3, r3 · r5) or r1 · r5 ≥
min(r1 · r3, r3 · r5), with respective configuration C1 or C2, illustrated in the figures below.

CHAPTER 2. BACKGROUND ON THE C1P 19

c1 c6 c3 c5 c2 c4

r1 1 1 1 1

r3 1 1 1

r5 1 1 1 1

Configuration C1

c4 c1 c6 c5 c3 c2

r1 1 1 1 1

r3 1 1 1

r5 1 1 1 1

Configuration C2

Configuration C1 is built by writing r1 · r1 1’s consecutively on a first row, then r3 · r3 1’s consecu-

tively on a second row such that they overlap the first row by r1 · r3 1’s; and finally, writing r5 · r5
1’s consecutively on a third row so that they overlap the second row by r3 · r5 1’s. Configurations

C1 and C2 differ only in the position of the third row with respect to the second row. On the left

hand side of the configuration we write the row label ri of the row that has ri · ri 1’s consecutively.

On top of each configuration we write the column labels of the columns whose entry is 1 on each

row ri.

To build the permuted matrix, at each step we consider a triple and obtain one of the configurations

C1 or C2. Then, we check the inner product of the first and third rows in the configuration. If the

inner product does not correspond to the one on M , then M is not C1P.

We start with the triple r1, r3, r5 and build the configuration C2. We choose the configuration C2

instead of C1 because r1 · r5 ≥ min(r1 · r3, r3 · r5), which corresponds to C2. The inner products of

this configuration agree with the ones from M . Next, we process r6, relative to r1 and r5, leading

the configuration

c4 c1 c6 c5 c3 c2

r1 1 1 1 1

r3 1 1 1

r5 1 1 1 1

r6 1 1

The inner products of this configuration agree with the ones from M . Next, we process r4, relative

to r1 and r3, leading to the configuration

CHAPTER 2. BACKGROUND ON THE C1P 20

c4 c1 c6 c5 c3 c2

r1 1 1 1 1

r3 1 1 1

r5 1 1 1 1

r6 1 1

r4 1 1 1

Since the inner products of this configuration agree with the ones from M , we finally process r2,

relative to r1 and r6, leading the configuration

c4 c1 c6 c5 c3 c2

r1 1 1 1 1

r3 1 1 1

r5 1 1 1 1

r6 1 1

r4 1 1 1

r2 1 1

The matrix obtained from this configuration by filling with 0’s the empty entries is a valid permuta-

tion of M that is C1P.

c4 c1 c6 c5 c3 c2

r1 0 1 1 1 1 0

r2 0 0 0 1 1 1

r3 1 1 1 1 0 0

r4 0 0 0 0 1 1

r5 0 0 1 1 1 0

r6 0 0 0 1 1 0

An upper bound for the number of inner products needed is given by O(n2), where n is the number

of rows of M . Then, one can fit the components together using the partial order of the component

graph [22].

CHAPTER 2. BACKGROUND ON THE C1P 21

2.2.3 Tucker Patterns and Asteroidal Triples

Tucker characterized C1P matrices in terms of five forbidden submatrices, that prevent a binary ma-

trix from having the C1P. However, this characterization does not translate directly into an efficient

algorithm for deciding the C1P.

We start this subsection by giving a definition of asteroidal triples and Tucker patterns. Then, we

show how Tucker patterns and asteroidal triples are used for deciding the C1P.

Definition 2.2.1. Let M be a binary matrix and GM be the corresponding bipartite graph. Recall

that GM has vertices GM = (RM , CM). The closed neighborhood of a vertex v ∈ GM is defined

as N(v) = {v} ∪ {x ∈ GM : there is an edge between x and v}.

Example 2.2.2. Let M be the following binary matrix

c1 c2 c3 c4 c5

r1 1 1 0 0 0

r2 0 0 1 1 0

r3 1 1 1 1 0

r4 1 0 1 0 1

Then, the corresponding bipartite graph GM is the following graph with 9 vertices and 11 edges

c1

c2

c3

c4

c5

r1 r2r3

r4

FromGM we can see thatN(c1) = {c1, r1, r3, r4}, N(c2) = {c2, r1, r3}, N(c3) = {c3, r2, r3, r4},
N(c4) = {c4, r2, r3} and N(c5) = {c5, r4}.

CHAPTER 2. BACKGROUND ON THE C1P 22

Definition 2.2.3. Let M be a binary matrix with corresponding bipartite graph GM . Three vertices

u, v, w ∈ CM form an CM -asteroidal triple (CM -AT) if between any two of them there exists a

path in GM that does not contain a vertex from the closed neighborhood of the third vertex.

From now we assume that when using the terminology asteroidal triple it refers to CM -AT, unless

otherwise specified.

Example 2.2.4. Consider the binary matrix with corresponding bipartite graph from example 2.2.2.

Then, the column vertices c2, c4, c5 form an asteroidal triple.

Definition 2.2.5. A filled CM -AT c, c′, c′′ is a CM -AT together with a path between each pair of

vertices of {c, c′, c′′} that avoids the neighborhood of the third one.

Asteroidal triples are useful for deciding if a matrix is or is not C1P. Tucker showed that if a binary

matrix has the Consecutive Ones Property, then this is equivalent to having a bipartite graph with

no asteroidal triples.

Definition 2.2.6. Let M be a binary matrix with corresponding bipartite graph GM , and x, y ∈
V (GM). We define the distance between x and y, d(x, y) to be the length of the shortest path

from x to y. We define the CM -diameter of GM as δ(GM) = sup
x,y∈CM

d(x, y). If x, y ∈ CM and

d(x, y) = δ(GM), then x and y are called CM -diameter points of GM .

Theorem 2.2.7. [43] A matrix M is C1P if and only if the bipartite graph GM does not contain a

CM -AT.

Proof. (Sketch) [43] (⇒) Suppose M is C1P with corresponding bipartite graph GM and C̃ is a

valid permutation of C. By contradiction, suppose x, y, z is an asteroidal triple of GM , such that

x < y < z in C̃. Let P = (c0 = x, r1, c1, . . . , rn, cn = z) be a path from x to z. We will see

that y is adjacent to P . Let k be the smallest i, 0 ≤ i ≤ n such that ck−1 < y < ck. Then,

ck, ck−1 ∈ N(rk). Since ck−1 < y < ck and C̃ is a valid permutation of C, then y ∈ N(rk). Then

y is adjacent to P . But since x, y, z is an asteroidal triple, then there is a path between x and z

that does not intersect the closed neighborhood of y, which is a contradiction. Then, GM does not

contain an asteroidal triple whose three vertices correspond to columns of M .

(⇐) Suppose M is a binary matrix whose representing bipartite graph GM does not contain a CM -

AT. We proceed by induction on n the number of vertices of GM .

CHAPTER 2. BACKGROUND ON THE C1P 23

If n = 1, 2 then M is C1P.

If n ≥ 3 suppose that for every (n − 1)-subset S of GM , S is C1P. A C-diameter point p and a

valid permutation C̃ of GM − p can be chosen so that y, the right end vertex of C̃, is adjacent to

every path from p to x, the left end vertex of C̃. Then, the valid permutation C̃ can be extended

to a valid permutation of GM in the following way: let T be the set of vertices in C which can be

reached from x by a path not adjacent to y. Then, p, y /∈ T . Let u be the rightmost vertex of T in

C̃. Let C̃1 be a valid permutation of GM − x and let v be the leftmost vertex of GM − x in C̃1.

Construct a new valid permutation C̃2 by removing the vertices of T from C̃1 and placing them with

x to the left of v, in the order they had in C̃. Then, for c ∈ C̃2, there are three options: N(c) ⊆ T ,

N(c) ⊆ (C̃ − T) or N(c) ∩ T 6= ∅ and N(c) ∩ (C̃ − T) 6= ∅. We will see that in all of these

cases N(c) is consecutive in C̃2. If N(c) ⊆ T , then N(c) is consecutive in C̃2 because N(c) was

consecutive in C̃. If N(c) ⊆ (C̃ − T), then N(c) is consecutive in C̃2 because C̃ was consecutive

in C̃1. If N(c) ∩ T 6= ∅ and N(c) ∩ (C̃ − T) 6= ∅, then N(c) is consecutive if u, v ∈ N(c). Then,

it remains to prove that u, v ∈ N(c) for c ∈ C̃2. If N(c) ∩ T 6= ∅ and N(c) ∩ (C̃ − T) 6= ∅, then

since N(c) ∩ (C̃ − T) 6= ∅, then y ∈ N(c). Since v is the leftmost vertex in C̃ − T , then v < y. If

N(c)∩T 6= ∅, then for w ∈ T , w < u. Then, we have w < u < v < y. Then, w, y ∈ N(c) implies

u, v ∈ N(c). Then, C̃2 is a valid permutation of C.

The rest of this subsection introduces Tucker patterns and shows the equivalence between matrices

with the Consecutive Ones Property and matrices without Tucker patterns.

Figure 2.2 shows the matrices of the five Tucker patterns MIk ,MIIk ,MIIIk , for k ≥ 1, MIV , and

MV . Figure 2.3 shows the corresponding bipartite graphs for each type of Tucker pattern. We can

see that Tucker patterns MIk give chordless cycles of length at least 6, also known as holes, where a

chord is an edge linking to non-consecutive vertices of the cycle. Tucker pattern MIIk consists of a

cycle with two rows that are connected to every column except for one, depending on the row. Thus,

the difference between MIk and MIIk is their last two rows and rightmost column. Tucker pattern

MIIIk consists of a cycle with a row that connects to every column and three external columns that

are connected to a single row, depending on the column. Thus, the difference between MIk and

MIIIk is their last row and rightmost column. We can also see that Tucker patterns MIk , MIIk and

MIIIk are families of bipartite graphs, since there are many patterns for each type, each of them of

different size. Instead, Tucker patterns MIV and MV are of fixed size.

CHAPTER 2. BACKGROUND ON THE C1P 24

MIk =

c1 c2 c3 . . . ck+2

r1 1 1 0 . . . 0

r2 0 1 1 . . . 0

.

rk+1 0 0 . . . 1 1

rk+2 1 0 . . . 0 1

MIIk =

c1 c2 c3 . . . ck+2 ck+3

r1 1 1 0 . . . 0 0

r2 0 1 1 . . . 0 0

.

rk+1 0 0 . . . 1 1 0

rk+2 0 1 1 . . . 1 1

rk+3 1 1 . . . 1 0 1

MIIIk =

c1 c2 c3 . . . ck+2 ck+3

r1 1 1 0 . . . 0 0

r2 0 1 1 . . . 0 0

.

rk+1 0 0 . . . 1 1 0

rk+2 0 1 . . . 1 0 1

MIV =

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 0 1 1 0 0

r3 0 0 0 0 1 1

r4 1 0 1 0 1 0

MV =

c1 c2 c3 c4 c5

r1 1 1 0 0 0

r2 0 0 1 1 0

r3 1 1 1 1 0

r4 1 0 1 0 1

Figure 2.2: Tucker patterns MIk , MIIk , MIIIk , MIV and MV .

CHAPTER 2. BACKGROUND ON THE C1P 25

Also notice that Tucker patterns are non-C1P matrices. Tucker described Tucker patterns as the

"forbidden" submatrices since any matrix that contains at least one Tucker pattern is a non-C1P

matrix.

Note that in figure 2.3 the vertices x, y and z represent an asteroidal triple in every Tucker pattern.

𝑥

𝑦 𝑧

𝑘 + 1

𝑎 𝑏

𝐺𝑀𝐼𝐼𝑘
:

𝑥 𝑥

𝑦 𝑦 𝑧 𝑧

𝑘 + 1 𝑘

𝐺𝑀𝐼𝑘
: 𝐺𝑀𝐼𝐼𝐼𝑘

:

𝐺𝑀𝐼𝑉
: 𝐺𝑀𝑉

:
𝑥 𝑥

𝑦 𝑦 𝑧 𝑧

𝑎

𝑏 𝑐 𝑑

𝑢
𝑣 𝑤

𝑎

𝑏
𝑐 𝑑

𝑢 𝑣

⋯ ⋯ ⋯

Figure 2.3: Bipartite graphs of the five Tucker patterns.

Notation 2.2.8. From now, we will use x, y, z, a, b, c for the specific vertices of Tucker patterns

shown in Figure 2.3.

Notation 2.2.9. We will denote by (a, P, b) the path obtained by following the path P from vertex

a to vertex b.

Theorem 2.2.10. [43] LetM be a binary matrix. GM does not contain a CM -AT if and only ifGM

does not contain an induced subgraph that is a Tucker pattern.

CHAPTER 2. BACKGROUND ON THE C1P 26

c1

c2

p1

x

y

r2

r3

z

t
p2

r1

. . .

Figure 2.4: GM contains a Tucker pattern of type V.

Proof. (Sketch) [43] (⇒) It is clear since Tucker patterns contain asteroidal triples.

(⇐) Suppose GM does not contain an induced subgraph which is a Tucker pattern. It is enough

to prove the theorem for a minimal GM , so that every proper subgraph of GM does not contain an

asteroidal triple. By contradiction, suppose x, y, x is an asteroidal triple in GM . Let Pyz = (y =

c0, r1, c1, r2, c2, . . . , rn, cn = z) be a chordless path from y to z not adjacent to x. Similarly, define

Pxy and Pxz . We can assume |Pyz| ≥ max{|Pxy|, |Pxz|}. We can also assume that |Pyz| > 2, for

otherwise |Pxy| = |Pxz| = |Pyz| = 2 and GM would be a cycle of length 4 (GI1). Then, there are

two possibilities: there is a vertex p1 on Pxy−Pxz adjacent to a vertex p2 on Pxz−Pxy or no vertex

on Pxy − Pxz is adjacent to a vertex on Pxz − Pxy. Suppose p1 is adjacent to p2 as stated above.

We will see that GM contains a Tucker pattern of type V as shown in figure 2.4.

Note that one of p1, p2 is at distance 1 from x and the other at distance 2, for otherwise there would

be a Tucker pattern which is a cycle. Suppose p2 is adjacent to x and Pxy = (x, t, p1, . . . , y). Also,

p2 is adjacent to z, for otherwise there would be a path from x to y not adjacent to z in GM − t.
Note that p1 is adjacent to Pyz , or else p1, y, z form an asteroidal triple in GM − x. But, p1 has

to be adjacent to r1, otherwise there is a path from x to z not adjacent to y in GM − p2. Then,

there is a cycle (p1, r1, Pyz, ci, p2), unless p2 is adjacent to ci, 0 ≤ i ≤ n, where the vertices

x, t, p1, p2, y, r1, c1, r2, c2 form a Tucker pattern of type V .

CHAPTER 2. BACKGROUND ON THE C1P 27

Now, suppose that no vertex on Pxy − Pxz is adjacent to a vertex on Pxz − Pxy. Let w be the

common vertex of the paths Pxy and Pxz that is farthest from x. Let p1 and p2 be the next vertices

after w on Pxy and Pxz , respectively. Then, there are three possibilities: none, one or both of p1

and p2 are on Pyz . If none of p1, p2 is on Pyz , we will see that GM is a Tucker pattern of type IIn.

Note that w is not adjacent to Pyz because otherwise there is either a path from x to y in GM − p1
or a path from x to z in GM − p2. Suppose p1, p2 are adjacent to a common vertex t, for otherwise

they are part of a Tucker pattern which is a cycle. Note that t = ck, because if t = rk we get a

contradiction, |Pyz| = 2 < |Pyz|. Also, p1 is adjacent to y, for if not there is a path from x to z not

adjacent to y in GM − p2. Similarly, p2 is adjacent to z. Now, p1 and p2 are adjacent to consecutive

ci’s because if not there is a cycle (p1, cj , Pyz, cm), and similarly for p2. Then, GM is a Tucker

pattern of type II . If only one of p1 and p2 is on Pyz , assume p2 is on Pyz . We can assume that p1,

p2 are adjacent to a common vertex t. Since p2 is on Pyz , then w 6= x. Also, w is adjacent to x, if

not there is a path from y to z in GM − t. Since x is a column vector, then p2 is a column vector.

Then, there is a path from x to y not adjacent to z in GM − p1. If both p1 and p2 are on Pyz , then,

by minimality of GM we have Pxy = (x, Pxy, p1, Pyz, y) and similarly for Pxz . Then, there are

two possibilities: Pyz = (y, Pxy, w, Pxz, z) or not. If Pyz is as stated above, then GM is a Tucker

pattern of type III1 or IV . If Pyz is not as stated above, then similarly to the case where only p2 is

on Pyz , we can assume that p1, p2 are adjacent to a common vertex t on Pyz and that w is adjacent

to x. Then, p1 and p2 are column vertices. Then, p1 = q1 because if not x, q1, z are an asteroidal

triple in GM − y. Similarly, p2 = qn−1. Also, w is adjacent to qi, 1 ≤ i ≤ n − 1, for otherwise

there is Tucker pattern which is a cycle. Therefore, GM is a Tucker pattern of type IIIn.

Now we can state Tucker’s main theorem.

Theorem 2.2.11. [43] A matrix M is C1P if and only if the corresponding bipartite graph GM

does not contain an induced subgraph which is a Tucker pattern.

Proof. This follows from Theorems 2.2.7 and 2.2.10.

In terms of deciding the C1P, we can see that finding Tucker patterns MIV and MV in a binary

matrix is "easy" since they are of fixed size. In principle, an exhaustive search is enough to find

Tucker patterns MIV and MV , in time O(m4n6) and O(m4n5), respectively. Variations of exhaus-

tive search techniques will improve the complexities. In Chapter 4, we propose one such variation

CHAPTER 2. BACKGROUND ON THE C1P 28

of an exhaustive search technique. On the contrary, finding Tucker patterns MIk , MIIk and MIIIk

is not trivial. For instance, to find all Tucker patterns MIk we need to find all chordless cycles in a

graph. One way to do so is to find all cycles in a graph and check if they are chordless or not, but

finding all cycles in a graph is not an easy problem (see [37], [40], [2]). (Tucker patterns MIIk and

MIIIk are also not easy to find as they are modifications of cycles in a graph.)

We can see that asteroidal triples and Tucker patterns are natural certificates for non-C1P, but there

are few algorithms for producing them [13]. Tucker’s proofs are not constructive: they do not show

how to construct either Tucker patterns or asteroidal triples.

2.2.4 Finding Tucker Patterns

In this section, we describe two algorithms for finding Tucker patterns in a binary matrix. The first

algorithm was introduced in 2012 by Dom et al. [13] and the second algorithm was introduced in

2010 by Blin et al. [6]. The algorithm of Dom et al. [13] takes as input a binary matrix M and gives

as output a submatrix M ′ that contains a Tucker pattern. The algorithm relies on Theorem 2.2.10

and searches for an asteroidal triple on the given matrix M . We will denote by GM = (V,E) the

bipartite graph.

The idea of the algorithm of [13] is the following: for every triple of column vertices x, y and z in

GM compute the length of the shortest paths between x and y, x and z, and y and z that does not

intersect the closed neighborhood of the third vertex, respectively. If all three paths exist for a triple

x, y and z, then such a triple is an asteroidal triple. Choose such an asteroidal triple x, y and z such

that the sum of the lengths of the paths is minimum. For such x, y and z, consider the submatrix

defined by the row and column vertices that belong to the paths between x and y, x and z, and y

and z. That submatrix contains an asteroidal triple and therefore is a Tucker pattern.

Note that the authors of [13] are interested in finding a Tucker pattern with minimum size (mini-

mum number of vertices in the corresponding bipartite graph), rather than finding a minimal Tucker

pattern (one that does not contain any other Tucker pattern). This notion is based on the idea of

finding a Tucker pattern from an asteroidal triple where the sum of the shortest paths between every

pair of vertices in the triple is minimum. The authors of [13] were interested in finding minimum

Tucker patterns because their goal was to solve three applications of the C1P that involve deleting

the minimum number of columns, rows and entries, respectively, to transform a non-C1P matrix

CHAPTER 2. BACKGROUND ON THE C1P 29

into a C1P matrix. This can be achieved by finding minimum Tucker patterns and deleting them

from the matrix.

Note that the submatrix returned by this algorithm does not have to be of minimum size, because

there are vertices that can belong to several of the shortest paths. Then, the sum of the lengths of the

paths is not necessarily the same as the number of vertices in the union of the three paths. Dom et

al. proved in [13] that the algorithm returns a submatrix of minimum size only for Tucker patterns

MIk and MIIk . This algorithm has complexity O(∆mn2 + n3), where m is the number of rows in

M , n is the number of columns in M and ∆ is the degree of M .

For finding Tucker pattern MIIIk the idea is to take advantage of the similarity between patterns

MIk and MIIIk . As mentioned before, the bipartite graph of pattern MIk is a hole and the matrices

of patterns MIk and MIIIk are different only in their last row and rightmost column. By comple-

menting the rightmost column of MIIIk we obtain a hole with an extra column. Then, the problem

of finding MIIIk can be reduced to the problem of finding a minimum-size hole. This algorithm

runs in timeO(∆3m3n+∆2m2n2). For finding Tucker patternsMIV andMV , Dom et al. propose

exhaustive searches that have complexities O(∆3m2n3) and O(∆4m2n), respectively.

Combining the complexities of the different algorithms, Dom et al. propose algorithms that can find

a Tucker pattern of minimum size in a given binary matrix M , with m rows, n columns and at most

∆ entries equal to 1 in each row, in time O(∆3m2n(m+ n2)).

Example 2.2.12. Let M be the following binary matrix

c1 c2 c3 c4 c5

r1 1 1 0 0 1

r2 0 1 1 0 1

r3 1 1 0 1 1

r4 0 1 1 1 0

r5 0 0 1 0 1

with bipartite graph GM

CHAPTER 2. BACKGROUND ON THE C1P 30

r3

r1

r4

r2

c5

c1 c3c2

c4

r5

There are seven asteroidal triples inGM : five from the cycles {r1, c2, r2, c3, r5, c5}, {r1, c2, r4, c3, r5, c5},
{r2, c2, r3, c3, r5, c5}, {r3, c2, r4, c3, r5, c5}, {r3, c3, r4, c4, r5, c5} and two from the two Tucker

patterns of type II, {r1, r2, r3, r4, c1, c2, c3, c4} and {r1, r2, r3, r4, c2, c3, c4, c5}. The sum of the

shortest paths between every pair of vertices for the five cycles is 9 and the same sum is 11 for the

two Tucker patterns of type II. Therefore, there are five minimum Tucker patterns, namely, the five

cycles.

We now illustrate the algorithms proposed by Blin et al. [6]. These algorithms take as input a binary

matrix M , with m rows, n columns and at most ∆ entries equal to 1 in each row, and give as output

a Tucker pattern of minimum size of type MIk , MIIk , MIIIk , MIV and MV , respectively. The

algorithms rely on finding shortest paths and two graph pruning techniques that the authors call

clean and anticlean. The cleaning technique of a vertex x consists in removing the neighborhood

N(x) of x, that is, clean(x) = GM (M)[V \ N(x)]. The anticleaning technique of a vertex x

consists in removing all vertices that are not neighbors of x and are not the same type of vertex as x

(row or column vertex).

The idea of the first two algorithms for finding a Tucker pattern MIk and MIIk , respectively, is the

following: enumerate all possible sets of vertices {x, y, z, a, b} (see Figure 2.3) and use the clean

and anticlean techniques to remove the edges of the neighbors of x, a and b. Then, find the shortest

path between y and z. These algorithms will find a Tucker pattern MIk and MIIk , respectively, in

time O(m2∆3(n+ ∆m)).

The third algorithm is similar to the first two, but differs in that it only enumerates the sets of

four vertices {x, y, z, a}. Then, it follows the same approach as the other algorithms, that is, it

uses the clean and anticlean techniques to remove the edges of the neighbors of x and a. Then, it

CHAPTER 2. BACKGROUND ON THE C1P 31

finds the shortest path between y and z. This algorithm will find a Tucker pattern MIIIk in time

O(m∆n2(n + ∆m)). For finding Tucker patterns MIV and MV Blin et al. propose exhaustive

searches that have complexities O(∆m2n3) and O(∆4m2n), respectively.

Combining the complexities of the different algorithms, Blin et al. propose an algorithm to find a

minimum Tucker pattern on a binary matrix with m rows, n columns and at most ∆ entries equal

to 1 in each row, in time O(∆3m2(m∆ + n3)).

In Chapter 4 we propose an algorithm for finding a Tucker pattern in a binary matrix that improves

the complexity of the algorithms of Dom et al. and Blin et al. The proposed algorithm resembles

the Blin et al. algorithm for finding Tucker patterns GMIIk
and GMIIIk

, and it differs mainly in that

the algorithm of Blin et al. removes the edges of the neighbors of {x, a, b} (see Figure 2.3) to find a

path between y and z while the algorithm we propose splits column and row vertices adjacent to a

and b into two sets, and finds a path between y and z, that alternates between vertices of these two

sets. The proposed algorithm has quadratic complexity and will allow us to use Tucker patterns as

a certificate for the non-C1P. However, unlike these algorithms, we do not output a Tucker pattern

with a minimum number of vertices.

2.2.5 The Incompatibility Graph

In this section we define the incompatibility graph introduced by McConnell in 2004 [30], when he

introduced the first certifying algorithm for deciding the C1P. Then, we describe McConnell’s use

of the incompatibility graph as a certificate for the non-C1P.

Definition 2.2.13. Let M = (RM , CM) be an m × n binary matrix. The incompatibility graph of

M is an undirected graph IM = (V,E), with vertex set V = {(ci, cj) | i, j = 1, . . . , n, i 6= j}. Two

vertices (ci, cj) and (cj , ck) are adjacent if at least one of the following holds:

1. ci = ck

2. There exists a row rl in M such that Mli,Mlk = 1 but Mlj = 0

Example 2.2.14. Let M be the following binary matrix

CHAPTER 2. BACKGROUND ON THE C1P 32

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 1

r3 1 1 1 0

The incompatibility graph IM of M is the following graph,

(c1, c2) (c1, c3) (c1, c4) (c2, c3) (c2, c4) (c3, c4)

(c2, c1) (c3, c1) (c4, c1) (c3, c2) (c4, c2) (c4, c3)

whose vertices are all the possible combinations of two columns. The first type of edges connect

opposite vertices, for example (c1, c2) and (c2, c1). This type of edges are incompatible in the sense

that if one of them holds, then the other is not possible. For example, if (c1, c2) is true, then c1 is

to the left of c2 in a valid permutation. Then, it is not possible to have c2 to the left of c1 on the

same valid permutation. The second type of edges connect pairs whose corresponding vertices on

M are not consecutive ones in a row of M . For example, (c3, c1) and (c1, c2) is an incompatible

edge since c3, c1, c2 are not consecutive ones in row r2.

The edges of the incompatibility graph are incompatible edges in the sense that they can not appear

at the same time in a valid permutation. If M is C1P, then GM should not have incompatible pairs.

If M is bipartite and C1P, then there is a well-defined partition which we can use to make a top-half

and a bottom-half. Then, the top-half of the vertices in the incompatible graph, that represents a valid

permutation, should be an independent set. The bottom-half of the vertices in the incompatibility

graph represents the reverse of the valid permutation, which is also a valid permutation, and should

also be an independent set. Then, ifM has the Consecutive Ones Property the incompatibility graph

must be bipartite. McConnell used this observation to give the following result for the non-C1P.

Theorem 2.2.15. [30] LetM be a binary matrix. M is C1P if and only if the incompatibility graph

IM is bipartite.

In [30], McConnell claimed a bound of n+ 2 for the smallest odd cycle contained in the incompat-

ibility graph of a non-C1P matrix, where n is the number of columns in the matrix. In 2011 [29],

CHAPTER 2. BACKGROUND ON THE C1P 33

this bound was corrected to n+ 3 when n is odd.

McConnell’s algorithm is a certifying algorithm for the non-C1P because it provides a certificate,

which are odd cycles of the incompatibility graph. It is an efficient algorithm because McConnell

also claimed that the incompatibility graph can be computed in linear time/space using partition

refinement. However, McConnell does not provide all the details for finding an odd cycle in the

incompatibility graph. Since the incompatibility graph is an auxiliary object, it is not as natural as a

certificate as Tucker patterns or asteroidal triples.

2.2.6 Partition Refinement

In this subsection we introduce the notion of partition refinement. Also, we give a relationship

between C1P and partition refinement and show how to use partition refinement to decide the C1P.

Theorem 2.2.16. [22] A binary matrix M is C1P if and only if every connected component of its

overlap graph O(M) is C1P.

Proof. (⇒) Suppose there exists one connected component C = {ri1 , . . . , rik} of O(M) that is

non-C1P. Consider the support of C, {cj1 , . . . , cjl}. Since C is non-C1P, then any permutation

π of the support C induces a gap (a non-empty sequence of consecutive zeros that separates two

sequences of consecutive ones) in Cπ. Then, adding rows and columns to C cannot close the gap.

That is, if we add columns to C, any permutation π′ of the columns of this augmented matrix

M ′ = (R′, C ′) will contain as a subpermutation a permutation of the columns of C that will induce

a gap on some row in C ′π′ . Adding rows will obviously not change this property. Therefore, M is

non-C1P.

(⇐) Suppose that every connected component of M is C1P. If O(M) has only one connected com-

ponent, then M is C1P. If O(M) has more than one connected component, then they are disjoint

and the support of the union of the connected components is the support of M . Then, a valid per-

mutation for M can be constructed combining valid permutations on the support of each connected

component.

Note 2.2.17. Without loss of generality, from now on we assume that the overlap matrix of all the

binary matrices considered have only one connected component, unless stated otherwise. This as-

CHAPTER 2. BACKGROUND ON THE C1P 34

sumption has no algorithmic complexity cost since computing the connected components of O(M)

can be done in linear time O(e) [15].

Partition refinement is a very powerful tool that has many applications such as automaton minimiza-

tion, string sorting, and modular decomposition [23].

Definition 2.2.18. A partition P of a set E is a set of disjoint subsets of E, {E1, . . . Ek} whose

union is exactly E.

Definition 2.2.19. Refining a partition P with a pivot set S consists of replacing each class E ∈ P
by two classes Ea = E ∩ S and Eb = E \ S, such that Ea, Eb 6= ∅.

Definitions 2.2.18 and 2.2.19 are definitions of a set of numbers.

A partition can be refined in linear time O(e) as described in [23]. Note that in general a partition

is an unordered set. Whenever a partition is refined, the new class Ea can be inserted either to the

right or the left of Eb. It depends on the application that is being considered to establish restrictions

on the refinement process. For some applications, it might be required to embed a partition into a

combinatorial structure, including a possibly higher algorithmic cost, or the need of a more advanced

algorithm to maintain the linear time complexity. This will be the case for deciding the C1P, where

valid permutations will be defined from a total order of the parts of a partition of the columns of a

matrix.

Definition 2.2.20. Let R = {r1, ..., rn} be a set of rows. R is connected if its overlap graph has a

single connected component.

From now on, when we use the term connected set of rows we refer to connected set of rows in the

sense of the overlap graph, unless otherwise stated.

Testing the C1P of a connected matrix can be done using partition refinement. In order to do so, it

is required to order the rows of the matrix in a total order and to process them, as successive pivots,

according to this order. Not any order is satisfactory, as intuitively, it does not make sense to refine

a partition by a pivot that does not intersect with this partition. 1 We formalize below a family of

orders that avoid this issue.
1 [36] This condition can however be somewhat relaxed, although in a limited way.

CHAPTER 2. BACKGROUND ON THE C1P 35

Definition 2.2.21. A total order r1, . . . , rk of a connected set of rows R is overlap-consistent if, for

any i = 2, . . . , k, ri overlaps at least one of r1, . . . , ri−1.

The condition for being overlap-consistent is equivalent to stating that the rows are ordered accord-

ing to an arbitrary walk in the overlap graph of R. In [30], the fact that the order of processing the

rows comes from a depth-first walk in the overlap graph is central to obtain a linear time complexity.

Definition 2.2.22. Let R = {r1, ..., rn} be a connected set of rows and S its support. An ordered

partition for R is an ordered set (P1 = {S1, R1}, ..., Pk = {Sk, Rk}) such that the Si are disjoint

subsets of S and the Ri are subsets of R, and that satisfies the following properties:

1. The union of the Si is equal to S.

2. The union of the Ri is equal to R.

3. If ri appears in Pi1 , . . . , Pil , then ri is the union of Si1 , . . . , Sil .

Note that definition 2.2.22 does not assume that R is C1P.

Example 2.2.23. This example illustrates how to use partition refinement to decide the C1P. Let M

be the following connected set of rows

c1 c2 c3

r1 1 1 0

r2 0 1 1

r3 1 0 1

To construct the partition refinement ofM we first calculate the overlap graphO(M). The following

graph illustrates the overlap graph O(M)

r1

r2

r3

Then, we process rows of M according to a depth-first order traversal of a spanning tree of O(M),

chosen arbitrarily. In this case, we will follow the order r1, r2, r3. We process the first row and write

CHAPTER 2. BACKGROUND ON THE C1P 36

r1 r1

c1 c2

Figure 2.5: An ordered partition of the support of the processed columns with a single part.

r2

r1 r1 r2

c1 c2 c3

Figure 2.6: An ordered partition of the support of the processed columns with three parts.

horizontally the columns that belong to that row and above each column we write the rows that it

belongs to. Then, we obtain the following partition P = (P1 = {c1, c2, r1})

Then, we refine the partition using row r2 (see Figure 2.6). Now c2 will be separated from c1

because r1 and r2 overlap and their intersection is c2. We obtain the following partition refinement

P = (P1 = {c1, r1}, P2 = {c2, r1, r2}, P3 = {c3, r2})

Finally, we refine the partition with row r3 (see Figure 2.7). We can see that when refining the

partition with r3 the columns that belong to r3 are not consecutive in the partition, there is a gap

between c1 and c3.

r1 r1

r2
r2

c1 c2 c3

r3

Figure 2.7: A failed partition refinement of the support of the processed columns with three parts.

CHAPTER 2. BACKGROUND ON THE C1P 37

Definition 2.2.24. LetP1, . . . , Pk be an ordered partition of a connected set of rowsR = {r1, . . . , rn}.
{P1, . . . , Pk} is said to be a C1P ordered partition if it satisfies the following properties:

1. The union of the Si is equal to S.

2. The union of the Ri is equal to R.

3. Each ri appears in a consecutive set of Pj .

4. If ri appears in Pa, . . . , Pb, then ri is the union of Sa, . . . , Sb.

We can see that partition refinement can be used to decide if a matrix is C1P. If the matrix is C1P, the

partition refinement returns a partition of the columns of the matrix, where the order of the columns

in the partition gives a valid permutation. A successful partition refinement returns a C1P ordered

partition. The case when the matrix is non-C1P will be discussed at the end of the section.

Definition 2.2.25. Let P1, . . . , Pk be a C1P ordered partition of a connected set of rows M =

{r1, . . . , rn}. This C1P ordered partition is canonical if it satisfies the additional property that

5. No two Pi and Pj are such that Ri = Rj .

The theorem below follows immediately from the definition of C1P ordered partition. It is mostly a

rewriting, using the terminology on partition refinement we introduced, of the classical encoding of

all valid permutations of a C1P matrix using a PQ-tree.

Theorem 2.2.26. Let M be a binary matrix. M is C1P if and only if there exists a C1P ordered

partition of M . Moreover, if M is C1P, then there is a unique ordered partition of its columns that

is canonical and C1P.

Note that we can extend to a general matrix M if O(M) has multiple components using Theo-

rem 2.2.16. We now state an important property of the unique canonical C1P ordered partition of

a connected C1P matrix, that will be crucial in the design of a data structure to encode all valid

permutations of a C1P matrix: the PQ-tree that we describe in a subsequent section.

Definition 2.2.27. Let P be a an ordered partition of a set S. Then a permutation π on S is valid for

P if the following implication holds for every pair of elements x, y of S: if x and y are respectively

in parts Pi and Pj of P , with i < j, then x appears before y in π.

CHAPTER 2. BACKGROUND ON THE C1P 38

Property 2.2.28. A permutation π of the columns of a connected C1P matrix M is valid for M if

and only if either π or its mirror is valid for its unique canonical ordered partition P .

The property follows immediately from the fact that the parts of the canonical ordered partition P
are defined in terms of intersections of the different rows of M . We illustrate this property with the

following example.

Example 2.2.29. Let M be the following C1P matrix

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1 1 1 0 0 0 0

r2 0 1 1 1 1 1 0 0

r3 0 0 1 1 1 1 1 0

r4 0 0 0 0 1 1 1 1

Then, by applying partition refinement to M we obtain the canonical C1P ordered partition P =

(P1 = {c1, r1}, P2 = {c2, r1, r2}, P3 = {c3, c4, r1, r2, r3}, P4 = {c5, c6, r2, r3, r4}, P5 = {c7, r3, r4},
P6 = {c8, r4})

r1 r1

r2
r1

r2

r3

r2

r3

r4

r3

r4
r4

c1 c2 c3, c4 c5, c6 c7 c8

where every block represents a set of columns that correspond to the Si, for 1 ≤ i ≤ 6. And every

Ri, for 1 ≤ i ≤ 6, is represented as the set of rows above the corresponding Si for the partition.

We can use the partition to obtain all valid permutations ofM , by permuting the columns that belong

to the same part. So, we can permute c3, c4 as well as c5, c6. Then, the valid permutations ofM are:

π1 = c1, c2, c3, c4, c5, c6, c7, c8, π2 = c1, c2, c4, c3, c5, c6, c7, c8, π3 = c1, c2, c3, c4, c6, c5, c7, c8,

π4 = c1, c2, c4, c3, c6, c5, c7, c8 and their mirrors, π5 = c8, c7, c6, c5, c4, c3, c2, c1,

π6 = c8, c7, c6, c5, c3, c4, c2, c1, π7 = c8, c7, c5, c6, c4, c3, c2, c1, π8 = c8, c7, c5, c6, c3, c4, c2, c1.

Notation 2.2.30. From now on we use indistinguishably the terms partition refinement and C1P

canonical ordered partition refinement, to refer to C1P canonical ordered partition refinement of a

C1P matrix.

CHAPTER 2. BACKGROUND ON THE C1P 39

Definition 2.2.31. Let R = {r1, . . . , rn} be a connected set of rows that is not C1P but such that

R′ = {r1, . . . , rn−1} is C1P. Let S be the support of R. The mapping of rk onto the partition

refinement of R′ {P1 = {S1, R1}, P2 = {S2, R2}, . . . , Pk = {Sk, Rk}}, is the ordered set (Q0 =

{0, C0}, Q1 = {j1, C1}, . . . , Qp = {jp, Cp}) such that

1. p ≤ k

2. for i = 1, . . . , p, Ci ⊆ Sji

3. rk = ∪iCi, where rows are being represented by their supporting columns

4. 1 ≤ j1 < j2 < · · · < jp ≤ k

In the definition above, the Cis represent the intersection of rn with the parts of the partition refine-

ment of R′, but for C0 it represents the elements of rn that do not appear in any of these parts (i.e.

the part of the support that is specific to rn).

Example 2.2.32. Let M be a binary matrix defined as

c1 c2 c3 c4 c5

r1 1 1 0 0 0

r2 0 0 1 1 0

r3 1 1 1 1 0

r4 1 0 1 0 1

with bipartite graph

r1 r2

r3r4

To calculate the partition refinement of M we process the rows in order r2, r4, r1, r3.

Then the mapping of r3 onto the partition refinement of R′ = {r1, r2, r4} is the ordered set (Q0 =

{0, ∅}, {1, c4}, {2, c3}, {4, c1}, {5, c2}), as illustrated below.

CHAPTER 2. BACKGROUND ON THE C1P 40

r2

r4
r2

r4
r4 r1 r1

c4 c3 c5 c1 c2

r3

where every block represents a set of columns that correspond to the Si, for 1 ≤ i ≤ 5, every Ri,

for 1 ≤ i ≤ 5, is represented as the set of rows above the corresponding Si for the partition, and the

mapping of r3 is represented below the partition.

Recall that a gap is a sequence of consecutive zeros that separates two sequences of consecutive

ones in a row.

Now, we give a definition of a gap that involves the notation of partition refinement, and will be

used to characterize a non-C1P matrix through the notion of failed partition refinement.

Definition 2.2.33. Let R = {r1, . . . , rn} be a connected set of rows such that R′ = {r1, . . . , rn−1}
is connected and C1P. Let P = (P1 = {S1, R1}, . . . , Pk = {Sk, Rk}) be a partition refinement of

R′ and Q = (Q0 = {0, C0}, Q1 = {j1, C1}, . . . , Qp = {jp, Cp}) be the mapping of rn onto P .

P and Q define an inside gap {a, b} if

1. a = jm, b = jn, for some m,n such that 1 ≤ m < n ≤ p

2. There exists Sq ∈ P such that 1 ≤ q ≤ k and a < q < b and there exists c ∈ Sq, c /∈ rn.

P and Q define an outside gap {0, a} (resp. {b, 0}; {0, 1, k}) if

1. C0 6= ∅,

2. a = j1 > 1 and jp = k and Sk ⊆ rn (resp. b = jp < k and j1 = 1 and S1 ⊆ rn; j1 = 1 and

jp = k and there exists c ∈ S1, c /∈ rn and c′ ∈ Sk, c′ /∈ rn).

Together, P and Q are called a failed partition refinement if they define at least one gap.

An inside gap {a, b} is minimal if there exists 0 ≤ i ≤ p− 1 such that ji = a and ji+1 = b.

Example 2.2.34. Let M be the following connected set of rows that is non-C1P

CHAPTER 2. BACKGROUND ON THE C1P 41

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 0

r3 0 0 1 1

r4 1 0 0 1

Then, a failed partition refinement of M is the partition (P1 = {c1, r1}, P2 = {c2, r1, r2}, P3 =

{c3, r2, r3}, P4 = {c4, r3}) and the ordered set (Q0 = {0, ∅}, Q1 = {1, c1}, Q2 = {4, c4}), and

can be seen below

r1 r1

r2
r2

r3
r3

c1 c2 c3 c4

r3

where the gap is the inside gap {1, 4}.

Example 2.2.34 is an example of a failed partition refinement with an inside gap. The following

example illustrates the case where a failed partition refinement has an outside gap.

Example 2.2.35. Let M be the following binary matrix

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 0 1 1 0 0

r3 0 0 0 0 1 1

r4 1 0 1 0 1 0

The overlap graph O(M) of M is illustrated in the following drawing

r1

r4

r2 r3

Using a spanning tree of O(M) we can consider the order r1, r4, r2, r3 to process the rows of M .

First, we process row r1 obtaining

CHAPTER 2. BACKGROUND ON THE C1P 42

r1 r1

c2 c1

Then, we refine the partition using row r4, obtaining

r4

r1 r1 r4 r4

c2 c1 c5 c3

We continue refining the partition with r2, obtaining the following drawing

r4 r2

r1 r1 r4 r4 r2

c2 c1 c5 c3 c4

Finally, we refine the partition with row r3, obtaining a failed partition refinement. The parti-

tion refinement of M is the partition (P1 = {c2, r1}, P2 = {c1, r1, r4}, P3 = {c5, r4}, P4 =

{c3, r2, r4}, P5 = {c4, r2}, and the ordered set (Q0 = {0, c6}, Q1 = {3, c5}) and can be seen using

the following drawing

r1 r1

r4
r4 r2

r4
r2

c6 c2 c1 c5 c3 c4

r3

where the outside gap is {0, 3}.

Remark 2.2.36 (Partition refinement as a certificate.). Note that the structure of a partition refine-

ment could be seen as a certificate for the property of being C1P, by verifying that it satisfies the

five properties of canonical C1P ordered partition refinement; and for the non-C1P, by verifying that

it satisfies the four properties of failed partition refinement. In the following we describe how this

can be achieved. Formally, we would need to describe precise data structures for the encoding of

partition refinement, but we stay at a high abstraction level as standard structures such as linked lists

and arrays are sufficient to implement the strategies we outline in linear time.

CHAPTER 2. BACKGROUND ON THE C1P 43

To verify that a partition is a canonical C1P ordered partition we need to verify that the union

of Si is equal to S, which can be obviously done by a simple scan of all parts of the partition.

Similarly, checking that the union of Ri is equal to R (point 2 of the definition) and that every row

is completely included in the partition (point 4) and appears in a consecutive set of parts (point 3)

can be done by a simple left-to-right scan of the partition. These four steps can be implemented in

O(e) time. Point 5, that is specific to the canonical aspect, can be checked by looking at the labels of

consecutive parts, which again is elementary and can be achieved in O(e) time, as the total number

of labels is in O(e), provided the relative order of every pair of rows is the same in every label that

contains them both, which can be easily ensured during the construction of the partition.

To verify that a partition is a failed partition refinement we need to check that R′ is a canonical

partition refinement, plus additional properties related to rn and the fact that it creates a gap in

a failed partition refinement. This can be done by finding the mapping of rn onto the partition

refinement of R′, then looking at the two different kinds of gaps:

• if C0 6= ∅, then we need only to look at the inclusion of parts P1 and Pk into rn to search for

an outside gap,

• otherwise, we can look for an inside gap by looking at consecutive parts of the mapping Q.

In both cases, once the mapping of rn is given, this reduces to a single scan of the parts of P , and

thus is elementary and can be done in O(e) time.

It is however fair to remark that, although this approach of certifying the C1P/non-C1P satisfies the

formal definition of a certificate, as it involves simple and efficient algorithms and data structures, it

can not compare with the simpler and elegant certificate given by odd cycles of the incompatibility

graph.

2.2.7 PQ-trees and PQR-trees

Another algorithm for deciding the C1P is based on a data structure called a PQ-tree. In 1975, Booth

and Lueker [7] introduced the PQ-tree, a rooted tree with two kinds of nodes, P-nodes and Q-nodes.

PQ-trees describe non-empty sets of permutations. PQ-trees encode in linear space possibly an

exponential number of permutations. In the context of the C1P, this data structure has the following

CHAPTER 2. BACKGROUND ON THE C1P 44

fundamental property: if a binary matrix is C1P, then the set of all its valid permutations can be

represented by a PQ-tree.

Booth and Lueker [7] used PQ-trees for the first algorithm for deciding the C1P in linear time. Their

algorithm can decide if a binary matrix is C1P in time O(m + n + e), where m is the number of

rows, n is the number of columns and e is the number of entries equal to 1 in the binary matrix.

When the algorithm succeeds, a PQ-tree is returned. Otherwise, when the binary matrix is non-C1P,

the algorithm fails and no information is returned.

Definition 2.2.37. Let N = {1, . . . , n} be a finite set (referred to as the ground set of elements). A

PQ-tree is an ordered rooted tree with two kinds of internal nodes, namely P-nodes and Q-nodes,

such that the children of a Q-node are linearly ordered and the children of a P-node are unordered.

The leaves are uniquely labeled by the elements of this ground set (no two leaves have the same

label).

Definition 2.2.38. The frontier of a PQ-tree is the permutation of its ground set obtained by reading

the leaves from left to right.

Example 2.2.39. Let N = {1, 2, 3, 4, 5} be a ground set. A PQ-tree T of N is the following rooted

tree

Q

P

1 3 2 4 5

and the frontier of T is π = {1, 3, 2, 4, 5}.

Definition 2.2.40. Let T be a PQ-tree. The allowed transformations of T are changing the order of

the children of a P-node and reversing the children of a Q-node.

Definition 2.2.41. Let T1 and T2 be two different PQ-trees on the same ground set N . T1 and T2

are equivalent if one can transform one into the other by a sequence of allowed transformations.

Example 2.2.42. Let T1 and T2 be the following PQ-trees on N = {1, 2, 3, 4, 5, 6}

CHAPTER 2. BACKGROUND ON THE C1P 45

Q

P

1 2 3 4 5 6

Q

P

123 456

Then, T1 and T2 are equivalent since we can transform T2 into T1 by changing the order of the

P-node from 3, 2, 4 to 4, 3, 2 and then reversing the order of the Q-node.

The equivalence relation defined above determines equivalence classes of PQ-trees. Equivalence

classes of PQ-trees define sets of permutations of the ground set, by taking the frontiers of the trees

in the equivalence class.

PQ-trees are also defined on binary matrices by taking as ground set the set of columns of the matrix.

We will see how to use PQ-trees in deciding the C1P.

Theorem 2.2.43. [7] Let M be a C1P binary matrix. Then the set of all its valid permutations is

encoded by a PQ-tree TM that can be computed in O(n+m+ e) time.

PQ-trees can be used to describe the set of all permutations of a binary matrix M that are valid

permutations.

Definition 2.2.44. LetM be a C1P matrixM with PQ-tree TM . The set of permutations encoded by

TM , that is, the set of all possible orderings of the leaves of TM , is the set of all possible consecutive

ones orderings of TM and is denoted ρ(TM).

Example 2.2.45. Let M be the binary matrix

c1 c2 c3 c4 c5

r1 1 1 1 1 1

r2 0 1 1 1 0

r3 0 0 0 1 1

r4 0 1 1 1 0

The PQ-tree of M is the rooted tree TM

CHAPTER 2. BACKGROUND ON THE C1P 46

Q

P

c1 c2 c3 c4 c5

From the PQ-tree we can see all the consecutive ones orderings of M by using all possible allowed

transformations: c1, c2, c3, c4, c5; c1, c3, c2, c4, c5; c5, c4, c3, c2, c1; and c5, c4, c2, c3, c1.

CHAPTER 2. BACKGROUND ON THE C1P 47

c1, c2, . . . , cn

c1 c2 . . . cn

Figure 2.8: Universal PQ-tree

Proposition 2.2.46. Let M be a C1P matrix. Then, there exists a PQ-tree TM such that π is a valid

permutation for M if and only if π ∈ ρ(TM).

The principle of the algorithm of Booth and Lueker [7] is as follows: start from the universal PQ-

tree T (Figure 2.8) encoding the set P of all permutations of the ground set. Now process rows of

M in an arbitrary order. For each row r, the current PQ-tree TM is refined to encode only the subset

of P that contains r as an interval.

If at some point, this refinement leads to an empty set of permutations (no permutation of P contains

r as an interval) then M is not C1P. Otherwise, the resulting PQ-tree is TM . In the paper of Booth

and Lueker, refinements are done using a rewriting approach based on a finite set of tree templates,

that is considered as very difficult to implement properly.

We describe an alternative way to construct a PQ-tree due to McConnell [30]. Let M be a C1P

matrix. Consider O(M), the overlap graph of M . O(M) is a set of connected components that

defines the inclusion tree IM , where every node in the tree is a set of rows of M . The PQ-tree TM is

a refinement of IM . To construct the PQ-tree of M we do partition refinement for every connected

component. For every connected component a new Q-node is inserted in TM , together with the

corresponding columns that belong to that connected component. After refining each connected

component a P -node is added to the tree for every part of the partition that contains at least two

columns. Then, every node S has a label in the following way:

S =

Q-node if S is a connected component with at least three children

P -node if S is not a Q-node and S has at least two children

All the possible leaf orders of the PQ-tree can be obtained by changing the order of P-nodes and

CHAPTER 2. BACKGROUND ON THE C1P 48

Q-nodes. Since the children of a Q-node are linearly ordered, then we have only two possible orders

of the children, namely the given one and its reverse. Since the children of a P-node are unordered,

then we can rearrange the children in any way, obtaining a different order for each rearrangement.

Then all the possible leaf orders of the PQ-tree can be obtained by rearranging the order of the

P -nodes and reversing the order of the Q-nodes. These orders are all the possible consecutive ones

orderings from a matrix M .

Example 2.2.47. Let M be the following C1P matrix

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1 1 1 1 0 0 0 0 0

r2 0 0 0 1 1 1 1 1 1

r3 1 1 0 0 0 0 0 0 0

r4 0 1 1 0 0 0 0 0 0

r5 0 0 0 0 0 1 1 1 1

r6 0 0 0 0 1 1 1 1 0

r7 0 0 0 0 0 0 0 1 1

Consider the overlap graph O(M) of M ,

r1

r2

r3

r4

r5

r6

r7

that consists of three connected components, C1 = {r1, r2}, C2 = {r3, r4}, and C3 = {r5, r6, r7}.
Applying partition refinement to every component, we obtain the following partitions. For C1 we

obtain

r2

r1 r1 r2

c1 c2 c3 c4 c5 c6 c7 c8 c9

(2.1)

for C2 we obtain

CHAPTER 2. BACKGROUND ON THE C1P 49

r4

r3 r3 r4

c1 c2 c3

(2.2)

for C3 we obtain

r7

r6 r6 r7

r6 r5 r5 r5

c5 c6 c7 c8 c9

(2.3)

Then, the PQ-tree of M is defined by the partition refinement of all the connected components C1,

C2, and C3, and has the following form

Q1 = c1, c2, c3, c4, c5, c6, c7, c8, c9

Q2 = c1, c2, c3 Q3 = c5, c6, c7, c8, c9

P = c6, c7

c1 c2 c3 c4 c5 c6 c7 c8 c9

where the Q-nodes are represented as circular nodes, P-nodes are represented as rectangular nodes

and leaves are represented without anything around them.

We now describe a generalization of the PQ-tree that was discovered independently by Meidanis,

Porto and Telles [33] and McConnell [30]. The motivation stems from the observation that when

a binary matrix is non-C1P, the reason can be often located in a small set of rows and/or columns,

and thus some, possibly large, submatrices might be C1P. The initial approach of Booth and Lueker

produces an empty set of permutation for any non-C1P matrix, thus hiding this possibly interesting

structure (especially for applications such as genomics). Therefore, the idea was to introduce a third

kind of node, R-nodes, that will identify non-C1P submatrices.

CHAPTER 2. BACKGROUND ON THE C1P 50

Given a binary matrix M , a unique PQR-tree TM can be computed as follows: if a connected

component of O(M) is non-C1P, then the corresponding node of IM is labeled by R.

The PQR-tree can be constructed similarly to the PQ-tree, introducing an R-node whenever the 1’s

cannot be consecutive. We have the following result that allows us to use PQR-trees in deciding the

C1P.

Theorem 2.2.48. [33], [30] A binary matrix M is C1P if and only if TM does not contain any

R-node.

Example 2.2.49. Consider the binary matrix M ,

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1 1 1 1 0 0 0 0 0

r2 0 0 0 1 1 1 1 1 1

r3 0 0 0 0 1 1 1 0 0

r4 0 0 0 0 0 0 1 1 0

r5 0 0 0 0 0 0 1 0 1

with overlap graph O(M)

r1

r2

r3

r4

r5

O(M) has two components: C1 = {r1, r2} and C2 = {c3, c4, c5}. For C1 we obtain the partition

refinement

r2

r1 r1 r2

c1 c2 c3 c4 c5 c6 c7 c8 c9

(2.4)

and for C2 we obtain the failed partition refinement

CHAPTER 2. BACKGROUND ON THE C1P 51

r3 r3 r4

r4

c9 c5 c6 c7 c8

r5

Since r5 is not consecutive, the R-node contains the columns that belong to r5. The corresponding

PQR-tree is shown below.

Q

P1

c1 c2 c3

R

P2 c7 c8 c9

c5 c6

where Q = {c1, c2, c3, c4, c5, c6, c7, c8, c9}, P1 = {c1, c2, c3}, P2 = {c5, c6} and R = {c5, c6, c7,

c8, c9}.

In the example above, we can see that since there is an R-node the matrix is non-C1P. Although

M is non-C1P, some information can still be extracted from the PQR-tree, namely that the conflict

is being produced by the columns in the R-node. In this case, the conflict is produced by columns

c7, c8, c9 together with one of c5 or c6. In the case where a PQR-tree has no R-nodes, then, we know

that the matrix is C1P.

Theorem 2.2.50. [30] Computing the PQR-tree TM of a binary matrix can be done inO(n+m+e)

time and space.

Note that an R-node is not a certificate, as it is a structure obtained by partition refinement. Also,

an R-node identifies a submatrix (rows and columns) that contains a Tucker pattern, but it does not

provide any hint as to which rows and columns form this Tucker pattern. It is mostly useful to

narrow down the matrix of a non-C1P matrix that contains such structures.

Part II

New Results

52

Chapter 3

Structural and Algorithmic Results on

Partition Refinement

In this chapter we investigate the use of the structure of partition refinement to find a certificate of

non-C1P. We begin this chapter by describing the structure of failed partition refinement for each

type of Tucker pattern. Then, we show how to use this structure to extract an asteroidal triple of a

single Tucker pattern. We also show how to use it to extract a Tucker pattern of type I, that is, a

chordless cycle of length at least 6.

The motivation for the research described in this chapter is to design a linear time and space al-

gorithm to find an asteroidal triple or a Tucker pattern in a non-C1P matrix, as the only certificate

known so far that can be extracted in linear time, the odd cycles of the incompatibility graph [30], is

not known to be any of these natural obstructions to the C1P. From a methodological point of view,

our focus is on using the combinatorial structure obtained when applying partition refinement to the

analyzed matrix. Although we did not fully succeed in our search for such an algorithm, we present

a series of results that advance toward this goal.

3.1 Matrices that are Tucker Patterns

In this section we consider the case when the binary matrix M is a Tucker pattern. The questions

we address are the following: can the combinatorial structure obtained using partition refinement

53

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT54

help to decide which family of Tucker patterns M belongs to and can it help to identify quickly the

three vertices x, y, z that define an asteroidal triple1. We provide positive answers to both questions.

We focus solely on the three vertices x, y, z as, once they are given, checking that the remaining

edges define an asteroidal triple is easy, by looking for paths joining the three pairs of vertices.

This can be done in linear time by a simple depth-first search, thus satisfying the requirement of

certifying algorithms of an easy check of the validity of the certificate.

3.1.1 Simple algorithms

First, it is however important to remind that the two questions we address can be answered easily

without relying on the notion of partition refinement, as we describe now.

Deciding if a binary matrix M is a Tucker pattern can be done in the following way: if M is a

MIV or MV , then it can be checked easily since it has fixed size. If M is MIk , then all rows have

degree 2 so it is the incidence matrix of a graph. We can test in linear time whether that graph is a

cycle. If M is MIIk or MIIIk then we can extract all rows of degree 2, make a graph from them,

check that it is a path and then check the remaining rows satisfy the structure of patterns MIIk or

MIIIk . All these simple rules can obviously be checked in O(e) time, since we are using a sparse

representation of the matrix, that is, assuming that the rows are given as sets of columns.

Next, we can extract an asteroidal triple easily, as the above approach also produces a total order for

rows and columns of the current matrix that matches the one given by the classical presentation of

Tucker patterns (see Chapter 2), and thus allows us to locate immediately vertices x, y, z from M .

In the next section, we look at using the additional information provided by partition refinement.

3.1.2 Algorithms based on Partition Refinement

In this section we describe the structure of failed partition refinement for every Tucker pattern. Since

we are assuming thatM is a Tucker pattern, then applying partition refinement toM fails only when

the last row is processed, so this structure consists of a refined partition augmented by a row whose

elements are not consecutive in this partition.
1We remind here that by asteroidal triple, we mean CM -AT as defined in Chapter 2.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT55

Despite the fact that there can be an exponential number of orders in which the rows can be pro-

cessed so that they are overlap-consistent, an exhaustive analysis does not require to examine them

all. Indeed, as the order for processing rows of a C1P matrix does not impact the resulting partition

of its columns, so the only factor determining the possible structures associated to a given pattern is

the last processed row.

The results for the exhaustive analysis of processing partition refinement in every possible overlap-

consistent order are shown in Figures 3.1 to 3.5. These Figures illustrate the failed partition refine-

ment for each type of Tucker pattern, failing with every possible row. On the left column we indicate

the last row that is being processed, that is, the row where the partition fails. On the right column

we illustrate the failed partition refinement: every block represents the columns that belong to one

of the parts of the partition, with the corresponding rows that belong to that part indicated above

the block. The capital letters represent a part of the partition that is being repeated with different

indices, where the indices are indicated in the square brackets around that part. Below the blocks is

the last row r that is being processed and the lines joining r to the parts indicate to which parts the

elements of r belong. The labels of rows and columns are the ones given in Figure2.3, that presents

the five families of Tucker patterns.

Gaps are indicated in the partition in the following way: an inside gap is a part Pi, for some 1 ≤
i ≤ n, that it is not joined to r and such that there are two parts Pj and Pk that are joined to r and

j < i and i < k. An outside gap can be seen in the partition as an inside gap with the additional

property that Pj or Pk does not contain any rows above the block.

r`, ` = 1, . . . , k + 2

r`+1

ri−1
ri

ri−1
ri r`−1

c`+1 [i=`+1 ci i=k+2]

A B

[i=1 ci i=`−1] c`

r`

Figure 3.1: Failed partition refinement for MIk .

Note that for MIV and MV , r4 can not be the last row in the partition because there is no order with

r4 as last row that satisfies the notion of overlap-consistent order.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT56

r1

rk+3 rk+2

rk+3

rk+2

rk+3

r2

rk+2

rk+3

ri

ri−1

rk+2

rk+1

c1 ck+3 c2 [i=3 ci

A

i=k+1] ck+2

r1

r`, ` = 2, . . . , k

rk+3

r1
rk+2

rk+3

ri

ri−1

rk+2

rk+3

r`−1

rk+2

rk+3

rk+2

rk+3

r`+1

rk+2

rk+3

ri

ri−1

rk+2

rk+1

c1 [i=2 ci

A

i=`−1] c` ck+3 c`+1 [i=`+2 ci

B

i=k+1] ck+2

r`

rk+1

rk+3

r1
rk+2

rk+3

ri

ri−1

rk+2

rk+3

rk

rk+2

rk+3

rk+2

c1 [i=2 ci

A

i=k] ck+1 ck+3 ck+2

rk+1

rk+2

rk+3 rk+3

r1

ri−1
ri

rk+3 rk+1

ck+3 c1 [i=2 ci
A

i=k+1] ck+2

rk+2

rk+3

r1 rk+2

ri−1
ri

rk+2

rk+1

rk+2

c1 [i=2 ci
A

i=k+1] ck+2 ck+3

rk+3

Figure 3.2: Failed partition refinement of MIIk for various choices of final row processed.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT57

r1

rk+2 rk+2

r2
rk+2

ri

ri−1

rk+1

c1 ck+3 c2 [i=3 ci

A

i=k+1] ck+2

r1

r`, ` = 2, . . . , k

r1 rk+2

ri

ri−1

rk+2

r`−1
rk+2 rk+2

r`+1

rk+2

ri

ri−1

rk+1

c1 [i=2 ci

A

i=`−1] c` ck+3 c`+1 [i=`+2 ci

B

i=k+1] ck+2

r`

rk+1

r1 rk+2

ri

ri−1

rk+2

rk−1
rk+2

c1 [i=2 ci

A

i=k] ck+1 ck+3 ck+2

rk+1

rk+2

r1 ri

ri−1
rk+1

c1 [i=2 ci
A

i=k+1] ck+2 ck+3

rk+2

Figure 3.3: Failed partition refinement of MIIIk for various choices of final row processed.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT58

r1

r2 r2

r4
r4 r3

r4
r3

c4 c3 c1 c5 c6 c2

r1

r2

r1 r1

r4
r4 r3

r4
r3

c2 c1 c3 c5 c6 c4

r2

r3

r1 r1

r4
r4 r2

r4
r2

c2 c1 c5 c3 c4 c6

r3

Figure 3.4: Failed partition refinement of MIV .

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT59

r1

r3 r2

r3
r2

r3

r4

r3

r4
r4

c2 c4 c3 c1 c5

r1

r2

r3 r1

r3
r1

r3

r4

r3

r4
r4

c4 c2 c1 c3 c5

r2

r3

r1 r1

r4
r4 r2

r4
r2

c2 c1 c5 c3 c4

r3

Figure 3.5: Failed partition refinement of MV .

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT60

We now formalize a few observations.

Property 3.1.1. The failed partition refinements of all Tucker patterns, MIk , MIIk , MIIIk , MIV

and MV have only one gap.

Property 3.1.2. The failed partition refinements of Tucker patterns MIk , MIIk and MV have only

an inside gap. The failed partition refinements of Tucker pattern MIV have only an outside gap.

The failed partition refinements of Tucker pattern MIIIk have both inside and outside gaps.

Property 3.1.3. The failed partition refinements of Tucker pattern MIk have a gap of length k. The

failed partition refinements of Tucker patternsMIIk andMIIIk have a gap of length one. The failed

partition refinements of Tucker patternMIV have a gap of length 2. The failed partition refinements

of Tucker pattern MV have gaps of length 1 or 2.

Now we show how to find an asteroidal triple using failed partition refinement for a single Tucker

pattern, or more precisely, to identify quickly the vertices x, y, z of such a triple.

Proposition 3.1.4. Let M be a Tucker pattern. If partition refinement fails at row r, then the

rightmost and leftmost columns of the failed partition refinement together with a column inside the

gap define an asteroidal triple.

Proof. For MIk , since Tucker patterns of type I are chordless cycles, every threesome of columns

forms an asteroidal triple. In particular, the rightmost and leftmost columns of partition refinement

together with any column inside the gap, will define an asteroidal triple.

For MIIk , columns c1, ck+2, ck+3 define an asteroidal triple. From Figure 3.2 we can see that these

columns correspond to the rightmost column, the leftmost column of the failed partition refinement

and the column inside the gap.

ForMIIIk , columns c1, ck+2, ck+3 define an asteroidal triple. From Figure 3.3 we can see that these

columns correspond to the rightmost column, the leftmost column of the failed partition refinement

and the column inside the gap.

For MIV , columns c2, c4, c6 define an asteroidal triple. From Figure 3.4 we can see that these

columns correspond to the rightmost column, the leftmost column of the failed partition refinement

and the column inside the gap.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT61

For MV , columns c2, c4, c5 define an asteroidal triple. From Figure 3.5 we can see that these

columns correspond to the rightmost column, the leftmost column of the failed partition refinement

and the column inside the gap.

We tried to generalize Proposition 3.1.4 to general matrices that are non-C1P, hoping to use the

structure of failed partition refinement to extract an asteroidal triple from it. It turns out that in

general, the result is not true as can be seen with the example below. First, we state the question we

considered.

Question 3.1.5. Let M be a binary matrix that is non-C1P. If partition refinement fails at row r,

do the rightmost and leftmost columns of the partition refinement together with a column inside the

gap define an asteroidal triple?

The answer is that this is not true in general. We can see this with the following example:

Example 3.1.6. Let M be the following binary matrix

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1 0 0 0 0 0 0

r2 0 1 1 0 0 0 0 0

r3 0 0 1 1 0 0 0 0

r4 0 0 0 1 1 0 0 0

r5 0 1 1 1 1 1 0 1

r6 1 1 1 1 0 1 1 0

Then, the corresponding bipartite graph is

c1 c2 c3 c4 c5

c6c7 c8

r1 r2 r3 r4

r5r6

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT62

with one asteroidal triple c1, c5, c6. And, the partition refinement using the order of the rows

r5, r6, r4, r3, r2, r1 is

r5 r4

r5
r3

r4

r5

r6

r2

r3

r5

r6

r2

r5

r6

r5

r6
r6 r6

c8 c5 c4 c3 c2 c6 c1 c7

r1

Then, the rightmost column of the failed partition refinement is c7, the leftmost column of the failed

partition refinement is c8 and the column inside the gap is c6. But c7, c8 and c6 do not form an

asteroidal triple of M since there is no path from c7 to c8 that does not contain r6 and r5 and

N(c6) = {c6, r5, r6}.

Due to the fact that there is a finite number of well defined configurations for Tucker patterns, and

that any non-C1P matrix contains such a pattern, using the structure of partition refinement seems at

first to offer a promising way to attack the problem of finding Tucker patterns or asteroidal triples.

Example 3.1.6, that is built on a simple extension of pattern MII , shows however that the property

of having a column within a gap as part of an asteroidal triple seems to hold, which we formalize in

the following conjecture.

Conjecture 3.1.7. Let M be a binary matrix that is non-C1P. If partition refinement fails at row r,

then there exists at least one CM -AT (x, y, z) such that one of the columns x, y, z is within a gap of

the failed partition refinement.

In the next section, we rely on this assumed property and explore the problem of finding a cycle

using a gap of the failed partition refinement.

3.2 Extracting a cycle from a non-C1P binary matrix

In this section, we consider the general case where M is a binary matrix that is non-C1P and we

present an algorithm that uses partition refinement to find, if possible, a Tucker pattern of type I

(chordless cycle) in non-C1P binary matrices.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT63

In this section, by cycle we mean a chordless cycle of length at least 6 in GM , as these are the ones

that coincide with definition of a Tucker pattern MIk , where a chord is an edge that links two non-

consecutive vertices of the cycle. As we focus on using the structure obtained when the partition

refinement technique fails, we assume without loss of generality that M is a connected non-C1P

matrix with n rows {r1, . . . , rn} such that {r1, . . . , rn−1} is C1P.

The problem we consider is precisely the following: given a connected non-C1P binary matrix M ,

with rows {r1, . . . , rn} and such that {r1, . . . , rn−1} is C1P, decide if M contain a chordless cycle

of length at least 6, and if it does, compute such a cycle. We consider two cases:

• Problem EC-MIN, where M contains a single gap (and is thus a minimal gap),

• Problem EC-GENERAL where gaps of M are not restricted.

The motivation for studying this precise problem is twofold. First it deals with the, a priori, sim-

plest family of Tucker patterns, as a chordless cycle is a very simple combinatorial structure. Sec-

ond, there already exists algorithms for answering this problem in general binary matrices/bipartite

graphs, that do not rely on partition refinement, and we are interested in looking at the gain we can

obtain when using partition refinement. The existing algorithms are motivated by the recognition of

chordal bipartite graphs (see [26], and especially references in Section 4), namely bipartite graphs

without a chordless cycle of length at least 6. Extracting a chordless cycle of length at least 6 is thus

a certificate for non chordal bipartite graphs. It can be done, in arbitrary bipartite graphs, using the

notion of doubly lexicographic ordering in time O((n+m)2) or O(n+m+ e log(n+m)).

Notation 3.2.1. LetM be a non-C1P matrix with failed partition refinement {P = (P1 = {S1, R1},
. . . , Pk = {Sk, Rk}), Q = (Q0 = {0, C0} ,Q1 = {j1, C1} , . . . , Qp = {jp, Cp})}. For a row r of

{r1, . . . , rn−1}, we denote by le(r) the leftmost part of P whose label contains r and by ri(r) the

rightmost part of P whose label contains r.

Example 3.2.2. Let M be the following matrix

c1 c2 c3 c4 c5

r1 1 1 0 0 1

r2 0 1 1 0 1

r3 0 0 1 1 1

r4 1 0 0 1 1

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT64

with corresponding bipartite graph

c3

c1

r1 r4

c5c2 c4

r2 r3

Then, the failed partition refinement is {P = (P1 = {c1, r1}, P2 = {c2, r1, r2}, P3 = {c5, r1, r2, r3}, P4 =

{c3, r2, r3}, P5 = {c4, r3}),Q = (Q0 = {0, ∅}, Q1 = {1, c1}, Q2 = {3, c5}), Q3 = {5, c4}} and

has the following structure

r1 r1

r2
r1

r2

r3

r2

r3
r3

c1 c2 c5 c3 c4

r4

Then le(r2) = 2 and ri(r2) = 4.

Now we present our algorithm for solving Problem EC-MIN: we look for a cycle that is composed

of rows and columns that appear in the parts located between a gap, Pa and Pb, and in rn also

as this is the row creating the Tucker pattern. For the clarity of the presentation, we assume that

a = 1 and b = k, or equivalently that we consider only the submatrix of M that is composed of

columns that appear in the parts located between Pa and Pb (included) and of the rows with entries

1 in these columns. Given {a, b}, such a submatrix can obviously be extracted in O(e) time, so this

preprocessing does not impact the overall time complexity.

Definition 3.2.3. We say that a row r spans an interval (a, b) of a partition refinement if r ∈ Rt for

a ≤ t ≤ b.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT65

In another preprocessing, we also remove all rows that span (1, k) as such rows can not belong to

the cycle we aim at finding without creating a chord. Again, this preprocessing can be done in linear

time.

Algorithm 3.2.4. Finding Cycles using Partition Refinement

input: P, rn, such that {1, k} is an inside gap and no row spans (1, k).
1. Let j = 1, i = 1, and x0 be chosen arbitrarily among the elements of S1 ∩ rn

2. While j 6= k do

• Let r ∈ Rj such that ri(r) is maximum

• If ri(r) = j then return ∅ else j = ri(r), xi = r, i = i+ 1

• If j < k let xi be chosen arbitrarily among Sj else let xi be chosen arbitrarily among

Sk ∩ rn; i = i+ 1

3. return x0, x1, . . . , xi, rk

output: x0, x1, . . . , xi, rk or ∅

The general idea of algorithm 3.2.4 can be visualized with the following figure

ri ri ri

rj
rj

rl
rl rl rl

ci ci+1 ci+2 cj ck ck+1 ck+2

rn

We can see that the algorithm alternates between selecting rows (green arrows) and columns (purple

arrows), thus defining a cycle in the bipartite graph GM . The algorithm jumps from a part on the

left to a part on the right (blue arrows) to avoid picking a vertex that could create a chord.

Example 3.2.5. Let M be the binary matrix

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT66

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 0 0 0

r2 0 1 1 1 0 0 0

r3 0 0 1 1 1 0 0

r4 0 0 0 0 1 1 0

r5 0 0 0 0 0 1 1

r6 1 1 1 1 1 1 0

r7 1 0 0 0 0 1 0

M has two Tucker patterns of type I: {c1, r1, c2, r2, c4, r3, c5, r4, c6, r7} and {c1, r1, c2, r2, c3, r3,

c5, r4, c6, r7}.

The failed partition refinement has the structure

r1

r6
r1

r2

r6

r2

r3

r6

r2

r3

r6

r3

r4

r6

r4

r5

r6

r5
c1 c2 c3 c4 c5 c6 c7

r7

Note that the two cycles mentioned above are contained in the gap (a = 1, b = 6). Using Algorithm

3.2.4 we can find a cycle between this gap. First, we remove r6 from P since it spans (a, b). Then,

we start to construct a cycle with vertex x0 = c1 and follow by choosing r1 and c2. Then, we

choose r2 and follow by choosing an element in the last part where r2 belongs to, so we choose c4.

Continuing this process, the algorithm returns the cycle {c1, r1, c2, r2, c4, r3, c5, r4, c6, r7}.

Proposition 3.2.6. If Algorithm 3.2.4 returns a non-empty sequence of vertices, then this sequence

of vertices is a chordless cycle of length at least 6.

Proof. Since the algorithm gives a sequence of vertices alternating between rows and columns, then

the sequence is a cycle of even length in GM . The cycle is of length at least 6 because if the cycle

had length 4, (x0, x1, x2, rk), then x1 would be a row that belongs to every Rt, for 1 ≤ t ≤ k,

which can not happen due to the preprocessing that discarded rows that span the whole gap.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT67

Next we need to prove that this cycle is chordless. This follows from the fact that, for each row that

belongs to the cycle, we include only two columns incident to this row, one from the part Rj the

While loop starts in, then one from the last (furthest to the right) part that this row spans. Thus every

row other than rn in the cycle is incident to exactly two columns. Regarding rn, by construction we

select exactly two columns incident to it, in parts P1 and Pk. So the cycle is chordless.

Proposition 3.2.7. If Algorithm 3.2.4 returns ∅, then there is no chordless cycle of length at least 6

in M .

Proof. First, a chordless cycle can not include a row that span the whole gap, so the initial prepro-

cessing that discarded these rows has no impact.

Now we can look at the case where the algorithm returns ∅. This happens only when there is no

row in the label of the current part Pj that does contain columns located in the parts to the right of

Pj , which implies that there are in fact two partitions, connected through rn. Thus the columns in

S1 ∩ rn and Sk ∩ rn belong to different connected components in the bipartite graph associated to

the gap minus the row rn. There can then be no path between these two sets of elements, and thus

no cycle containing the row rn.

Theorem 3.2.8. Algorithm 3.2.4 solves Problem EC-MIN in time O(e).

Proof. The fact that the algorithm solves Problem EC-MIN follows from Proposition 3.2.6 and

Proposition 3.2.7.

Regarding the time complexity, the main task of the Algorithm consists in finding, within the labels

of the current part Pj , the row whose span goes the furthest to the right. Computing ri(ri) for all

rows ri can be done with a linear preprocessing time. Then, looking for the desired rows in the

labels of the current parts can be done by a simple scan of the whole set of labels, with an amortized

O(e) time complexity.

As discussed previously, the other preprocessing (removing rows spanning the gap) can be imple-

mented easily in linear time.

We now have an algorithm that is able to extract, if it exists, a cycle that is spanned by a given

minimal gap. In order to solve Problem EC-GENERAL, one could first ask if, given a matrix with

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT68

cycles, there is always one spanning a minimal gap. The answer to the question is no, as we can see

in the following example.

Example 3.2.9. Let M be the following matrix

c1 c2 c3 c4 c5

r1 1 1 0 0 1

r2 0 1 1 0 1

r3 0 0 1 1 1

r4 1 0 0 1 1

with corresponding bipartite graph

c3

c1

r1 r4

c5c2 c4

r2 r3

Then, partition refinement has the following structure

r1 r1

r2
r1

r2

r3

r2

r3
r3

c1 c2 c5 c3 c4

r4

We can see that (r4, c1, r1, c2, r2, c3, r3, c4) is a cycle and there is no minimal gap that defines it.

Note that there is only one chordless cycle in M due to the position of c5: since c5 is adjacent to

every row, all other cycles of length at least 6 in M are not chordless.

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT69

Next one could then ask in the case there is no cycle spanning a minimal gap, if applying our

algorithm onto a non-minimal gap could be sufficient to solve Problem EC-GENERAL. The answer

to this question is again no as shown by the next example, that reuses the matrix introduced in the

previous example.

Example 3.2.10. Let M be the binary matrix defined in example 3.2.9

c1 c2 c3 c4 c5

r1 1 1 0 0 1

r2 0 1 1 0 1

r3 0 0 1 1 1

r4 1 0 0 1 1

with failed partition refinement

r1 r1

r2
r1

r2

r3

r2

r3
r3

c1 c2 c5 c3 c4

r4

Recall that (r4, c1, r1, c2, r2, c3, r3, c4) is the only chordless cycle of M of length at least 6.

Applying Algorithm 3.2.4 to all gaps of the failed partition refinement will give us:

• a = 1, b = 3: ∅, since there are no cycles contained in this gap

• a = 3, b = 5: ∅, since there are no cycles contained in this gap

• a = 1, b = 5: c1, r1, c5, r3, c4, r4, which contains a chord, due to the column c5.

We can however observe that the problem in the previous example comes from the fact that, while

trying to reach the right extremity of the larger gap, we “stop” onto a part that contains columns

(here c5) belonging to the row that caused the partition refinement to fail (rn in the terminology of

the algorithm), which creates a chord. So, when dealing with a non-minimal gap, we can in fact

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT70

apply our algorithm, provided that we have removed these columns from the considered matrix.

This leads to the following algorithm.

Algorithm 3.2.11. Finding Cycles using Partition Refinement

input: P, rn
1. For each inside gap {a, b} of P, rn do

• Remove from P all columns that belong to rn and are spanned by {a, b}

• Remove from P all rows that span {a, b}

• Let R be the result of applying Algorithm 3.2.4 on gap {a, b} of the resulting failed

partition refinement.

• If R 6= ∅ then return R

2. return ∅

output: a chordless cycle of length at least 6 or ∅

Theorem 3.2.12. Algorithm 3.2.11 solves Problem EC-GENERAL in time O(ge), where g is the

number of gaps of the failed partition refinement defined by P, rn.

Proof. The correctness follows from two facts. First, if Algorithm 3.2.11 outputs a cycle, then it is a

chordless cycle of length at least 6, for the same reasons as in the proof of correctness of Algorithm

3.2.4. Next, assume there is a chordless cycle of length at least 6. If it is in a minimal inside gap,

then, from the correctness of Algorithm 3.2.4 we can assume that it will be found by Algorithm

3.2.11 when this gap is processed. So we can assume there is no cycle that spans a minimal inside

gap. From the structure of the failed partition refinement forMI , we know that every cycle spans an

inside gap. So we may assume that our algorithm processes such a non-minimal inside gap {a, b}
that spans a cycle. No column belonging to rn and spanned by {a, b} can belong to the cycle,

otherwise it creates a chord. So we can remove all these columns without destroying the property

that the parts spanned by {a, b} in the resulting failed partition refinement span a cycle, and thus

Algorithm 3.2.4 will find this cycle.

The time complexity follows trivially from the time complexity of Algorithm 3.2.4 and the fact that

we apply it onto each gap created by rn.

Note that, for a given rn, the parameter g can belong toO(n2), so the time complexity of Algorithm

3.2.11 can also be stated asO(n2e), in the sparse representation of the matrix, while the best known

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT71

algorithms for computing a chordless cycle have time complexity O((n + m)2) and O(n + m +

e log(n+m))).

3.3 Conclusion

To conclude this chapter, we will discuss two points: the result of the previous section and an outline

of an alternative strategy we explored without conclusion.

First, by considering the problem of extracting a pattern MI , we followed an approach that looks

for ad-hoc algorithms for each of the five Tucker patterns, in special matrices that are precisely

connected matrices that are C1P once their last row is discarded; this implies that our algorithm does

decide if a general bipartite graph is chordal bipartite. However, considering such matrices does not

reduce the generality of this approach when looking for Tucker patterns, as partition refinement

on a non-C1P matrix always lead to such matrices, in linear O(e) time. Focusing first on pattern

MI is interesting because it is the only pattern that is spanned, in the corresponding failed partition

refinement, by a minimal gap, and also because algorithms already exist to solve this problem,

albeit in general binary matrices. While the complexity analysis of our algorithm leads to an O(ge)

time complexity, it is an open question to see if it can be implemented more efficiently by avoiding

repeating steps that are common while dealing with two different but overlapping non-minimal gaps.

Compared to the best known algorithms for finding chordless cycles in general bipartite graphs, our

algorithm has a worse time complexity, when expressed in terms of the parameters n,m, e, but it

is interesting to have introduced the parameter g in the complexity statement. It however remains

open to see if applying the known algorithms to the special graphs we consider leads to an improved

time complexity.

More generally, the approach that looks for ad-hoc algorithms for each family of Tucker patterns

seem difficult to extend. The main difficulty is that only few other patterns are spanned by a gap, and

in fact several contain only a small gap. It remains open to see if the general approach that considers

all possible gaps of rn and tries to see if a given gap can be used as a seed to extract a given Tucker

pattern (or more precisely a given failed partition refinement as described in Figures 3.1 to 3.5) can

lead to algorithms to find a Tucker pattern in O(ge).

Next, we outline a possible alternative approach that would avoid the drawback of relying on the

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT72

precise structure of the failed partition refinement of Tucker patterns, and relies on the more generic

notion of Minimal Conflicting Set. Minimal Conflicting Sets for the C1P were introduced in [4]

as minimal sets of rows that were obstructing the C1P. It has since proved to be useful in several

problems of computational biology involving the C1P [11, 41].

Definition 3.3.1. A subset R = {ri1 , . . . , rip} (resp. C = {ci1 , . . . , ciq}) is a Minimal Conflicting

Set for Rows (MCS-R) (resp. Minimal Conflicting Set for Columns (MCS-C)) forM if it is not C1P

but every proper subset of R (resp. C) is C1P.

The minimality of Tucker patterns immediately implies the following result, that was introduced

in [13].

Lemma 3.3.2. A submatrix M ′ of a non-C1P matrix M , defined by rows R = {ri1 , . . . , rip} and

columns C = {ci1 , . . . , ciq}, is a Tucker pattern if and only if R is an MCS-R and C is an MCS-C.

Following Lemma 3.3.2, we extract a Tucker pattern from M in two stages: we first extract a subset

R of rows of M that is an MCS-R, then a subset C of the columns of R that is an MCS-C.

Algorithm 3.3.3. Finding Tucker Patterns using Minimum Conflicting Sets

input: M = {r1, . . . , rn}, such that M is non-C1P but M − rn is C1P.
1. Let T = {r1, . . . , rn}

2. For i = 1 to p, if T − {ri} is non-C1P, then T = T − {ri}.

3. Let C = {c1, . . . , cq} be the support of T .

4. For i = 1 to q, if T − {ci} is non- C1P, then T = T − {ci}.

5. Return T .
output: T , a binary matrix.

Proposition 3.3.4. If M is a non-C1P binary matrix, the binary matrix T returned by Algo-

rithm 3.3.3 is a Tucker pattern.

Proof. If M is a non-C1P binary matrix, then the binary matrix T returned by Algorithm 3.3.3 is an

MCS-R and MCS-C. Then, the result follows from Lemma 3.3.2. The algorithmic principle used in

the loops in lines 2 and 4 to extract a minimal conflicting set was introduced in [11].

Proposition 3.3.5. Algorithm 3.3.3 computes a Tucker pattern in time O((n+m)e).

CHAPTER 3. STRUCTURAL AND ALGORITHMIC RESULTS ON PARTITION REFINEMENT73

Proof. If M is a non-C1P binary matrix, then Algorithm 3.3.3 reduces to (n + m) C1P tests, that

can each be done in O(e) time.

The main interest of the general algorithmic scheme that underlies Algorithm 3.3.3 is that it is

generic and does not rely on ad-hoc structural properties of the different families of Tucker patterns.

The drawback is that a naive implementation has a quadratic worst-case time complexity.

We have tried to improve the time complexity using the structure of partition refinement. More

precisely, for the problem of finding an MCS-R (questions and problems regarding MCS-C are

similar), we have assumed, as in the previous sections, that we have a failed partition refinement

P,Q then looked at the following question, that addresses precisely the task done in the loop of line

2 of Algorithm 3.3.3.

Question 3.3.6. Given an arbitrary row r, can we implement lines 2 and 4 of Algorithm 3.3.3 in

amortized time O(e)?

We were not able to provide a positive answer to this question. In fact we found examples that

showed that removing a row from a failed partition refinement can remove all gaps, but at the price

of a global modification of this structure, which implies that removing a row r from the current

partition refinement can require more thanO(|r|) time. However, this does not prevent the existence

of a specific order for considering rows that would lead to a linear time amortized complexity

therefore conclude this chapter with this question, that, were it to be answered positively, would

lead to a linear time algorithm to find a Tucker pattern in a non-C1P binary matrix.

Chapter 4

Enumerating all Tucker Patterns

We propose an output-sensitive algorithm for finding all Tucker patterns on a C1P matrix and use it

to analyze some real data. The motivation is to identify all rows and columns that participate in a

conflict. This information can be used to transform a non-C1P matrix into a C1P matrix or to detect

traces of convergent evolution.

4.1 Theoretical Results

Below we describe an output-sensitive algorithm to find all Tucker patterns in a binary matrix.

For Tucker patterns GMI
the algorithm modifies the Read and Tarjan algorithm for finding cycles

in a graph [37], so that it only finds chordless cycles. For Tucker patterns GMII
and GMIII

, the

algorithm enumerates all possible triples of column vertices that could possibly be CM -AT and then

enumerates all ways to extend them into a Tucker pattern. Tucker patterns GMIV
and GMV

are a

modification of an exhaustive search algorithm.

Theorem 4.1.1. Let M be a non-C1P binary matrix with m rows, n columns, e entries 1 and con-

taining k Tucker patterns. All Tucker patterns ofM can be enumerated in timeO((m4+n3m2)(n+

m) + e(k + 1)).

The remainder of this section presents a proof of Theorem 4.1.1.

We denote by ki the number of Tucker patterns of type GMi , for i = I, II, III, IV, V , and we

74

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 75

describe, for each pattern, how to enumerate all its occurrences. Roughly speaking, pattern GMI

can be enumerated using a simple variation on the classical cycle enumeration algorithm of [37],

while patterns GMII
and GMIII

can be enumerated by checking configurations of vertices for the

vertices (or some subset) x, y, z, a, b, c, d (see Figure 2.3) and listing all paths between y and z.

Patterns GMIV
and GMV

, which are of bounded size, can be enumerated by a brute-force approach

that requires time polynomial in the size of M .

Pattern GMI
. To describe the algorithm for Tucker pattern GMI

we begin by describing the algo-

rithm by Read and Tarjan to enumerate cycles on a graph. We follow with a definition of chord and

then we show how the Read and Tarjan algorithm is modified to find chordless cycles.

In [37], Read and Tarjan describe an algorithm that can enumerate all C cycles of GM in time

O(n+m+ e+ eC).

The algorithm starts by using a depth first search to enumerate all vertices on the graph and label

all edges of the graph. The vertices are labeled from 1 to n + m in the order of visit of the depth

first search. The edges are divided in two classes: a set of edges forming a directed rooted tree and

a set of cycle edges, which point from a descendant to an ancestor in the tree. Note that tree edges

are directed edges from a smaller to a larger numbered vertex, while cycle edges are directed edges

from a larger to a smaller numbered vertex. We illustrate this process with the following example.

Example 4.1.2. Let G be the graph

a
f

c

e

g

d

b

h

Then, using depth first search we get the directed graph

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 76

1(a)

2(b)

3(c)

4(d)

5(e)

6(f)

7(g) 8(h)

where tree edges are black edges and cycle edges are blue edges. Using depth first search we have

labeled the vertices of G in the order that they were visited.

Then, a set of cycle starting vertices is constructed, which will be used to start and extend a path that

will form a cycle. The set of cycle starting vertices is the set of vertices with entering cycle edges.

For each cycle starting vertex s, a recursive procedure extends the path that will form a cycle. The

path P is extended from the last vertex of the path v to a vertex w if there is a path from w to s that

avoids P . After the path is extended, the recursive procedure is applied: first, it checks if a cycle

was completed and if not, it looks for a new vertex of extension.

Their algorithm can be described as follows:

Algorithm 4.1.3. Enumerate cycles (G) [37]

input: Graph G

1. DFS(G)

2. For all connected components of G

For all starting vertices s of G

P = {s}
Enumerate cycles recursive (G,P)

output: All cycles of G

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 77

Algorithm 4.1.4. Enumerate cycles recursive (G,P) [37]

input: Graph G, path P in G

1. Let v be the last vertex in P and s the first vertex in P

2. If {v, s} is an edge of G then output P

3. Else

For each outgoing arc w of v

If there exists a path from w to s that avoids P then

Add w to P

Enumerate cycles recursive(G,P)

In the above algorithms, DFS is a depth first search algorithm for computing a spanning tree of

G that labels the vertices according to the order they are visited, identifies starting vertices and

partitions edges into tree edges and cycle edges.

We will illustrate Read and Tarjan algorithm for finding cycles on a graph with an example.

Example 4.1.5. Let G be the graph

b

d

f

h

a

c

e

g

i

Then, using depth first search we get the directed graph

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 78

1(a)

2(b)

3(c)

4(d)

5(e)

6(f)

7(g)

8(h)

9(i)

The list of starting vertices is {1(a)}. Then, we start our path as P = {1(a)} with s = 1(a). We

extend the path with a vertex w if there is a path from w to s that avoids P . Then, we add vertices

2(b) and 3(c) to P since there is a path from each of them to s. So far, P = {1(a), 2(b), 3(c)}. Now

we look for the next vertex that we can use to extend the path. In this case, there are two possible

extensions, namely 4(d) and 8(h). First, we consider adding 4(d) to P . We continue to extend the

path by adding 5(e) and 6(f). Since {6(f), 1(a)} is an edge in G, we have completed a cycle, and

the algorithm outputs the cycle C1 = {1(a), 2(b), 3(c), 4(d), 5(e), 6(f), 1(a)}. Now we look at the

other possibility, which was adding vertex 8(h) instead of 4(d). In this case, we continue extending

the path by adding 1(a). Since {8(h), 1(a)} is an edge in G, then we have completed another cycle

and enumerate it, C2 = {1(a), 2(b), 3(c), 8(h), 1(a)}.

Note that the algorithm also looks at edges 7(g) and 9(i), but since there are no further neighbours

of 7g and 9(i), respectively, then the algorithm returns without output.

Now, we discuss the complexity of Read and Tarjan algorithm for finding cycles in a graph G =

(V,E), where e is the number of edges, n is the number of vertices and C is the number of cycles.

The time required to do depth first search and label the edges and vertices isO(n+e). As we assume

the graph is connected, we have that e ≥ n − 1. Within the recursive function, if one leaves aside

the recursive calls, the time complexity is dominated by the search for a path from the neighbours

of v to the starting vertex s of the current path and that avoids this path. This can be done in O(e)

time by a classical DFS for example, where (1) vertices visited when processing a given neighbour

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 79

w of v are marked as belonging or not to such path, avoiding thus that an edge will be visited several

times, and (2) vertices belonging to the current path are initially marked as not belonging to a path

ending in s. Then, the total number of recursive calls is at most C + e, where C corresponds to the

number of enumerated cycles and e corresponds to the number of explored dead ends .

Therefore, the complexity of Algorithm 4.1.3 is O(n+ e+ e(C + |E|)).

Note that if we apply Algorithm 4.1.3 to a binary matrix, then the corresponding complexity is

O(n + m + e + e(c + e)), where m is the number of rows, n is the number of columns, e is the

number of entries equal to 1, and c is the number of chordless cycles of length at least 6.

We will now show how to modify this algorithm for enumerating chordless cycles.

Definition 4.1.6. A chord is a single edge linking two non-consecutive vertices of the cycle. A

chordless cycle is a graph of length at least 4 with no chords.

Example 4.1.7. Figures 4.1 and 4.2 illustrate two 8-cycles. The cycle on the left has a chord from

vertex 4 to vertex 7. The cycle on the right is chordless since it does not have any chords.

1 3

57

2

4

6

8

Figure 4.1: A cycle with a chord from vertex 4 to

vertex 7.

8 3

57

2

4

6

8

Figure 4.2: A chordless cycle.

Occurrences of the pattern GMI
are exactly all chordless cycles of length at least 6 of GM . The

Read and Tarjan algorithm for finding cycles on a graph can easily be modified to avoid computing

the cycles with chords. The modified algorithm has another restriction before extending the current

path, that can be described as follows: let v be the last vertex on the current path P . The restriction

is that when extending P from v to a new vertex w we first remove all vertices t that are adjacent

to a vertex u of P and then look for w such that there is a path from w to s that avoids P . This

restriction ensures that w is not adjacent to any vertex of P and therefore that there are no chords

on the cycle. Below we describe the algorithm for finding all chordless cycles in a graph.

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 80

Algorithm 4.1.8. Enumerate chordless cycles (G)

input: Graph G

1. DFS(G)

2. For all connected components of G

For all starting vertices s of G

P = {s}
Enumerate chordless cycles recursive (G,P)

output: All cycles of G

Algorithm 4.1.9. Enumerate chordless cycles recursive (G,P)

input: Graph G, path P in G

1. Let v be the last vertex in P and s the first vertex in P

2. If {v, s} is an edge of G then output P

3. Else

For each outgoing arc w of v

Remove all vertices t that are adjacent to a vertex u of P

If there exists a path from w to s that avoids P then

Add w to P

Enumerate cycles recursive(G,P)

Figures 4.3 and 4.4 illustrate the difference between the modified algorithm to find chordless cycles

and the original algorithm of Read and Tarjan. Figure 4.3 represents a cycle that can be returned

by Read and Tarjan’s algorithm, where w can be adjacent to a vertex w2 while on the second figure

(4.4) w can not be adjacent to any vertex in P and the returned cycle is chordless.

Remark 4.1.10. Algorithm 4.1.8 can be used to find a path between a and b by finding a cycle with

starting vertex a (instead of s) and looking if there is path from w to b (instead of s) to extend the

path.

Note that removing vertices that are adjacent to a vertex of P can be done in O(e) time as it reduces

to looking at all edges of the graph, and thus does not increase the complexity of checking if the

current path can be extended. We can then enumerate all chordless cycles of length at least 6 in time

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 81

w1

w3w

s

w2

v

Figure 4.3: A cycle with a chord re-

turned by Read and Tarjan’s algorithm.

w1

w3w

s

w2

v

Figure 4.4: A chordless cycle returned by the

modified version of Read and Tarjan’s alforithm.

O(n+m+ e(1 + c+ e)).

Proposition 4.1.11. Let M be a non-C1P binary matrix with m rows, n columns, e entries 1 and

containing kI Tucker patterns of type I, GMI
. Then, all Tucker patterns GMI

can be enumerated

with Algorithm 4.1.8 in time O(n+m+ e(kI + e+ 1)).

Proof. Read and Tarjan proved that the complexity of enumerating all C cycles in a graph is O(n+

m + e(C + e + 1)) [37]. Then, we only need to show that the complexity remains the same with

the new restriction added to find only chordless cycles in a graph. The complexity of removing all

vertices t that are adjacent to a vertex u of P is O(e), since it reduces to the complexity of looking

at all edges of the graph. Then, the time needed to enumerate all chordless cycles in a graph is

O(n+m+ e(kI + e+ 1)), where kI is the number of chordless cycles in GMI
.

Pattern GMII
. Figure 4.6 illustrates the bipartite graph of Tucker pattern GMII

, and Figure 4.5

illustrates the steps involved in enumerating Tucker pattern GMII
. To enumerate all occurrences of

pattern GMII
, we begin by enumerating all possible sets of two row vertices {a, b}, in time O(n2)

(orange vertices in Figure 4.5). Then, we compute the set Va,b of column vertices that are adjacent

to both a and b (green vertices on Figures 4.5 and 4.6), in time O(m) by simple comparison of both

sets associated to a and b to select common elements. We also pick x from Va,b arbitrarily (orange

vertex in Figure 4.5). For a given (a, b, x), we pick y as an element in the neighborhood of a that is

not in Va,b and similarly we pick z as an element in the neighborhood of b that is not in Va,b. We can

pick y and z in time O(m2) (orange vertices in Figure 4.5). Then, we compute the set Vy,z of row

vertices that are adjacent to either y (resp. z) and a vertex of Va,b, or at least two vertices of Va,b (blue

vertices on Figures 4.5 and 4.6), but not x, in time O(n). Then, to enumerate all patterns GMII
,

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 82

we only need to enumerate all chordless paths between y and z using only vertices from Va,b ∪ Vy,z
(dashed red path in Figure 4.5). This can be achieved in timeO(n+m+e(kII +1)) using Read and

Tarjan’s algorithm as modified above. The total complexity is then O(n2m3(n+m) + e(kII + 1)).

y a b xz

Va,b

Vy,zv1 v2 v3

Figure 4.5: Enumerating Tucker pattern GMII
: Enumerate the vertices a, b (in orange), then find

the green set Va,b of vertices adjacent to both a and b. Later, pick x, y and z (orange vertices). Then,

find the blue set Vy,z of vertices adjacent to either two vertices in Va,b, or adjacent to y and a vertex

in Va,b or adjacent to z and a vertex in Va,b. Finally, find a path between y and z.

x

a b

y z

Figure 4.6: Tucker pattern GMII

Pattern GMIII
. Figure 4.8 illustrates the bipartite graph of Tucker pattern GMIII

, and Figure 4.7

illustrates the steps involved in enumerating Tucker pattern GMIII
. Occurrences of pattern GMIII

can be enumerated in a manner similar to pattern GMII
. The main difference is that the initial step

requires to enumerate all possible row vertex {a}, instead of two row vertices {a, b}, and can then

be done in time O(n) (orange vertex in Figure 4.7).

Then, we compute the set Va of column vertices that are adjacent to a (green vertices on Figures 4.7

and 4.8), in time O(m) by simple comparison of the set associated to a. We also pick x from Va

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 83

arbitrary (orange vertex in Figure 4.7). For a given (a, x), we pick y and z as elements that are not

in Va, in time O(m2) (orange vertices in Figure 4.7). Then, we compute the set Vy,z of row vertices

that are adjacent to either y (resp. z) and a vertex of Va, or at least two vertices of Va (blue vertices

on Figure 4.8), but not x. As this set of vertices is defined by bounded size subgraphs ofGM , they it

can be computed in time O(m). Then, to enumerate all patterns GMIII
, we only need to enumerate

all chordless paths between y and z using only vertices from Va ∪ Vy,z (dashed red path in Figure

4.7). This can be achieved in time O(n + m + e(kIII + 1)) using Read and Tarjan’s algorithm as

modified above. The total complexity is then O(nm3(n+m) + e(kIII + 1)).

y a z x

Va

Vy,zv1 v2 v3

Figure 4.7: Enumerating Tucker pattern GMIII
: Enumerate the vertex a (in orange), then find the

green set Va of vertices adjacent to a. Later, we pick x from Va arbitrarily and y and z not in Va.

Then, find the blue set Vy,z of vertices adjacent to either two vertices in Va,b, y and a vertex in Va,b

or z and a vertex in Va,b. Finally, find a path between y and z.

x

a

y z

Figure 4.8: Tucker pattern GMIII

Pattern GMIV
. To enumerate all occurrences of pattern GMIV

more efficiently than checking

all configurations of 4 row vertices and 6 column vertices, we start by enumerating only the row

vertices {a, b, c, d}, in time O(m4). Then, all potential sets of column vertices compatible with

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 84

this quadruplet (denoted by Vx for possible vertices x, Vy, Vz , Vu, Vv and Vw being defined sim-

ilarity) are computed, in time O(n) as they are pairwise disjoint. It is then sufficient to list all

(x, y, z, u, v, w) ∈ Vx×Vy · · · ×Vw, as each defines an occurrence of a Tucker pattern GMIV
. This

can then be done in time O(m4n+ kIV).

PatternGMV
. PatternGMV

can be enumerated in a similar way, starting from all possible quadru-

ples {a, b, c, d} of row vertices, in time O(m4n+ kIV).

Summing the complexities of these five steps, we then obtain the complexity stated in Theorem 4.1.1.

4.2 Analyzing Real Data

In this section we apply the main theorem for enumerating Tucker patterns, described in section

4.1 to a binary matrix that resulted from reconstructing the ancestral genome of a set of several

mammalian amniotes species (mammalians, marsupials and avian species).

Recall that we analyzed the data from the set of genomes of the phylogenetic tree, consisting of

the following species: Homo sapiens (humans), Pan troglodytes (chimpanzee), Pongo pygmaeus

(orangutan), Macaca mulatta (monkey), Mus musculus (mouse), Rattus norvegicus (rat), Equus

caballus (horse), Canis familiaris (dog), Bos taurus (cows), Monodelphis domestica (opossum),

Gallus gallus (chicken), and Taeniopygia guttata (zebra finch). The authors wanted to reconstruct

the genome of the common ancestor of amniote genomes species, that is mammals, marsupials

and avian genomes species [35]. Figure 4.9 represents the phylogenetic tree of this set of species.

Each node is labeled according to the species that it corresponds to. The species that is being

reconstructed is labeled as "ancestor".

From this set of data the authors constructed a binary matrix M , of size 1861 × 1546, where each

column represents a marker and every row represents an ancestral contiguous set (ACS), that is, a

set of ancestral markers that are believed to be contiguous in the ancestor species. As we apply the

principles described in the introduction to find ancestral syntenies, every row is a group of markers

conserved in both a mammalian/marsupial genome and a bird genome. This is a property of the

matrix. What is interesting is that the bird genomes are well known to be quite stable [17]: it can be

seen in Accessory figure 3 of [17] that there are no inter-chromosomal rearrangements (that is, ex-

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 85

Human
Chimpanzee

Orangutan
Macaca
Mouse

Rat
Horse

Dog
Cow

Opossum
Chicken

Zebra finch

Ancestor

Figure 4.9: [12] Phylogenetic tree of mammals, marsupials and avian genomes. The common

ancestor of amniote genomes is being illustrated and reconstructed.

change of genetic material between chromosomes since the divergence of the last common ancestor

of chicken and zebra finch), but a few intra-chromosomal rearrangements (that is, rearrangements

within a chromosome). Hence one can expect a matrix with low conflict [35] and we can have a

look at the precise causes of the few observed conflicts.

We constructed the overlap graph GM of M , that consists of roughly 160 connected components.

There were 5 connected components that contained conflicts. We analyzed those five connected

components, each representing a submatrix Mi, for i = 1, . . . , 5, respectively. In this way, we

divided M into five smaller matrices, M1, M2, M3, M4 and M5, that together form M .

The implementation of the algorithm was written with the help of Brad Jones (funded by an SFU

VPR USRA, in the summer 2011).

We analyzed each of these five matrices and found for each of the matrices the number of Tucker

patterns, the possible rows and columns that could be removed so that the matrix is C1P, and the

possible rows that could be result of convergent evolution.

From an evolutionary point of view, the notion of convergent evolution is as follows. Let A be an

ancestor, with two branches leaving towards descendants, that are then split into two groups D1

and D2 (the nodes of the two subtrees whose roots are the children of A). A character results from

convergent evolution if it was not ancestral but appeared independently along two branches, one

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 86

within D1 and one within D2. A mathematical definition/algorithm is to detect groups of genes that

appear along two branches of the tree. It can be misleading, since technically, convergent evolution

can also include a character that was not ancestral but appeared along the two branches leaving A

for D1 and D2 (and thus is conserved in all species), that is, very high in the tree; this is a situation

that is very unlikely but could happen in the true evolution. Below we present the results obtained.

Size No. GMI
No. GMII

No. GMIII
No. GMIV

No. GMV

M1 21× 17 40 16 0 0 40

M2 25× 19 29 1 42 68 21

M3 28× 22 1113 12 169 0 0

M4 6× 6 0 0 1 0 0

M5 11× 9 3 0 0 0 0

Table 4.1: Number of Tucker patterns of each type in each of the five matrices.

Matrix M1. The following tables summarize the number of Tucker patterns each row belongs to

and the number of rows each Tucker pattern contains for the first matrix M1.

No. GMI
No. GMII

No. GMIII
No. GMIV

No. GMV

r0 0 16 0 0 40

r1 0 16 0 0 0

r2 40 16 0 0 40

r3 8 0 0 0 8

r5 32 0 0 0 32

r9 40 0 0 0 0

r10 40 16 0 0 40

Table 4.2: Number of Tucker patterns each row belongs to in M1. Only rows that belong to at least

one Tucker pattern are shown.

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 87

No. rows No. GMI
No. GMII

No. GMIII
No. GMIV

No. GMV

4 40 16 0 0 40

Table 4.3: Number of Tucker patterns in M1 with number of rows as specified on the first column

of the table. That is, there are 40 GMI
with 4 rows as well as 16 GMII

with 4 rows.

From Table 4.3 we can see that all Tucker patterns in M1 contain 4 rows.

Below is a list of rows and their corresponding markers and a list of marker orders in each species.

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 88

Row Markers

0 1 2 3 4 5 6 7 8

1 7 8 9

2 6 7 8 9

3 5 6 or -6 -5

4 6

5 5 6

6 4 5 or -5 -4

7 5

8 4

9 1 2 3 4 5

10 2 3 8

11 1 2 or -2 -1

12 2

13 2 3 or -3 -2

14 3

15 1

16 1 2 3

17 7 8 or -8 -7

18 8

19 7

20 4 5

Table 4.4: List of rows and their corresponding markers in M1.

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 89

Bos chr2: < 31 > −9$
taurus chr16: < 10 > −7− 6− 5− 4− 3− 2− 1− 8 < 6 > $

Canis chr2: < 23 > −9− 8− 7− 6$

familiaris chr5: < 20 > 1 2 3 4 5 < 15 > $

Equus chr2: < 12 > −9− 8− 7− 6− 5− 4− 3− 2− 1 < 23 > $

caballus

Gallus chr21:−3− 2− 1 4 5 6− 8− 7− 9$

gallus

Homo chr1: 1 2 3 4 5 6 7 8 9 < 48 > $

sapiens

Macaca chr1: < 1 > 1 2 3 4 5 6 7 8 9 < 48 > $

mulatta

Monodelphis chr2: < 19 > 1 < 97 > $

domestica chr4: < 76 > −9 < 2 > −7 < 1 > −6− 5 2− 8 3 < 6 > −4$
Mus chr4: < 40 > −9− 8− 7− 6− 5− 4− 3− 2− 1$

musculus

Pan chr1: 1 2 3 4 5 6 7 8 9 < 48 > $

troglodytes

Pongo chr1:< 48 > −9− 8− 7− 6− 5− 4− 3− 2− 1$

pygmaeus

Rattus chr5: < 44 > −9− 8− 7− 6− 5− 4− 3− 2− 1$

norvegicus

Taeniopygia chr21: 9 7 8− 3− 2− 1− 6− 5− 4$

guttata

Table 4.5: List of marker orders in each species.

We found that there are two rows, row 2 and row 10, that are present in all Tucker patterns. Then,

removing any of these two rows will eliminate the conflict, making the matrix C1P. We look now at

the question of understanding the conflict we observe: which of these two rows could be considered

as resulting from convergent evolution ?

Table 4.4 gives the markers that each row corresponds to. Row 2 corresponds to markers 6 7 8 9 and

row 10 to 2 3 8. Table 4.5 gives the markers in each species. Combining these two tables we can

see which rows are present in each species. At first it might look like row 10, that is present in only

two species (the zebra finch and the opossum) is the most obvious candidate for being an example

of convergent evolution. However, this is not so obvious. Indeed if we consider it was an ancestral

character, then it has been lost along two branches, the one leading to the chicken and the one

leading to the mammalian ancestor; conversely, if we consider it was not ancestral, then it has been

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 90

gained independently along two branches (zebra finch and opossum). The same can be said about

row 2: it could have been lost in the zebra finch and opossum branches or gained in the chicken

and mammalian branch. In the present case however, the most likely convergent evolution is row 10

because of two arguments: it is shorter than row 2 and thus more likely to result from independent

rearrangements along two branches and the opossum genome is known to have evolved in a very

different way than other eutherian genomes (C. Chauve, personal communication).

Hence, we can see that the almost constant nature of both rows in the mammalian genomes leads us

to consider in fact a species tree with only four leaves (chicken, zebra finch, opossum, mammalian

ancestor), where detecting convergent evolution is not easy. The situation is rendered harder by an

unbalanced taxonomic sampling that creates two very long branches (to the birds and the opossum).

Matrices M2 and M3. The following tables summarize the results for the second matrix M2.

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 91

No. GMII
No. GMIII

No. GMIV
No. GMV

r0 12 72 0 0

r1 0 169 0 0

r2 0 3 0 0

r3 0 36 0 0

r4 12 169 0 0

r5 0 1 0 0

r8 0 3 0 0

r9 60 30 0 0

r10 0 12 0 0

r11 0 12 0 0

r13 6 30 0 0

r14 0 24 0 0

r15 6 42 0 0

r16 0 27 0 0

r21 6 63 0 0

r22 0 3 0 0

r23 0 6 0 0

r27 0 12 0 0

Table 4.6: The table illustrates the number of Tucker patterns each row belongs to in M2.

No. rows No. GMII
No. GMIII

No. GMIV
No. GMV

3 0 4 0 0

4 12 132 0 0

5 0 24 0 0

6 0 9 0 0

Table 4.7: The table illustrates the number of Tucker patterns in M2 with number of rows as speci-

fied on the first column of the table.

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 92

Table 4.7 says that all Tucker patterns in M2 are small, since they only contain 3, 4, 5 or 6 rows.

We analyzed the rows that could be removed from M2 to eliminate the conflict and therefore allow

M2 to be C1P. We found that we need to remove two rows fromM2 so that it is C1P. We can remove

rows 0 and 1, or rows 0 and 4.

When looking more carefully at this matrix, it appears clearly (see Appendix) that the conflict is

created by the mixing of two sets of markers (425 . . . 428; 164 . . . 177). Again, deciding whether

they were mixed in the ancestor and were separated in two well defined groups along the mammalian

branch (then separated again along the rodents branch, which is not significant as rodent genomes

are known to have an increased rate of genome rearrangements), or were in two separate groups in

the amniote ancestor and then got mixed along the birds, rodents and opossum lineages is difficult,

and it is difficult to detect clear convergent evolution signals.

The following tables summarize the results for the third matrix M3.

No. GMI
No. GMII

No. GMIII
No. GMIV

No. GMV

r0 3 0 0 0 0

r1 3 0 0 0 0

r7 1 0 0 0 0

r8 1 0 0 0 0

r9 2 0 0 0 0

Table 4.8: The table illustrates the number of Tucker patterns each row belongs to in M3.

No. rows No. GMI
No. GMII

No. GMIII
No. GMIV

No. GMV

3 2 0 0 0 0

4 1 0 0 0 0

Table 4.9: The table illustrates the number of Tucker patterns in M3 with number of rows as speci-

fied on the first column of the table.

We analyzed the rows and columns that could be removed from M3 to eliminate the conflict and

therefore allowM3 to be C1P. We found that there are two rows that are present in all Tucker patters:

CHAPTER 4. ENUMERATING ALL TUCKER PATTERNS 93

row 0 and row 1. Therefore, by removing row 0 or row 1 M3 is C1P. Row 0 is only present in two

species (Canis familliaris and Taeniopygia guttata) while row 1 is only present in Gallus gallus and

Monodelphis domestica. Thus it is more likely that row 0 results from convergent evolution, and is

the most obvious choice for being discarded.

4.3 Conclusion

In this chapter we presented an algorithm that enumerates all Tucker patterns on a binary matrix

in polynomial time on the size of the output. Also, we used the algorithm to analyze some real

data. We applied the algorithm to a binary matrix that resulted from reconstructing the ancestral

genome of a set of mammalian amniotes. Our results show that, at least on the considered dataset,

enumerating all Tucker patterns is a good strategy to suggest possible rows to remove to make a

matrix C1P, as in most cases these rows belong to a lot of Tucker patterns. This is consistent with

previous results that were considering Minimum Conflicting Sets [11], [41], although our approach

has the advantage of being output-sensitive. It was also interesting to notice that in most cases,

Tucker patterns are small, which might suggest that, as an alternative to the exhaustive generation,

generating all small Tucker patterns is an approach that is worthwhile to be explored, in particular

the problem of output-sensitive generation, as an alternative to the brute-force approach that would

enumerate all subsets of rows of bounded cardinality. Finally, the main points of the analysis of

the amniote dataset are twofold: first the taxonomic structure of the considered species makes it

difficult to detect traces of convergent evolution, and second, the conflicts appear with relatively

small groups of markers that are subject to some pressure to be conserved contiguous in several

species but not to a strong pressure to be maintained in the same order, which results in numerous

small-scale rearrangements that are the cause of convergent evolution. This raises the interesting

question, that is far beyond the scope of this document, to develop computational approaches to

understand the evolution of such genome segments.

Appendix A

Appendix

We present here the corresponding markers and a list of marker orders for each species for each

matrix.

Matrix M2. Below is a list of rows and their corresponding markers and a list of marker orders in

each species.

94

APPENDIX A. APPENDIX 95

Row Markers

0 165 164 166 167 168 169 171 172 173 174 425 426 427 428 170

1 426 176 or -176 -426

2 426

3 166 167 165 173 174 175

4 175 176 or -176 -175

5 176

6 176 -177 or 177 -176

7 177

8 176 177

9 176 177 175

10 174 175 or -175 -174

11 175

12 174

13 176 177 164 425 426

14 175 174 (unordered)

15 176 177 174 175

16 166 174 165 173

17 166 167 or -167 166

18 167

19 166

20 166 167

21 176 177 426

22 425 426 or -426 -425

23 425 426

24 164 425 or -425 -164

25 425

26 164

27 164 425 426

Table A.1: List of rows and their corresponding markers in M2.

APPENDIX A. APPENDIX 96

Bos chr17: < 12 > −177− 176− 175− 174− 173 165 166− 170− 169− 168− 167 171 172− 164 425 426 427 428$

taurus

Canis chr26: −177− 176− 175− 174− 173 165 166 167 168 169 170 171 172− 164 425 426 427 428 < 1 > $

familiaris

Equus chr8: −428− 427− 426− 425− 164− 172− 171− 170− 169− 168− 167− 166− 165 173 174 175 176 177 < 17 > $

caballus

Gallus chr15: 177− 176− 175− 174− 165 173 166 167 164 425 426− 428− 172− 171− 170− 427− 169− 168$

gallus

Homo chr12: < 33 > 164 165 166 167 168 169 170 171 172 173 174 175 176 177$

sapiens chr22: < 1 > 425 426 427 428 < 10 > $

Macaca chr10: < 26 > 425 426 427 428 < 10 > $

mulatta chr11: < 38 > 164 165 166 167 168 169 170 171 172 173 174 175 176 177$

Monodelphis chr3: < 64 > 177− 176− 175 < 1 > −166− 165 173 174− 164− 172− 168− 167 425 169 170 171 428 426 427$

domestica

Mus chr5: < 31 > −177− 176− 426− 425 164− 172− 171− 170− 169− 168− 167− 166− 165 173 174 175 < 13 > $

musculus chr11: −428− 427 < 56 > $

Pan chr12: < 33 > 164 165 166 167 168 169 170 171 172 173 174 175 176 177$

troglodytes chr22: < 1 > 425 426 427 428 < 10 > $

Pongo chr12: < 33 > 164 165 166 167 168 169 170 171 172 173 174 175 176 177$

pygmaeus chr22: < 1 > 425 426 427 428 < 10 > $

Rattus chr12: < 13 > −175− 174− 173 165 166 167 168 169 170 171 172− 164 426 176 177$

norvegicus chr14: < 21 > −428− 427 < 11 > $

chr19: < 4 > −425 < 22 > $

Taeniopygia chr15: −175− 174− 165 173 166 167 164 425 426 176− 177− 168 170 171 172 428 169 427$

guttata

Table A.2: List of marker orders in each species.

Matrix M3. Below is a list of rows and their corresponding markers and a list of marker orders in

each species.

APPENDIX A. APPENDIX 97

Row Markers

0 445 454 482 2574

1 455 482 or -455 -482

2 482

3 445 482 or -482 -455

4 445 2574 or -2574 -445

5 445

6 445 482 2574

7 454 455 or -455 -454

8 455

9 454

10 454 455

Table A.3: List of rows and their corresponding markers in M3.

List of marker orders in each species:

APPENDIX A. APPENDIX 98

Bos chr1: < 37 > −482 < 4 > 445 446 447$

taurus chr22: 449 < 4 > 454 < 10 > −455 < 8 > $

chr27: < 8 > 448$

Canis chr20: < 18 > −455 < 3 > $

familiaris chr23: < 4 > 454− 449− 448− 447− 446− 445 482 < 6 > $

Equus chr16: < 18 > −455− 454 < 4 > −449− 448− 447− 446− 445 482 < 5 > $

caballus

Gallus chr2: < 23 > 446 447 448 449− 445 482− 455 454 < 62 > $

gallus

Homo chr3: < 6 > 445 446 447 448 449 < 4 > 454 455 < 26 > 482 < 16 > $

sapiens

Macaca chr2: < 27 > −455− 454 < 17 > −482 445 446 447 448 449 < 3 > $

mulatta

Monodelphis chr8: < 80 > −454 455− 482 445 446 447 448 449 < 6 > $

domestica

Mus chr9: < 36 > −482 < 6 > −449 < 2 > 454 455$

musculus chr14: < 1 > −448 < 6 > 445 446 < 21 > $

chr17: < 19 > 447 < 16 > $

Pan chr3: < 6 > 445 446 447 448 449 < 4 > 454 455 < 26 > 482 < 16 > $

troglodytes

Pongo chr3: < 32 > −455− 454 < 4 > −449− 448− 447− 446− 445 482 < 16 > $

pygmaeus

Rattus chr8: < 36 > −482 < 6 > −449 < 2 > 454 455$

norvegicus chr9: < 1 > −447 < 34 > $

chr15: < 2 > 448 < 20 > $

chr16: < 4 > 445 446 < 18 > $

Taeniopygia chr2: < 33 > 446 447 448 449− 445 482− 454 455 < 52 > $

guttata

Table A.4: List of marker orders in each species.

Bibliography

[1] V. A. Albert, Parsimony, phylogeny, and genomics, Oxford Press University, 2006.

[2] N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algorithmica 17 (1997), 209–223.

[3] S. Benzer, On the topology of the genetic fine structure, Proc. Nat. Acad. Sci. USA 47 (1961), 403–415.

[4] A. Bergeron, M. Blanchette, A. Chateau, and C. Chauve, Reconstructing ancestral gene orders using conserved

intervals, Algorithms in bioinformatics (wabi), 2004, pp. 14–25.

[5] M. Blanchette, E. D. Green, W. Miller, and D. Haussler, Reconstructing large regions of an ancestral mammalian

genome in silico, Genome Res. 14 (2004), 2412–2423.

[6] G. Blin, R. Rizzi, and S. Vialette, A faster algorithm for finding minimum tucker submatrices, Computability in

europe (cie), 2010.

[7] K. S. Booth and G. S. Luker, Testing for the consecutive ones property, interval graphs, and planarity using pq-tree

algorithms, J. Comput. Syst. Sci. 13 (1976), 335–379.

[8] G. Bourque, P. Pevzner, and G. Tesler, Reconstructing the genomic architecture of ancestral mammals: lessons from

human, mouse and rat genomes, Genome Res 14 (2004), 507–516.

[9] T. A. Brown, Genomes, Oxford: Wiley-Liss, 2002.

[10] E. Callaway, Plague genome: The black death decoded, Nature 478 (2011), 444–446.

[11] C. Chauve, U.-U. Haus, T. Stephen, and V. P. You, Minimal conflicting sets for the consecutive ones property in

ancestral genome reconstruction, J. Comput. Biol. 17 (2010), 1167–1181.

[12] C Chauve and E. Tannier, A methodological framework for the reconstruction of contiguous regions of ancestral

genomes and its applications to mammalian genomes, PLoS Comput. Biol. 4 (2008), e1000234.

[13] M. Dom, J. Guo, and R. Niedermeier, Approximation and fixed-parameter algorithms for consecutive ones subma-

trix problems, J. Comput. Syst. Sci. 76 (2010), 204–221.

[14] M. Hoss et al., Dna damage and dna sequence retrieval from ancient tissues, Nucleic Acids Res. 24 (1996), no. 7,

1304–1307.

[15] P. Charbit et al., On the consecutive ones property, Inf. Process. Letters 108 (2008), no. 4, 186–191.

[16] R. E. Green et al, A draft sequence of the neandertal genome, Science 328 (2010), no. 5979, 710–722.

99

BIBLIOGRAPHY 100

[17] W. C. Warrer et al., The genome of a songbird, Nature 464 (2010), 757–762.

[18] W. Miller et al, Sequencing the nuclear genome of the extinct woolly mammoth, Nature 456 (2008), 387–390.

[19] T. Faraut, Addressing chromosome evolution in the whole-genome sequence era, Chromosome Res. 16 (2008), no. 1,

5–16.

[20] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette, Combinatorics of genome rearrangements, The MIT

Press, 2009.

[21] L. Froenicke, M. Garcia Caldés, A. Graphodatsky, S. Müller, L. A. Lyons, T. J. Robinson, M. Volleth, F. Yang, and

J. Wienberg, Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian

genomes?, Genome Res. 16 (2006), no. 3, 306–310.

[22] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 18 (1965), 835–855.

[23] M. Habib, C. Paul, and L. Viennot, Partition refinement techniques: An interesting algorithmic tool kit, Int. J. Found.

Comput. Sci. 10 (1999), 147–170.

[24] Q Ji, Z. Luo, C. Yuan, J. Wible, Zhang J., and Georgi J., The earliest known eutherian mammal, Nature 416 (2002),

816–882.

[25] D. G. Kendall, Incidence matrices, interval graphs and seriation in archaelogy, Pacific Journal of Mathematics 28

(1969), 565–570.

[26] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. P. Spinrad, Certifying algorithms for recognizing interval graphs

and permutation graphs, SIAM J. Comput. 36 (2006), no. 2, 326–353.

[27] D. A. Liberles, Ancestral sequence reconstruction, Oxford University Press, 2007.

[28] T. Lust and J. Teghemll, Multiobjective decomposition of integer matrices: application to radiotherapy, CoRR

abs/1006.1031 (2010).

[29] M. Malekesmaeili, On certificates that a matrix does not have the consecutive ones property, Master’s Thesis, 2011.

[30] R. M. McConnell, A certifying algorithm for the consecutive ones property, Acm/siam symposium on discrete

algorithms (soda), 2004, pp. 119–161.

[31] R. M. McConnell, K. Mehlhorn, S. Naher, and P. Schweitzer, Certifying algorithms, Comput. Sci. Rev. 5 (2011),

119–161.

[32] F. R. McMorris, C. Wang, and P. Zhang, On probe interval graphs, Discrete Appl. Math. 88 (1998), 315–324.

[33] J. Meidanis, O. Porto, and G. Telles, A note on computing set overlap classes, Discrete Appl. Math. 88 (1998),

no. 1-3, 325–354.

[34] M Muffato and Crollius H. Roest, Paleogenomics in vertebrates, or the recovery of lost genomes from the mist of

time, Bioessays 30 (2008), no. 2, 122–134.

[35] A. Ouangraoua, E. Tannier, and C. Chauve, Reconstructing the architecture of the ancestral amniote genome, Bioin-

formatics 27 (2010), no. 19, 2664–2671.

[36] M. Raffinot, Consecutive ones property testing: Cut or swap, Computability in europe (cie), 2011, pp. 239–249.

BIBLIOGRAPHY 101

[37] R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and spanning trees, Networks

5 (1975), 237–252.

[38] F. Richard, M. Lombard, and Dutrullaux B., Reconstruction of the ancestral karyotype of eutherian mammals,

Chromosome Res. 11 (2003), no. 6, 605–618.

[39] J. Romiguier, V. Ranwez, E. J.P. Douzery, and N. Galtier, Contrasting gc-content dynamics across 33 mammalian

genomes: Relationship with life-history traits and chromosome sizes, Genome Res. 20 (2010), no. 8, 1001–1009.

[40] F. Rubin, A search procedure for hamilton paths and circuits, J. ACM 21 (1974), 576–580.

[41] J. Stoye and R. Wittler, A unified approach for reconstructing ancient gene clusters, IEEE/ACM Trans. Comput.

Biology Bioinform 6 (2009), 387–400.

[42] N. Tamnura, Eomaia, 2010. http://en.wikipedia.org/wiki/File:Eomaia_NT.jpg, accessed

November 27 2012.

[43] A. C. Tucker, A structure theorem for the consecutive 1’s property, J. Combinat. Theory (B) 12 (1972), 153–162.

[44] D. B. West, Introduction to graph theory, Pearson, 2000.

http://en.wikipedia.org/wiki/File:Eomaia_NT.jpg

	Approval
	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	I Background
	Introduction
	Ancestral Genomes
	Results and Plan

	Background on the C1P
	The C1P and related concepts
	Binary Matrices and Bipartite Graphs
	The Consecutive Ones Property
	Overlap Graph

	Algorithms and Certificates for Deciding the C1P
	Certificates
	The Early Approaches
	Tucker Patterns and Asteroidal Triples
	Finding Tucker Patterns
	The Incompatibility Graph
	Partition Refinement
	PQ-trees and PQR-trees

	II New Results
	Structural and Algorithmic Results on Partition Refinement
	Matrices that are Tucker Patterns
	Simple algorithms
	Algorithms based on Partition Refinement

	Extracting a cycle from a non-C1P binary matrix
	Conclusion

	Enumerating all Tucker Patterns
	Theoretical Results
	Analyzing Real Data
	Conclusion

	Appendix Appendix
	Bibliography

