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Diophantine Approximation in Projective Space

Kwok-Kwong Choi and Jeffrey D. Vaaler

1. Introduction

Let k be an algebraic number field and k, the completion of k at the place v.
If a belongs to k, then Dirichlet’s Theorem establishes the existence of a point 3
in k such that the height of 8 is bounded by a suitable parameter and |a — 8], is
relatively small. And for special numbers « it is a basic problem of Diophantine
approximation to show that |a — (|, cannot be too small if the height of 3 is
bounded. In a recent paper [2] such problems were reformulated in projective
space over k, by replacing the flat metric determined by | |, with a projective
metric §,. Our purpose here is to give a proof of the projective form of Dirichlet’s
Theorem and to prove a useful inequality for the projective metric. We also discuss
some open problems suggested by these results.

At each place v of k we use two absolute values | |, and || ||, which are
determined as in [1], [2], or [3]. Thus we have |z|, = ||a:||v”/d for all z in k,, where
d=[k:Q] and d, = [ky : Q,]. These absolute values have unique extensions to 2,
the completion of an algebraic closure of k,. We extend | |, to a norm on finite
dimensional vector spaces over 2, as follows. If

Z1

T2
X =

TN

is a column vector in QY we write

max{||z,ll, : 1 <n < N}ifvfoo

(1.1) lIxllo = il 2
{ St} oo,
n=1
and x|, = ||x||g”/d in both cases. Let e1,es,...,ex denote the standard basis
vectors in Q2 and for each subset I C {1,2,...,N} let e; be the corresponding
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standard basis vector in the exterior algebra

A@Y) =D A0 -

We identify Q1Y with the subspace A, (Q2}) so that
er=e;; Ne, N---Nej;,

whenever I = {i; < iy < -+ <ip} C{1,2,...,N} is not empty. Then we extend
| Joand || s to A(QY) by applying (1.1) to the basis {e; : I C {1,2,...,N}}.
If x and y are nonzero vectors in QY we set

[x Ayl
1.2 0y(x,y) = .
( ) U( ) |X|'u |y|v
As §,(ax,by) = 0,(x,y) for all @ # 0 and b # 0 in Q,, it is clear that J, is well
defined as a map
8y : PYTHQ,) x PV7H(Q,) = [0,1] .

It can be shown, as in Rumely [8], that d, is a metric on PY~1(€,) and the resulting
metric topology coincides with the quotient topology determined by the norm | |,

on QIJ)V .
We define an absolute height on points 3 in PN~ (k) by
q2) =[[18lw

where the product is taken over all places w of k. It is obvious from the product
formula, that this height is well defined on PV ~!(k). Now suppose that a belongs
to PN—1(k,) for some place v of k. Then we may try to establish the existence of
a point 3 in PNY~1(k) such that H(3) is bounded by a suitable parameter and the
projective distance d,(a, 3) is relatively small. In order to state such a result we
let
c(N) = 2|05 [V24 T rw(N)*/4,
w|oo

where Ay is the discriminant of ¥ and

W_I/Q{F(lN + 1)}1/N if w is real
13 = R

2m)~2{0(N +1)} if w is complex.

Then Dirichlet’s Theorem for PN ~1(k,) can be formulated as follows.

THEOREM 1. Let a belong to PN~1(k,), let T belong to k, with 1 < |r|,. Then
there exists 3 in PN~1(k) such that
(i) H(B) < c(N)|r]) 1,
(i) dy(ex,B) < cx(N){ITlH(B)} "
If a belongs to PN ~1(k,) but not to PV~1(k) then it follows from (i) and (ii)
that there exist infinitely many distinct 3 in PV ~!(k) such that

(1.4) Sy(cx, B) < ex(N)YN/N=-D g (g)=N/(N-1)
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Alternatively, if a belongs to PN ~1(k,) but not to PN ~!(k) we define

(1.5) vy(a) = liminf H(B)V/N-Y5,(a, ) .
H(B)—o0
Then we have v, (a) < cx(N)N/(V-1),
In the special case k = Q, ky, = Q = R and N = 2, we can write a = [ff] in
homogeneous coordinates with a an irrational real number. In this case it can be
shown that

(16) Voo (@) = liminf glla ],
q—00

where ||z|| is the distance from the real number z to the nearest integer. It follows
that the set of values
{v=o(@) : € P'(R) \P'(Q)}
is the Lagrange spectrum, as considered by Cusick [5] or (with a slightly different
definition) by Cusick and Flahive [6]. By a well known result of Hurwitz [7] (see
also Cassels [4] or Schmidt [9]) the largest point in the Lagrange spectrum is 5 1/2,
which improves on the bound v (@) < Cp(2)% = 4/7.
In view of these remarks the set

(1.7) {vy(a) : ¢ € P*(ky) \ P'(K)}

may be regarded as a generalization of the Lagrange spectrum to the completion
k, of an algebraic number field k. It follows from the Liouville inequality, given
as (2.12) of [2], that the value of v,(a) is positive whenever @ = [{] and « in
k, is algebraic over k of degree 2. In general it is an open problem to give a
sharp upper bound for the elements of the set (1.7) which is analogous to Hurwitz’s
bound. A somewhat related problem is to give an analogue of the continued fraction
algorithm for an arbitrary point « in P!(k,) \ P*(k). Evidently such an algorithm
should generate a sequence of distinct points 31,(32,... in P}(k) which are “best
approximations” to a with respect the height H and the projective metric §,. Such
a sequence of best approximations should provide a generalization to P!(k,) of the
well known theorem of Lagrange (see Schmidt [9], Chapter 1, Theorem 5E), which
characterizes the convergents in the continued fraction expansion of an irrational
real number.

The statement of Theorem 1 can be generalized in several ways. Let S be a
finite, nonempty set of places of k. Then at each place v in S let X, C (k)" be a
linear subspace of dimension L,, 1 < L, < N.

THEOREM 2. At each place v in S let T, belong to k, with 1 < |1y|,. Then
there exist linearly independent points By, B2, ... ,Bn in PN ~1(k) such that

M M
0 T #6) < {a) T[>}

vES

M M M
) TLTT (minfou0x ) x € 2ox 2 0}) < {au) [T 1nli™ b TL #0800

n=1veS vES
for each M, 1< M < N.

If S consists of one place v, if X, C (k,)Y has dimension L, = 1 and is
spanned by the nonzero vector a, and M = 1, then Theorem 2 plainly reduces to
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Theorem 1. It is an open problem to give an analogue of Theorem 2 in which the
linear subspaces X, are replaced by more general projective varieties.

Let A be an N x M matrix over §,. We extend | |, to such matrices A by
setting

(1.8) |A|, = sup{|Ax]|, : x € Q)" , |x|, <1}
Ax|y
= sup{ ||X)|c| 1X € ]P’M_I(Qv)} .
Now suppose that
1.9 2<M=rank A<N
(1.9)
and define
AX v v — —
(1.10) 7 (A) :sup{% :x e PML(Q,), yePM 1(Qv)} .

Clearly we have 1 < 7, (A). In work with the projective metric §, it is often useful
to have an inequality between 4, (Ax, Ay) and §,(x,y). In section 3 we give a proof
of the following result.

THEOREM 3. Let A be an N x M matriz over Q, satisfying (1.9). Then for
each x and y in PM~1(Q,) we have

(1.11) 10 (A) 710y (%, ¥) < 8,(Ax, Ay) < 10 (4)dy (%, ) -

Moreover, both inequalities in (1.11) are sharp in the sense that 1,(A) cannot be
replaced by a smaller number.

If M = N then A is nonsingular and we have 1,(A) = |A|,|A!|,. In this case
it is clear that 7, is well defined as a map

Ny : PGL(N,Q,) — [1,00) .

Because the inequality (1.11) is sharp, A in PGL(N,Q,) acts as an isometry for
the projective metric if and only if 5, (4) = 1.

If A belongs to PGL(2,k) and n,(A) = 1 at all places w # v of k, then
S. Tyler [10] has shown that v,(Aa) = v, () for all points e in P!(k,) but not in
P!(k). This generalizes a well known result (see Cassels [4], Chapter 1, section 3,
Corollary) from the case k = Q and k, = Qo = R

2. Proof of Theorem 2

We will make use of results from the geometry of numbers over the product of
adele spaces (ka)"V and orthogonality in local fields. These subjects are developed
in [3], sections 3 and 4.

If v | oo we let 7, denote Haar measure on the Borel subsets of &, normalized so
that -, is Lebesgue measure if v is real and twice Lebesgue measure if v is complex.
It follows that the product measure v on (k,) satisfies

%J)V{x € (kv)N : ||X||v < rv(N)} =1,

where r,(N) is given by (1.3). If v { co we let 7, denote Haar measure on the Borel
subsets of k, normalized so that

Yo{w € kot llally < 1} = D22,
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where D, is the local different at v. We note that
(2.1) II o5 = Ak
vfoo
where Ay is the discriminant of k, and
c{x € (k)N : |Ixlly <1} = [Dy[ 2
At each place v in S let
X, =" = xy)
be an N x N matrix having entries in k,, orthogonal columns, and such that
X, = spang, {x@, e ,xg]v)} .

Because the columns of X, are orthogonal we have
|ng) A xgv) A x(v)|v = H |x(”)|v

for each subset I = {i; < iz < --- < iy} C {1,2,...,N}. Also, we may plainly
select X, so that |x(v)|v = 1for each n = 1,2,...,N. Next we define the N x N
matrix

_ (N—-L,_(v) N—Ly,(v) _—L,_(v) —Ly (V)
Y, = (1, Xy et Ty X! Ty YXpogqg ottt T, Xy )

so that X'V, is an N x N diagonal matrix with det{X,'Y,} = 1.
At each place v of k we define R, C (k,)"V by
R,={x¢€ (k)™ = ||x]]0 < ry(N)}

if v | 0o, and
R, ={x € (k,)" :|Ix|l, <1}
if v co. It follows that
A= H(YvRv) H Rw g (kA)N
vES w¢S

is an admissible subset of the N-fold product of adele spaces. Also, the Haar
measures v determine a Haar measure V on (ky)" and we find that

(2:2) v = [[wi{veR} [ v {Rw}
veES wgS
= [ ety ligr Hﬁ{R }
vES
= [Ag T2
Let 0 < A1 < Ay < --- < Ay < 0 be the successive minima associated with 2
and {B1,32,...,Bn} the corresponding set of linearly independent vectors in k.
Then we have
(2.3) T11Y 'Balo I 18nlw < An J] ro(@v)®/4

vES w¢S v]oo
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for each n =1,2,... , N. By the adelic form of Minkowski’s second theorem (as in
[1], Theorem 3),

(2.4) (Mg An)TV () < 29V
Combining (2.2), (2.3) and (2.4) leads to the bound:

ﬁ{H vV, 8alo [[ |ﬂn|w} < (ﬁw{nm(wv/d}ﬂf

n=1

vES w¢S v|oco
N M/N M
(f) " o)
n=1 v|oco
<e(N)M.

It will be convenient to rewrite this as

M M
(2.5) 11 { I m—lﬂnuw;l} < (M T HB)™ -

n=1 “veSs n=1

Now observe that at each place v in S we have
(26) |,6n|v = |YvY'u_1:6n|U
S |Yv|v|Yy_1,3n|v
< |Tv|uN_LU|Yv_1:3n|v .

Therefore (2.5) and (2.6) imply that

] 26, < {1 muf—Lv}M ,

n=1 veES

which is (i) in the statement of Theorem 2. In order to verify (ii) in the statement
of the theorem we will show that

(2.7 min{8,(x, Bn) : X € Xy, x # 0} < |70 5 |V, Balo|Baly
for each n =1,2,... ,N and each place v in S. Clearly (ii) follows from (2.5) and
(2.7).
To establish (2.7) write
Bn=Yep, @e(k)".

Here ¢ depends on n and v, but these parameters are fixed in the remainder of the
proof and it will simplify the notation to suppress them. Then

L, N
Bu=m"1 3 oex(M it N ()
=1 n=~L,+1

and the point
L,
&= pex)”
=1
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occurs in the subspace X,. If & = 0 then the subspace X, is orthogonal to the
one dimensional subspace spanned by 3,,. Therefore every nonzero vector x in X,
satisfies

|X A ;Bnlv = |X|U|Bn|v
= |Tv|;LU |x|’u|‘p|v
= |Tv|;LU |x|v|Yv_1ﬁn|v 5

and this shows that (2.7) holds with equality. Suppose then that &€ # 0. It follows
that

v

N
§ A ,Bn = U_L“ Z Z (pggon(xgv) N Xslv)) .

{=1n=L,+1

As {x{,x, ... %V} forms an orthogonal basis for (k,)V, it is easy to verify
that

xDAx) 1< m<n< N}

forms an orthogonal basis for the subspace A, (kYY) in A(kY). In case v { oo this
implies that

€A Bply = |Tv|;L“ max{|eonly : 1 <€ < L,and L,+1<n <N}
< |Tv|;LU|£|v|‘P|v
= |Tv|;Lv|£|v|Yv_lﬁn|v >

and (2.7) follows immediately. If v | co then

L N
1€ A B2 = 171725 > 30 lleonl?

=1 n=L,+1

< MlmllZ>= 1€ NN
= Il 2 ENZNYS Ball5

and again (2.7) follows. This completes the proof of Theorem 2.

3. Proof of Theorem 3

We require two lemmas.

LEMMA 4. Let A and B be N x M and M x L matrices, respectively, with
entries in £, and

2<L=rank B< M =rank A< N .

Then n,(AB) < ny(A)n,(B).

Proor. We write

|ABx|y |yl _ <|ABX|v|BY|v) (|BX|U|Y|v)
|AByl, x|, |ABy|,|Bx|, | By |v]%]o
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and conclude that

|ABx|,|By|. L—1 L—1
< :
»(AB) sup{lAByl B, X € P (Qy) , y € P"7(Q) ¢ 70(B)
|AW| |z|v M-1 M-1
: P 0, P 0, (B
1y (A)n, (B

LEMMA 5. Let A be an N x 2 matrixz with entries in Q, and 2 = rank A <
N. Then the inequality (1.11) holds for all x and y in P*(,). Moreover, both
inequalities in (1.11) are sharp in the sense that n,(A) cannot be replaced by a
smaller number.

PROOF. Let A = (a; as) so that
|Ax A Ayly = |(z121 + T222) A (Y121 + Y222)|s
= |(z1y2 — T2y2)(a1 A az)l,
=[x Ayly|ai Aazy ,

and therefore

X|v|Y|v|al A a2|v
3.1 0y (Ax, Ay ={| 0y (X,y) -
( ) ’U( ) |Ax|v|Ay|v ’U( y)
Now suppose that v | oo and let A* denote the complex conjugate transpose of A.
Then A*A is a 2 x 2, positive definite Hermitian matrix with eigenvalues 0 < A1 <
A2 < 00. It is well known that

A 2
(3.2) A; = inf { ”” ’|‘||2| x € IPl(Qv)}

2
< sup {”” }|r||2|, :yEIF’l(Qv)}

=X .
It follows that
3\, \ do/2d
(33) m=(32) "
1

Also, we have
(3.4) AL A2 = det(A*A) = ||la; Aagl? .
Using (3.2) and (3.4) we obtain the inequality
55) (ﬁ)‘“”d < { [l ylolar A s, } < (ﬁym |

Ao - |AX|U|Ay|U ~—\\

The desired estimate (1.11) follows now by combining (3.1), (3.3) and (3.5). The
fact that 7,(A) cannot be replaced by a smaller number is clear from (3.2) and
(3.3).

Next we assume that vtoo. If I C {1,2,...,N} with |I| = 2 we write

IA = (anm)
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for the 2 x 2 submatrix obtained by letting n € I index rows and m = 1,2, index
columns. Then we select J C {1,2,...,N} so that |J| =2 and

|ai A az|, = max{|det rA|, : |I| = 2}
= |det JAlU .

It follows (see the discussion after (4.8) in [1]) that each entry of A(;A)~! has
v-adic absolute value less than or equal to 1. As j(A(;A4)™!) is the 2 x 2 identity
matrix we have

|A( JA)_1X|v = [x[v
for all x in Q2. This shows that
(3.6) |Ax|, = |A(7A) 7! jAx|, = | A%,

for all x in Q2. Using (3.6) we conclude that

(3.7) inf{ A e ]P’I(Qv)} = inf {L 'y € Pl(m)}

I 1(s4) 1yl
= |(JA)71|171 )

and

Ax|y
(3.8) sup {ﬁ IX € ]PI(Q,,)} =|J4. .

%l
(From the definition of | |, on 2 x 2 matrices we find that
(3.9) [(7A4) " o = |det JAL s AL

= |a1 /\32|;1| JA'U .
Now we combine (3.7), (3.8) and (3.9). In this way we obtain the identity
(3.10) 1o(4) = |1 AL[(74) 7o

= [JA[}ar Aasf;!
= (A [ lar Aal, ,
and the inequality

|X|U|Y|v|al A aZ|v
|Ax|y| Ay |y

The bound (1.11) follows from (3.1), (3.10) and (3.11). Again we find that 7, (A)
cannot be replaced by a smaller number by using (3.7), (3.8) and (3.10).

We are now in position to prove the inequality (1.11) in full generality. In
doing so we may assume that x and y are linearly independent points in QM.
Then there exists an M x 2 matrix B = (by bs) having orthogonal columns which
form a basis for the subspace spang, {x,y} C QM. Also, we can select B so that
|bi|, = |ba|, = 1. Tt follows that n,(B) = 1. And there exist linearly independent
points w and z in Q2 such that x = Bw and y = Bz.

Now AB is an N x 2 matrix. Therefore Lemma 4 and Lemma 5 imply that

(3.12) 0y (Ax, Ay) = 6,(ABw, ABz)
< 1w (AB)dy (W, 2)
<1y (A)dy(W,2) .

(3.11) | sAlar Asaly < { } < (54" Plar A g, -



10 KWOK-KWONG CHOI AND JEFFREY D. VAALER

A second application of Lemma 5 shows that
(3.13) 0y(x,y) = 6y (BwW,Bz) = §,(W,z) .

The inequality on the right of (1.11) follows from (3.12) and (3.13). The inequality
on the left of (1.11) is established in essentially the same manner.

Finally, we will show that 7,(A) cannot be replaced by a smaller number on
the right of (1.11). Let € > 0 and then select x; and y; in QM so that

|AX1|v|y1|v
1—€)n,(4) < ———7—— |
( )n’l)( ) —= |Ay1|'ulxl|'u
As before there exists an M x 2 matrix B = (b; bg) having orthogonal columns
which form a basis for the subspace spang, {x1,y1} C QUM . Again we can choose
B so that |bi|, = |b2|, = 1 and therefore n,(B) = 1. Now write x; = Bw; and
y1 = Bz so that

|ABW1|1,|BZ1|,U

3.14 l-en,4A) < ——7—"—7——-

( ) ( )n’U( )_ |ABZ1|1)|BW1|U
_ |ABW1|U|Z1|1)
|ABZ1|v|W1|v

<nw(AB) .

By the last assertion in Lemma 5 there exist linearly independent points wo and
z; in Q2 such that

(3.15) (1 — €)ny(AB)dy(Wa,22) < 8,(ABws, ABz,) .
Write xo = Bwy and y, = Bz,. Then (3.14) and (3.15) imply that
(1 — €)*no(A)3y (X2,¥2) < 6u(Axa, Ays) .

As € > 0 is arbitrary it is clear that the inequality on the right of (1.11) is sharp.
The inequality on the left of (1.11) is also sharp and this can be demonstrated by
a similar argument.
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