
ON MATRICES THAT DO NOT HAVE THE

CONSECUTIVE ONES PROPERTY

by

Vivija Ping You

B.Sc. University of Victoria, 2007

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the Department

of

Mathematics

c© Vivija Ping You 2009

SIMON FRASER UNIVERSITY

Summer 2009

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Vivija Ping You

Degree: Master of Science

Title of Thesis: On Matrices that Do Not Have the Consecutive Ones Prop-

erty

Examining Committee: Dr. Tamon Stephen

Chair

Dr. Cedric Chauve, Associate Professor, Mathemat-

ics, Simon Fraser University

Senior Supervisor

Dr. Ladislav Stacho, Associate Professor, Mathemat-

ics, Simon Fraser University

Supervisor

Dr. Jan Manuch, Postdoctoral Fellow, Computing

Science, Simon Fraser University

Supervisor

Dr. Marni Mishna, Assistant Professor, Mathematics,

Simon Fraser University

SFU Examiner

Date Approved:

ii

Abstract

A binary matrix has the consecutive ones property if its columns can be ordered in such a

way that, in each row, all 1s are consecutive. This classical combinatorial notion has been

central in genomic problems such as physical mapping or paleogenomics. In these fields,

genomes that cannot be sequenced are represented by a matrix that has the consecutive ones

property, but are inferred from an initial matrix that does not have this property due to

errors. In this work, we study combinatorial and algorithmic characterizations of matrices

that do not have the consecutive ones property. We review existing results and propose new

results centered around the notion of minimal conflicting sets.

iii

Contents

Approval ii

Abstract iii

Contents iv

List of Tables vi

List of Figures vii

Acknowledgments ix

I Background 1

1 Introduction 2

1.1 The Consecutive Ones Property . 3

1.1.1 Formal Definitions . 3

1.1.2 Two Graphs Related to the Consecutive Ones Property 5

1.1.3 A Brief Historical Survey . 7

1.2 Motivation: Applications from Computational Genomics 8

1.2.1 Physical Mapping . 8

1.2.2 Ancestral Genome Architecture . 9

1.2.3 Real Data and Non− C1P Matrices 10

1.3 Conflicting Sets . 13

1.3.1 Definitions . 13

1.3.2 Matrices with Two 1s per Row . 14

iv

1.4 Results and Plan . 17

2 Deciding the C1P 19

2.1 Asteroidal Triples and Forbidden Patterns . 19

2.1.1 Forbidden Patterns . 20

2.1.2 Asteroidal Triples . 29

2.2 Partition Refinement and the C1P . 30

2.2.1 General Partition Refinement . 31

2.2.2 Using Partition Refinement to Decide the C1P 33

2.3 PQ-Trees and PQR-Trees . 37

2.4 Incompatibility Graph . 41

II New Results 43

3 Minimum Conflicting Sets and Tucker Patterns 44

3.1 Minimal Conflicting Sets in Matrices with Three 1s per Row 44

3.2 An Algorithm to Decide Whether a Row is Conflicting 57

4 Computing All Minimal Conflicting Sets 62

4.1 Existing Algorithms . 63

4.2 A Monotone Boolean Function Approach . 64

4.3 An Efficient Backtracking Approach for Matrices with Two 1s per Row . . . 70

4.4 Experimental Results . 74

5 Conclusion and Perspectives 77

v

List of Tables

4.1 Algorithms for Generating all MCS . 62

4.2 Statistics on MCS and MC1P on simulated adjacencies datasets. FP CR is

the Conflicting Ratio for False Positives, TP CR is for CR the True Positives,

FP MR is the MC1P ratio for False Positives and TP MR is the MR for True

Positives. 75

4.3 Distribution of the MCS and MC1P ratios for all rows (ALL), false positives

(FP) and true positives (TP). Each cell of the table contains the number of

rows whose ratio is in the interval for the column. 75

vi

List of Figures

2.1 B(MIn) . 22

2.2 B(MIIn) . 22

2.3 B(MIIIn) . 22

2.4 B(MIV) . 23

2.5 B(MV) . 23

vii

This thesis is dedicated to my mom, YunLan Yang, and to Venerable Guan Cheng of the

International Buddhist Temple in Richmond, British Columbia.

viii

Acknowledgments

I want to thank my senior supervisor Dr. Cedric Chauve, who introduced me to this inter-

esting mathematics, and whose dedication and insight helped shape the thesis. I also thank

the committee members Dr. Tamon Stephen, Dr. Ladislav Stacho, Dr. Jan Manuch, and

Dr. Marni Mishna, and others who read my thesis and gave me advice: Steve Kieffer, Suling

Yang and Sam Bassett. I thank Dr. Peter Dukes and Justin Chan at the University of Vic-

toria, who encouraged me and were always supportive and patient, as well as my classmates

at U-Vic: Steve Lowdon, Jian Kang, Philip Rempel. I also want to thank all the professors

who wrote references for me, and finally all my coworkers in the calculus workshop, and the

coordinators Justin Gray, and Keshav Mukunda.

ix

Part I

Background

1

Chapter 1

Introduction

Binary matrices, i.e. matrices whose entries are either 0 or 1, are classical combinatorial

objects that have been used in several types of applications. For a given binary matrix, if

we can rearrange its columns such that the 1s in each row are consecutive, we say that the

matrix has the consecutive ones property. The consecutive ones property plays a central

role in several applications in which we want to arrange a set of objects such that some

of the objects are required to be contiguous. In computational biology for example (the

main motivation for the work presented in this thesis), we want to verify whether a given

set of segments of chromosome is compatible with a linear arrangement of the genes it

contains [33]. In graph theory, it has been used to test whether a given graph is an interval

graph [22]. In file organization, in a computer file system for example, we want to arrange

the records such that the response to each query can be retrieved as a set of consecutive

records [19]. In statistical archaeology, we want to get the information from the ‘graves-

versus-varieties’ matrix to see whether each variety of pottery can be ascribed to a definite

segment of the true temporal order [28].

In this introductory chapter, we first recall the formal definition of the consecutive ones

property, together with some related graph theoretical notions and a brief historical survey.

Next, we will present two important applications of the consecutive ones property in compu-

tational biology: physical mapping and paleogenomics. This discussion will lead naturally

to the main objects we study in this thesis: matrices that do not have the consecutive ones

property, and minimal conflicting sets. We will then present some existing results for the

case of matrices with exactly two 1s per row. These results suggest research questions for

the general case, that we attack in the current thesis. We will conclude this chapter by

2

CHAPTER 1. INTRODUCTION 3

outlining the plan of the rest of this thesis and the results we obtained.

1.1 The Consecutive Ones Property

1.1.1 Formal Definitions

We give here the formal definition of the consecutive ones property.

Definition 1.1.1 Let m and n be two positive integers. An m × n binary matrix M is a

matrix with m rows and n columns, with entries equal to 0 or 1. We denote by ri the ith

row and cj the jth column of M , and by Mij the entry on the ith row and jth column. We

denote by R(M) (resp. C(M)) the set of rows (resp. columns) of M , and we write c for the

total number of 1s in M .

Definition 1.1.2 A binary matrix has the consecutive ones property (C1P from now on)

if there exists a permutation of its columns such that after ordering the columns according

to this permutation, all the entries equal to 1 in each row are consecutive. Binary matrices

that have the C1P are called C1P matrices, and binary matrices that do not have the C1P

are called non-C1P matrices.

Remark 1.1.3 Without loss of generality, we assume for the rest of this paper that the

binary matrices we are considering contain no identical rows or columns, the number of 1s

in each row is at least 2, and the number of 1s in each column is at least 1.

Definition 1.1.4 Let M be a binary matrix. A permutation of C(M) is valid for M if

after ordering the elements of C(M) according to this permutation, the 1s in each row are

consecutive. We say the permutation is invalid for M otherwise.

We introduce now a natural set-theoretical alternative way of viewing the C1P for a

given binary matrix.

Definition 1.1.5 For a given binary m × n matrix M , we represent the ith row ri by the

set {1 ≤ j ≤ n : Mij = 1}, also denoted by ri. We then use R(M) to also denote the set

{r1, . . . , rm} of subsets of {1, . . . , n}.

The following property follows immediately from this definition and the definition of

valid permutations.

CHAPTER 1. INTRODUCTION 4

Definition 1.1.6 If π is a permutation, then an interval of π is the image π([a, b]) of any

interval [a, b] ⊆ {1, . . . , n}.

Proposition 1.1.7 A permutation π of C(M) is valid for M if and only if, for every set

ri = {j1, . . . , jk} of R(M), the subset {cj1 , . . . , cjk
} of C(M) is an interval of π.

Example 1.1.8 Consider the following binary matrix:

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 1

r3 0 1 0 1

Its set-theoretic representation is R(M) = {{1, 2}, {2, 3, 4}, {2, 4}}.

If we order the columns as c1 c2 c4 c3, we have:

c1 c2 c4 c3

r1 1 1 0 0

r2 0 1 1 1

r3 0 1 1 0

As we can see that the 1s in each row are consecutive after we rearrange the columns,

therefore this is a C1P matrix.

Conversely, the following binary matrix is a non-C1P matrix.

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 0

r3 0 1 0 1

From row r1, {c1, c2} should be an interval of any valid permutation. Similarly, from r2

(resp. r3), {c2, c3} (resp. {c2, c4}) should be an interval in any valid permutation. This

implies that c2 should be adjacent to c1, c3 and c4 in any valid permutation, which is

impossible.

CHAPTER 1. INTRODUCTION 5

1.1.2 Two Graphs Related to the Consecutive Ones Property

We present here two graphs that are related to the C1P . The first one, a bipartite graph,

is another representation of a binary matrix, while the second one, an overlap graph allows

us to consider the problem of deciding if a matrix is a C1P matrix as a set of independent

simpler problems.

Definition 1.1.9 For a given binary matrix M , we define the bipartite graph associated to

M as B(M) = (V1, V2, E) where V1 ∪ V2 is the set of vertices, and E is the set of edges. V1

is the set of columns of M and V2 is the set of rows of M and E is the symmetric adjacency

relation defined on V1 × V2 such that (ci, rj) ∈ V1 × V2 is an edge if and only if Mij = 1.

Remark 1.1.10 We call each vertex in V1 a column vertex and each vertex in V2 a row

vertex in B(M).

We can then translate the C1P for the rows of M into an equivalent condition on the

associated bipartite graph B(M); namely, that the vertices of V1 can be ordered such that

for each rj ∈ V2, the set N(rj) = {ci ∈ V1 : (ci, rj) ∈ E(G)} appears to be consecutive in V1,

possibly with N(rj) = ∅. Such an ordering is called a V1-consecutive arrangement of B(M).

Example 1.1.11 For example, if we have the following matrix M :

c1 c2 c3 c4 c5

r1 1 1 0 1 1

r2 0 1 1 0 1

r3 1 0 0 0 1

the corresponding bipartite graph B(M) would be:

r2

c3

c2

r1

c4
c1

r3

c5

The permutation putting the columns in the order c3, c2, c5, c1, c4 is valid for this matrix,

and the corresponding V1-consecutive arrangement appears as:

r2

r1

r3

c3

c2

c5

c1

c4

CHAPTER 1. INTRODUCTION 6

We now introduce the overlap graph of a binary matrix.

Definition 1.1.12 For a binary matrix M with the set of rows {r1, r2, . . . , rn}, the overlap

graph O(M) = (V,E) corresponding to M is defined by V = {r1, r2, . . . , rn} and E =

{(ri, rj) : ri ∩ rj 6= ∅, ri 6⊆ rj, rj 6⊆ ri}.

It is then fairly straightforward to show the following important result:

Proposition 1.1.13 A binary matrix M has the C1P if and only if, for every component

C of O(M), its vertex set {ri1 , . . . , rik} has the C1P .

Proof. (⇒): Suppose for some component C, its vertex set {ri1 , . . . , rik} does not have the

C1P . Then R(M) does not have the C1P since {ri1 , . . . , rik} ⊆ R(M).

(⇐): Now suppose the vertex set of every component of O(M) has the C1P . If O(M)

only has one component, then obviously M has the C1P . If O(M) has more than one

component, then, by the definition of O(M), for any two components, either their vertex sets

are disjoint, or one vertex set is contained in the other. Thus, combining valid permutations

for each component will give a valid permutation for M . �

Example 1.1.14 Let M be the binary matrix illustrated below:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1 1 0 0 0 0 0 1 0 0 1

r2 0 0 1 0 0 1 1 0 1 1

r3 0 0 0 1 1 0 0 0 0 0

r4 0 0 1 0 0 1 0 0 0 0

r5 0 0 0 0 0 1 0 0 1 0

r6 0 1 0 1 0 0 0 0 0 0

r7 0 0 1 0 0 1 0 1 1 0

Then r1 = {1, 7, 10}, r2 = {3, 6, 7, 9, 10}, r3 = {4, 5}, r4 = {3, 6}, r5 = {6, 9}, r6 = {2, 4}, r7 =

{3, 6, 8, 9} and the corresponding overlap graph is:

r1 r2 r7 r4 r5 r3 r6

O(M) has three components: C1 = {r1, r2, r7}, C2 = {r4, r5} and C3 = {r4, r5}. C1

has the C1P , and it is easy to see that in every valid permutation restricted to C1, such as

CHAPTER 1. INTRODUCTION 7

1 7 10 3 6 9 8 for example, the elements 3, 6 and 9 form an interval but their order does not

matter. Therefore, since r4 ∪ r5 = {3, 6, 9}, any permutation π valid for C2 can be defined

as necessary on {1 7 8 10} to be valid for C1 as well. Since r3 ∪ r6 = {2, 4, 5} is disjoint

from the union of the vertex sets of C1 and C2, we can further extend π to be valid for C3

on {2 4 5}. A valid permutation for M would be: 1 7 10 3 6 9 8 2 4 5.

1.1.3 A Brief Historical Survey

The Consecutive Ones Property was first introduced by Fulkerson and Gross [17] in 1965

to determine whether the blemished portions of each pair of a given set of mutant genes

intersect or not. They gave a polynomial time algorithm which can decide whether a binary

matrix has the C1P , and, if so, constructs a valid permutation. Since then, the property

has been considered in many areas, such as graph theory, theoretical computer science, and

computational biology.

In 1972, Tucker [41] used the concept of an asteroidal triple to characterize the C1P

matrices in terms of five “forbidden” substructures. However, although Tucker’s results

provide a characterization of C1P matrices, they do not translate into an efficient algorithm

to decide if a matrix has the C1P .

It was only in 1975 that such an algorithm was proposed for the first time. This algorithm

is due to Booth and Lueker [4] and uses the notion of PQ-trees. The PQ-tree associated to

a C1P matrix encodes all valid permutations using space that is polynomial in the size of

the matrix. This data structure has since then been used in several other applications to

encode sets of permutations.

Still, the initial algorithm by Booth and Lueker to compute a PQ-tree was quite com-

plicated to implement, and it left the question of a certificate for non-C1P matrices open.

This was resolved in 2004 by McConnell [31], who, following some earlier work on partition

refinements [22], introduced the notion of PQR-tree (a generalization of PQ-trees), and of

incompatibility graph. (Briefly, a matrix has the C1P if its PQR-tree has no R-node, making

it in fact a PQ-tree. In that case, this PQ-tree encodes all the valid permutations for the

matrix. Meanwhile, an odd length cycle in the incompatibility graph serves as a non-C1P

certificate.)

All the notions we briefly introduced here are discussed in greater detail in Chapter 2.

CHAPTER 1. INTRODUCTION 8

1.2 Motivation: Applications from Computational Genomics

We present now two applications of the C1P in computational biology that motivated the

work presented in this thesis: physical mapping, and ancestral genome reconstruction. We

refer the reader to [33] for an introduction to computational biology.

1.2.1 Physical Mapping

A physical map of a segment of DNA describes the location of certain markers along that

DNA molecule, called from now on the target DNA. The markers are typically small but

precisely defined DNA sequences, and are called probes. Physical maps were used in the

pre-sequencing era, when sequencing a genome was impossible, to give a sequence of probes

representing a rough description of the target DNA, less precise than the complete DNA

sequence. The set of probes (which can contain several hundred different ones) can then be

seen as a higher order alphabet than the classical {A,C,G, T} nucleotide alphabet used to

describe a genome at the finest scale.

Physical maps can be obtained experimentally using a technique called hybridization.

The first step consists in obtaining several copies of the target DNA, and breaking each

copy, randomly, into fragments called clones. For a given set of probes and a given clone

C, the fingerprint of C is the (unordered) set of probes that appear as subsequences of C

(remember that each probe is a short DNA sequence and C is a large unsequenced DNA

segment). In order to determine experimentally the fingerprint of a clone C, each probe

is dyed with a different color, and all are allowed to sit in a test tube with the clone C.

Then, probes that occur in C will bind to C, and an image analysis of the clone after the

hybridization experiment will allow its fingerprint to be determined. In order to create a

physical map from the set of the fingerprints of all clones (up to a few thousand clones can

be considered), the idea is that if two clones share part of their respective fingerprints, then

they are most likely from overlapping regions of the target DNA. If all overlaps between

all clones are determined, and if all of the fingerprints are correct, then the clones can be

ordered, yielding the order of the probes along the target DNA.

Example 1.2.1 In the figure, probes c1, c2, c3 are bound to clone A, and probes c2, c3, c4

to clone B. Hence it is reasonable to suppose that clone A and clone B overlap. From this

we gain some partial information about the order of the probes along the target DNA.

CHAPTER 1. INTRODUCTION 9

c1 c2 c3

Clone A

c2 c3 c4

Clone B

Now if we construct a clones×probes binary matrix M where we set entry Mij=1 if probe

j binds to clone i and 0 elsewhere, then obtaining a physical map from M is equivalent to

finding a valid permutation for this clones×probes binary matrix, and we should always

be able to find such a permutation presuming no errors occurred during the hybridization

process. Note that in fact the approach we just described assumes that each probe appears

exactly once in the target DNA. The more general case where probes can bind in more than

one location of the target DNA is more complicated.

1.2.2 Ancestral Genome Architecture

As seen above, physical maps were used to represent genomes when genome sequencing was

not possible due to technological limitations. Currently physical maps are less used due

to the availability of efficient sequencing techniques, and sequencing the genome of living

species, especially higher order animals, is almost routine. However, all current species

evolved from ancient organisms, that have disappeared. For example, it is believed that

all placental mammalians evolved from a single species that was living approximately 125

million years ago [26]. From an evolutionary biology point of view, knowing the genome

sequence of such ancestral species would be invaluable in order to understand the forces driv-

ing evolution; this recent field of research is called paleogenomics and aims at reconstructing

ancestral genomic characters.

However, as a molecule, DNA degrades rapidly after a few hundred thousand years. So,

even if fossils can be available for such ancestral species [26], it is impossible to extract

quality DNA from these fossils. The only hope to obtain information on ancestral genomes

relies on computational techniques, aimed at inferring the genome of ancient species from

the genome of current species. This general problem received a lot of attention during the

last few years, especially in the case of mammalian genomes, due to its implications for

human evolution (see [10] and references therein).

We describe now a general approach for ancestral genome reconstruction, that re-uses the

general principle of physical mapping and is centered on the consecutive ones property [10].

In this approach, the analog of the alphabet of probes is a set of genomic markers (that can

CHAPTER 1. INTRODUCTION 10

be genes or long DNA sequences) that are believed to have been present once and only once

in the ancestral genome. An ancestral synteny is a set of such genomic markers that are

believed to have been contiguous in the ancestral genome. Ancestral syntenies play a role

analogous to the fingerprints in physical mapping, and a set of ancestral syntenies can then

be encoded by a binary matrix, whose columns are the genomic markers and rows are the

ancestral syntenies. If this matrix has the C1P , then every valid permutation represents

a possible genome architecture for the ancestral genomes. The condition of consecutivity

of the 1s in the rows of the matrix follows from the hypothesis that ancestral syntenies

contain markers that were contiguous in the ancestor. Ancestral syntenies are obtained by

comparing the genomes of current organisms: the general principle described in [10] is that

if a set of genomic markers is contiguous in the genomes of two species whose evolutionary

path goes through the sought ancestor, then it makes sense to assume these markers define

an ancestral synteny.

This general approach has been used in several papers (see [10] and references there)

and has led to a relative consensus on the karyotype (number of chromosomes) and general

architecture of genome of the ancestor of placental mammalians. More distant organisms

are however still challenging [6].

1.2.3 Real Data and Non− C1P Matrices

From the previous two sections, it is clear that in computational biology, if no error occurs

when generating a binary matrix, this matrix has the C1P . However in most of the cases,

errors will occur, thus we will not get a C1P matrix. More precisely, in both applications we

discussed we can expect that most rows of the considered binary matrix represent correct

information (i.e. correct fingerprints for some genome segments, or sets of markers that

were contiguous in the ancestral genome) while some contain errors. The subset of rows

that represent correct information, by the fact it encodes segments of an existing genome,

defines a matrix that has the C1P , while the whole matrix does not have the C1P due to

the incorrect rows. The major difficulty in applications is then to detect the incorrect rows

in order to discard them and obtain a matrix that has the C1P : this problem of detecting

incorrect rows in paleogenomics applications is the main motivation for our work, and up

to now has not been studied.

Detecting such incorrect rows is a hard problem, as they have been obtained through the

same experimental process as correct rows (hybridization in physical mapping or comparison

CHAPTER 1. INTRODUCTION 11

of existing genomes in paleogenomics). The natural approach would then be to improve the

methods used to obtain a binary matrix. However, this approach, which is more of a

bioinformatics problem than a combinatorial problem, has not been successful up to now.

Hence, most approaches are combinatorial in nature and consider only the binary matrix

that does not have the C1P , and try to transform it into a matrix that has the C1P via

some combinatorial modifications. We discuss now this approach, and we concentrate on

physical mapping, as it has a longer history than paleogenomics. We first describe typical

errors in physical mapping and then we discuss some methods that transform a non-C1P

matrix into a C1P matrix.

When we try to compute a physical map of an unknown genome, there are many possible

errors that can happen during the hybridization experiments. For example:

1. A probe may fail to bind where it should which results in a false negative.

2. A probe may bind where it should not which results in a false positive.

3. During the cloning process, two pieces of target DNA may join and be replicated as

if they were one clone. The resulting clone is called a chimeric clone, and in fact

40% − 60% of clones are chimeric. [33]

If errors do occur, it is very likely that the resulting binary matrix does not have the C1P .

Here we introduce a way to handle errors in hybridization experiments. We first examine

the relationship between errors and the gaps in a clones×probes binary matrix M . For every

row r in M , if no errors are present, then all 1s in r should be consecutive. If r is a chimeric

clone, then we should see some 0s (a gap) separating a block of 1s, resulting in two blocks

of 1s. If r has a false positive somewhere, then it may separate a block of 0s into two by a

1, thus causing another gap. If r contains a false negative somewhere, then there may be

a block of 1s split by a 0, and hence another gap may arise. As we can see that there is

a correspondence between errors and gaps in M , therefore it is reasonable for us to think

that if there is a valid permutation for M , then that permutation should have a minimum

number of gaps. Thus, gap minimization, which asks for such an optimal permutation, can

be considered as a generalization of the consecutive ones problem where a non-C1P matrix

is transformed into a C1P matrix by minimizing the number of errors.

It turns out that we can reduce the gap minimization problem (GMP) to the traveling

salesman problem (TSP) in which we want to find a minimum weighted Hamiltonian cycle

CHAPTER 1. INTRODUCTION 12

in a complete edge-weighted graph. [33] We transform M into a complete edge-weighted

graph G in the following way: We attach one column consisting of all 0s to the last column

of M , and call the new matrix M again; each column in M corresponds to a vertex in G,

and the Hamming distance between two columns is the weight of the edge joining the two

corresponding vertices.

Example 1.2.2 For example, we have a 4 × 4 binary matrix M with c5 appended as

illustrated below:

c1 c2 c3 c4 c5

r1 1 1 0 0 0

r2 0 1 1 0 0

r3 1 0 1 1 0

r4 1 1 1 0 0

If hij denotes the Hamming distance between columns ci and cj , then the corresponding

graph G would be:

c1

c2

h12:2

c3

h13:2

h23:2

c4

h14:2

h23:4

h34:2

c5

h15:3

h25:3

h35:3
h45:1

Theorem 1.2.3 [33] A minimum-weighted Hamiltonian cycle in G induces a permutation

of the columns of M with least number of gaps.

It follows immediately from the link between the gap minimization problem and the

Hamiltonian path problem that solving the gap minimization problem is NP-complete. In

fact, even simpler decision problems, such as deciding if there exists a permutation of the

columns of M such that in each row the number and length of gaps is bounded, are also

NP-complete [9].

There are other approaches to transforming a non-C1P matrix to a C1P matrix, using

combinatorial criteria. The most naive ways are to remove rows or columns [38, 18], with the

criterion that the number of rows or columns removed be at a minimum, or to remove both

CHAPTER 1. INTRODUCTION 13

rows and columns, and try to maximize the size of the resulting matrix [12]. The rationale for

removing rows is to remove fingerprints that are wrong, and removing columns corresponds

to discarding probes that have been poorly selected and lead to errors. Swapping some 0s

to 1s and some 1s to 0s by a minimum number of swaps [3] has also been considered as a

way to correct hybridization errors. However, not surprisingly, all of the above problems

have been proved to be NP-hard.

1.3 Conflicting Sets

We introduce in this section the main object of our study: minimal conflicting sets. After

the definition of this concept, we discuss the case of matrices with two 1s per row.

1.3.1 Definitions

Definition 1.3.1 A subset of rows R = {ri1 , ri2 , ..., rik} of a binary matrix M is a conflicting

set if the matrix defined by R does not have the C1P . R is a minimal conflicting set if R

is a conflicting set but no proper subset of R is a conflicting set. We abbreviate minimal

conflicting set(s) as MCS.

Definition 1.3.2 A row r of a binary matrix M is a conflicting row if it belongs to at

least one minimal conflicting set. The conflicting index (CI) of r is the number of minimal

conflicting sets it belongs to.

Example 1.3.3 R = {{1, 2}, {2, 3}, {1, 3}}, which corresponds to the following matrix,

forms a minimal conflicting set as one can check that R does not have the C1P , but deleting

any row from R leaves two rows, which clearly have the C1P . This also shows that each of

the ri ∈ R is a conflicting row.

c1 c2 c3

r1 1 1 0

r2 0 1 1

r3 1 0 1

Example 1.3.4 For the matrix given below, one can verify that R1 = {r1, r2, r3} and

R2 = {r1, r2, r4} are the only two minimal conflicting sets. Therefore the conflicting indices

for r1, r2, r3, r4 are 2, 2, 1, 1, respectively.

CHAPTER 1. INTRODUCTION 14

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 0

r3 0 1 0 1

r4 1 0 1 0

The notion of minimal conflicting set appears natural when one faces non-C1P matrices

as only such matrices contain minimal conflicting sets, and these structures are the minimal

ones that cause a matrix to be non-C1P . Hence, for computational biology applications,

errors in experiments (hybridization or detection of ancestral syntenies) that lead to non-

C1P matrices also result in the creation of minimal conflicting sets. The motivation of

this thesis is to understand better the combinatorial structure of minimal conflicting sets

in order to use this concept to detect errors in non-C1P matrices obtained from genomic

data. In particular, we are interested in two questions:

1. Given a row r of a non-C1P matrix M , is CI(r) > 0?

2. Given a row r of a non-C1P matrix M , what is CI(r)?

The second and more general question is hard, as we show in the next section, but

has been asked in [37] as a piece of a branch-and-bound algorithm. The first question is

important as one can expect that a row r of a non-C1P matrix that does not belong to

any minimal conflicting set need not be considered when trying to detect rows that contain

errors. As most methods to detect error rows rely on computationally expensive algorithms,

identifying rows that need not be considered can significantly increase computation speed.

1.3.2 Matrices with Two 1s per Row

We study here the simplest case, i.e. matrices with exactly two 1s per row. Such matrices,

besides being simple, have been important in ancestral genome reconstruction, as their rows

describe adjacencies (pairs of consecutive markers), a kind of syntenic information often

used in genomics. We show that minimal conflicting sets have a simple structure in such

matrices, but that computing the CI of the rows is a hard problem.

Definition 1.3.5 A claw in a binary matrix M with two 1s per row is a set {r, r′, r′′} of rows

such that there exists i ∈ r∩ r′∩ r′′ and j ∈ r\(r′ ∪ r′′), j′ ∈ r′\(r ∪ r′′) and j′′ ∈ r′′\(r ∪ r′).

CHAPTER 1. INTRODUCTION 15

We call i the root of a claw in B(M).

Example 1.3.6 The following matrix M is a claw:

c1 c2 c3 c4

r1 1 1 0 0

r2 1 0 1 0

r3 1 0 0 1

The name claw comes from the structure of the corresponding bipartite graph B(M) which

is illustrated below:

r2r1 r3

c1

c3c2 c4

Remark 1.3.7 We see that the root of a claw is a column vertex. This root has three

neighbors, each of which is adjacent to a different column vertex. If we try to get a valid

permutation for the matrix corresponding to a claw, we see that three columns are forced

to be “next to” the root column. This is impossible, so we cannot find a valid permutation

for this matrix.

Definition 1.3.8 A cycle in a binary matrix M with two 1s per row is a set {ri1 , ri2 , . . . , rik},

where k ≥ 3, of rows such that for every j = 2, . . . , k, |rij−1
∩ rij | = 1 and |ri1 ∩ rik | = 1.

Example 1.3.9 For example, the following matrix M , where k ≥ 3, is a cycle:

c1 c2 c3 c4 . . . ck−2 ck−1 ck

r1 1 1 0 0 . . . 0 0 0

r2 0 1 1 0 . . . 0 0 0

r3 0 0 1 1 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

rk−2 0 0 0 0 . . . 1 1 0

rk−1 0 0 0 0 . . . 0 1 1

rk 1 0 0 0 . . . 0 0 1

The corresponding structure in B(M) is a cycle as illustrated below:

CHAPTER 1. INTRODUCTION 16

rk r1

r2

r3rk−2

rk−1

c1

c2

c3

c4ck−2

ck−1

ck

Remark 1.3.10 It is clear that, if a binary matrix M with two 1s per row is a C1P matrix,

then the graph B(M) is a collection of disjoint paths. It then follows that cycles and claws,

which are the minimal structures in a graph that are not paths, correspond to minimal

conflicting sets. This gives a precise combinatorial characterization of minimal conflicting

sets for such matrices.

Theorem 1.3.11 (folklore) A binary matrix M with two 1s per row is a minimal con-

flicting set if and only if B(M) is either a claw or a cycle.

This characterization of conflicting sets lead to an answer to the two questions that we

are interested in. We show below that deciding if a row belongs to at least one minimal

conflicting set can be done in polynomial time, while computing the conflicting index is

hard.

Corollary 1.3.12 Given a row r of a binary matrix M with two 1s per row, deciding if

CI(r) > 0 can be done in polynomial time.

Proof. It follows from Theorem 1.3.11 that to decide if CI(r) > 0 for a given row r, it is

sufficient to check whether r belongs to a claw or a cycle. To decide whether r belongs to a

claw, we only need to consider all triples of rows that contain r, and there are O(n3) such

triples. To decide whether r belongs to a cycle, we need to check whether there is a path

from rx to ry in B(M) that avoids r, where rx, ry are two row vertices in B(M) such that

rx ∩ r 6= ∅ 6= ry ∩ r. This can be answered in time O(n2m2(m + n)2). �

For the next result, we will use the notion of #P-hard problem, defined by Valiant

(see [42] for example) for counting problems. The #P problems are the counting prob-

lems corresponding to the decision problems in NP. #P-complete and #P-hard are defined

analogously to NP-complete and NP-hard.

CHAPTER 1. INTRODUCTION 17

Corollary 1.3.13 The problem of computing the conflicting index for a given row in a

binary matrix with two 1s per row is #P-hard.

Proof. To prove this hardness result, we reduce the classical #P-hard problem of counting

the number of paths between two vertices of a graph to computing the number of cycles

containing a given edge. Given a graph G and two vertices s and t in G, Valiant showed

in [42] that computing the number of paths between s and t is #P-hard. It follows that,

given an edge {s, t} in a graph G, counting the number of cycles in G that contain this edge

is #P-hard, as it is equivalent to counting the number of paths between s and t in G−{s, t}.

Let G be a graph, {v1, . . . , vn} be the vertices of G and {e1, . . . , em} the edges of G.

We can build a matrix MG from G as follows: MG has n columns {c1, . . . , cn} and m rows

{r1, . . . , rm} defined by ri = {cj1 , cj2} if and only if ei = {vj1 , vj2}. This reduction can

obviously be performed in polynomial time and space in the size of G.

Now consider a pair of vertices vj1 and vj2 of G such that ei = {vj1, vj2}. Counting the

number of paths between these two vertices is equivalent to counting the number of cycles

containing ri, as B(MG) is the graph G where a vertex has been added on each edge to

make it bipartite. This reduction proves the corollary since we need to count the number

of cycles containing ri in order to compute CI(ri). �

Note however that the problem of listing all the cycles of a graph, although it can require

an exponential time as there can be an exponential number of cycles, can be solved in time

that is polynomial in the output, using a backtracking algorithm (see Section 4.3).

1.4 Results and Plan

The rest of this thesis deals with non-C1P matrices and minimal conflicting sets.

In Chapter 2, we will describe the main approaches to decide if a binary matrix has the

C1P or not. We will describe in detail the Tucker patterns, partition refinement, PQ-trees,

and PQR-trees.

In Chapter 3, we will first consider the case of matrices with exactly three 1s per row, and

we will characterize the minimal conflicting sets for such matrices by proving a generalization

of Theorem 1.3.11. Although this is the next simplest class of matrices after those having

exactly two entries equal to 1 on each row, already the combinatorial characterization of

the minimal conflicting sets is surprisingly complex. Handling the cases of four or five 1s

CHAPTER 1. INTRODUCTION 18

per row, and so on, might be possible individually, but we expect that there won’t be an

obvious pattern to generalize, to get the characterization for k 1s per row.

We therefore forego combinatorial characterization in the following, taking an algorith-

mic approach instead. We will next describe an algorithm that decides if a given row in a

general binary matrix belongs to at least one minimal conflicting set. This algorithm has

time complexity that is exponential in the maximum number of entries equal to 1 in the

matrix. This algorithm is based on Tucker patterns, and, as far as we know, this is the first

time these patterns have been used in an effective algorithmic way.

In Chapter 4, we will describe a method to generate all minimal conflicting sets of a

general binary matrix. This method is based on the very general framework of monotone

Boolean functions, and more precisely on the dualization of monotone Boolean functions.

The drawback of this approach is that it requires also the generation of all maximal sets

of rows that have the C1P , and there can be an exponential number of such sets even if

there are few minimal conflicting sets. We will then describe the backtracking approach

to generate all cycles of a graph and outline some possible extensions of this method to

generate efficiently all minimal conflicting sets. This chapter also contains experimental

results on genomic data, both real and simulated.

Chapter 2

Deciding the C1P

In this chapter we present methods for deciding whether a given binary matrix M has

the C1P . We first present the five “forbidden” matrices, introduced by Tucker, which are

such that if M contains one or more of them, then M does not have the C1P . These five

forbidden patterns are important for our work on minimal conflicting sets in Chapter 3. We

then introduce an algorithm, called partition refinement, which allows us to easily decide

whether M has the C1P , and, if it does, the algorithm also produces all valid permutations.

Based on the idea of partition refinement, we discuss an alternative algorithm, called the

PQR-tree algorithm, which not only gives us all valid permutations if M has the C1P ,

but also determines all conflicting subsets of the set of columns, if M does not have the

C1P . Each such conflicting subset is represented by an R-node and is detected using the

incompatibility graph, which is introduced in the last section of this chapter.

2.1 Asteroidal Triples and Forbidden Patterns

In this section, we review some important C1P results of Tucker [41]. We first present the

five submatrices that prevent a binary matrix M from having the C1P . From the previous

chapter, we know that for M with two 1s per row, M does not have the C1P if and only if the

bipartite graph B(M) contains a cycle or a claw. We discuss the bipartite graphs of the five

minimal patterns, which can be viewed as a generalizations of cycles and/or claws. These five

patterns are the foundation of our work in Chapter 3 on the combinatorial characterization

of minimal conflicting sets. Observing that the consecutive 1s in each row can be considered

as an interval in an interval graph, we then discuss the strong relation between C1P matrices

19

CHAPTER 2. DECIDING THE C1P 20

and interval graphs. Finally, we introduce the concept of an asteroidal triple and discuss

the relation with the C1P , based on a result of Lekkerkerker and Boland [2] linking interval

graphs and asteroidal triples.

2.1.1 Forbidden Patterns

Definition 2.1.1 For a given binary matrix M , we define the configuration of M to be the

set of matrices obtained by permuting the rows and/or columns of M .

Example 2.1.2 Let M and M ′ be the binary matrix given as:

M :

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 0 1 1 0 0

r3 0 0 0 0 1 1

r4 0 1 0 1 0 1

M ′ :

c2 c4 c6 c1 c3 c5

r4 1 1 1 0 0 0

r3 0 0 1 0 0 1

r1 1 0 0 1 0 0

r2 0 1 0 0 1 0

We can view M ′ as a result of permuting some rows and columns of M , hence M ′ is a

member of the configuration of M .

We now define five matrices MIn ,MIIn ,MIIIn ,MIV and MV , where 1 ≤ n <∞ :

MIn :

c1 c2 c3 c4 . . . cn cn+1 cn+2

r1 1 1 0 0 . . . 0 0 0

r2 0 1 1 0 . . . 0 0 0

r3 0 0 1 1 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

rn 0 0 0 0 . . . 1 1 0

rn+1 0 0 0 0 . . . 0 1 1

rn+2 1 0 0 0 . . . 0 0 1

CHAPTER 2. DECIDING THE C1P 21

MIIn :

c1 c2 c3 c4 . . . cn cn+1 cn+2 cn+3

r1 1 1 0 0 . . . 0 0 0 0

r2 0 1 1 0 . . . 0 0 0 0

r3 0 0 1 1 . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

rn 0 0 0 0 . . . 1 1 0 0

rn+1 0 0 0 0 . . . 0 1 1 0

rn+2 1 1 1 1 . . . 1 1 0 1

rn+3 0 1 1 1 . . . 1 1 1 1

MIIIn :

c1 c2 c3 c4 . . . cn cn+1 cn+2 cn+3

r1 1 1 0 0 . . . 0 0 0 0

r2 0 1 1 0 . . . 0 0 0 0

r3 0 0 1 1 . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

rn 0 0 0 0 . . . 1 1 0 0

rn+1 0 0 0 0 . . . 0 1 1 0

rn+2 0 1 1 1 . . . 1 1 0 1

MIV :

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 0 1 1 0 0

r3 0 0 0 0 1 1

r4 0 1 0 1 0 1

MV :

c1 c2 c3 c4 c5

r1 1 1 0 0 0

r2 1 1 1 1 0

r3 0 0 1 1 0

r4 1 0 0 1 1

Theorem 2.1.3 [41] A binary matrix M has the C1P if and only if M does not contain a

sub-matrix which is a member of the configurations of MIn ,MIIn ,MIIIn ,MIV , MV , where

1 ≤ n <∞.

CHAPTER 2. DECIDING THE C1P 22

The bipartite graphs for Tucker’s five configurations are illustrated below.

r1
c1 r2

c2

r3

c3

r4

c4cn

rn+1

cn+1

rn+2

cn+2

Figure 2.1: B(MIn)

rn+3
cn+3 rn+2

c1

r1

c2

r2

c3cn

rn

cn+1

rn+1

cn+2

Figure 2.2: B(MIIn)

rn+2

cn+3

c2

r1

c1

r2

c3

r3

c4

r4

c5cn−1

rn−1

cn

rn

cn+1rn+1

cn+2

Figure 2.3: B(MIIIn)

CHAPTER 2. DECIDING THE C1P 23

c1

r1

c2

r4
c4

r2

c3

c6

r3

c5

Figure 2.4: B(MIV)

r4
c1

r1

c2

r2

c3

r3

c4

c5

Figure 2.5: B(MV)

The following proposition follows immediately from Theorem 2.1.3:

Proposition 2.1.4 A binary matrix M has the C1P if and only if B(M) contains none of

the graphs B(MIn), B(MIIn), B(MIIIn), B(MIV), B(MV) as an induced subgraph.

We see that B(MIn) is exactly a cycle, and B(MIV) can be viewed as a general-

ization of a claw, where the root column breaks into three columns c2, c4, c6 which all

connect to a newly introduced row r4. Each of B(MIIn), B(MIIIn) and B(MV) can be

viewed as a “forced-claw”. We discuss this notion by using B(MIIn) as an example. If

r1 and rn+3 were the only rows in the matrix, the given order of the columns would

already be a valid permutation. In particular this would involve the column interval

[c3, c4, . . . , cn+1, cn+2, cn+3]. Taking row rn+2 into account however, we see that columns

cn+2 and cn+3 must be transposed in order to preserve a valid permutation, leaving us with

the column interval [c3, c4, . . . , cn+1, cn+3, cn+2]. Considering row rn+1 then motivates the

transposition of cn+1 and cn+3, so that we now have [c3, c4, . . . , cn+3, cn+1, cn+2]. Continuing

this process in order to accommodate rows rn, rn−1, . . . , r3, we are eventually forced to have

CHAPTER 2. DECIDING THE C1P 24

[cn+3, c3, c4, . . . , cn+1, cn+2]. At this point the column neighbors of c2 are c1 and cn+3. On

the other hand, rows r1 and r2 also force c1 and c3 to be the two column neighbors of c2. We

thus have a “forced-claw”, which arose because of the cyclic structure in the graph whereby

every row influenced the two neighboring rows, including rn+3 and r1 having an influence

on each other. In this case the root of the claw was c2, but, again because of the cyclic

structure in the graph, any of c3, c4, . . . , cn+1 could have been the root instead.

By similar processes, B(MIIIn) and B(MV) can also be viewed as “forced-claw” graphs,

due to similar cyclic structures. It thus appears that the two kinds of obstructing patterns

that prevent M from having the C1P are variants of cycles and claws.

We mentioned earlier that these five configurations are minimal structures that prevent

a binary matrix from having the C1P . In fact, the set of row vertices in each of the five

bipartite graphs forms a minimal conflicting set. For, to begin with, Proposition 2.1.4 shows

that these five graphs do not have the C1P . Furthermore, as we examine below, removing

any row from any of these graphs allows a V1-consecutive arrangement of the columns, so

that the resulting graphs have the C1P .

1. Removing any row from B(MIn), say r1 in the figure, the resulting bipartite graph is:

c1 r2

c2

r3

c3

r4

c4cn

rn+1

cn+1

rn+2

cn+2

which we can rearrange to get a V1 consecutive arrangement as shown:

r2

r3

r4

rn

rn+1

rn+2

c1

c2

c3

c4

cn

cn+1

cn+2

CHAPTER 2. DECIDING THE C1P 25

2. There are three types of row vertex we can remove for B(MIIn):

(a) Removing rn+2 or rn+3, say rn+3 in the figure, the resulting bipartite graph is:

cn+3 rn+2

c1

r1

c2

r2

c3cn

rn

cn+1

rn+1

cn+2

which can be rearranged to give a V1 consecutive arrangement as shown:

rn+2

r1

r2

rn−1

rn

rn+1

cn+3

c1

c2

c3

cn

cn+1

cn+2

(b) Removing r1 or rn+1, say r1 in the figure, the resulting bipartite graph is:

rn+3
cn+3 rn+2

c1

c2

r2

c3cn

rn

cn+1

rn+1

cn+2

which can be rearranged to give the following V1 consecutive arrangement:

rn+3

rn+2

r2

rn−1

rn

rn+1

c1

cn+3

c2

c3

cn

cn+1

cn+2

CHAPTER 2. DECIDING THE C1P 26

(c) Removing one of r2, r3, . . . , rn, say rn in the figure, the resulting bipartite graph

is:

rn+3
cn+3 rn+2

c1

r1

c2

r2

c3cn

cn+1

rn+1

cn+2

and we can rearrange this to get a V1-consecutive arrangement as shown:

rn+3

rn+2

r1

rn−1

rn+1

c1

cn+3

c2

c3

cn

cn+1

cn+2

3. For B(MIIIn), removing rn+2 results in a graph similar to that of MIn , and it obviously

has a V1-consecutive arrangement. There are also three other types of row vertices

that we can remove.

(a) Removing r1 or rn+1, say r1 in the figure, the resulting bipartite graph is:

rn+2

cn+3

c2

c1

r2

c3

r3

c4

r4

c5cn−1

rn−1

cn

rn

cn+1rn+1

cn+2

CHAPTER 2. DECIDING THE C1P 27

and we can rearrange this graph to get the following V1-consecutive arrangement:

rn+2

r2

r3

rn−1

rn

rn+1

cn+3

c2

c3

c4

cn

cn+1

cn+2

c1

(b) Removing one of r2 or rn, say r2 in the figure, the resulting bipartite graph is:

rn+2

cn+3

c2

r1

c1

c3

r3

c4

r4

c5cn−1

rn−1

cn

rn

cn+1rn+1

cn+2

which can be rearranged to give a V1-consecutive arrangement as shown:

rn+2

r3

r4

rn

rn+1

r1

c1

c2

cn+3

c3

c4

cn+1

cn+2

(c) Removing one of r3, r4, . . . , rn−1, say r2 in the figure, the resulting bipartite graph

is:

CHAPTER 2. DECIDING THE C1P 28

rn+2

cn+3

c2

r1

c1

c3

r2

c4

r4

c5cn−1

rn−1

cn

rn

cn+1rn+1

cn+2

which can be rearranged to give a V1-consecutive arrangement as shown:

rn+2

r2

r4

rn

rn+1

r1

c1

c2

c3

cn+3

c4

cn+1

cn+2

4. Removing any row from B(MIV) clearly gives a V1-consecutive arrangement for the

set of columns. For B(MV), removing r2 or r4 gives a V1 consecutive arrangement.

It takes a moment to see that removing either r1 or r3 also gives a V1 consecutive

arrangement.

The following proposition follows immediately from the above discussion:

Proposition 2.1.5 Let M be any of the configurations of MIn ,MIIn ,MIIIn ,MIV or MV ,

then R(M) is a minimal conflicting set.

Therefore the set of rows in each of the five patterns Tucker described is an MCS.

However, if M contains more than one of these configurations, the set of rows of M possibly

is not an MCS. Such an example is given below:

CHAPTER 2. DECIDING THE C1P 29

Example 2.1.6

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 0 0 0 1 1 0 0

r2 1 1 1 0 1 0 1 0

r3 0 1 1 0 0 0 1 1

r4 1 0 1 1 0 1 0 1

We see that the sub-matrix M1 consisting of all the rows and columns c1, c2, c3, c4 and c5

is a member of configuration of MV ; and the sub-matrix M2 consisting of all the rows and

columns c5, c6, c7 and c8 is a member of configuration of MI2 . However the set of rows is not

an MCS as one can check that removing r1 does not give a valid permutation. Furthermore

the sub-matrix consisting of r2, r3, r4 and c1, c7, c8 is MI1. We discuss more about this in

Chapter 3.

2.1.2 Asteroidal Triples

There is a close relation between C1P matrices and interval graphs: for a given binary

matrix M , if M has the C1P , then the 1s in each row are consecutive, they form an interval

and the C1P for M implies O(M) is an interval graph.

Proposition 2.1.7 For a binary matrix M with more than three rows, M has the C1P if

and only if O(M) is an interval graph.

Lekkerkerker and Boland [2] give a characterization of interval graphs by using the

concept of an asteroidal triple. Since interval graphs and the C1P are strongly related, we

take the time to introduce some properties of asteroidal triples, and present some results

that lead to a characterization of the C1P in terms of them.

Definition 2.1.8 Given a graph G(V,E) and three distinct vertices x, y, z ∈ V (G), we say

x, y, z form an asteroidal triple if there is a path p between any two vertices of S = {x, y, z}

and no vertex on p is adjacent to the third vertex in S.

Example 2.1.9 Let G be the graph illustrated below. One can check that for the vertices

x1, y1, z1 in V (G), we can find three paths p1, p2 and p3 such that x1, y1 are on p1 but no

vertex on p1 is adjacent to z1; y1, z1 are on p2 but no vertex on p2 is adjacent to x1; x1, z1

are on P3 but no vertex on p3 is adjacent to y1. Hence x1, y1, z1 form an asteroidal triple.

CHAPTER 2. DECIDING THE C1P 30

However, x2, y1, z1 does not form an asteroidal triple, since on any path containing y1 and

z1, there is some vertex adjacent to x2.
x1

x2

y1z1

Theorem 2.1.10 [2] A graph G is an interval graph if and only if it contains no asteroidal

triple and no chordless cycle of length greater than 3.

Theorem 2.1.11 [41] For a given binary matrix M , let V1 be the set of column-vertices

in the bipartite graph B(M) of M . Then M has the C1P if and only if V1 does not contain

asteroidal triple.

In Chapter 3 we will use Tucker’s five forbidden configurations in our combinatorial

characterization of C1P matrices. To our knowledge, the only algorithm to test for the

presence of Tucker’s configurations as submatrices of a given matrix is given by Dom?? in

2008. In the remainder of Chapter 2, we introduce some existing algorithms that can be

used to test whether a given matrix has the C1P . These are important for us, since some

of our own algorithms rely on an oracle that decides the C1P .

2.2 Partition Refinement and the C1P

In this section, we describe a simple and efficient algorithm which determines whether M has

the C1P . This algorithm is based on a widely used algorithmic technique called partition

refinement [22]. Partition refinement deals with a finite set S and a current set partition of

S. At each step of the algorithm, it aims to refine the current set partition according to a

subset of S. In this section, we use the definition of the C1P in which rows are viewed as

sets, so that the partition refinement algorithm will decide whether there is a permutation

for the set of columns such that each row in R(M) appears contiguous in this permutation.

CHAPTER 2. DECIDING THE C1P 31

2.2.1 General Partition Refinement

For a given set S and a set partition P of S, the general partition refinement algorithm

refines P by a given set T and results a new set partition P ′ of S ∪ T . In this subsection,

we start with some definitions, and then present the procedure of the partition refinement

algorithm.

Definition 2.2.1 For a finite set S, we define an ordered set partition, P of S to be a linear

ordered collection of disjoint subsets of S whose union is S. Each of the disjoint subsets is

called a part of P .

From now, we use partition or set partition for ordered set partition.

Example 2.2.2 If S = {1, 2, 3, 4, 5, 6}, then P1 = ({1, 4, 6}, {2, 5}, {3}) is a set partition of

S with three parts {1, 4, 6}, {2, 5} and {3}. The set partition ({4, 6, 1}, {2, 5}, {3}) is consid-

ered the same as P1, but P2 = ({2, 5}, {1, 4, 6}, {3}) is different. Neither ({1, 4}, {2, 5}, {3})

nor ({1, 4, 6}, {2, 5}, {3, 6}) is a set partition of S.

Definition 2.2.3 Given two set partitions P and P ′ of S, we write P ′ 4 P if every part of

P ′ is a subset of a single part of P ; otherwise we write P ′ 64 P .

Example 2.2.4 Let S,P1, P2 be as given in Example 2.2.2. If P ′
1 = ({1, 4}, {6}, {2, 5}, {3})

and P ′
2 = ({2, 5}, {1, 4, 6, 3}), then P ′

1 and P ′
2 are set partitions of S and P ′

1 4 P1, but

P ′
2 64 P2.

Definition 2.2.5 For a set partition P of S and a given S′ ⊂ S, we define the sub-partition

PS′ of P according to S′ to be the set partition of S′ that is induced by P in the following

sense: If we write P = (p1, p2, . . . , pt), then PS′ = (p1 ∩ S′, p2 ∩ S′, . . . , pk ∩ S′).

Example 2.2.6 Let S = {1, 2, 3, 4, 5, 6}, P = ({1, 4, 6}, {2, 5}, {3}) and S′ = {1, 2, 3, 5} ⊂

S. Then the sub-partition of P according to S′ is PS′ = ({1}, {2, 5} {3}).

Given a set partition P of S, and any other set T , we now define what it means to refine P

by T . Refining P by T consists in finding the set partition P ′ of T ∪ S, if it exists, which

satisfies:

1. P ′
S 4 P .

CHAPTER 2. DECIDING THE C1P 32

2. There does not exist a set partition P ′′ 6= P ′ such that P ′
S 4 P ′′

S 4 P .

In fact such a P ′ always exists and can be found by using the general partition refinement

algorithm.

Example 2.2.7 Let S = {1, 2, 3, 4, 5, 6}, T = {1, 2, 3, 5, 7} and P = ({1, 4, 6}, {2, 5}, {3}).

Then the refinement of P by T is the set partition P ′ = ({4, 6}, {1}, {2, 5}, {3}, {7}). The

set partition P ′′ = ({4, 6}, {1}, {2}, {5}, {3}, {7}) satisfies condition 1, but it fails condition

2, since P ′′
s 4 P ′

s 4 P .

We now present the general partition refinement procedure[22]:

Let P = (p1, p2, . . . , pt) be a set partition of S, and let T be a given arbitrary set. We

refine P by T and compute a set partition P ′ of S ∪ T according to the following cases:

1. T ∩ S = ∅: In this case P ′ = (p1, p2, . . . , pt, T).

2. T ⊆ S: The parts in P that are contained in or do not intersect T remain unchanged.

We refine the parts that intersect and are not contained in T by splitting each of these

parts pi to two parts: pi ∩T and pi\T . For each part pi to be refined, we update P to

P ′ = (p′1, p
′
2, . . . , p

′
t+1) as follows:

(a) If i = 1, then P = (p1\T, p1 ∩ T, p2, p3, . . . , pt).

(b) If i > 1 and pi−1∩T = ∅, then P = (p1, p2, . . . , pi−1, pi\T, pi∩T, pi+1, pi+2, . . . , pt).

(c) If i > 1 and pi−1∩T 6= ∅, then P = (p1, p2, . . . , pi−1, pi∩T, pi\T, pi+1, pi+2, . . . , pt).

3. T 6⊆ S and T ∩ S 6= ∅:

(a) If p1 is the only part of P that intersects T , then P ′ = (T\S, T∩p1, p1\T, p2, ..., pt).

(b) Otherwise, we follow the same procedure as in the previous case to refine P by

T∩S and achieve a new set partition P ′′ = (p′1, p
′
2, . . . , p

′
v) for S. If p′1∩T 6= ∅, then

we take P ′ = (T\S, p′1∩T, p′1\T, p′2, . . . , p
′
v); otherwise P ′ = (p′1, p

′
2, . . . , p

′
v\T, p′v∩

T, T\S).

The general partition refinement procedure updates a given set partition P by a given

set T and returns a new set partition P ′. This problem can be solved in time O(|T ∩S|) [22].

CHAPTER 2. DECIDING THE C1P 33

2.2.2 Using Partition Refinement to Decide the C1P

In this subsection, we present a way to use the partition refinement algorithm to decide

whether a given binary m × n matrix M has the C1P . We let {1, 2, . . . , n} represent the

set of columns of M and O(M) be the overlap graph M .

Definition 2.2.8 Given a set partition P = (p1, p2, . . . , pt) of S and an arbitrary set T , we

say T is consecutive in P if one of the following three cases applies:

1. T ∩ S = ∅: T is consecutive in P automatically.

2. T ⊆ S: Let ℓ be the smallest integer such that pℓ ∩ T 6= ∅ and r be the largest integer

such that pr ∩ T 6= ∅. We require (pℓ ∩ T) ∪ pℓ+1 ∪ pℓ+2 . . . ∪ pr−1 ∪ (pr ∩ T) = T .

3. T 6⊆ S and T ∩ S 6= ∅: Let ℓ be the smallest integer such that pℓ ∩ T 6= ∅ and r be the

largest integer such that pr∩T 6= ∅. We require (pℓ∩T)∪pℓ+1∪pℓ+2 . . .∪pr−1∪(pr∩T) ⊂

T and at least one of the following is true:

(a) ℓ = 1 and pℓ ⊆ T .

(b) r = t and pr ⊆ T .

Example 2.2.9 Let S = {1, 2, 3, 4, 5, 6}, P1 = ({1, 4, 6}, {2, 5}, {3}), P2 = ({2, 5}, {1, 4, 6}, {3})

be as given in Example 2.2.2 and T = {1, 2, 3, 5} ⊂ S. Then T is consecutive in P1 since

we can arrange the elements in the parts of P1 as ({4, 6, 1}, {2, 5}, {3}). However, T is not

consecutive in P2 since no matter how we arrange the elements in the parts of P2, we still

have {1, 4, 6} as the middle part, and T intersects the first and last part of P2, but the

middle part is not contained in T . Moreover, if T ′ = {1, 2, 7}, then T ′ is not consecutive in

P1 as we are now in case 3(a) and {1, 4, 6} 6⊆ T ′.

We add at the end one step to the partition refinement procedure, which is to check

whether T is consecutive in the updated P ′. If this is the case, then we return success,

otherwise we return failure.

Example 2.2.10 For example, suppose we have S = {1, 2, 3, 4, 5, 6}, P = ({1, 3, 4}, {6}, {2, 5})

and we try to refine P by T = {1, 2}. After the refining process, we have the updated set

partition P ′ = ({3, 4}, {1}, {6}, {2}, {5}). Since T = {1, 2} is not consecutive in P ′, we

return failure. If instead we try to refine P by T ′ = {1, 2, 6}, we will get the same updated

P ′, but now T ′ = {1, 2, 6} is consecutive in P ′, and we return success.

CHAPTER 2. DECIDING THE C1P 34

In Algorithm 2.1, we give the procedure for deciding whether a given R(M) has the

C1P . The algorithm iterates over the components C of the overlap graph O(M), and on

each iteration uses a function SpanTree, which takes a component C and a vertex r in C

as arguments, grows a spanning tree of C rooted at r, using depth-first search, and returns

the list L = (rℓ1 , rℓ2 , . . . , rℓt
) of rows on the tree, in the order in which they were added. We

note that the list L returned by SpanTree will always have the property that between any

rℓi
and rℓj

with i < j, we can find a path p in C such that for all rℓk
on p, we have k < j.

Algorithm 2.1 Partition Refinement for the C1P

1: for each component C of O(M)
2: Let t be the number of row vertices in C
3: if t = 1 then goto next C
4: else
5: Pick any vertex r in C
6: Let (rℓ1 , rℓ2 , . . . , rℓt

) = SpanTree(C, r)
7: Let P1 = (rℓ1)
8: for i from 2 to t
9: Let Pi be the set partition resulting from refining Pi−1 by rℓi

.
10: if rℓi

is not consecutive in Pi then return failure
11: return success

We note that if the algorithm returns success, then the final partition we get is a set

partition of the set of columns of M . This partition gives all the valid permutations of M .

Theorem 2.2.11 The set of rows of a component in O(M) has the C1P if and only if

Algorithm 2.2.2 returns success.

Proof. From the procedure of Algorithm 2.2.2, we see that we get success if and only if

we have all rows appearing consecutive in the final set partition. This is exactly what we

require for the set of rows of C to have the C1P . �

Example 2.2.12 Let M be the binary matrix illustrated below:

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 1 0 1

r2 1 1 0 0 0 1 0

r3 1 0 1 0 0 1 0

r4 0 0 1 1 0 1 0

CHAPTER 2. DECIDING THE C1P 35

Then r1 = {1, 2, 5, 7}, r2 = {1, 2, 6}, r3 = {1, 3, 6}, r4 = {3, 4, 6} and the corresponding

overlap graph is:

r1 r2 r3 r4

As we can see, the overlap graph only has one component. Supposing we pick r = r2

as the first vertex in the spanning tree, we may get two possible lists of vertices. In fact

we may pick either of these two lists, and get the same result. Say the list we pick is

L = (rℓ1 = r2, rℓ2 = r1, rℓ3 = r3, rℓ4 = r4).

We first let P1 = (rℓ1) = ({1, 2, 6}). Then, refining P1 by rℓ2 gives P2 = ({6}, {1, 2}, {5, 7}).

Refining P2 by rℓ3 gives P3 = ({3}, {6}, {1}, {2}, {5, 7}). Finally, refining P3 by ℓ4 gives

P4 = ({4}, {3}, {6}, {1}, {2}, {5, 7}). This final set partition gives us all the valid permuta-

tions for M , namely: 4361257, 4361275, 7521634 and 5721634. The matrix resulting from

permutation 7521634 is pictured below:

c7 c5 c2 c1 c6 c3 c4

r1 1 1 1 1 0 0 0

r2 0 0 1 1 1 0 0

r3 0 0 0 1 1 1 0

r4 0 0 0 0 1 1 1

Recall from Proposition 1.1.13 that a binary matrix M has the C1P if and only if for each

component of O(M), its vertex set has the C1P . We now give an example of a binary

matrix whose overlap graph has more than one components.

Example 2.2.13 Let M be the binary matrix illustrated below:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1 1 0 0 0 0 0 1 0 0 1

r2 0 0 1 0 0 1 1 0 1 1

r3 0 0 0 1 1 0 0 0 0 0

r4 0 0 1 0 0 1 0 0 0 0

r5 0 0 0 0 0 1 0 0 1 0

r6 0 1 0 1 0 0 0 0 0 0

r7 0 0 1 0 0 1 0 1 1 0

CHAPTER 2. DECIDING THE C1P 36

Then r1 = {1, 7, 10}, r2 = {3, 6, 7, 9, 10}, r3 = {4, 5}, r4 = {3, 6}, r5 = {6, 9}, r6 = {2, 4}, r7 =

{3, 6, 8, 9} and the overlap graph O(M) is:

r1 r2 r7 r4 r5 r3 r6

The overlap graph has three components, and we apply partition refinement on each com-

ponent separately. For component C1 = {r1, r2, r7} we get the partition P1 = ({1}, {7, 10},

{3, 6, 9}, {8}); for component C2 = {r4, r5} we get the partition P2 = ({3}, {6}, {9}).

Since r4 ⊂ r2 and r5 ⊂ r2, we can combine P1 and P2 to get the partition P12 =

({1}, {7, 10}, {3}, {6}, {9}, {8}). For component C3 = {r3, r6}, we get partition P3 =

(2, 4, 5). Since the rows in C3 are disjoint from the rows in C1 and C2, P12 and P3 give us all

the valid permutations for columns 1, 3, 6, 7, 8, 9, 10 and 2, 4, 5 respectively. Hence we have

two sets, S1 = {(1, 7, 10, 3, 6, 9, 8), (1, 10, 7, 3, 6, 9, 8), (8, 9, 6, 3, 10, 7, 1), (8, 9, 6, 3, 7,

10, 1)} and S2 = {(2, 4, 5), (5, 4, 2)}, and the set of valid permutations for M arise from

the combination of any element of S1 and any element of S2 in any order. For exam-

ple, if we pick 1, 7, 10, 3, 6, 9, 8 from S1 and 2, 4, 5 from S2, then the valid permutations

we get are 1, 7, 10, 3, 6, 9, 8, 2, 4, 5 and 2, 4, 5, 1, 7, 10, 3, 6, 9, 8. Therefore we have 16 valid

permutations for M in this example. The matrix resulting from the valid permutation

5, 4, 2, 8, 9, 6, 3, 10, 7, 1 is given below.

c5 c4 c2 c8 c9 c6 c3 c10 c7 c1

r1 0 0 0 0 0 0 0 1 1 1

r2 0 0 0 0 1 1 1 1 1 0

r3 1 1 0 0 0 0 0 0 0 0

r4 0 0 0 0 0 1 1 0 0 0

r5 0 0 0 0 1 1 0 0 0 0

r6 0 1 1 0 0 0 0 0 0 0

r7 0 0 0 1 1 1 1 0 0 0

To recap, the procedure consists in applying the partition refinement algorithm to each

component of O(M), the overlap graph of a binary m×n matrix M . If for any component,

we cannot make a row consecutive in the corresponding set partition, then M does not have

the C1P . Otherwise, M has the C1P , and the set of valid permutations for M arises from

the combination of the set partitions we get for each component. According to [22], this

algorithm has time complexity O(m + n + c), where c is the number of 1s in M .

CHAPTER 2. DECIDING THE C1P 37

2.3 PQ-Trees and PQR-Trees

In this section, we present another algorithm for testing the C1P of a given binary matrix

M . This algorithm applies the concept of PQ-tree and PQR-tree for R(M). The PQ-tree,

introduced by Booth [3] in 1975, is a rooted tree with two kind of of nodes, P-nodes and

Q-nodes. The children of a P-node are ordered and can be permuted freely, whereas the

children of a Q-node are ordered and can only have their order reversed.

In Booth and Lueker’s [4] paper, they used PQ-trees to give the first linear algorithm for

testing consecutive ones property with complexity O(m + n + c), where m is the number of

rows, n is the number of columns and c is the number of 1s in a binary matrix. For binary

matrices that do not have the C1P , the algorithm returns no PQ-tree at all; in particular,

no information is returned as to where among the columns the conflicts arise.

The PQ-tree concept was extended however in 1998 [32] to PQR-tree, with the introduc-

tion of a new type of node, the R-node, which serves to record the conflicts in a non-C1P

matrix. Therefore the algorithm always returns a tree, and, for non-C1P matrices, at least

one R-node is built.

Definition 2.3.1 A PQR-tree with n leaves is a rooted tree with its n leaves labeled from 1

to n and with three kind of internal nodes, namely P-nodes, Q-nodes and R-nodes. Moreover

the children of P-nodes and Q-nodes are linearly ordered and:

1. P-nodes have at least two children;

2. Q-nodes and R-nodes have at least three children.

A PQ-tree is a PQR-tree without R-nodes.

Definition 2.3.2 Two PQ-trees T , T ′ are said to be equivalent if one can be obtained from

another by permuting the children of P-nodes and/or reversing the order of the children of

Q-nodes. We write T ∼= T ′ in this case.

Example 2.3.3 In diagrams, we draw P-nodes as circles, and Q-nodes as rectangles. An

example of two equivalent PQ-trees is presented below:

Q1

Q2

1

3

P1 ∼=

4 5 6

2

Q1

Q2

1

3

P1

456

2

CHAPTER 2. DECIDING THE C1P 38

Definition 2.3.4 For a PQ-tree T , we define the equivalence class E(T) of T as E(T) =

{T ′ : T ∼= T ′}.

We first describe how to compute a PQR-tree PQRM from an m× n binary matrix M ,

using the overlap graph O(M) as a guide and the partition refinement as the central tool

to label internal nodes as P-nodes, Q-nodes or R-nodes. McConnell, in [31] shows that this

computation can be done in time O(n + m + c) where c is the number of 1s in M .

The procedure of computing PQRM from M :

1. Let C1, C2, ..., Ct be the components of O(M) and let Ri be the union of rows in Ci,

1 ≤ i ≤ t.

2. For i from 1 to t, applying the partition refinement to the rows of Ci, we get a set

partition Pi = (pi1 , . . . , piki
) of Ri.

3. Let N = {N1, . . . , Nq} be the set consists of all the Ris, all the parts pij in Pis and

{1}, . . . , {n}.

4. Let PQRM be the PQR-tree of N : each node is labeled by i (i = 1 . . . , q) in such a

way that i is a child of j if and only if Nj ⊂ Ni and there does not exists Nk such

that Nj ⊂ Nk ⊂ Ni. Hence, each node N of PQRM corresponds to a unique subset

of {1, . . . , n}.

5. For every internal node N of PQRM , label N as follows:

(a) R-node if N = Ri for some i ∈ {1, . . . , t} and Ci does not have the C1P ,

(b) Q-node if N = Ri for some i, Ci has the C1P and ki > 2, (i.e. the partition

associated to Ri has more than two parts),

(c) P-node if N = Ri for some i, Ci has the C1P , and ki ≤ 2,

(d) P-node if N 6= Ri for some i (i.e. N is a part of some Pi).

6. Let PQRM denote the resulting tree.

CHAPTER 2. DECIDING THE C1P 39

Example 2.3.5 We construct PQRM of the C1P binary matrix M shown below:

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1 1 1 1 0 0 0 0 0

r2 0 0 0 1 1 1 1 1 1

r3 0 0 0 0 1 1 1 1 0

r4 0 0 0 0 0 0 1 1 1

r5 0 0 0 0 0 1 1 1 0

We begin by computing the overlap graph O(M):

r1 r2 r3 r4 r5

which has two components C1, C2, where C1 contains r1 = {1, 2, 3, 4}, r2 = {4, 5, 6, 7, 8, 9}

and C2 contains r3 = {5, 6, 7, 8}, r4 = {7, 8, 9}, r5 = {6, 7, 8}. Hence R1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

and R2 = {5, 6, 7, 8, 9}. Applying partition refinement to C1 and C2, we get P1 = ({1, 2, 3}, {4},

{5, 6, 7, 8, 9}) and P2 = ({5}, {6}, {7, 8}, {9}). ThenN = {{1}, . . . , {9}, {1, 2, 3}, {5, 6, 7, 8, 9},

{7, 8} {1, 2, 3, 4, 5, 6, 7, 8, 9}}. Since {1, 2, 3} and {7, 8} are the only sets of size greater than

1 that do not equal to R1 or R2, they will be labeled as P-nodes. Since P1 and P2 have

more than two parts, we then label the nodes corresponding to R1 and R2 as Q-nodes. This

gives us PQRM as:

Q1

Q2P1

1 2 3

4

P2

87

65 9

Note that, in this example, M has the C1P , so PQRM does not have an R-node and is

then a PQ-tree. The leaf orders of the trees in E(PQRM) represent all valid permutations

for M . Indeed, due to the fact that R-nodes are consequences of a component of the overlap

graph that does not have the C1P , we have the following fundamental result.

Theorem 2.3.6 A binary matrix M has the C1P if and only if PQRM does not have any

R-nodes. Moreover, for a C1P matrix M , a permutation is valid for M if and only if it is

the leaf order of some member in E(PQRM).

CHAPTER 2. DECIDING THE C1P 40

We now give an example for a non-C1P matrix.

Example 2.3.7 One can check that the following matrix does not have the C1P as we

cannot make the 1s in r3,r4,r5 consecutive.

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1 1 1 1 0 0 0 0 0

r2 0 0 0 1 1 1 1 1 1

r3 0 0 0 0 1 1 1 0 0

r4 0 0 0 0 0 0 1 1 0

r5 0 0 0 0 0 0 1 0 1

this matrix has the overlap graph O(M) as shown:

r1 r2 r3 r4 r5

there are two components, C1 defined by r1 and r2, and C2 defined by the three other rows

in O(M). By applying partition refinement to each of C1 and C2, we get the corresponding

partitions P1 = ({1, 2, 3}, {4}, {5, 6, 7, 8, 9}) and P2 = ({5, 6}, {7}, {8}, {9}). Since r5 is not

consecutive in P2, in building the nodes at PQRM , we label the node corresponding to C2

as an R-node. This gives the following tree PQRM :

Q1

P1

1 2 3

4

P2

R

87

65

9

We note that although C2 does not have the C1P , the columns 5 and 6 are grouped

under a P-node, as they do not belong to any part that implies a row is not consecutive in

P2. Hence, some partial information can be extracted from a non-C1P component (such

parts are called block in [31]).

CHAPTER 2. DECIDING THE C1P 41

Thus, if the PQR-tree PQRM for a binary matrix M does not have any R-nodes, then

M has the C1P , and we get all the valid permutations for M from the valid rearrangements

of the leaves of the tree. If instead PQRM does have one or more R-nodes, then M does not

have the C1P , and we know that the problematic columns are the children of the R-nodes.

2.4 Incompatibility Graph

The incompatibility graph is introduced in McConnell’s [31] paper, where it is shown that for

a binary matrix M , R(M) has the C1P if and only if its incompatibility graph is bipartite.

Hence if R(M) does not have the C1P , its incompatibility graph, which contains O(n2)

vertices, must contain an odd cycle. They then give an algorithm for testing the C1P ,

which returns an odd cycle of length O(n) if R(M) does not have the C1P , where n is

the number of columns of M . Moreover, if R(M) does not have the C1P , each edge of

the cycle returned by their algorithm is labeled with a subset of R(M) that documents

the incompatibility. Therefore, along with an answer, their algorithm provides a piece of

evidence that allows the answer to be easily checked, and is thus a certifying algorithm.

Definition 2.4.1 Let (x1, x2, . . . , xn) be a valid permutation of a C1P matrix M . We

define Rel = {(xi, xj) : i < j} to be a consecutive ones relation on (x1, x2, . . . , xn).

Example 2.4.2 Suppose we have R(M) = {{1, 2, 3}, {2, 3}, {3, 4}} for a given M , so that

(1, 2, 3, 4) is a valid permutation of M . The consecutive ones relation on this valid permu-

tation is Rel = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

It is easy to see that for an arbitrary pair of columns ci, cj , we cannot have (ci, cj) and

(cj , ci) in the same consecutive ones relation. We express this by saying that (ci, cj) and

(cj , ci) are incompatible. Similarly, suppose we have {ci, cj} ⊆ rℓ and ck /∈ rℓ. Then (ci, ck)

and (ck, cj) cannot appear in the same consecutive ones relation. This is because (ci, ck)

and (ck, cj) implies ck goes between ci and cj in a valid permutation, whereas rℓ is not

consecutive in this permutation, so we have a contradiction. In this case, we also say that

(ci, ck) and (ck, cj) are incompatible. From these two types of incompatible pairs, we can

construct an incompatibility graph, where the vertices are all the pairs of columns, and where

there is an edge between two pairs if and only if they are incompatible.

CHAPTER 2. DECIDING THE C1P 42

Definition 2.4.3 For a given binary matrix M , we define the simple undirected incompat-

ibility graph I(M) corresponding to R(M) to be the graph whose vertex set is the set of

ordered pairs of columns {(ci, cj) : 1 ≤ i, j ≤ n}, and in which there is an edge between any

two vertices if and only if one of the following holds:

1. The two vertices are of the form (ci, cj), (cj , ci).

2. The two vertices are of the form (ci, ck), (ck, cj) provided {ci, cj} ⊆ rℓ and ck /∈ rℓ for

some rℓ ∈ R(M).

Example 2.4.4 If we have R(M) = {{1, 2}, {2, 3}, {1, 3}}, then the corresponding incom-

patibility graph is:

(2,1) (3,1) (3,2)

(1,2) (1,3) (2,3)

By the definition of the incompatibility graph, a consecutive ones relation must have no

incompatible pairs. Since all pairs of the type (ci, ck), (ck, cj) are symmetric, i.e. (ci, ck) and

(ck, cj) are incompatible if and only if (cj , ck) and (ck, ci) are incompatible, a consecutive

ones relation must consist of half of the vertices of its incompatibility graph and these

vertices are independent in this graph. Moreover, the reverse of a valid permutation is

also valid, so that the remaining half of the vertices of the incompatibility graph must be

independent as well. Now it is clear that if R(M) has the C1P , then I(M) must be bipartite.

In McConnell’s paper [31] it is shown that if R(M) does not have the C1P , then I(M) is

not bipartite and I(M) contains an odd cycle of length at most n + 2.

Theorem 2.4.5 [31] Let M be a binary matrix with n columns. Then R(M) has the C1P

if and only if I(M) is bipartite. If R(M) does not have the C1P , then I(M) has an odd

cycle of length at most n + 2.

Part II

New Results

43

Chapter 3

Minimum Conflicting Sets and

Tucker Patterns

In this chapter, we make use of Tucker patterns to attack two problems. The first one is to

define a combinatorial characterization of minimal conflicting sets for matrices with exactly

three 1s per row. Next, we describe an algorithm to decide if a given row of a binary matrix

belongs to at least one minimal conflicting set.

3.1 Minimal Conflicting Sets in Matrices with Three 1s per

Row

In this chapter, we give a combinatorial characterization of minimal conflicting sets for

binary matrices with exactly three 1s per row, based on Tucker’s five forbidden patterns.

We give all the possible patterns of minimal conflicting sets for matrices with three 1s per

row. The patterns are discovered in a naive way in which we try all the possible ways of

adding 1s to Tucker’s five forbidden patterns. From this characterization, we foresee the

difficulty of extending the characterization for matrices with more than three 1s per row.

Definition 3.1.1 We define a bipartite graph to be claw-like if it is one of Claw1, Claw2,

Claw3, Claw4.

44

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 45

Claw1

Claw2

Claw3

Claw4

Proposition 3.1.2 Let M be a binary matrix with three 1s per row.

If M has exactly three rows, say R(M) = {r1, r2, r3}, which satisfy r1 ∩ r2 ∩ r3 6= ∅ and

ri\(ri+1 (mod 3) ∪ ri+2 (mod 3)) 6= ∅ for all i, then B(M) must be one of Claw1, Claw2, or

Claw3 illustrated in Definition 3.1.1.

If M has exactly four rows, say R(M) = {r1, r2, r3, r4}, which satisfy ri ∩ r4 6= ∅, ri ∩

ri+1 (mod 3) = ∅ and ri\r4 6= ∅ for all i, then B(M) must be Claw4 illustrated in Definition

3.1.1.

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 46

Definition 3.1.3 We say B(M) is cycle-like if it is of the form of one of the graphs Cycle1,

Cycle2, Cycle3.

Cycle1:

r1

r2r3

Cycle2:

r2r1

r4 r3

Cycle3:

r8

r7

r6

r5

r4r3r2

r1

rk

rk−1

Proposition 3.1.4 Let M be a binary matrix with three 1s per row.

If M has exactly three rows, say R(M) = {r1, r2, r3}, such that | ∩3
i=1 ri| = 1, and for each

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 47

i there is some xi in ri ∩ ri=1 (mod 3), and none of these xi’s belong to more than two rows,

then B(M) is Cycle1 illustrated in Definition 3.1.3.

If M has exactly four rows, say R(M) = {r1, r2, r3, r4}, such that | ∩4
i=1 ri| = 1, and for

each i there is some xi in ri ∩ ri+1 (mod 4), and none of these xi’s belong to more than two

rows, then B(M) is Cycle2 illustrated in Definition 3.1.3.

If M has exactly k rows, where k ≥ 3, say R(M) = {r1, r2, ...rk}, and the k rows satisfy the

condition that whenever |(i − j) (mod k)| 6= 1, we have ri ∩ rj = ∅, then B(M) is of the

form of Cycle3, where Cycle3 stands for the infinite family of bipartite graphs exemplified

in Definition 3.1.3.

Lemma 3.1.5 Let M be one of Tucker’s configurations and M∗ be a binary matrix that

contains M . If R(M∗) is a minimal conflicting set, then M and M∗ have the same number

of rows.

Proof. Since M is a sub-matrix of M∗, M∗ has at least as many rows as M . Suppose M has

k rows and M∗ has more than k rows. Since M is exactly one of the Tucker patterns, R(M)

is a minimal conflicting set. Since R(M) (R(M∗), there exists a row r ∈ R(M∗) such that

R(M∗)\r does not have the C1P , which contradicts that R(M∗) is a minimal conflicting

set. �

Proposition 3.1.6 Let M∗ be a binary matrix resulting by appending columns cd1
, cd2

, . . . , cdℓ

to MIn, where n ≥ 3 and ℓ ≥ 1. Then R(M∗) is a minimal conflicting set if and only if

each of the appended columns satisfies exactly one of the following conditions:

1. the appended column has exactly two 1s and these two 1s belong to two consecutive

rows in M∗(the first and the last row are considered to be consecutive as well);

2. the appended column has exactly one entry equal to 1.

Proof. Without loss of generality, for the row indices, we work modulo n+2 with 1, 2, . . . , n+

2 as our system of residues.

(⇐) Let r1, r2, . . . , rn+2 be the ordered row vertices in B(MIn) such that ri is only adjacent

to ri−1 and ri+1. Suppose cdi
contains either two consecutive 1s or a single 1 for all i ∈

{1, 2, . . . , ℓ}. Then ri is only adjacent to ri−1 and ri+1 in B(M∗). Let ci = ri ∩ ri+1 and

c∗i = ri\ri−1 ∪ ri+1, 1 ≤ i ≤ n + 2. We illustrate B(M∗) as:

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 48

c∗j+1 c∗j−2 c∗j−1

cj+1 cj−2

rj

cj cj−1

rj+1 rj+2 rj+3 rj−2 rj−1

Now deleting any row rj from B(M∗), we ”break” the cycle, and we can order the

columns as cj , c∗j+1, cj+1 . . . c∗j−1, cj−1 to get a valid permutation for R(M∗)− rj. There-

fore R(M∗) is a minimal conflicting set.

(⇒) Suppose to the contrary that there exists some cdv
containing two non-consecutive 1s.

That is, M∗
idv

= M∗
jdv

= 1 for some i 6= j, j ± 1. Then we will see a chord rirj in B(M∗).

There are two cases to consider:

1. If there exists some k such that M∗
kdv

= 0, then C1 = (ri, . . . , rk, . . . , rj , dv) contains a

cycle in B(M∗). This implies that R(M∗)\r, for some r not on C1, does not have the

C1P , which contradicts that R(M∗) is a minimal conflicting set.

2. If M∗
kdv

= 1 for all k, then cdv
is adjacent to all row vertices in B(M∗). Since n ≥ 3,

we have at least five rows and it is possible to pick three non-consecutive row vertices

according to B(MIn). Let rℓ, rs, rt be three non-consecutive row vertices on B(MIn),

then we can find column vertices cℓ, cs, ct such that cℓ ∈ rℓ\(rs ∪ rt), cs ∈ rs\(rℓ ∪ rt)

and ct ∈ rt\(rℓ ∪ rs). Hence the subgraph induced on B(M∗) by the vertex subset

{cdv , rℓ, rs, rt, cℓ, cs, ct} is a claw, which contradicts that R(M∗) is a minimal conflicting

set.

�

Example 3.1.7 The following matrices M∗1 and M∗2 result from MI3 by appending one

column.

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 49

M∗1 =

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 0

r2 0 1 1 0 0 1

r3 0 0 1 1 0 1

r4 0 0 0 1 1 0

r5 1 0 0 0 1 1

We see that c6 in M∗1 contains two non-consecutive 1s. For example, (M∗1
26 , M∗1

56), (M∗1
36 ,

M∗1
56) and (M∗1

56 , M∗1
36) are pairs of non-consecutive 1s. It is easy to see that R(M∗1) is not

a minimal conflicting set as the sub-matrix containing rows r3, r4, r5 and columns c4, c5, c6

is MI1 .

M∗2 =

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 1

r2 0 1 1 0 0 1

r3 0 0 1 1 0 1

r4 0 0 0 1 1 1

r5 1 0 0 0 1 1

We see that c6 in M∗2 contains all 1s. It is easy to check that a set of any three non-

consecutive rows does not have the C1P . For example, if we pick S = {r1 = {1, 2, 6}, r3 =

{3, 4, 6}, r4 = {4, 5, 6}}, after applying partition refinement to S, we obtain a set partition

P = ({1, 2}, {6}, {4}, {3}, {5}). Since r3 is not consecutive in P , S does not have the C1P .

Moreover, a set of any three non-consecutive rows in M∗2 is a minimal conflicting set and

its corresponding bipartite graph is Claw2.

Theorem 3.1.8 Given a binary matrix M with three 1s per row, R(M) is a minimal con-

flicting set if and only if B(M) is claw-like or cycle-like.

Proof.

(⇐) Suppose B(M) is claw-like or cycle-like. We check in each of the possible cases that

R(M) is a minimal conflicting set. Without loss of generality, we label the columns by

positive integers.

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 50

1. Claw-like:

(a) Claw1, Claw2, Claw3: Without loss of generality, we let r1 = {1, 2, x}, r2 =

{1, 3, y}, r3 = {1, 4, z}, with possibly x = y, y = z, x = z or x = y = z. We apply

partition refinement to R(M), resulting in a sub-partition P = ({2}, {1}, {3}, {4}).

Since r3 is not consecutive in P , R(M) does not have the C1P .

It is easy to see that deleting any row, we only have two rows left in R(M) and

there is a valid permutation for R(M). Hence R(M) is a minimal conflicting set.

(b) Claw4: Without loss of generality, we let r1 = {1, 4, x}, r2 = {2, 5, y}, r3 =

{3, 6, z}, r4 = {1, 2, 3}, where x 6= y 6= z 6= x. We apply partition refinement to

R(M), resulting in a sub-partition P = ({4}, {1}, {3}, {2}, {5}, {6}). Since r3 is

not consecutive in P , R(M) has no valid permutation.

If we delete r4 in R(M), we will have three non-overlapping rows, which clearly

have the C1P . If r4 remains in R(M), it is not hard to see that if we delete any

of the other rows then the remaining rows will have the C1P . Therefore R(M)

is a minimal conflicting set.

2. Cycle-like:

(a) Cycle1: Without loss of generality, we let r1 = {1, 2, 4}, r2 = {2, 3, 4}, r3 =

{1, 3, 4}. We apply partition refinement to R(M), resulting in the set partition

P = ({1}, {4}, {2}, {3}). Since r3 is not consecutive in P , R(M) does not have

the C1P .

Deleting any row from R(M), we have only two rows left, which clearly has the

C1P . Hence R(M) is a minimal conflicting set.

(b) Cycle2: Without loss of generality, we let r1 = {1, 2, 5}, r2 = {2, 3, 5}, r3 =

{3, 4, 5}, r4 = {1, 4, 5}. We apply partition refinement to R(M), resulting in the

set partition P = ({1}, {2}, {5}, {3}, {4}). Since r4 is not consecutive in P , R(M)

does not have the C1P .

One can easily check that R(M)\Ri has the C1P for any i ∈ {1, 2, 3, 4}. Hence

R(M) is a minimal conflicting set.

(c) Cycle3: This case was dealt with in the first part of the proof of Proposition 3.1.6.

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 51

(⇒) Suppose R(M) is a minimal conflicting set. We need to show that B(M) is either

claw-like or cycle-like. If R(M) is a conflicting set then R(M) does not have the C1P ,

implying that M contains one of Tucker’s configuration of matrices, say M ′.

By Lemma 3.1.5, all possible minimal conflicting sets must arise from Tucker’s configu-

rations by adding columns. We also have the property that each row of M contains exactly

three 1s, and therefore we have the strategy of adding some columns to each of Tucker’s

configurations, to obtain new matrices, and then, for each of these, checking whether the

set of rows is a minimal conflicting set. If so, then we need to show that its bipartite graph

is either claw-like or cycle-like. If not, then it must contain some minimal conflicting sets,

and we then need to show that the bipartite graphs of these minimal conflicting sets are

either claw-like or cycle-like.

Since M has exactly three 1s per row, the possible Tucker’s configurations we need to

consider are: MII1
, MIII1

, MIII2
, MIV and MIk

for any k ≥ 1.

1. MII1
:

(a) Appending one column to MII1
, a resulting matrix M∗ is:

c1 c2 c3 c4 c5

r1 1 1 0 0 1

r2 0 1 1 0 1

r3 1 1 0 1 0

r4 0 1 1 1 0

We have r1 = {1, 2, 5}, r2 = {2, 3, 5}, r3 = {1, 2, 4}, r4 = {2, 3, 4}. Applying par-

tition refinement to R(M∗), we get the set partition P = ({4}, {1}, {2}, {5}, {3}).

Since r4 is not consecutive in P , R(M∗) does not have the C1P . It is easy to

check that deleting any row from R(M∗), the resulting set has the C1P , and

therefore R(M∗) is a minimal conflicting set. The corresponding bipartite graph

B(M∗) is Cycle2.

(b) Appending two columns to MII1
, a resulting matrix M∗ is:

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 52

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 1 0

r2 0 1 1 0 0 1

r3 1 1 0 1 0 0

r4 0 1 1 1 0 0

We have r1 = {1, 2, 5}, r2 = {2, 3, 6}, r3 = {1, 2, 4}, r4 = {2, 3, 4}, and R(M∗) is

not a minimal conflicting set since R(M∗)\r4 does not have the C1P . One can

check that R(M∗)\r3 and R(M∗)\r4 are both minimal conflicting sets and the

corresponding bipartite graph is Claw2.

2. MIII1
: Let M∗ be a matrix obtained by appending columns to MIII1

. Since M∗

contains M , it does not have the C1P . Deleting any row from M∗, we have two rows

left in R(M∗), and this clearly has the C1P . Hence regardless of the type of columns

we append to MIII1
, the set of rows of the resulting matrix M∗ is a minimal conflicting

set. One can check that, depending on the different types of columns we append, the

corresponding bipartite graph is one of Claw1, Claw2, Claw3, and Cycle1.

3. MIII2
:

(a) Appending one column to MIII2
, a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 0 1

r2 0 1 1 0 0 1

r3 0 0 1 1 0 1

r4 0 1 1 0 1 0

We have r1 = {1, 2, 6}, r2 = {2, 3, 6}, r3 = {3, 4, 6}, r4 = {2, 3, 5}. One can check

that R(M∗) is not a minimal conflicting set as R(M∗)\r2 does not have the C1P .

The set R(M∗)\r2 is a minimal conflicting set and the corresponding bipartite

graph is in the Cycle3 family.

(b) Appending two columns to MIII2
, we have three cases:

i. The resulting matrix M∗ is:

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 53

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 0 1 0

r2 0 1 1 0 0 0 1

r3 0 0 1 1 0 0 1

r4 0 1 1 0 1 0 0

We have r1 = {1, 2, 6}, r2 = {2, 3, 7}, r3 = {3, 4, 7}, r4 = {2, 3, 5} and R(M∗)

is not a minimal conflicting set as R(M∗)\r3 does not have the C1P . The

set R(M∗)\r3 is a minimal conflicting set and the corresponding bipartite

graph is Claw2.

ii. The resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 0 1 0

r2 0 1 1 0 0 1 0

r3 0 0 1 1 0 0 1

r4 0 1 1 0 1 0 0

One can check that R(M∗) is not a minimal conflicting set as R(M∗)\r1 does

not have the C1P . The set R(M∗)\r1 is the only minimal conflicting set and

the corresponding bipartite graph is Claw2.

iii. The resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 0 1 0

r2 0 1 1 0 0 0 1

r3 0 0 1 1 0 1 0

r4 0 1 1 0 1 0 0

We have r1 = {1, 2, 6}, r2 = {2, 3, 7}, r3 = {3, 4, 6}, r4 = {2, 3, 5} and R(M∗)

is not a minimal conflicting set. One can check that R\R1 and R\R3 are

both minimal conflicting sets, and their corresponding bipartite graphs are

both Claw2. The sets R\R2 and R\R4 are also minimal conflicting sets, and

their corresponding bipartite graphs are both in the Cycle3 family.

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 54

(c) Appending three columns to MIII2
, a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1 0 0 0 1 0 0

r2 0 1 1 0 0 0 1 0

r3 0 0 1 1 0 0 0 1

r4 0 1 1 0 1 0 0 0

We have r1 = {1, 2, 6}, r2 = {2, 3, 7}, r3 = {3, 4, 8}, r4 = {2, 3, 5} and R(M∗) is

not a minimal conflicting set. One can check that R(M∗)\r1 and R(M∗)\r3 are

minimal conflicting sets, and the corresponding bipartite graph is Claw2.

4. MIV :

(a) Appending one column to MIV , a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 0 0 1

r2 0 0 1 1 0 0 1

r3 0 0 0 0 1 1 1

r4 0 1 0 1 0 1 0

We have r1 = {1, 2, 7}, r2 = {3, 4, 7}, r3 = {5, 6, 7}, r4 = {2, 4, 6} and R(M∗)

is not a minimal conflicting set. One can check that R(M∗)\r1, R(M∗)\r2,

R(M∗)\r4 are minimal conflicting sets. The corresponding bipartite graph for

R(M∗)\r1, and for R(M∗)\r2 is in the Cycle3 family, and for R(M∗)\r4 is Claw1.

(b) Appending two columns to MIV , a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1 0 0 0 0 1 0

r2 0 0 1 1 0 0 1 0

r3 0 0 0 0 1 1 0 1

r4 0 1 0 1 0 1 0 0

We have r1 = {1, 2, 7}, r2 = {3, 4, 7}, r3 = {5, 6, 8}, r4 = {2, 4, 6} and R(M∗)

is not a minimal conflicting set. One can check that R(M∗)\r3 is a minimal

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 55

conflicting set, and the corresponding bipartite graph is in the Cycle3 family. All

other cases of appending two columns to make three 1s on each row are similar to

this case: The set of four rows is not a minimal conflicting set since the two rows

with the 1s on the same column along with the last row always form a minimal

conflicting set, and the corresponding bipartite graph is in the Cycle3 family.

(c) Appending three columns to MIV , a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1 1 0 0 0 0 1 0 0

r2 0 0 1 1 0 0 0 1 0

r3 0 0 0 0 1 1 0 0 1

r4 0 1 0 1 0 1 0 0 0

We have r1 = {1, 2, 7}, r2 = {3, 4, 8}, r3 = {5, 6, 9}, r4 = {2, 4, 6}. It is easy to

check that R(M∗) is a minimal conflicting set and B(M∗) is Claw4.

5. MIn :

(a) n = 1: By the same reason for case MIII1
, regardless of the type of columns we

append to MI1 , the set of rows of the resulting matrix is a minimal conflicting

set.

(b) n = 2: If each of the columns appended contains either a single 1 or two con-

secutive 1s, then the corresponding bipartite graph is in the Cycle3 family. As

we have shown in the first part, the set of rows is a minimal conflicting set. We

consider now the cases in which at least one of the columns appended either

contains exactly two 1s, which are non-consecutive, or contains three or more 1s.

i. Appending one column to MI2, a resulting matrix is:

c1 c2 c3 c4 c5

r1 1 1 0 0 1

r2 0 1 1 0 1

r3 0 0 1 1 1

r4 1 0 0 1 1

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 56

Notice that if we permute the columns in the order c1, c5, c3, c4, c2 and rows

in the order r1, r2, r4, r3, we get the same matrix as the matrix for the first

case of configuration MII1
, so this case is the same as MII1

(i).

ii. Appending two columns to MI2 , there are two cases:

A. a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 1 0

r2 0 1 1 0 0 1

r3 0 0 1 1 1 0

r4 1 0 0 1 0 1

One can check that any set of three rows of M∗ is a minimal conflicting

set and its bipartite graph is in the Cycle3 family.

B. a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6

r1 1 1 0 0 1 0

r2 0 1 1 0 1 0

r3 0 0 1 1 1 0

r4 1 0 0 1 0 1

One can check that R(M∗)\r2 does not have the C1P . The only minimal

conflicting set we can get is S = {r1, r3, r4} and its bipartite graph is in

the Cycle3 family.

iii. Appending three columns to MI2 , a resulting matrix M∗ is:

c1 c2 c3 c4 c5 c6 c7

r1 1 1 0 0 1 0 0

r2 0 1 1 0 0 1 0

r3 0 0 1 1 1 0 0

r4 1 0 0 1 0 0 1

One can check that R(M∗)\r2 does not have the C1P . The minimal con-

flicting sets we can get are S1 = {r3, r4, r1} and S2 = {r1, r2, r3} and their

bipartite graphs are in the Cycle3 family.

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 57

(c) n ≥ 3: Let M∗ be a matrix obtained from MIn by appending columns. By

Proposition 3.1.6, R(M∗) is a minimal conflicting set if and only if each column

appended contains either a single 1 or two consecutive 1s. If this is the case,

B(M∗) is in the Cycle3 family. If R(M∗) is not a minimal conflicting set, then

some of its subsets are minimal conflicting sets. For any of the subsets that is

a minimal conflicting set, its corresponding matrix must contain one of Tucker’s

configurations. Therefore it must be one of the cases we discussed above, and

hence its bipartite graph is either claw-like or cycle-like.

�

Corollary 3.1.9 Let r be a given row in a binary matrix M with three 1s per row. Then

r is conflicting if and only if there exists a set of rows R of M such that r ∈ R and the

bipartite graph corresponding to R is either claw-like or cycle-like.

Proof. This corollary follows directly from the previous theorem as in order for r to be

conflicting, r must be in a minimal conflicting set R, and R is a minimal conflicting set if

and only if its corresponding bipartite graph is either claw-like or cycle-like. �

Deciding whether CI(r) > 0 for a row r in a binary matrix M with three 1s per row can

be done in polynomial time. This requires first checking whether r belongs to a claw-like

graph or either of the first two cases of cycle-like graphs. Since all of these patterns have

at most four row vertices, there are only a polynomial number of cases to check. Now if r

does not belong to any of the claw-like or the first two cases of cycle-like graphs, we need

to check whether r belongs to a chordless cycle in B(M). We can use Dijkstra’s algorithm

for finding the shortest path between two neighbour rows of r in B(M), and this can be

done in polynomial time. However, computing CI(r) is #W [1]-complete [15] as it requires

computing the number of chordless cycles containing r in B(M); still it can be done using

the principle of exclusion [44].

3.2 An Algorithm to Decide Whether a Row is Conflicting

We now consider the following problem: given a row of an m × n binary matrix M , does

this row belong to at least one MCS? As far as we know, the complexity of this problem

is still open. Our contribution is to show that, if each row of M has at most k 1s, where k

a constant, then this question can be answered in time that is polynomial in n [8].

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 58

We first consider the case where the row in question does not belong to any of the

minimal conflicting sets constructed from MIIn , MIIIn , MIV , MV .

Definition 3.2.1 In a bipartite graph B(M), we call a vertex representing a row of M a

row-vertex, and a vertex representing a column of M a column-vertex. We denote the set of

row-vertices and the set of column-vertices of B(M) as RV (B) and CV (B) respectively.

Definition 3.2.2 Let r be a row-vertex in a bipartite graph B such that B(J) is contained

in B for some J ∈ {MIIn ,MIIIn ,MIV ,MV } . We say that r is B(J)-conflicting if RV (B)

is a minimal conflicting set.

Observe that in the previous definition, RV (B) and RV (B(J)) must have the same car-

dinality in order for R(B) to be a minimal conflicting set, whereas CV (B) may have greater

cardinality than CV (B(J)). For example, the set of row-vertices in each of the bipartite

graphs that are claw-like or cycle-like is a minimal conflicting set, and Claw1, Claw2, Claw3

all contain B(MIII1), Claw4 contains B(MIV), and Cyclei contains B(MIn) for some n, for

each i ∈ {1, 2, 3}.

Proposition 3.2.3 Let M be a given binary matrix. For a given row rs ∈ R(M), sup-

pose rs is not B(J)-conflicting for J ∈ {MI1 ,MI2 ,MIIn ,MIIIn ,MIV ,MV }. Then rs is

conflicting if and only if there exists a subgraph B of B(M) containing a cycle C =

(racabrb . . . rxcxsrscsyry . . . rzcza) such that rx ∩ rs ∩ ry = ∅, where cij ∈ ri ∩ rj .

Proof.

(⇒) Since rs is conflicting and not B(J)-conflicting for J ∈ {MI1 ,MI2 ,MIIn ,MIIIn ,MIV ,MV },

rs is B(MIn)-conflicting, n ≥ 3. Hence rs belongs to some subgraph B which contains a

cycle C such that RV (B) is an MCS and |RV (C)| = |RV (B)| ≥ 5.

Suppose to the contrary that for all subgraphs containing cycles of the form

(racabrb . . . rxcxsrscsyry . . . rzcza), we have rx ∩ rs ∩ ry 6= ∅. Then there is some cxsy ∈

rx ∩ rs ∩ ry on C. Now B − {rs} still contains a cycle, since rx is still adjacent to ry. So

B − {rs} does not have the C1P , which contradicts that RV (B) is a MCS.

(⇐) We consider a minimal subgraph B containing a cycle C = (racabrb . . . rxcxsrscsyry . . . rzcza)

satisfying the condition:

rx ∩ rs ∩ ry = ∅. (3.1)

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 59

Then C is a minimal cycle satisfying this condition and RV (B) = RV (C). Since rs is not

B(J)-conflicting for J ∈ {MI1 ,MI2}, RV (B) ≥ 5. We prove that B is chordless, whence,

by Proposition 3.1.6, RV (B) is an MCS and rs is conflicting.

Suppose toward a contradiction that B has one or more chords. We first observe that

we cannot have chords in B − [(rx ∩ rs) ∪ {rs} ∪ (rs ∩ ry)]. For, supposing we had a chord

bibj in B − [(rx ∩ rs) ∪ {rs} ∪ (rs ∩ ry)], then

(bi . . . rxcxsrscsyry . . . bj)

would be a smaller cycle satisfying condition (3.1), contradicting the minimality of C. There-

fore any chord must have an endpoint in (rx∩ rs)∪{rs}∪ (rs ∩ ry), and so must be adjacent

to rs.

Let (rscsiri) be a chord in B, then i 6= x, y. Since C satisfies condition (3.1), csi is

not adjacent to both rx and ry. Without loss of generality, we suppose csi is not adjacent

to rx. Let rj , j 6= s, be the row vertex adjacent to csi such that none of the vertices on

the cycle C∗ = (csirj . . . rxrs) is adjacent to csi except rs and rj. Since rs is not MI1 ,MI2

conflicting, RV (C∗) ≥ 5. But C is a minimal cycle satisfying condition (3.1), so that C∗

must not satisfy condition (3.1), and there must be some cxsj ∈ rx ∩ rs ∩ rj . But then rs is

BIII1-conflicting, i.e. rs belongs to a claw as illustrated in the graph below, a contradiction.

rj

ri

ry

rs

rx

csy

cxs

csi

cxsj

�

The following corollary follows immediately from this proposition.

Corollary 3.2.4 Let M be a given binary matrix. For a given row rs ∈ R(M), if rs

is not B(J)-conflicting for J ∈ {MI1 ,MI2 ,MIIn ,MIIIn ,MIV ,MV }, and B(M) contains a

cycle C = (racabrb . . . rxcxsrscsyry . . . rzcza) such that ri ∩ rs = ∅ for all i 6= x, s, y and

rx ∩ rs ∩ ry 6= ∅, then rs is not conflicting.

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 60

We next consider the case where a row may be B(J)-conflicting for J ∈ {MIIn ,MIIIn ,MIV ,

MV }. These four Tucker’s patterns MIIn ,MIIIn ,MIV ,MV have the following crucial prop-

erty, that follows from their definition: if no row of an m × n binary matrix M has more

than k 1s, and a sub-matrix T of M contains a Tucker pattern MIIn ,MIIIn ,MIV or MV ,

then 3 ≤ t ≤ k + 1, where t is the number of rows of T . This proves the following result.

Proposition 3.2.5 If no row of an m×n binary matrix M has more than k 1s, then decid-

ing if a row rs belongs to a sub-matrix T of M that contains a Tucker pattern MIIn ,MIIIn ,MIV

or MV can be done in O(k2mk+1(n+m+c)) time and O(n+m) space, where c is the number

of 1s in M .

With Algorithm 3.1 we can decide whether a given row rs of M is conflicting, where

M is a binary matrix has at most k 1s for each row. The algorithm relies on the following

subroutines and definitions:

1. Subroutine CheckBTP checks (using a brute-force approach) whether the matrix

formed by a collection q of rows is a MCS.

2. Subroutine ExcPath checks for given rows (rx, ry) whether there is a path in B(M)

between rx and ry that excludes rs.

3. P (rs) is the set of all pairs (rx, ry) of rows, such that rx ∩ rs 6= ∅ 6= ry ∩ rs and

rx ∩ ry ∩ rs = ∅. (Note that there are at most O(m2) such pairs of rows.)

4. Q(rs) is the collection of all sets of ρ rows, with 4 ≤ ρ ≤ k + 1, in which one row is rs.

Algorithm 3.1 Conflicting Row

1: for each q ∈ Q(rs)
2: if CheckBTP (q) then return conflicting
3: for each (rx, ry) ∈ P (rs)
4: if ExcPath(rx, ry) then return conflicting
5: return nonconflicting

Theorem 3.2.6 Let M be an m× n non-C1P matrix with at most k 1s in each row, and

let rs be a row of M . Deciding whether rs belongs to at least one MCS can be done in

O(k2mk+1(n + m + c)) time and O(n + m) space, where c is the number of 1s in M .

CHAPTER 3. MINIMUM CONFLICTING SETS AND TUCKER PATTERNS 61

As far as we know, this is the first use of Tucker patterns in an efficient algorithm related

to the MCS. However, the complexity status of deciding if a row belongs to an MCS when

the rows of a matrix can have an arbitrary number of 1s is still open. In the next chapter,

we present some approaches for computing all MCS of a given binary matrix.

Chapter 4

Computing All Minimal

Conflicting Sets

In this chapter, we present three ideas to generate all the minimal conflicting sets of a given

binary matrix M . We first introduce a naive idea [37], which involves deleting each row

from a non-C1P set and checking whether the resulting set has the C1P or not. The second

idea uses Boolean functions, and requires generating all the maximal C1P sets at the same

time. This work, originating from an idea of Tamon Stephen, was done in collaboration with

him, Utz-Uwe Haus, and Cedric Chauve, and has been submitted [8] for publication. The

third idea is a backtracking approach, which only gives us a way to generate all minimal

conflicting sets in matrices with two 1s per row.

Reference Key features Runtime

Alg 4.1 (naive) Stoye & Wittler [37]
Easy to

implement.
exponential

Alg 4.2 (monotone

Boolean functions) Fredman & Khachiyan [16]
Must also
generate MC1P

quasi-polynomial
in output

Backtracking Read & Tarjan [36] Must have two
1s per row.

polynomial
in output

Table 4.1: Algorithms for Generating all MCS

62

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 63

4.1 Existing Algorithms

In this section, we present an existing algorithm, by Wittler and Stoye [37], for generating

all minimal conflicting sets of a given binary matrix M . This is a naive algorithm which

has exponential time complexity, and, as far as we know, it is the only previously proposed

algorithm for computing all MCS. We begin by defining a subroutine, Algorithm 4.1.

Algorithm 4.1 Generate a MCS R ⊆ R(M)

1: Let M be a non-C1P binary matrix and R(M) = {r1, r2, . . . , rk}.
2: R← R(M)
3: for i from 1 to k do
4: if R− {ri} is conflicting then R← R− {ri}
5: return R

Proposition 4.1.1 The R returned in Algorithm 4.1 is an MCS.

Proof. Let R∗ be the return value of Algorithm 4.1. Since each time we delete an element ri

from R, we have R − {ri} conflicting, the final R∗ must be conflicting. Hence R∗ does not

have the C1P . On the other hand, for each rj ∈ R∗, R∗ − {rj} must have the C1P , since

otherwise there exists some rk ∈ R∗ such that R∗ − {rk} is conflicting, which is impossible

by the definition of the algorithm. �

Example 4.1.2 Suppose R = R(M) = {r1 = {1, 2}, r2 = {2, 3}, r3 = {3, 4}, r4 = {4, 5}, r5 =

{3, 1}. Then in applying Algorithm 4.1, we will have:

i R− {ri} C1P action

1 {{2, 3}, {3, 4}, {4, 5}, {3, 1}} × delete r1 from R

2 {{3, 4}, {4, 5}, {3, 1}} X keep r2 in R

3 {{2, 3}, {4, 5}, {3, 1}} X keep r3 in R

4 {{2, 3}, {3, 4}, {3, 1}} × delete r4 from R

5 {{2, 3}, {3, 4}} X keep r5 in R

Therefore finally we return R = {r2, r3, r5}, and it is easy to check that this is an MCS.

We give the algorithm of Wittler and Stoye as Algorithm 4.2. At the generic step of

the algorithm, we will have a set S = {S1, S2, . . . , Sℓ} of MCS, and we will use an iterator,

COMBO, which works as follows. The first time COMBO is called, it chooses one row ri

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 64

from each Si, and it returns the set C = {r1, r2, . . . , rℓ}. Each time it is called subsequently,

it returns the set C generated by choosing a different combination of rows ri. After it has

exhausted all possible choices, it returns FAIL. If the set S is enlarged by adding a new

element Sℓ+1, then COMBO resets.

Algorithm 4.2 Generate all MCS R ⊆ R(M)

1: Let S1 be an MCS generated by Algorithm 4.1 on rows R(M).
2: S ← {S1}
3: ℓ← 1
4: C ← COMBO(S)
5: while C 6= FAIL do
6: R← R(M)\C
7: if R has the C1P then
8: C ← COMBO(S)
9: else

10: ℓ← ℓ + 1
11: Let Sℓ be an MCS generated by Algorithm 4.1 on rows R.
12: S ← S ∪ {Sℓ}
13: C ← COMBO(S)
14: return S

Since for two different MCS Si and Sj , we have Si 6⊂ Sj and Sj 6⊂ Si, this algorithm

never generates the same MCS twice, and guarantees that we generate all MCS of R(M).

This algorithm can require time O(nℓ) to terminate as it must check all combinations of

rows of current known MCS.

In next section, we present another way to generate all MCS, using a monotone Boolean

function approach, which is more efficient than this naive algorithm.

4.2 A Monotone Boolean Function Approach

In this section we present a way to generate all the MCS of a given matrix M by a monotone

Boolean function approach. This method also generates all the complements of the maximal

C1P sets, while generating all the MCS, so it is called a joint generation algorithm.

Definition 4.2.1 A Boolean function is a mapping f : {0, 1}m → {0, 1}. Each x =

(x1x2 . . . xm) ∈ {0, 1}m is called a Boolean vector, and x1, x2, . . . , xm are called Boolean

variables. A Boolean function f is called monotone if it satisfies the condition that x ≥ y

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 65

implies f(x) ≥ f(y) for all x, y ∈ {0, 1}m.

Definition 4.2.2 Boolean variables x1, x2, ..., xm and their complements x1, x2, . . . , xm are

called literals. A clause is a disjunction of literals which does not contain both xi and xi.

Similarly, a term is a conjunction of literals which does not contain both of xi and xi.

Definition 4.2.3 We say a clause c is an implicate of a Boolean function f if f ⇒ c. If

there does not exist a clause c∗ 6= c such that f ⇒ c∗ ⇒ c, then we say c is a prime implicate

of f .

Definition 4.2.4 We define a term d to be an implicant of a Boolean function f if d⇒ f.

If there does not exist a term d∗ 6= d such that d ⇒ d∗ ⇒ f , then we say d is a prime

implicant of f .

Definition 4.2.5 The irredundant conjunctive normal form(CNF) and disjunctive normal

form(DNF) of a Boolean function f are defined respectively as:

CNF =
∧

I∈C

∨

i∈I

xi DNF =
∨

J∈D

∧

j∈J

xj

where C and D are the set of prime implicates and the set of prime implicants of f respec-

tively.

If C ′ ⊂ C and D′ ⊂ D, we denote the CNF and DNF of f on C ′ and D′ respectively

by:

CNF [C ′] =
∧

I∈C′

∨

i∈I

xi DNF [D′] =
∨

J∈D′

∧

i∈J

xj

Remark 4.2.6 By definition, we can see that CNF (x) = f(x) = DNF (x) for all x ∈

{0, 1}m.

Definition 4.2.7 Let r1, r2, . . . , rm be the m rows of a given binary matrix M . For each

set S ⊆ {r1, r2, . . . , rm} of rows, we define x(S) = (x1x2 . . . xm) to be the Boolean vector

such that xi = 1 if and only if ri ∈ S and x(S) = (x1, x2, . . . , xm) to be the Boolean vector

such that xi = 0 if and only if ri ∈ S.

Definition 4.2.8 For each binary matrix M , we define a pair of Boolean functions as

follows, where S varies over the subsets of R(M):

fM(x(S)) =

{

0 if S has the C1P

1 if S does not have the C1P

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 66

hM (x(S)) =

{

0 if S does not have the C1P

1 if S has the C1P .

We see that fM is monotone, since, for any x, y ∈ {0, 1}m, x ≥ y means the set Sy of

rows represented by y is a subset of the set Sx of rows represented by x. If Sy has the C1P ,

0 = fM(y) ≤ fM (x). If Sy does not have the C1P , then Sy ⊆ Sx implies Sx has at least all

the rows of Sy, and therefore Sx cannot have the C1P , so fM(y) = 1 ≤ 1 = fM (x).

Example 4.2.9 Consider the following binary matrix M :

c1 c2 c3 c4

r1 1 1 0 1

r2 0 1 1 0

r3 1 0 1 0

r4 0 1 1 1

One can check that S1 = {r1, r2, r3} and S2 = {r1, r3, r4} are the only minimal conflicting

sets, whence fM(x(S)) = 1 if and only if x(S) ∈ {1110, 1011, 1111}. Considering the lattice

below, in which points are connected if and only if they differ in exactly one place,

0000

1000 0010 0100 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

we can see that if fM (x) = 1 for some lattice point x, and if for every lattice point y on some

path below x we have fM(y) = 0, then x represents an MCS. Since every MCS is contained

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 67

in one or more conflicting sets, the set of MCS is indeed the set of prime implicants in the

DNF of fM .

We observe in this example that hM (x(S)) = 0 if and only if x(S) ∈ {1110, 1011, 1111} =

{0001, 0100, 0000}, so that we have hM (x) = fM(x) for x ∈ {1110, 1011, 1111}.

Definition 4.2.10 The dual of a function f is defined as fd(x) = f(x), where f and x are

the complement of f and x respectively.

Proposition 4.2.11 The functions fM and hM from Definition 4.2.8 are mutually dual.

The proof for this proposition is trivial since by definition we have fM(x) = hM (x),

which implies fM (x) = hM (x) and fM(x) = hM (x).

Note that since fM is a monotone function, all prime implicates and prime implicants

of fM are monotone; moreover, since hM = fd
M , hM is also monotone [14].

Let FM and HM be the set of prime implicants of fM and hM respectively, and consider

the DNF of fM and hM :

fM =
∨

I∈FM

∧

i∈I

xi hM =
∨

J∈HM

∧

j∈J

xj .

We know that for any Boolean function f with prime implicates C and prime implicants

D, there are bijections C ⇋ Max{x : f(x) = 0} and D ⇋ Min{x : f(x) = 1} [21].

Therefore we have:

FM ⇋ Min{x(S) : fM (x(S)) = 1}⇋ Min{x(S) : S is conflicting}⇋ {MCS}

HM ⇋ Min{x(S) : hM (x(S)) = 1}⇋ Min{x(S) : S has the C1P}

⇋ Max{x(S) : S has the C1P}⇋ {MC1P},

where MC1P denotes a subset of the rows of a binary matrix that has the C1P and is

maximal in that respect, and MC1P denotes the complement of such a set of rows. We

also denote the set of all MC1P (MC1P) by MC1P (MC1P).

We can write the DNF of fM and hM as:

fM =
∨

I∈MCS

∧

i∈I

xi hM =
∨

J∈MC1P

∧

j∈J

xj

We now consider the Dual Problem:

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 68

For a given pair of irredundant DNFs

DNF [C ′] =
∨

I∈C′

∧

i∈I

xi DNF [D′] =
∨

J∈D′

∧

j∈J

xj,

check if they satisfy Condition (4.1) (in which case they are dual); otherwise find a Boolean

vector x∗ satisfying Condition (4.2) (thereby certifying that the DNFs are not dual).

DNF [C ′](x1, x2, ..., xm) = DNF [B](x1, x2, ..., xm) for all x = (x1, x2, ..., xm) ∈ {0, 1}m.

(4.1)

DNF [C ′](x∗
1, x

∗
2, ..., x

∗
m) = DNF [D′](x∗

1, x
∗
2, ..., x

∗
m) (4.2)

Lemma 4.2.12 Any dual disjunctive normal forms DNF [C ′] and DNF [D′] must satisfy

the condition:

I ∩ J 6= ∅, for allI ∈ C ′ and for allJ ∈ D′. (4.3)

Proof. Suppose to the contrary that there exist I ∈ C ′ and J ∈ D′ such that I ∩ J = ∅.

Let x(J) = (x1, x2, ..., xm) be the characteristic vector of J . Since I ⊆ J , x(J) will satisfy

Condition (4.2), which contradicts the duality of DNF [C ′] and DNF [D′]. �

It is not hard to see that fM and hM satisfy Condition (4.3), i.e. any MCS intersects

any MC1P , since for any row that does not belong to a MC1P , it will belong to some

MCS.

Let H ′ ⊆ H = {MC1P} and F ′ ⊆ F = {MCS}. Then CNF [H ′](x) ≥ CNF [H](x) and

DNF [F](x) ≥ DNF [F ′](x). Along with Remark (4.2.6), we will have:

CNF [H ′](x) ≥ CNF [H](x) = CNF (x) = f(x) = DNF (x) = DNF [F](x) ≥ DNF [F ′](x).

(4.4)

Therefore (H ′, F ′) = (H,F) if and only if CNF [H ′](x) = DNF [F ′](x). Moreover, we

have:

CNF [H ′](x) =
∧

I∈H′

∨

i∈I

xi

which implies

CNF [H ′](x) =
∨

I∈H′

∧

i∈I

xi

and

CNF d[H ′](x) = [CNF [H ′](x) =
∨

I∈H′

∧

i∈I

xi = DNF [H ′].

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 69

Therefore (H ′, F ′) = (H,F) if and only if DNF [H ′](x) and DNF [F ′](x) are mutually

dual.

Corollary 4.2.13 [21] If DNF [C ′] and DNF [D′] satisfy Condition (4.3), then the Dual

Problem can be solved in time T = O(m2) + (|C ′|+ |D′|)o(log(|C′|+|D′|)).

By the previous corollary, we have a way to check whether DNF [F ′] and DNF [H ′]

are mutually dual. If they are dual, then we learn that (F ′,H ′) = (F,H) and we get all

the MCS. If they are not dual, then instead we get a Boolean vector x∗ which satisfies

Condition (4.2). Now x∗ 6∈ F ′ implies DNF [F ′](x∗) = 0, so that DNF [H ′](x∗) = 0, and

CNF [H ′](x∗) = DNF [F ′](x∗) = 1.

Now evaluating fM(x∗) we split into two possible cases:

1. fM(x∗) = 0. Then the set of rows represented by x∗ has the C1P , but is not maximal.

But x∗ 6∈ C ′ implies there is some y∗ ∈Max{x : fM(x) = 0} such that x∗ < y∗. Now

I = {i : y∗i = 0} ∈ C\C ′, and therefore we can obtain a new prime implicate of fM .

2. fM(x∗) = 1. Then the set of rows represented by x∗ is conflicting, but not minimal.

Then we can find a y∗ ∈ Min{x : fM(x) = 1} such that y∗ < x∗. Now the set

J = {j : y∗j = 1} ∈ D\D′, therefore we obtained a new prime implicant of fM .

Thus we have the following theorem:

Theorem 4.2.14 [16] Let f : {0, 1}m → {0, 1} be a monotone Boolean function whose

value at any point x ∈ {0, 1}m can be determined in time t, and let C and D be the sets of

the prime implicates and prime implicants of f respectively. Given two subsets C ′ ⊂ C and

D′ ⊂ D of total size |C ′|+ |D′| < |C|+ |D|, a new element in (C\C ′)∪ (D\D′) can be found

in time O(m(t + m) + (|C ′|+ |D′|)o(log(|C′|+|D′|))).

In our case, t is the time to test whether a given set has the C1P or not, and this can

be done in linear time. We start with F ′ = ∅ = H ′, and then in each iteration we generate

a new element either in F\F ′ or in H\H ′, and repeat this process until we get the whole

sets F = {MCS} and H = {MC1P}. We call this process Gen(F,H,F ′,H ′).

Proposition 4.2.15 [5] Gen(F,H,F’,H’) can be completed in time m(poly(|F ′| + |H ′|) +

O(m)) + T.

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 70

Thus, for any given binary matrix M , we can use the Boolean approach to generate

all the minimal conflicting sets. This is a joint generation method, which generates all the

complements of the MC1P sets at the same time. It is an improvement over the algorithm

of Stoye and Wittler described in previous section, which, after finding the complete list

S of MCS, will continue to check whether the MC1P as candidate conflicting sets before

terminating. Moreover, as this does not keep the MC1P sets explicitly, but instead uses

backtracking, it may generate the same candidates repeatedly.

4.3 An Efficient Backtracking Approach for Matrices with

Two 1s per Row

It appears clearly from the previous section that the monotone Boolean approach to generate

all MCS suffers from a major problem that lies in the need to enumerate also all MC1P

sets. We have seen in Section 1.3.2 that when the considered binary matrix M has only two

1s per row, enumerating all MCS follows easily from enumerating all claws (that are defined

by exactly three rows of M and can then be computed in polynomial time) and all cycles

of the graph B(M). We describe here an algorithm of Read and Tarjan for enumerating

all cycles of a graph that has a time complexity that is polynomial in the number of cycles.

This gives then an algorithm that enumerates all MCS in time polynomial with the number

of MCS.

Enumerating all cycles of a given graph is a classic algorithmic problem, for which four

well-known methods have been introduced. The first is an algorithm by Cartwright and

Gleason [7] which uses the edge-digraph of a digraph. The second approach is based on the

adjacency matrix [35, 45, 1]. The two remaining methods, the vector space approach [34, 24,

30, 43, 20] and the backtracking approach [36, 27, 29, 39, 13], are more generally used. The

backtracking approach is the only one that guarantees a time complexity that is polynomial

in the number of cycles of the considered graph.

Theorem 4.3.1 [36] Let G be a graph with v vertices, e edges and c cycles. It is possible

to enumerate all cycles of G in worst-case time O(v + e + ec).

Corollary 4.3.2 Let M be an m × n binary matrix such that each row has exactly two

entries 1. If M has p MCS, it is possible to enumerate all the MCS of M in worst-case

time O(m3 + mp).

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 71

Proof. The O(m3) term corresponds to enumerating all triplets of rows of M that have a

common 1. The O(mp) term follows from the O(ec) term in Theorem 4.3.1 when applied

to B(M) that has exactly m edges. �

We now present the backtracking algorithm by Read and Tarjan [36] for enumerating

all cycles of a given graph, which is considered to be simpler and theoretically more efficient

than others.

Given a graph G with v vertices, the original idea of the backtracking process is intro-

duced by Tiernan [40] and the procedure for listing all cycles is as follows:

We first number the vertices from 1 to v (arbitrarily). Then, starting with vertex number

1, we pick an edge that is adjacent to this starting vertex, thus beginning to build a path

from the starting vertex. Next we pick an edge adjacent to the end vertex of the current

path, to extend the current path. During this extending process, we have the restrictions

that the same vertex cannot appear twice on the path, and that we cannot have vertices

with smaller labels than the starting vertex. Each time we extend the current path, we

check whether the end vertex on this extended path is adjacent to the starting vertex. If so,

we output a cycle, and we keep trying all the other possibilities to extend the path. After

trying all possible ways of extending the path, we back up and delete the last edge and

try another possible edge as an extension. We repeat this process with each vertex as the

starting vertex, and in this way we generate all cycles of the graph.

This procedure may be inefficient as many of the path extensions may not lead to a

cycle. Read and Tarjan [36] improve this backtracking procedure by giving a way to select

the starting vertex for each cycle and a way to put restrictions on the backtracking. They

begin as follows:

1. Use depth-first search to number the vertices from 1 to v, and produce a spanning

tree.

2. Accordingly, divide the edges of G into four sets:

(a) The spanning tree.

(b) The set of all cycle-arcs: edges going from descendants to ancestors in the tree.

(c) The set of all forward-arcs: edges going from ancestors to descendants in the

tree.

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 72

(d) The set of all cross-arcs: edges joining unrelated vertices in the spanning tree,

i.e. edges that go from one subtree to another subtree.

We use depth-first search repeatedly to partition G into a set of trees and non-tree

arcs, and this takes time O(v + e). From another paper of Tarjan [39], we know that

tree edges and forward-arcs always go from vertices with smaller labels to vertices

with larger labels, while cycle-arcs and cross-arcs always go, vice-versa, from larger

to smaller vertex labels. Moreover, each cycle-arc must be contained in at least one

cycle and each cycle must end with a cycle-arc. Hence we can take the set of starting

vertices to be exactly the set of vertices with cycle-arcs entering into them. This is

more efficient than trying each vertex as a starting vertex.

3. For a starting vertex s, we follow the recursive backtracking procedure presented

below, to build up a path which may lead to a cycle:

(a) Let P be the current path and u be the last vertex on P .

(b) Search for a vertex w such that (u,w) is an edge and there is a path from w to

s avoiding P except at s.

(c) Use a search to determine how far P + w can be extended uniquely toward s, i.e.

extend P + w until there are two possible choices for the next extending vertex.

(d) Apply the backtracking procedure recursively if we have two choices for the next

extending vertex.

We carry out the above process for each starting vertex in order to generate all cycles.

Since in this process we do not apply backtracking recursion until two possible choices

are available, this puts a restriction on the backtracking, improving the efficiency of

the procedure.

Example 4.3.3 We use the backtracking method to generate all MCS of the binary matrix

M :

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 73

c1 c2 c3 c4

r1 1 1 0 0

r2 0 1 1 0

r3 1 0 1 0

r4 0 0 1 1

r5 0 1 0 1

by computing the cycles in B(M), which is illustrated below. We suppose the labels

1, 2, . . . , 9 in round brackets were generated by a depth-first search.

r4(5)

r2(3)

r1(1)

r3(8)

r5(7)

c4(6)

c2(2)

c1(9)

c3(4)

We can get a directed graph from B(M) by replacing each edge by two directed edges

having opposite directions. We pick the directed edges in the following way:

1. Let the tree edges be the directed edges selected by following the order of the depth-

first search.

2. For the remaining edges, we choose the directed edges that go from larger label to

smaller label.

By applying the above rule, we get the directed graph corresponding to B(M) as:

r4(5)

r2(3)

r1(1)

r3(8)

r5(7)

c4(6)

c2(2)

c1(9)

c3(4)

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 74

We then apply the backtracking procedure. Since the only cycle-arcs are edges (9, 1)

and (7, 2), the only starting vertices are 1 and 2. Starting from 1, we construct the path

(1234), and then there are two possibilities for the next vertex. Since there is no path from

5 to 1, we reject 5 as the next vertex. There remains then only one way to extend the path,

and we compute the cycle (1234891).

Next we consider the other possible starting vertex, 2. We first construct the path (234),

and then have two possibilities for the next vertex, 5 and 8. There are paths from both

vertices back to 2, but the path that involves 8 must have 1 on it, and 1 is a smaller label

than 2, the starting vertex, so we must reject 8 as the next vertex. We then have only one

way to extend the path, and we get the cycle (2345672).

At this point the procedure halts, and we have found that the only cycles in B(M)

are (1234891) and (2345672). These correspond to the MCS {r1, r2, r3} and {r2, r4, r5}

respectively.

4.4 Experimental Results

We present in this last section some preliminary results on synthetic data (generated ma-

trices) with two 1 per row. To compute MCS, we used the implementation of the joint

generation method which is publicly available [23] with an oracle to test the C1P based on

the algorithm described in [31].

We generated 10 datasets of adjacencies (the rows of the binary matrices each contain

two 1s) with n = 40 and m = 45. Each dataset contains exactly 39 true positive (rows

{i, i + 1} for i = 1, . . . , 39) and 6 random false positives (rows {i, j} with j > i + 1). These

parameters were chosen to simulate moderately large datasets that resemble real datasets.

For a given dataset, the conflicting ratio (CR) of a row is the ratio between the CI of this

row and the number of MCS. Similarly, the MC1P ratio (MR) of a row is the ratio between

the number of MC1P that contain the row and the total number of MC1P . The MCS

rank of a row is its ranking (between 1 and 45) when rows are ranked by increasing CR.

The MC1P rank of a row is its ranking when rows are ranked by increasing MR. Table 4.2

shows some statistics on these experiments. All experiments took at most a few minutes to

complete.

First, we can notice the large difference between the number of MCS and the number of

MC1P . This shows that most computation time, in the joint generation, is spent generating

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 75

Dataset Number Number Average Average Average Average Average FP Average FP
of MCS of MC1P FP CR TP CR FP MR TP MR MCS rank MC1P rank

1 55 8379 0.41 0.37 0.34 0.77 18.83 6.83
2 43 4761 0.36 0.32 0.3 0.84 20.33 6
3 38 9917 0.4 0.22 0.34 0.79 33.17 7
4 46 4435 0.5 0.35 0.41 0.8 33.33 9
5 59 6209 0.44 0.3 0.36 0.76 28.33 6
6 45 13791 0,47 0.2 0.39 0.8 32.67 4.67
7 61 2644 0.44 0.31 0.37 0.8 28.83 5.83
8 50 3783 0.43 0.28 0.36 0.81 34.5 6.83
9 57 2575 0.51 0.37 0.43 0.81 32.83 5.17
10 60 3641 0.45 0.31 0.38 0.83 26.33 7.83

Table 4.2: Statistics on MCS and MC1P on simulated adjacencies datasets. FP CR is the
Conflicting Ratio for False Positives, TP CR is for CR the True Positives, FP MR is the
MC1P ratio for False Positives and TP MR is the MR for True Positives.

Dataset [0, .1] (.1, .2] (.2, .3] (.3, .4] (.4, .5] (.5, .6] (.6, .7] (.7, .8] (.8, .9] (.9, 1]
MCS ALL 52 16 75 205 87 14 1 0 0 0
MCS FP 0 0 14 31 13 2 0 0 0 0
MCS TP 52 16 61 174 74 12 1 0 0 0

MC1P ALL 10 2 7 18 32 50 73 44 20 194
MC1P FP 0 0 0 6 22 44 64 40 20 194
MC1P TP 10 2 7 12 10 6 9 4 0 0

Table 4.3: Distribution of the MCS and MC1P ratios for all rows (ALL), false positives
(FP) and true positives (TP). Each cell of the table contains the number of rows whose
ratio is in the interval for the column.

MC1P . However if, as expected, false positives have, on average, a higher conflicting ratio

than true positives, and conversely a lower MC1P ratio than true positives, it is interesting

that the MC1P ratio discriminates much better between false positives and true positives

than the conflicting ratio. This is seen in the MCS and MC1P ranks: the false positives

have an average MCS rank of 28.91, well below the rank that would be expected if they

were the rows that have the highest CI (42.17), while they have an average MC1P rank of

6.52, quite close of the 3.5 rank expected if they belonged to the fewest MC1P . To get a

better understanding of the usefulness of the MCS ratio and MC1P ratio, Table 4.3 shows

the rough distribution of these ratios.

These results suggest that the increased computation required by generating MC1P

CHAPTER 4. COMPUTING ALL MINIMAL CONFLICTING SETS 76

brings valuable information in discriminating false positives from true positives, and that

the MC1P ratio is a better information to rank rows when trying to compute a maximal

MC1P subset of rows. However, more experiments are needed in order to extend these

computations to more general matrices.

Chapter 5

Conclusion and Perspectives

The main contribution of this thesis is twofold: a better understanding of the combinatorial

nature of minimal conflicting sets for the consecutive ones property, and algorithms to study

conflicting sets.

As far as we know, our algorithm based on Tucker’s patterns to decide if a row of a

binary matrix belongs to at least one MCS is the first to use these patterns efficiently, in

solving a problem related to the C1P . However, our work relies on the assumption that the

matrices have a bounded number of 1s in each row, and the complexity status of deciding

whether a row belongs to an MCS when the number of 1s in each row is arbitrary, is still

open.

We also described a very general approach for enumerating all MCS of a binary matrix

based on the joint-generation algorithm for monotone Boolean functions. This problem is

hard in general, but it remains to be seen if the monotone Boolean functions related to

conflicting sets have some properties that can make it more tractable. In any case, our

experimental results suggest that the number of MCS and MC1P makes this approach

impractical for large binary matrices.

However, we also showed that in the cases of matrices with two 1s per row, cycle enumer-

ation with a backtracking algorithm offers an efficient alternative to enumerate all MCS.

There are two ways to extend the efficient approach (at least with respect to the number

of MCS of a matrix M) described above. The first one consists in enumerating subgraphs

defining MCS in the bipartite graph B(M). However, this approach requires that we have

a characterization of what is an MCS as a subgraph of B(M), and our results on matrices

with three 1s per row suggest this seems to be a hard problem. The best approach we can

think about right now would consist in enumerating all Tucker patterns and then checking

77

CHAPTER 5. CONCLUSION AND PERSPECTIVES 78

for each if it is an MCS or not. Dom [11] gives algorithms for checking all Tucker patterns

in polynomial time. A better understanding of the relationship between Tucker patterns

and MCS could make this general approach efficient.

Another way to generalize the principle of the backtracking approach would deal directly

with the rows of a matrix. One could think about a way of ordering these rows and listing

them (as the edges of the graph when listing all cycles of a graph) until the set of rows did

not have the C1P , in which case it would be tested for being an MCS or not. In both cases

(MCS or not), it is not necessary to extend this set, as any other set of rows that contains

a non-C1P subset is not an MCS. An issue here would then be to test efficiently if a set

of rows that does not have the C1P is an MCS as the naive approach that removes each

row and tests for the C1P is relatively costly (although still tractable). Partition refinement

could be a way to improve the efficiency of this test in the dynamic context of listing subsets

of rows by backtracking.

A natural idea when dealing with hard counting problems such as computing the con-

flicting index of a row of a binary matrix is random generation. In the context of MCS

the idea is then to generate such structures uniformly and at random. However, it is known

that both generating cycles in a graph randomly and uniformly, and generating minimal

true clauses for monotone Boolean functions, are hard problems [25] and there is little hope

of this being tractable for MCS.

From a more applied point of view, it is interesting to remark that, for matrices with

exactly two 1s in each row, true positive rows define a set of paths in the graph B(M),

representing ancestral genome segments, while in false positive rows {i, j} – unless i or j

is an extremity of such a path (in which case it does not exhibit any combinatorial sign of

being a false positive) – both the vertices i and j belong to a claw in B(M). And it is easy

to detect all edges in this graph with both ends belonging to a claw. In order to extend

this approach to more general datasets, where not every row of a binary matrix M contains

exactly two 1s, it would be helpful to understand better the impact of adding a false positive

row in M . The most promising approach would be to start from the partition refinement

obtained from all true positive rows and form a better understanding of the combinatorial

structure of connected components of the overlap graph that do not have the C1P .

Finally, our experiments also suggest that MC1P sets provide valuable information

for detecting false positives in binary matrices, and it would then be interesting to attack

questions such as enumerating or sampling these structures.

Bibliography

[1] M. T. Ardon, N. R. Malik. A Recursive Algorithm for Generating Circuits and Related

Subgraphs. 5th Asilomar Conference on Circuits and Systems, pp. 279-284. 1971.

[2] J. C. Boland, C. G. Lekkerkerker. Representation of a Finite Graph by a Set of Intervals

on the Real Line. Fundamenta Mathematicae, 51, pp. 45-64. 1962.

[3] K.S. Booth. PQ-tree Algorithms. Ph.D. Thesis, University of California, Berkeley.

1975.

[4] K.S. Booth, G.S. Lueker. Testing for the Consecutive Ones Property, Interval Graphs,

and Graph Planarity Using PQ-tree Algorithms. Journal of Computer and System

Sciences, 13, pp. 335-379. 1976.

[5] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan. Dual-Bounded Hypergraphs: A

Survey. Proceedings of the SIAM Workshop on Discrete Mathematics and Data Mining,

pp. 87-98. 2002.

[6] F. Boyer, C. Chauve, A. McPherson, A. Ouangraoua, E. Tannier. Prediction of Con-

tiguous Ancestral Regions in the Amniote Ancestral Genome. Proceedings of the In-

ternational Symposium on Bioinformatics Research and Applications, LNB, 5542, pp.

173-185. 2009.

[7] D. Cartwright, T. C. Gleason. The Number of Path and Cycles in a Digraph. Psy-

chometrika, 31, pp. 179-199. 1966.

[8] C. Chauve, U.U. Haus, T. Stephen, V.P. You. Minimal Conflicting Sets for the Con-

secutive Ones Property in Ancestral Genome Reconstruction. Submitted.

79

BIBLIOGRAPHY 80

[9] C. Chauve, J. Manuch, M. Patterson. On the Gapped Consecutive-Ones Property.

Proceedings of EuroComb 2009, Electronic Notes in Discrete Mathematics. To Appear.

[10] C. Chauve and E. Tannier. A Methodological Framework for the Reconstruction of

Contiguous Regions of Ancestral Genomes and Its Application to Mammalian Genomes

PLoS Computational Biology, 4, e1000234. 2008.

[11] M. Dom. Recognition, Generation, and Application of Binary Matrices with the

Consecutive-Ones Property. Dissertation, Institut für Informatik, Friedrich-Schiller-

Universität Jena, Germany. 2008.

[12] M. Dom, J. Guo, and R. Niedermeier. Approximability and Parameterized Complexity

of Consecutive ones Sub-matrix Problems. Proceedings of the 4th Annual Conference

on Theory and Applications of Models of Computation, LNCS, 4484, pp. 680-691. 2007.

[13] A. Ehrenfeucht, L. D. Fosdick, L. J. Osterweil. An Algorithm for Finding the Elemen-

tary Circuits of a Directed Graph. Tech. Rep. CU-CS-024-73, Department of Computer

Science, University of Colorado, Boulder. 1973.

[14] T. Eiter, K. Makino, G. Gottlob. Computational Aspects of Monotone Dualization: A

Brief Survey. Discrete Applied Mathematics, 156, pp. 2035-2049. 2008.

[15] J. Flum, M. Grohe. The Parameterized Complexity of Counting Problems. The 43rd

Annual IEEE Symposium on Foundations of Computer Science, pp.538. 2002.

[16] M.L. Fredman, L. Khachiyan. On the Complexity of Dualization of Monotone Disjunc-

tive Normal Forms. Journal of Algorithms, 21, pp. 618628. 1996.

[17] D. R. Fulkerson, O. A. Gross. Incidence Matrices and Interval Graphs. Pacific Journal

of Mathematics, 18, pp. 835-855. 1965.

[18] Y. Ganjali, M. T. Hajiaghayi. A Note on the Consecutive ones Sub-matrix Problem.

Information Processing Letters, 83, pp. 163-166. 2001.

[19] S. P. Ghosh. File Organization: The Consecutive Retrieval Property. Communications

of the ACM, 15, pp. 802-808. 1972.

[20] N. E. Gibbs. A Cycle Generation Algorithm for Finite Undirected Linear Graphs.

Journal of the ACM, 16, pp. 564-568. 1969.

BIBLIOGRAPHY 81

[21] V. Gurvich, L.Khachiyan. On Generating the Irredundant Conjunctive and Disjunctive

Normal Forms of Monotone Boolean Functions. Discrete Applied Mathematics, 96-97,

pp. 363-373. 1999.

[22] M. Habib, R. McConnell, C. Paul, L. Viennot. Lex-BFS and Partition Refinement, with

Applications to Transitive Orientation, Interval Graph Recognition and Consecutive

Ones Testing. Theoretical Computer Science, 234, pp. 59-84. 2000.

[23] U.U. Haus and T. Stephen. CL-JOINTGEN: A Common Lisp Implementation of the Joint

Generation Method. Available at http://primaldual.de/cl-jointgen/. 2008.

[24] P. A. Honkanen, H. T. Hsu. A Fast Minimal Storage Algorithm for Determining All

the Elementary Cycles of a Graph. Computer Science Department, Pennsylvania State

University, University Park. 1972.

[25] M. Jerrum, L.G. Valiant, V.V. Vazirani. Random Generation of Combinatorial Struc-

tures from a Uniform Distribution. Theoretical Computer Science, 43, pp. 169-188.

1986.

[26] Q. Ji, Z. Luo, C. Yuan, J. Wible, J. Zhang, J. Georgi. The Earliest Known Eutherian

Mammal. Nature, 416, pp. 816-822. 2002.

[27] D. B. Johnson. Finding All the Elementary Circuits of a Directed Graph. SIAM Journal

of Computing, 4, pp. 77-84. 1975.

[28] D. G. Kendall. Some Problems and Methods in Statistical Archaeology. World Ar-

chaeology, 1, pp.68-76. 1969.

[29] P. E. Lauer, J. L. Szwarcfiter. Finding Elementary Cycles of a Directed Graph in

O(n + m) per Cycle. No. 60, University of Newcastle upon Tyne, Newcastle upon

Tyne, England. 1974.

[30] L. M. Maxwell, G. B. Reed. Subgraph Identification-Segs, Circuits and Paths. 8th

Midwest Symposium on Circuit Theory, Colorado State University, pp. 13.0-13.10. 1965.

[31] R. McConnell. A Certifying Algorithm for the Consecutive Ones Property. Proceedings

of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 768-777.

2004.

BIBLIOGRAPHY 82

[32] J. Meidanis, O. Porto, G. P. Telles. On the Consecutive Ones Property. Discrete

Applied Mathematics, 88, pp. 325-354. 1998.

[33] J. Meidanis, J. C. Setubal. Physical Mapping of DNA. Introduction to Computational

Molecular Biology, pp. 143-173. 1997.

[34] V. G. K. Murti, V. V. K. Rao. Enumeration of All Circuits of a Graph. Proceedings of

the IEEE, 57, pp. 700-701. 1969.

[35] J. Ponstein. Self-avoiding Paths and Adjacency Matrix of a Graph. SIAM Journal on

Applied Mathematics, 14, pp. 600-609. 1966.

[36] R. C. Read, R. E. Tarjan. Bounds on Backtracking Algorithms for Listing Cycles,

Paths, and Spanning Trees. Networks, 5, pp. 237-252. 1975.

[37] J. Stoye, R. Wittler. A Unified Approach for Reconstructing Ancient Gene Clusters.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 99. 2008.

[38] J. Tan, L. Zhang. Approximation Algorithms for the Consecutive ones Sub-matrix

Problem on Sparse Matrices. Proceedings of ISAAC, LNCS, 3341, pp. 835-846. 2004.

[39] R. E. Tarjan. Depth-first Search and Linear Graph Algorithms. IRE Transactions, 1,

pp. 146-160. 1972.

[40] J. C. Tiernan. An Efficient Search Algorithm to Find the Elementary Cycles of a

Graph. Communications of the ACM, 13, pp. 722-726. 1970.

[41] A. Tucker. A Structure Theorem for the Consecutive 1s Property. Journal of Combi-

natorial Theory (B), 12, pp. 153-162. 1972.

[42] L.G.Valiant. The Complexity of Enumeration and Reliability Problems. SIAM Journal

of Computing , 8, pp. 410-421. 1979.

[43] J. T. Welch Cycle Algorithms for Undirected Linear Graphs and Some Immediate

Applications. Proceedings of the ACM National Conference, pp. 296-301. 1965.

[44] M. Wild. Generating All Cycles, Chordless Cycles, and Hamiltonian Cycles with the

Principle of Exclusion Journal of Discrete Algorithms, 6, pp. 93-102. 2008.

BIBLIOGRAPHY 83

[45] S. S. Yau. Generations of All Hamilton Circuits, Paths, and Centers of a Graph, and

Related Problems. IEEE Transactions on Circuit Theory, 14, pp. 79-81. 1967.

