Experimentation in Mathematics: Computational Paths to Discovery

Jonathan M. Borwein
Centre for Experimental and Constructive Mathematics
Department of Mathematics
Simon Fraser University

David H. Bailey
Lawrence Berkeley National Laboratory

Roland Girgensohn
Zentrum Mathematik, Technische Universität München

August 5, 2003
Moreover a mathematical problem should be difficult in order to entice us, yet not completely inaccessible, lest it mock our efforts. It should be to us a guidepost on the mazy path to hidden truths, and ultimately a reminder of our pleasure in the successful solution. . . .

Besides it is an error to believe that rigor in the proof is the enemy of simplicity.”

David Hilbert, Paris International Congress, 1900 [207]

As we recounted in the first volume of this work, *Mathematics by Experiment: Plausible Reasoning in the 21st Century* [43], when we started our collaboration in 1985, relatively few mathematicians employed computations in serious research work. In fact, there appeared to be a widespread view in the field that “real mathematicians don’t compute.” In the ensuing years, computer hardware has skyrocketed in power and plummeted in cost, a gift of Moore’s Law of semiconductor technology. In addition, numerous powerful mathematical software products, both commercial and noncommercial, have become available. But just as importantly, a new generation of mathematicians is eager to use these tools, and consequently numerous new results are being discovered.

The experimental methodology described in these books provides a compelling way to generate understanding and insight; to generate and confirm or confront conjectures; and generally to make mathematics more tangible, lively, and fun for both the professional researcher and the novice. Furthermore, the experimental approach helps broaden the interdisciplinary nature of mathematical research: a chemist, physicist, engineer, and mathematician may not understand each others’ motivation or technical language, but they often share an underlying computational approach, usually to the benefit of all parties involved.

A typical scenario of using this experimental methodology is the following. Note in particular the “dialogue” between human and computer, which is very typical of this approach to mathematical research:

1. Studying a mathematical problem to identify aspects that need to be better understood.
2. Using a computer to explore these aspects, by working out specific examples, generating plots, etc.

3. Noting patterns or other phenomena evident in the computer-based results that relate to the problem under study.

4. Using computer-based tools to identify or “explain” these patterns.

5. Formulating a chain of credible conjectures that, if true, would resolve the question under study.

6. Deciding if the potential result points in the desired direction and is worth a full-fledged attempt at formal proof.

7. Performing additional computer-based experiments to gain greater confidence in the key conjectures.

8. Confirming these conjectures by rigorous proof.

9. Using symbolic computing software to double-check analytical derivations.

Our goal in these books is to present a variety of accessible examples of modern mathematics where this type of intelligent computing plays a significant role (along with a few examples showing the limitations of computing). We have concentrated primarily on examples from analysis and number theory, as this is where we have the most experience, but there are numerous excursions into other areas of mathematics as well (see the Table of Contents). For the most part we have contented ourselves with outlining reasons and exploring phenomena, leaving a more detailed investigation to the reader. There is however, a substantial amount of new material, including numerous specific results that as far as we are aware have not yet appeared in the mathematical literature.

This work is divided into two volumes, each of which nonetheless can stand by itself. The first volume, *Mathematics by Experiment: Plausible Reasoning in the 21st Century*, presents the rationale and historical context of experimental mathematics, and then presents a series of examples that exemplify the experimental methodology. We include in this part a reprint of an article co-authored by one of us that complements this material. This volume, *Experimentation in Mathematics: Computational Paths to Discovery*, continues with several chapters of
additional examples. Both volumes include a chapter on numerical techniques relevant to experimental mathematics.

Each volume is targeted to a fairly broad cross-section of mathematically trained readers. Most of the first volume should be readable by anyone with solid undergraduate coursework in mathematics. Most of this volume should be readable by persons with upper-division undergraduate or graduate-level coursework. None of this material involves highly abstract or esoteric mathematics.

Some programming experience is valuable to address the material in this book. But readers with no computer programming experience are invited to try a few of our examples using commercial software such as Mathematica and Maple. Happily, much of the benefit of computational-experimental mathematics can be obtained on any modern laptop or desktop computer—a major investment in computing equipment and software is not required.

Each chapter concludes with a section of commentary and exercises. This permits us to include material that relates to the general topic of the chapter, but which does not fit nicely within the chapter exposition. This material is not necessarily sorted by topic nor graded by difficulty, although some hints, discussion and answers are given. This is because mathematics in the raw does not announce, “I am solved using such and such a technique.” In most cases, half the battle is to determine how to start and which tools to apply.

We are grateful to our colleagues Victor Adamchik, Heinz Bauschke, Peter Borwein, David Bradley, Gregory Chaitin, David and Gregory Chudnovsky, Robert Corless, Richard Crandall, Richard Fateman, Greg Fee, Helaman Ferguson, Steven Finch, Ronald Graham, Andrew Granville, Christoph Haenel, David Jeffrey, Jeff Joyce, Adrian Lewis, Petr Lisonek, Russell Luke, Mathew Morin, David Mumford, Andrew Odlyzko, Hristo Sendov, Luis Serrano, Neil Sloane, Daniel Rudolph, Nick Trefethen, Asia Weiss and John Zucker who were kind enough to help us in preparing and reviewing material for this book; to Mason Macklem, who helped with material, indexing (note that in the index definitions are marked in bold and quotes with a suffix ‘Q’) and more; to Jen Chang and Rob Scharein, who helped with graphics; to Janet Vertesi who helped with bibliographic research, Will Galway, Xiaoye Li and Yozo Hida, who helped with computer programming; and to numerous others who have assisted in one way or another in this work. We thank Roland Girgensohn in particular for contributing a significant amount of material and reviewing several drafts. We owe a special debt of gratitude to Klaus Peters for urging us to write this book and for helping
us nurse it into existence. Finally, we wish to acknowledge the assistance and the patience exhibited by our spouses and family members during the course of this work.

Bailey’s work is supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC03-76SF00098. Borwein’s work is supported by the Canada Research Chair Program and the Natural Sciences and Engineering Council of Canada.

David H. Bailey
Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA
Email: dhbailey@lbl.gov

Jonathan M. Borwein
Simon Fraser University
Burnaby, British Columbia V5A 1S6, Canada
E-mail: jborwein@cecm.sfu.ca

July 2003

An updated collection of errata, plus links to the websites mentioned in both volumes and other interesting information on experimental mathematics, can be found at the following URL:

http://www.expmath.info
List of Figures

1.1 A pictorial proof of Archimedes’ inequality 3
1.2 Convergence of $s_n(1/x)$ to $g(x)$ 9

2.1 The Gibbs phenomenon for Fourier series 98
2.2 The Gibbs phenomenon for Fejér series 98
2.3 Bernoulli density f_q for $q = 1/\sqrt{2}$ 104
2.4 The density f_q for $q = (\sqrt{5} - 1)/2$ 104
2.5 Bernoulli density f_q for $q = 2/3$ 105
2.6 The density f_q for $q = 3/4$ 105
2.7 Approximation f_3 to Lebesgue’s function 116
2.8 The oscillatory Fourier transforms $\hat{f}_2, \hat{f}_8, \hat{f}_{16}$ 132

3.1 How does one identify two knots? 195
3.2 The knot 8_8 and Reidemeister moves 196
3.3 The knots 10_{161} and 10_{162} 196
3.4 The knot equivalent to both 10_{161} and 10_{162} 197

4.1 A Ferrer diagram .. 200
4.2 Where $|\theta_2/\theta_3| > 1$ and where $|\theta_4/\theta_3| > 1$ (first quadrant) 233
4.3 Approximations to $x^{x^{x^{...}}}$ 237
4.4 Solutions to $x^{x^{x^{...}}}$... 238

5.1 Zeros of zero-one polynomials 275
5.2 A hyperbolicity cone ... 279
5.3 A Young tableau along with all lattice paths of shape $(3,2)$ 283

6.1 Trapping the zeros ... 302
vi

LIST OF FIGURES

6.2 Real branches of Lambert’s function that satisfy $W \exp W = x$. . 303
6.3 The Riemann surface for the Lambert function 305
6.4 Which function ϕ_k is this? . 317
6.5 Which equation E_k generated this? 318
6.6 Comparison of three direct search methods 322
6.7 A nonconvex set with the fixed point property 324

7.1 Newton-Julia set for $p(x) = x^3 - 1$ 335
7.2 The pseudospectra of matrix $A(0.5)$ 361
7.3 Daisy matrix pseudospectra . 362
List of Tables

1.1 Error $|E_1(N, M, -0.9)|$ for $N = 5 \times 10^k (1 \leq k \leq 4)$ and $0 \leq M \leq 6$ 37
1.2 Error $|E_1(N, M, -1)|$ for $N = 5 \times 10^k (1 \leq k \leq 6)$ and $0 \leq M \leq 6$ 37
1.3 Error $|E_2(N + 1, M, 1)|$ for $N = 5 \times 10^k (1 \leq k \leq 6)$ and $0 \leq M \leq 6$ 37
1.4 Error $|E^*(N, M)|$ for $N = 5 \times 10^k (1 \leq k \leq 2)$ and $0 \leq M \leq 6$. . . 38
Contents

Preface i
List of Figures v
List of Tables vii

1 Sequences, Series, Products and Integrals 1

1.1 Pi is not $22/7$.. 2
1.2 Two Products ... 5
1.3 A Recursive Sequence Problem 8
1.4 High Precision Fraud 12
1.5 Knuth’s Series Problem 17
1.6 Ahmed’s Integral Problem 19
1.7 Evaluation of Binomial Series 23
1.7.1 The Case of Non-Negative k 24
1.7.2 Some Results for Negative k 30
1.8 Continued Fractions of Tails of Series 32
1.8.1 Gregory’s Series Reexamined 32
1.8.2 Euler’s Continued Fraction 33
1.8.3 Gauss’s Continued Fraction 34
1.8.4 Perron’s Continued Fraction 39
1.9 Partial Fractions and Convexity 40
1.10 Log-concavity of Poisson Moments 45
1.11 Commentary and Additional Examples 47

2 Fourier Series and Integrals 75

2.1 The Development of Fourier Analysis 75
CONTENTS

2.2 Basic Theorems of Fourier Analysis .. 77
 2.2.1 Fourier Series .. 78
 2.2.2 Fourier Transforms ... 84
2.3 More Advanced Theorems of Fourier Analysis 87
 2.3.1 The Poisson Summation Formula 87
 2.3.2 Convolution Theorems .. 90
 2.3.3 Summation Kernels ... 92
2.4 Examples and Applications .. 96
 2.4.1 The Gibbs Phenomenon ... 96
 2.4.2 A Function with Given Integer Moments 97
 2.4.3 Bernoulli Convolutions .. 99
2.5 Some Curious Sinc Integrals ... 103
 2.5.1 The Basic Sinc Integral .. 106
 2.5.2 Iterated Sinc Integrals 108
2.6 Korovkin’s Three Function Theorems 111
2.7 Commentary and Additional Examples 113

3 Zeta Functions and Multi-Zeta Values 141
 3.1 Reflection and Continuation of the Zeta Function 142
 3.1.1 The Riemann Hypothesis 144
 3.2 Special Values of the Zeta Function 145
 3.2.1 Zeta at Even Positive Integers 145
 3.2.2 Zeta at Odd Positive Integers 147
 3.2.3 A Taste of Ramanujan .. 149
 3.3 Other L-series ... 151
 3.4 Multi-Zeta Values .. 153
 3.4.1 Various Methods of Attack 154
 3.4.2 Reducibility and Dimensional Conjectures 155
 3.5 Double Euler Sums ... 161
 3.6 Duality Evaluations and Computations 165
 3.7 Proof of the Zagier Conjecture 171
 3.8 Extensions and Discoveries .. 175
 3.9 Multi-Clausen Values ... 176
 3.10 Commentary and Additional Examples 178
CONTENTS

4 Partitions and Powers 199

4.1 Partition Functions ... 199
 4.1.1 Euler’s Pentagonal Number Theorem 201
 4.1.2 Modular Properties of Partitions 202
 4.1.3 The “Exact” Formula for \(p(n) \) 204

4.2 Singular Values .. 205

4.3 Crystal Sums and Madelung’s Constant 210
 4.3.1 Sums of Squares .. 211
 4.3.2 Multidimensional Sums 213
 4.3.3 Madelung’s Constant 216

4.4 Some Fibonacci Sums ... 218

4.5 A Characteristic Polynomial Triumph 222

4.6 Commentary and Additional Examples 225

5 Primes and Polynomials 243

5.1 Giuga’s Prime Number Conjecture 243
 5.1.1 Computation of Exclusion Bounds 244
 5.1.2 Giuga Sequences 249
 5.1.3 Lehmer’s Problem 251

5.2 Disjoint Genera .. 251

5.3 Gröbner Bases and Metric Invariants 252
 5.3.1 Formulation of the Polynomial System 253
 5.3.2 Gröbner Bases .. 255

5.4 A Sextuple of Metric Invariants 256

5.5 A Quintuple of Related Invariants 258
 5.5.1 Some Open Questions on Invariants 260

5.6 Sloane’s Harmonic Designs 260

5.7 Commentary and Additional Examples 263

6 The Power of Constructive Proofs II 287

6.1 A More General AGM Iteration 287
 6.1.1 The Functional Equation for \(A_N \) 288
 6.1.2 The Quadratic Case Recovered 289
 6.1.3 The Cubic Case Solved 290

6.2 Variational Methods and Proofs 293

6.3 Maximum Entropy Optimization 297
CONTENTS

6.4 A Magnetic Resonance Entropy .. 298
6.5 Computational Complex Analysis 299
6.6 The Lambert Function ... 301
 6.6.1 The Lambert Function and Stirling’s Formula 304
 6.6.2 The Lambert Function and Riemann Surfaces 304
 6.6.3 The Lambert Function in Brief 306
6.7 Commentary and Additional Examples 308

7 Numerical Techniques II ... 327
 7.1 The Wilf-Zeilberger Algorithm 327
 7.2 Prime Number Computations .. 328
 7.3 Roots of Polynomials .. 332
 7.4 Numerical Quadrature .. 334
 7.4.1 Gaussian Quadrature .. 336
 7.4.2 Error Function Quadrature 338
 7.4.3 Tanh-Sinh Quadrature .. 341
 7.4.4 Practical Considerations for Quadrature 342
 7.4.5 2-D and 3-D Quadrature 343
 7.5 Infinite Series Summation ... 344
 7.5.1 Computation of Multiple Zeta Constants 347
 7.6 Commentary and Additional Examples 348

Bibliography ... 365

Index ... 381
Chapter 1

Sequences, Series, Products and Integrals

Several years ago I was invited to contemplate being marooned on the proverbial desert island. What book would I most wish to have there, in addition to the Bible and the complete works of Shakespeare? My immediate answer was: Abramowitz and Stegun’s *Handbook of Mathematical Functions*. If I could substitute for the Bible, I would choose Gradshteyn and Ryzhik’s *Table of Integrals, Series and Products*. Compounding the impiety, I would give up Shakespeare in favor of Prudnikov, Brychkov and Marichev’s *Tables of Integrals and Series*. On the island, there would be much time to think about waves on the water that carve ridges on the sand beneath and focus sunlight there; shapes of clouds; subtle tints in the sky... With the arrogance that keeps us theorists going, I harbor the delusion that it would be not too difficult to guess the underlying physics and formulate the governing equations. It is when contemplating how to solve these equations—to convert formulations into explanations—that humility sets in. Then, compendia of formulas become indispensable.

Michael Berry, [23]

We have already seen several instances of how an experimental approach can be used to study sequences, infinite series and products, and integrals (definite integrals and indefinite integrals). In this chapter we will present a number of additional examples.
1.1 Pi is not 22/7

We first consider an example from the early history of π as described in Section 2.1 of the first volume.

Even Maple or Mathematica “knows” $\pi \neq 22/7$ since

$$0 < \int_0^1 \frac{(1-x)^4 x^4}{1+x^2} \, dx = \frac{22}{7} - \pi, \quad (1.1.1)$$

though it would be prudent to ask “why” it can perform the evaluation and “whether” to trust it?

Assume we trust it. Then the integrand is strictly positive on the interior of the interval of integration, and the answer in (1.1.1) is necessarily an area and so strictly positive, despite millennia of claims that π is 22/7. Of course 22/7 is one of the early continued fraction approximations to π. The first four are 3, 22/7, 333/106, 355/113.

In this case, computing the indefinite integral provides immediate reassurance. We obtain

$$\int_0^t \frac{x^4 (1-x)^4}{1+x^2} \, dx = \frac{1}{7} t^7 - \frac{2}{3} t^6 + t^5 - \frac{4}{3} t^3 + 4 t - 4 \arctan(t). \quad (1.1.2)$$

This is easily confirmed by differentiation, and the Fundamental Theorem of Calculus substantiates (1.1.1).

In fact one can take this idea a bit further. We note that

$$\int_0^1 x^4 (1-x)^4 \, dx = \frac{1}{630}, \quad (1.1.3)$$

and we observe that

$$\frac{1}{2} \int_0^1 x^4 (1-x)^4 \, dx < \int_0^1 \frac{(1-x)^4 x^4}{1+x^2} \, dx < \int_0^1 x^4 (1-x)^4 \, dx. \quad (1.1.4)$$

On combining this with (1.1.1) and (1.1.3) we straight-forwardly derive

$$\frac{223}{71} < \frac{22}{7} - \frac{1}{630} < \pi < \frac{22}{7} - \frac{1}{1260} < \frac{22}{7}$$

and so re-obtain Archimedes’ famous computation

$$3 \frac{10}{71} < \pi < 3 \frac{10}{70}. \quad (1.1.5)$$
1.1. **PI IS NOT 22/7**

The derivation of the estimate above seems first to have been written down in *Eureka*, the Cambridge student journal in 1971 [96]. The integral in (1.1.1) was apparently shown by Kurt Mahler to his students in the mid-1960s, and it had appeared in a mathematical examination at the University of Sydney in November, 1960. Figure 1.1 shows the estimate graphically illustrated. The three 10×10 arrays color the digits of the first hundred digits of $223/71$, π, and $22/7$. One sees a clear pattern on the right ($22/7$), a more subtle structure on the left ($223/71$), and a ‘random’ coloring in the middle (π).

It is tempting to ask if there is a clean general way to mimic (1.1.1) for more general rational approximations, or even continued fraction convergents. This is indeed possible to some degree as discussed by Beukers in [24]. The most satisfactory result is

$$a_n \pi - \frac{b_n}{c_n} = \int_0^1 \frac{t^{2n} (1-t)^{2n} ((1+it)^{3n+1} + (1-it)^{3n+1})}{(1+t^2)^{3n+1}} \, dt,$$

(1.1.6)

for $n \geq 1$, where the integers a_n, b_n and c_n are implicitly defined by the integral in (1.1.6). The first three integrals evaluate to $14\pi - 44$, $968\pi - 45616/15$ and $75920\pi - 1669568/7$, so again we start with $\pi - 22/7$!

Unlike Beukers’ preliminary attempts in [24], such as the seemingly promising

$$\int_0^1 \frac{t^n (1-t)^n}{(t^2 + 1)^{n+1}} \, dt,$$
this set of approximates actually produces an explicit if weak *irrationality estimate* ([44], [24]): for large \(n \)
\[
\left| \pi - \frac{p_n}{q_n} \right| \geq \frac{1}{q_n^{1.0499}}.
\]
As Beukers sketches one consequence of this explicit sequence
\[
\left| \pi - \frac{p}{q} \right| \geq \frac{1}{q^{21.04...}}
\]
for all integers \(p, q \) with sufficiently large \(q \). (Here \(21.04\ldots = 1 + 1/0.0499 \). In fact, in 1993 Hata by different methods had improved the number 21.4 to 8.02.)

While it is easy to discover “natural” results like
\[
\frac{1}{5} \int_0^1 \frac{x(1-x)^2}{(1+x)^3} dx = \frac{7}{10} - \log(2),
\]
the fact that \(7/10 \) is again a convergent to \(\log 2 \) seems to be largely a happenstance.

For example
\[
\int_0^1 \frac{x^{12}(1-x)^{12}}{16(1+x^2)} dx = \frac{431302721}{137287920} - \pi
\]
\[
\int_0^1 \frac{x^{12}(1-x)^{12}}{16} dx = \frac{1}{1081662400}
\]
leads to the true if inelegant estimate that \(5902037233/1878676800 < \pi < 224277414953/71389718400 \), where the interval is of size \(1.39 \cdot 10^{-9} \).

In contrast to this easy symbolic success, *Maple* struggles with the following version of the *sophomore’s dream*:
\[
\int_0^1 \frac{1}{x^n} dx = \sum_{n=1}^{\infty} \frac{1}{n^n}. \tag{1.1.8}
\]
When students are asked to confirm this, they most typically mistake numerical validation for symbolic proof: \(1.291285997 = 1.291285997 \). One seems to need to nurse a computer system starting with integrating
\[
x^{-x} = \exp(-x \log x) = \sum_{n=0}^{\infty} \frac{(-x \log x)^n}{n!},
\]
term by term. (See Exercise 3.)
1.2 Two Products

Consider the product

$$\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1} = \frac{2}{3},$$ \hspace{2cm} (1.2.9)

which has a rational value, and the seemingly simpler ($n = 2$) one

$$\prod_{n=2}^{\infty} \frac{n^2 - 1}{n^2 + 1} = \frac{\pi}{\sinh(\pi)},$$ \hspace{2cm} (1.2.10)

which evaluates to a transcendental number. Mathematica and Maple successfully evaluate such products, although not always in the same form. In this case Mathematica produces expressions involving the gamma function, while Maple returns the values shown above. In either case, we learn little or nothing from the results, since the software typically cannot recreate the steps of validation. In such a situation it often pays to ask our software to evaluate the finite products and then take limits. Note that in earlier versions of Maple or Mathematica the infinite products would have been returned unevaluated so that we may have been led directly to the finite products. Now the system knows more and we often learn less! To use a modern educational term, we are not led to “unpack” the concepts.

When asked to evaluate the finite products Maple returns expressions involving Gamma function values. For the first product (1.2.9), this expression can be simplified to

$$\prod_{n=2}^{N} \frac{n^3 - 1}{n^3 + 1} = \frac{2 N^2 + N + 1}{3 N(N + 1)},$$

and from this, one may get the idea that the evaluation can be done by telescoping. This directly leads to the following proof, which just consists of filling
in the intermediate steps \textit{Maple} still does not care to tell us:

\[
\prod_{n=2}^{N} \frac{n^3 - 1}{n^3 + 1} = \prod_{n=2}^{N} \frac{(n-1)(n^2 + n + 1)}{(n+1)(n^2 - n + 1)} = \frac{\prod_{n=0}^{N-2} (n+1)}{\prod_{n=2}^{N} (n^2 + n + 1)}, \prod_{n=2}^{N} \frac{n}{n^2 + 1} = \frac{2}{N(N+1)} \cdot \frac{N^2 + N + 1}{3} \rightarrow \frac{2}{3}.
\]

The second finite product does not simplify in any helpful way; however, the Gamma function expression together with the \textit{Maple} evaluation of the infinite product gives us the hint that the sin-product formula

\[
\sin(\pi x) = \pi x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right), \quad (1.2.11)
\]

which we met in Chapter 5 of the first volume, plays a role here. With this idea the proof of the evaluation is simple: By complexification (and holomorphy) it follows from (1.2.11) that

\[
\frac{\sinh(\pi)}{\pi} = 2 \prod_{n=2}^{\infty} \frac{n^2 + 1}{n^2},
\]

and we get

\[
\frac{\sinh(\pi)}{\pi} \cdot \prod_{n=2}^{\infty} \frac{n^2 - 1}{n^2 + 1} = 2 \prod_{n=2}^{\infty} \frac{n^2 - 1}{n^2} = 1,
\]

since the final product is again telescoping.

Do these evaluations generalize in a useful manner? For example, does the product \(\prod_{n=2}^{\infty} \frac{n^4 - 1}{n^4 + 1} \) have an evaluation in terms of basic constants? \textit{Maple} tells us that indeed

\[
\prod_{n=2}^{\infty} \frac{n^4 - 1}{n^4 + 1} = \frac{\pi \sinh(\pi)}{\cosh(\sqrt{2} \pi) - \cos(\sqrt{2} \pi)}, \quad (1.2.12)
\]

and it again produces a Gamma function expression for the finite product. For analogous products with fifth powers, \textit{Maple} fails to return an evaluation. However, we now have enough hints to try our own hands at these products: Apparently, we have to use properties of the Gamma function. In fact, setting
1.2. TWO PRODUCTS

\(\omega = \exp(\pi i/r)\) and using the relations \(\prod_{j=1}^{2r} (n - zw^j)(-1)^j = (n^r - z^r)/(n^r + z^r)\) as well as \(\sum_{j=1}^{2r} \omega^j(-1)^j = 0\) and \(\prod_{j=1}^{2r} (\omega^j)^{-1} = -1\), it follows from the product representation of the Gamma function

\[
\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1) \cdots (x+n)},
\]

(1.2.13)

that, for \(r \in \mathbb{N}, r > 1, \) and \(z \in \mathbb{C} \setminus \mathbb{N}\),

\[
\prod_{n=1}^{\infty} \frac{n^r - z^r}{n^r + z^r} = \prod_{n=1}^{\infty} \prod_{j=1}^{2r} \left(1 - \frac{z \omega^j}{n}\right)^{(-1)^j} = -\prod_{j=1}^{2r} \Gamma(-z \omega^j)^{(-1)^j}.
\]

Hence for \(m \in \mathbb{N},\)

\[
\prod_{n=1, n \neq m}^{\infty} \frac{n^r - z^r}{n^r + z^r} = \frac{m^r + z^r}{(m^r - z^r)\Gamma(-z)} \prod_{j=1}^{2r-1} \Gamma(-z \omega^j)^{(-1)^j},
\]

where as \(z \to m,\)

\[
(m^r - z^r)\Gamma(-z) = \frac{m^r - z^r}{(m - z)(m - 1 - z) \cdots (1 - z)(-z)} \to rm^{r-1} \frac{1}{m!(1-m)^m}.
\]

This gives the finite evaluation

\[
P_r(m) = \prod_{n=1, n \neq m}^{\infty} \frac{n^r - m^r}{n^r + m^r}
\]

\[
= (-1)^{m+1} \frac{2m(m!)}{r} \prod_{j=1}^{2r-1} \Gamma(-m \omega^j)^{(-1)^j}.
\]

(1.2.14)

When \(r = 2s\) is even, this can in a few steps be further reduced to

\[
-(-1)^m \frac{2^r \pi m}{s} (\sinh \pi m)(-1)^s \prod_{j=1}^{s-1} \left(\cosh \left(2\pi m \sin \left(\frac{j\pi}{2s}\right)\right) - \cos \left(2\pi m \cos \left(\frac{j\pi}{2s}\right)\right)\right)^{(-1)^j}
\]

where \(\epsilon\) is 0 or 1 as \(s\) is respectively odd or even. From this, evaluations (1.2.10) and (1.2.12) immediately follow as special cases.

Interestingly, for odd \(r \geq 5,\) these products do not seem to have a closed form “nicer” than (1.2.14). In particular, they do not seem to be rational numbers like \(P_3(1)\) (and in fact \(P_3(m)\)). The use of integer relation algorithms—to 400 digits—shows that \(P_5(1)\) satisfies no integer polynomial with degree less than 21 and Euclidean norm less than \(5 \cdot 10^{18}.\)
1.3 A Recursive Sequence Problem

The following problem on a recursively defined appeared in *American Mathematical Monthly* (Problem 10901, [58]). We will describe here how the problem, which really is a problem about functional equations, can be solved via the experimental approach.

Problem: Let \(a_1 = 1, \)

\[
\begin{align*}
a_2 &= \frac{1}{2} + \frac{1}{3}, \\
a_3 &= \frac{1}{3} + \frac{1}{2} + \frac{1}{4} + \frac{1}{13}, \\
a_4 &= \frac{1}{4} + \frac{1}{13} + \frac{1}{8} + \frac{1}{57} + \frac{1}{5} + \frac{1}{21} + \frac{1}{14} + \frac{1}{183},
\end{align*}
\]

and continue the sequence, constructing \(a_{n+1} \) by replacing each fraction \(1/d \) in the expression for \(a_n \) with \(1/(d+1) + 1/(d^2 + d + 1) \). Compute \(\lim_{n \to \infty} a_n \).

Solution: We first observe that if \(s_0(x) = 1/x \) and \(s_{n+1}(x) = s_n(x+1) + s_n(x^2 + x + 1) \) for \(n \geq 0, x > 0 \), then \(a_n = s_{n+1}(1) \). What do these functions \(s_n(x) \) look like? Like \(s_0(x) \), the plots of successive \(s_n(x) \) resemble reciprocal functions. If we instead examine the functions \(s_n(1/x) \), we find that these are fairly well behaved, appearing to converge quickly to a smooth, monotone increasing function \(g(x) \) (see Figure 1). Indeed, we find fairly good convergence (to roughly four decimal places) for \(n = 25 \), by comparing \(s_{24}(1/x) \) with \(s_{25}(1/x) \). What is this function \(g(x) \)?

Examining the sequence of calculated numerical values used for plotting, we find that while \(g(x) = \lim_n s_n(1/x) \) is not defined at zero, it appears that \(\lim_{x \to 0} g(x) = 0 \). Further, it appears that \(g'(0) = 1, \ g(1) \approx 0.7854 \) and \(g'(1) = 1/2 \). Needless to say, the value 0.7854 is an approximation to \(\pi/4 \). These observations suggest that perhaps \(g(x) = \arctan(x) \).

Let \(f(x) = \arctan(1/x) \) for \(x > 0 \). By applying the addition formula for the tangent, we note that

\[
\tan[f(x + 1) + f(x^2 + x + 1)] = \frac{\frac{1}{x+1} + \frac{1}{x^2 + x + 1}}{1 - \frac{1}{x+1} \cdot \frac{1}{x^2 + x + 1}} = \frac{1}{x} = \tan[f(x)].
\]
Figure 1.2: Convergence of $s_n(1/x)$ to $g(x)$
This means that \(f(x) \) satisfies \(f(x) = f(x + 1) + f(x^2 + x + 1) \), confirming that we are on the right track. In fact, we are finished if we can show that \(s_n(x) \) converges pointwise to \(f(x) \).

To demonstrate this, we first verify that the function \(E(x) = 1/(xf(x)) \) decreases strictly to 1 as \(x \to \infty \). By differentiation it suffices to show that \(-\arctan(x) + x/(x^2 + 1) < 0\). But this follows since \(-\arctan(x) + x/(x^2 + 1)\) is strictly decreasing (its derivative is \(-2x^2/(x^2 + 1)^2\) and it starts at 0 for \(x = 0 \).

The second step is to show that for all \(x > 0 \), we have

\[
f(x) \leq s_n(x) \leq f(x) \cdot E(x + n). \tag{1.3.15}
\]

For \(n = 0 \) this is merely the condition \(xf(x) \leq 1 \). Now if (1.3.15) holds for some \(n > 0 \), then we infer

\[
f(x + 1) \leq s_n(x + 1) \leq f(x + 1) \cdot E(x + n + 1)
\]

and (using the monotonicity of \(E \))

\[
f(x^2 + x + 1) \leq s_n(x^2 + x + 1) \leq f(x^2 + x + 1) \cdot E(x^2 + x + 1 + n) \leq f(x^2 + x + 1) \cdot E(x + n + 1).
\]

Adding (and using the functional equation for \(f \)), we obtain (1.3.15) for \(n + 1 \). These facts together imply \(\lim_{n \to \infty} s_n(x) = f(x) \) for each \(x > 0 \).

Thus we have demonstrated here that \(a_n \to \pi/4 \) [58].

An extension of these methods leads to the following theorem:

Theorem 1.3.1 Let \(\mathcal{A} = \{ s : R_+ \to R : \lim_{x \to \infty} x s(x) = 1 \} \) and define a mapping \(T : \mathcal{A} \to \mathcal{A} \) by \((Ts)(x) = s(x + 1) + s(x^2 + x + 1)\) for \(s \in \mathcal{A} \). Then the sequence \((s_n) \) defined by the iteration \(s_{n+1} = Ts_n \) converges pointwise to \(f(x) = \arctan(1/x) \) for every \(s_0 \in \mathcal{A} \). Equivalently, every orbit of \(T \) converges pointwise to \(f \), which is the unique fixed point of \(T \) in \(\mathcal{A} \).

Proof: Define \(e(x) = \inf_{y \geq x} s_0(y)/f(y) \) and \(E(x) = \sup_{y \geq x} s_0(y)/f(y) \). Then \(f(x) e(x) \leq s_0(x) \leq f(x) E(x) \) for all \(x > 0 \), while \(e(x) \) increases to 1 and \(E(x) \) decreases to 1 as \(x \to \infty \). Now the same induction as in Step 2 above gives us

\[
f(x) e(x + n) \leq s_n(x) \leq f(x) E(x + n) \quad \text{for all } n \geq 0, \ x > 0.
\]
This implies $s_n(x) \to f(x)$ for $x > 0$. This argument, slightly modified, also shows that $f(x) = \arctan(1/x)$ is the unique fixed point of T in A.

The same procedure works for $1/x \to 1/(x+y)+y/(x^2+xy+1)$, for $0 < y \leq 1$. More generally, there are similar functional equations for other inverse functions. Thus, for $l(x) = \log(1+1/x)$ the equation is

$$l(x) = l(2x+1) + l(2x).$$

The corresponding iteration, for $x = 1$, starting with $s_0(x) = 1/x$, produces the classical result

$$\sum_{k=2}^{2^{n+1}-1} 1/k \to \log(2) \quad \text{as} \quad n \to \infty.$$

Similarly, for $\tau(x) = \text{arctanh}(1/x) = \frac{1}{2} \log((1 + x)/(1 - x))$, the functional equation is

$$\tau(x) = \tau(x+1) + \tau(x^2+x-1),$$

for $x > 1$. Likewise for $\sigma = x \mapsto \text{arcsinh}(1/x)$ we have

$$\sigma(x) = \sigma\left(\sqrt{x^2+1}\right) + \sigma\left(x\sqrt{x^2+1}\left(\sqrt{x^2+1} + \sqrt{x^2+2}\right)\right).$$

And, for $\rho(x) = \text{arcsin}(1/x)$ we have

$$\rho(x) = \rho\left(\sqrt{x^2+1}\right) + \rho\left(x\sqrt{x^2+1}\left(x + \sqrt{x^2-1}\right)\right)$$

for all $x \geq 1$.

For these four functional equations, the corresponding theorem to that in Theorem 1.3.1 can be established. In fact, the basic inequality corresponding to Step 2 above for the last two functions would read

$$f(x) \cdot e(\sqrt{x^2+n}) \leq s_n(x) \leq f(x) \cdot E(\sqrt{x^2+n})$$

for $x \geq 1$, where s_n is defined, as before, by $s_0 \in A$ and

$$s_{n+1}(x) = s_n(\sqrt{x^2+1}) + s_n\left(x \sqrt{x^2+1}\left(\sqrt{x^2+1} + \sqrt{x^2+2}\right)\right)$$
12 \hspace{1em} \textit{CHAPTER 1. SEQUENCES, SERIES, PRODUCTS AND INTEGRALS}

in the case of σ, and

$$s_{n+1}(x) = s_n(\sqrt{x^2 + 1}) + s_n \left(x \sqrt{x^2 + 1} \left(x + \sqrt{x^2 - 1} \right) \right)$$

in the case of ρ.

By contrast

$$\rho(x) = \rho \left(\frac{x^2}{(x-1) \sqrt{x^2 - 1} + \sqrt{2x - 1}} \right) - \rho \left(\frac{x}{x-1} \right)$$

is another functional equation for $\arcsin(1/x)$ which does not have convergent orbits.

\subsection*{1.4 High Precision Fraud}

Consider the sums

$$\sum_{n=1}^{\infty} \frac{\lfloor n \tanh(\pi) \rfloor}{10^n} = \frac{1}{81},$$

an evaluation which is wrong but valid to 268 decimal places, and

$$\sum_{n=1}^{\infty} \frac{\lfloor n \tanh(\pi/2) \rfloor}{10^n} = \frac{1}{81},$$

which is valid only to 12 places. Both series actually evaluate to transcendental numbers.

What underlies these “fraudulent” evaluations? The “quick” reason is that $\tanh(\pi)$ and $\tanh(\pi/2)$ are almost integers, with, e.g., $0.99 < \tanh(\pi) < 1$. Therefore, $\lfloor n \tanh(\pi) \rfloor$ will be equal to $n-1$ for many n; precisely for $n = 1, \ldots, 268$. Since

$$\sum_{n=1}^{\infty} \frac{n-1}{10^n} = \frac{1}{81},$$

this explains the evaluations. Looking more closely at this argument, one is directly led to \textit{continued fractions} as the deeper reason behind the frauds. For
any irrational, positive \(\alpha\) we can write

\[
\alpha = [a_0, a_1, \ldots, a_n, a_{n+1}, \ldots]
\]

\[
= a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}
\]

with integral \(a_n\) and \(a_0 \geq 0, a_n \geq 1\) for \(n \geq 1\). This is hard to compute by hand but easy even on a small computer or calculator. For the parameters in our series we get

\[
\tanh(\pi) = [0, 1, 267, 4, 14, 1, 2, 1, 2, 2, 1, 2, 3, 8, 3, 1, \ldots]
\]

(1.4.16)

and

\[
\tanh\left(\frac{\pi}{2}\right) = [0, 1, 11, 4, 1, 1, 3, 1, 295, 4, 4, 1, 5, 7, 7, \ldots].
\]

(1.4.17)

It cannot be a coincidence that the integers 267 and 11 (each equal to the number of places of agreement with 1/81 in the respective formula) appear in these expansions! There must be a connection between series of the type \(\sum |n\alpha| z^n\) and the continued fraction expansion of an irrational \(\alpha\). In fact, consider the infinite continued fraction approximations for \(\alpha\) generated by

\[
p_{n+1} = p_n a_{n+1} + p_{n-1}, \quad p_0 = a_0 = |\alpha|, \quad p_{-1} = 1,
\]

\[
q_{n+1} = q_n a_{n+1} + q_{n-1}, \quad q_0 = 1, \quad q_{-1} = 0.
\]

Then for \(n \geq 0\), \(p_n/q_n\) increases to \(\alpha\), while \(p_{n+1}/q_{n+1}\) decreases to \(\alpha\) and

\[
\frac{1}{q_n (q_n + q_{n+1})} < |\alpha - p_n/q_n| < \frac{1}{q_n q_{n+1}}.
\]

Let further \(\epsilon_n = q_n \alpha - p_n\). Then from the above it follows that

\[
|\epsilon_{n+1}| < \frac{1}{q_n + q_{n+1}} < |\epsilon_n| < \frac{1}{q_{n+1}} \leq 1.
\]
All of this is standard and may be found in [130], [205], or [172]. Our aim now is to show a relationship between the above series and the continued fraction expansion of α. A first key is the following lemma, which we will not prove here since it requires some knowledge about linear Diophantine equations (cf. [47], where this material is taken from).

Lemma 1.4.1 For any irrational $\alpha > 0$ and $n, N \in \mathbb{N}$, we have

$$\left\lfloor n\alpha + \epsilon_N \right\rfloor = \left\lfloor n\alpha \right\rfloor$$

for $n < q_{N+1}$,

$$\left\lfloor n\alpha + \epsilon_N \right\rfloor = \left\lfloor n\alpha \right\rfloor + (-1)^N$$

for $n = q_{N+1}$.

Theorem 1.4.2 For irrational $\alpha > 0$,

$$\sum_{n=1}^{\infty} \left\lfloor n\alpha \right\rfloor z^n = \frac{p_0 z}{(1 - z)^2} + \sum_{n=0}^{\infty} (-1)^n \frac{z^{q_n} z^{q_{n+1}}}{(1 - z^{q_n})(1 - z^{q_{n+1}})}.$$

Proof. Let

$$G_\alpha(z, w) = \sum_{n=1}^{\infty} z^n w^{[n\alpha]}$$

(1.4.18)

for $|z|, |w| < 1$. Then for $N > 0$,

$$(1 - z^{q_N} w^{p_N}) G_\alpha(z, w) - \sum_{n=1}^{q_N} z^n w^{[n\alpha]}$$

$$= \sum_{n=1}^{\infty} z^{n+q_N} (w^{[n+q_N]\alpha]} - w^{[n\alpha]+p_N})$$

$$= \sum_{n=1}^{\infty} z^{n+q_N} w^{[n\alpha]+p_N} (w^{[n\alpha+\epsilon_N]} - [n\alpha] - 1)$$

$$= z^{q_{N+1}+q_N} w^{[q_{N+1}\alpha]+p_N} (w^{(-1)^N} - 1) + O(z^{q_{N+1}+q_N+1})$$

$$= z^{q_{N+1}+q_N} w^{p_{N+1}+p_N} (-1)^N \frac{w - 1}{w} + O(z^{q_{N+1}+q_N+1}),$$

(1.4.19)

since $[q_{N+1}\alpha] = [\epsilon_{N+1}] + p_{N+1} = p_{N+1}$ if N is odd and $= p_{N+1} - 1$ if N is even.
Now write \(P_N = \sum_{n=1}^{q_N} z^n w^{[n\alpha]} \) and \(Q_N = 1 - z^{q_N} w^{P_N} \). Then \(A_N = Q_N P_{N+1} - Q_{N+1} P_N \) is a polynomial of degree at most \(q_N + q_{N+1} \) in \(z \), and therefore it follows from (1.4.19) that

\[
A_N = Q_{N+1}(Q_N G_\alpha - P_N) - Q_N (Q_{N+1} G_\alpha - P_{N+1}) = (-1)^N w 1 - \frac{1}{w} z^{q_N} w^{P_N} z^{q_{N+1}} w^{P_{N+1}}.
\]

This in turn implies

\[
\frac{P_{N+1}}{Q_{N+1}} - \frac{P_N}{Q_N} = \frac{A_N}{Q_N Q_{N+1}} = (-1)^N w 1 - \frac{1}{w} \sum_{n=0}^{\infty} (-1)^n \frac{z^{q_n} w^{P_n} z^{q_{n+1}} w^{P_{n+1}}}{(1 - z^{q_n} w^{P_n})(1 - z^{q_{n+1}} w^{P_{n+1}})}.
\]

Next summing from zero to infinity, and noting that (1.4.19) implies that \(G_\alpha - \frac{P_N}{Q_N} \) tends to 0 as \(N \) tends to infinity, shows that

\[
G_\alpha(z, w) = \frac{z w^{P_0}}{1 - z w^{P_0}} - \frac{1 - w}{w} \sum_{n=0}^{\infty} (-1)^n \frac{z^{q_n} w^{P_n} z^{q_{n+1}} w^{P_{n+1}}}{(1 - z^{q_n} w^{P_n})(1 - z^{q_{n+1}} w^{P_{n+1}})}.
\]

Now differentiating with respect to \(w \) and then letting \(w \) tend to 1 proves the assertion. \(\square \)

This theorem was first proved (for \(\alpha \in (0, 1) \)) by Mahler in [155].

Examples. a) Let \(\alpha = \tanh(\pi) \) in Theorem 5.3.2. Then \(q_n = 1, 1, 268, 1073, \ldots \) for \(n = 0, 1, 2, 3, \ldots \), and thus

\[
\sum_{n=1}^{\infty} [n \tanh(\pi)] z^n = \frac{z^2}{(1 - z)^2} - \frac{z^{269}}{(1 - z)(1 - z^{268})} + \ldots .
\]

Therefore,

\[
\frac{1}{81} - 2 \cdot 10^{-269} \leq \sum_{n=1}^{\infty} \frac{|n \tanh(\pi)|}{10^n} \leq \frac{1}{81} + 2 \cdot 10^{-269},
\]

and similarly for \(\alpha = \tanh(\frac{\pi}{2}) \).
b) With one of our favorite transcendental numbers, \(\alpha = e^{\pi \sqrt{163/9}} = [640320, 1653264929, \ldots] \), we get the incorrect evaluation

\[
\sum_{n=1}^{\infty} \frac{\lfloor n e^{\pi \sqrt{163/9}} \rfloor}{2^n} = 1280640,
\]

which is however correct to at least half a billion digits.

c) Let \(\alpha = \log_{10}(2) \), so that \(\lfloor n \alpha \rfloor + 1 \) is the number of decimal digits of \(2^n \). Then \(q_n = 1, 3, 10, 93, \ldots \) for \(n = 0, 1, 2, 3, \ldots \), and the transcendental number \(\sum \lfloor n \log_{10}(2) \rfloor/2^n \) is equal to 146/1023 to 30 decimal digits. Interestingly, if \(e(n) \), respectively \(o(n) \), count the number of even, respectively odd, decimal digits of \(n \), then

\[
\sum_{n=1}^{\infty} \frac{o(2^n)}{2^n} = \frac{1}{9}
\]
is rational, while

\[
\sum_{n=1}^{\infty} \frac{e(2^n)}{2^n} = \sum_{n=1}^{\infty} \frac{\lfloor n \log_{10}(2) \rfloor + 1}{2^n} - \sum_{n=1}^{\infty} \frac{o(2^n)}{2^n}
\]
is transcendental. We will not prove the transcendency result here, but the evaluation for the sum with \(o(2^n) \) follows in the next theorem.

Theorem 1.4.3 If \(o(n) \) counts the odd decimal digits of \(n \), then

\[
\sum_{n=1}^{\infty} \frac{o(2^n)}{2^n} = \frac{1}{9}.
\]

Proof. Let \(0 < q < 1 \) and \(m \in \mathbb{N}, m > 1 \), and consider the base-\(m \) expansion of \(q \),

\[
q = \sum_{n=1}^{\infty} \frac{a_n}{m^n} \quad \text{with } 0 \leq a_n < m,
\]

where when ambiguous we take the terminating expansion. Then \(a_n \) is the remainder of \(\lfloor m^n q \rfloor \) modulo \(m \), and therefore we can just as well write

\[
q = \sum_{n=1}^{\infty} \frac{\lfloor m^n q \rfloor \pmod{m}}{m^n}. \quad (1.4.20)
\]
Now let \(F(q) = \sum_{k=1}^{\infty} c_k q^k \) be a power series with radius of convergence 1. Then for \(0 < q < 1 \), from (1.4.20) we get by exchanging the order of summation (as is valid within the radius of convergence)

\[
F(q) = \sum_{k=1}^{\infty} c_k q^k = \sum_{k=1}^{\infty} c_k \sum_{n=1}^{\infty} \frac{[m^k q^n] \mod m}{m^n} = \sum_{n=1}^{\infty} \frac{f(n)}{m^n}
\]

with \(f(n) = \sum_{k \geq 1} c_k ([m^k q^n] \mod m) \). Now if \(q = 1/b \) where \(b \) is an integer multiple of \(m \), then \([m^n/b^k] \mod m \) is the \(k \)-th digit \((\mod m)\) of the base-\(b \) expansion of the integer \(m^n \). (Here we start the numbering of the digits with 0, e.g., the 0-th digit of 1205 is 5). Thus for \(F(q) = q/(1 - q) \) and \(m = 2 \) (and \(b \) even), \(f(n) \) counts the odd digits in the base-\(b \) expansion of \(2^n \). For \(b = 10 \), we have \(f(n) = a(2^n) \) and get

\[
\frac{1}{9} = F\left(\frac{1}{10}\right) = \sum_{n=1}^{\infty} \frac{a(2^n)}{2^n}.
\]

\[\square \]

1.5 Knuth’s Series Problem

We give an account here of the solution, by one of the present authors (Borwein) to a problem recently posed by Donald E. Knuth of Stanford University in the *American Mathematical Monthly* (Problem 10832, Nov. 2000):

Problem: Evaluate

\[
S = \sum_{k=1}^{\infty} \left(\frac{k^k}{k! e^k} - \frac{1}{\sqrt{2\pi k}} \right).
\]

Solution: We first attempted to obtain a numerical value for \(S \). *Maple* produced the approximation

\[
S \approx -0.08406950872765599646.
\]

Based on this numerical value, the Inverse Symbolic Calculator, available at the URL

http://www.cecm.sfu.ca/projects/ISC/ISCmain.html
with the “Smart Lookup” feature, yielded the result

$$S \approx -\frac{2}{3} - \frac{1}{\sqrt{2\pi}} \zeta\left(\frac{1}{2}\right).$$

(1.5.21)

Calculations to even higher precision (50 decimal digits) confirmed this approximation. Thus within a few minutes we “knew” the answer.

Why should such an identity hold? One clue was provided by the surprising speed with which Maple was able to calculate a high-precision value of this slowly convergent infinite sum. Evidently the Maple software knew something that we did not. Peering under the covers revealed that Maple was using the Lambert W function, which is the functional inverse of \(w(z) = ze^z\).

Another clue was the appearance of \(\zeta(1/2)\) in the above experimental identity, together with an obvious allusion to Stirling’s formula in the original problem. This led us to conjecture the identity

$$\sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{2\pi k}} - \frac{P(1/2, k-1)}{(k-1)!\sqrt{2}}\right) = \frac{1}{\sqrt{2\pi}} \zeta\left(\frac{1}{2}\right)$$

(1.5.22)

where \(P(x, n)\) denotes the Pochhammer function \(x(x+1)\cdots(x+n-1)\), and where the binomial coefficients in the LHS of (1.5.22) are the same as those of the function \(1/\sqrt{2-2x}\). Maple successfully evaluated this summation, as shown on the RHS. We now needed to establish that

$$\sum_{k=1}^{\infty} \left(\frac{k^k}{k!e^k} - \frac{P(1/2, k-1)}{(k-1)!\sqrt{2}}\right) = -\frac{2}{3}.$$

Guided by the presence of the Lambert W function

$$W(z) = \sum_{k=1}^{\infty} \frac{(-k)^{k-1}z^k}{k!}$$

an appeal to Abel’s limit theorem suggested the conjectured identity

$$\lim_{z \to 1} \left(\frac{dW(-z/e)}{dz} + \frac{1}{2 - 2z}\right) = 2/3.$$

Here again, Maple was able to evaluate this summation and establish the identity.
As can be seen from this account, the above manipulation took considerable human ingenuity, in addition to computer-based symbolic manipulation. We include this example to highlight a challenge for the next generation of mathematical computing software—these tools need to more completely automate this class of operations, so that similar derivations can be accomplished by a significantly broader segment of the mathematical community.

1.6 Ahmed’s Integral Problem

The same comments apply to an “experimental” solution to a problem posed by Zafar Ahmed in the *American Mathematical Monthly* [3]:

Problem: Evaluate

\[
F = \int_{0}^{1} \frac{\arctan \left(\sqrt{x^2+2} \right)}{\sqrt{x^2+2} (x^2+1)} \, dx.
\]

Solution: Since presently available symbolic computing software is unable to produce a closed-form evaluation, we try to identify the integral via its numerical value,

\[F \approx 0.51404189589007076139762973957688287. \]

The Inverse Symbolic Calculator (with the integer relations algorithm clicked on), or its newer counterpart, the Reverse Engineering Calculator, return that this number matches \(\frac{5}{96} \pi^2 \). A test to higher precision confirms this evaluation.

It remains to prove the (now experimentally well-founded) conjecture

\[F = \frac{5}{96} \pi^2. \]

An idea is needed, which, as always, takes more human insight than any computer algebra system (at present) has built in. However, such a system can help to quickly identify promising starting points—and it can then carry out the symbolic manipulations which, taken together, constitute a proof. One possible starting point for this problem is to generalize: Using *Maple*, set

\[
> \text{assume(x>0,p>0); interface(showassumed=0);}
> \text{g := arctan(p*sqrt(x^2+2))/sqrt(x^2+2)/(x^2+1);}
\]
\[g = \frac{\arctan(p \sqrt{x^2 + 2})}{\sqrt{x^2 + 2 (x^2 + 1)}} \]

\> G := \text{Int}(g(x,p), x=0..1);

\[G = \int_0^1 \frac{\arctan(p \sqrt{x^2 + 2})}{\sqrt{x^2 + 2 (x^2 + 1)}} \, dx \]

so that \(F = G(1) \). On the other hand,

\> diff(g,p);

\[\frac{1}{(1 + p^2 (x^2 + 2)) (x^2 + 1)} \]

is a rational function in \(x \) and \(p \), so that it may pay to write

\[F = G(1) = \int_0^1 \int_0^1 \frac{\partial g(x, p)}{\partial p} \, dp \, dx = \int_0^1 \int_0^1 \frac{\partial g(x, p)}{\partial p} \, dx \, dp, \]

where the exchange of order of integration is justified by Fubini’s (Tonelli’s) theorem. Thus we are led to

\> int(diff(g,p), x=0..1);

\[\int_0^1 \frac{-4p \arctan \left(\frac{p}{\sqrt{1 + 2p^2}} \right) + \pi \sqrt{1 + 2p^2}}{(p^2 + 1) \sqrt{1 + 2p^2}} \, dp + \frac{1}{16} \pi^2 \]

\> map(int, expand(int(diff(g,p), x=0..1)), p=0..1);

\[\int_0^1 \frac{p \arctan \left(\frac{p}{\sqrt{1 + 2p^2}} \right)}{(p^2 + 1) \sqrt{1 + 2p^2}} \, dp + \frac{1}{16} \pi^2 \]
\[G_1 := \text{map}(\text{int}, \text{expand}(\text{int}(\text{diff}(g, p), x=0..1)), p=0..1) - \pi^2/16; \]

\[G_1 = \int_0^1 -\frac{p \arctan \left(\frac{p}{\sqrt{1+2p^2}} \right)}{(p^2+1) \sqrt{1+2p^2}} \, dp \]

and \(F = G_1 + \pi^2/16 \). Now using \(\arctan(y) + \arctan(1/y) = \pi/2 \) for \(y > 0 \) and then doing a change of variables \(x = 1/p \), we get

\[G_2 := \text{subs}(\arctan(p/\sqrt{1+2p^2}) = \pi/2 - \arctan(\sqrt{1+2p^2}/p), G_1); \]

\[G_2 = \int_0^1 -\frac{p \left(\frac{1}{2} \pi - \arctan \left(\frac{\sqrt{1+2p^2}}{p} \right) \right)}{(p^2+1) \sqrt{1+2p^2}} \, dp \]

\[G_3 := \text{map}(\text{int}, \text{expand}(\text{op}(1, G_2)), p=0..1); \]

\[G_3 = -\frac{1}{24} \pi^2 + \int_0^1 \frac{p \arctan \left(\frac{\sqrt{1+2p^2}}{p} \right)}{(p^2+1) \sqrt{1+2p^2}} \, dp \]

\[G_4 := \text{simplify}(\text{student}[\text{changevar}](x=1/p, G_3, x)); \]

\[G_4 = -\frac{1}{24} \pi^2 + \int_1^\infty \frac{\arctan \left(\frac{\sqrt{x^2+2}}{x^2+2} \right)}{(x^2+1) \sqrt{x^2+2}} \, dx \]

\[H := G_4 + \pi^2/24; \]

\[H = \int_1^\infty \frac{\arctan \left(\frac{\sqrt{x^2+2}}{x^2+2} \right)}{(x^2+1) \sqrt{x^2+2}} \, dx \]

so that \(F = G_1 + \pi^2/16 = G_4 + \pi^2/16 = H + \pi^2/48 \). This evaluates \(F - H = \pi^2/48 \). This suggests we also evaluate

\[F + H = \int_0^\infty \int_0^1 \frac{\partial g(x, p)}{\partial p} \, dp \, dx = \int_0^1 \int_0^\infty \frac{\partial g(x, p)}{\partial p} \, dx \, dp. \]

Indeed,
Now the result is proved by
\[
> \text{solve}\{f-h=\pi^2/48, f+h=\pi^2/12\}, \{f, h\};
\]
\[
\{f = \frac{5}{96} \pi^2, h = \frac{1}{32} \pi^2\}.
\]

Generalization: We note that in the same fashion we can evaluate
\[
\int_0^1 \frac{\arctan(\sqrt{x^2 + b^2})}{\sqrt{x^2 + b^2}(x^2 + 1)} \, dx - \int_1^\infty \frac{\arctan(\sqrt{x^2 + b^2})}{\sqrt{x^2 + b^2}(-1 + x^2 + b^2)} \, dx =
\frac{3}{4} \arctan(\sqrt{b^2 - 1}) - \frac{1}{2} \frac{\pi \arctan(\sqrt{b^4 - 1})}{\sqrt{b^2 - 1}},
\]
\[
\int_0^1 \frac{\arctan(\sqrt{x^2 + b^2})}{\sqrt{x^2 + b^2}(x^2 + 1)} \, dx + \int_1^\infty \frac{\arctan(\sqrt{x^2 + b^2})}{\sqrt{x^2 + b^2}(x^2 + 1)} \, dx =
\frac{\pi \arctan(\sqrt{b^2 - 1})}{\sqrt{b^2 - 1}} - \frac{1}{2} \frac{\pi \arctan(\sqrt{b^4 - 1})}{\sqrt{b^2 - 1}},
\]
and for \(b = \sqrt{2}\) this yields the previous closed form. Moreover, for \(b = 1\),
\[
\int_0^1 \frac{\arctan(\sqrt{x^2 + 1})}{(x^2 + 1)^{3/2}} \, dx = \left(\frac{1}{4} - \frac{\sqrt{2}}{2}\right) \pi + \frac{3}{2} \sqrt{2} \arctan(\sqrt{2})
\]
and for \(b = 0\),
\[
\int_0^1 \frac{\arctan(x)}{x(x^2 + 1)} \, dx = \frac{G}{2} + \frac{1}{8} \pi \log(2)
\]
where \(G\) is Catalan’s constant.
1.7. EVALUATION OF BINOMIAL SERIES

1.7 Evaluation of Binomial Series

A classical binomial series, derived from the arctan series, and given in [44], is

$$\sum_{n \geq 1} \frac{-9n + 18}{(2n)_n} = 2 \frac{\pi}{\sqrt{3}}.$$ \hspace{1cm} (1.7.23)

A more modern sum, due to Bill Gosper [122], is

$$\sum_{n \geq 0} \frac{50n - 6}{(3n)_n} \frac{2^n}{2^n} = \pi.$$ \hspace{1cm} (1.7.24)

In [7], whole classes of formulas for π of this type are proved, such as

$$\sum_{n \geq 0} S_k(n) \frac{(8kn)(-4)^{kn}}{(4kn)(-4)^{kn}} = \pi,$$

where $S_k(n)$ is a polynomial in n of degree $4k$ with rational coefficients, explicitly computable (for fixed k).

Motivated by such results, we shall consider here the following two families of sums:

$$b_2(k) = \sum_{n \geq 1} \frac{n^k}{(2n)_n},$$

$$b_3(k) = \sum_{n \geq 1} \frac{n^k}{(3n)_n} \frac{2^n}{2^n},$$

for $k \in \mathbb{Z}$. We shall record closed forms for the sums $b_2(k)$ and recursion formulas for the sums $b_3(k)$, both in the case of positive k. These were discovered with the help of integer relation and similar methods, described below. The case of negative k is more complex; we shall finish with some primarily experimental results. This material is taken from [54] (for $b_2(k)$ with negative k) and from [59].

The key observation is that the sums have integral representations involving the polylogarithms $L_p(z) = \sum_{n>0} z^n/n^p$, see [61]. Using the following properties
of the β-function (see Section 5.4 of the first volume):

\[
\frac{1}{(2n + 1)} = (2n + 1) \beta(n + 1, n + 1) = n \beta(n, n + 1) \quad \text{and} \\
\frac{1}{(3n + 1)} = (3n + 1) \beta(2n + 1, n + 1) = n \beta(2n + 1, n) = 2n \beta(2n, n + 1),
\]

we find that

\[
b_2(k) = \int_0^1 L_{-k}(x(1 - x)) + 2 L_{-k-1}(x(1 - x)) \, dx \\
= \int_0^1 \frac{L_{-k-1}(x(1 - x))}{x} \, dx,
\]

and

\[
b_3(k) = \int_0^1 L_{-k} \left(\frac{x^2(1 - x)}{2} \right) + 3 L_{-k-1} \left(\frac{x^2(1 - x)}{2} \right) \, dx \\
= \int_0^1 \frac{L_{-k-1} \left(\frac{x^2(1 - x)}{2} \right)}{1 - x} \, dx = 2 \int_0^1 \frac{L_{-k-1} \left(\frac{x^2(1 - x)}{2} \right)}{x} \, dx.
\]

For fixed $k \geq 0$, these integrals are easy to compute symbolically in Maple and (with some more effort) in Mathematica.

1.7.1 The Case of Non-Negative k

For integer $k \geq 0$, $L_{-k}(x)$ is clearly a rational function, and it is useful to write it as a partial fraction

\[
L_{-k}(x) = \sum_{j=1}^{k+1} \frac{c_j^k}{(x - 1)^j}.
\]

Since $x \, dL_{-k}(x)/dx = L_{-k-1}(x)$, we may obtain the recursion

\[
c_j^k = - \left(j \, c_j^{k-1} + (j - 1) \, c_{j-1}^{k-1} \right).
\]

Let

\[
M_2(k, x) = L_{-k}(x) + 2 L_{-k-1}(x) \\
M_3(k, x) = L_{-k}(x) + 3 L_{-k-1}(x).
\]
1.7. EVALUATION OF BINOMIAL SERIES

We may then easily verify that the coefficients of the partial fraction of
M_2 and M_3 are governed by recursion (1.7.27) with initial conditions given by
$c_1^0(2) = 1, c_2^0(2) = 2, c_j^0(2) = 0$ otherwise and
$c_1^0(3) = 2, c_2^0(3) = 3, c_j^0(3) = 0$ otherwise, respectively.

This in turn is easily verified—by hand or in a computer algebra system—to
yield

$$c_j^k(2) = \frac{(-1)^{k+j}}{j} \sum_{m=1}^{j} (-1)^m (2m - 1) m^{k+1} \binom{j}{m}, \quad (1.7.28)$$

$$c_j^k(3) = \frac{(-1)^{k+j}}{j} \sum_{m=1}^{j} (-1)^m (3m - 1) m^{k+1} \binom{j}{m}.$$

Which as is often the case, is somewhat easier to verify than to find.

Next we observe that the values of the integrals in (1.7.25) and (1.7.26) are
of the form

$$b_2(k) = \sum_j c_j^k(2) \int_0^1 (1 - x(1 - x))^{-j} \, dx$$

and

$$b_3(k) = \sum_j c_j^k(3) \int_0^1 (1 - x^2(1 - x)/2)^{-j} \, dx \quad (1.7.29)$$

respectively. So we set ourselves the task of hunting for a recursion for

$$d_2(j) = \int_0^1 (1 - x(1 - x))^{-j} \, dx$$

and for

$$d_3(j) = \int_0^1 (1 - x^2(1 - x)/2)^{-j} \, dx.$$

By computing the first few cases, we determine that $d_2(j)$ is a rational combination of 1 and $\pi/\sqrt{3}$ while $d_3(j)$ is a rational combination of 1, $\log 2$ and π. Thus it is reasonable to hunt for two-term recursions for d_2 and three-term recursions for d_3.

Now linear relations come to the rescue. We look for relations between \(d_2(p), d_2(p + 1), \) and \(d_2(p + 2),\) say for \(0 \leq p \leq 4,\) and are rewarded by the relations \([2, 2, -3], [-2, 9, -6], [6, -16, 9], [-10, 23, -12], [14, -30, 15].\) By inspection we have \(d_2(0) = 1, d_2(1) = 2\pi/(3\sqrt{3})\) and

\[
(4p - 10) d_2(p - 2) - (7p - 12) d_2(p - 1) + (3p - 3) d_2(p) = 0 \quad (1.7.30)
\]

for \(p \geq 2.\)

For \(d_3,\) we look for four-term relations between \(d_3(p), d_3(p + 1), d_3(p + 2)\) and \(d_3(p + 3),\) and we return \([-3, -24, 78, -50], [-24, 183, -310, 150], [-105, 500, -696, 300], [240, -975, 1236, -500], [-429, 1608, -1930, 750].\) A little more intense pattern matching leads to \(d_3(0) = 1, d_3(1) = 3\log(2)/5 + \pi/5, d_3(2) = 9/25 + 48\log(2)/125 + 37\pi/250,\) while \(d_3(3) = 627/1250 + 972\log(2)/3125 + 843\pi/6250,\) as is predicted by

\[
3(3p - 10)(3p - 8) d_3(p - 3) - (79(p - 2)(p - 3) + 21 + p) d_3(p - 2) + (77p - 153)(p - 2) d_3(p - 1) - 25(p - 1)(p - 2) d_3(p) = 0 \quad (1.7.31)
\]

for \(p \geq 3.\)

In each case once discovered one can prove the recursion by either “asking Maple” or by considering the indefinite integral from \(0\) to \(t,\) which Maple can perform. One may then verify that the integral has a zero at \(t = 1.\) We illustrate this for the case \(N = 2.\) We combine the integrals in (1.7.30) and consider

\[
\int_0^t \frac{4p - 10}{(1-x(1-x))^{p-2}} - \frac{7p - 12}{(1-x(1-x))^{p-1}} + \frac{3p - 3}{(1-x(1-x))^p} \, dx \quad (1.7.32)
\]

If we differentiate this last expression back and simplify we recover the integrand as required. Since the right-hand side of (1.7.32) has a zero at \(t = 1\) we are done. Similarly for (1.7.31), and it is to assure the zero at \(t = 1\) that the factor of \(1/2^n\) is needed.

The quantities \(d_2(j)\) (and therefore also the \(b_2(k)\)) can in fact be computed explicitly (but this realization for us came after having found the recursion). To find the explicit formula, substitute \(y = 2x - 1\) in the integral \(d_2(j)\) to get

\[
d_2(j) = 4^j \int_0^1 \frac{1}{(3+x)^j} \, dx.
\]
1.7. EVALUATION OF BINOMIAL SERIES

This satisfies the recursion \(d_2(1) = \frac{2\pi}{(3\sqrt{3})} \) and

\[
d_2(j + 1) = \frac{2}{3j}(1 + (2j - 1)d_2(j)).
\]

This leads to the explicit representation

\[
d_2(j) = \frac{1}{3^j} \binom{2j - 2}{j - 1} \cdot \left(\sum_{i=1}^{j-1} \frac{3^i}{(2i - 1) \binom{2i - 2}{i - 1}} + \frac{2}{\sqrt{3}} \pi \right).
\]

Putting this together with formula (1.7.28) and simplifying as much as possible gives

\[
b_2(k - 1) = \frac{(-1)^k}{2} \sum_{j=1}^{k} (-1)^j j! S^{(j)}_k \left(\frac{3^j}{3^j} \sum_{i=0}^{j-1} \frac{3^i}{(2i + 1) \binom{2i}{i}} + \frac{2}{3 \sqrt{3}} \pi \right)
\]

for \(k \geq 1 \), where \(S^{(j)}_k \) are the Stirling numbers of the second kind,

\[
S^{(j)}_k = \frac{(-1)^j}{j!} \sum_{m=0}^{j} (-1)^m m^k \binom{j}{m}.
\]

For a similar explicit formula for \(b_3(k) \), we would need to evaluate the integrals \(d_3(j) \) explicitly. This would involve doing the partial fraction decomposition of the integrand \(1/[(1 + x)^j(x^2 - 2x + 2)^j] \), and while possible in principle, it leads to such unwieldy recursions that we have refrained from doing that.

To recapitulate, we have now proven that

\[
b_2(k) = p_k + q_k \frac{\pi}{\sqrt{3}}
\]

with explicitly given rationals \(p_k, q_k \), and

\[
b_3(k) = r_k + s_k \pi + t_k \log 2
\]

with certain rationals \(r_k, s_k, t_k \), for which we have very efficient iterations. Ex-
explicitly,

\[
\sum_{n \geq 1} \frac{1}{(2n)} = \frac{1}{3} + \frac{2}{9} \sqrt{3},
\]
\[
\sum_{n \geq 1} \frac{n}{(2n)} = \frac{2}{3} + \frac{2}{9} \sqrt{3},
\]
\[
\sum_{n \geq 1} \frac{n^2}{(2n)} = \frac{4}{3} + \frac{10}{27} \sqrt{3},
\]
\[
\sum_{n \geq 1} \frac{1}{(3n)} \frac{2^n}{(2n)} = \frac{2}{25} - \frac{6}{125} \log(2) + \frac{11}{250} \pi,
\]
\[
\sum_{n \geq 1} \frac{n}{(3n)} \frac{2^n}{(2n)} = \frac{81}{625} - \frac{18}{3125} \log(2) + \frac{79}{3125} \pi,
\]
\[
\sum_{n \geq 1} \frac{n^2}{(3n)} \frac{2^n}{(2n)} = \frac{561}{3125} + \frac{42}{15625} \log(2) + \frac{673}{31250} \pi.
\]

In particular, we can deduce, by elimination, that (1.7.23) and (1.7.24) hold, and we can deduce the corresponding formulas

\[
\sum_{n \geq 1} \frac{-150n^2 + 230n - 36}{(3n)} \frac{2^n}{(2n)} = \pi,
\]
\[
\sum_{n \geq 1} \frac{575n^2 - 965n + 273}{(3n)} \frac{2^n}{(2n)} = 6 \log 2.
\]

Moreover, the recursions derived for \(b_2(k)\) and \(b_3(k)\), namely \(b_2(k) = \sum_j c_j^2(2)d_2(j)\) and \(b_3(k) = \sum_j c_j^3(3)d_3(j)\), are sufficiently concise that we can compute symbolic values such as those of \(b_3(200)\) or of \(b_2(300)\) in a few seconds.

Without the factor of \(1/2^n\), the sum \(b_3\) would not have such an evaluation in terms of simple constants. In general, the position of the poles of \(L_{-k}(ax^2(1-x))\), i.e., of the zeros of \(f_a(x) = 1 - ax^2(1-x)\), determines the evaluation of \(\sum a^n n^k/(3n)\). If \(f_a\) has a sufficiently simple factorization, then we can expect an evaluation of the sum in terms of more basic constants. For
example, with \(a = -1/4 \), we get (using Maple to evaluate the integral)

\[
\sum_{n \geq 1} \frac{(-1)^n}{(3n/4)^n} = -\frac{1}{28} - \frac{3}{32} \log(2) + \frac{13}{112} \arctan \left(\frac{\sqrt{7}}{5} \right),
\]

\[
\sum_{n \geq 1} \frac{(-1)^n n}{(3n/4)^n} = -\frac{81}{1568} - \frac{9}{256} \log(2) + \frac{17}{6272} \arctan \left(\frac{\sqrt{7}}{5} \right),
\]

while for \(a = 1 \) Maple returns an expression which can only be simplified to

\[
\sum_{n \geq 1} \frac{1}{(3n/4)^n} = \frac{4}{23} + \frac{2}{23} \sum_{23r^3+35r+23=0} r \log(1987 - 598r + 621r^2).
\]

Similarly, the sums \(\sum a^n n^k/(2^n) \) lead to similar recursions; for example the classical

\[
\sum_{n \geq 1} (-1)^n \frac{n^k}{(2n)^n} = r_k + s_k \frac{\arctanh(1/\sqrt{5})}{\sqrt{5}}
\]

with appropriate rationals \(r_k, s_k \). Another tractable example is the sum \(\sum n^k/(4n) \), which has

\[
\sum_{n \geq 1} \frac{n^k}{(4n)} = r_k + s_k \frac{\pi}{\sqrt{3}} + t_k \frac{\arctanh(1/\sqrt{5})}{\sqrt{5}},
\]

again for appropriate rationals.
1.7.2 Some Results for Negative k

For $k = -1$ and $k = -2$, the sums $b_2(k)$ and $b_3(k)$ can still be computed explicitly via the integrals (1.7.25) and (1.7.26):

\[
\sum_{n \geq 1} \frac{1}{n(2n)} = \frac{1}{3} \pi \sqrt{3},
\]

\[
\sum_{n \geq 1} \frac{1}{n^2(2n)} = \frac{1}{18} \pi^2 = \frac{\zeta(2)}{3},
\]

\[
\sum_{n \geq 1} \frac{1}{n^3(2n)} = \frac{1}{10} \pi - \frac{1}{5} \log(2),
\]

\[
\sum_{n \geq 1} \frac{1}{n^2(3n)} \frac{1}{2^n} = \frac{1}{24} \pi^2 - \frac{1}{2} \log(2)^2.
\]

For $k < -2$, however, it seems that the integrals have no accessible antiderivative, so that a direct computation does not appear possible. One might conjecture that the sums $b_3(k)$ then have no explicit reduction to simpler constants, but that conjecture would be wrong. One just has to expand the range of constants among which to hunt for a relation. In fact, it turns out that multi-dimensional polylogarithms

\[L_{a_1,\ldots,a_m}(z) = \sum_{n_1 > \ldots > n_m > 0} \frac{z^{n_1}}{n_1^{a_1} \cdots n_m^{a_m}} \]

(with positive integers a_j) will appear in the evaluations, for suitable z. For example, some of the relations proved in [54], as part of a more comprehensive analysis, are the following (note that $L_n(1) = \zeta(n)$):

\[
\sum_{n \geq 1} \frac{1}{n^3(2n)} = \frac{2}{3} \pi \text{Im} \left(L_2(e^{i\pi/3}) \right) - \frac{4}{3} \zeta(3),
\]

\[
\sum_{n \geq 1} \frac{1}{n^4(2n)} = \frac{17}{36} \zeta(4),
\]

\[
\sum_{n \geq 1} \frac{1}{n^5(2n)} = 2\pi \text{Im} \left(L_4(e^{i\pi/3}) \right) - \frac{19}{3} \zeta(5) + \frac{2}{3} \zeta(3)\zeta(2),
\]

\[
\sum_{n \geq 1} \frac{1}{n^6(2n)} = -\frac{4}{3} \pi \text{Im} \left(L_{4,1}(e^{i\pi/3}) \right) + \frac{3341}{1296} \zeta(6) - \frac{4}{3} \zeta^2(3).
\]
In [54, 59], the terms such as \(\text{Im} \left(L_{1/2}(e^{i\pi/3}) \right) \) were termed *Clausen functions*.

Motivated by these results one may conjecture that also the sums \(b_3(k) \) for negative \(k \) can be evaluated in terms of multi-dimensional polylogarithms with suitable parameters and at suitable points \(z \). To find the right parameters, we employ integer relation detection schemes between the sums \(b_3(k) \) and various polylogarithms. This of course involves a lot of trial and error. But in the end, the following evaluations are found by PSLQ.

None of these evaluations are proved yet. They are almost certainly true, though: they were found via integer relations using dozens of digits, and they were subsequently found to be true to at least a hundred digits. Only the evaluation for \(b_3(-3) \) can be proved rigorously, by laborious polylog manipulations—the interested reader may feel challenged to try it.

\[
\sum_{n=1}^{\infty} \frac{1}{n^3 \binom{3n}{n} 2^n} = -\frac{33}{16} \zeta(3) + \frac{1}{6} \log^3(2) - \frac{1}{24} \pi^2 \log(2) + \pi \text{Im} \left(L_2(i) \right)
\]

\[
= -\frac{1}{4} \zeta(3) + \frac{1}{6} \log^3(2) - \frac{1}{24} \pi^2 \log(2) - 4 \text{Re} \left(L_{2,1}(i) \right)
\]

\[
= -\frac{39}{16} \zeta(3) + \frac{1}{8} \pi^2 \log(2) - 4 \text{Re} \left(L_{2,1}(1+i) \right) + 4 \text{Re} \left(L_3(1+i) \right),
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^4 \binom{3n}{n} 2^n} = -\frac{143}{16} \zeta(3) \log(2) + \frac{91}{640} \pi^4 - \frac{3}{8} \log^4(2) + \frac{3}{8} \pi^2 \log^2(2)
\]

\[
- 8 L_4(1/2) - 8 \text{Re} \left(L_{3,1}(1+i) \right) - 8 \text{Re} \left(L_4(1+i) \right),
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n^5 \binom{3n}{n} 2^n} = \frac{405}{32} \zeta(5) + \frac{21}{4} \zeta(3) \log^2(2) - \frac{1}{10} \pi^4 \log(2) - \frac{23}{144} \pi^2 \log^3(2)
\]

\[
- \frac{13}{8} \pi^2 \zeta(3) + \frac{1}{240} \log^5(2) - 13 L_5(1/2) - \frac{25}{2} L_{4,1}(1/2)
\]

\[
+ 3 \pi \text{Im} \left(L_4(i) \right) - 16 \text{Re} \left(L_{4,1}(1+i) \right) + 16 \text{Re} \left(L_5(1+i) \right),
\]

Note that \(\text{Im}(L_2(i)) = G, \) *Catalan’s constant*.

Of course, there are still relations between the various polylogarithmic constants employed here (as is evidenced, for example, by the different evaluations for \(b_3(-3) \); note also that \(L_2(1/2) = \pi^2/12 - \log^2(2)/2 \) and \(L_3(1/2) = 7\zeta(3)/8 - \pi^2 \log(2)/12 + \log^3(2)/6 \)). This means that evaluations other than the ones given above are possible. We have tried to find those evaluations with the
smallest rational factors. Again, we must emphasize that the evaluations given here are still conjectural.

1.8 Continued Fractions of Tails of Series

We have already seen several examples of continued fractions in this chapter—see for example the formulas 1.4.16 and 1.4.17. In this section we observe that the tails of the Taylor series for many standard functions such as arctan and log can be expressed as continued fractions in a variety of ways. A surprising side effect is that some of these continued fractions provide dramatic accelerations for the underlying power series. These investigations were motivated by a surprising observation about Gregory’s series (see Sections 1.3 and 5.6.4 of the first volume).

1.8.1 Gregory’s Series Reexamined

As discussed in Section 1.3 of the first volume, Gregory’s series for \(\pi\),

\[
\pi = 4 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k-1} = 4(1 - 1/3 + 1/5 - 1/7 + \cdots),
\]

when truncated to 5,000,000 terms, gives a value that differs strangely from the true value of \(\pi\):

3.14159265358979323846264338327950288419716939397510582097494459230781640...

The series value differs, as one might expect from a series truncated to 5,000,000 terms, in the seventh decimal place—a “4” where there should be a “6”. But the next 13 digits are correct! Then, following another erroneous digit, the sequence is once again correct for an additional 12 digits. This pattern continues as shown. It is explained, \textit{ex post facto}, by substituting \(N = 10^7\) in the result below:

\textbf{Theorem 1.8.1} For integer \(N\) divisible by 4 the following asymptotic expansion holds:

\[
\frac{\pi}{2} - 2 \sum_{k=1}^{N/2} \frac{(-1)^{k-1}}{2k-1} \sim \sum_{m=0}^{\infty} \frac{E_{2m}}{N^{2m+1}}
\]

\[
= \frac{1}{N} - \frac{1}{N^3} + \frac{5}{N^5} - \frac{61}{N^7} + \cdots,
\]
where the coefficients are the even Euler numbers $1, -1, 5, -61, 1385, -50521 \ldots$.

The observation on the digits in the Gregory series arrived in the mail from Joseph Roy North in 1987. After verifying its truth numerically (which is much quicker today), it was an easy matter to generate a large number of the “errors” to high precision. The authors of [37] then recognized the sequence of errors above as the Euler numbers—with the help of Sloane’s *Handbook of Integer Sequences*. The presumption that this sequence of errors is a form of Euler-Maclaurin summation is now formally verifiable for any fixed N in *Maple*. This allowed them to determine that this phenomenon is equivalent to a set of identities between Bernoulli and Euler numbers that could with considerable effort have been established. Secure in the knowledge that this observation holds, it is then easier, however, to use the *Boole summation formula* which applies directly to alternating series and Euler numbers (see [37]). Because N was a power of ten, the asymptotic expansion was obvious on the computer screen.

This is a good example of a phenomenon that really does not become apparent without working to reasonably high precision (who recognizes $2, -2, 10?$), and which highlights the role of pattern recognition and hypothesis validation in experimental mathematics.

It was an amusing additional exercise to compute π to $5,000$ digits from the Gregory Series. Indeed, with $N = 200,000$ and correcting using the first thousand even Euler numbers, Borwein and Limber [62] obtained $5,263$ digits of π (plus 12 guard digits). Thus, while the alternating Gregory series is very slowly convergent, the errors are highly predictable.

1.8.2 Euler’s Continued Fraction

Identities such as

$$a_0 + \frac{a_1 + a_1 a_2 + a_1 a_2 a_3 + a_1 a_2 a_3 a_4}{a_1 a_2 a_3 a_4} = a_0 + \frac{1}{1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$$

are easily verified symbolically. The general form can then be obtained by substituting $a_N + a_N a_{N+1}$ for a_N and checking that the shape of the right hand
side is preserved. This allows many series to be reexpressed as finite continued fractions. For example, with \(a_0 = 0, a_1 = x, a_2 = -\frac{x^2}{3}, a_3 = -\frac{3x^2}{5}, \ldots \) we obtain, in the limit, the continued fraction for \(\arctan \) due to Euler:

\[
\arctan(x) = \frac{x}{1 + \frac{x^2}{3 - x^2 + \frac{9x^2}{5 - 3x^2 + \frac{25x^2}{7 - 5x^2 + \cdots}}}}. \tag{1.8.36}
\]

When \(x = 1 \), this becomes the first continued fraction for \(\frac{2}{\pi} \) given by Lord Brouncker’s (1620–1684):

\[
\frac{2}{\pi} = \frac{1}{1 + \frac{9}{25 - \frac{49}{2 + \frac{2\cdot49}{2 + \cdots}}}}.
\]

If we let \(a_0 = \sum_1^N b_k \) be the initial segment of a similar series we may use (1.8.35) to replace the next \(M \) terms, say, by a continued fraction. Applied to \(\arctan \) this leads to:

\[
\arctan(z) = \sum_{n=1}^N (-1)^{n-1} \frac{z^{2n-1}}{2n-1} + \frac{(-1)^N z^{2N+1}}{2N+1} + \frac{(2N+1)^2 z^2}{(2N+3) - (2N+1)z^2} + \frac{(2N+3)^2 z^2}{(2N+5) - (2N+3)z^2} + \frac{(2N+5)^2 z^2}{(2N+7) - (2N+5)z^2} + \cdots. \tag{1.8.37}
\]

1.8.3 Gauss’s Continued Fraction

An immediately richer vein lies in Gauss’s continued fraction for the ratio of two hypergeometric functions \(\frac{F(a, b + 1; c + 1; z)}{F(a, b; c; z)} \), see [205]. Recall that within
In its radius of convergence, the Gaussian hypergeometric function is defined by

\[F(a, b; c; z) = 1 + \frac{ab}{c} z + \frac{a(a+1)b(b+1)}{c(c+1)} z^2 + \frac{a(a+1)(a+2)b(b+1)(b+2)}{c(c+1)(c+2)} z^3 + \cdots. \]

(1.8.38)

The general continued fraction is developed by a reworking of the contiguity relation

\[F(a, b; c; z) = F(a, b+1; c+1; z) - \frac{a(c-b)}{c(c+1)} z F(a, b+1; c+2; z), \]

and formally at least is quite easy to derive. Convergence and convergence estimates are more delicate. In the limit, for \(b = 0 \), this process yields

\[F(a, 1; c; z) = \frac{1}{1 - \frac{\frac{c-a}{c} z}{1 - \frac{\frac{c(a+1)}{c+1} z}{1 - \frac{\frac{2(c-a+1)}{(c+2)(c+3)} z}{1 - \cdots}}}} \]

(1.8.39)

which is the case of present interest.

It is well known and easy to verify that \(\log(1+z) = \frac{z}{1} F(1, 1; 2; -z) \). It is then a pleasant surprise to discover that \(\log(1+z) - z = \frac{1}{2} z^2 F(2, 1; 3; -z) \), \(\log(1+z) - z + \frac{1}{2} z^2 = \frac{1}{3} z^3 F(3, 1; 4; -z) \) and to conjecture that

\[\log(1+z) + \sum_{n=1}^{N-1} \frac{(-1)^n z^n}{n} = \frac{z^N}{N} F(N, 1; N+1; -z). \]

(1.8.40)

This is easy to first verify for a few cases and then confirm rigourously. As always, a formula for \(\log \) leads correspondingly to one for \(\arctan \):

\[\arctan(z) - \sum_{n=0}^{N-1} \frac{(-1)^n z^{2n+1}}{2n+1} = \frac{z^{2N+1}}{2N+1} F\left(N + \frac{1}{2}, 1; N + \frac{3}{2}, -z^2\right). \]

(1.8.41)
Happily, in both cases (1.8.39) is applicable—as it is for a variety of other functions, including for example \(\log[(1 + z)/(1 - z)] \), \((1 + z)^k\), and \(\int_0^z (1 + t^n)^{-1} dt = z \, _2F(1/n, 1; 1 + 1/n; -z^n)\). Note that this last function recaptures \(\log(1 + z)\) and \(\arctan(z)\) for \(n = 1\) and \(2\) respectively.

We give the explicit continued fractions for (1.8.40) and (1.8.41) in the conventional more compact form.

Theorem 1.8.2 Gauss's continued fractions for \(\log\) and \(\arctan\) are:

\[
\log (1 + z) + \sum_{n=1}^{N-1} \frac{(-1)^n z^n}{n} = \frac{(-1)^{N+1} z^N}{N} \frac{N^2 z}{N + 1} + \frac{1^2 z}{N + 2} + \frac{(N + 1)^2 z}{N + 3} + \frac{2^2 z}{N + 4} + \ldots \tag{1.8.42}
\]

and

\[
\arctan (z) - \sum_{n=0}^{N-1} \frac{(-1)^n z^{2n+1}}{2n + 1} = \frac{(-1)^N z^{2N+1}}{2N + 1} \frac{(2N + 1)^2 z^2}{2N + 3} + \frac{2^2 z^2}{2N + 5} + \frac{(2N + 3)^2 z^2}{2N + 7} + \frac{4^2 z^2}{2N + 9} + \ldots \tag{1.8.43}
\]

(See [56] for details.)

Suppose we return to Gregory’s series, but add a few terms of the continued fraction for (1.8.41). One observes numerically that if the results are with \(N = 500,000\), adding only five terms of the continued fraction has the effect of increasing the precision by more than 30 digits.

Example. Let

\[
E_1(N, M, z) = \log(1 + z) - \left(- \sum_{n=1}^N \frac{(-z)^n}{n} - \frac{(-z)^{N+1}}{N + 1} F_M(N + 1, 1; N + 2; -z) \right)
\]

\[
E_2(N, M, z) = \arctan(z) - \left(- \sum_{n=0}^{N-1} \frac{(-1)^n z^{2n+1}}{2n + 1} - \frac{(-1)^N z^{2N+1}}{2N + 1} F_M \left(N + 1, 1; N + 3, \frac{3}{2}; -z^2 \right) \right). \tag{1.8.44}
\]
1.8. CONTINUED FRACTIONS OF TAILS OF SERIES

<table>
<thead>
<tr>
<th></th>
<th>5×10^5</th>
<th>5×10^4</th>
<th>5×10^{9}</th>
<th>5×10^{14}</th>
<th>5×10^{19}</th>
<th>5×10^{24}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0</td>
<td>0.48×10^{-4}</td>
<td>0.13×10^{-25}</td>
<td>0.15×10^{-232}</td>
<td>0.13×10^{-2292}</td>
<td>0.13×10^{-2292}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.43×10^{-4}</td>
<td>0.11×10^{-25}</td>
<td>0.14×10^{-232}</td>
<td>0.11×10^{-2292}</td>
<td>0.11×10^{-2292}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.40×10^{-8}</td>
<td>0.11×10^{-31}</td>
<td>0.14×10^{-240}</td>
<td>0.11×10^{-2302}</td>
<td>0.11×10^{-2302}</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.34×10^{-8}</td>
<td>1.00×10^{-32}</td>
<td>0.12×10^{-240}</td>
<td>0.10×10^{-2302}</td>
<td>0.10×10^{-2302}</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.12×10^{-11}</td>
<td>0.40×10^{-37}</td>
<td>0.50×10^{-248}</td>
<td>0.41×10^{-2312}</td>
<td>0.41×10^{-2312}</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.10×10^{-11}</td>
<td>0.35×10^{-37}</td>
<td>0.45×10^{-248}</td>
<td>0.37×10^{-2312}</td>
<td>0.37×10^{-2312}</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.78×10^{-15}</td>
<td>0.31×10^{-42}</td>
<td>0.40×10^{-255}</td>
<td>0.33×10^{-2321}</td>
<td>0.33×10^{-2321}</td>
</tr>
</tbody>
</table>

Table 1.1: Error $|E_1(N, M, -0.9)|$ for $N = 5 \times 10^k (1 \leq k \leq 4)$ and $0 \leq M \leq 6$

<table>
<thead>
<tr>
<th></th>
<th>5×10</th>
<th>5×10^{2}</th>
<th>5×10^{4}</th>
<th>5×10^{6}</th>
<th>5×10^{8}</th>
<th>5×10^{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0</td>
<td>0.99×10^{-2}</td>
<td>1.00×10^{-3}</td>
<td>1.00×10^{-4}</td>
<td>1.00×10^{-5}</td>
<td>1.00×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.97×10^{-2}</td>
<td>1.00×10^{-3}</td>
<td>1.00×10^{-4}</td>
<td>1.00×10^{-5}</td>
<td>1.00×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.91×10^{-6}</td>
<td>1.00×10^{-9}</td>
<td>1.00×10^{-12}</td>
<td>1.00×10^{-15}</td>
<td>1.00×10^{-18}</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.86×10^{-6}</td>
<td>1.00×10^{-9}</td>
<td>1.00×10^{-12}</td>
<td>1.00×10^{-15}</td>
<td>1.00×10^{-18}</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.31×10^{-9}</td>
<td>0.39×10^{-14}</td>
<td>0.40×10^{-19}</td>
<td>0.40×10^{-24}</td>
<td>0.40×10^{-29}</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.28×10^{-9}</td>
<td>0.39×10^{-14}</td>
<td>0.40×10^{-19}</td>
<td>0.40×10^{-24}</td>
<td>0.40×10^{-29}</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.22×10^{-12}</td>
<td>0.34×10^{-19}</td>
<td>0.36×10^{-26}</td>
<td>0.36×10^{-33}</td>
<td>0.36×10^{-40}</td>
</tr>
</tbody>
</table>

Table 1.2: Error $|E_1(N, M, -1)|$ for $N = 5 \times 10^k (1 \leq k \leq 6)$ and $0 \leq M \leq 6$

<table>
<thead>
<tr>
<th></th>
<th>5×10</th>
<th>5×10^{2}</th>
<th>5×10^{4}</th>
<th>5×10^{6}</th>
<th>5×10^{8}</th>
<th>5×10^{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0</td>
<td>0.50×10^{-2}</td>
<td>0.50×10^{-3}</td>
<td>0.50×10^{-4}</td>
<td>0.50×10^{-5}</td>
<td>0.50×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.48×10^{-2}</td>
<td>0.50×10^{-3}</td>
<td>0.50×10^{-4}</td>
<td>0.50×10^{-5}</td>
<td>0.50×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.44×10^{-6}</td>
<td>0.49×10^{-9}</td>
<td>0.50×10^{-12}</td>
<td>0.50×10^{-15}</td>
<td>0.50×10^{-18}</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.42×10^{-6}</td>
<td>0.49×10^{-9}</td>
<td>0.50×10^{-12}</td>
<td>0.50×10^{-15}</td>
<td>0.50×10^{-18}</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.15×10^{-9}</td>
<td>0.19×10^{-14}</td>
<td>0.20×10^{-19}</td>
<td>0.20×10^{-24}</td>
<td>0.20×10^{-29}</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.14×10^{-9}</td>
<td>0.19×10^{-14}</td>
<td>0.20×10^{-19}</td>
<td>0.20×10^{-24}</td>
<td>0.20×10^{-29}</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.10×10^{-12}</td>
<td>0.17×10^{-19}</td>
<td>0.18×10^{-26}</td>
<td>0.18×10^{-33}</td>
<td>0.18×10^{-40}</td>
</tr>
</tbody>
</table>

Table 1.3: Error $|E_2(N + 1, M, 1)|$ for $N = 5 \times 10^k (1 \leq k \leq 6)$ and $0 \leq M \leq 6$
Table 1.4: Error \(|E^*(N, M)|\) for \(N = 5 \times 10^k (1 \leq k \leq 2)\) and \(0 \leq M \leq 6\)

<table>
<thead>
<tr>
<th>(M)</th>
<th>(5 \times 10^0)</th>
<th>(5 \times 10^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0.31 \times 10^{-32})</td>
<td>(0.37 \times 10^{-304})</td>
</tr>
<tr>
<td>1</td>
<td>(0.19 \times 10^{-33})</td>
<td>(0.23 \times 10^{-305})</td>
</tr>
<tr>
<td>2</td>
<td>(0.11 \times 10^{-37})</td>
<td>(0.15 \times 10^{-311})</td>
</tr>
<tr>
<td>3</td>
<td>(0.26 \times 10^{-38})</td>
<td>(0.37 \times 10^{-312})</td>
</tr>
<tr>
<td>4</td>
<td>(0.56 \times 10^{-42})</td>
<td>(0.92 \times 10^{-318})</td>
</tr>
<tr>
<td>5</td>
<td>(0.13 \times 10^{-42})</td>
<td>(0.23 \times 10^{-318})</td>
</tr>
<tr>
<td>6</td>
<td>(0.59 \times 10^{-46})</td>
<td>(0.13 \times 10^{-323})</td>
</tr>
</tbody>
</table>

Then \(E_1(N, M, z)\) and \(E_2(N, M, z)\) measure the precision of the approximations to \(\log(1 + z)\) and \(\arctan(x)\) by the first \(N\) terms of Taylor series and then adding \(M\) terms of their continued fractions respectively. Let \(E^*(N, M) = E_2(N, M, 1/2) + E_2(N, M, 1/5) + E_2(N, M, 1/8)\). Tables 1.1, 1.2, 1.3, and 1.4 record those data for the approximations to \(\log(1.9)\), \(\log(2)\), \(\arctan(1)\) and \(\arctan(1/2) + \arctan(1/5) + \arctan(1/8)\) respectively. Note that \(\arctan(1) = \arctan(1/2) + \arctan(1/5) + \arctan(1/8)\) is a Machin formula we saw in Chapter 3 of the first volume.

After some further numerical experimentation it is clear that for large \(a, c\) the continued fraction \(F(a, 1, c; z)\) is rapidly convergent. And indeed the rough rate is apparent. This is part of the content of the next theorem:

Theorem 1.8.3 ([56]) Suppose \(-1 \leq z < 0\), with \(a \geq 2\) and \(a + 1 \leq c \leq 2a\). Then the following error estimate holds for all \(M \geq 2\):

\[
|F(a, 1, c; z) - F_M(a, 1; c; z)| \leq \frac{\Gamma(n+1)(n+a)\Gamma(n+c-a)\Gamma(a)\Gamma(c)}{\Gamma(n+a)\Gamma(n+c)a\Gamma(c-a)} \left(\frac{2a}{(c-2)(1-\frac{2}{z}) + (2a-c)}\right)^M
\]

where \(n = \lfloor M/2 \rfloor\) and \(F_M(a, 1; c; z)\) is the \(M\)-th convergent of the continued fraction to \(F(a, 1, c; z)\).

We leave it as an exercise to compare the estimates in Theorem 1.8.3 with the computed errors in Tables 1.1 and 1.2 (using \(a = N\) and \(c = N + 1\)) and Table 1.3 (using \(a = N + 1/2\) and \(c = N + 3/2\)). The results are very good.
In [205] one can find listed many explicit continued fractions which can be derived from Gauss’s continued fraction or various of its limiting cases. These include exp, tanh, tan and various less elementary functions. One especially attractive fraction is that for \(\frac{J_{n-1}(z)}{J_n(z)} \) and \(\frac{I_{n-1}(z)}{I_n(z)} \) where \(J \) and \(I \) are Bessel functions of the first kind. In particular,

\[
\frac{J_{n-1}(2z)}{J_n(2z)} = \frac{n}{z} - \frac{z}{1 - \frac{z^2}{(n+1)(n+2)}}. \tag{1.8.45}
\]

Setting \(z = i \) and \(n = 1 \) leads to the very beautiful continued fraction \(\frac{I_1(2)}{I_0(2)} = [1, 2, 3, 4, \cdots] \). In general, arithmetic simple continued fractions correspond to such ratios.

An example of a more complicated situation is:

\[
\frac{(2z)^{2N+1} F\left(N+rac{1}{2},rac{1}{2}; N+rac{3}{2}; z^2\right)}{(N+1) F\left(-\frac{1}{2}; z^2\right)} = \frac{\arcsin(z)}{\sqrt{1-z^2}} - \sigma_{2N}(z) \tag{1.8.46}
\]

where \(\sigma_{2N} \) is the \(2N \)-th Taylor polynomial for \((\arcsin(z))/\sqrt{1-z^2} \). Only for \(N = 0 \) is this precisely of the form of Gauss’s continued fraction.

1.8.4 Perron’s Continued Fraction

Another continued fraction expansion is based on Stieltjes’ work on the moment problem (see Perron [172]) and leads to similar acceleration. In volume 2, page 18 of [172] one finds a beautiful continued fraction for

\[
\int_0^z \frac{t^\mu}{1+t} \, dt = \frac{z}{(\mu+1)} + \frac{z^2}{(\mu+2)} - \frac{(\mu+1)z}{(\mu+3)} + \frac{(\mu+2)^2 z}{(\mu+4)} - \cdots \tag{1.8.47}
\]

valid for \(\mu > -1, -1 < z \leq 1 \). One can observe that this can be proved by Euler’s continued fraction if we write

\[
\frac{1}{z^\mu} \int_0^z \frac{t^\mu}{1+t} \, dt = \frac{z}{\mu+1} - \frac{z^2}{\mu+2} + \frac{z^3}{\mu+3} - \frac{z^4}{\mu+4} + \cdots
\]
and observe that (1.8.47) follows from (1.8.35) in the limit.

Since

\[
\frac{z^{\mu+1}}{\mu+1} F (\mu+1, 1; \mu+2; -z) = \int_0^z \frac{t^\mu}{1+t} dt, \tag{1.8.48}
\]

and

\[
\frac{z^{2\mu+1}}{2\mu+1} F \left(\mu + \frac{1}{2}, 1; \mu + \frac{3}{2}; -z^2 \right) = \int_0^z \frac{t^{2\mu}}{1+t^2} dt, \tag{1.8.49}
\]

for \(\mu > 0 \), on examining (1.8.40) and (1.8.41) this is immediately applicable to provide Euler continued fractions for the tail of the log and arctan series. Explicitly, we obtain:

\textbf{Theorem 1.8.4} \textit{Perron’s continued fractions for (1.8.40) and (1.8.41) are:}

\[
\log (1 + z) + \sum_{n=1}^{N-1} \frac{(-1)^n z^n}{n} = (-1)^{N+1} z^N \frac{N^2 z}{N} + (N+1) - Nz + \frac{(N+1)^2 z}{(N+2) - (N+1)z} + \cdots \tag{1.8.50}
\]

and

\[
\arctan z = \sum_{n=0}^{N-1} \frac{(-1)^n z^{2n+1}}{2n+1} = \frac{(-1)^N z^{2N+1}}{2N+1} \frac{(2N + 1)^2 z^2}{(2N + 3) - (2N + 1)z^2} + \frac{(2N + 3)^2 z^2}{(2N + 5) - (2N + 3)z^2} + \cdots. \tag{1.8.51}
\]

Moreover, while the Gauss and Euler/Perron continued fractions obtained are quite distinct the convergence behaviour is very similar to that of the previous section. Note also the coincidence of (1.8.51) and (1.8.37). Indeed as we have seen Theorem 1.8.4 coincides with a special case of (1.8.35).

1.9 Partial Fractions and Convexity

We consider a network \textit{objective function} \(p_N \) given by

\[
p_N(q) = \sum_{\sigma \in S_N} \left(\prod_{i=1}^{N} \frac{q_{\sigma(i)}}{\sum_{j=1}^{N} q_{\sigma(j)}} \right) \left(\sum_{i=1}^{N} \frac{1}{\sum_{j=1}^{N} q_{\sigma(j)}} \right)
\]
1.9. PARTIAL FRACTIONS AND CONVEXITY

summed over all $N!$ permutations; so a typical term is

$$\left(\prod_{i=1}^{N} \frac{q_i}{\sum_{j=i}^{N} q_j} \right) \left(\sum_{i=1}^{N} \frac{1}{\sum_{j=i}^{N} q_j} \right).$$

For example, with $N = 3$ this is

$$q_1q_2q_3 \left(\frac{1}{q_1 + q_2 + q_3} \right) \left(\frac{1}{q_2 + q_3} \right) \left(\frac{1}{q_3} \right) \left(\frac{1}{q_1 + q_2 + q_3} + \frac{1}{q_2 + q_3} + \frac{1}{q_3} \right).$$

This arose as the objective function in research into coupon collection and the researcher, Ian Affleck, wished to show p_N was convex on the positive orthant.

First we try to simplify the expression for p_N. The partial fraction decomposition gives:

$$p_1(x_1) = \frac{1}{x_1},$$
$$p_2(x_1, x_2) = \frac{1}{x_1} + \frac{1}{x_2} - \frac{1}{x_1 + x_2},$$
$$p_3(x_1, x_2, x_3) = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} - \frac{1}{x_1 + x_2} - \frac{1}{x_2 + x_3} - \frac{1}{x_1 + x_3} + \frac{1}{x_1 + x_2 + x_3}. \quad (1.9.52)$$

Partial fraction decompositions are another arena in which computer algebra systems are hugely useful. The reader is invited to try performing the third case in (1.9.52) by hand. It is tempting to predict the “same” pattern will hold for $N = 4$. This is easy to confirm (by computer if not by hand) and so we are led to:

Conjecture. For each $N \in \mathbb{N}$ the function

$$p_N(x_1, \ldots, x_N) = \int_{0}^{1} \left(1 - \prod_{i=1}^{N} (1 - t^{x_i}) \right) \frac{dt}{t} \quad (1.9.53)$$

is convex, indeed $1/p_N$ is concave.

One may check symbolically that this is true for $N < 5$ via a large Hessian computation. But this is impractical for larger N. That said, it is easy to
numerically sample the Hessian for much larger N, and it is always positive
definite.

Unfortunately while the integral is convex, the integrand is not, or we would
be done. Nonetheless the process was already a success as the researcher was
able to rederive his objective function in the form of (1.9.53).

A year later, Omar Hjab suggested re-expressing (1.9.53) as the joint expec-
tation of Poisson distributions. See “Convex,” SIAM Electronic Problems and
Solutions,

http://www.siam.org/journals/problems/99-002.htm

Explicitly this leads to:

Lemma 1.9.1 If $x = (x_1, \ldots, x_n)$ is a point in the positive orthant \mathbb{R}_+^n, then

$$\int_0^\infty \left(1 - \prod_{i=1}^n (1 - e^{-tx_i}) \right) dt = \left(\prod_{i=1}^n x_i \right) \int_{\mathbb{R}_+^n} e^{-(x,y)} \max(y_1, \ldots, y_n) dy,$$

(1.9.54)

where $(x, y) = x_1 y_1 + \cdots + x_n y_n$ is the Euclidean inner product.

Proof. Let us denote the left-hand side of (1.9.54) by f. Since

$$1 - e^{-tx_i} = x_i \int_0^t e^{-x_iy_i} dy_i,$$

it follows that

$$1 - \prod_{i=1}^n (1 - e^{-tx_i}) = \left(\prod_{i=1}^n x_i \right) \left(\int_{\mathbb{R}_+^n} e^{-(x,y)} dy - \int_{S^n_t} e^{-(x,y)} dy \right),$$

where

$$S^n_t = \{ y \in \mathbb{R}_+^n \mid 0 < y_i \leq t \text{ for } i = 1, \ldots, n \}.$$

Hence

$$f(x) = \left(\prod_{i=1}^n x_i \right) \int_0^\infty \int_{\mathbb{R}_+^n \setminus S^n_t} e^{-(x,y)} dy = \left(\prod_{i=1}^n x_i \right) \int_0^\infty \int_{\mathbb{R}_+^n} e^{-(x,y)} \chi_t(y) dy,$$

where

$$\chi_t(y) = \begin{cases} 1 & \text{if } \max(y_1, \ldots, y_n) > t, \\ 0 & \text{otherwise.} \end{cases}$$
Therefore
\[f(x) = \left(\prod_{i=1}^{n} x_i \right) \int_{R^+_n} e^{-(y_1+\cdots+y_n)} dy \int_0^\infty \chi_t(y) dt \]
\[= \left(\prod_{i=1}^{n} x_i \right) \int_{R^+_n} e^{-(y_1+\cdots+y_n)} \max(y_1, \ldots, y_n) dy. \]

It follows from the lemma that
\[p_N(x) = \int_{R^+_N} e^{-(y_1+\cdots+y_N)} \max \left(\frac{y_1}{x_1}, \ldots, \frac{y_N}{x_N} \right) dy, \]
and hence that \(p_N \) is positive, decreasing and convex, as is the integrand. To derive the stronger result that \(1/p_N \) is concave and convex we proceed as follows.

Let
\[h(a, b) = \frac{2ab}{a+b}. \]

Then \(h \) is concave and concavity of \(1/p_N \) is equivalent to
\[p_N \left(\frac{x + x'}{2} \right) \leq h(p_N(x), p_N(x')) \text{ for all } x, x' \in R^+_N. \tag{1.9.55} \]

To establish this, define
\[m(x, y) = \min \left(\frac{x_1}{y_1}, \ldots, \frac{x_n}{y_n} \right) \text{ for } x, y \in R^+_N. \]

Then, since
\[m(x, y) + m(x', y) \leq 2m \left(\frac{x + x'}{2}, y \right), \]
we have
\[p_N \left(\frac{x + x'}{2} \right) = \int_{R^+_N} \frac{e^{-(y_1+\cdots+y_n)}}{m \left(\frac{x+x'}{2}, y \right)} dy \leq \int_{R^+_N} \frac{2e^{-(y_1+\cdots+y_n)}}{m(x, y) + m(x', y)} dy \]
\[= \int_{R^+_N} e^{-(y_1+\cdots+y_n)} h \left(\frac{1}{m(x, y)}, \frac{1}{m(x', y)} \right) dy \leq h(p_N(x), p_N(x')). \]
Where we leave it to the reader to confirm that the final assertion follows since h is concave and $\int_{\mathbb{R}^N_+} e^{-(y_1+\cdots+y_N)} \, dy = 1$. This is a form of Jensen’s inequality.

Observe that since $h(a, b) \leq \sqrt{ab} \leq (a + b)/2$, it follows from (1.9.55) that p_N is log-convex (and convex). A little more analysis of the integrand shows p_N is strictly convex. There is still no truly direct proof of the convexity of p_N.

An amusing related example, which cries out for generalizations is that for $a > b > c > d > 0$, the function

$$f(x) = \frac{a^x - b^x}{c^x - d^x}$$

is convex on the real line, but $\log f(x)$ is convex on the real line only when $ad \geq bc$, and is concave on the real line when $ad < bc$.

These assertions are fairly easy to deduce from:

Proposition 1.9.2 Let $g_\mu(x) = (e^{2\mu x} - 1)/(e^{2x} - 1)$, $\ell_\mu(x) = \log g_\mu(x)$, and $\ell_{\mu,\nu}(x) = \log (g_\mu(x) - g_\nu(x))$. Then, for $\mu > 1$, $a > b > 1$, and all real x,

1. $g'_\mu(x) \geq 0$, $\ell'_\mu(x) \geq 0$, $\ell''_\mu(x) \geq 0$, $g''_\mu(x) \geq 0$,
2. $\ell''_a(x) - \ell''_b(x) \geq 0$, $g''_a(x) - g''_b(x) \geq 0$,
3. $\ell''_{a,b}(x) \geq 0$ when $a - b \geq 1$, and $\ell''_{a,b}(x) < 0$ when $a - b < 1$.

Note that 2. says ℓ_μ becomes more convex as the parameter μ increases, and similarly for g_μ. Note also that

$$\log \left(\frac{\sinh (\mu x)}{\sinh (x)} \right) = \log \left(\frac{e^{2\mu x} - 1}{e^{2x} - 1} \right) - 2x.$$

As an example, with some care, the convex conjugate of the function $f : x \mapsto \log (\sinh (3x) / \sinh (x))$ can be symbolically nursed to $g : y \mapsto y/2 \cdot \log \left[(y + \sqrt{-3y^2 + 16})/(-2y + 4) \right] + \log \left[(-2 + \sqrt{-3y^2 + 16})/2 \right]$. Since in turn the conjugate of g is much more easily computed to be f, this produces a symbolic computational proof that f and g are convex and are mutually conjugate.
1.10 Log-concavity of Poisson Moments

Recall that a sequence \(\{a_n\} \) is log-convex if \(a_{n+1}a_{n-1} \geq a_n^2 \), for \(n \geq 1 \) and is log concave when the sign is reversed. Consider the unsolved Problem 10738 posed by Radu Theodorescu in the 1999 American Mathematical Monthly [198]:

Problem: For \(t > 0 \) let

\[
m_n(t) = \sum_{k=0}^{\infty} k^n \exp(-t) \frac{t^k}{k!}
\]

be the \(n \)th moment of a Poisson distribution with parameter \(t \). Let \(c_n(t) = m_n(t)/n! \). Show

a) \(\{m_n(t)\}_{n=0}^{\infty} \) is log-convex for all \(t > 0 \).

b) \(\{c_n(t)\}_{n=0}^{\infty} \) is not log-concave for \(t < 1 \).

c*) \(\{c_n(t)\}_{n=0}^{\infty} \) is log-concave for \(t \geq 1 \).

Solution. (a) Neglecting the factor of \(\exp(-t) \) as we may, this reduces to

\[
\sum_{k,j \geq 0} \frac{(jk)^{n+1} t^{k+j}}{k! j!} \leq \sum_{k,j \geq 0} \frac{(jk)^n t^{k+j}}{k! j!} k^2 = \sum_{k,j \geq 0} \frac{(jk)^n t^{k+j}}{k! j!} k^2 + j^2 / 2,
\]

and this now follows from \(2jk \leq k^2 + j^2 \).

(b) As

\[
m_{n+1}(t) = t \sum_{k=0}^{\infty} (k+1)^n \exp(-t) \frac{t^k}{k!},
\]

on applying the binomial theorem to \((k+1)^n \), we see that \(m_n(t) \) satisfies the recurrence

\[
m_{n+1}(t) = t \sum_{k=0}^{n} \binom{n}{k} m_k(t), \quad m_0(t) = 1.
\]

In particular for \(t = 1 \), this produces the sequence

\[
1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, \ldots.
\]
These are the Bell numbers, which can be discovered from consulting Sloane’s on-line integer sequence recognition tool
http://www.research.att.com/~njas/sequences
This tool can also tell us that for \(t = 2 \) we have obtained generalized Bell numbers, and can give us the exponential generating functions. The Bell numbers were known earlier to Ramanujan.

Now an explicit computation shows that
\[
t \frac{1 + t}{2} = c_0(t) c_2(t) \leq c_1(t)^2 = t^2
\]
extactly if \(t \geq 1 \).

Also, preparatory to the next part, a simple calculation shows that
\[
\sum_{n \geq 0} c_n u^n = \exp\left(t(e^u - 1)\right).
\]
(1.10.56)

(c*) (The '*' indicates this was the unsolved component.) We appeal to a recent theorem due to E. Rodney Canfield [74]. A search in 2001 on MathSciNet for “Bell numbers” since 1995 turned up 18 items. This paper showed up as number 10. Later, Google found the paper immediately!

Canfield proves the lovely and quite difficult result below.

Theorem 1.10.1 If a sequence \(1, b_1, b_2, \cdots \) is non-negative and log-concave then so is the sequence \(1, c_1, c_2, \cdots \) determined by the generating function equation
\[
\sum_{n \geq 0} c_n u^n = \exp\left(\sum_{j \geq 1} b_j \frac{u^j}{j}\right).
\]

Using equation (1.10.56) above, we apply this to the sequence \(b_j = t/(j-1)! \)
which is log-concave exactly for \(t \geq 1 \). \(\square \)

Indeed, symbolic computation—facilitated by the recursion above—strongly suggests the only violation of log-concavity of the sequence \(\{c_n(t)\}_{n=0}^{\infty} \) for \(t > 0 \), occurs as illustrated in b). We have not been able to prove this conjecture. It seems to require a significant strengthening of Theorem 1.10.1 to cover the case when the first term of \(\{1, b_n\} \) is replaced by \(b_0 \neq 1 \).

It transpired that the given solution to (c) was the only one received by the Monthly. This is quite unusual. The reason might well be that it relied on the following sequence of steps:
1.11 Commentary and Additional Examples

1. Dictionaries are like timepieces. Samuel Johnson observed that dictionaries were like clocks, the best would not run true and the worst were better than none. The same is true of tables and databases. We quoted Michael Berry as saying “Compounding the impiety, I would give up Shakespeare in favor of Prudnikov, Brychkov and Marichev.” [175]. That excellent compendium contains

\[\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{k^2 (k^2 - kl + l^2)} = \frac{\pi^\alpha \sqrt{3}}{30}, \]

(1.11.57)

where the ‘\(\alpha\)’ is probably ‘4’, [175, vol. 1, entry 9, pg. 750]. Integer relation methods suggest that no reasonable value of \(\alpha\) works. What is intended in formula (1.11.57)? Note that

(a)

\[\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{2}{n^2 (n^2 - mn + m^2)} + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{2}{n^2 (n^2 + mn + m^2)} = \sum_{m,n \in \mathbb{Z}, mn \neq 0} \frac{1}{n^2 (n^2 + mn + m^2)} = 6 \zeta(4) \]

(b)

\[\sum_{n=1}^{\infty} \sum_{m=1}^{n-1} \frac{1}{nm (n^2 + mn + m^2)} + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{n^2 (n^2 + mn + m^2)} = \frac{13}{12} \zeta(4) \]
(c) \[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{n^2 (n^2 + mn + m^2)} = 2 \frac{\sqrt{3}}{\pi} \text{Im} \sum_{n=1}^{\infty} \frac{\Psi \left(1 + n - \frac{1 + i\sqrt{3}}{2}\right)}{n^3} \\
= 2 \frac{\sqrt{3}}{\pi} \text{Im} \int_{0}^{\infty} \frac{\text{Li}_3 \left(e^{-\frac{1 + i\sqrt{3}}{2} t}\right)}{e^t - 1} \, dt \\
= 1.00445719820157402755414025 \ldots
\]

2. **A series for \(\pi\) with first term \(22/7\).** In [96] an estimate of \(\pi - 355/113\) is also given.

(a) Let \(P(t) = 4 - 4t^2 + 5t^4 - 4t^5 + t^6\) and \(Q(t) = t(1 - t)\). Show that
\[
\frac{4}{1 + t^2} = \frac{4 - 4t^2 + 5t^4 - 4t^5 + t^6}{1 + t^4 (1 - t)^4/4}
\]
and so
\[
\pi = \int_{0}^{1} \frac{P(t)}{1 + Q^4(t)/4} \, dt = \frac{1}{2} \int_{0}^{1} \frac{P(t) + P(1 - t)}{1 + Q^4(t)/4} \, dt.
\]

(b) Observe that \(P(t) + P(1 - t) = 6 + 2Q(t) - Q^2(t) - 2Q^3(t)\) and deduce that
\[
\pi = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{1}{4}\right)^n \int_{0}^{1} \frac{6 + 2Q(t) - Q^2(t) - 2Q^3(t)}{1 + Q^4(t)/4} \, dt = \sum_{n=0}^{\infty} a_n
\]
where
\[
a_n = \left(-\frac{1}{4}\right)^n \left\{ 3 \frac{(4n)!^2}{(8n + 1)!} + \frac{(4n + 1)!^2}{(8n + 3)!} - \frac{1}{2} \frac{(4n + 2)!^2}{(8n + 5)!} - \frac{(4n + 3)!^2}{(8n + 7)!} \right\}.
\]

(c) This series, which can be neatly written as a sum of four \(_5F_4\) functions, gains roughly three digits per term.

Check that the series has constant term \(22/7\) and continues
\[
\frac{22}{7} - \frac{76}{15015} \left(-\frac{1}{4}\right) + \frac{543}{37182145} \left(-\frac{1}{4}\right)^2 - \frac{308}{6511704225} \left(-\frac{1}{4}\right)^3 + \cdots.
\]
(d) Find an economical way to show
\[
\frac{355}{113} - \frac{33}{10^8} < \pi < \frac{355}{113} + \frac{24}{10^8}.
\]

3. **A sophomore’s dream.** Show that
\[
\int_0^1 x^x \, dx = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^n},
\]
and that
\[
\int_0^1 x^{-x} \, dx = \sum_{n=1}^{\infty} \frac{1}{n^n}.
\]
Give meaning to and evaluate \(\int_0^1 x^x \, dx\). In each case, it helps to start by writing the integrand as a series and to justify integrating term by term.

4. **Some binary digit algorithms.** Whenever a function satisfies a suitable addition formula its inverse admits algorithms to compute binary (or other base) representations [57]. We begin with an introductory example. Let \(x \geq 0\). Set
\[
a_0 = x \quad \text{and} \quad a_{n+1} = \frac{2a_n}{1-a_n^2} \quad \text{(with \(a_{n+1} = -\infty\) if \(a_n = \pm 1\)).}
\]

Then
\[
\sum_{n_{n<0}}^{\infty} \frac{1}{2n+1} = \frac{\arctan x}{\pi}.
\]
Let an interval \(I \subseteq \mathbb{R}\) and subsets \(D_0, D_1 \subseteq I\) with \(D_0 \cup D_1 = I\) and \(D_0 \cap D_1 = \emptyset\) be given, as well as functions \(r_0 : D_0 \to I, \; r_1 : D_1 \to I\). Then consider the system (S) of the following two functional equations for an unknown function \(f : I \to [0, 1]\).

\[
\begin{align*}
2f(x) &= f(r_0(x)) & \text{if } x \in D_0, \\
2f(x) - 1 &= f(r_1(x)) & \text{if } x \in D_1.
\end{align*}
\]
Such a system always leads to an iteration:
\[
a_0 = x \quad \text{and} \quad a_{n+1} = \begin{cases} r_0(a_n) & a_n \in D_0, \\ r_1(a_n) & a_n \in D_1. \end{cases} \quad (1.11.58)
\]
Then:

\[f(a_0) = f(x) = \sum_{n \geq 0} \frac{1}{2^n}. \tag{1.11.59} \]

Several examples. Here are some elementary transcendental functions \(f \) which satisfy a system of type \((S) \) with algebraic \(r_0, r_1 \).

(a) \(f(x) = \log x / \log 2, \quad I = [1, 2], \quad D_0 = [1, \sqrt{2}], \quad D_1 = [\sqrt{2}, 2], \quad r_0(x) = x^2, \quad r_1(x) = x^2 / 2. \)

Of course, the recursion (1.11.58) and (1.11.59) can be used to compute the binary expansion of the function \(f \). Take for example \(x = a_0 = 3 / 2. \) Then \(a_1 = 9 / 8, \ a_2 = 81 / 64, \ a_3 = 6561 / 4096, \ a_4 = 3^{16} / 2^{25}, \) and so on. The first 20 binary digits of \(\log 3 / \log 2 \) are 1.10101011100000000012.

(b) \(f(x) = \arccos(x) / \pi, \quad I = [-1, 1], \quad D_0 = (0, 1], \quad D_1 = [-1, 0], \quad r_0(x) = 2x^2 - 1, \quad r_1(x) = 1 - 2x^2. \)

Note that \(r_0^k = r_0 \circ \cdots \circ r_0 \) is the Chebyshev polynomial of the first kind \(T_2^k \) for \([-1, 1] \).

(c) \(f(x) = 2bf(x) / \pi, \quad I = [0, 1), \quad D_0 = [0, 1/\sqrt{2}), \quad D_1 = [1/\sqrt{2}, 1], \quad r_0(x) = 2x\sqrt{1 - x^2}, \quad r_1(x) = 2x^2 - 1. \)

(d) \(f(x) = \begin{cases} \arctan(x) / \pi & x \in [0, \infty) \\ 1 + \arctan(x) / \pi & x \in [-\infty, 0) \end{cases}, \quad I = [-\infty, 0], \quad D_0 = [0, \infty), \quad D_1 = \quad \quad -\infty, \quad r_0(x) = \frac{2x}{1 + x^2}, \quad r_0(1) = -\infty, \quad r_1(x) = \frac{2x}{1 + x^2}, \quad r_1(-1) = -\infty. \)

(e) \(f(x) = \arccot(x) / \pi, \quad I = \mathbb{R} \cup \{-\infty\}, \quad D_0 = [0, \infty), \quad D_1 = [-\infty, 0), \quad r_0(x) = \frac{x^2 - 1}{2x}, \quad r_0(0) = -\infty, \quad r_1(x) = \frac{x^2 - 1}{2x}. \)

(f) \(f(x) = \arcsinh(x) / \log 2, \quad I = [0, 3/4], \quad D_0 = [0, 1/2\sqrt{2}), \quad D_1 = [1/2\sqrt{2}, 3/4], \quad r_0(x) = 2x\sqrt{1 + x^2}, \quad r_1(x) = 5/2x\sqrt{1 + x^2} - 3/2x^2 - 3/4. \)
1.11. COMMENTARY AND ADDITIONAL EXAMPLES

(g) \(f(x) = \arccos(x)/\pi \) satisfies
\[
3f(x) = f(4x^3 - 3x) \quad \text{if } x \in (1/2, 1],
3f(x) - 1 = f(-4x^3 + 3x) \quad \text{if } x \in (-1/2, 1/2],
3f(x) - 2 = f(4x^3 - 3x) \quad \text{if } x \in [-1, -1/2].
\]

That means that ternary representations of \(f \) can be computed by the following recursion:

Set \(a_0 = x \), \(a_{n+1} = \begin{cases}
4a_n^3 - 3a_n & a_n \in (1/2, 1] \cup [-1, -1/2] \\
-4a_n^3 + 3a_n & a_n \in (-1/2, 1/2].
\end{cases} \)

Then
\[
\frac{\arccos(x)}{\pi} = \sum_{a_n \in (-1/2,1/2]} \frac{1}{3^n+1} + \sum_{a_n \in [-1,-1/2]} \frac{2}{3^n+1}.
\]

Full details are given in [57].

5. A two-term recursion. Problem: Determine the behavior of the iteration \(u_{n+1} = |u_n| - u_{n-1} \) for arbitrary real starting points \(u_0 = x \) and \(u_1 = y \). Then attempt to generalize this behavior. (Taken from [125].)

Solution: Numerical testing shows the iteration has period nine. One proof is to explicitly compute, (preferably using a symbolic math program) the messy looking algebraic function this determines. It can be seen that each case returns \([x, y]\).

More explicitly
\[
A = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}
\]
can be used to represent the iteration. Then \(B^3 = I = -A^3 \) and analysis of the cases above shows that it always devolves to \(A^3 B A^3 B^2 \) which is the identity.

A nice generalization is that for \(M, K > 1 \) and integer, the iteration
\[
u_{k+1} = \cos\left(\frac{\pi}{K}\right) (|u_k| + u_k) + \cos\left(\frac{\pi}{M}\right) (|u_k| - u_k) - u_{k-1}
\]
has period $KM + K - M$. This can again be checked symbolically for many small M and K. One may prove this by considering

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \cos(\pi/K) \end{bmatrix} \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 2 \cos(\pi/M) \end{bmatrix}$$

and reducing the iteration to $(A^K B)^{M-2} A^K B^2$.

6. **A rational function recursion.** Problem: Solve the recursion $u_0 = 2$ and

$$u_{n+1} = \frac{2u_n + 1}{u_n + 2}.$$

(Taken from [125]).

Solution: The first few numerators are

$$2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574$$

and clearly satisfy $n_{k+1} = 3n_k - 1$. Sloane’s online sequence recognition tool

http://www.research.att.com/~njas/sequences

announces that the numerators are $(3^n + 1)/2$. The denominators are one smaller and so

$$u_n = \frac{3^{n+1} + 1}{3^n + 1}.$$

This can now easily proved by induction.

7. **A sequence with nines.** Problem: Determine the number of nines in the tail of the sequence

$$u_{n+1} = 3u_n^4 + 4u_n^3,$$

with $u_0 = 9$. (Taken from [125]).

Solution: The first six or so cases show there is a 5 followed by 2^k occurrences of 9. Define $u_k = 6 \cdot 10^{2^k} - 1$ and show inductively that this is so.

8. **Continued fraction of Champernowne’s number.** Compute the first ten or twenty terms of the continued fraction for Champernowne’s number. Explain the phenomenon observed.
9. **A sequence involving square roots.** Problem: Consider the iteration

\[c_{n+1} = c_n + r - \frac{c_n}{\sqrt{1 + c_n^2}}, \quad c_0 \geq 1, \]

where \(r \) is a positive constant. For which \(r \) does the sequence \(\{c_n\} \) converge? In case of convergence to \(c \neq c_0 \) prove that \(\lim(c_{n+1} - c)/(c_n - c) \) exists and determine its value. In case of divergence find a precise asymptotic expression for \(c_n \).

Solution. Justify the following assertions: When \(0 < r < 1 \), the sequence converges to \(c = r/\sqrt{1 - r^2} \) and either \(c_n = c \) for every integer \(n \geq 0 \), or \(\lim(c_{n+1} - c)/(c_n - c) = 1 - (1 - r^2)^{3/2} \). When \(r = 1 \), \(c_n \sim (3n/2)^{1/3} \); and when \(r > 1 \), \(c_n \sim (r - 1)n \).

10. **A sequence involving exponentials.** Problem: Define a sequence \(\{t_k\} \) by setting

\[t_1 = 1, \quad t_{k+1} = t_k \exp(-t_k), \quad k = 1, 2, \ldots . \]

Determine the behavior of the sequence.

Solution: Note that \(t_k \) tends monotonically to a limit \(\ell \) which must necessarily be zero. Hence \(t_k^{-1} - t_{k-1}^{-1} = t_k^{-1}(\exp(t_k - 1)) \), which tends to \(\exp'(0) = 1 \) as \(k \) tends to infinity. Whence, since Cesàro averaging preserves limits,

\[\frac{1}{mt_m} = \frac{1}{m} \sum_{k=1}^{m-1} \frac{e^{t_k} - 1}{t_k} + \frac{1}{mt_1} \]

also tends to 1, and

\[\lim_{m \to \infty} mt_m = 1. \]

The reader is invited to perform a similar analysis for a more general \(g : [0, 1] \mapsto [0, 1] \).

11. **Some double integrals.** Problem: Evaluate the following integrals:

(a)

\[\int_0^1 \int_0^1 \frac{1}{1 - x^2y^2} \, dx \, dy \quad \left(= \frac{\pi^2}{8} \right) \]
(b) \[
\int_0^1 \int_0^1 \frac{1}{1 - xy} \, dx \, dy \quad \left(= \frac{\pi^2}{6}\right)
\]

(c) \[
\int_{-1}^1 \int_{-1}^1 \frac{1}{\sqrt{1 + x^2 + y^2}} \, dx \, dy \quad \left(= 4 \log(2 + \sqrt{3}) - \frac{2\pi}{3}\right)
\]

(d) \[
\frac{1}{4} \int_0^1 \int_0^1 \frac{1}{(x + y) \sqrt{(1 - x)(1 - y)}} \, dx \, dy \quad \left(= G\right)
\]

(e) \[
\int_0^1 \int_0^1 \frac{1 - x}{(1 - xy) |\log(xy)|} \, dx \, dy \quad \left(= \gamma\right).
\]

12. A double summation. Evaluate
\[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{(m^2 n + mn^2 + 2mn)} \quad \left(= \frac{7}{4}\right)
\]

13. Infinite series and dilogarithms. Prove that for positive integers \(a\) and \(b\),
\[
\sum_{m=0}^{\infty} \frac{z^m}{(am + b)^2} = \frac{z^{-b/a}}{a} \sum_{k=0}^{a-1} e^{-2\pi i k/a} \text{Li}_2(z^{1/a} e^{2\pi i k/a}),
\]
and note the finitude of the sum. If one believes in \(\text{Li}\) evaluations as “fundamental,” then this leads to a finite expression for the Broadhurst \(V\) constant (mentioned in Chapter 2 of the first volume) as well as some other BBP sums.

\[
\frac{z - 1}{w - 1} \prod_{n=1}^{\infty} \frac{w^{1/2^n} + 1}{z^{1/2^n} + 1},
\]
for \(w, z > 0\).

Hint: Examine the case \(w = 2\).
15. **Quasi-elliptic integrals.** Show that

$$\int \frac{6x}{\sqrt{x^4 + 4x^3 - 6x^2 + 4x + 1}} \, dx = \log \left(a(x) + b(x)\sqrt{D(x)} \right)$$

where

- $a(x) = x^6 + 12x^5 + 45x^4 + 44x^3 - 33x^2 + 43$
- $b(x) = x^4 + 10x^3 + 30x^2 + 22x - 11$
- $D(x) = x^4 + 4x^3 - 6x^2 + 4x + 1$.

Hint: confirm that in (1.11.60) $a' = 6x$, $/b$ and hence that (1.11.60) is a pseudo-elliptic integral in the sense described in [204]. The following is taken from the abstract of [204]:

In this report we detail the following story. Several centuries ago, Abel noticed that the well-known elementary integral

$$\int \frac{dx}{\sqrt{x^2 + 2bx + c}} = \log \left(x + b + \sqrt{x^2 + 2bx + c} \right)$$

is just a presage of more surprising integrals of the form

$$\int \frac{f(x)dx}{\sqrt{D(x)}} = \log \left(p(x) + q(x)\sqrt{D(x)} \right) .$$

Here f is a polynomial of degree g and the D are certain polynomials of degree $\deg D(x) = 2g+2$. Specifically, $f(x) = p'(x)/q(x)$ (so q divides p'). Note that, morally, one expects such integrals to produce inverse elliptic functions and worse, rather than an innocent logarithm of an algebraic function.

Abel went on to study abelian integrals, and it was Chebyshev who explained—using continued fractions—what is going on with these ‘quasi-elliptic’ integrals. Recently, the second author computed all the polynomials D over the rationals of degree 4 that have an f as above. We explain various contexts in which the present issues arise. These contexts include symbolic integration of algebraic functions, the study of units in function fields...
and, given a suitable polynomial \(g \), the consideration of the period length of the continued fraction expansion of the numbers \(\sqrt{g(n)} \) as \(n \) varies over the integers. But the major content of this survey is an introduction to period continued fractions in hyperelliptic—thus quadratic—function fields.

16. **Clausen’s product.** Prove that

\[
\begin{align*}
& \quad _2F_1^2(a, b, a + b + 1/2, z) \\
= & \quad _3F_2(2a, a + b, 2b, a + b + 1/2, 2a + 2b, z) \quad (1.11.61)
\end{align*}
\]

Hint: Show both sides satisfy the following differential equation

\[
0 = x^2(x - 1)y^{(3)}(x) - 3x(a + b + 1/2 - (a + b + 1)x)y^{(2)}(x) \\
+ \left[(2(a^2 + b^2 + 4ab) + 3(a + b) + 1)x - (a + b) (2(a + b) + 1)\right] y'(x) \\
+ 4ab(a + b) y(x),
\]

are analytic at zero and have appropriate initial values.

Use Clausen’s product to deduce that

\[
\arcsin^2(x) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(2x)^{2n}}{n^2 \binom{2n}{n}}.
\]

(Hint: \(\arcsin(x) = x \cdot _2F_1(1/2, 1/2, 3/2; x^2) \).)

17. **An application of Clausen’s product.** Consider the hypergeometric function

\[
G_a : x \mapsto F\left(a, a + \frac{1}{2}, 2a + 1; x\right)
\]

and show that

\[
G_{ab} = G_b^a \quad \text{for all } a, b \in \mathbb{R}.
\]

By considering \(G_{-1/2} \) determine the closed form for \(G_a \).

18. **Putnam problem 1987–A6.** Let \(n \) be a positive integer and let \(a_3(n) \) be the number of zeroes in the ternary expansion of \(n \). Determine for which positive \(x \) the series \(\sum_{n=1}^{\infty} x^{a_3(n)}/n^3 \) converges.

Answer: for \(x < 25 \). In the \(b \)-ary analogue \(\sum_{n=1}^{\infty} x^{a_b(n)}/n^b \) converges if and only if \(x < b^b - b + 1 \).
19. **Putnam problem 1987–B2.** For r, s nonnegative with $r + s \leq t$, evaluate
\[
\sum_{k=0}^{s} \binom{s}{k} \left(\frac{t+1}{(t+1-s)(t-r)} \right) ^ k
\]

20. **Putnam problem 1987-B4.** Let $x_0 = 4/5$ and $y_0 = 3/5$ and consider the dynamical system
\[
x_{n+1} \leftarrow x_n \cos (y_n) - y_n \sin (y_n) \quad y_{n+1} \leftarrow x_n \sin (y_n) + y_n \cos (y_n).
\]
Does the system converge and if so to what?
Hint: It may help to consider $z = x + i y$.

21. **Putnam problem 1989–A2.** Evaluate
\[
\int_0^a \int_0^b e^{\max(a^2 y^2, b^2 x^2)} \, dy \, dx.
\]
Hint:
\[
\frac{2}{ab} \int_0^a \int_0^b z e^z \, dz = e^{a^2 b^2} - 1.
\]

22. **Putnam problem 1990–A1.** Let $T_0 = 2, T_1 = 3$, and $T_2 = 6$. Find a simple formula for T_n where
\[
T_n = (n + 4) T_{n-1} - 4n T_{n-2} + (4n - 8) T_{n-3} = n! + 2^n.
\]

23. **Putnam problem 1990–B5.** Is there an infinite sequence of non zero reals \(\{a_n\}\) so that
\[
p(x) = \sum_{k=0}^{n} a_k x^k
\]
has n distinct real roots for all n?
Hint: Let $a_n = (-10)^{-n^2}$ and evaluate p at 10^{2k}.

24. **Putnam problem 1993–A2.** Suppose that a sequence \(\{x_n\}\) of nonzero real numbers satisfies $x_n^2 = 1 + x_{n+1} x_{n-1}$ for all n. Show that for some real a, the sequence satisfies $x_{n+1} = a x_n - x_{n-1}$.
Hint: Examine values of $(x_{n+1} + x_{n-1})/x_n$ for various n.

25. **Putnam problem 1997–A3.** Evaluate

\[E = \int_0^\infty \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2^k k!} \sum_{k=0}^{\infty} \frac{x^{2k}}{4^k (k!)^2} \, dx. \]

Answer: \(1.6487212707001281 \ldots = \sqrt{e} \).

Solution: The integrand is \(x \exp(-x^2/2) I_0(x)\). Maple can identify and integrate this. Alternately, one can interchange the integral and the second sum to obtain

\[E = \sum_{k=0}^{\infty} \int_0^\infty \frac{x^{2k+1} e^{-1/2 x^2}}{4^k (k!)^2} \, dx = \sum_{k=0}^{\infty} \frac{1}{2^k k!}. \]

26. **Putnam problem 1999–A3.** Consider the power series expansion

\[\frac{1}{1 - 2x - x^2} = \sum_{n \geq 0} a_n x^n. \]

Prove that for each integer \(n \geq 0\), there is an integer \(m\) such that

\[a_n^2 + a_{n+1}^2 = a_m. \]

Answer: It transpires that

\[a_n^2 + a_{n+1}^2 = a_{2n+1}, \quad (1.11.62) \]

which remains to be proven.

Hint: the first 16 coefficients are

1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832

and the desired squares are

5, 29, 169, 985, 5741, 33461, 195025

which is more than enough to spot the pattern. To prove this either explicitly use the closed form for

\[a_n = \frac{1}{2 \sqrt{2}} \left((1 + \sqrt{2})^{n+1} - (\sqrt{2} - 1)^{n+1} \right) \]

or show that both sides of (1.11.62) satisfy the same recursion (and initial conditions).
27. **Log-concavity.** An easy criterion for log-concavity of a sequence is Newton’s lemma that if \(\sum_{k=0}^{n} a_k x^k \) is a real polynomial with only real roots then its coefficients are log-concave, as are \(a_k / \binom{n}{k} \) (0 < k < n).

(a) Use Rolle’s theorem to prove Newton’s lemma.

(b) Deduce that the binomial coefficients, row by row, as the Stirling numbers of the first and second kind are log-concave. In particular they are unimodal.

(c) The Catalan numbers are log-convex.

(d) The Motzkin numbers, \(M_n \), are log concave. This was first shown in 1998 and may be established analytically, as in [104], starting with the recursion

\[
(n + 2)M_n = (2n + 1)M_{n-1} + 3(n - 1)M_{n-2},
\]

with ordinary generating function

\[
(1 - x) - \sqrt{1 - 2x - 3x^2}
\]

\[
\frac{2x^2}{2x^2}.
\]

(e) Prove that the sequence \(x_n = M_n/M_{n-1} \) is increasing (equivalent to log-concavity) by considering that the function \(f : [2, \infty) \rightarrow \mathbb{R} \) by

\[
f(x) = 2 \quad \text{on } [2, 3]
\]

and by

\[
f(x) = \frac{2x + 3}{x + 2} + \frac{3(x - 1)}{x + 2} \frac{1}{f(x - 1)}
\]

thereafter. Thus \(f(n) = x_n \). Show that \(f \) is continuous, increasing and piece-wise smooth with \(\lim_{x \to \infty} f(x) = 3 \).

28. **Putnam problem 1999–A4.** Sum the series

\[
S = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n 3^m + m 3^n)} \quad (\text{=} \frac{9}{32}).
\]

(1.11.63)

Hint: Interchange \(m \) and \(n \) and average to obtain \(S = (\sum_{n\geq 1} n/3^n)^2 \).
29. **Putnam problem 1999–A6.** Consider the sequence defined by \(a_1 = 1, a_2 = 2, a_3 = 24, \) and, for \(n > 3 \)
\[
a_n = \frac{6a_{n-1}a_{n-3} - 8a_{n-1}^2}{a_{n-2}a_{n-3}}. \tag{1.11.64}
\]
Show that \(n \) divides \(a_n \) for all \(n \).

Hint: Consider the much simpler linear recursion satisfied by \(b_n = \frac{a_n}{a_{n-1}} \) which is solved by \(2^{n-1}(2^{n-1} - 1) \) so that
\[
a_n = 2^{n(n-1)/2} \prod_{k=1}^{n-1} (2^k - 1).
\]

Write \(n \) as \(2^a b \) where \(b \) is odd and observe that \(a \leq n(n - 1)/2 \) and \(b \) divides \(2^{\phi(b)} - 1 \), where \(\phi \) is Euler’s totient function.

30. **Berkeley problem 1.3.3.** Establish the limit of the recursion \(x_0 = 1 \) and
\[
x_{n+1} = \frac{3 + 2x_n}{3 + x_n},
\]
for \(n > 0 \). Does the initial value matter?

Answer: \(\ell = \frac{\sqrt{13} - 1}{2} \).

Note: The Maple code

\begin{verbatim}
iter1:=proc(y,n) local x,k; x:=y; for k to n do x:=(3+2*x)/(3+x); od; solve(Minpoly(x,2))[1]; end:
\end{verbatim}

answers this symbolically.

31. **Berkeley problem 1.3.4.** Similarly for
\[
x_{n+1} = \frac{1}{2 + x_n}.
\]

Answer: \(\ell = \sqrt{2} - 1 \).
32. **Continued fraction errors.** Compare the estimates in Theorem 1.8.3 with the computed errors in Table 1.1 using $a = N$ and $c = N + 1$ and Table 1.3 using $a = N + 1/2$ and $c = N + 3/2$.

33. **Berkeley problems 5.7.1, 5.7.2, and 5.7.3.** Evaluate

$$\int_0^{2\pi} e^{it} dt \quad (= 2\pi),$$

$$\int_0^{2\pi} e^{i\varphi - it} dt \quad (= 2\pi),$$

and, for $a > b > 0$, show

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|ae^{it} - b|^3} dt = \frac{b^2 + a^2}{(a^2 - b^2)^3}.$$

Hint: Proofs use the Cauchy integral formula for derivatives.

34. **A double integral—series equivalence.** For nonnegative integer m,

(a) show that

$$-i \int_0^{\infty} \int_0^{\infty} \frac{t^me^{(ix-1)t}}{1 + x^2} dt \, dx = \frac{m!}{2^{m+1}} \left(\sum_{n=0}^{m} \frac{2^n}{n+1} - i\pi \cdot \frac{1}{2}\right). \quad (1.11.65)$$

(b) Hence establish that the moment evaluations:

$$\int_0^{\infty} t^m \int_0^{\infty} \frac{\cos(tx)}{1 + x^2} dx \, dt = \frac{m!}{2^{m+1}} \frac{\pi}{2} \quad (1.11.66)$$

and

$$\int_0^{\infty} t^m \int_0^{\infty} \frac{\sin(tx)}{1 + x^2} dx \, dt = \frac{m!}{2^{m+1}} \sum_{n=0}^{m} \frac{2^n}{n+1}. \quad (1.11.67)$$

In particular, (c) show that (1.11.67) also equals

$$\frac{m!}{2(m+1)} \sum_{k=0}^{m} \frac{1}{\binom{m}{k}}.$$
Hint: The left-hand side is
\[-i \, m! \int_0^\infty \frac{(1 - ix)^{-1-m}}{1 + x^2} \, dx. \]
Both sides then of (1.11.65) satisfy the recursion
\[2 \, (m + 1) r(m) - m(m + 1) r(m - 1) = m! \]
with initial value \(r(0) = \frac{1}{2} - i \frac{\pi}{4} \). Now justify exchanging the order of integration.

35. An open summation problem. Does
\[\sum_{n=1}^\infty \left(\frac{\frac{7}{3}}{3} + \frac{1}{3} \sin(n) \right)^n \]
converge? This is an open problem.

36. Hadamard inequality. Let \(A = \{a_{ij}\} \) be a real \(n \times n \) positive semidefinite Hermitian matrix.
(a) Show
\[\det(A) \leq \prod_{i=1}^{n} a_{ii}, \]
with equality if and only if \(A \) is a diagonal matrix or if some \(a_{ii} \) is zero.
(b) By applying the result of (a) to \(AA^* \) obtain the inequality
\[|\det(A)| \leq \left(\prod_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}, \]
for arbitrary square matrices.
Hint: Apply the arithmetic-geometric mean inequality to the diagonalization of \(A \).

37. A tangent series. (From [134, pg. 83]). For each positive \(n \) evaluate
\[T_n = \sum_{k=0}^{n-1} \tan^2 \left(\frac{\pi}{4} \frac{(2k + 1)}{n} \right), \]
with proof.
Answer: $T_n = n(2n - 1)$.

38. **Putnam problem 1989–B3.** Let $f : [0, \infty) \to [0, \infty)$ be differentiable and satisfy $f'(x) = 6f(2x) - 3f(x)$. Assume that $|f(x)| \leq \exp(-\sqrt{x})$. Determine a formula for the moments

$$
\mu_n = \int_0^\infty x^n f(x) \, dx
$$

of f for $n = 1, 2, 3, \ldots$. Deduce that $\{3^n \mu_n/n!\}$ converges and that the limit is only zero if μ_0 is 0.

Hint: Use integration by parts in the formula for μ_n, which then involves $f'(x)$; a recursion for μ_n will then be apparent.

39. **Putnam problem 1992–A4.** Consider an infinitely differentiable real function f with

$$f\left(\frac{1}{n}\right) = \frac{n^2}{1 + n^2},$$

for positive integers n. Determine the Maclaurin series of f.

Hint: Consider the series of $f(x) - 1/(1 + x^2)$, and recall that if a C^∞ function is zero on a sequence converging to zero, then all of its derivatives are zero (although this doesn’t necessarily imply that the function is analytic in a neighborhood of zero).

40. **Putnam problem 2000–A4.** Show that the improper integral

$$I = \lim_{M \to \infty} \int_0^M \sin(x) \sin(x^2) \, dx \quad (1.11.68)$$

exists.

Hint: Numerical experimentation shows that a limit of approximately 0.4917 is reached. The existence of the limit can be rigorously established in two ways: (a) Since the integrand equals $\cos(x^2 - x) - \cos(x^2 + x))/2$,
it suffices to show that \(\lim_{M \to \infty} \int_0^M \cos(x + x^2) \, dx \) exists. After a change of variables, it suffices to consider

\[
\sum_{k=0}^{n-1} \int_{(k-1/2)\pi}^{(k+1/2)\pi} \frac{\cos(u)}{\sqrt{1 + 4u}} \, du.
\]

This converges by the alternating series test. (b) Use Cauchy’s theorem to integrate the entire functions \(\exp(ix^2 \pm ix) \) over a triangular path with vertices at 0, \(M \) and \((1+i)M \). Easy estimates show that the integrals over the vertical and the diagonal edges converge.

41. Several classic sequences. In each case try to find a generating function or rule for the sequence below:

(a) 6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, \ldots

(b) 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, \ldots

(c) 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, \ldots

(d) 1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, \ldots

(e) 1, 4, 11, 26, 51, 127, 273, 588, 1265, 2620, 5442, 11026, \ldots

(f) 1, 20, 400, 8902, 197281, 4865617, \ldots

Answers. a) The first few perfect numbers.

b) The Motzkin numbers. Among other interpretations they count the number of ways to join \(n \) points on a circle by nonintersecting chords, and the number of length \(n \) paths from \((0,0)\) to \((n,0)\) that do not go below the horizontal axis and are made up of steps \((1,1)\), \((1,-1)\) and \((1,0)\). The generating function is \((1 - x - \sqrt{1 - 2x - 3x^2})/(2x^2) \).

c) The Bell numbers whose exponential generating function is \(\exp(e^x - 1) \).

d) Values of Bell polynomials, in this case counting ways of placing \(n \) labeled balls into \(n \) unlabelled (but 2-colored) boxes. (See Section 1.10.)

e) Aronson’s sequence whose definition is: “t is the first, fourth, eleventh, \ldots letter of this sentence.”

f) The number of possible chess games after \(n \) moves.
42. **Duality for Mahler’s generating function.** Let $\alpha > 0$ be irrational and consider $G_\alpha(z, w) = \sum_{n=1}^{\infty} z^n w^{[n\alpha]}$ as in (1.4.18). Define $F_\alpha(z, w) = \sum_{n=1}^{\infty} z^n \sum_{m=1}^{[n\alpha]} w^m$. Show

(a)

$$F_\alpha(z, w) = \frac{z}{1-z} G_{\alpha^{-1}}(w, z)$$

(b)

$$F_\alpha(z, w) + F_{\alpha^{-1}}(w, z) = \frac{z}{1-z} \frac{w}{1-w}.$$

43. **A continued fraction form of Mahler’s generating function.** Let $\alpha > 0$ be irrational. Show that

$$1 - w \sum_{n=1}^{\infty} z^n w^{[n\alpha]} = \frac{1}{c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \cdots}}} \tag{1.11.69}$$

where

$$c_0 = \frac{z^{-1} w^{-a_0} - 1}{w - 1}$$

and for $n \geq 1$

$$c_n = \frac{z^{-q_n w^{-p_n}} - z^{-q_{n-2} w^{-p_{n-2}}}}{z^{-q_{n-1} w^{-p_{n-1}} - 1}} = \frac{z^{q_n w^p} - z^{-q_{n-2} w^{-p_{n-2}}}}{z^{-q_{n-1} w^{-p_{n-1}} - 1}}.$$

Here $\{a_n\}$ are the convergents and p_n/q_n are the partial quotient of the continued fraction for α. In particular, sums like

$$\sum_{n=1}^{\infty} \frac{1}{3^n 2^{[n\alpha]}}$$

and

$$\sum_{n=1}^{\infty} \frac{1}{2^n 3^{[n\alpha]}}$$

are non-quadratic irrationals since their continued fractions are clearly unbounded.

(a) Apply (1.11.69) for $\alpha = (1 + \sqrt{5})/2$ so that $a_n = 1$ and p_n and q_n are Fibonacci numbers. Apply this also to $\sqrt{2} \pm 1$.

(b) Using Exercise 42 deduce a continued fraction for $\sum_{n=1}^{\infty} [n\alpha] z^n$.
More details and quite broad extensions—found experimentally—may be found in [48].

44. **Beatty’s Theorem.** Let irrational numbers \(\sigma, \tau > 0 \) be given. Use the Mahler continued fraction to show that the sets of integer parts

\[
S = \{ \lfloor n\sigma \rfloor : 0 < n \in \mathbb{N} \} , \quad T = \{ \lfloor n\tau \rfloor : 0 < n \in \mathbb{N} \}
\]

partition \(\mathbb{N} \setminus \{0\} \) if and only if \(\sigma > 1 \) and

\[
\frac{1}{\sigma} + \frac{1}{\tau} = 1.
\]

What happens in the case that \(\sigma \) is rational?

[Beatty’s Theorem, as often the case was rediscovered by Beatty. It was known to Lord Raleigh and others earlier. This is a good example of Stigler’s Law of Eponymy, namely that “No scientific law is named after its original discoverer” [135, pg. 60]. Stigler’s law is named after Stephen Stigler, the son of the 1982 Nobel prize winning economist George Stigler. Neither Stigler was the “discoverer” of this principle.]

Hint: Observe first that \(\sigma, \tau > 1 \) is necessary. Set \(\alpha = \sigma - 1 \) and \(\beta = \tau - 1 \). Note that \(S \) and \(T \) partition the positive integers if and only if

\[
G_\alpha(z, z) + G_\beta(z, z) = \sum_{n=1}^{\infty} z^n = \frac{z}{1 - z}.
\]

Use Exercise 42 to show this happens if and only if

\[
G_\beta(z, z) = G_{\alpha^{-1}}(z, z)
\]

which in turn happens exactly when \(\lfloor n\beta \rfloor = \lfloor n\alpha^{-1} \rfloor \) for all \(n \geq 1 \). This last equivalence holds if and only if \(\beta \alpha = 1 \), and this is the same as

\[
\frac{1}{\sigma} + \frac{1}{\tau} = 1.
\]

[A direct proof of the “if” is quite easy.]
45. **Wilker’s inequalities.** Show that for $0 < x < \pi/2$ one has

$$2 + \frac{2}{45} x^3 \tan(x) > \frac{\sin^2(x)}{x^2} + \frac{\tan(x)}{x} > 2 + \frac{16}{\pi^4} x^3 \tan(x),$$

and that the constants $2/45$ and $16/\pi^4$ are the best possible.

46. **A Gamma integral.** Show that

$$\int_0^\infty e^{iy} y^{a-1} \, dy = i^a \Gamma(a)$$

for $0 < a < 1$. Hence evaluate $\int_0^\infty \cos\left(\frac{x}{b}\right) \, dx$ for $b > 1$.

Hint: Use Cauchy’s theorem on a contour that goes from 0 to R and then on a quarter circle to iR and back on the vertical axis to 0.

47. **The Airy integral.** For real x the Airy integral is defined by

$$Ai(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{1}{3} t^3 + xt\right) \, dt.$$

Integrate by parts to show that the integral is well defined. Then obtain the value of $Ai(0)$. Finally, show that $Ai^2(z)$ satisfies $w'' - 4zw' - 2w = 0$. See also [137] and [88].

Some difficult Airy-related integrals are derived and discussed in connection with the quantum bouncer in [88].

48. **Zeros of the Airy function.** Let $N(Ai)$ denote the real zeros of the Airy function Ai. Then, for $n = 2, 3, \ldots$ we define the Airy zeta function

$$Z(n) = \sum_{a \in N(Ai)} \frac{1}{a^n} = \frac{\pi T_{n-1}(0)}{\Gamma(n)}$$

where $T_n(z)$

$$= C^{(n)}(z) \int_0^\infty Ai^2(u) \, du - \sum_{j=1}^n \binom{n}{j} C^{(n-j)}(z) \frac{d^{j-1}}{dz^{j-1}} Ai^2(z) + \frac{d^{n-1}}{dz^{n-1}}(Ai(z)Bi(z)),$$

with $C(z) = Bi(z)/Ai(z)$, [88]. Here Ai and Bi are the fundamental solutions to $w'' = zw$ with $Ai(0) = \sqrt[3]{3}/(3\Gamma(2/3))$ and $Bi(0) = 3^{5/6}/(3\Gamma(2/3))$, and Ai is the Airy integral.
49. **Fun with Airy functions.** Let $\alpha_n = \text{Ai}^{(n)}(0)$ and $\beta_n = \text{Bi}^{(n)}(0)$.

(a) Show that $\alpha_{n+3} = (n+1)\alpha_n$, with a similar recursion for β_n.

(b) Show that $\alpha_n^* = (\text{Ai}^2)^{(n)}(0)$ and $\beta_n^* = (\text{Bi}^2)^{(n)}(0)$ both satisfy $\delta_{n+3} = (4n+2)\delta_n$.

(c) Consider $\gamma_n = (\text{Ai/Bi})^{(n)}(0)$ and $\delta_n = (\text{AiBi})^{(n)}(0)$. Show that $\delta_{n+3} = (4n+2)\delta_n$, and obtain a recursion for γ_n via the convolution

$$\sum_{j=0}^{n} \binom{n}{j} \delta_j \gamma_{n-j} = \beta_n^*.$$

Note the analogy with the Bernoulli numbers.

50. **More on the Airy zeta function.** Express $Z(n)$ of Exercise 48 explicitly as a polynomial in $X = \frac{5^{5/6}}{2\pi} \Gamma^2(2/3) = \frac{1}{2\pi \text{Ai}(0)\text{Bi}(0)}$.

For example

$$Z(2) = X^2 = 3 \frac{3^{2/3} \Gamma^4(2/3)}{4\pi^2},$$

$$Z(7) = X^7 - \frac{7}{12} X^4 + \frac{13}{180} X,$$

and

$$Z(10) = X^{10} - \frac{5}{6} X^7 + \frac{209}{1008} X^4 - \frac{17}{1296} X.$$

Note that

$$\int_0^\infty \text{Ai}^2(t) \, dt = \text{Ai}'(0)^2 = \frac{\sqrt{3} \Gamma^2(2/3)}{4\pi^2}.$$

Exercise 48 may help find the desired polynomials.

51. **Gosper’s continued fraction for π.** During his record 1985 computation of the simple continued fraction for π, Gosper found some large convergents but no strong evidence to suggest that π has a bounded or unbounded continued fraction. Gosper describes how continued fractions
allow you to “see” what a number is. “[I]t’s completely astounding ... it looks like you are cheating God somehow” [4, pg. 112]. He goes on to talk about how this sense of surprise has driven him to extensive work with continued fractions.

52. A positivity problem. Show that \(f \) defined by

\[
f(x) = \sum_{j=0}^{\infty} \frac{(-2)^j x^{2j}}{\prod_{i=1}^{j} (2^i - 1)}
\]

is strictly positive for \(0 < x < 1 \).

Hint: \(g = x \mapsto f(x)/x \) satisfies \(g'(x) + 2g(x^2) = 0 \) and \(g(0) = 1, g(1) = 0 \).

53. Ramanujan’s AGM continued fraction. The assertions below are extensions of those in Entry 12 of Chapter 18 of Ramanujan’s Second Notebook. Let

\[
R_\eta(a, b) = \frac{a}{\eta + \frac{b^2}{\eta + \frac{4a^2}{\eta + \frac{9b^2}{\eta + \ldots}}}}
\]

for \(a, b, \eta > 0 \).

(a) Then show the marvellous fact that

\[
R_q \left(\frac{a + b}{2}, \sqrt{ab} \right) = \frac{R_\eta(a, b) + R_\eta(b, a)}{2}.
\]

This relies on knowing for \(y > 0 \) that

\[
\frac{2}{\eta} \sum_{k \geq 0} \frac{\text{sech}((2k + 1)\pi y/2)}{1 + [(2k + 1)/\eta]^2} = R_\eta(\theta_2^3(q), \theta_3^2(q))
\]

\[
\frac{1}{\eta} \sum_{k \in \mathbb{Z}} \frac{\text{sech}(k\pi y)}{1 + [(2k)/\eta]^2} = R_\eta(\theta_3^3(q), \theta_2^2(q))
\]

where \(q = \exp(-\pi y) \), and observing how \(y \mapsto \frac{y}{2} \) interacts with these two identities. While these two series are hard to derive, they are easy to verify numerically.
(b) The continued fraction is hard to compute directly for \(a = b \). We shall find a way to use the last hyperbolic series to compute it.

(c) Determine the relationship between \(\mathcal{R}_\eta \) and \(\mathcal{R}_1 \). Hence, for \(0 < b < a \), show that

\[
\mathcal{R}_1(a, b) = \frac{\pi}{2} \sum_{n \in \mathbb{Z}} \frac{aK(k)}{K^2(k) + a^2 n^2 \pi^2} \text{sech} \left(n\pi \frac{K(k')}{K(k)} \right), \quad (1.11.70)
\]

where \(k = b/a = \theta_2^2/\theta_3^2 \).

(d) For \(y = 1 \), this evaluates

\[
\mathcal{R}_1 \left(1, \frac{1}{\sqrt{2}} \right) = \frac{\pi}{2} \sum_{n \in \mathbb{Z}} \frac{K(1/\sqrt{2}) \text{sech}(n\pi)}{K^2(1/\sqrt{2}) + n^2 \pi^2},
\]

with similar evaluations for \(\mathcal{R}_1(1, k_N) \) at the \(N \)-th singular value discussed in Section 4.2.

(e) Denote \(\mathcal{R}(a) = \mathcal{R}_1(a, a) \).

Write (1.11.70) as a Riemann sum to deduce that

\[
\mathcal{R}(a) = \int_0^\infty \frac{\text{sech} \left(\frac{x}{2a} \right)}{1 + x^2} \, dx = 2a \sum_{k=1}^\infty \frac{(-1)^{k+1}}{1 + (2k - 1)a}, \quad (1.11.71)
\]

where the final equality comes from the Cauchy-Lindelöf Theorem. The final sum provides an analytic continuation of \(\mathcal{R} \), and can be written as \(\mathcal{R}(a) = 1/2 \Psi (3/4 + 1/4 a^{-1}) - 1/2 \Psi (1/4 + 1/4 a^{-1}) \), which is very efficient computationally. (Here \(\Psi = \Gamma'/\Gamma \) is the digamma function.)

Observe that

\[
\mathcal{R}(a) = \frac{2a}{1 + a} \, \text{F} \left(\frac{1/2a + 1/2; 1/2a + 3/2}{1}; -1 \right)
\]

\[
= 2 \int_0^1 t^{1/a}(1 + t)^{-1} \, dt = a \int_0^\infty \text{sech}(ax) \, e^{-x} \, dx
\]

is now of the form for Gauss’s continued fraction of Section 7.8 of the first volume.
(f) Conclude that $R(1) = \log 2$ and $R(1/2) = 2 - \pi/2$ with similar evaluations for all Egyptian fractions $(1/n)$.

(g) Prove that

$$R(2) = \sqrt{2} \left\{ \frac{\pi}{2} - \log(1 + \sqrt{2}) \right\}.$$ Evaluate also $R(3/2)$ and $R(5)$.

(h) One can derive the rapidly convergent ζ-series

$$R(a) = \frac{\pi}{2} \sec \left(\frac{\pi}{2a} \right) + \frac{2a^2(1 + 8a - 106a^2 + 280a^3 + 9a^4)}{(a^2 - 1)(9a^2 - 1)(5a - 1)(7a - 1)} + C(a)$$

where

$$C(a) = \frac{1}{2} \sum_{n \geq 1} \left\{ \zeta(2n+1) - 1 \right\} \frac{(3a - 1)^{2n} - (a - 1)^{2n}}{(4a)^{2n}}.$$

54. A fast series for $R_1(a,b)$. It is possible to deduce from the previous exercise, using Poisson summation, that

(a) For $0 < b \leq a$, $k = b/a$, $K = K(k)$, and $K' = K(k')$ we have

$$R_1(a,b) = R \left(\frac{\pi a}{2K'} \right) + \frac{\pi}{\cos(K'/a)} \frac{1}{e^{2K/a} - 1}$$

$$+ \frac{2\pi a}{K'} \sum_{d \in O^+} \frac{(-1)^{(d-1)/2}}{1 - \pi^2d^2/(4K'^2)} \frac{1}{e^{\pi d K'/K' - 1} - 1}.$$

This allows a highly effective computation of the continued fraction when a is close to b and so the series (1.11.70) is not effective. Determine the proper interpretation when $a = b$.

(b) The AGM relationship, $R_1(b,a) = 2R_1((a + b)/2, \sqrt{ab}) - R_1(a,b)$, then allows one to compute $R_1(a,b)$ for $a < b$ equally effectively. (See [39] for details.)

(c) Denoting by O^+ the positive odd integers, one may establish

$$\int_{-\infty}^{\infty} \frac{\sech bx}{1 + x^2} e^{iax} dx = \frac{\pi}{\cos b} e^{-a} + \frac{2\pi}{b} \sum_{d \in O^+} \frac{(-1)^{(d-1)/2} e^{-\pi da/(2b)}}{1 - \pi^2d^2/(4b^2)}.$$ Interpret this relation for the possibility that b is an odd integer times $\pi/2$. Compare the next exercise.
55. **A cosh integral.**

(a) Show that, for $|a| \leq b$, one has

$$\int_{0}^{\infty} \frac{\cosh(at)}{\cosh(bt)} \frac{1}{1+t^2} \, dt = \frac{\pi}{2b \sin(b)} \left(\sin(b) \int_{0}^{a} \frac{\sin(a-t)}{\cos \left(\frac{\pi}{2b} t \right)} \, dt - \sin(a) \int_{0}^{b} \frac{\sin(b-t)}{\cos \left(\frac{\pi}{2b} t \right)} \, dt \right)$$

$$+ \frac{\pi \sin(a)}{2 \sin(b)} - \frac{\sin(a-b)}{\sin(b)} \int_{0}^{\infty} \frac{1}{\cosh(bt)(1+t^2)} \, dt.$$

Hint: Show that both sides satisfy the same second-order differential equation in a with the same values for $a = 0$ ($\int_{0}^{\infty} \text{sech}(bx) \, dx = \mathcal{R} \left(\frac{\pi}{2b} \right)$) and for $a = b \left(\frac{\pi}{2} \right)$.

(b) Deduce that

$$\int_{0}^{\infty} \frac{\text{sech}(bt)}{1+t^2} \cos(at) \, dt = \frac{\cosh(a)}{2} \left\{ \Psi \left(\frac{3}{4} + \frac{1}{2} \frac{b}{\pi} \right) - \Psi \left(\frac{1}{4} + \frac{1}{2} \frac{b}{\pi} \right) \right\}$$

$$- \frac{\pi}{2b} \int_{0}^{a} \sinh(a-t) \, \text{sech} \left(\frac{\pi t}{2b} \right) \, dt$$

for all $a, b \geq 0$.

(c) Note that as $b \to 0$, the final integrand is convergent to zero but not uniformly, and the prior evaluation becomes

$$\int_{0}^{\infty} \frac{\cos(at)}{1+t^2} \, dt = \frac{\pi}{2} e^{-a}.$$

The final integral in (b) equals $\int_{0}^{a} \cosh(a-t) \arctan \left(\sinh \left(\frac{\pi t}{2b} \right) \right) \, dt$.

(d) Show for $|a| < b$ that

$$\int_{0}^{\infty} \frac{\cosech(bt)}{1+t^2} \sinh(at) \, dt = \pi \sum_{k=1}^{\infty} \frac{\sin \left(k\pi \left(1 - a/b \right) \right)}{b + k\pi}.$$

56. **C^∞ functions.** A lovely result of E. Borel [195, pg. 191] shows that for every real sequence $\{a_n\}$ there is an infinitely differentiable function on \mathbb{R} such that $f^{(n)}(0) = a_n$.

A remarkable explicit example occurs via Ramanujan’s continued fraction. Use equation (1.11.71) to show that the function \(a \mapsto \mathcal{R}(a) \) has Maclaurin series \(\sum_{n \geq 0} E_{2n} a^{2n+1} \), with zero radius of convergence.

Hint: show that \(\int_0^\infty \text{sech}(\pi x/2)x^{2n} \, dx = E_{2n} \) for each positive integer \(n \).

Then estimate \(\left| \mathcal{R}(a) - \sum_{n=0}^{N-1} a^{2n+1} E_{2n} \right| \leq a^{2N+1} \int_0^\infty \text{sech} \left(\frac{\pi x}{2} \right) x^{2N} \, dx = a^{2N+1} |E_{2N}| \).

57. Two expected distances. These results originate with James D. Klein.

(a) The expected distance between two random points on different sides of the unit square:

\[
\frac{2}{3} \int_0^1 \int_0^1 \sqrt{x^2 + y^2} \, dx \, dy + \frac{1}{3} \int_0^1 \int_0^1 \sqrt{1 + (y-u)^2} \, du \, dy = 0.869009055274534463884970594345406624856719\ldots
\]

\[
= \frac{2}{9} + \frac{1}{9} \sqrt{2} + \frac{5}{9} \log \left(1 + \sqrt{2} \right).
\]

(b) The expected distance between two random points on different faces of the unit cube:

\[
\frac{4}{5} \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sqrt{x^2 + y^2 + (z-w)^2} \, dw \, dx \, dy \, dz + \frac{1}{5} \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sqrt{1 + (y-u)^2 + (z-w)^2} \, du \, dw \, dy \, dz = 0.92639005517404672921816358654777901444496019010734\ldots
\]

\[
= \frac{4}{75} + \frac{17}{75} \sqrt{2} - \frac{2}{25} \sqrt{3} - \frac{7}{75} \pi + \frac{7}{25} \log \left(1 + \sqrt{2} \right) + \frac{7}{25} \log \left(7 + 4 \sqrt{3} \right).
\]
(c) Show that the first term in (b) is

$$\frac{\sqrt{2\pi}}{5} \sum_{n=2}^{\infty} \frac{F\left(1/2, -n + 2; 3/2; 1/2\right)}{(2n + 1) \Gamma(n + 2) \Gamma(5/2 - n)}$$

$$+ \frac{4}{15} \sqrt{2} + \frac{2}{5} \log \left(\sqrt{2} + 1\right) - \frac{1}{75} \pi$$

and the second term is

$$\frac{\sqrt{\pi}}{10} \sum_{n=0}^{\infty} \frac{F\left(1, 1/2, -1/2 - n, -n - 1; 2, 1/2 - n, 3/2; -1\right)}{(2n + 1) \Gamma(n + 2) \Gamma(3/2 - n)}$$

$$- \frac{2}{25} + \frac{\sqrt{2}}{50} + \frac{1}{10} \log \left(\sqrt{2} + 1\right).$$

This allows one to numerically compute the expectation to high precision—and to express both of the individual integrals in terms of the same set of constants. These expectations have actually been checked by computer simulations.

Hint: reduce the first integral to a three dimensional one and use the binomial theorem on both.
Chapter 2

Fourier Series and Integrals

Having contested the various results [Biot and Poisson] now recognise that they are exact but they protest that they have invented another method of expounding them and that this method is excellent and the true one. If they had illuminated this branch of physics by important and general views and had greatly perfected the analysis of partial differential equations, if they had established a principal element of the theory of heat by fine experiments . . . they would have the right to judge my work and to correct it. I would submit with much pleasure . . . But one does not extend the bounds of science by presenting, in a form said to be different, results which one has not found oneself and, above all, by forestalling the true author in publication.

Joseph Fourier, c. 1825 [133]

2.1 The Development of Fourier Analysis

We present some historical background here, which we have adapted in part from the MacTutor website and also from R. Bhatia’s monograph on Fourier series [25].

Joseph Fourier was one of the more colorful figures of mathematical history. Originally intending to be a Catholic priest, Fourier declined to take his vows when he realized that he could not extinguish his interest in mathematics. Shortly afterwards he became involved in the movement that led to the French Revolution in 1793, but fortunately for modern mathematics he was spared the
guillotine, and was able to study mathematics at the Ecole Normale in Paris under the tutelage of Lagrange. A few years later he was appointed as a scientific adviser for Napoleon’s expedition to Egypt. When Napoleon’s army was defeated by Nelson at the battle of the Nile, Fourier and the other French advisers insisted that they be able to retain some of the artifacts they had found there. The British refused, but at least permitted the French to make a catalog of what they felt were the more important items. Fourier was given this task by the French commanders. The eighth item on his catalog was the Rosetta stone, which had been recognized by the French scientists on the expedition as a possible key to understanding of the Egyptian language. Later in Europe, when published copies of the inscriptions were made available, Champollion, a student who had been inspired by Fourier himself to study Egyptology, succeeded in the first translation.

Fourier’s principal contributions to mathematics, namely Fourier analysis and Fourier series, paralleled and even stimulated the development of the entire field of real analysis. Fourier analysis had its origin in the 1700s, when d’Alembert derived the wave equation that describes the motion of a vibrating string, starting with an initial “function,” which at the time was restricted to an analytic expression. In 1755 Daniel Bernoulli gave another solution for the problem in terms of standing waves, namely waves associated with the n points $0, 1/n, 2/n, \ldots, (n - 1)/n, 1$ on the string that remain fixed. The motion for $n = 1, 2, \ldots$ is the first harmonic, the second harmonic and so on. Bernoulli asserted that every solution to the problem of the plucked string is merely a sum of these harmonics.

Beginning in 1804 Joseph Fourier began to analyze the conduction of heat in solids. He not only discovered the basic equations governing heat conduction, but he developed methods to solve them, and in the process developed and extended Fourier analysis to a much broader range of scientific problems. He described his work in his book *The Analytical Theory of Heat*, which is regarded as one of the most important books in the history of physics. Like Bernoulli, Fourier asserted that any continuous function can be written as

$$f(x) = \sum_{n=-\infty}^{\infty} A_n e^{int}.$$ \hspace{1cm} (2.1.1)

But Fourier claimed that his representation is valid not only for f given by a single analytical formula, but for f given by any graph, which at the time was
2.2. BASIC THEOREMS OF FOURIER ANALYSIS

A more general object, encompassing for example a piecewise combination of different analytic expressions. Fourier was not able prove his assertions, at least not to the satisfaction of the mathematical community at the time (and certainly not to the standards required today). But other mathematicians were intrigued, and pursued these questions with renewed determination.

Dirichlet was the first to find a rigorous proof. He defined a real function as we now understand the term, namely as a general mapping from one set of reals to another, thus decoupling analysis from geometry. He then was able to prove that for every “piecewise smooth” function f, the Fourier series of f converges to $f(x)$ at any point x where f is continuous, and to the average value $(f(x+) + f(x-))/2$ if f has a jump discontinuity at x. This was the first major convergence result for Fourier series.

Mathematicians realized that to handle functions that have infinitely many discontinuities, it was necessary to generalize the notion of an integral beyond the intuitive idea of the area under a curve. Riemann succeeded in developing a theory of integration that could handle such functions, and using this theory was able to exhibit an example of a function that did not satisfy Dirichlet’s piecewise continuous condition, but still possessed a pointwise convergent Fourier series. Cantor observed that changing a function f at a few points does not change its Fourier coefficients. In the course of asking how many points can be changed while preserving Fourier coefficients, he was led to the notion of countably infinite and uncountably infinite sets. Ultimately Lebesgue extended Dirichlet’s, Riemann’s, and Cantor’s results into what we now know as measure theory, where sets of measure zero, almost everywhere equality of functions and almost everywhere convergence of functions supersede the simple concepts that prevailed in the 1700s.

In short, it is not an exaggeration to say that all of modern real and complex analysis has its roots in Fourier series and Fourier analysis.

2.2 Basic Theorems of Fourier Analysis

It is often useful to decompose a given function into its components, analyze those and then put the function together again, possibly in a different way. There are many possibilities to choose the component parts. One of the most classical (and mathematically interesting) methods is to use trigonometric functions. This is the basis for the theory of Fourier analysis. One can think of a
sound (a certain tone played on the violin, say) as consisting of countably many oscillations with different discrete frequencies which together define the pitch and the specific timbre of the tone. These component frequencies can be identified via Fourier analysis—mathematically, by computing the Fourier series of a periodic function. Of course, in reality no oscillation is precisely periodic and a sound will consist of a continuum of frequencies—mathematically, this is analyzed by taking the continuous Fourier transform. Thus, the Fourier transform arises from Fourier series by taking more and more frequencies into account. This process is described by the Poisson summation formula. Finally, the question arises if a function thus analyzed can be reconstructed from its Fourier series. It turns out that even for a continuous function the Fourier series may not be everywhere convergent. Thus one is led to consider special summation methods, or “kernels”.

These are the topics covered in this and the next section. The interested reader can find more details than we have room to give here in the introductory exposition in Chapter 8 of Stromberg’s book [195], or in the exhaustive classical treatment of Zygmund [210], or in the more modern books by Katznelson [142] and Butzer/Nessel [72].

2.2.1 Fourier Series

We will consider 2π-periodic functions $f : \mathbb{R} \to \mathbb{C}$. For $p > 0$, we write $f \in L^p(T)$ if such an f is Lebesgue measurable and satisfies

$$
\|f\|_p = \left(\int_{-\pi}^{\pi} |f(t)|^p \, dt \right)^{1/p} < \infty
$$

(T stands for Torus). Note that $\| \cdot \|_p$ is not a norm on L^p, since any function f which is 0 almost everywhere will have $\|f\|_p = 0$. (Later we will identify functions which are equal a.e.) In what follows, we will be mainly interested in the spaces $L^1(T)$ and $L^2(T)$. Note that $\| \cdot \|_1 \leq \| \cdot \|_2$ and $L^2(T) \subseteq L^1(T)$. If f is 2π-periodic and continuous on \mathbb{R}, then we write $f \in C(T)$ and equip this space with the uniform norm.

For a function $f \in L^1(T)$, define the n-th Fourier coefficient ($n \in \mathbb{Z}$) by

$$
\hat{f}_n = \int_{-\pi}^{\pi} f(t) e^{-int} \, dt.
$$
This is motivated by the insight that if we write
\[s_n(t) = \frac{1}{2\pi} \sum_{k=-n}^{n} c_k e^{ikt} \] (2.2.2)
for some sequence \(c_k \) and assume \(L^1(T) \)-convergence of \((s_n)\) to some \(f \in L^1(T)\), then \(\hat{f}_n = c_n \). Thus for arbitrary \(f \in L^1(T) \) we will write, formally and suggestively,
\[f(t) \sim \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \hat{f}_n e^{int}, \]
where however in general no assertion about convergence of this series is implied. Any convergence statement is to be read in the sense of symmetric limits, i.e. of
\[s_n(f, t) = \frac{1}{2\pi} \sum_{k=-n}^{n} \hat{f}_k e^{ikt}. \]

Fourier coefficients usually are complex numbers, even when \(f \) is a real-valued function. Sometimes it is desirable to have a real-valued series for \(f \). Then the Fourier series can be equivalently written as
\[f(t) \sim \frac{1}{2\pi} a_0 + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(a_n \cos(nt) + b_n \sin(nt)\right) \]
where
\[a_n = \int_{-\pi}^{\pi} f(t) \cos(nt) \, dt \quad \text{and} \quad b_n = \int_{-\pi}^{\pi} f(t) \sin(nt) \, dt. \]
Note that
\[s_n(f, t) = \frac{1}{2\pi} a_0 + \frac{1}{\pi} \sum_{k=1}^{n} (a_k \cos(kt) + b_k \sin(kt)). \]

Example. Define \(f \in L^1(T) \) by \(f(t) = (\pi - t)/2 \) for \(t \in [0, 2\pi) \). Then \(\hat{f}_n = -i\pi/n \) for \(n \neq 0 \) and \(\hat{f}_0 = 0 \), and its Fourier series is given by
\[f(t) \sim \frac{-i}{2} \sum_{n=-\infty, n \neq 0}^{\infty} \frac{1}{n} e^{int}, \] (2.2.3)
or, equivalently,

\[f(t) \sim \sum_{n=1}^{\infty} \frac{\sin(nt)}{n}. \quad (2.2.4) \]

The right-hand side of (2.2.4) equals 0 at \(t = 0 \), while the left-hand side by definition equals \(\pi/2 \). Thus, equality cannot hold pointwise here. The situation would improve if we were to define \(f(0) = 0 \). In fact, it follows from

\[\sum_{n=1}^{\infty} \frac{z^n}{n} = -\ln(1 - z) \quad \text{for } |z| \leq 1, \ z \neq 1, \quad (2.2.5) \]

by setting \(z = e^{it} \) and taking real and imaginary parts, that

\[\sum_{n=1}^{\infty} \frac{\sin(nt)}{n} = \frac{\pi - t}{2} \quad \text{and} \quad (2.2.6) \]

\[\sum_{n=1}^{\infty} \frac{\cos(nt)}{n} = -\ln|2\sin(t/2)| \quad (2.2.7) \]

for all \(t \in (0, 2\pi) \), and even with uniform convergence on every closed subinterval of \((0, 2\pi)\).

The question now is under what condition the Fourier series of a function converges to that function. The answer depends on the definition of “convergence” and is most interesting in the cases of pointwise, \(L^1(T) \)- and \(L^2(T) \)-convergence.

Pointwise and uniform convergence. As we have seen in the above example (and as is clear from the computation of Fourier series), \(L^1(T) \)-functions which are equal a.e. will have the same Fourier series. By the uniqueness theorem for Fourier series, the converse is also true: Functions with the same Fourier series are equal a.e. It is not true that the Fourier series of any continuous function is pointwise convergent to that function. An example is given in the “Comments and Examples” section of this chapter. Such functions must have a complicated structure: they cannot be of bounded variation. A function \(f : R \to C \) is of bounded variation on \((a, b)\) if there is an \(M > 0 \) with

\[\sum_{k=0}^{n-1} |f(t_{k+1}) - f(t_k)| \leq M \quad \text{for all } a < t_0 < t_1 < \cdots < t_n < b. \]
The infimum of all such M is the total variation of f, thus

$$V^b_a(f) = \sup \left\{ \sum_{k=0}^{n-1} |f(t_{k+1}) - f(t_k)| : a < t_0 < t_1 < \cdots < t_n < b, n \in \mathbb{N} \right\}.$$

The set of all functions of bounded variation on (a, b) is denoted $BV(a, b)$. An equivalent characterization (due to Lebesgue) is that f can be written as the difference of two bounded increasing functions. Thus any BV-function f is differentiable a.e., and the one-sided limits $f(t+)$ and $f(t-)$ exist in (a, b).

Theorem 2.2.1 (Jordan test). For $f \in L^1(T) \cap BV(a, b)$ we have

$$\lim_{n \to \infty} s_n(f, t) = \frac{f(t-)+f(t+)}{2} \text{ for every } t \in (a, b)$$

and uniformly on every compact subinterval of (a, b) where f is continuous. If $f \in C(T)$, then the convergence is uniform on \mathbb{R}.

Note that this theorem is proved via Cesáro summation, thus via the Fejér kernel, which we will discuss in Section 2.3.3.

Example. The Jordan test is another explanation of the convergence properties of the Fourier series for the function f from the previous example.

If another function $f \in C(T)$ is defined by $f(t) = t^2$ on $[-\pi, \pi]$, then

$$f(t) \sim \frac{1}{3} \pi^2 + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(nt).$$

Since f is continuous on \mathbb{R}, the Fourier series converges uniformly to f, by the Jordan test. However, since $s_n(f, t)$ is uniformly convergent, this also follows directly from the uniqueness theorem for Fourier series.

For $t = 0$ we get from this the identity

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}.$$

By separating even and odd parts, this proves that

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$
To conclude the section on pointwise convergence, we note that the Fourier series of an \(f \in L^1(T) \) may be divergent everywhere (Kolmogorov, 1926). If, however, \(f \in L^p(T) \) for \(p > 1 \), then \(s_n(f, t) \) converges to \(f(t) \) a.e. (Carleson/Hunt 1966).

Convergence in \(L^1(T) \). From now on it makes sense to identify functions which are equal almost everywhere, so that \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) are now norms in the respective spaces. Thus we will deal, strictly speaking, with equivalence classes of functions instead of pointwise defined functions, although this will not be denoted explicitly. For example, the statement that such a function is continuous will mean that in its equivalence class we can find a continuous function, then denoted by the same symbol. This notation is unusual but convenient, and it corresponds to how one deals with these objects informally. It can lead to dangerous pitfalls, though, as we will see later. In general, the Fourier series of an \(f \in L^1(T) \) need not be convergent to \(f \) with respect to the \(L^1(T) \)-norm. Of the many restrictions on \(f \) which imply convergence, we mention here only one which is particularly simple (and has a convincing analog in the case of Fourier transforms).

Theorem 2.2.2 Let \(f \in L^1(T) \). If \(\sum_{n=-\infty}^{\infty} |\hat{f}_n| < \infty \), then \(f \in C(T) \) and

\[
f(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \hat{f}_n e^{int}
\]

with convergence in the \(L^1(T) \)-norm as well as uniformly on \(T \).

There are functions in \(L^1(T) \) (even continuous ones) for which the Fourier coefficients are not absolutely summable. It is a difficult and in general open problem to characterize those sequences which are Fourier sequences of an \(L^1(T) \)-function. A weak necessary condition follows from the Riemann-Lebesgue lemma (see next subsection and Exercise 14): The Fourier coefficients of any \(f \in L^1(T) \) satisfy \(\lim_{|n| \to \infty} \hat{f}_n = 0 \).

Convergence in \(L^2(T) \). In contrast to the \(L^1 \)-case, for \(p > 1 \) the Fourier series of any \(f \in L^p(T) \) converges to \(f \) in the \(L^p(T) \)-norm. For \(p = 2 \) this follows
directly from the usual Hilbert space theory: the trigonometric functions constitute an orthogonal basis for \(L^2(T) \). This implies that the Fourier coefficients of an \(f \in L^2(T) \) are square-summable and that every square-summable sequence is the sequence of Fourier coefficients of an \(f \in L^2(T) \). (That is the Riesz-Fischer theorem.) Another consequence of Hilbert space theory is the Parseval equation.

Theorem 2.2.3 (Parseval equation.) For any \(f, g \in L^2(T) \), the identity

\[
\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \hat{f}_n \overline{\hat{g}_n} = \int_{-\pi}^{\pi} f(t) \overline{g(t)} \, dt
\]

(2.2.8)

holds. In particular, for \(f = g \) we get

\[
\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left| \hat{f}_n \right|^2 = \int_{-\pi}^{\pi} |f(t)|^2 \, dt.
\]

Example. Applying the Parseval equation to the function \(f(t) = (\pi - t)/2 \) on \((0, 2\pi)\) from the first example in this section again gives the identity, after simplifying,

\[
\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.
\]

This is the same result as in the previous example, but the Parseval equation is conceptually simpler than the Jordan test. Applying the Parseval equation to \(f(t) = t^2/4 - \pi t/2 + \pi^2/6 \) gives

\[
\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90},
\]

and this can be continued to give \(\zeta(2n) \) as a rational multiple of \(\pi^{2n} \) for any \(n \in \mathbb{N} \). The general formula is given in the next chapter, by a different method. Similar formulas for \(\zeta(2n+1) \) are unknown (and highly unlikely to exist; see the next chapter for more information).

Example. Multiplying the evaluations (2.2.6) and (2.2.7), using the Cauchy product, simplifying and doing a partial fraction decomposition gives

\[
-\ln \left| 2 \sin(t/2) \right| \cdot \frac{\pi - t}{2} = \sum_{n=1}^{\infty} \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{k} \sin(nt) \quad \text{on } (0, 2\pi).
\]

(2.2.9)
Now Parseval proves the Euler sum formula that we first mentioned in the first volume:

$$\frac{1}{4} \int_0^{2\pi} (\pi - t)^2 \ln^2(2 \sin(t/2)) \, dt = \pi \sum_{n=1}^{\infty} \left(\frac{\sum_{k=1}^{n-1} k^{-1}}{n^2}\right)^2.$$

2.2.2 Fourier Transforms

We now consider functions $f : \mathbb{R} \to \mathbb{C}$. For $p > 0$, we write $f \in L^p(\mathbb{R})$ if such an f is Lebesgue measurable and satisfies

$$\|f\|_p = \int_{-\infty}^{\infty} |f(t)|^p \, dt < \infty.$$

As before, functions which are equal a.e. will be identified, so that $\|\cdot\|_p$ is a norm. In what follows, we will be mainly interested in the spaces $L^1(\mathbb{R})$ and $L^2(\mathbb{R})$. In contrast to the periodic case, there is now no inclusion relation between these spaces. If $f : \mathbb{R} \to \mathbb{C}$ is continuous, we write $f \in C(\mathbb{R})$ and equip this space with the uniform norm.

The Fourier transform on $L^1(\mathbb{R})$ is now a direct analog of the Fourier coefficients on $L^1(\mathbb{T})$. By further analogy to the previous subsection, a Fourier transform on $L^2(\mathbb{R})$ would also be of interest. However, the definition of such an $L^2(\mathbb{R})$-transform is not as straightforward as before, since these spaces are not contained in each other. There is, however, a meaningful transform on $L^2(\mathbb{R})$, and we will discuss this after giving the properties of the $L^1(\mathbb{R})$-transform.

Fourier Transform on $L^1(\mathbb{R})$. For a function $f \in L^1(\mathbb{R})$, define the Fourier transform of f to be the function $\widehat{f} : \mathbb{R} \to \mathbb{C}$ given by

$$\widehat{f}(x) = \int_{-\infty}^{\infty} f(t) e^{-ixt} \, dt.$$

As the example $f = \chi_{(-\pi,\pi)}$ (characteristic function) with $\widehat{f}(x) = 2\sin(\pi x)/\pi$ shows, the Fourier transform of an $f \in L^1(\mathbb{R})$ need not be in $L^1(\mathbb{R})$. It is not difficult to show, however, that such an \widehat{f} is always continuous, with $\|\widehat{f}\|_\infty \leq$
2.2. BASIC THEOREMS OF FOURIER ANALYSIS

\[\| f \|_1. \] The Riemann-Lebesgue lemma says that, additionally, \(\lim_{|x| \to \infty} \hat{f}(x) = 0. \) It is proved by approximating \(f \) by step functions.

Under what conditions can an \(f \in L^1(\mathbb{R}) \) be reconstructed from its Fourier transform? In principle, this is always possible: By the uniqueness theorem for Fourier transforms, functions with the same Fourier transform must be equal a.e. In practice, one would like a simple formula for this inversion. Such a formula is given in the inversion theorem below, whose proof is not easy: it depends on constructing and investigating a suitable summation kernel for the Fourier transform (often the Gauss or the Fejér kernel are used).

Theorem 2.2.4 If \(f \in L^1(\mathbb{R}) \) is such that \(\hat{f} \in L^1(\mathbb{R}) \), then \(f, \hat{f} \in C(\mathbb{R}) \) and

\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(x) e^{ixt} \, dx \quad (2.2.10) \]

for all \(t \in \mathbb{R} \).

Conditions which are good for \(\hat{f} \in L^1(\mathbb{R}) \) are given in the “Comments and Examples” section.

Example. For \(f(t) = \max\{1 - |t|, 0\} \) we compute \(\hat{f}(x) = \text{sinc}^2(x/2) \in L^1(\mathbb{R}) \) (where \(\text{sinc}(x) = \frac{\sin x}{x} \)). Thus by Theorem 2.2.4, we immediately get

\[\int_{-\infty}^{\infty} \text{sinc}^2(x/2) e^{ixt} \, dx = 2\pi \max\{1 - |t|, 0\} \quad (2.2.11) \]

for all \(t \), and especially \(\int_{-\infty}^{\infty} \text{sinc}^2(x/2) \, dx = 2\pi. \text{ Maple} \) knows this last evaluation since it has an antiderivative for \(\text{sinc}^2 \), but it cannot evaluate the integral for the Fourier transform of \(\text{sinc}^2 \) at a general argument. \(\square \)

Fourier Transform on \(L^2(\mathbb{R}) \). Since \(L^2(\mathbb{R}) \) is not a subset of \(L^1(\mathbb{R}) \), in contrast to the periodic case, the definition of the Fourier transform cannot be directly transferred onto this space: the function \(f(t) e^{-ixt} \) may not be integrable! For this reason, the Fourier transform on \(L^2(\mathbb{R}) \) is usually defined as the continuation of the Fourier transform on \(L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \) which is dense in \(L^2(\mathbb{R}) \). An equivalent (and more practical) definition is the following. First of all, note that for \(f \in L^2(\mathbb{R}) \), \(f_A = f \cdot \chi_{(-A,A)} \in L^1(\mathbb{R}) \) for any \(A > 0 \). It can be proved, with some effort, that then \(\hat{f}_A \in L^2(\mathbb{R}) \).
Definition. Let $f \in L^2(\mathbb{R})$. If the $L^2(\mathbb{R})$-limit of the functions \hat{f}_A for $A \to \infty$ exists in $L^2(\mathbb{R})$, then it is called the Fourier (or Plancherel) transform of f and is again denoted by \hat{f}.

By definition, the Fourier transform of an $f \in L^2(\mathbb{R})$ is always in $L^2(\mathbb{R})$. It need not be continuous, nor does the Riemann/Lebesgue lemma hold. It can be proved that $\|f\|_2 = \|\hat{f}\|_2$ (Parseval equation), and that every function in $L^2(\mathbb{R})$ is the Fourier transform of an $f \in L^2(\mathbb{R})$. An $f \in L^2(\mathbb{R})$ is reconstructible from its Fourier transform by the same process as in Theorem 2.2.4.

Theorem 2.2.5 For any $f \in L^2(\mathbb{R})$,
\[
 f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(x) e^{ixt} dx = \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} \hat{f}(x) e^{ixt} dx \tag{2.2.12}
\]
in $L^2(\mathbb{R})$.

Example. We have already computed $\hat{f}(x) = 2 \sin(\pi x)/x$ for $f(t) = \chi_{(-\pi,\pi)}(t)$. This \hat{f} is in $L^2(\mathbb{R})$, but not in $L^1(\mathbb{R})$. Theorem 2.2.5 now says that
\[
 \int_{-\infty}^{\infty} \frac{\sin(\pi x)}{\pi x} e^{ixt} dx = \chi_{(-\pi,\pi)}(t) \text{ a.e.} \quad \Box
\]

It would be interesting to replace this a.e.-statement with a pointwise statement, since a.e.-statements are more difficult to handle when the goal is exact evaluation of a series or integral, and so they are less useful for experimental mathematics. In fact, a standard theorem of Fourier analysis (Jordan’s theorem, see [72, p. 205]) is: If $f \in L^1(\mathbb{R})$ is of bounded variation in an interval including the point t, then
\[
 \lim_{a \to \infty} \frac{1}{2\pi} \int_{-a}^{a} \hat{f}(x) e^{ixt} dx = \frac{1}{2} (f(t+) + f(t-)).
\]

Applied to the above example, this gives
\[
 \lim_{a \to \infty} \int_{-a}^{a} \frac{\sin(\pi x)}{\pi x} e^{ixt} dx = \begin{cases}
 0 & \text{for } |t| > \pi, \\
 1 & \text{for } |t| < \pi, \\
 \frac{1}{2} & \text{for } |t| = \pi.
\end{cases} \tag{2.2.13}
\]
2.3 More Advanced Theorems of Fourier Analysis

2.3.1 The Poisson Summation Formula

There are obvious similarities between Fourier series and Fourier transforms. Thus one would think that there are connections between the two concepts. That is indeed so, and the link is provided by the Poisson summation formula.

As a first example, take a function $F \in L^1(T)$ and note that $\hat{F}_n = \hat{f}(n)$ if $f \in L^1(\mathbb{R})$ is defined to equal F on $(-\pi, \pi)$ and to vanish everywhere else. This already is a simple special case of the Poisson summation formula.

A second approach to Poisson summation can be motivated by the following question. Take a function $g \in C(\mathbb{R})$, and assume that the sequence $(g(w))$ is absolutely summable for each $w > 0$. Consider $F_w(t) = \sum_{n=-\infty}^{\infty} g(\frac{n}{w}) e^{int}$ for $w > 0$. Such functions F_w are often investigated in connection with summation procedures for Fourier series, and we will do so in the next subsection. A first graphical observation is that the restrictions to $(-\pi, \pi)$ of these functions F_w tend to be concentrated more and more around 0 for increasing w. If, however, the functions $\frac{1}{w} F_w(t/w)$ are plotted, then there seems to be convergence towards a limit function which depends on g. What is this limit function, and how can we prove convergence? The answer is again given by the Poisson summation formula.

In general, the Poisson formula links the finite and the infinite transforms via the so-called periodization, an operation which associates $L^1(\mathbb{R})$-functions in a natural way with 2π-periodic functions: For $f \in L^1(\mathbb{R})$, set $F(t) = \sum_{j=-\infty}^{\infty} f(t + 2\pi j)$ for all t for which the limit exists. The next theorem is (one version of) the classical Poisson formula, linking the Fourier series of F with the Fourier transform of f.

Theorem 2.3.1 (Poisson summation formula). Let $f \in L^1(\mathbb{R})$.

a) The periodization F exists for almost every $t \in T$, and we have $F \in L^1(T)$ and $\|F\|_1 \leq \|f\|_1$.

b) The Fourier series of F is

$$
\sum_{j=-\infty}^{\infty} f(t + 2\pi j) \sim \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{int},
$$

(2.3.14)
CHAPTER 2. FOURIER SERIES AND INTEGRALS

in other words, we have $\hat{F}_n = \hat{f}(n)$ for all $n \in \mathbb{Z}$.

Proof. a) Obviously $f(t + 2\pi j)$ is integrable over $[-\pi, \pi]$, and we have

$$
\sum_{j=-\infty}^{\infty} \int_{-\pi}^{\pi} |f(t + 2\pi j)| \, dt = \sum_{j=-\infty}^{\infty} \int_{-\pi+2\pi j}^{\pi+2\pi j} |f(t)| \, dt
= \int_{-\infty}^{\infty} |f(t)| \, dt = \|f\|_{L^1(\mathbb{R})} < \infty.
$$

By B. Levi’s theorem, the series F is absolutely convergent a.e., we have $F \in L^1(T)$, and summation and integration can be exchanged. Now we also get $\|F\|_{L^1(T)} \leq \|f\|_{L^1(\mathbb{R})}$ by using the triangle inequality, doing the exchange and then using the above computation.

b) Now applying B. Levi’s theorem to the functions $f(t + 2\pi j) \cdot e^{-int}$ for fixed n, and using the fact that the function e^{-int} is 2π-periodic, we get with the same summation trick as before,

$$
\hat{F}_n = \int_{-\pi}^{\pi} F(t) e^{-int} \, dt = \int_{-\infty}^{\infty} f(t) e^{-int} \, dt = \hat{f}(n). \quad \Box
$$

Of course, it is interesting to ask when the identity holds pointwise instead of just in the sense of Fourier series. From the Jordan test it can be deduced that if $f \in L^1(\mathbb{R}) \cap BV(\mathbb{R})$ and $f(t) = \frac{1}{2}(f(t+) + f(t-))$ everywhere, then equality holds for all t.

Example. Choose $y > 0$ and define

$$
f(t) = \begin{cases}
e^{-yt} & \text{for } t > 0, \\
0 & \text{for } t < 0,
\end{cases}
$$

and $f(0) = 1/2$. Then $\hat{f}(x) = (y + ix)^{-1}$, and Poisson says that

$$
\sum_{j=-\infty}^{\infty} f(t + 2\pi j) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \frac{1}{y + in} e^{int},
$$
which is equivalent to

\[
\frac{1}{2\pi} \left(\frac{1}{y} + 2 \sum_{n=1}^{\infty} \frac{y \cos(nt) + n \sin(nt)}{y^2 + n^2} \right) = \sum_{j \mid t/(2\pi)} e^{-y(t+2\pi j)} + \begin{cases} \frac{1}{2}, & t \in 2\pi\mathbb{Z}, \\ 0, & \text{otherwise}. \end{cases}
\]

Setting \(t = 0 \), we get

\[
\pi \coth(\pi y) = \frac{1}{y} + 2y \sum_{n=1}^{\infty} \frac{1}{y^2 + n^2}.
\]

Setting \(t = 1/2 \), we get

\[
\pi \cosech(\pi y) = \frac{1}{y} + 2y \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + n^2}.
\]

Example. Now choose \(s > 0 \) and set \(f(t) = e^{-st^2} \). Then \(\hat{f}(x) = \sqrt{\frac{\pi}{s}} e^{-x^2/(4s)} \) (see Section 5.6 of the first volume), and Poisson says that

\[
\sum_{n=-\infty}^{\infty} e^{-n(t+2\pi j)^2} = \frac{1}{2} \sqrt{\frac{1}{\pi s}} \sum_{n=-\infty}^{\infty} e^{-n^2/(4s)} e^{int}. \tag{2.3.15}
\]

By analyticity, this can be extended to hold for all \(\text{Re}(s) > 0 \). We will meet this formula again in Chapter 3.10.

Example. Take an even real-valued continuous \(g \in L^1(\mathbb{R}) \) such that \((g(\frac{n}{w})) \) is absolutely summable for each \(w > 0 \) and assume that \(\hat{g} \in L^1(\mathbb{R}) \). Then using Poisson and the inversion theorem 2.2.4 it follows that

\[
\sum_{n=-\infty}^{\infty} g(\frac{n}{w}) e^{int} = w \sum_{j=-\infty}^{\infty} \hat{g}(w(t + 2\pi j)), \tag{2.3.16}
\]

where equality is meant in \(L^1(\mathbb{T}) \). This equality does not hold pointwise! In Katznelson’s book [142] an example is given of a function \(f \in L^1(\mathbb{R}) \) with \(\hat{f} \in L^1(\mathbb{R}) \) for which equality does not hold pointwise in Poisson’s formula (2.3.14), because the periodization does not converge uniformly. This is the “dangerous pitfall” which we mentioned earlier: Even though the left-hand side of (2.3.16) is
a continuous function, the right-hand side is not necessarily continuous; it is only equal to a continuous function a.e. To deduce pointwise equality from this would be wrong! This is a noteworthy difference to the situation in Theorem 2.2.4.

In any case, this gives an answer to the question at the beginning of the present subsection: The limit function (in the $L^1(\mathbb{R})$-sense) of the F_w's, restricted to $(-\pi, \pi)$ and then suitably rescaled, is the Fourier transform of g. This follows from (2.3.16), since

$$
\| \frac{1}{w} F_w \left(\frac{t}{w} \right) \cdot \chi_{(-\pi w, \pi w)} - \hat{g}(t) \|_1 = \int_{-\pi w}^{\pi w} \left| \sum_{j=\infty}^{\infty} \hat{g}(t + 2\pi jw) \right| dt + \int_{|t|>\pi w} \left| \hat{g}(t) \right| dt
\leq 2 \int_{|t|>w} \left| \hat{g}(t) \right| dt \to 0 \quad (w \to \infty)
$$

if $\hat{g} \in L^1(\mathbb{R})$. Often enough (but not always) this convergence is even uniform on \mathbb{R}.

This is a very visual theorem; it can be discovered and explored on the computer. In this sense Formula (2.3.16) is the experimental version of Poisson’s summation formula! \hfill \Box

2.3.2 Convolution Theorems

As we have seen, the Fourier series even of a continuous function need not converge back to the function, neither in the L^1-sense nor pointwise. Often, convergence properties of such a series can be improved by putting additional factors into the series to “force convergence.” For example, it can be proved (and will be in the next subsection) that for $f \in C(\mathbb{T})$ the series

$$
\sigma_n(f, t) = \frac{1}{2\pi} \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1} \right) \hat{f}_k e^{ikt}
$$

converges to f uniformly as well as in the L^1-sense; this is Fejér’s famous theorem.

How do these convergence factors work? If we set

$$
F_n(t) = \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1} \right) e^{ikt},
$$

...
then the Fourier coefficients of $\sigma_n(f, t)$ are the product of those of f and those of F_n. Thus it seems reasonable that convergence properties of σ_n can be deduced from suitable properties of F_n. An important relation between these objects is given by the following theorem.

Theorem 2.3.2 (Convolution theorem for $L^1(T)$). For $f, g \in L^1(T)$ define

$$h(t) = (f * g)(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t - u) g(u) \, du.$$

1. Then the integral exists for a.e. $t \in T$, and we have $h \in L^1(T)$ and $\|h\|_1 \leq \frac{1}{2\pi} \|f\|_1 \|g\|_1$.

2. Moreover, $\hat{h}_n = \frac{1}{2\pi} \hat{f}_n \cdot \hat{g}_n$ holds for the Fourier coefficients.

Applied to the question above, this convolution theorem says that $\sigma_n(f, t) = (F_n \ast f)(t)$. In the next section, this will lead to a proof of Fejér’s theorem. We will in fact be able to treat much more general summation kernels.

In the following sections, we will also need a convolution theorem in $L^1(R)$.

Theorem 2.3.3 (Convolution theorem for $L^1(R)$). For $f, g \in L^1(R)$ define

$$h(t) = (f * g)(t) = \int_{-\infty}^{\infty} f(t - u) g(u) \, du.$$

1. Then the integral exists for a.e. $t \in R$, and we have $h \in L^1(R)$ and $\|h\|_1 \leq \|f\|_1 \|g\|_1$.

2. Moreover, $\hat{h}(x) = \hat{f}(x) \cdot \hat{g}(x)$ holds for the Fourier transforms.

The convolution in $L^1(R)$ tends to make functions smoother but less localized. If g is, for example, the characteristic function of an interval, then $h = f \ast g$ will be absolutely continuous for every L^1-function f. If, on the other hand, both f and g are L^1-functions with bounded supports, equal to, say, $[-a, a]$ and $[-b, b]$, then the support of $h = f \ast g$ will be equal to $[-(a + b), a + b]$.

Convolution theorems are quite important in computational mathematics! To compute a convolution one usually has to perform many multiplications, so
that it is expensive in terms of time and memory. On the other hand, a
single multiplication often is cheap. The convolution theorems (which have many
analogs for different types of convolutions) say that convolutions can be trans-
formed into multiplications and thus may be easier to compute than appears on
first glance. One may object that now the cost is in the transformation. But
this objection is not always valid. For example, the finite Fourier transform
(FFT; the first ‘F’ stands for ‘Fast’) is computable with much less effort than
the underlying convolution itself; see Chapter 6 of the first volume. This is the
reason for the eminent importance of the FFT in many areas of computational
mathematics.

2.3.3 Summation Kernels

With regard to Fejér’s sum \(\sigma_n \), the convolution theorem says that \(\sigma_n(f, t) = (F_n * f)(t) \), and we are interested in the question whether \(F_n * f \to f \) for \(n \to \infty \)
in a suitable norm (\(L^1 \) or uniformly). This question can be generalized: Under
what conditions on a family of functions \((K_w) \subseteq L^1(T) \) is there convergence
\(\|K_w * f - f\|_1 \to 0 \) (\(w \to \infty \)) for all \(f \in L^1(T) \)? Under what conditions is
there uniform convergence for continuous \(f \)? Any family of type \((K_w) \) is called a
kernel. If there is suitable convergence then \((K_w) \) is also called an approximate
identity, and the question is now open to systematic experimentation. Which
conditions of a kernel make it an approximate identity?

It is proved in Katznelson’s book [142] that the following conditions imply
that some family \((K_w) \subseteq L^1(T) \) is an approximate identity for \(L^p(T) \) (1 \(\leq p < \infty \)) and for \(C(T) \):

(S1) \[\frac{1}{2\pi} \int_{-\pi}^{\pi} K_w(t) \, dt = 1 \quad \text{for all } w, \]

(S2) \[\int_{-\pi}^{\pi} |K_w(t)| \, dt \leq M \quad \text{uniformly in } w, \]

(S3) \[\lim_{w \to \infty} \int_{|t| \leq \delta} |K_w(t)| \, dt = 0 \quad \text{for all } 0 < \delta < \pi. \]

Of particular interest here are kernels of the form \(K_w(t) = \sum_{k=-\infty}^{\infty} g(k) e^{ikt} \)
for suitable functions \(g \), since many classical kernels are of this form. Now our
direction should be clear: the “experimental” version (2.3.16) of the Poisson
formula will be of use.
Theorem 2.3.4 Let \(K_w(t) = \sum_{k=-\infty}^{\infty} g(\frac{k}{w}) e^{ikt} \) and assume that \(g \in C(R) \cap L^1(R) \), that \((g(\frac{n}{w})) \) is absolutely summable for each \(w > 0 \), and that \(g(0) = 1 \) and \(\hat{g} \in L^1(R) \). Then \((K_w) \) is an approximate identity.

Proof. We have to check (S1)–(S3) above.

Condition (S1) is a condition on the middle Fourier coefficient of \(K_w \) and follows from \(g(0) = 1 \).

Regarding (S2), we have, using (2.3.16) and the theorem of B. Levi,

\[
\int_{-\pi}^{\pi} |K_w(t)| \, dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| w \sum_{j=-\infty}^{\infty} \hat{g}(w(t + 2\pi j)) \right| \, dt \\
\leq w \sum_{j=-\infty}^{\infty} \int_{-\pi}^{\pi} |\hat{g}(w(t + 2\pi j))| \, dt \\
= w \int_{-\infty}^{\infty} |\hat{g}(wt)| \, dt = \|\hat{g}\|_1,
\]

which is a uniform bound.

Finally, we get by similar computations as before that

\[
\int_{|t| \leq w\delta} |K_w(t)| \, dt \leq \int_{|t| > w\delta} |\hat{g}(t)| \, dt,
\]

which tends to 0 for \(w \to \infty \) since \(\hat{g} \in L^1(R) \).

All of the conditions in Theorem 2.3.4 are easily checked symbolically. Moreover, the methods employed here allow more detailed investigations of the approximation properties of the kernels by direct computation of the Fourier transform. For example, often the Lebesgue constants, defined as \(\|K_w\|_1 \), determine the rate of convergence of \(K_w * f \) to \(f \), or, if \(K_w \) is not an approximate identity, the growth rate of \(K_w * f \). The Lebesgue constants, as computed in the proof of (S2), satisfy \(\|K_w\|_1 \leq \|\hat{g}\|_1 \). This bound is precise, since the same Poisson methods also gives

\[
\|K_w\|_1 \geq \|\hat{g}\|_1 - 2 \int_{|t| > \pi w} |\hat{g}(t)| \, dt.
\]
Example: The Fejér kernel. The kernel \(F_n \) as defined above comes from the Cesáro summation method applied to Fourier series; thus \(\sigma_n(f, t) = (F_n * f)(t) \). By geometric summation, \(F_n \) can also be written as
\[
F_n(t) = \frac{\sin^2(\frac{n+1}{2}t)}{(n+1)\sin^2(\frac{t}{2})}.
\]
If we set \(g(x) = \max\{1 - |x|, 0\} \), then \(F_n = K_{n+1} \). Since \(\hat{g}(t) = \text{sinc}^2(t/2) \in L^1(\mathbb{R}) \), the conditions of Theorem 2.3.4 are satisfied. Thus we deduce directly that \(F_n \) is an approximate identity in \(L^p(T) \) and in \(C(T) \). Moreover, since \(\hat{g} \) is non-negative, for the Lebesgue constants we get \(\|F_n\|_1 = \|\hat{g}\|_1 = 2\pi \) (compare with the example in Section 2.2.2).

Example: The Poisson kernel. Another important summation method is Abel summation. Applied to Fourier series, it leads to the Poisson kernel, defined as
\[
P_r(t) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ikt} = \frac{1 - r^2}{1 - 2r \cos(t) + r^2} \text{ for } 0 \leq r < 1.
\]
The question is whether \(P_r * f \to f \) in \(L^p(T) \) or in \(C(T) \) for \(r \to 1 \). By setting \(w = -1/\ln(r) \) and \(g(x) = e^{-|x|} \), we have \(P_r(t) = K_w(t) \). Since \(\hat{g}(t) = 2/(1 + t^2) \in L^1(\mathbb{R}) \), Theorem 2.3.4 produces convergence of \(P_r * f \) to \(f \). Similarly to the Fejér kernel, \(P_r \) as well as \(g \) and \(\hat{g} \) are nonnegative, so that we again have \(\|P_r\|_1 = \|K_w\|_1 = \|\hat{g}\|_1 = 2\pi \).

Example: The Dirichlet kernel. The same methods also explain why the usual summation of Fourier series does not always give convergence. This summation corresponds to the Dirichlet kernel
\[
D_n(t) = \sum_{k=-n}^{n} e^{ikt} = \frac{\sin \left(\left(n + \frac{1}{2} \right) t \right)}{\sin \left(\frac{t}{2} \right)}
\]
via \(s_n(f, t) = (D_n * f)(t) \). The Dirichlet kernel is of the form \(K_n \) with \(g = \chi_{[-1,1]} \). This \(g \) is neither continuous, nor does it have a Fourier transform in \(L^1(\mathbb{R}) \) (its Fourier transform is \(\hat{g}(t) = 2\text{sinc}(t) \)). Thus Theorem 2.3.4 is not applicable. But the experimental Poisson formula (2.3.16) can still be used to estimate the
Lebesgue constants and gives \(\|D_n\|_1 = \int_{-\pi}^{\pi} |2\text{sinc}(t)| \, dt + O(1) = \frac{\pi}{2} \ln(n) + O(1) \). These are unbounded, and so the Dirichlet kernel can be expected to have worse summation properties than the Fejér and Poisson kernels above.

In summary, the methods described here are very useful to gauge norm-convergence properties of kernels of the special form \(K_w(t) = \sum g(k) e^{ikt} \) in a direct, computational way, and they open the door to further experimentation. Our description has been adapted from [116], but reportedly these methods go back at least to Korovkin.

Of course, norm-convergence does not imply pointwise convergence. As described in [142], instead of (S1)–(S3) the following properties of a kernel can be used to prove pointwise convergence of \(K_w \ast f \) to \(f \) : \(K_w \) satisfies (S1), is non-negative and even, and satisfies

\[
\lim_{w \to \infty} \left(\sup_{\delta \leq |t| \leq \pi} K_w(t) \right) = 0 \quad \text{for all } 0 < \delta < \pi.
\]

This allows one to decide, for given \(f \in L^1(T) \) and \(t_0 \in \mathbb{R} \), whether \((K_w \ast f)(t_0) \) converges to \(f(t_0) \).

For the Fejér kernel, it leads to Lebesgue’s condition: If there exists a value \(\tilde{f}(t_0) \) such that

\[
\lim_{h \to 0} \frac{1}{h} \int_0^h \left| \frac{f(t_0 + t) + f(t_0 - t)}{2} - \tilde{f}(t_0) \right| \, dt = 0,
\]

then \(\sigma_n(f, t) \to \tilde{f}(t_0) \) for \(n \to \infty \). In particular, \(\sigma_n(f, t) \to f(t) \) a.e.

For the Poisson kernel, it leads to Fatou’s condition: If there exists a value \(\tilde{f}(t_0) \) such that

\[
\lim_{h \to 0} \frac{1}{h} \int_0^h \left(\frac{f(t_0 + t) + f(t_0 - t)}{2} - \tilde{f}(t_0) \right) \, dt = 0,
\]

then \((P_r \ast f)(t_0) \to \tilde{f}(t_0) \) for \(r \to 1^- \). In particular, \((P_r \ast f)(t) \to f(t) \) a.e.

The convergence is uniform on closed subintervals where \(f \) is continuous.
2.4 Examples and Applications

2.4.1 The Gibbs Phenomenon

If a function $f \in L^1(T)$ is of bounded variation, it may have jump discontinuities. The Jordan test says that the Fourier series of f converges to the center of the gap at such a point. Directly to the left and right of the jump the series converges pointwise, but not uniformly on any interval containing the discontinuity, to the function. The function $f(t) = (\pi - t)/2 = \sum n^{-1} \sin(nt)$ on $[0, 2\pi]$ is a good example for this behaviour, see Figure 2.1, where the series for $(\pi - t)/2$ is evaluated to 20 terms.

One notices that the cut-off Fourier series “overshoots” the function at the discontinuity. These oscillations do not diminish when more terms are added; they just move closer to the discontinuity. When the experimental physicist A. Michelson (famous for the Michelson-Morley experiment which led to Special Relativity) had built a machine to calculate Fourier series and fed a discontinuous function into it, he noticed this phenomenon. It was unexpected for him, but after hand calculations confirmed this behaviour, he wrote a letter to the magazine *Nature* in 1898, expressing his doubts that “a real discontinuity can replace a sum of continuous curves” (cited after Bhatia [25]). Gibbs, one of the founders of modern thermodynamics, replied to this letter and clarified the matter. Thus here we have another example of a mathematical theorem which can be experimentally discovered (even by an experimental physicist)!

Now what is the explanation for the Gibbs phenomenon? Inspection of the picture shows that the largest overshoot seems to occur around the point π/N if N terms of the Fourier series are added. Thus we compute

$$s_N(f, \frac{\pi}{N}) = \sum_{n=1}^{N} \frac{\sin \left(\frac{n\pi}{N} \right)}{n} = \frac{\pi}{N} \sum_{n=1}^{N} \frac{\sin \left(\frac{n\pi}{N} \right)}{\frac{n\pi}{N}},$$

where the last sum is a Riemann sum for the integral

$$I = \int_0^{\pi} \frac{\sin(t)}{t} \, dt.$$

Therefore, $s_N(f, \frac{\pi}{N}) \to I$ for $N \to \infty$. Since $I/f(0+) = I/(\pi/2) \approx 1.178979744$, this explains why the overshoot does not go away for large N. This overshoot of
2.4. EXAMPLES AND APPLICATIONS

roughly 18% is not dependent on the function \(f \) used here as an example, but can be observed (and proved) for any jump discontinuity.

Does the Gibbs phenomenon vanish when we use Fejér’s series instead of the Fourier series? Figure 2.2 shows the Fejér approximation to \(f \), again to 20 terms. The oscillation is now replaced by a pronounced “undershoot” to the right of 0 (this can be explained by the positivity of the Fejér kernel); again, the undershoot can be observed to move closer to the discontinuity but not vanish altogether when more terms are added. In fact, we have to pay for the increased smoothness of the approximation by its reduced willingness to snuggle up to the limit function.

2.4.2 A Function with Given Integer Moments

The \(k \)th moment of a function \(f \in L^1(\mathbb{R}) \) is defined as

\[
\mu_k(f) = \int_{-\infty}^{\infty} f(t) t^k \, dt,
\]

provided that \(t \mapsto f(t) t^k \in L^1(\mathbb{R}) \). The Hamburger moment problem is the problem to find a function \(f \) with a given sequence of moments \((\mu_k) \). This problem is underdetermined: there can be non-vanishing functions whose every moment is 0. This is easily seen by the following argument. Assume that \(f \) is \(k \) times differentiable with every derivative in \(L^1(\mathbb{R}) \). Then by partial integration,

\[
\hat{f}^{(k)}(x) = \int_{-\infty}^{\infty} f^{(k)}(t) e^{-ixt} \, dt = (ix)^k \hat{f}(x),
\]

and by the inversion theorem, \(\int_{-\infty}^{\infty} \hat{f}(x) x^k \, dx = 2\pi f^{(k)}(0) \). Thus if \(f \in L^1(\mathbb{R}) \) is infinitely differentiable with every derivative in \(L^1(\mathbb{R}) \) and satisfies \(f^{(k)}(0) = 0 \) for all \(k \), then all moments of \(\hat{f} \) vanish. Of course, such non-trivial functions \(f \) exist, even with compact support.

Obviously, for an even function every odd moment vanishes. To generalize this, it is quite easy to find, for given \(n \in \mathbb{N} \), a function whose \(k \)th moment is non-zero precisely when \(k \mod n = 0 \). Just choose an infinitely differentiable function \(f \in L^1(\mathbb{R}) \) with all derivatives in \(L^1(\mathbb{R}) \), and such that all its derivatives are non-zero at 0. Then set \(g(t) = f(t^n) \), and by the chain and product rule of differentiation, \(g^{(k)}(0) \) is non-zero precisely for \(k \mod n = 0 \). Thus, \(\hat{g} \) satisfies the
Figure 2.1: The Gibbs phenomenon for Fourier series

Figure 2.2: The Gibbs phenomenon for Fejér series
moment condition. If f is analytic, say $f(t) = \sum_{j=0}^{\infty} a_j t^j$, then $g^{(k)}(0) = (qn)! a_q$ if $k = qn$ and $g^{(k)}(0) = 0$ otherwise. An example for such a function f is $f(t) = (1 + t)e^{-t^2/2}$.

When this was first investigated some years ago, numerical fast Fourier transforms were used—as a test—to calculate the moments for $g(t) = f(t^n)$, where $f(t) = (1 + t)e^{-t^2/2}$ as above. The scheme for doing this is presented in Section 6.1 of the first volume. When this was done, it was noticed that the resulting moment values were extremely accurate, far more than one would expect based on what amounts to a simple step-function approximation to the Fourier integrals. Readers may recall that we encountered this phenomenon in Section 5.2 of the first volume. It is the foundation of some extremely efficient, highly accurate numerical quadrature schemes, as well shall see in Sections 7.4.2 and 7.4.3.

2.4.3 Bernoulli Convolutions

Consider the discrete probability density on the real line with measure $\frac{1}{2}$ at each of the two points ± 1. The corresponding measure is the so-called Bernoulli measure, denoted $b(X)$. For every $0 < q < 1$, the infinite convolution of measures

$$
\mu_q(X) = b(X) * b(X/q) * b(X/q^2) * \ldots
$$

exists as a weak limit of the finite convolutions. The most basic theorem about these infinite Bernoulli convolutions is due to Jessen and Wintner ([138]). They proved that μ_q is always continuous and that it is either absolutely continuous or purely singular. This statement follows from a more general theorem on infinite convolutions of purely discontinuous measures (Theorem 35 in [138]); however, it is not difficult to prove the statement directly with the use of Kolmogoroff’s 0-1-law (which can be found, e.g., in [26]). The question about these measures is to decide for which values of the parameter q they are singular, and for which they are absolutely continuous.

This question can be recast in a more real-analytic way by defining the distribution function F_q of μ_q by

$$
F_q(t) = \mu_q(-\infty, t],
$$

and to ask for which q this continuous, increasing function F_q is singular, and for which it is absolutely continuous. Note that F_q satisfies $F_q(t) = 0$ for $t < -1/(1 - q)$ and $F_q(t) = 1$ for $t > 1/(1 - q)$.
Another way to define the distribution function F_q is by functional equations: F_q is the only bounded solution of the functional equation

$$F(t) = \frac{1}{2}F\left(\frac{t-1}{q}\right) + \frac{1}{2}F\left(\frac{t+1}{q}\right)$$

(2.4.18)

with the above restrictions. Moreover, if F_q is absolutely continuous and thus has a density $f_q \in L^1(\mathbb{R})$, then f_q satisfies the functional equation

$$2q f(t) = f\left(\frac{t-1}{q}\right) + f\left(\frac{t+1}{q}\right)$$

(2.4.19)

almost everywhere. This is a special case of a much more general class of equations, namely two-scale difference equations. Those are functional equations of the type

$$f(t) = \sum_{n=0}^{N} c_n f(\alpha t - \beta_n) \quad (t \in \mathbb{R})$$

(2.4.20)

with $c_n \in \mathbb{C}$, $\beta_n \in \mathbb{R}$ and $\alpha > 1$. They were first discussed by Ingrid Daubechies and Jeffrey C. Lagarias in \cite{98, 99}, who proved existence and uniqueness theorems and derived some properties of L^1-solutions. One of their theorems, which we state here in part for the general equation (2.4.20) and in part for the specific case (2.4.19), is the following.

Theorem 2.4.1

1. If $\alpha^{-1}(c_0 + \cdots + c_N) = 1$, then the vector space of $L^1(\mathbb{R})$-solutions of (2.4.20) is at most 1-dimensional.

2. If, for given $q \in (0, 1)$, equation (2.4.19) has a non-trivial L^1-solution f_q, then its Fourier transform satisfies $\hat{f}_q(0) \neq 0$, and is given by

$$\hat{f}_q(x) = \hat{f}_q(0) \prod_{n=0}^{\infty} \cos(q^n x).$$

(2.4.21)

In particular, for normalization we can assume $\hat{f}_q(0) = 1$.

3. On the other hand, if the right-hand side of (2.4.21) is the Fourier transform of an L^1-function f_q, then f_q is a solution of (2.4.19).
4. Any non-trivial L^1-solution of (2.4.20) is finitely supported. In the case of (2.4.19), the support of f_q is contained in $[-1/(1-q), 1/(1-q)]$.

This implies in particular that the question whether the infinite Bernoulli convolution (2.4.17) is absolutely continuous is equivalent to the question whether (2.4.19) has a non-trivial L^1-solution. Now what is known about these questions?

It is relatively easy to see that in the case $0 < q < 1/2$, the solution of (2.4.18) is singular; it is in fact a Cantor function, meaning that it is constant on a dense set of intervals. This was first proved by R. Kershner and A. Wintner in [144]. (An example of a Cantor function is depicted in Figure 6.1 of the first volume.)

It is also easy to see that in the case $q = 1/2$ there is an L^1-solution of (2.4.18), namely

$$f_{1/2}(t) = \frac{1}{4} \chi_{[-2,2]}(t).$$

Moreover, this can be used to construct a solution for every $q = 2^{-1/p}$ where p is an integer: namely

$$f_q(t) = f_{1/2}(t) * f_{1/2}(qt) * \cdots * f_{1/2}(q^{p-1}t). \quad (2.4.22)$$

This was first noted by A. Wintner [206] via the Fourier transform. Explicitly, we have

$$f_{2^{-1/p}}(x) = \prod_{n=0}^{\infty} \cos(2^{-n/p} x) = \prod_{m=0}^{p-1} \prod_{k=0}^{\infty} \cos(2^{-(m+k/p)} x)$$

$$= f_{1/2}(x) \cdot f_{1/2}(q^{1/p} x) \cdots f_{1/2}(q^{(p-1)/p} x),$$

which is equivalent to (2.4.22) by the convolution theorem.

Note that the regularity of these solutions $f_{2^{-1/p}}$ increases when p and thus $q = 2^{-1/p}$ increases: $f_{2^{-1/p}} \in C^{p-2}(\mathbb{R})$. From the results given so far one might therefore surmise that (2.4.19) would have a non-trivial L^1-solution for every $q \geq 1/2$ with increasing regularity when q increases. This supposition, however, would be wrong, and it came as a surprise when Erdős proved in 1939 [109] that there are some values of $1/2 < q < 1$ for which (2.4.19) does not have an L^1-solution: namely the inverses of Pisot numbers. A Pisot number (discussed further in Exercise 13 of Chapter 7) is defined to be an algebraic integer greater than 1 all of whose algebraic conjugates lie inside the unit disk. The best known example of a Pisot number is the golden mean $\phi = (\sqrt{5}+1)/2$. The characteristic property of Pisot numbers is that their powers quickly approach integers: If a is a Pisot number then there exists a θ, $0 < \theta < 1$, such that

$$\text{dist}(a^n, \mathbb{Z}) \leq \theta^n \quad \text{for all } n \in \mathbb{N}. \quad (2.4.23)$$
Erdős used this property to prove that if \(q = 1/a \) for a Pisot number \(a \), then \(\lim \sup_{x \to \infty} \left| \hat{f}_q(x) \right| > 0 \). Thus in these cases, \(f_q \) cannot be in \(L^1(\mathbb{R}) \), since that would contradict the Riemann-Lebesgue lemma. Erdős’s proof uses the Fourier transform \(\hat{f}_q \): Consider, for \(N \in \mathbb{N} \),

\[
\left| \hat{f}_q(q^{-N}\pi) \right| = \prod_{n=1}^{\infty} \left| \cos(q^n\pi) \right| \cdot \prod_{n=0}^{N-1} \left| \cos(q^{-n}\pi) \right| =: C \cdot p_N,
\]

where \(C > 0 \). Moreover, choose \(\theta \neq 1/2 \) according to (2.4.23) and note that

\[
p_N = \prod_{n=0}^{N-1} \left| \cos(q^n\pi) \right| \cdot \prod_{n=0}^{N-1} \left| \cos(q^{-n}\pi) \right| \\
\geq \prod_{n=0}^{N-1} \cos(\theta^n\pi) \cdot \prod_{n=0}^{N-1} \left| \cos(q^{-n}\pi) \right| \\
\geq \prod_{n=0}^{\infty} \cos(\theta^n\pi) \cdot \prod_{n=0}^{\infty} \left| \cos(q^{-n}\pi) \right| = C' > 0,
\]

independently of \(N \).

In 1944, R. Salem [184] showed that the reciprocals of Pisot numbers are the only values of \(q \) where \(\hat{f}_q(x) \) does not tend to 0 for \(x \to \infty \). In fact, no other \(q > \frac{1}{2} \) are known at all where \(F_q \) is singular. Moreover, the set of explicitly given \(q \) with absolutely continuous \(F_q \) is also not very big: The largest such set known to date was found by A. Garsia in 1962 [113]. It contains reciprocals of certain algebraic numbers (such as roots of the polynomials \(x^n + p - x^n - 2 \) for \(\max\{p, n\} \geq 2 \)) besides the roots of \(\frac{1}{2} \).

Matters remained in this state for more than 30 years; the question remained settled only for countably many \(q \in [\frac{1}{2}, 1) \). The most recent significant progress then was made in 1995 by B. Solomyak [193], who developed exciting new methods in geometric measure theory to prove that \(F_q \) is in fact absolutely continuous for almost every \(q \in [\frac{1}{2}, 1) \). (See also [170] for a simplified proof and [169] for a survey and some newer results.)

This, however, yields no explicit result; the set of \(q \)’s for which the behaviour of \(F_q \) is known explicitly is the same as before. Here we now suggest an experimental approach to at least identify \(q \)-values for which the behaviour of \(F_q \)
2.5. SOME CURIOUS SINC INTEGRALS

can be guessed. In fact, define a map \(T_q \), mapping the set of \(L^1 \)-functions with support in \([-1/(1 - q), 1/(1 - q)]\) and with \(\hat{f}_q(0) = 1 \) into itself, by

\[
(T_q f)(t) = \frac{1}{2q} \left(f\left(\frac{t-1}{q}\right) + f\left(\frac{t+1}{q}\right)\right) \quad \text{for } t \in \mathbb{R}.
\]

Then note that the fixed points of \(T_q \) are the solutions of (2.4.19) and that \(T_q \) is nonexpansive (cf. Chapter 6). Therefore one may have hope that by iterating the operator it may be possible to approximate the fixed point. In fact, if a sequence of iterates \(T^n_q f \) converges in \(L^1(\mathbb{R}) \) for some initial function \(f \), then the limit will be a fixed point of \(T_q \), since \(T_q \) is continuous. It is however not easy to prove convergence; no convergence proof is known. It is, on the other hand, possible to prove a weaker result, namely convergence in the mean, provided that a fixed point exists: If a solution \(f_q \in L^1(\mathbb{R}) \) of (2.4.19) exists, then for every initial function \(f \in L^1(\mathbb{R}) \) with support in \([-1/(1 - q), 1/(1 - q)]\),

\[
\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=0}^{n-1} T_q^k f - f_q \right\|_1 = 0.
\]

This theorem follows from properties of Markov operators [148] and from a result by Mauldin and Simon [157], showing that if an \(L^1 \)-density \(f_q \) exists, then it must be positive a.e. on its support.

In practice, we observe that the iterates usually seem to converge directly, even without the means. Plotting them, we hope to infer existence and regularity of \(L^1 \)-solutions by visual inspection. The figures on the next pages show the 25th iterate for \(f = \chi_{-1/(1-q),1/(1-q)} \) as initial function. Figure 2.3 shows convergence to \(f_{1/2} * f_{1/2} \) for \(q = 1/\sqrt{2} \); Figure 2.4 shows that for \(q = (\sqrt{5} - 1)/2 \), the iterates do not converge to a meaningful function. It is not known if there is a density for any rational \(q \in (1/2, 1) \). Figures 2.5 and 2.6 show that there seems to be a continuous limit in both cases; moreover, regularity seems to increase when \(q \) increases.

2.5 Some Curious Sinc Integrals

Define

\[
I_n = \int_0^\infty \text{sinc}(x) \cdot \text{sinc}\left(\frac{x}{3}\right) \cdots \text{sinc}\left(\frac{x}{2n+1}\right) \, dx.
\]
Figure 2.3: Bernoulli density f_q for $q = 1/\sqrt{2}$

Figure 2.4: The density f_q for $q = (\sqrt{5} - 1)/2$
2.5. SOME CURIOUS SINC INTEGRALS

Figure 2.5: Bernoulli density f_q for $q = 2/3$

Figure 2.6: The density f_q for $q = 3/4$
Then Maple or Mathematica evaluate

\[
I_0 = \int_0^\infty \text{sinc}(x) \, dx = \frac{\pi}{2},
\]
\[
I_1 = \int_0^\infty \text{sinc}(x) \text{sinc}\left(\frac{x}{3}\right) \, dx = \frac{\pi}{2},
\]
\[
I_6 = \int_0^\infty \text{sinc}(x) \cdot \text{sinc}\left(\frac{x}{3}\right) \cdots \text{sinc}\left(\frac{x}{13}\right) \, dx = \frac{\pi}{2}, \quad \text{but}
\]
\[
I_7 = \int_0^\infty \text{sinc}(x) \cdot \text{sinc}\left(\frac{x}{3}\right) \cdots \text{sinc}\left(\frac{x}{15}\right) \, dx = \frac{467807924713440738696537864469}{93561584944064090731052175000} \pi,
\]

where the fraction is approximately 0.499999999992646\ldots.

When this fact was recently verified by a researcher using a computer algebra package, he concluded that there must be a “bug” in the software. This conclusion may be too hasty, but it opens the question: How far can we trust our computer algebra system? (To quote computer scientists: Is it a bug or a feature?)

In this section, we will derive general formulas for this type of sinc integrals, thereby proving that all of the above evaluations are in fact correct. Thus, this is a somewhat cautionary example for too enthusiastically inferring patterns from symbolic or numerical computations. The material comes from [33], and additional information can also be found in [34].

2.5.1 The Basic Sinc Integral

It will turn out that the general multi-sinc integral can be reduced to the integral \(I_0\), so that it makes sense to first evaluate this integral. Note that the function \(\text{sinc}(x)\) is not an element of \(L^1(\mathbb{R})\)! Thus, Lebesgue theory cannot be applied here directly, and in fact the integral has to be interpreted correctly. Here we use the usual interpretation

\[
I_0 = \int_0^\infty \text{sinc}(x) \, dx = \lim_{a \to \infty} \int_0^a \text{sinc}(x) \, dx.
\]
2.5. SOME CURIOUS SINC INTEGRALS

Thus we interpret it as an improper Riemann integral, or at best as the limit of Lebesgue integrals.

Of course, Maple or Mathematica directly evaluate \(I_0 = \frac{\pi}{2} \), but this is not helpful for those who demand understanding or a proof. Where does this evaluation come from? Peering behind the covers of Maple reveals that it knows

\[
\int_0^a \frac{\sin(x)}{x} \, dx = \text{Si}(a) \to \frac{\pi}{2} \quad \text{for} \quad a \to \infty.
\]

However, this just shifts the problem to another level, since \(\text{Si} \) equals the integral by definition.

Here we will now give several proofs of this identity: one will be short (and incomplete), one will be wrong, and one will then be constructive!

For the first proof we just remember the Jordan theorem in Section 2.2.2, which directly implies that

\[
\lim_{a \to \infty} \int_{-a}^{a} \frac{\sin(\pi x)}{x} \, e^{i x t} \, dx = \frac{1}{2} \left(\chi_{(-\pi,\pi)}(t+) + \chi_{(-\pi,\pi)}(t-) \right),
\]

so that \(t = 0 \) gives the desired evaluation. However, this is only a proof modulo the Jordan theorem. A direct proof would still be preferable.

The second “proof” is not a proof, just an idea: namely to write the sinc function as an inner integral and then use Fubini. Writing \(\frac{1}{x} = \int_0^\infty e^{-tx} \, dt \), we would have to use Fubini on the function \(g(t, x) = e^{-tx} \sin(x) \) on \(\mathbb{R} \times \mathbb{R} \). The double integral which results from exchanging the integration order does in fact give

\[
\int_0^\infty \int_0^\infty e^{-tx} \sin(x) \, dx \, dt = \int_0^\infty \frac{1}{1 + t^2} \, dt = \frac{\pi}{2}.
\]

However, this exchange is not allowed, since the function \(g \) is not in \(L^1(\mathbb{R}^2) \).

But this idea can now be made into a proof which is valid and constructive. If \(g \) is not \(L^1 \) on \(\mathbb{R}^2 \), then we just have to restrict the domain of \(g \) at first. Now
Fubini is applicable in
\[\int_0^a \text{sinc}(x) \, dx = \int_0^a \int_0^\infty e^{-xt} \sin(x) \, dt \, dx \]
\[= \int_0^\infty \int_0^a e^{-xt} \sin(x) \, dx \, dt \]
\[= \int_0^\infty \frac{1}{1 + t^2} \left[1 - e^{-at}(t \sin(a) + \cos(a)) \right] \, dt, \]
\[= \frac{\pi}{2} - \int_0^\infty \frac{e^{-at}}{1 + t^2} (t \sin(a) + \cos(a)) \, dt, \]
and the final integral goes to 0 for \(a \to \infty \) as follows by elementary estimates (see [26]).

Another constructive method to evaluate the sinc integral is given in the exercises.

2.5.2 Iterated Sinc Integrals

Now let \(n \geq 1 \) and \(a_0, a_1, \ldots, a_n \) be positive reals. Our goal is to find inequalities (explicit formulas will be given in the exercises) for the integral

\[\tau = \int_0^\infty \prod_{k=0}^n \text{sinc}(a_k x) \, dx \]

which in particular explain the behaviour of the integrals \(I_n \). For simplicity and without loss we can assume that \(a_0 = 1 \).

Theorem 2.5.1 Let \(s = \sum_{k=1}^n a_k \). If \(s \leq 1 \), then \(\tau = \frac{\pi}{2} \); if \(s > 1 \), then \(\tau < \frac{\pi}{2} \).

Proof. Let \(\tau(x) = \prod_{k=0}^n \text{sinc}(a_k x) \). Note that \(\text{sinc}(a_k x) = \hat{f}_k(x) \) with \(f_k = \frac{1}{2a_k} \chi_{[-a_k,a_k]} \). Thus by the convolution theorem, \(\tau(x) = (f_0 * \cdots * f_n)(x) \), and by the inversion theorem,

\[\int_{-\infty}^\infty \tau(x) \, dx = 2\pi (f_0 * \cdots * f_n)(0) = 2\pi \frac{1}{2} \int_{-1}^1 (f_1 * \cdots * f_n)(u) \, du. \tag{2.5.24} \]
Now since the support of \(f_k \) equals \([-a_k, a_k]\), the support of \((f_1 \ast \cdots \ast f_n)\) equals \([-s, s]\). If \(s \leq 1 \), then
\[
\int_{-1}^{1} (f_1 \ast \cdots \ast f_n)(u) \, du = \int_{-\infty}^{\infty} (f_1 \ast \cdots \ast f_n)(u) \, du = (f_1 \ast \cdots \ast f_n)\hat{(0)} = \prod_{k=1}^{n} \text{sinc}(a_k 0) = 1,
\]
and \(\int_{-\infty}^{\infty} \tau(x) \, dx = \pi \) follows. If, on the other hand, \(s > 1 \), then the interval \([-1, 1]\) is strictly inside the support of \((f_1 \ast \cdots \ast f_n)\). Since \((f_1 \ast \cdots \ast f_n)\) is strictly positive in the interior of its support, we get
\[
\int_{-1}^{1} (f_1 \ast \cdots \ast f_n)(x) \, dx < \int_{-\infty}^{\infty} (f_1 \ast \cdots \ast f_n)(x) \, dx = 1,
\]
and \(\int_{-\infty}^{\infty} \tau(x) \, dx < \pi \) follows.

This theorem explains why the values of \(I_n \) suddenly drop below \(\frac{\pi}{2} \) at \(n = 7 \) and not before: we have \(\frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{13} < 1 \) but \(\frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{13} + \frac{1}{15} > 1 \).

A geometric interpretation of this behaviour can also be given. Consider the polyhedra
\[
P = \{(x_1, \ldots, x_n) : -1 \leq \sum_{k=1}^{n} x_k \leq 1, -a_k \leq x_k \leq a_k \text{ for } k = 1, \ldots, n\},
\]
\[
Q = \{(x_1, \ldots, x_n) : -1 \leq \sum_{k=1}^{n} a_k x_k \leq 1, -1 \leq x_k \leq 1 \text{ for } k = 1, \ldots, n\},
\]
\[
H = \{(x_1, \ldots, x_n) : -1 \leq x_k \leq 1 \text{ for } k = 1, \ldots, n\}.
\]
Then by formula (2.5.24),
\[
\tau = \frac{\pi}{2^n a_1 \cdots a_n} \int_{0}^{\min(1,s)} \left(\chi_{[-a_1,a_1]} \ast \cdots \ast \chi_{[-a_n,a_n]} \right)(x) \, dx
\]
\[
= \frac{\pi}{2} \frac{\text{Vol}(P)}{2^n a_1 \cdots a_n} = \frac{\pi}{2} \frac{\text{Vol}(Q)}{\text{Vol}(H)}.
\]
Thus the value of \(\tau \) drops below \(\frac{\pi}{2} \) precisely when the constraint \(-1 \leq \sum a_k x_k \leq 1\) becomes active and “bites” into the hypercube \(H \).
Of course, the same methods will also work for infinite products. Consider the function
\[C(x) = \prod_{n=1}^{\infty} \cos \left(\frac{x}{n} \right) \]
which is continuous since the product is absolutely convergent. We are interested in the integral \(\mu = \int_0^{\infty} C(x) \, dx \). High precision numerical evaluation of this highly oscillatory integral is by no means straightforward but possible. We get
\[\int_0^{\infty} C(x) \, dx \approx 0.785380557298632873492583011467332524761 \]
while \(\frac{\pi}{4} \approx 0.785398 \) only differs in the fifth significant place. Can this numerical evaluation \(\mu < \frac{\pi}{4} \) be confirmed symbolically? Indeed it can, by reduction to a sinc integral of the above type, only this time with an infinite product. Recall the sine product (1.2.11) and note that a corresponding product for the cosine can be derived:
\[\sin(x) = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{\pi^2 n^2} \right) \], \hspace{1cm} \cos(x) = \prod_{k=0}^{\infty} \left(1 - \frac{4x^2}{\pi^2 (2k+1)^2} \right). \]
Using this we get, by exchanging the order of multiplication,
\[C(x) = \prod_{n=1}^{\infty} \prod_{k=0}^{\infty} \left(1 - \frac{4x^2}{\pi^2 n^2 (2k+1)^2} \right) = \prod_{k=0}^{\infty} \text{sinc} \left(\frac{2x}{2k+1} \right). \]
Now apply the theorem to get that
\[\mu = \int_0^{\infty} C(x) \, dx = \lim_{N \to \infty} \int_0^{\infty} \prod_{k=0}^{N} \text{sinc} \left(\frac{2x}{2k+1} \right) \, dx < \frac{\pi}{4}. \]

This remarkable observation was made by Bernard Mares, then 17, and lead to the entire development that we have given of the iterated sinc integrals. More examples are given in the Exercises. There is an interesting connection with random harmonic series in [185].
2.6 Korovkin’s Three Function Theorems

In 1953 Korovkin [146] provided an approach to uniform approximation results that is especially well suited to computational assistance and discovery. While the result can be given much more generally we limit ourselves to the two most basic cases.

Below we let \(\iota \) denote the identity function \(t \mapsto t \), we let \(C[0,1] \) denote the continuous functions on the unit interval, and ‘\(\Rightarrow \)’ denotes uniform convergence (i.e., in the supremum norm). Also, \([0, 1]\) can easily be replaced by any compact interval \([a, b]\).

Recall that an operator between continuous function spaces is positive if it maps nonnegative functions to nonnegative functions (when linear this is necessarily a monotone and bounded linear operator). The motivating example is

Example: Bernstein Operators. For \(n \) in \(\mathbb{N} \), let \(B_n(f) \) be defined by

\[
B_n(f)(t) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} t^k (1-t)^{n-k}.
\] (2.6.25)

It is clear that the Bernstein operators are linear and positive and indeed take values which are polynomials.

Theorem 2.6.1 (First Korovkin three function theorem). Let \(L_n \) be a sequence of positive linear operators from \(C[0,1] \) to \(C[0,1] \). Suppose that

\[
L_n(1) \Rightarrow_n 1, \quad L_n(\iota) \Rightarrow_n \iota, \quad L_n(\iota^2) \Rightarrow_n \iota^2.
\]

Then

\[
L_n(f) \Rightarrow_n f
\]

as \(n \to \infty \) for all \(f \) in \(C[0,1] \).

Proof. The hypotheses imply that \(L_n(q) \Rightarrow_n q \) for all quadratic \(q \). Fix \(f \) in \(C[0,1] \), \(x \) in \([0, 1]\), and \(\varepsilon > 0 \). We claim that one can find a quadratic \(q^\varepsilon_x \) with \(f \leq q^\varepsilon_x \) and \(f(x) + \varepsilon \geq q^\varepsilon_x \). Thus

\[
L_n(f) \leq L_n(q^\varepsilon_x) \Rightarrow_n q^\varepsilon_x \leq f(x) + \varepsilon.
\]
A compactness argument completes the proof. The details are left for the reader as Exercise 33.

Corollary 2.6.2 Stone-Weierstrass. The Bernstein polynomials are uniformly dense in \(C[0,1] \).

Proof. We check by hand or in a computer algebra system that \(B_n(1) = 1 \), \(B_n(t) = t \), and slightly more elaborately \(B_n(t^2) = t^2 + \frac{1}{n} (t - t^2) \Rightarrow t^2 \).

In the periodic case, the role of \(t \) and \(t^2 \) is taken by \(\sin \) and \(\cos \), as the second Korovkin theorem shows.

Theorem 2.6.3 (Second Korovkin three function theorem). Let \(L_n \) be a sequence of positive linear operators from \(C(T) \) to \(C(T) \). Suppose that

\[
L_n(1) \Rightarrow n 1, \quad L_n(\sin) \Rightarrow n \sin, \quad L_n(\cos) \Rightarrow n \cos.
\]

Then

\[
L_n(f) \Rightarrow n f
\]

as \(n \to \infty \) for all \(f \) in \(C(T) \).

The great virtue of the Korovkin approach is that it provides us with a well formed program. We illustrate with the second theorem. For any kernel \((K_n) \) we may induce a sequence of linear operators \(K_n(f) = K_n * f \) and must answer two questions: (i) is each \(K_n \) positive? (ii) Does \(K_n(f) \Rightarrow n f \) for the three functions \(f = 1, \sin, \cos \)?

The first is usually easy to answer and the second frequently is a direct computation.

Example: Dirichlet and Fejér Operators. We revisit the uniform convergence properties of the Dirichlet and Fejér kernels from Section 2.3.3.

1. The Dirichlet kernel induces the operator

\[
D_n(f) = D_n * f
\]

where \(D_n = \sin((n + 1/2)t) / \sin(t/2) \). This is quite easily seen not to be positive. (A good thing since we know that \(D_n(f) \) need not converge uniformly to \(f \) for \(f \) in \(C(T) \).)
The Fejér kernel induces the operator
\[F_n(f) = F_n * f \]
where
\[F_n = \sin^2((n + 1)/2)t) / [(n + 1) \sin^2(t/2)] \geq 0. \]
Thus, to recover Fejér’s theorem on the uniform convergence of the Cesáro averages it suffices to compute
\[F_n(1) = 1, \quad F_n(\sin) = \frac{n}{n + 1} \sin, \quad F_n(\cos) = \frac{n}{n + 1} \cos. \]

2.7 Commentary and Additional Examples

1. **An error function evaluation.** (AMM Problem 11000, Mar. 2003) [147].

 (a) Work out the ordinary generating function of \((\binom{2n}{n})\) and so evaluate
 \[\sum_{n+m=N} \binom{2n}{n} \binom{2m}{m}. \]

 (b) Evaluate
 \[\int_0^\frac{\pi}{2} \cos^n(x) \sin^m(x) \, dx. \]

 (c) Recall the error function, \(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) \, dt \), and show for \(a > 0 \) that
 \[a \int_0^\frac{\pi}{2} \text{erf} \left(\sqrt{a} \cos x \right) \text{erf} \left(\sqrt{a} \sin x \right) \sin(2x) \, dx = e^{-a} + a - 1. \]

 (d) The previous evaluation can be viewed as an inner product of the functions \(\text{erf}(\sqrt{a} \sin x) \sin x \) and \(\text{erf}(\sqrt{a} \cos x) \cos x \). Determine that
 \[\int_0^\frac{\pi}{2} \text{erf}^2(\sqrt{a} \cos x) \cos^2(\cos x) \, dx \]

 \[= \sum_{N=0}^{\infty} \frac{(-a)^{N+1} (8N + 12)(2N) \binom{2N}{N}}{(N + 2)!} F \left(\frac{1}{2}, -N, -N - \frac{1}{2}; \frac{3}{2}, -N + \frac{1}{2}; -1 \right) \]

 \[= \frac{1}{2} \pi - 2 \int_0^1 e^{-1/2a(1+x^2)} \left\{ I_0 \left(\frac{1}{2} a (1 + x^2) \right) - I_1 \left(\frac{1}{2} a (1 + x^2) \right) \right\} \, dx. \]
2. Failure of Fubini. Evaluate these integrals:

(a) \[\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \, dy = -\frac{\pi}{4} \]

and \[\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx = \frac{\pi}{4} \]

(b) \[\int_0^1 \int_1^\infty (e^{-xy} - 2e^{-2xy}) \, dy \, dx - \int_1^\infty \int_0^1 (e^{-xy} - 2e^{-2xy}) \, dx \, dy = \ln(2) \]

(c) \[\int_0^\infty \int_0^\infty \frac{4xy - x^2 - y^2}{(x+y)^4} \, dy \, dx = \int_0^\infty \int_0^\infty \frac{4xy - x^2 - y^2}{(x+y)^4} \, dx \, dy = 0 \]

but, for all \(m, c > 0 \)

\[\int_0^{mc} \int_0^{c} \frac{4xy - x^2 - y^2}{(x+y)^4} \, dx \, dy = \frac{m}{(1+m)^2} \not\rightarrow 0, \]

as \(c \rightarrow \infty \).

In each case, explain why they differ without violating any known theorem.

3. Failure of l’Hôpital’s rule. Evaluate these limits:

Let \(f(x) = x + \cos(x) \sin(x) \) and \(g(x) = e^{\sin(x)}(x + \cos(x) \sin(x)) \).

Then \(\lim_{x \to \infty} \frac{f(x)}{g(x)} \) does not exist although \(\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = 0 \).

This is a caution against carelessly dividing by zero!

4. Various Fourier series evaluations.

(a) Compute the Fourier series of \(t/2, |t|, t^2 \) and \((t^3 - \pi^2 t)/3 \) on \([-\pi, \pi]\).

(b) Plot the 6th and 12th Fourier polynomials against the function in each case.
(c) Compute enough Fourier coefficients of $\sin(x^3)$ on $[-\pi, \pi]$ to be convinced of Parseval’s equation.

(d) Compute the Fourier series of t^2 and $(t^3 - \pi^2 t)/3$ on $[0, 2\pi]$.

(e) Use Parseval’s equation with $(t^3 - \pi^2 t)/3$ to evaluate $\zeta(6)$. Then apply Parseval to $t^4/4$.

(f) Show that
\[
\int_0^{\pi/2} \log(2 \sin(t/2)) \, dt = -G,
\]
where G is Catalan’s constant.

(g) Show that for $a > 0$,
\[
\cos(ax) = \frac{\sin(\pi a)}{\pi a} - 2 \frac{\sin(\pi a) a \cos x}{(a^2 - 1) \pi} + 2 \frac{\sin(\pi a) a \cos 2x}{(a^2 - 4) \pi} - 2 \frac{\sin(\pi a) a \cos 3x}{(a^2 - 9) \pi} + \cdots \tag{2.7.26}
\]
Similarly evaluate the Fourier series for $\exp(ax)$.

(h) Substitute $x = \pi$ in (2.7.26) to obtain the partial fraction expansion for \cot (compare the first example in Section 2.3.1) and integrate to recover the product formula for \sin (justifying all steps).

(i) Evaluate $\sum_{n \geq 0} 1/(4n^2 - 1)$.

5. **Two applications of Parseval’s equation.** Use Parseval’s equation in $L^2(\mathbb{R})$ to evaluate
\[
\int_{-\infty}^{\infty} \frac{\sin^2(t)}{t^2} \, dt = \pi \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{\sin^4(t)}{t^4} \, dt = \frac{2\pi}{3}.
\]
See also Exercise 28.

6. **Lebesgue’s example** of a continuous function with divergent Fourier series.

Construction. We follow Stromberg page 557 and let $a_k = 2\sum_{j=1}^{k} j!$ for $k \geq 0$ and define
\[
f_n(x) = \sum_{k=1}^{n} \frac{\sin(a_k|x|)}{k} \chi_k(|x|)
\]
on \([-\pi, \pi]\), where \(\chi_k\) is the characteristic function of \([\pi/a_k, \pi/a_{k-1}]\), and extend \(f\) by \(2\pi\)-periodicity onto \(\mathbb{R}\). Then \(f(x) = \lim_{n \to \infty} f_n(x)\) is continuous and the Fourier series is uniformly convergent on \([\delta, 2\pi - \delta]\) for \(\delta > 0\), but \(s_{a_k}(f, 0) \to \infty\) for \(k \to \infty\).

Convergence on \([\delta, 2\pi - \delta]\). This is easy since \(f = f_n\) on this interval for large \(n\), so that the “Riemann localization principle” for Fourier series can be used: If \(f_1(t) = f_2(t)\) for every \(t\) in some nonvoid open interval \(I\), then \(|s_n(f_1, t) - s_n(f_2, t)| \to 0\) for every \(t \in I\).

Divergence at 0. The divergence estimate comes as follows:

(a) We start with Dirichlet’s kernel: it can be proved that the \(n\)-th
2.7. COMMENTARY AND ADDITIONAL EXAMPLES

The partial sum behaves like

\[s_n(f, 0) = \frac{2}{\pi} \int_0^\pi f(t) \frac{\sin(nt)}{t} \, dt + \varepsilon_n \]

where \(\varepsilon_n \to 0 \).

(b) We estimate the first part of the integral as

\[\left| \int_0^{\pi/a_k} f(t) \frac{\sin(a_k t)}{t} \, dt \right| \leq \frac{\pi}{k+1} \]

since \(|\sin(x)| \leq 1 \) and \(|f(t)| \leq \frac{1}{k+1} \).

(c) We estimate the second part of the integral via

\[k! \ln(2) = \int_{\pi/a_k}^{\pi} \cos(2 a_k t) \, dt, \quad (2.7.27) \]

and the second term on the left, say \(I_k \), is no bigger than \(\frac{1}{2k} \) on using the Bonnet second mean value theorem to write

\[|I_k| = \left| a_k \int_{\pi/a_k}^\psi \cos(2 a_k t) \, dt \right| \leq \frac{1}{2k\pi}, \]

for some \(\frac{a_k-1}{\pi} \leq \psi \leq \frac{a_k}{\pi} \).

(d) We estimate the third part of the integral as

\[\left| \int_{\pi/a_k-1}^\pi f(t) \frac{\sin(a_k t)}{t} \, dt \right| \leq \frac{a_k-1}{\pi} \left| \int_{\pi/a_k-1}^\psi f(t) \sin(a_k t) \, dt \right| \]

\[\leq \frac{a_k-1}{\pi} \left(\left| \int_{\pi/a_k-1}^\psi \frac{\cos(a_k t)}{a_k} \, dt \right|^\psi_{\pi/a_k-1} + \int_{\pi/a_k-1}^\pi \left| f'(t) \cos(a_k t) \right| \, dt \right) \]

\[\leq \frac{a_k-1}{a_k} \left(\frac{1}{\pi} + a_k-1 \right) \to 0, \]

on using the mean value theorem again, and then applying integration by parts with the estimates that \(|f(t)| \leq 1, |f'(t)| \leq a_k-1 \). Thus, the dominant term is the first integral in (2.7.27) and \(s_{a_k}(f, 0) \to \infty \).
7. **Non-uniqueness of Fourier series.** Can a trigonometric series converge a.e. on R to a function \(\varphi \in L^1(T) \) and yet not be the Fourier series of \(\varphi \)? This question was first answered in the affirmative with \(\varphi = 0 \) in 1916 by the Russian analyst D. E. Menshow. His counterexample involves the Cantor set. For more details, see [195], from which the above text was cited.

8. **Nowhere differentiable continuous functions.** The first famous example of a continuous nowhere differentiable function was constructed by K. Weierstrass in 1872. (Tradition has it that Bolzano and Riemann constructed such examples before Weierstrass, but their examples did not become widely known.) Weierstrass’s example was given in the form of a trigonometric series. We state it here as a series on \([0,1]\), not on \([-\pi, \pi]\) or \([0,2\pi]\) as before, because this will simplify matters later; we analogously write \(f \in L^1(0,1) \), and formulas and theorems on Fourier series are easily converted to this case. Weierstrass’s example was

\[
C_{a,b}(t) = \sum_{n=0}^{\infty} a^n \cos(b^n 2\pi t)
\]

with \(|a| < 1\) and integral \(b > 1\). Weierstrass proved that \(C_{a,b}\) is nowhere differentiable when \(b \in 2N + 1\) and \(ab > 1 + \frac{3}{2}\pi\). This once and for all settled the question if such functions could exist (at the beginning of the 19th century, Ampère “proved” that every continuous function must be differentiable at some point). Some questions were left open, however: It is clear that \(C_{a,b}\) is differentiable when \(|a| b < 1\), since the series is then pointwise differentiable. But what happens for \(|a| b\) between 1 and \(1 + \frac{3}{2}\pi\)? This question gave several mathematicians a headache, until in 1916 G. H. Hardy proved that both \(C_{a,b}\) and the corresponding sine series

\[
S_{a,b}(t) = \sum_{n=0}^{\infty} a^n \sin(b^n 2\pi t)
\]

are nowhere differentiable whenever \(b\) is a real greater than 1, and \(ab > 1\). In his paper, Hardy first treated the case when \(b \in \mathbb{N}\), i.e., when the functions are given by their Fourier series, and only afterwards treated the general case of arbitrary real \(b\). Hardy’s methods were not easy, not
even in the Fourier case (where he used the Poisson kernel, among other things). In the ensuing years, several other, simpler proofs have been published. In the middle of the 20th century, G. Freud and J.-P. Kahane gave conditions for the differentiability of lacunary Fourier series (where non-zero Fourier coefficients are spaced far apart), from which the non-differentiability of Weierstrass’s function follows. Another approach to the Weierstrass functions uses functional equations.

Prove:

(a) The Weierstrass sine series \(f = S_{a,2} \) with \(b = 2 \) satisfies the system of two functional equations

\[
 f \left(\frac{t}{2} \right) = a f(t) + \sin(t), \quad f \left(\frac{t+1}{2} \right) = a f(t) - \sin(t) \tag{2.7.28}
\]

for every \(t \in [0,1] \). The cosine series \(S_{a,2} \) satisfies an analogous system.

(b) The Weierstrass function is the only bounded solution of the respective system on \([0,1]\).

Hint for (b): Use Banach’s fixed point theorem. (Note that it not only proves uniqueness, but can also be used to give an explicit approximation procedure. It is instructive to investigate how this procedure approaches the Weierstrass function for different initial guesses.)

9. **Replicative functions.** Let \(D \) be an interval containing \((0,1)\). A function \(f : D \to \mathbb{C} \) is called replicative (on \(D \)) if it satisfies the functional equation

\[
\frac{1}{p} \sum_{k=0}^{p-1} f \left(\frac{t + k}{p} \right) = u(p) f(t) \quad \text{for all } t \in D \text{ and } p \in \mathbb{N}, \tag{2.7.29}
\]

with a \(u : \mathbb{N} \to \mathbb{C} \) (which turns out to be unique if \(f \not\equiv 0 \)). This notion was introduced (with more generality) by D. E. Knuth in [145]. Examples are the cotangent \((\cot(\pi t))\) is replicative on \((0,1)\) with \(u(p) = 1 \), the Bernoulli polynomials \((B_m(t))\) is replicative on \(\mathbb{R} \) with \(u(p) = 1/p^m \) and derivatives of the Psi function (the \(m \)-th derivative of \(\Psi = \Gamma'/\Gamma \) is replicative on \(\mathbb{R}_+ \) with \(u(p) = p^m \)). Functions which are replicative and 1-periodic have multiplicative Fourier coefficients.
CHAPTER 2. FOURIER SERIES AND INTEGRALS

Theorem 2.7.1 (a) Let \(f : D \to \mathbb{C} \), \(f \neq 0 \), be replicative on \(D \) with \(u(p) \). Then \(u \) is necessarily multiplicative, i.e., \(u(mn) = u(m) \cdot u(n) \) for all \(m, n \in \mathbb{N} \).

(b) Let \(f \in L^1(0, 1) \) be replicative on \((0, 1)\) with a sequence \(u(p) \). Then \(\hat{f}_{mn}^u = u(n)\hat{f}_{m} \).

This implies: If \(u \equiv 1 \), then \(f(t) = \hat{f_0} \). If \(u \not\equiv 1 \), then

\[
f(t) \sim \hat{f}_{-1} \sum_{n=-\infty}^{-1} u(-n) e^{2\pi i nt} + \hat{f}_1 \sum_{n=1}^{\infty} u(n) e^{2\pi i nt}.
\]

(c) Let \(u \) be multiplicative and assume that \(f(t) = L \sum_{n=1}^{\infty} u(n) e^{2\pi i nt} \) is pointwise convergent on \([0, 1]\), where \(L \) is a linear summation method. Then \(f \) is replicative on \([0, 1]\).

Part (c) of this theorem makes it easy to construct many different examples of replicative functions on \([0, 1]\). Verify the following Fourier series:

(a) \[
\sum n^{-2} \sin(2\pi nt) = -2\pi \int_0^1 \ln(2\sin(\pi x)) \, dx \text{ on } [0, 1],
\]
\[
\sum n^{-2} \cos(2\pi nt) = B_2(t) \text{ on } [0, 1].
\]

(b) \[
\sum n^{-1} \sin(2\pi nt) = B_1(t) \text{ on } (0, 1) \text{ and } = 0 \text{ on } 0, 1,
\]
\[
\sum n^{-1} \cos(2\pi nt) = -\ln(2\sin(\pi t)) \text{ on } (0, 1) \text{ and } = \infty \text{ on } 0, 1.
\]

(c) \[
C_1 \sum \sin(2\pi nt) = \frac{1}{2} \cot(\pi t) \text{ on } (0, 1) \text{ and } = 0 \text{ on } 0, 1,
\]
\[
C_1 \sum \cos(2\pi nt) = -\frac{1}{2} \text{ on } (0, 1) \text{ and } = \infty \text{ on } 0, 1,
\]
where \(C_1 \) stands for Césaro summation.

(d) \[
A \sum n \sin(2\pi nt) = 0 \text{ on } [0, 1],
\]
\[
A \sum n \cos(2\pi nt) = -1/(4 \sin^2(\pi t)) \text{ on } (0, 1) \text{ and } = \infty \text{ on } 0, 1,
\]
where \(A \) stands for Abel summation.

(e) \[
\sum_{n=0}^{\infty} a^n \sin(p^n 2\pi t) = S_{a,p}(t) \text{ on } [0, 1],
\]
\[
\sum_{n=0}^{\infty} a^n \cos(p^n 2\pi t) = C_{a,p}(t) \text{ on } [0, 1],
\]
for \(p \) a prime, i.e., the nowhere differentiable Weierstrass functions can be replicative.

10. Conditions for \(\hat{f} \in L^1(\mathbb{R}) \).
(a) It is often useful to decide whether \(\hat{f} \in L^1(\mathbb{R}) \) for a given \(f \in L^1(\mathbb{R}) \), without having to explicitly compute \(\hat{f} \). The usual conditions assume differentiability properties of \(f \), since smoothness of \(f \) translates into shrinkage of \(\hat{f} \). Thus, \(f \in C^2(\mathbb{R}) \) is sufficient for \(\hat{f} \in L^1(\mathbb{R}) \). However, this condition does not cover the Fejér kernel, for example. A stronger condition, which is good for functions with bounded support, is given in the next theorem.

Theorem 2.7.2 Let \(f \) be an absolutely continuous function on the real line with compact support and let \(f' \) be of bounded total variation on \(\mathbb{R} \), i.e., \(V(f') < \infty \). Then \(\hat{f} \in L^1(\mathbb{R}) \) and

\[
\|\hat{f}\|_1 \leq 4\sqrt{V(f')} \|f\|_1. \tag{2.7.30}
\]

This theorem presents another experimental challenge: Is the constant “4” appearing there best possible? The answer is not known. Non-systematic experimentation has found no value for the constant greater than \(\pi \), which is achieved for the Fejér kernel. It is also not known if the “compact support” condition in the theorem is really needed.

Perform a systematic experiment on Theorem 2.7.2, in analogy to the experimentation for the uncertainty principle described in Section 5.2 of the first volume.

(b) A quite different condition is due to Chandrasekharan: If \(f \in L^1(\mathbb{R}) \), continuous at 0, and satisfies \(\hat{f} \geq 0 \) on \(\mathbb{R} \), then \(\hat{f} \in L^1(\mathbb{R}) \). The disadvantage of this condition is that it uses \(\hat{f} \) explicitly. It is applicable, however, to both the Fejér and the Poisson kernel.

11. **More kernels.** For each of the following kernels, decide whether (resp. for which parameters) it is an approximate identity in \(L^1(\mathbb{R}) \). Note that sometimes a version of Theorem 2.3.4 with weakened assumptions (allowing more variety in the kernels) is needed.

(a) The de la Vallée-Poussin kernel \(V^n_m \), depending on two integer parameters \(m, n \) with \(n > m \), is defined by \(V^n_m(t) = \sum_{k=-(n+m)}^{n+m} a_{m,k} e^{ikt} \)}
where
\[a_{n,k}^m = \begin{cases} 1, & \text{if } |k| \leq n - m, \\ \frac{n+m+1-|k|}{2m+1}, & \text{if } n - m \leq |k| \leq n + m, \\ 0, & \text{otherwise.} \end{cases} \]

Hint: Let \(m, n \) tend to infinity such that \(n/m \to \lambda \).

(b) For \(\alpha > 0 \), the \((C, \alpha)\)-kernel \(F_n^{(\alpha)}(t) \) is defined as
\[F_n^{(\alpha)}(t) = \sum_{k=-n}^{n} a_{n,k}^{(\alpha)} e^{ikt} \]
where
\[a_{n,k}^{(\alpha)} = \begin{cases} \frac{\Gamma(n-|k|+\alpha+1)\Gamma(n+1)}{\Gamma(n-|k|+1)\Gamma(n+\alpha+1)}, & \text{if } |k| \leq n + 1, \\ 0, & \text{otherwise.} \end{cases} \]

(c) For parameters \(\alpha_0, \ldots, \alpha_p \in \mathbb{R} \) with \(\alpha_0 + \cdots + \alpha_p = 1 \), the Blackman kernel \(H_n^{(\alpha_0,\ldots,\alpha_p)}(t) \) is defined by
\[H_n^{(\alpha_0,\ldots,\alpha_p)}(t) = \sum_{k=-n}^{n} h_{n,k}^{(\alpha_0,\ldots,\alpha_p)} e^{ikt} \]
where
\[h_{n,k}^{(\alpha_0,\ldots,\alpha_p)} = \sum_{j=0}^{p} \alpha_j \cos(jkt_n), \]
with \(t_n = \frac{2\pi}{2n+1} \).

(d) The Fejér-Korovkin kernel \(FK_n \) is defined as
\[FK_n(t) = \begin{cases} \frac{2\sin^2(\pi/(n+2))}{n+2} \left[\frac{\cos((n+2)t/2)}{\cos(\pi/(n+2)) - \cos t} \right]^2, & \text{if } t \neq \pm \pi/(n+2) + 2j\pi, \\ (n+2)/2, & \text{otherwise.} \end{cases} \]

depending on whether \(t \neq \pm \pi/(n+2) + 2j\pi \) or \(t = \pm \pi/(n+2) + 2j\pi \), respectively. It can be written in the form \(FK_n(t) = \sum_{k=-n}^{n} a_{n,k} e^{ikt} \)
where
\[a_{n,k} = \frac{(n - |k| + 3) \sin \frac{|k|+1}{n+2} \pi - (n - |k| + 1) \sin \frac{|k|-1}{n+2} \pi}{2(n+2) \sin(\pi/(n+2))}. \]

(e) Finally, the Jackson kernel \(J_n \) is a rescaled version of the square of the Fejér kernel, namely
\[J_n(t) = \frac{3}{n(2n^2 + 1)} \left[\sin(nt/2) \right]^4. \]
12. **The Haar basis.** As we mentioned in the text, the trigonometric functions \(e^{int} \) constitute an orthogonal basis for the space \(L^2(T) \), so that \(L^2 \)-statements follow from general Hilbert space theory. Bases other than the trigonometric are of course conceivable and are in fact used in practice for the analysis of \(L^2 \)-functions. Since about 15 years ago, certain bases of \(L^2(R) \), called wavelet bases, have found widespread use in signal analysis. Such bases are constructed as follows. Take a \(\psi \in L^2(R) \) and define \(\psi_{j,n}(t) = 2^{n/2} \psi(2^n t - j) \). Then \(\psi \) is called an orthogonal wavelet if \(\{ \psi_{j,n} : j, n \in \mathbb{Z} \} \) is an orthonormal basis of \(L^2(R) \).

Show: \(\psi = \chi_{[0,1/2)} - \chi_{[1/2,1)} \) is an orthogonal wavelet.

The associated basis \(\{ \psi_{j,n} \} \) is called the Haar basis of \(L^2(R) \).

13. **The Schauder basis.** The foundation of the theory of bases in Banach spaces was laid by J. Schauder in the 1930's. A sequence \((x_n) \) in a Banach space \(B \) is called a basis of \(B \) if for every \(x \in B \) there exists a unique sequence of scalars \((\alpha_n) \) with

\[
x = \sum_{n=1}^{\infty} \alpha_n x_n \quad \text{in} \ B.
\]

The trigonometric functions are not a basis for \(L^1(T) \) or for \(C(T) \), although they are dense in these spaces. The standard example of a basis for the space \(C[0,1] \) is also due to Schauder (although G. Faber had used the same basis before Schauder, in a different analytical guise). This Faber-Schauder basis is the system of continuous functions \(\{ \sigma_{0,0}, \sigma_{1,0} \} \cup \{ \sigma_{i,n} : n \in \mathbb{N}, \ i = 0, \ldots, 2^{n-1}-1 \} \), where \(\sigma_{0,0}(t) = 1 - t, \ \sigma_{1,0}(t) = t \), and the function \(\sigma_{i,n} \) is the linear interpolation of the points

\[
(0,0), \quad \left(\frac{i}{2^n-1}, 0 \right), \quad \left(\frac{2i + 1}{2^n}, 1 \right), \quad \left(\frac{i + 1}{2^{n-1}}, 0 \right), \quad (1,0).
\]

This system is a basis of the space \(C[0,1] \), more precisely: **Every continuous function \(f : [0,1] \to \mathbb{R} \) has a unique, uniformly convergent expansion of the form**

\[
f(x) = \gamma_{0,0}(f) \sigma_{0,0}(x) + \gamma_{1,0}(f) \sigma_{1,0}(x) + \sum_{n=1}^{\infty} \sum_{i=0}^{2^n-1-1} \gamma_{i,n}(f) \sigma_{i,n}(x),
\]
where the coefficients \(\gamma_{i,n}(f) \) are given by \(\gamma_{0,0}(f) = f(0), \gamma_{1,0}(f) = f(1), \) and

\[
\gamma_{i,n}(f) = f\left(\frac{2i + 1}{2n}\right) - \frac{1}{2} f\left(\frac{i}{2^{n-1}}\right) - \frac{1}{2} f\left(\frac{i + 1}{2^{n-1}}\right).
\]

Knowing the Schauder basis expansion of a continuous function \(f \) can be useful in the analysis of \(f \). For example, Faber proved in 1910 a criterion for differentiability of \(f \) in terms of its Schauder coefficients: If \(f'(x_0) \in \mathbb{R} \) exists for some \(x_0 \in [0,1] \), then

\[
\lim_{n \to \infty} 2^n \cdot \min\{|\gamma_{i,n}(f)| : i = 0, \ldots, 2^{n-1} - 1\} = 0. \tag{2.7.31}
\]

Interestingly, this condition can be used to prove non-differentiability of the Weierstrass functions in an elementary way. Prove:

(a) The Schauder coefficients of the Weierstrass sine series \(f = S_{a,2} \) satisfy the recursion

\[
\gamma_{0,1}(f) = 0,
\gamma_{i,n+1}(f) = a\gamma_{i,n}(f) + \gamma_{i,n}(\sin) \quad \text{for } n \in \mathbb{N}, i = 0, \ldots, 2^{n-1} - 1,
\gamma_{i,n+1}(f) = a\gamma_{i-2^{n-1},n}(f) - \gamma_{i-2^{n-1},n}(\sin) \quad \text{for } n \in \mathbb{N}, i = 2^{n-1}, \ldots, 2^n - 1.
\]

Hint: Use the functional equations (2.7.28).

(b) Faber’s condition (2.7.31) is not satisfied for \(f = S_{a,2} \). Thus this function is nowhere differentiable.

It is instructive to experiment with the recursion in (a): to plot the Schauder coefficients and Schauder approximations for the Weierstrass and for other functions which satisfy similar functional equations. Details of this method can be found in [114] and [115].

14. Riemann-Lebesgue lemma. Deduce the following from the Riemann-Lebesgue lemma for every Lebesgue integrable function \(f \).

(a) For any real \(\sigma(t) \)

\[
\lim_{t \to \infty} \int_\mathbb{R} f(x) \cos^2(tx + \sigma(t)) \, dx = \frac{1}{2} \int_\mathbb{R} f(x) \, dx.
\]

(b) The coefficients \(\hat{f}(n) \to 0 \) as \(n \to \infty \).
Conclude that the trigonometric series $\sum_{n>1} \sin (nt) / \log (n)$ is not the Fourier series of any integrable function.

When a_n is convex decreasing with limit zero and with $\sum_{n>0} a_n/n = \infty$, it is in fact the case that $\sum_{n>0} a_n \cos (nt)$ is a Fourier series of an integrable function, but $\sum_{n>0} a_n \sin (nt)$ is not [195, Chapter 8].

15. **A few Fourier transforms.** We have already seen many examples of Fourier transforms and their Laplace transform variants. The specialization to the Mellin transform is explored in the next chapter.

(a) Show that the Fourier transform of $\cos^2(ax)$ is $\cos (y^2/(4a) - \pi/4) / \sqrt{2a}$.
Find the transform of $\sin^2(ax)$.

(b) Show that for $a > 0$, the Fourier transform of $|x| \exp(-a|x|)$ is $a (2/\pi)^1/2 (a^2 - y^2) / (a^2 + y^2)^2$.

(c) Find the transform of $1/x^a$ and of $1/(a^2 + x^2)$.

(d) Find all square-integrable solutions to $\hat{f}/\sqrt{2\pi} = f$ (the fixed points of the normalized Fourier transform). Then experiment with the orbit of $f \mapsto \hat{f}/\sqrt{2\pi}$ for various choices f_0.

16. **The isoperimetric inequality.** The ancient Greek geometers knew already that a circle with given perimeter encloses a larger area than any polygon with the same perimeter. In 1841 Steiner extended this result to simple closed plane curves. Here we will sketch a Fourier series proof (due to Hurwitz), for simplicity restricted to (piecewise) C^1-curves. Thus, assume that we have a simple, closed C^1-curve $(x(t), y(t))$ in \mathbb{R}^2 of length $\int_{-\pi}^{\pi} (x'(s)^2 + y'(s)^2)^{1/2} ds = 2\pi$. Without loss of generality we can assume that $x'(s)^2 + y'(s)^2 = 1$ for all s. We wish to minimize the area inside the curve, given by

$$A = \int_{-\pi}^{\pi} x(s) y'(s) ds.$$

Show: $A \geq \pi$ with equality if and only if $(x(t) - \hat{x}_0)^2 + (y(t) - \hat{y}_0)^2 = 1$. This is the *isoperimetric inequality*.

Hint: substitute Fourier series, transfer the formulas for derivatives from Section 2.4.2 to the $L^1(\mathbb{T})$-case and use Parseval’s equation.
17. **The maximum principle.** In like fashion, employ Poisson’s kernel to heuristically deduce that the maximum principle discussed briefly in Section 6.5 applies.

18. **The heat equation.** The one-dimensional heat equation

\[\frac{\partial \phi}{\partial t}(x, t) = \frac{\pi}{4i} \frac{\partial^2 \phi}{\partial x^2}(x, t), \]

is solved by the general theta function \[\sum_{n \in \mathbb{Z}} x^n \exp(-\pi i t n^2). \]

More usefully, when \(G : \mathbb{R} \rightarrow \mathbb{C} \) is continuous and bounded we may solve the equation

\[\frac{\partial \phi}{\partial t}(x, t) = K \frac{\partial^2 \phi}{\partial x^2}(x, t), \]

with boundary condition \(\phi(x, t) \rightarrow G(x) \) as \(t \rightarrow 0^+ \), by the infinitely differentiable function

\[G * E_{1/\sqrt{2Kt}}(x) = \frac{1}{2 \sqrt{\pi Kt}} \int_{\mathbb{R}} G(x - y) \exp(-y^2/2Kt) \, dy, \]

for \(x \) in \(\mathbb{R} \) and \(t > 0 \).

19. **The easiest three-dimensional Watson integral.** We start with the easiest integral to evaluate. Let

\[W_3(w) = \int_0^\pi \int_0^\pi \int_0^\pi \frac{1}{1 - w \cos(x) \cos(y) \cos(z)} \, dx \, dy \, dz, \]

for suitable \(w > 0 \).

(a) Prove that

\[W_3(1) = \int_0^\pi \int_0^\pi \int_0^\pi \frac{1}{1 - \cos(x) \cos(y) \cos(z)} \, dx \, dy \, dz \]

\[= \frac{1}{4} \Gamma^4 \left(\frac{1}{4} \right) = 4 \pi K \left(\frac{1}{\sqrt{2}} \right) \]

via the binomial expansion and of [44, Exercise 14, page 188].
2.7. COMMENTARY AND ADDITIONAL EXAMPLES

(b) More generally

\[W_3((2kk')^2) = \pi^3 F \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; \frac{1}{2}, 1; 4k^2 (1 - k^2) \right) = 4\pi K^2 (k). \]

20. The harder three-dimensional Watson integrals. We now describe results largely in Joyce and Zucker [139, 140], where more background can also be found. The following integral arises in Gaussian and spherical models of ferromagnetism and in the theory of random walks.

(a) One of the most impressive closed-form evaluations of a multiple integral is Watson’s

\[
W_1 = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{3 - \cos (x) - \cos (y) - \cos (z)} \, dx \, dy \, dz \\
= \frac{1}{96} (\sqrt{3} - 1) \Gamma^2 \left(\frac{1}{24} \right) \Gamma^2 \left(\frac{11}{24} \right) \\
= 4\pi \left(18 + 12\sqrt{2} - 10\sqrt{3} - 7\sqrt{6} \right) K^2 (k_6)
\]

where \(k_6 = (2 - \sqrt{3}) (\sqrt{3} - \sqrt{2}) \) is the sixth singular value of Section 4.2.

Note that \(W_1 = \pi^3 \int_0^{\infty} \exp(-3t) I_0^3(t) \, dt \) allows for efficient computation [139] where the Bessel function \(I_0(t) \) has been written as \(\frac{1}{\pi} \int_0^{\pi} \exp(t \cos(\theta)) \, d\theta. \)

The evaluation (2.7.32) in its original form is due to Watson and is really a tour de force. In the next Exercise we describe a refined and simplified evaluation due to Joyce and Zucker [140].

(b) Similarly, the integral

\[
W_2 = \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \frac{dx \, dy \, dz}{3 - \cos (x) \cos (y) - \cos (y) \cos (z) - \cos (z) \cos (x)} \\
= \sqrt{3}\pi K^2 \left(\sin \left(\frac{\pi}{12} \right) \right) = \frac{2^{1/3}}{8\pi} \beta^2 \left(\frac{1}{3}, \frac{1}{3} \right)
\]

where \(\sin \left(\frac{\pi}{12} \right) = k_3 \) is the third singular value, again as in Section 4.2. Indeed, as we shall see in Exercise 21, (2.7.33) is easier and can be derived on the way to (2.7.32).
(c) The evaluation (2.7.33) then implies that
\[
\frac{1}{\pi} W_2 = \int_0^\pi \int_0^\pi \frac{dy \, dz}{\sqrt{9 - 8 \cos(y) \cos(z) - \cos^2(y) - \cos^2(z) + \cos^2(y) \cos^2(z)}}
\]
on performing the innermost integration carefully.

(d) The expression inside the square-root factors as \((\cos x \cos y + \cos x + \cos y - 3)(\cos x \cos y - \cos x - \cos y - 3)\). Upon substituting \(s = x/2, t = y/2\), one obtains
\[
\int_0^{\pi/2} \int_0^{\pi/2} \frac{dy \, dx}{\sqrt{(1 - \sin^2(x) \sin^2(y))(1 - \cos^2(x) \cos^2(y))}} = \frac{1}{4\pi} \sum_{m=0}^\infty \sum_{n=0}^\infty \beta^{3} \left(\frac{n + \frac{1}{2}, m + \frac{1}{2}}{n} \right) = \sqrt{3} K^2 \left(\sin \left(\frac{\pi}{12} \right) \right).
\]

(a) For \(a > 1, b > 1\) show that
\[
\frac{1}{2} \int_0^\pi \frac{1}{\sqrt{(a + \cos(y))(b - \cos(y))}} \, dy = \frac{K \left(\frac{\sqrt{2(b+a)}}{(1+b)(1+a)} \right)}{\sqrt{(1+b)(1+a)}}
\]
\[
= \int_0^{1/2\pi} \frac{1}{\sqrt{(1+b)(1+a) \cos^2(t) + (1-a)(1-b) \sin^2(t)}} \, dt
\]

(b) A beautiful but harder to establish identity is that
\[
\int_0^{\pi/2} K \left(\sqrt{c^2 \cos^2(s) + \sin^2(s)} \right) \, ds = K \left(\sqrt{\frac{1-c}{2}} \right) K \left(\sqrt{\frac{1+c}{2}} \right)
\]
\[
(2.7.34)
\]
or equivalently that
\[
\int_0^{\pi/2} K \left(\sqrt{1 - (2kk')^2 \cos^2(\theta)} \right) \, d\theta = K(k) K(k')
\]
2.7. COMMENTARY AND ADDITIONAL EXAMPLES

with \(k' = \sqrt{1 - k^2} \). Hence

\[
\int_{0}^{\pi} K \left(\sqrt{1 - (2k_N k'_N)^2 \cos^2(\theta)} \right) d\theta = \sqrt{N} K^2 (k_N)
\]

where \(k_N \) is the \(N \)-th singular value. This is especially pretty for \(N = 1, 3, 7 \) so that \(2k_N k'_N = 1, 1/2, 1/8 \) respectively.

(c) Deduce that face centered cubic (FCC) lattice Green’s function evaluates as

\[
\frac{1}{\pi} W_2 = \int_{0}^{\pi} K \left(\sqrt{\frac{3}{4} \cos^2(s) + \sin^2(s)} \right) ds = \sqrt{3} K^2 (k_3).
\]

(d) Correspondingly, Watson’s evaluation for the simple cubic (SC) lattice relied on deriving

\[
W_1 = \sqrt{2} \pi \int_{0}^{\pi} K \left(\frac{\cos(x) - 5}{2} \right) dx,
\]

and the following extension of (2.7.34):

\[
\int_{0}^{\pi} K \left(\sqrt{c^2 \cos^2(s) + d^2 \sin^2(s)} \right) ds = K \left(\sqrt{\frac{1 - cd - \sqrt{(d^2 - 1)(c^2 - 1)}}{2}} \right) \times K \left(\sqrt{\frac{1 + cd - \sqrt{(d^2 - 1)(c^2 - 1)}}{2}} \right).
\]

(e) The Generalized Watson integrals. Let

\[
W_1(w_1) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{3 - w_1 (\cos(x) - \cos(y) - \cos(z))} dx dy dz
\]

\[
W_2(w_2) = \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \frac{dx dy dz}{3 - w_2 (\cos(x) \cos(y) - \cos(y) \cos(z) - \cos(z) \cos(x))}.
\]
CHAPTER 2. FOURIER SERIES AND INTEGRALS

In a beautiful study, Joyce and Zucker [140], using the sort of elliptic and hypergeometric transformations we have explored, now are able to show fairly directly that

\[W_2(-w_1(3 + zw_1)/(1 - w_1)) = (1 - w_1)^{1/2} W_1(w_1). \]

Verify that, with \(w_1 = -1 \), this leads to a quite direct evaluation of (2.7.32) from (2.7.33).

(f) It is also true that

\[W_1 = \sqrt{2} \pi \int_0^{\pi/2} K \left(\frac{1}{2} + \frac{1}{2} \sin^2 (t) \right) dt. \]

(g) A more symmetric form. Show that

\[
\frac{\int_0^{\pi/2} K \left(\sqrt{1 - 4 k^2 (1 - k^2) \cos^2 (x)} \right) dx}{\int_0^{\pi/2} \int_0^{\pi/2} \frac{dt dx}{\sqrt{\cos^2 (t) + 4 k^2 (1 - k^2) \cos^2 (x) \sin^2 (t)}}}
\]

for \(0 < k < 1 \).

Hint: For (21d) consider \(N = 3 \left(c^2 = \frac{3}{2} \right) \) in (21c), and let \(a \) and \(b \) be defined as \(a = (3 - \cos x) / (1 + \cos x) \) and \(b = (3 + \cos x) / (1 - \cos x) \) in (21a).

22. **Watson integral and Burg entropy.** Consider the perturbed Burg entropy maximization problem

\[
v(\alpha) = \sup_{p \geq 0} \left\{ \log \left(p(x_1, x_2, x_3) \right) \mid \int_0^1 \int_0^1 \int_0^1 p(x_1, x_2, x_3) dx_1 dx_2 dx_3 = 1, \right. \\
and for \(k = 1, 2, 3, \int_0^1 \int_0^1 \int_0^1 p(x_1, x_2, x_3) \cos (2 \pi x_k) \ dx_1 dx_2 dx_3 = \alpha \}
\]

of maximizing the log of a density \(p \) with given mean, and with the first three cosine moments fixed at a parameter value \(0 \leq \alpha < 1 \). It transpires that there is a parameter value \(\alpha \) such that below and at that value \(v(\alpha) \) is attained, while above it is finite but unattained. This is interesting severally:
2.7. COMMENTARY AND ADDITIONAL EXAMPLES

(a) The general method—maximizing \(\int_t \log(p(t)) \, dt \) subject to a finite number of trigonometric moments—is frequently used. In one or two dimensions such spectral problems are always attained when feasible.

(b) There is no easy way to see this problem qualitatively changes at \(\alpha \), but we can get an idea by considering

\[
\overline{p}(x_1, x_2, x_3) = \frac{1/W_1}{3 - \sum_1^3 \cos(2\pi x_i)}
\]

and checking that this is feasible for

\[
\overline{\alpha} = 1 - 1/(3W_1) \approx 0.34053732955099914283
\]

in terms of the first Watson integral, \(W_1 \).

(c) By using Fenchel duality [61] one can show that this \(\overline{p} \) is optimal.

(d) Indeed, for all \(\alpha \geq 0 \) the only possible optimal solution is of the form

\[
\overline{p}_\alpha(x_1, x_2, x_3) = \frac{1}{\lambda_0^0 - \sum_1^3 \lambda_0^i \cos(2\pi x_i)},
\]

for some real numbers \(\lambda_0^i \). Note that we have four coefficients to determine; using the four constraints we can solve for them.

For \(0 \leq \alpha \leq \overline{\alpha} \), the precise form is parameterized by the generalized Watson integral:

\[
\overline{p}_\alpha(x_1, x_2, x_3) = \frac{1/W_1(w)}{3 - \sum_1^3 w \cos(2\pi x_i)},
\]

and \(\alpha = 1 - 1/(3W_1(w)) \), as \(w \) ranges from zero to one. Note also that \(W_1(w) = \pi^3 \int_0^\infty I_0^3(w t) e^{-3t} \, dt \), allows one to quickly obtain \(w \) from \(\alpha \) numerically.

For \(\alpha > \overline{\alpha} \), no feasible reciprocal polynomial can stay positive. Full details are given in [60].

23. A “momentary” recursion. Choose \(p \in N \) and define polynomials \(q_n(x) \) recursively by \(q_0(x) = -1 \) and \(q_{n+1}(x) = q'_n(x) - x^{p-1} q_n(x) \). Give an explicit formula for \(q_n(0) \) (and for \(q_n(x) \)?).
24. **The limit of certain Fourier transforms.** For \(p \in 2\mathbb{N} \) let \(f_p(t) = e^{-t^p/p} \).

In Figure 2.8, the functions \(\hat{f}_p(x) \) are shown for \(p = 2, 8, 16 \). The figure suggests that there may be a limit function as \(p \to \infty \). Identify this limit function!

25. **The Schilling equation.** The Schilling equation is the functional equation

\[
4q f(qt) = f(t + 1) + 2f(t) + f(t - 1) \quad \text{for } t \in \mathbb{R}
\]

with a parameter \(q \in (0, 1) \). It has its origin in Physics, and although it has been studied intensively in recent years, there are still many open questions connected with it. The main question is to find values of \(q \) for which the Schilling equation has a non-trivial \(L^1 \)-solution. Discuss this question!

Hint: If an \(L^1 \)-function \(f \) satisfies (2.4.19), then a rescaled version of \(f * f \) satisfies the Schilling equation.

26. **Another way to evaluate the sinc integral.** The evaluation of the integral \(\int_0^\infty \sin y / y \, dy = \pi / 2 \) also follows on taking the limit, via Binet’s
mean value theorem [195, p. 328], of the absolutely convergent integral

\[\int_0^\infty \frac{\sin y}{y^{1+\varepsilon}} \, dy = \frac{\pi \sec\left(\frac{\pi \varepsilon}{2}\right)}{2 \Gamma(1 + \varepsilon)}. \]

Maple happily provides the second integral in a form which simplifies to that we have given. A conventional Mellin transform based proof follows.

(a) For \(0 < \varepsilon < 1\), use the \(\Gamma\)-function to write

\[\int_0^\infty \frac{\sin y}{y^{1+\varepsilon}} \, dy = \frac{1}{\Gamma(\varepsilon + 1)} \int_0^\infty dx \int_0^\infty \sin(x) \exp(-xt)t^{\varepsilon} \, dt. \]

(b) Interchange variables and evaluate the inner integral to \(t^{\varepsilon}/(t^2 + 1)\).

(c) Then use the \(\beta\)-function to prove

\[\int_0^\infty \frac{t^{\varepsilon}}{t^2 + 1} \, dt = \beta\left(\frac{1}{2} - \frac{1}{\varepsilon}, \frac{1}{2} - \frac{1}{\varepsilon}\right) = \frac{\pi}{2} \sec\left(\frac{\pi \varepsilon}{2}\right). \]

Note:

\[\int_0^\infty \frac{\log^2 s}{s^2 + 1} \, ds = (-1)^n \left(\frac{\pi}{2}\right)^{2n+1} E_{2n}. \]

27. **An explicit formula for the sinc integrals.** Assume that \(n \geq 1\) and \(a_0, a_1, \ldots, a_n > 0\). For \(\gamma = (\gamma_1, \ldots, \gamma_n) \in \{-1, 1\}^n\) define

\[b_\gamma = a_0 + \sum_{k=1}^n \gamma_k a_k \quad \text{and} \quad \epsilon_\gamma = \prod_{k=1}^n \gamma_k. \]

Show:

(a) \[\sum_{\gamma \in \{-1, 1\}^n} \epsilon_\gamma b_\gamma^r = \begin{cases} 0, & \text{for } r = 0, 1, \ldots, n - 1, \\ 2^n n! \prod_{k=1}^n a_k, & \text{for } r = n, \end{cases} \]

where \(b_\gamma^0 = 1\) even if \(b_\gamma = 0\).

Hint: Expand both sides of \(e^{a_0 t} \prod_{k=1}^n (e^{a_k t} - e^{-a_k t}) = \sum_{\gamma \in \{-1, 1\}^n} \epsilon_\gamma e^{b_\gamma t}\) into a power series in \(t\) and compare coefficients.

(b) \[\prod_{k=0}^n \sin(a_k x) = \frac{1}{2^n} \sum_{\gamma \in \{-1, 1\}^n} \epsilon_\gamma \cos(b_\gamma x - \frac{\pi}{2} (n + 1)). \]
(c) \[\int_0^\infty \prod_{k=0}^n \frac{\sin(a_k x)}{x} \, dx = \frac{\pi}{2} \frac{1}{2^n n!} \sum_{\gamma \in \{-1,1\}^n} \epsilon_\gamma b_\gamma \text{sign}(b_\gamma). \]

(d) \[\int_0^\infty \prod_{k=0}^n \text{sinc}(a_k x) \, dx = \frac{\pi}{2 a_0} \left(1 - \frac{1}{2^{n-1} n! a_1 \cdots a_n} \sum_{b_\gamma \leq 0} \epsilon_\gamma b_\gamma^{n} \right). \]

(e) The first “bite”. If \(\sum_{k=1}^{n-1} a_k \leq a_0 < \sum_{k=1}^{n} a_k \), then
\[\int_0^\infty \prod_{k=0}^n \text{sinc}(a_k x) \, dx = \frac{\pi}{2 a_0} \left(1 - \frac{(a_1 + \cdots + a_n - a_0)^n}{2^{n-1} n! a_1 \cdots a_n} \right). \]

28. A special sinc integral. Evaluate
\[\int_0^\infty \text{sinc}^n(x) \, dx = \frac{\pi}{2} \left(1 + \sum_{1 \leq r \leq \frac{n}{2}} \frac{(-1)^r (n-2r)^{n-1}}{(r-1)! (n-r)!} \right) \]
\[= \frac{\pi}{2^n (n-1)!} \sum_{0 \leq r \leq \frac{n}{2}} (-1)^r \binom{n}{r} (n-2r)^{n-1}. \]
Thus confirm the results of Exercise 5.

29. A strange cosine integral. Let \(C^*(x) = \cos(2x) \prod_{n=1}^\infty \cos \left(\frac{x}{n} \right) \). Show symbolically that \(\int_0^\infty C^*(x) \, dx < \frac{\pi}{8} \), and show numerically that
\[0 < \frac{\pi}{8} - \int_0^\infty C^*(x) \, dx < 10^{-41}. \]
This is thus hard to distinguish numerically from \(\pi/8 \); compare Exercise 39.

30. Multi-variable sinc integrals. For \(x, y \in \mathbb{R}^m \) we write \(x \cdot y \) to denote the dot product. Define the sinc space \(S^{m,n} \) to be the set of \(m \times (m+n) \) matrices \(S = (s_1 \ s_2 \ \ldots \ s_{m+n}) \) of column vectors in \(\mathbb{R}^m \) such that
\[\int_{\mathbb{R}^m} \prod_{k=1}^{m+n} \text{sinc}(s_k \cdot y) \, dy < \infty, \]
and a function $\sigma : S^{m,n} \to \mathbb{R}$ by
\[
\sigma(S) = \int_{\mathbb{R}^m} \prod_{k=1}^{m+n} \text{sinc}(s_k \cdot y) \, dy.
\]

Correspondingly, define the polyhedron space $\mathcal{P}^{m,n}$ to be the complete set of $m \times (m+n)$ matrices $P = (p_1 \ p_2 \ \ldots \ p_{m+n})$ and a function $\nu : \mathcal{P}^{m,n} \to \mathbb{R}$ by
\[
\nu(P) = \text{Vol}\{x \in \mathbb{R}^n : |p_k \cdot x| \leq 1 \text{ for } k = 1, 2, \ldots, m+n\}.
\]

(a) Note that by change of basis, for $S \in S^{m,n}$ and $P \in \mathcal{P}^{m,n}$ we have
\[
\sigma(S) = \det(M) \sigma(MS) \quad \text{and} \quad \nu(P) = \det(N) \nu(NP)
\]
for non-singular $(m \times m)$-matrices M and non-singular $(n \times n)$-matrices N.

(b) The following correspondence between multidimensional sinc integrals and volumes of polyhedra can be proved with some effort (see [34]): If $n \geq m$, if A is a non-singular $(m \times m)$-Matrix, and if B is any $(m \times n)$-matrix having m of its columns linearly independent, then
\[
\sigma(A|B) = \frac{\sigma(I^m|A^{-1}B)}{|\det(A)|} = \frac{\pi^m \nu(I^n|(A^{-1}B)^T)}{2^m |\det(A)|}.
\]
Similarly, if $n \geq m$, if C is a non-singular $(n \times n)$-matrix, and if D is any $(n \times m)$-matrix such that $C^{-1}D$ has m linearly independent rows, then
\[
\nu(C|D) = \frac{\nu(I^n|C^{-1}D)}{|\det(C)|} = \frac{2^n \sigma(I^m|(C^{-1}D)^T)}{\pi^m |\det(C)|}.
\]

(c) Use the theorem from (b) to determine (with the use of symbolic integration) the volume of $\{x \in \mathbb{R}^6 : |p_k \cdot x| \leq 1, \ k = 1, \ldots, 11\}$, where p_i is the i-th column of the matrix
\[
P = \begin{pmatrix}
10 & 0 & 0 & 0 & 0 & 0 & 9 & 10 & -1 & -3 & 7 \\
0 & 10 & 0 & 0 & 0 & 0 & -2 & -1 & -8 & 2 & -6 \\
0 & 0 & 10 & 0 & 0 & 0 & -9 & 7 & -5 & 5 & 1 \\
0 & 0 & 0 & 10 & 0 & 0 & 5 & -2 & -9 & -8 & -9 \\
0 & 0 & 0 & 0 & 10 & 0 & -10 & -2 & -3 & 6 & -4 \\
0 & 0 & 0 & 0 & 0 & 10 & -8 & 9 & 2 & 7 & -10
\end{pmatrix}.
\]
CHAPTER 2. FOURIER SERIES AND INTEGRALS

Hint: \(\nu(P) = \frac{32}{5\pi^5} \int_{\mathbb{R}^5} \prod_{k=1}^{11} \text{sinc}(s_i \cdot y) \, dy \), where

\[
S = \begin{pmatrix}
10 & 0 & 0 & 0 & 0 & 9 & -2 & -9 & 5 & -10 & -8 \\
0 & 10 & 0 & 0 & 0 & 10 & -1 & 7 & -2 & -2 & 9 \\
0 & 0 & 10 & 0 & 0 & -1 & -8 & -5 & -9 & -3 & 2 \\
0 & 0 & 0 & 10 & 0 & -3 & 2 & 5 & -8 & 6 & 7 \\
0 & 0 & 0 & 0 & 10 & 7 & -6 & 1 & -9 & -4 & -10
\end{pmatrix}.
\]

31. Another iterated sinc integral. Problem: For positive constants \((a_i)\), evaluate

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{\sin(a_1 x_1) \cdots \sin(a_n x_n) \sin(a_1 x_1 + \cdots + a_n x_n)}{x_1 \cdots x_n} \, dx_1 \cdots dx_n.
\]

Answer:

\((= \pi^n \min(a_1, \ldots, a_n)) \)

32. Infinite series and Clausen’s product. For \(x\) and \(t\) appropriately restricted:

(a) Use Clausen’s product to obtain

\[
\sum_{n=0}^{\infty} \frac{(t)_n (-t)_n}{(2n)!} (2x)^{2n} = \cos(2t \arcsin(x))
\]

and

\[
-\frac{1}{2} \sum_{n=1}^{\infty} \frac{(t)_n (-t)_n}{(2n)!} (4 \sin^2 x)^n = \sin^2(tx).
\]

(b) Obtain the Taylor series

\[
\arcsin^2(x) = \frac{1}{2} \sum_{n \geq 1} \frac{(2x)^{2n}}{n^2(2n)!}
\]

on taking an appropriate limit as \(t \to 0\) (see also Problem 16 of Chapter 1). Hence show

\[
\sum_{n \geq 1} \frac{1}{n^2(2n)^n} = \frac{\pi^2}{18} \quad \text{and} \quad \sum_{n \geq 1} \frac{(-1)^n}{n^2(2n)^n} = -2 \log^2 \left(\frac{1 + \sqrt{5}}{2} \right).
\]
Evaluate $\sum_{n \geq 1} 3^n / \binom{2n}{n}$ and both of $\sum_{n \geq 1} (\pm 1)^n / \binom{2n}{n}$.

33. **Proof of the Korovkin theorems.** Prove Theorems 2.6.1 and 2.6.3.

34. **Korovkin by inequalities.** An interesting recent approach to the Korovkin theorems is given in [203]. Recall that a subset of a continuous function space is a subalgebra if it is closed under pointwise multiplication. Therein, the following elegant lemma is proven:

Lemma 2.7.3 Suppose that \mathcal{A} is a norm-closed subalgebra of $C[a,b]$ that contains 1. Let T be a positive linear operator on \mathcal{A} such that $T(1) \leq 1$. Then

(a) $\mathcal{E}(h) = T(h)^2 - T(h^2) \geq 0$,
(b) $|T(fg) - T(f)T(g)| \leq \mathcal{E}(f) \mathcal{E}(g)$,
(c) $\|T(fg) - T(f)T(g)\|^2 \leq \|\mathcal{E}(f)\| \|\mathcal{E}(g)\|$,
(d) $\|T(fg) - T(f)T(g)\|^2 \leq \|\mathcal{E}(f)\| \|\mathcal{E}(g) + \mathcal{E}(k)\|$,

for all elements f, g, h and k in the algebra.

Proof. (a) is established by observing that $T\left(h + t 1\right)^2 \geq 0$ for all real t. Then (b) follows with h replaced by $f + tg$, and (c) and (d) are easy consequences.

It is now a nice problem to show that the first and second Korovkin theorems follow—if one knows that the polynomials are dense in $C[a,b]$. Moreover, the same approach will yield:

Theorem 2.7.4 (Complex Korovkin theorem.) Let $D = \{z \in C : |z| \leq 1\}$. Let T_n be positive linear operators on $C(D)$ such that $T_n(h) \Rightarrow h$ for $h = 1, z$ and $|z|^2$. Then this holds for all h in $C(D)$.

To prove this it helps to observe that positive operators preserve conjugates: $T(\overline{h}) = \overline{T(h)}$ for all h in $C(D)$.

35. **Bézier curves.** The Bézier curve of degree n defined by $n+1$ points b_0, b_1, \ldots, b_n is exactly the Bernstein polynomial interpolating the values at k/n

$$
\sum_{k=0}^{n} b_k \binom{n}{k} t^k (1-t)^{n-k}. \quad (2.7.35)
$$

Typically, parametric cubic Bézier curves in the plane such as

$$
x(t) = -(1-t)^3 - t (1-t)^2 + \frac{3}{2} t^2 (1-t) + t^3 \quad (2.7.36)
y(t) = \frac{1}{2} (1-t)^3 + t (1-t)^2 + \frac{3}{4} t^2 (1-t) + \frac{1}{2} t^3
$$

are fitted together for smoothing purposes. To compute the values it is useful to observe Castlejau’s algorithm that the basis functions $B_{n,k}(t) = t \mapsto \binom{n}{k} t^k (1-t)^{n-k}$ satisfy the recursion $B_{n,-1} = B_{n-1,n} = 0$ and

$$
B_{n,k}(t) = (1-t) B_{n-1,k}(t) + t B_{n-1,k-1}(t),
$$

for $0 \leq k \leq n$ and all real t.

36. **Bernstein polynomials.** Determine the appropriate Bernstein polynomials on $[-1, 1]$.

37. **Rate of approximation.** As we have seen, the rate of approximation is tied to the smoothness of the underlying function. In Lebesgue’s proof of the Stone-Weierstrass Theorem, the main work is in showing that $|\cdot|$ can be uniformly approximated by polynomials on $[-1, 1]$. Plot the first few Bernstein polynomials and observe that the approximation is worst at zero, where $|t|$ is not differentiable.

38. **Korovkin kernels.** Apply the Korovkin theorems to the Poisson, Fejér-Korovkin and Jackson kernels respectively.

39. **Contriving coincidences.**

(a) A consequence of the theta transform, (2.3.15), in the form $s \theta_3^2 (e^{-\pi s}) = \theta_3^2 (e^{-\pi/s})$, is that

$$
\sum_{n \geq 1} e^{-(n/10)^2} \approx 5 \Gamma \left(\frac{1}{2} \right) - \frac{1}{2}
$$
and they agree through 427 digits, with similar more baroque estimates for higher powers of ten.

(b) The fact that \(\alpha = \exp(\pi \sqrt{163}/3) \approx 640320 \) lies deeper and relates to the fact that the only imaginary quadratic fields with unique factorization are \(\mathbb{Q}(\sqrt{-d}) \) are with \(d = 1, 2, 4, 7, 11, 19, 43, 67 \) and the largest 163.

(c) This leads to a spectacular “billion-digit” fraud

\[
\sum_{n=1}^{\infty} \frac{[n\alpha]}{2^n} \approx 1280640
\]

as we saw this is explained by Theorem 1.4.2 and the fact that as a continued fraction

\[\alpha = [640320, 1653264929, 30, 1, 321, 2, 1, 1, 4, 3, 4, 2, \ldots].\]

(d) Determine the integers \(N_d \) such that

\[
\sum_{n=1}^{\infty} \frac{[n\alpha_d]}{2^n} \approx N_d
\]

for \(\alpha_d = \exp(\pi \sqrt{d}/3) \) with \(d = 19, 43, 67, 163 \), and determine the error in each case.

These examples signal the danger of inferring a symbolic identity from tools like PSLQ without knowing the context. That said, we know of nearly no cases where such spectacular deception has occurred without contrivance.
Chapter 3

Zeta Functions and Multi-Zeta Values

I see some parallels between the shifts of fashion in mathematics and in music. In music, the popular new styles of jazz and rock became fashionable a little earlier than the new mathematical styles of chaos and complexity theory. Jazz and rock were long despised by classical musicians, but have emerged as art-forms more accessible than classical musicians to a wide section of the public. Jazz and rock are no longer to be despised as passing fads. Neither are chaos and complexity theory. But still, classical music and classical mathematics are not dead. Mozart lives, and so does Euler. When the wheel of fashion turns once more, quantum mechanics and hard analysis will once again be in style.

Freeman Dyson, 1996 [107]

The Riemann zeta function has already appeared in various contexts in earlier chapters. We start this chapter with gathering up its basic properties in one place. After some further discussion of special values of the function we complete this chapter with a more detailed exploration of multiple zeta values (Euler sums) as introduced in Chapter 2 of the first volume.

The zeta-function (of Riemann) is defined by the following series

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \tag{3.0.1}
\]
for \(\text{Re}(s) > 1 \). The estimate
\[
\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} > \frac{n}{2n} = \frac{1}{2},
\]
and the comparison test for series show that \(\zeta \) has a pole at \(s = 1 \). To go further we introduce the alternating zeta function
\[
\alpha(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}, \tag{3.0.2}
\]
and note that \(\alpha(1) = \log(2) \). This series clearly converges (and is analytic as a uniform limit) for \(\text{Re}(s) > 0 \). Moreover regrouping the terms shows that
\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{(2n)^s} + \sum_{n=1}^{\infty} \frac{1}{(2n-1)^s} = 2^{-s} \zeta(s) - \sum_{n=1}^{\infty} \frac{1}{(2n-1)^s}, \tag{3.0.3}
\]
Then (3.0.3) shows \(\sum_{n=1}^{\infty} 1/(2n-1)^s = (1 - 2^{-s}) \zeta(s) \) and that \(\alpha(s) = (1 - 2^{1-s}) \zeta(s) \). Thus
\[
\zeta(s) = \frac{\alpha(s)}{1 - 2^{1-s}}, \tag{3.0.4}
\]
for \(\text{Re}(s) > 0 \) which provides an analytic continuation of \(\zeta \) in the right halfplane, with \(\zeta\left(\frac{1}{2}\right) = 0.6048986430 \cdots \). We also note that \(\alpha(2) = \frac{1}{2} \zeta(2) = \frac{\pi^2}{12} \).

3.1 Reflection and Continuation of the Zeta Function

There are various routes to extend \(\zeta \) into the left halfplane. We choose to start with the function \(\tau(t) = [\theta_3 e^{-\pi t} - 1]/2 \), where \(\theta_3(q) = \sum_{n=-\infty}^{\infty} q^{n^2} \) as is discussed in Section 4.2. For \(\text{Re}(s) > 1/2 \) we choose to use the Mellin transform
\[
M_s(\tau) = \int_0^\infty \tau(x)x^{s-1} \, dx
\]
and write

$$M_s(\tau) = \sum_{n=1}^{\infty} n^{-2s} \pi^{-s} \int_{0}^{\infty} e^{-t} t^{s-1} dt = \frac{\Gamma(s)}{\pi^s} \zeta(2s).$$ \hspace{1cm} (3.1.5)$$

Hence

$$\Gamma\left(\frac{s}{2}\right) \zeta(s) \pi^{-s/2} = \int_{0}^{\infty} t^{s/2-1} \tau(t) dt$$ \hspace{1cm} (3.1.6)$$

$$= \int_{1}^{\infty} t^{s/2-1} \tau(t) dt + \int_{0}^{1} t^{-1/2} \tau \left(\frac{1}{t}\right) t^{s/2-1} dt$$

$$+ \frac{1}{2} \int_{0}^{1} (t^{-1/2} - 1) t^{s/2-1} dt. \hspace{1cm} (3.1.7)$$

Here we have used the theta transform (2.3.15) to replace $\tau(t)$ by $\tau(1/t)$ on $[1, \infty)$. We deduce that

$$\Gamma\left(\frac{s}{2}\right) \zeta(s) \pi^{-s/2} = -\left(\frac{1}{s} + \frac{1}{1-s}\right) + \int_{1}^{\infty} \frac{t^{s/2} + t^{(1-s)/2}}{t} \tau(t) dt, \hspace{1cm} (3.1.8)$$

as we see on evaluating the final integral and sending $t \to 1/t$ in the second integral in (3.1.6). Because $\tau(t) = O(e^{-\pi t})$ as $t \to \infty$, the integral in (3.1.8) is an entire function of s, and as Γ has a simple pole at zero, we see that (3.1.8) extends ζ analytically with a single simple pole at $s = 1$.

Most beautifully, we note that (3.1.8) is left unchanged by the substitution $s \to 1 - s$ and so we obtain the famous functional equation or reflection formula for the Riemann zeta function:

$$\Gamma\left(\frac{s}{2}\right) \zeta(s) \pi^{-s/2} = \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s) \pi^{-(1-s)/2}. \hspace{1cm} (3.1.9)$$

Symmetry of ζ around the line Re(s) = $\frac{1}{2}$ is now apparent. We also note that (3.1.9) shows that $\zeta(-2n)$ is zero for even negative integers (because Γ has poles at those values). These are called “trivial” zeros. As we shall see in the next section $\zeta(-2n + 1)$ is a Bernoulli number and so rational.

The reflection formula must represent one of the most beautiful findings in mathematics. The British analyst G. N. Watson, discussing his response to equally beautiful formulae of the wonderful Indian mathematical genius Ramanujan (1887–1920), such as those in Section 3.2.3, describes:
a thrill which is indistinguishable from the thrill I feel when I enter
the Sagrestia Nuovo of the Capella Medici and see before me the aus-
tere beauty of the four statues representing ‘Day,’ ‘Night,’ ‘Evening,’
and ‘Dawn’ which Michelangelo has set over the tomb of Guiliano
de’Medici and Lorenzo de’Medici. (G. N. Watson, 1886–1965)

3.1.1 The Riemann Hypothesis

The mathematical centrality of the zeta function can hardly be overestimated.
It figures as Problem 8 (of 23) in Hilbert’s famous 1900 lecture and as Problem
5 (of 8) in the Millennium Problems posed in 2000. Central to the study of the
zeta function is the Riemann hypothesis:

The only non-trivial zeroes of \(\zeta(s) \) for complex numbers \(s = \sigma + i\gamma \)
lie on \(\sigma = \frac{1}{2} \).

The importance and present status of the Riemann hypothesis in prime num-
ber theory has already been discussed in Chapter 2 of the first volume, and is
developed further in Exercise 2.

A related reason for the role of \(\zeta \) in number theory comes from the following:

Lemma 3.1.1 (Euler Product.) For \(\sigma = \text{Re}(s) > 1 \)

\[
\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1},
\]

(3.1.10)

where \(p \) runs over the primes.

Proof. This can be seen, on expanding the finite product, and using unique
factorization:

\[
\prod_{p \leq X} \left(1 - \frac{1}{p^s}\right) = \prod_{p \leq X} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) = \sum_{n \leq X} \frac{1}{n^s} + \mathcal{E}(s, X)
\]

(3.1.11)

where \(\mathcal{E}(s, X) \leq \sum_{n > X} 1/n^s \to X 0. \)

From this we may derive again that for \(\text{Re}(s) \geq 1 \) one has \(\zeta(s) \) has a pole
only at \(s = 1 \).
3.2 Special Values of the Zeta Function

3.2.1 Zeta at Even Positive Integers

We have already evaluated $\zeta(2)$ in various ways. There are also several ways to find the closed form for $\zeta(2n)$. Let us start with the intuitive path followed by Euler. Euler intuited his product formula for π (1.2.11) from the analogy with the Fundamental Theorem of Algebra and on writing down the Taylor series for $\sin(x)/x$ one is left to compare

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n + 1)!} = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right). \quad (3.2.12)$$

Thus, one has

$$\zeta(2) = \sum_{n>0} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Considering the next term we have

$$\sum_{\substack{m,n>0 \atop m<n}} \frac{1}{n^2 m^2} = \frac{\pi^4}{120}.$$

Now

$$\frac{\pi^4}{60} + \zeta(4) = 2 \sum_{\substack{m,n>0 \atop m\neq n}} \frac{1}{n^2 m^2} + \sum_{m>0} \frac{1}{m^4} = \sum_{m,n>0} \frac{1}{n^2 m^2} = \zeta(2)^2,$$

and

$$\zeta(4) = \frac{\pi^4}{36} - \frac{\pi^4}{60} = \frac{\pi^4}{90}.$$

One can continue in like fashion—by hand or in a computer algebra system—and obtain $\zeta(6) = \pi^6/945$, $\zeta(8) = \pi^8/9450$, $\zeta(10) = \pi^{10}/93555$, and we discover that $\zeta(2n) = q_n \pi^{2n}$ for some rational q_n, and it is clearly time to be more organized.

To do this we introduce the even Bernoulli numbers via the generating function

$$\frac{z}{e^z - 1} + \frac{z}{2} = \sum_{m=0}^{\infty} B_{2m} \frac{z^{2m}}{(2m)!}, \quad |z| \leq 2\pi, \quad (3.2.13)$$
and define $B_1 = -\frac{1}{2}$, $B_{2n+1} = 0$ for $n > 0$.

It is easy to discover, equivalently, that

$$\sum_{k=0}^{n} \binom{n+1}{k} B_k = 0, \quad (3.2.14)$$

and that

$$\pi z \cot(\pi z) = \sum_{m=0}^{\infty} (-1)^m B_{2m} \frac{(2\pi z)^{2m}}{(2m)!}.$$ \hspace{1cm} (3.2.15)

Returning to (1.2.11) and differentiating logarithmically we obtain

$$\pi \cot(\pi z) = \frac{1}{z} - \sum_{n=1}^{\infty} \frac{2z}{n^2 - z^2} = \sum_{n=1}^{\infty} \zeta(2n) z^{2n-1}, \quad (3.2.16)$$

where the second identity comes from repeated use of the geometric series. Comparing coefficients in (3.2.15) and (3.2.16) yields

$$\zeta(2m) = (-1)^m B_{2m} \frac{(2\pi)^{2m}}{2(2m)!}. \quad (3.2.17)$$

Using the reflection formula (3.1.9) we deduce that for nonnegative n

$$\zeta(-2n+1) = -\frac{B_{2n}}{2n}. \quad (3.2.18)$$

As the coefficient of B_{2n} in equation (3.2.14) is non-zero $(n + 1)$, equation (3.2.14) is a practical formula for generating Bernoulli numbers. The first few Bernoulli numbers are

$$\frac{1}{6}, \frac{1}{30}, \frac{1}{42}, \frac{1}{30}, \frac{5}{66}, \frac{691}{2730}. \quad (3.2.19)$$

Note that if one did too little computation one might come away with the impression that the numerator is always “1.” Actually, the numerator is as hard to compute as the number, but a lovely theorem of von Staudt and Clausen proves that the fractional part of B_{2n} and $\sigma_{2n} = \sum_{p=1|2n} \frac{1}{p}$ agree. Thus B_{2n} and σ_{2n} have the same denominators and the later can be very quickly computed, even for large n. The first 15 even values are

$$1, 6, 30, 42, 30, 6, 510, 798, 330, 138, 2730, 6, 870, 14322$$

and the mystery as to why terms reoccur is explained by von Staudt’s result.
3.2. SPECIAL VALUES OF THE ZETA FUNCTION

3.2.2 Zeta at Odd Positive Integers

It was only in 1976 that Apéry proved that \(\zeta(3) \) is irrational. As of the end of 2002, it is known that one of the next four odd zeta values is irrational and that infinitely many are, but we can not prove that \(\zeta(5) \) is. They certainly are not simple rational multiples of powers of \(\pi \).

Thanks to Apéry, who used \(A_3 \) below in his work, it is now well known that

\[
\begin{align*}
\zeta(2) &= 3 \sum_{k=1}^{\infty} \frac{1}{k^2 \binom{2k}{k}} \\
\zeta(3) &= \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^3 \binom{2k}{k}} \\
\zeta(4) &= \frac{36}{17} \sum_{k=1}^{\infty} \frac{1}{k^4 \binom{2k}{k}}
\end{align*}
\]

(See [54].)

These results make it tempting to conjecture that

\[
Z_5 = \zeta(5) / \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^5 \binom{2k}{k}}
\]

is a simple rational or algebraic number. Sadly, or happily we may use PSLQ to determine that if \(Z_5 \) satisfies a polynomial of degree \(\leq 25 \) the Euclidean norm of coefficients exceeds \(2 \times 10^{37} \). And the order and norm can be extended \(ad \ libidem \). Thus, any relatively prime integers \(p \) and \(q \) such that

\[
\zeta(5) = \frac{p}{q} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5 \binom{2k}{k}}
\]

have \(q \) astronomically large.

But a positive use of PSLQ yields in terms of the first polylogarithms:

\[
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5 \binom{2k}{k}} = 2\zeta(5) - \frac{4}{3} L^5 + \frac{8}{3} L^3 \zeta(2) + 4L^2 \zeta(3) + 80 \sum_{n>0} \left(\frac{1}{(2n)^5} - \frac{L}{(2n)^4} \right) \rho^{2n}
\]

(3.2.18)
where $L = \log(\rho)$ and $\rho = (\sqrt{5} - 1)/2$; with similar formulae for A_4, A_6, S_5, S_6 and S_7, [54].

A less well-known formula for $\zeta(5)$ due to Koecher suggested generalizations for $\zeta(7), \zeta(9), \zeta(11)$... Again the coefficients were found by integer relation algorithms. Bootstrapping the earlier pattern kept the search space of manageable size. Note that the requisite sums converge relatively quickly and so are easy to compute even to high precision needed to hunt with large numbers of relations.

For example:

$$\zeta(7) = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^7 \binom{2k}{k}} + \frac{25}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^4}. \quad (3.2.19)$$

The authors of [36] were able—by finding integer relations for $n = 1, 2, \ldots, 10$—to encapsulate the formulae for $\zeta(4n + 3)$ in a single conjectured generating function, (entirely *ex machina*):

Theorem 3.2.1 For any complex $|z| < 1$, we have, formally,

$$\sum_{n=1}^{\infty} \zeta(4n + 3) z^{4n} = \sum_{k=1}^{\infty} \frac{1}{k^3(1 - z^4/k^4)} = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^3 \binom{2k}{k} (1 - z^4/k^4)} \prod_{m=1}^{k-1} \frac{1 + 4z^4/m^4}{1 - z^4/m^4}. \quad (3.2.20)$$

The first “=” is easy. The second is quite unexpected in its form! Thus, $z = 0$ yields Apéry’s formula for $\zeta(3)$ and the coefficient of z^4 yields (3.2.19).

How Theorem 3.2.1 was discovered. The first ten cases show (3.2.20) has the form

$$\frac{5}{2} \sum_{k \geq 1} \frac{(-1)^{k-1}}{k^3 \binom{2k}{k}} \frac{P_k(z)}{(1 - z^4/k^4)}$$

for undetermined P_k; with abundant data to compute

$$P_k(z) = \prod_{m=1}^{k-1} \frac{1 + 4z^4/m^4}{1 - z^4/m^4}.$$
3.2. SPECIAL VALUES OF THE ZETA FUNCTION

Many reformulations of (3.2.20) were found, including a marvellous finite sum:

\[\sum_{k=1}^{n} \frac{2n^2}{k^2} \frac{\prod_{i=1}^{n-1} (4k^4 + i^4)}{\prod_{i=1, i \neq k}^{n} (k^4 - i^4)} = \left(\frac{2n}{n} \right) \]

(3.2.21)

This was obtained via Gosper’s *telescoping algorithm* of Wilf-Zeilberger type after a mistake in an electronic Petrie dish—when a \(\text{\LaTeX} \) “\&infy” was typed instead of “infinity” and Maple returned an answer that suggested it “knew” an algorithm for such finite sums.

This identity was subsequently proved by Almkvist and Granville [6] thus finishing the proof of (3.2.20) and giving a rapidly converging series for any \(\zeta(4N + 3) \) where \(N \) is positive integer. And perhaps shedding light on the irrationality of \(\zeta(7) \)?

Paul Erdős, when shown (3.2.21) shortly before his death, rushed off. Twenty minutes later he returned saying he did not know how to prove it but if proven it would have implications for Apéry’s result (“\(\zeta(3) \) is irrational”).

The failure to discover a similar function for \(\zeta(4n + 1) \) rests largely on the fact that too many relations were found by computer and no candidate to behave like (3.2.1) was isolated to generalize the initial cases such as

\[\zeta(5) = 2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5} \sum_{j=1}^{k} \frac{1}{j^2} . \]

(3.2.22)

3.2.3 A Taste of Ramanujan

Ramanujan obtained almost analogous evaluations of \(\zeta(2n + 1) \). For \(M \equiv 3 \pmod{4} \)

\[\zeta(4N + 3) = -2 \sum_{k \geq 1} \frac{1}{k^{4N+3}(e^{\pi k} - 1)} + \frac{2 \pi}{4} \left\{ \frac{4N+7}{4} \zeta(4N+4) - \sum_{k=1}^{N} \zeta(4k) \zeta(4N+4-4k) \right\} \]

where the interesting term is the rapidly convergent hyperbolic trigonometric series, while the term in braces is a rational multiple of \(\pi^{4N+4} \). Correspondingly,
for $M \equiv 1 \pmod{4}$

$$\zeta(4N+1) = -2\frac{N}{N} \sum_{k \geq 1} \frac{(\pi k + N)e^{2\pi k} - N}{k^{4N+1}(e^{2\pi k} - 1)^2}$$

$$+ \frac{1}{2N\pi} \left\{ (2N+1)\zeta(4N+2) + \sum_{k=1}^{2N} (-1)^k 2k\zeta(2k)\zeta(4N+2-2k) \right\}.$$

In each case, only a finite set of $\zeta(2N)$ values is required and the full precision value $e\pi$ is reused throughout. The number $e\pi$ is the easiest transcendental number to rapidly compute (see Problem 7 of Chapter 3 in the first volume).

For $\zeta(4N+1)$ a “nicer” series has recently been decoded and then proved from a few PSLQ experiments of Plouffe. It is equivalent to:

$$\left\{ 2 - (-4)^{-N} \right\} \sum_{k=1}^{\infty} \frac{\coth(k\pi)}{k^{4N+1}} - (4)^{-2N} \sum_{k=1}^{\infty} \frac{\tanh(k\pi)}{k^{4N+1}} = Q_N \times \pi^{4N+1} \quad (3.2.23)$$

The quantity Q_N in (3.2.23) is an explicit rational:

$$Q_N = -\sum_{k=0}^{2N+1} \frac{B_{4N+2-2k} B_{2k}}{(4N+2-2k)!(2k)!} \times \left\{ (-1)^{\left(\frac{5}{2}\right)} (-4)^N 2^k + (-4)^k \right\} \quad (3.2.24)$$

This was also discovered using integer relation methods. For instance,

$$\frac{9}{4} \sum_{k=1}^{\infty} \frac{\coth(\pi k)}{k^5} - \frac{1}{16} \sum_{k=1}^{\infty} \frac{\tanh(\pi k)}{k^5} = \frac{5}{672} \pi^5.$$

On substituting

$$\tanh(x) = 1 - \frac{2}{\exp(2x) + 1}, \quad \coth(x) = 1 + \frac{2}{\exp(2x) - 1}$$

in (3.2.23) one may solve for $\zeta(4N+1)$. For example:

$$\zeta(5) = \frac{1}{294} \pi^5 + \frac{2}{35} \sum_{k=1}^{\infty} \frac{1}{(1 + e^{2k\pi})k^5} + \frac{72}{35} \sum_{k=1}^{\infty} \frac{1}{(1 - e^{2k\pi})k^5},$$

and $\zeta(5) - \pi^5 / 294 = -0.0039555\ldots$
3.3 Other L-series

The function
\[
\beta(s) = L_{-4}(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^s},
\]
(3.3.25)
is sometimes known as the Catalan zeta function, as \(\beta(2) = G \) is Catalan’s constant, perhaps the simplest number whose irrationality is unproven.

It is independent of \(\zeta \) being based on the multiplicative character modulo 4 which takes values 0, 1, 0, -1. It is the simplest example of a primitive Dirichlet L-series as arrives when one studies primes in arithmetic progression.

In this case the generating function
\[
\sec(z) = \sum_{m=0}^{\infty} E_{2m} \frac{z^{2m}}{(2m)!}, \quad |z| \leq \frac{\pi}{2},
\]
(3.3.26)

with \(E_{2n+1} = 0 \) for \(n \geq 0 \), defines the Euler numbers—some authors label our \(E_{2n} \) as \(E_n \), which we met in Chapter 2 of the first volume. Correspondingly
\[
\sum_{k=0}^{n} \binom{2n}{2k} E_{2n-2k} = 0,
\]
(3.3.27)
and
\[
\pi \sec(\pi z) = \sum_{m=0}^{\infty} 4^{m+1} \beta(2m+1) z^{2m}.
\]
(3.3.28)
Comparing coefficients in (3.3.28) and (3.3.26) yields
\[
\beta(2m+1) = |E_{2m}| \left(\frac{\pi}{2} \right)^{2m+1} \frac{1}{(2m)!},
\]
(3.3.29)
so that in this case it is the odd values that are tractable:
\[
\beta(1) = \frac{\pi}{4}, \quad \beta(3) = \frac{\pi^3}{32}, \quad \beta(5) = \frac{5\pi^5}{1536}, \quad \beta(7) = \frac{61\pi^7}{184320},
\]
while the first six even Euler numbers are
\[
1, -1, 5, -61, 1385, -50521, 2702765.
\]
For integer \(k \), an important class of Dirichlet series is given by

\[
L_{\pm k}(s) = \sum_{n=1}^{\infty} \left(\frac{\pm k}{n} \right) \frac{1}{n^s},
\]

where \(\left(\frac{\pm k}{n} \right) \) is the Legendre-Jacobi symbol. When \(n \) is prime, the Legendre symbol is defined as \(\left(\frac{m}{n} \right) = 1 \) if \(m \) is a quadratic reside modulo \(n \) (i.e., \(m \) is a perfect square modulo \(n \)), and \(-1\) otherwise. When \(n = p_1 p_2 \cdots p_r \) for odd primes \(p_i \) not necessarily distinct, then \(\left(\frac{m}{n} \right) \) is defined as \(\left(\frac{m}{p_1} \right) \left(\frac{m}{p_2} \right) \cdots \left(\frac{m}{p_r} \right) \).

Using this notation,

\[
L_{-8}(s) = 1 + \frac{1}{3^s} - \frac{1}{5^s} - \frac{1}{7^s} + \cdots
\]

and

\[
L_{+8}(s) = 1 - \frac{1}{3^s} - \frac{1}{5^s} + \frac{1}{7^s} + \cdots.
\]

More generally, for any multiplicative character \(\chi \) one can define

\[
L_{\chi}(s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.
\]

The previous case corresponds to characters modulo \(k \). Then \(L_{\chi}(s) \) has a corresponding Euler product

\[
L_{\chi}(s) = \prod_p \left(1 - \frac{\chi(p)}{p^s} \right)^{-1},
\]

where \(p \) runs over the primes.

For primitive characters modulo \(d > 0 \) (see [141, 44]) there is a functional equation analogous to that for zeta given in (3.1.9):

\[
L_{-d}(s) = C(s) \cos \left(\frac{s\pi}{2} \right) L_{-d}(1 - s)
\]

\[
L_{+d}(s) = C(s) \sin \left(\frac{s\pi}{2} \right) L_{+d}(1 - s)
\]
where \(C(s) = 2^s \pi^{s-1} k^{-s+1/2} \Gamma(1-s) \). Moreover, the Dirichlet class number formulae are

\[
L_{-d}(1) = \frac{2\pi h(-d)}{\sqrt{d} w(d)} \quad (3.3.35)
\]
\[
L_d(1) = \frac{2h(d)}{\sqrt{d}} \log(\varepsilon(d)). \quad (3.3.36)
\]

where \(h(-d) \) is the class number of \(\mathbb{Q}(\sqrt{D}) \) where \(d = D \) when \(d \) is congruent to 1 modulo 4 and \(d = D \) otherwise, \(\varepsilon(d) \) is a fundamental unit in \(\mathbb{Q}(\sqrt{D}) \), and \(w(d) = 2 \) except that \(w(1) = 4 \) and \(w(3) = 6 \).

Example: For our present purposes it suffices that we know that \(L_d(1)/\pi \) satisfies a quadratic equation and \(L_d(1)/\pi \sqrt{d} \) is a rational multiple of the logarithm of a quadratic surd, as we can explore what the values are with integer relation methods—and hunt for evaluations at other odd integers \(s \).

We illustrate with a few cases. Working to less than 20 digits, we find

\[
L_{-8}(1) = \sqrt{3} \pi/9, \quad L_{-8}(3) = 4\sqrt{3}\pi^3/343, \quad L_{-8}(1) = \sqrt{2}\pi/4, \quad L_{-8}(3) = 3\sqrt{2}\pi^3/128, \\
L_{-12}(1) = \sqrt{3}\pi^3/6, \quad L_{-12}(3) = \sqrt{3}\pi^3/45 \quad \text{and in confirmation} \quad L_{-4}(3) = \pi^3/32.
\]

Also, \(L_{-67}(1) = \sqrt{67} \pi/67 \) and \(L_{-163}(1) = \sqrt{163} \pi/163 \) are particularly simple since these are the largest cases where the corresponding imaginary quadratic field has unique factorization.

Similarly \(L_{+5}(1) = 2\sqrt{5}/5 \cdot \log((1+\sqrt{5})/2) \), \(L_{+8}(1) = \sqrt{2}/2 \cdot \log(1+\sqrt{2}) \) while \(L_{+13}(1) = 2\sqrt{13}/13 \cdot \log((3+\sqrt{13})/2) \) and \(L_{+29}(1) = 2\sqrt{29}/29 \cdot \log((35+\sqrt{29})/2) \).

3.4 Multi-Zeta Values

Euler sums or *MZVs* ("multiple zeta values" or "multi zeta values") are wonderful generalizations of the classical \(\zeta \) function. For natural numbers \(i_1, i_2, \ldots, i_k \)

\[
\zeta(i_1, i_2, \ldots, i_k) = \sum_{n_1>n_2>n_k>0} \frac{1}{n_1^{i_1} n_2^{i_2} \cdots n_k^{i_k}}. \quad (3.4.37)
\]

Thus \(\zeta(a) = \sum_{n \geq 1} n^{-a} \) is as before and

\[
\zeta(a, b) = \sum_{n=1}^{\infty} \frac{1 + \frac{1}{n^{a}} + \cdots + \frac{1}{(n^{a-1})^{b}}}{n^{a}}.
\]
In general, the integer k is the sum’s *depth* and $i_1 + i_2 + \cdots + i_k$ is its *weight*.

This definition (3.4.37) clearly extends to alternating and character sums as we shall see below. MZVs have recently found interesting interpretations in high energy physics, knot theory, combinatorics etc. Such MZVs satisfy many striking identities, of which

$$\zeta(2, 1) = \zeta(3) \quad \text{and} \quad 4\zeta(3, 1) = \zeta(4) \quad (3.4.38)$$

are the simplest. Thus these double zeta sums can be reduced to values of the classical zeta function! Does this happen just in a few special cases, or is this the tip of an iceberg, the beginning of a theory? Therefore we would like to answer questions such as: Which multiple zeta values can be reduced to simpler ones, i.e. to rational combinations of MZVs of lower depth? How many irreducible MZVs remain for given depth and weight? Can the relations between different MZVs be sorted, labeled and classified?

The needed computations quickly become very large scale: mixing fields, tools and interfaces such as Reduce, C++, Fortran, Pari, Snap etc. A high precision *fast ζ-convolution* allows use of integer relation algorithms leading to important dimensional (reducibility) conjectures and amazing identities. See the URL

http://www.cecm.sfu.ca/projects/ezface+

Euler himself found and partially proved theorems on reducibility of depth 2 to depth 1 ζ’s ($\zeta(6, 2)$ is the lowest weight “irreducible”.)

3.4.1 Various Methods of Attack

One of the pleasures of work in the area is that so many methods are useful: combinatorial, analytic (complex and real), algebraic, number theoretic etc. This leads to amazing identities and important dimensional (reducibility) conjectures. Almost certainly, the simplest of our dimensional conjectures are not provable by currently known mathematical techniques: we can’t answer whether $\zeta(5), \zeta(7)$ or $G \in Q$?

We shall finish this section by establishing a conjecture of Zagier first published in [36, 52] to which we refer along with [51] for general information not given in the section. The proof we give is a refinement due to Zagier of one found by Broadhurst during the development of the joint corpus in [63, 52].
The identity is
\[\zeta(\{3,1\}_n) = \frac{1}{2n+1} \zeta(\{2\}_{2n}) = \left(\frac{2\pi^{4n}}{(4n+2)!} \right). \] (3.4.39)

Here \(\{s\}_n\) is the string \(s\) repeated \(n\) times. This is the \textit{unique} non-commutative analogue of Euler’s evaluation of \(\zeta(2n)\).

We illustrate the diversity of the area with a deep conjecture that sits as a very special case of various dimensional conjectures we make below and provide evidence for:

\textbf{Conjecture.} (Drinfeld(1991)-Deligne) The graded Lie algebra of Grothendieck & Teichmuller has no more than one generator in odd degrees, and no generators in even degrees.

In the known “non-reducible” identities for Euler sums, all \(\zeta\)-terms have the same weight. This is of great importance for guided integer relation searches, as it dramatically reduces the size of the search space.

It is, moreover, useful to consider more general sums:
\[\zeta(i_1, i_2, \ldots, i_k; \sigma_1, \sigma_2, \ldots, \sigma_k) = \sum_{n_1 > n_2 > \cdots > n_k > 0} \frac{\sigma_1^{n_1} \sigma_2^{n_2} \cdots \sigma_k^{n_k}}{n_1^{i_1} n_2^{i_2} \cdots n_k^{i_k}}. \] (3.4.40)

For general complex \(\sigma_i\) (3.4.40) defines \textit{Eulerian polylogarithms}, while \(\sigma_i \in \{1, -1\}\) produce \textit{Euler sums}. We restrict the term \textit{multi zeta value} (MZV) to:
\[\zeta(i_1, i_2, \ldots, i_k) = \sum_{n_1 > n_2 > \cdots > n_k > 0} \frac{1}{n_1^{i_1} n_2^{i_2} \cdots n_k^{i_k}}, \]
that is when \(\sigma_i \equiv 1\).

\subsection*{3.4.2 Reducibility and Dimensional Conjectures}

As a first taste we prove the following lemma due to Euler:

\textbf{Lemma 3.4.1}
\[\zeta(a, b) + \zeta(b, a) = \zeta(a)\zeta(b) - \zeta(a + b), \]
for integer \(a > 1, b \geq 1 \). In particular

\[
\zeta(a, a) = \frac{1}{2} \zeta(a)^2 - \frac{1}{2} \zeta(2a)
\]

reduces \(\zeta(a, a) \).

Proof. Observe that

\[
\sum_{n=1}^{\infty} \sum_{m>n} \frac{1}{n^a m^b} + \sum_{n=1}^{\infty} \sum_{m<n} \frac{1}{n^a m^b} + \sum_{n=1}^{\infty} \sum_{m=n} \frac{1}{n^a m^b} = \zeta(a) \zeta(b).
\]

More complex versions of this sort of argument often involving partial fraction identities lead to sets of equations (and to the matrices in Section 4.5) and to algebraic proofs of many cognate MZV identities. For example:

\[
\zeta(a, b, c) + \zeta(a, c, b) + \zeta(c, a, b) = \zeta(c) \zeta(a, b) - \zeta(a, b + c) - \zeta(a + c, b).
\]

As a second taste, we show how a computer algebra system can “prove” Euler’s first significant result in the area: generatingfunctionology produces:

\[
\sum_{n=1}^{\infty} \sum_{m>n} \frac{1}{n^a m^b} = \sum_{n=1}^{\infty} \sum_{m<n} \frac{1}{n^a m^b} = \zeta(a) \zeta(b).
\]

and so represents \(\zeta(m, 1) \) as the following integral

\[
\zeta(m, 1) = \frac{(-1)^m}{(m-1)!} \int_0^1 \frac{\log^{m-1}(t) \sum_{n>0} a_n t^n}{1-t} dt.
\]

Inspection of the definition of the beta function

\[
\beta(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt
\]
shows that the right side of (3.4.42) can be written as a β-function derivative

$$\zeta(m, 1) = \frac{(-1)^m}{2(m-2)!} B_1^{(m-2)}(0)$$

(3.4.44)

where $B_1(y) = \frac{\partial^2}{\partial x^2} \beta(x, y) \bigg|_{x=1}$. Since

$$\frac{\partial^2}{\partial x^2} \beta(x, y) = \beta(x, y) \left[(\Psi(x) - \Psi(x+y))^2 + (\Psi'(x) - \Psi'(x+y)) \right],$$

we have a digamma representation via

$$B_1(y) = \frac{1}{y} \left((-\gamma - \Psi(y+1))^2 + (\zeta(2) - \Psi'(y+1)) \right).$$

Indeed, without going beyond (3.4.44) we may implement (3.4.44) in Maple or Mathematica very painlessly and discover its Riemann ζ-function reduction:

$$\zeta(n, 1) = \sum_{k=1}^{\infty} \left(1 + \frac{1}{2} + \cdots + \frac{1}{k} \right) (k+1)^{-n} = \frac{n\zeta(n+1)}{2} - \frac{1}{2} \sum_{k=1}^{n-2} \zeta(n-k)\zeta(k+1),$$

from the first five or ten symbolic values. Moreover each case computed is a proof. Note that one wants to ensure that Maple or Mathematica does not evaluate $\zeta(2n)$, otherwise when $n+1$ is even a convolution will not be exposed:

$$6 \zeta^2(4) + 6 \zeta(2)\zeta(6) = \frac{17}{9450} \pi^8 = 17 \zeta(8).$$

To make the notion of reduction more explicit a key problem is to find the dimension of a minimal generating set for a $(\mathbb{Q}, +, \cdot)$-algebra that contains

- all Euler sums of weight n and depth k, generated by Euler sums, $E_{n,k}$
- all MZVs of weight n and depth k, generated by Euler sums, $E_{n,k}$; or
- all MZVs of weight n and depth k, generated by MZVs, $D_{n,k}$.
Conjectured generating functions (due to Broadhurst-Kreimer, Zagier, and others) are:

\[
\prod_{n \geq 3} \prod_{k \geq 1} \left(1 - x^n y^k\right)^{E_{n,k}} = 1 - \frac{x^3 y}{(1 - x^2)(1 - xy)}
\]

\[
\prod_{n \geq 3} \prod_{k \geq 1} \left(1 - x^n y^k\right)^{M_{n,k}} = 1 - \frac{x^3 y}{1 - x^2}
\]

\[
\prod_{n \geq 3} \prod_{k \geq 1} \left(1 - x^n y^k\right)^{D_{n,k}} = 1 - \frac{x^3 y}{1 - x^2} + \frac{x^{12} y^2 (1 - y^2)}{(1 - x^4)(1 - x^6)}
\]

For \(k = 2, n\) odd and \(k = 3, n\) even, the result implicit for \(D_{n,k}\) is proven by “elementary methods” by Borwein and Girgensohn. Note that \(D_{n,k}\) has a disconcertingly complicated conjectured rational generating function.

In the next example and elsewhere we sometimes write \(-s_i\) or \(\overline{s_i}\) to denote alternation in the \(i\)-th position.

Example: Various reductions.

MZV over MZVs: an example of a sum that reduces is

\[
\zeta(4, 1, 3) = -\zeta(5, 3) + \frac{71}{36} \zeta(8) - \frac{5}{2} \zeta(5) \zeta(3) + \frac{1}{2} \zeta(3)^2 \zeta(2).
\]

MZV over Euler sums: \(\zeta(4, 2, 4, 2)\) is irreducible as an MZV but as an Euler sum we have:

\[
\zeta(4, 2, 4, 2) = -\frac{1024}{27} \zeta(-9, -3) - \frac{26791}{5528} \zeta(12) - \frac{1040}{27} \zeta(9, 3) - \frac{76}{3} \zeta(9) \zeta(3) - \frac{160}{9} \zeta(7) \zeta(5) + 2 \zeta(6) \zeta(3)^2 + 14 \zeta(5, 3) \zeta(4) + 70 \zeta(5) \zeta(4) \zeta(3) - \frac{1}{6} \zeta(3)^4.
\]

However, \(\zeta(5, 3), \zeta(-9, -3)\) are irreducible over the Euler sums.

The next three tables give values of these three dimensions.
3.4. MULTI-ZETA VALUES

<table>
<thead>
<tr>
<th>(E_{n,k})</th>
<th>(k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>7</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>14</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>9</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>20</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>12</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>30</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>15</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>40</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The tools used included partial fractions, functional equations and the “shuffles algebra” [36, 52]. The generating functions have been confirmed numerically, and a sizable subset is proven symbolically, in the following ranges:

1. \(E_{n,k} \): (with REDUCE and PSLQ)
 \(k = 2 \) and \(n \leq 44 \) and \(k = 7 \) and \(n \leq 8 \).

2. \(M_{n,k} \): (with REDUCE and PSLQ)
 \(k = 2 \) and \(n \leq 17 \) and \(k = 7 \) and \(n \leq 20 \).

3. \(D_{n,k} \): (modulo a big prime) with REDUCE and FORTRAN (on a DEC\(\alpha \), 256Mb, 333Mhz)
 \(k = 3 \) and \(n \leq 141 \) and \(k = 7 \) and \(n \leq 21 \).

 With FORTRAN (on a DEC\(\alpha \), 4 \times 1Gb, 400Mhz)
 \(k = 3 \) and \(n \leq 161 \) and \(k = 7 \) and \(n \leq 23 \).
Hybrid code based on symbolic evaluation of identities and on PSLQ allowing exact reduction has been run for:

1. All alternating (Euler) sums to weight 9;

2. All MZV’s to weight 14.

Thus all these evaluations are fully established, as are many more scattered in the literature.
3.5 Double Euler Sums

A natural first generalization of the ζ function, initially studied by Euler, is to let $\zeta(t, s) = \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{1}{k^n n^t}$. Such sums, which we first encountered in Lemma 3.4.1, are called *double Euler sums*.

As a more detailed foray into Euler sums, it is our intention to prove the following evaluation due to Euler, in a self contained fashion.

\[
\zeta(t, s) = \frac{1}{2} \left[\left(\frac{s + t}{s} \right) - 1 \right] \zeta(s + t) + \zeta(s)\zeta(t) \\
- \sum_{j=1}^{n} \left[\left(\frac{2j - 2}{s - 1} \right) + \left(\frac{2j - 2}{t - 1} \right) \right] \zeta(2j - 1)\zeta(s + t - 2j + 1)
\]

if s is odd,
\[\zeta(t, s) = -\frac{1}{2} \left[\binom{s + t}{s} + 1 \right] \zeta(s + t) \]

\[+ \sum_{j=1}^{n} \left[\binom{2j - 2}{s - 1} + \binom{2j - 2}{t - 1} \right] \zeta(2j - 1) \zeta(s + t - 2j + 1) \]

if \(s \) is even.

for \(s + t \) odd, as in ([30]). The terms involving \(\zeta(1) \) which he used here can be cancelled formally if \(t > 1 \). (Note that in the last two occurrences of this formula in Euler’s paper almost all the signs are wrong.) Euler obtained his evaluation by computing many examples \((s + t \leq 13) \) and then extrapolating the general formula, without actual proof. The proof we give is not the simplest, but it allows us to play interestingly with combinatorial matrices, a subject we revisit in the next chapter.

We need the following lemma which was known already to Euler and can be proved by induction on \(s + t \).

Lemma 3.5.1 Define

\[A_j^{(s,t)} = \binom{s + t - j - 1}{s - j} \text{ and } B_j^{(s,t)} = \binom{s + t - j - 1}{t - j}. \]

Then we have the partial fraction decomposition

\[\frac{1}{x^s(1-x)^t} = \sum_{j=1}^{s} \frac{A_j^{(s,t)}}{x^j} + \sum_{j=1}^{t} \frac{B_j^{(s,t)}}{(1-x)^j}, \]

for \(s, t \geq 0, \ s + t \geq 1 \).

We will now derive systems of linear equations for the values \(\zeta(s, t) \) where \(s + t = N \), a constant.

First, as we have already seen, there is a simple relation between \(\zeta(s, t) \) and \(\zeta(t, s) \).

\[\zeta(t, s) = \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{1}{k^s} \frac{1}{n^t} = \sum_{k=1}^{\infty} \sum_{n=k+1}^{\infty} \frac{1}{n^t} \frac{1}{k^s} \]

\[= \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n^t k^s} - \sum_{k=1}^{\infty} \sum_{n=1}^{k-1} \frac{1}{n^t k^s} - \sum_{k=1}^{\infty} \frac{1}{k^{s+t}} \]

\[= \zeta(s) \zeta(t) - \zeta(s, t) - \zeta(s + t), \]
or

$$\zeta(s, t) + \zeta(t, s) = \zeta(s)\zeta(t) - \zeta(s + t)$$

for $s, t \geq 2$. We will refer to these equations as “reflection formulas.” It follows that $2\zeta(s, s) = \zeta^2(s) - \zeta(2s)$.

Second, we have

$$\zeta(s)\zeta(t) = \left(\sum_{k=1}^{\infty} \frac{1}{k^s}\right) \cdot \left(\sum_{n=1}^{\infty} \frac{1}{n^t}\right) = \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{1}{k^s(n-k)^t}$$

$$= \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \left(\sum_{j=1}^{s} \frac{A_j^{(s,t)}}{n^{s-t-j}k^j} + \sum_{j=1}^{t} \frac{B_j^{(s,t)}}{n^{s+t-j}(n-k)^j}\right)$$

$$= \sum_{j=1}^{s} A_j^{(s,t)} \zeta(s + t - j, j) + \sum_{j=1}^{t} B_j^{(s,t)} \zeta(s + t - j, j),$$

for $s, t \geq 2$, with $A_j^{(s,t)}$ and $B_j^{(s,t)}$ defined as in Lemma 3.5.1. We will refer to these equations as “decomposition formulas.”

The following version of Euler’s equations can be used, together with the reflection formulas, to prove Euler’s formula (3.5.45) algebraically:

$$\zeta(t, s) = (-1)^s \sum_{j=2}^{s} (-1)^j A_j^{(s,t)} \zeta(j)\zeta(s + t - j) + (-1)^t \sum_{j=2}^{t} B_j^{(s,t)} \zeta(s + t - j, j)$$

$$+ (-1)^s \left(\frac{s + t - 2}{s - 1}\right)(\zeta(s + t - 1, 1) + \zeta(s + t)).$$

We will now distinguish the two cases $s+t$ odd and $s+t$ even. First, we treat the case where $s+t = 2n+1$. We have $2n-2$ equations in the $2n-2$ unknowns $\zeta(2, 2n-1), \zeta(3, 2n-2), \ldots, \zeta(2n-3, 2)$. We can reduce the $\zeta(k, 2n+1-k)$ with $k > n$ to $\zeta(2n+1-k, k)$ by the reflection formulas. This leaves us with the $n-1$ unknowns $\zeta(2, 2n-1), \ldots, \zeta(n, n+1)$. The matrix which corresponds to these equations has the entries

$$(A_j^{(k,2n+1-k)} + B_j^{(k,2n+1-k)} - B_j^{(2n+1-k, k)})_{j,k=2,\ldots,n}.$$
CHAPTER 3. ZETA FUNCTIONS AND MULTI-ZETA VALUES

Define, therefore, the \(n \times n \) matrices \(A, B, C, M \) by

\[
A_{kj} = (-1)^{k+1} \left(\frac{2n-j}{2n-k} \right), \quad B_{kj} = (-1)^{k+1} \left(\frac{2n-j}{k-1} \right), \quad C_{kj} = (-1)^{k+1} \left(\frac{j-1}{k-1} \right)
\]

\((k, j = 1, \ldots, n)\) and \(M = A + B - C \). Define the \(n \) vector \(r \) by

\[
r_1 = 0 \quad \text{and} \quad r_k = (-1)^{k+1} \left[\zeta(k) \zeta(2n+1-k) + \sum_{i=k}^{n} \left(\frac{i-1}{k-1} \right) (\zeta(2n+1) - \zeta(2n+1-i)\zeta(i)) \right]
\]

for \(k = 2, \ldots, n \). We then have to solve the system \(Mx = r \) where the vector \(x \) has \(x_1 = 0 \), and \(x_k = \zeta(k, 2n+1-k) \) for \(k > 1 \).

We shall need the following lemma which is known and can be proved by induction on \(m \).

Lemma 3.5.2 (i) For \(0 \leq \mu \leq m \),

\[
\sum_{i=0}^{\mu} \left(\begin{array}{c} m - \mu + i \\ i \end{array} \right) = \left(\begin{array}{c} m+1 \\ \mu \end{array} \right).
\]

(ii) For \(0 \leq \nu, \mu \leq m-1 \),

\[
\sum_{i=1}^{m} (-1)^{i+1} \left(\begin{array}{c} m-i \\ \nu \end{array} \right) \left(\begin{array}{c} m-\mu-1 \\ i-1 \end{array} \right) = \left(\begin{array}{c} \mu \\ m-\nu-1 \end{array} \right).
\]

Setting \(\mu = 0 \) in (ii) and changing the order of summation yields

\[
\sum_{i=1}^{m} (-1)^{i+1} \left(\begin{array}{c} i-1 \\ \nu-1 \end{array} \right) \left(\begin{array}{c} m-1 \\ i-1 \end{array} \right) = (-1)^{m+1} \delta_{m\nu}.
\]

Lemma 3.5.2(ii) can be used to prove the following matrix identities.

\[
A^2 = C^2 = I, \quad (3.5.45)
\]

\[
A = BC, \quad B = AC, \quad C = AB, \quad (3.5.46)
\]

\[
B^2 = CA, \quad CB = BA. \quad (3.5.47)
\]

(It follows from these identities that \(B^3 = BCA = AA = I \), and that the matrix group generated by \(A, B \) and \(C \) is the permutation group on 3 symbols. We shall not use this, but do discuss from a different perspective in Section 4.5 where we also prove (3.5.45), (3.5.46), and (3.5.47).)
These matrix identities now allow us to show that M is invertible; in fact, we have

$$M^2 = AA + AB - AC + BA + BB - BC - CA - CB + CC$$

$$= I + C - B - A + I = 2I - M,$$

so that

$$M^{-1} = \frac{1}{2}(M + I).$$

Thus, to prove Euler’s formula, it remains to determine $M^{-1}r$. For this purpose, define $p_1 = p_{2n} = 0$, $p_k = \zeta(k)\zeta(2n + 1 - k)$ for $k = 2, \ldots, 2n - 1$, $p = (p_k)_{k=1,\ldots,n}$, $\overline{p} = ((-1)^{k+1}p_k)_{k=1,\ldots,n}$ and $e = (1, \ldots, 1)$. Then $r_k = \overline{p}_k - (Cp)_k + \zeta(2n + 1)(Ce)_k$. Now let $k \geq 2$. Then it follows that

$$(M^{-1}r)_k = \left(\frac{1}{2}(M + I)r\right)_k$$

$$= \frac{1}{2}(((A + B - C + I)p)_k - ((A + B - C + I)Cp)_k$$

$$+ \zeta(2n + 1)((A + B - C + I)Ce)_k]$$

$$= \frac{1}{2}(((A + B - C + I\overline{p})_k - ((A + B + C - I)p)_k$$

$$+ \zeta(2n + 1)((A + B + C - I)e)_k].$$

(3.5.48)

3.6 Duality Evaluations and Computations

For non-negative integers s_1, \ldots, s_k, we consider

$$\zeta_0(s_1, \ldots, s_k) = \sum_{n_j > n_{j+1} > 0} a^{-n_1} \prod_{j=1}^{k} n_j^{-s_j},$$

(3.6.49)

a special case of our multidimensional polylogarithm. Note that

$$\zeta_0(s) = \sum_{n > 0} \frac{1}{a^n n^s} = \text{Li}_s(a^{-1})$$
is the usual polylogarithm for \(s \in \mathbb{N} \) and \(|a| > 1\). We write \(\zeta = \zeta_1 \) and \(\kappa = \zeta_2 \).

We also define a unit Euler sum by

\[
\rho(\sigma_1, \ldots, \sigma_k) = \sum_{n_j > n_{j+1} > 0} \prod_{j=1}^{k} \frac{\sigma_j^{n_j}}{n_j}.
\]

Iterated integral representations: Put

\[
\omega_a = \frac{dx}{x - a}.
\]

Integration over \(0 \leq x_1 \leq x_2 \leq \ldots \leq x_s \leq 1 \) allows us to write

\[
\zeta_a(s_1, \ldots, s_k) = (-1)^k \int_0^1 \prod_{j=1}^{k} \omega_0^{s_j-1} \omega_a,
\]

and dually

\[
\zeta_a(s_1, \ldots, s_k) = (-1)^{s+k} \int_0^1 \prod_{j=k}^{1} \omega_1^{s_j-1} \omega_a^{s_{j+1}}.
\]

follows on changing \(x \mapsto 1 - x \) at each level. So:

\[
(-1)^k \zeta_a(s_1 + 2, \{1\}_{r_1}, \ldots, s_k + 2, \{1\}_{r_k}) = (-1)^r \int_0^1 \prod_{j=1}^{k} \omega_0^{s_j+1} \omega_a^{r_j+1}, \tag{3.6.50}
\]

and dually

\[
(-1)^k \zeta_a(s_1 + 2, \{1\}_{r_1}, \ldots, s_k + 2, \{1\}_{r_k}) = (-1)^s \int_0^1 \prod_{j=k}^{1} \omega_1^{r_j+1} \omega_a^{s_{j+1}}. \tag{3.6.51}
\]

Theorem 3.6.1 1. Setting \(a = 1 \) gives the “duality for MZVs”:

\[
\zeta(s_1 + 2, \{1\}_{r_1}, \ldots, s_k + 2, \{1\}_{r_k}) = \zeta(r_k + 2, \{1\}_{s_k}, \ldots, r_1 + 2, \{1\}_{s_1}). \tag{3.6.52}
\]
2. Setting \(a = 2 \) gives a corresponding “kappa-to-unit-Euler” duality:

\[
\kappa(s_1 + 2, \{1\}_{r_1}, \ldots, s_k + 2, \{1\}_{r_k}) = (-1)^{r+k}\zeta(1, \{1\}_{r_1}, \{1\}_{s_k}, \ldots, \{1\}_{s_k}, \{1\}_{s_1}).
\]

3. A more general, less convenient, “kappa-to-unit-Euler” duality similarly derivable is

\[
\kappa(s_1, \ldots, s_k) = (-1)^k\rho(\tau_1, \tau_2/\tau_1, \tau_3/\tau_2, \ldots, \tau_s/\tau_{s-1}),
\]

where \([\tau_1, \ldots, \tau_s] = [-1, \{1\}_{s_k-1}, \ldots, -1, \{1\}_{s_1-1}]\).

For example, we immediately see from part 1. of Theorem 3.6.1 that \(\zeta(2, 1, 1, 1) = \zeta(5) \), and that \(\zeta(\{2, 1\}_n) = \zeta(\{3\}_n) \) for all \(n \), while \(\zeta(3, 1) \) is self dual. There is a profusion of nice specializations, some of which we now list.

Some \(\kappa \leftrightarrow \rho \) duality examples

\[
\kappa(1) = \sum_{n \geq 1} \frac{1}{n2^n} = -\log(1/2) = \sum_{n \geq 1} \frac{(-1)^{n+1}}{n} = -\zeta(1),
\]

\[
\kappa(2) = \sum_{n \geq 1} \frac{1}{n^2 2^n} = \text{Li}_2(1/2) = \sum_{n \geq 1} \frac{(-1)^{n+1}}{n} \sum_{k=1}^{n-1} \frac{(-1)^k}{k} = -\zeta(1, 1),
\]

\[
\kappa(r + 2) = \sum_{n \geq 1} \frac{1}{n^{r+2} 2^n} = \text{Li}_{r+2}(1/2) = -\zeta(1, 1, \{1\}_r), \quad (r \geq 0)
\]

\[
\kappa(\{1\}_n) = (-1)^n \zeta(-1, \{1\}_{n-1}) = \frac{(\log 2)^n}{n!},
\]

\[
\kappa(2, \{1\}_n) = (-1)^{n+1} \zeta(-1, \{1\}_n, -1),
\]
\[\kappa(\{1\}_{m+1}, 2, \{1\}_n) = (-1)^{m+n} \zeta(-1, \{1\}_n, \{-1\}_2, \{1\}_m), \]

\[\kappa(1, n + 2) = \rho(-1, -1, \{1\}_n, -1), \]

\[\kappa(1, n) = \int_0^{\frac{1}{2}} \frac{\text{Li}_n(z)}{1 - z} dz. \]

In particular,

\[\kappa(1, 2) = \frac{5}{7} \text{Li}_2 \left(\frac{1}{2} \right) \text{Li}_1 \left(\frac{1}{2} \right) - \frac{2}{7} \text{Li}_3 \left(\frac{1}{2} \right) + \frac{5}{21} \text{Li}_1 \left(\frac{1}{2} \right)^3 \]

\[\kappa(1, 3) = \text{Li}_3 \left(\frac{1}{2} \right) \text{Li}_1 \left(\frac{1}{2} \right) - \frac{1}{2} \text{Li}_2 \left(\frac{1}{2} \right)^2. \]

We note that differentiation proves \(\kappa(0, \{1\}_n) = \kappa(\{1\}_n) \). Applied to \(\zeta(n + 2) \) this provides a lovely closed form for \(\kappa(2, \{1\}_n) \).

Two \(\kappa \)-reductions. Every MZV of depth \(N \) is a sum of \(2^N \) \(\kappa \)'s of depth \(N \), hence easily computed, using integral ideas similar to below:

A better method is to set \(\omega_0 = dx/x, \omega_1 = -dx/(1 - x) \). Then

\[\zeta(s_1, \ldots, s_k) = \sum_{n_j > n_{j+1} > 0} \prod_{j=1}^k n_j^{-s_j} \]

again has representation

\[\zeta(s_1, \ldots, s_k) = (-1)^k \int_0^1 \omega_0^{s_1-1} \omega_1 \cdots \omega_0^{s_k-1} \omega_1. \]

The domain, \(1 > x_j > x_{j+1} > 0 \), in \(n = \sum s_j \) variables, splits into \(n + 1 \) parts: each being a product of regions \(1 > x_j > x_{j+1} > \lambda \), for first \(r \) variables,
and $\lambda > x_j > x_{j+1} > 0$, for rest. The substitution $x_j \mapsto 1 - x_j$ replaces an integral of the former by the latter type, with λ replaced by $\tilde{\lambda} = 1 - \lambda$.

Thence let $S(\omega_0, \omega_1)$ be the n–string $\omega_0^{s_1} \omega_1 \ldots \omega_0^{s_k} \omega_1$ specifying a MZV. Let T_r denote the substring of the first r letters and U_{n-r} the complementary substring, on the last $n - r$ letters, so that $S = T_r U_{n-r}$ for $n \geq r \geq 0$. Then

$$\zeta(s_1, \ldots, s_k) = \int_{0}^{1} S = \sum_{r=0}^{n} \pm \int_{0}^{\tilde{\lambda}} T_r \int_{0}^{\lambda} U_{n-r}$$ \hspace{1cm} (3.6.54)

where $\tilde{\sim}$ indicates reversal of letter order.

The alternate polylogarithmic integral

$$\zeta_z(s_1, \ldots, s_k) = \sum_{n_j > n_{j+1} > 0} z^{-n_1} \prod_{j=1}^{k} n_j^{-s_j} = \int_{0}^{z} \omega_0^{s_1} \omega_1 \ldots \omega_0^{s_k} \omega_1$$ \hspace{1cm} (3.6.55)

applied to right side of (3.6.54) produces the MZV as the scalar product of two vectors, composed of ζ_z–values with $z = p$ and $z = q$, for any desired $p, q > 1$ with $1/p + 1/q = 1$. We usually set $p = q = 2$, i.e., $\zeta_2 = \kappa$.

Example. Thus, for any $1/p + 1/q = 1$

$$\zeta(2, 1, 2, 1, 1) = \zeta_p(2, 1, 2, 1, 1) + \zeta_p(1, 2, 1, 1) \zeta_q(1) + \zeta_p(1, 1, 1) \zeta_q(2)$$

$$+ \zeta_p(2, 1, 1) \zeta_q(3) + \zeta_p(1, 1, 1) \zeta_q(1, 3)$$

$$+ \zeta_p(1, 1, 1) \zeta_q(2, 3) + \zeta_p(1, 1) \zeta_q(3, 3)$$

$$+ \zeta_p(1) \zeta_q(4, 3) + \zeta_q(5, 3) = \zeta(5, 3)$$

This uses a homogenous combination of 2s polylogs of no higher depth, where s is the weight of the MZV. It also provides another duality result on letting $q \to \infty$.

The method, which is called Hölder convolution, because it relies on complementary p and q as in Hölder’s inequality of Chapter 5 of the first volume, is easily programmed (see Section 7.5.1) as the following code partially illustrates:

```plaintext
Seq := proc(s, t) local k, n;
    if 1 < s[1] then
        [s[1] - 1, seq(s[k], k = 2 .. nops(s))], [1, op(t)]
    fi;
end:
```
else [seq(s[k], k = 2 .. nops(s))],
 [t[1] + 1, seq(t[k], k = 2 .. nops(t))]
fi end

SEQ := proc(a) local w, k, s;
 w := convert(a, '+'); s := a, [];
 for k to w do s := Seq(s); print(s, k) od;
 s[2] end

>SEQ([5,3]);

[4, 3], [1, 1], 1
[3, 3], [1, 1, 1], 2
[2, 3], [1, 1, 1, 1], 3
[1, 3], [1, 1, 1, 1, 1], 4
[3], [2, 1, 1, 1, 1], 5
[2], [1, 2, 1, 1, 1], 6
[1], [1, 2, 1, 1, 1], 7
[], [2, 1, 2, 1, 1, 1], 8
[2, 1, 2, 1, 1, 1]

The time to compute D digits for MZV $\zeta(s_1, \ldots, s_k)$, of weight n, is roughly $c(n)D$ precision D multiplications (with $c(n) \propto n$, for large n, whatever the depth, k). This idea extends reasonably to all Euler sums. Thus, 100 digits of $\zeta(5,3)$ takes only 0.06 CPU seconds and 1,000 digits only 8.53 CPU seconds on a 194 MHz R10000 SGI. Bailey’s MPFUN (a previous version of the ARPREC arbitrary precision computation package) took 47 minutes to get 20,000 digits, on a 400 MHz DECa. A 5,000 digit PSLQ computations allows for 145-term relationships to be found at 5,000 digits (256-terms with 2,000 digits).
3.7 Proof of the Zagier Conjecture

For $r \geq 1$ and $n_1, \ldots, n_r \geq 1$, again specialize the polylogarithm to one variable (we write $L(n_1, \ldots, n_r; x) = \zeta_{x^{-1}}(n_1, \ldots, n_r)$ to highlight dependence on x)

$$L(n_1, \ldots, n_r; x) = \sum_{0 < m_r < \ldots < m_1} \frac{x^{m_1}}{m_1^{n_1} \ldots m_r^{n_r}}.$$

Thus

$$L(n; x) = \frac{x}{1^n} + \frac{x^2}{2^n} + \frac{x^3}{3^n} + \cdots$$

is the classical polylogarithm, while

$$L(n, m; x) = \frac{1}{1^m} \frac{x^2}{2^n} + \left(\frac{1}{1^m} + \frac{1}{2^m} \right) \frac{x^3}{3^n} + \left(\frac{1}{1^m} + \frac{1}{2^m} + \frac{1}{3^m} \right) \frac{x^4}{4^n} + \cdots,$$

and

$$L(n, m, l; x) = \frac{1}{1^m} \frac{1}{2^m} \frac{x^3}{3^n} + \left(\frac{1}{1^m} \frac{1}{2^m} + \frac{1}{1^l} \frac{1}{3^m} + \frac{1}{2^l} \frac{1}{3^m} \right) \frac{x^4}{4^n} + \cdots.$$

These series converge absolutely for $|x| < 1$ (conditionally on $|x| = 1$ unless $n_1 = 1$ and $x = 1$). These polylogarithms are determined uniquely by the differential equations

$$\frac{d}{dx} L(n_1, \ldots, n_r; x) = \frac{1}{x} L(n_1, n_2, \ldots, n_r - 1; x)$$

if $n_r \geq 2$; while for $n_r = 1$,

$$\frac{d}{dx} L(n_1, \ldots, n_r; x) = \frac{1}{1-x} L(n_1, \ldots, n_{r-1}; x)$$

with the initial conditions $L(n_1, \ldots, n_r; 0) = 0$ for $r \geq 1$ and $L(\emptyset; x) \equiv 1$.

It transpires that if $\mathbf{s} = (s_1, s_2, \ldots, s_N)$ and $w = \sum s_i$, every periodic polylogarithm leads to a function

$$L_{\mathbf{s}}(x, t) = \sum_{n} L(\{\mathbf{s}\}_n; x) t^n$$

which solves an algebraic ordinary differential equation in x, and leads to nice recurrence relations.
In the simplest case, with \(r = 1 \), the ODE is
\[
D_s F = t^s F
\]
where
\[
D_s = \left((1 - x) \frac{d}{dx} \right)^{1} \left(x \frac{d}{dx} \right)^{s-1}
\]
and the solution (by series) is a generalized hypergeometric function:
\[
L_s(x, t) = 1 + \sum_{n \geq 1} x^n t^s \prod_{k=1}^{n-1} \left(1 + \frac{t^s}{k^s} \right),
\]
as follows from considering \(D_s(x^n) \). Similarly, for \(r = 1 \) and negative integers
\[
L_{-s}(x, t) = 1 + \sum_{n \geq 1} (-x)^n t^s \prod_{k=1}^{n-1} \left(1 + (-1)^k \frac{t^s}{k^s} \right),
\]
and \(L_{-1}(2x - 1, t) \) solves a hypergeometric ODE.

Indeed
\[
L_{-1}(1, t) = \frac{1}{\beta(1 + t/2, 1/2 - t/2)}.
\]

We correspondingly obtain ODEs for eventually periodic Euler sums. Thus \(L_{-2,1}(x, t) \) is a solution of
\[
i^6 F = x^2(x - 1)^2(x + 1)^2 D^6 F + x(x - 1)(x + 1)(15x^2 - 6x - 7) D^5 F
+ (x - 1)(65x^3 + 14x^2 - 41x - 8) D^4 F + (x - 1)(90x^2 - 11x - 27) D^3 F
+ (x - 1)(31x - 10) D^2 F + (x - 1) D F.
\]
This leads to four-term recursion for \(F = \sum c_n(t)x^n \) with initial values \(c_0 = 1, c_1 = 0, c_2 = t^3/4, c_3 = -t^3/6 \), and the ODE can be simplified.

We are now ready to prove Zagier’s conjecture. Again, let \(F(a, b; c; x) \) denote the hypergeometric function. Then:

Theorem 3.7.1 For \(|x|, |t| < 1 \) and all positive integers \(n \)
\[
\sum_{n=0}^{\infty} L(3,1,3,1\ldots,3,1; x)t^{4n} = F \left(\frac{t(1+i)}{2}, -\frac{t(1+i)}{2}; 1; x \right) \times F \left(\frac{t(1-i)}{2}, -\frac{t(1-i)}{2}; 1; x \right).
\]
3.7. PROOF OF THE ZAGIER CONJECTURE

Proof. Both sides of the putative identity start

\[
1 + \frac{t^4}{8} x^2 + \frac{t^4}{18} x^3 + \frac{t^8}{1536} x^4 + \cdots
\]

and are annihilated by the differential operator

\[
D_{31} = \left((1 - x) \frac{d}{dx} \right)^2 \left(x \frac{d}{dx} \right)^2 - t^4
\]

Once discovered—and it was discovered after much computational evidence—this can be checked variously in Mathematica or Maple (e.g., in the package gfun)!

\[
\square
\]

THE MAPLE CODE

deq:=proc(F) D(D(F))+A*D(F)+B*F; end;

eqns:= {(deq(H))(x),D((deq(H)))(x),D(D((deq(H))))(x)};

for p from 0 to 4 do eqns:=subs(('@@'(D,p))(H)(x)=y[p],eqns); od:

yi_sol:=solve(eqns,{seq(y[i], i=0..4)});

id:=x->x; T:=x->t;

The annihilator to be checked for any product

A31:=proc(F) (1-id)*D((1-id)*D(id*D(id*D(F)))) - T^4*F; end;

Z:=expand(A31(F1*F2)(x)); for p from 0 to 4 do
Z:=subs(('@@'(D,p))(F1)(x)=y[1,p],
('@@'(D,p))(F2)(x)=y[2,p],Z); od:

The annihilator to be checked for the given product is

a[1]:= x -> 1/x; b[1]:= x -> I*t^2/2*1/(x*(1-x)); a[2]:= x -> 1/x;
b[2]:= x -> -I*t^2/2*1/(x*(1-x));
for i from 1 to 2 do for o from 2 to 4 do
 y[i,o]:=subs(subs(A=a[i],B=b[i],
 y[0]=y[i,0],y[1]=y[i,1],yi_sol),y[o]): od: od:

 normal(Z);

The code returns zero showing the hypergeometric product solves the differential equation.

Corollary 3.7.2 (Zagier Conjecture)

\[
\zeta(3,1,3,1,\ldots,3,1)_{\text{n-fold}} = \frac{2\pi^{4n}}{(4n+2)!} \tag{3.7.57}
\]

Proof. We have

\[
F(a,-a;1;1) = \frac{1}{\Gamma(1-a)\Gamma(1+a)} = \frac{\sin \pi a}{\pi a}
\]

where the first equality comes from Gauss’s evaluation of \(F(a,b;c;1)\) (see (6.7.54)) and the second was proved in Section 5.4 of the first volume. Hence, setting \(x = 1\), in (3.7.56) produces

\[
\begin{align*}
F \left(\frac{t(1+i)}{2}, -\frac{t(1+i)}{2}; 1; 1 \right) F \left(\frac{t(1-i)}{2}, -\frac{t(1-i)}{2}; 1; 1 \right)
&= \frac{2}{\pi^2 t^2} \sin \left(\frac{1+i}{2} \pi t \right) \sin \left(\frac{1-i}{2} \pi t \right) \\
&= \frac{\cosh \pi t - \cos \pi t}{\pi^2 t^2} = \sum_{n=0}^{\infty} \frac{2\pi^{4n}t^{4n}}{(4n+2)!}
\end{align*}
\]

on using the Taylor series of \(\cos\) and \(\cosh\). Comparing coefficients in (3.7.56) competes the proof. \(\square\)

If one suspects that Corollary 3.7.2 holds, once one can compute these sums well, it is very easy to verify many cases numerically and be entirely convinced.
3.8 Extensions and Discoveries

Generalizations of the Zagier identity. It is possible to arrive at the result without differential equations, just combinatorial manipulations of the iterated integral representations. This can be generalized to

$$\sum_{s \in I} \zeta(s) = \frac{\pi^{4n+2}}{(4n+3)!}$$

where s runs over the set I of all $2n+1$ possible insertions of the number 2 in the string $\{3,1\}_n$. Actually (3.8.58) is just the beginning of a large family of conjectured identities that were determined intensively using PSLQ, not all of which are proved. Other broad generalizations are discussed in Exercise 14.

Compare the much easier result which follows from the product formula for \sin:

$$\sum_{n=0}^{\infty} L(\{2\}_n; x) t^{2n} = F(it, -it; 1; x)$$

and, more generally,

$$\sum_{n=0}^{\infty} L(\{p\}_n; x) t^{pn} = pF_{p-1}(-\omega t, -\omega^3 t, \ldots, -\omega^{2p-1} t; 1, \ldots, 1; x)$$

where $\omega = -1$. In each case expanding the right hand-side as a power series is easy.

The amazing factorizations in the result for $\zeta(\{3,1\}_n)$ and

$$\zeta(\{3,1\}_n) = 4^{-n} \zeta(\{4\}_n) = \frac{1}{2n+1} \zeta(\{2,2\}_n)$$

beg the question

“What other deep Clausen–like hypergeometric factorizations lurk within?”

Broadhurst and Lisoněk used one of the present authors’ implementation of PSLQ to search for Zagier generalizations. They found that “cycles” $Z(m_1, m_2, \ldots, m_{2n+1}) = \zeta(\{2\}_{m_1}, 3, \{2\}_{m_2}, 1, \{2\}_{m_3}, 3, \ldots, 1, \{2\}_{m_{2n+1}})$ participate in many such identities. Checking PSLQ input vectors from all Z values of fixed weight
(2K, say) along with the value \(\zeta(\{2\}_K) \) detected many identities, from which general patterns were “obvious.” This led to a conjecture (among many):

\[
\sum_{i=0}^{2n} Z(C_i^S) = \zeta(\{2\}_{M+2n})
\]

for \(S \) a string of \(2n + 1 \) numbers summing to \(M \), and \(C_i^S \) the cyclic shift of \(S \) by \(i \) places. Zagier’s identity is the case of (3.8.59) with entries of \(S \) zero.

The symmetry in (3.8.59) highlighted that Zagier-type identities have serious combinatorial content. For \(M = 0, 1 \) we could reduce (3.8.59) to evaluation of combinatorial sums; and thence to truly combinatorial proofs. For \(M \geq 2 \) we have no proofs, but very strong evidence.

Perhaps the most striking conjecture (open indeed for \(n > 2 \)) is tantalizingly easy to state, and to numerically verify, and has eluded proof for five years since its numerical discovery:

\[
8^n \zeta(\{-2, 1\}_n) = \zeta(\{2, 1\}_n),
\]

or equivalently that the functions

\[
L_{-2,1}(1, 2t) = L_{2,1}(1, t)
\]

agree for small \(t \). It appears to be the unique identification of an Euler sum with a distinct MZV of its type. Can just the case \(n = 2 \) be proven symbolically as is the case for \(n = 1 \) (see Exercise 15)?

To sum up, our simplest conjectures (on the number of irreducibles) are still beyond present proof techniques. Does \(\zeta(5) \) or \(G \in \mathbb{Q} \)? This may or may not be close to proof! Thus, the field is wide open for numerical exploration.

Dimensional conjectures sometimes involve finding integer relations between hundreds of quantities and so demanding precision of thousands of digits—often of hard to compute objects. In that vein, Bailey and Broadhurst have recently found a polylogarithmic ladder of length 17 (a record) with such “ultra-PSLQing” [19].

3.9 Multi-Clausen Values

We finish this chapter by returning briefly to binomial sums first detailed in Section 1.7. The study of so called Deligne words for multiple integrals generating
3.9. MULTI-CLAUSEN VALUES

Multiple Clausen (or Multi-Clausen) Values at $\pi/3$ such as

$$\mu(a, b) = \sum_{n>m>0} \frac{\sin(n \pi/3)}{n^a m^b},$$

seem quite fundamental. It leads to results like

$$S_3 = \sum_{k=1}^{\infty} \frac{1}{k^3(2k)} = \frac{2\pi}{3} \mu(2) - \frac{4}{3} \zeta(3),$$

$$S_5 = \sum_{k=1}^{\infty} \frac{1}{k^5(2k)} = 2\pi \mu(4) - \frac{19}{3} \zeta(5) + \frac{2}{3} \zeta(2) \zeta(3),$$

$$S_6 = \sum_{k=1}^{\infty} \frac{1}{k^6(2k)} = -\frac{4\pi}{3} \mu(4, 1) + \frac{3341}{1296} \zeta(6) - \frac{4}{3} \zeta(3)^2.$$

Much more is detailed in [54]. This includes a generalization of MZV duality, and finishes with an accounting of alternating sums:

$$A_N = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(-1)^{k+1}}{k^N(2k)}.$$

In this setting, it is more convenient to work with the set

$$\mathcal{K}_k = \{L_k(\rho^p) \mid p \in \mathcal{C}\}$$

where $\rho = (\sqrt{5} - 1)/2$, of Kummer-type polylogarithms, of the form

$$L_k(x) = \frac{1}{(k-1)!} \int_0^x (-\log |y|)^k \frac{dy}{1-y} = \sum_{r=0}^{k-1} \frac{(-\log |x|)^r}{r!} \text{Li}_{k-r}(x)$$

where as before $\text{Li}_k(x) = \sum_{n>0} x^n/n^k$.

$$\tilde{L}_k(x) = L_k(x) - L_k(-x) = 2L_k(x) - 2^{1-k} L_k(x^2).$$

Then A_3 is Apéry’s sum, A_5 was expressed in (3.2.18), and

$$A_4 = 4 \tilde{L}_4(\rho^3) - \frac{1}{2} L_4 - 7\zeta(4).$$

In fact, there are five integer relations between \mathcal{K}_4, L_4, $\zeta(4)$ and A_4. Another simple example is

$$A_4 = \frac{16}{9} \tilde{L}_4(\rho^3) - 2L_4 - \frac{23}{9} \zeta(4).$$

For $9 \geq N \geq 6$ one gets corresponding integer relations but not enough to obtain closed forms for A_N.
3.10 Commentary and Additional Examples

1. A binomial generalization of $\zeta(2)$. Show that

$$\sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{(2k+4n+1)(2k+2n+1)} = \binom{2n}{n}^2 \frac{\pi^2}{2^{8n+3}}, \quad (3.10.61)$$

for each integer $n \geq 0$.

(This is a sum that Maple can evaluate in closed form.)

Reason. The summand on the left of (3.10.61) equals

$$\frac{(2k)!((k+2n)^2)}{k!^2(2k+4n)!(2k+4n+1)(2k+2n+1)} = \frac{(k+1)(k+2)\cdots(k+2n)}{(2k+2n+1)[(2k+1)(2k+2)\cdots(2k+4n+1)]} = f_n(k)$$

where f_n is a rational function with numerator and denominator of degrees $2n$ and $2n+2$ respectively. The partial fraction expansion of f_n is thus

$$f_n(x) = \frac{a}{(2x+2n+1)^2} + \sum_{i=0}^{2n} \frac{b_i}{(2x+2i+1)}.$$

But $f_n(x) = -f_n(-2n-1-x)$ and it follows that $b_i = -b_{2n-i}$ for each i. In particular $b_n = 0$. Also

$$a = \lim_{x \to -n-1/2} (2x+2n+1)^2 f_n(x)$$

$$= \frac{(-n+1/2)(-n+3/2)\cdots(n-1/2)}{2^{2n}(-2n)(-2n+2)\cdots(-2)\cdot2\cdot4\cdots(2n)}$$

$$= \frac{[1\cdot3\cdots(2n-1)]^2}{2^{6n}n!^2} = \frac{(2n)!^2}{2^{8n}n!^4} = \frac{1}{2^{8n}} \binom{2n}{n}^2.$$.
For \(-n \leq k < 0\), \(f_n(k) = 0\) so that the sum in question equals
\[
\sum_{k=-n}^{\infty} f_n(k) = \frac{1}{28n} \sum_{k=-n}^{\infty} \frac{1}{(2n + 2k + 1)^2} + \sum_{i=0}^{n-1} b_i \sum_{k=-n}^{\infty} \left(\frac{1}{2k + 2i + 1} - \frac{1}{2k + 4n - 2i + 1} \right).
\]
The sum
\[
\sum_{k=-n}^{\infty} \left(\frac{1}{2k + 2i + 1} - \frac{1}{2k + 4n - 2i + 1} \right)
\]
telescopes and equals
\[
\sum_{k=-n}^{n-2i-1} \frac{1}{2k + 2i + 1} = 0
\]
since in this sum the \(k\)-th term cancels with the \(-2i - k\)-st term. As
\[
\sum_{k=-n}^{\infty} \frac{1}{(2n + 2k + 1)^2} = \sum_{j=0}^{\infty} \frac{1}{(2j + 1)^2} = \frac{\pi^2}{8},
\]
the identity (3.10.61) follows.

2. **The Riemann-Siegel Formula.** In this exercise we derive the principle term of an asymptotic formula which Riemann used to compute the roots of the zeta function, \(\zeta(s) = \sum_{n=1}^{\infty} n^{-s}\) (\(s \in \mathbb{C}\), whenever this sum converges. We then use the asymptotic formula to find roots of \(\zeta(s)\).

(i) We first derive an integral representation of \(\zeta(s)\) which remains valid for all \(s \in \mathbb{C}\), as Riemann states without proof in his famous 1859 paper [180]. Use the Mellin transform
\[
\int_0^{\infty} e^{-nx} x^{s-1} \, dx = \frac{\Gamma(s-1)}{n^s}
\]
together with the Gamma function identities from Chapter 5 of the first volume
\[
\Gamma(s) = s\Gamma(s-1), \quad \frac{\pi^s}{\Gamma(s)\Gamma(-s)} = \sin \pi s,
\]
(3.10.62)
and the standard identity $e^{-Nx}(e^x - 1)^{-1} = \sum_{n=N+1}^{\infty} e^{-nx}$ to show that

$$\zeta(s) = \sum_{n=1}^{N} n^{-s} + \Gamma(-s) \pi^{-1} \sin \pi s \int_{0}^{\infty} \frac{x^{(s-1)} e^{-Nx}}{e^x - 1} \, dx. \quad (3.10.63)$$

Now, using the residue theorem and the identities (3.10.62), show that

$$\zeta(s) = \sum_{n=1}^{N} n^{-s} + \Gamma(-s) (2\pi)^{s-1} 2 \sin \frac{\pi s}{2} \sum_{n=1}^{N} n^{-(1-s)}$$

$$+ \frac{\Gamma(-s)}{2\pi i} \int_{C_N} \frac{(-x)^s e^{-Nx}}{x(e^x - 1)} \, dx, \quad (3.10.64)$$

where C_N is the contour whose path descends the real axis (or, technically, just above the real axis) from $+\infty$, traces the circle of radius $2\pi(N + 1)$ counter clockwise and returns to $+\infty$, and where $(-x)^s = \exp[s \log(-x)]$ is defined to be the branch which is real for positive real x.

(ii) Next consider the auxiliary function $Z(t)$ defined by

$$Z(t) = e^{i\theta(t)} \zeta(1/2 + it), \quad \theta(t) = (i \log (\Gamma(it/2 - 3/4)) - t/2 \log \pi.$$

Define $\xi(s) = \Gamma(s/2)(s-1)\pi^{-s/2}\zeta(s)$. Again using the identity (3.10.62), show that, $\xi(1/2 + it) = r(t) Z(t)$, where

$$r(t) = -e^{Re \log \Gamma(it/2-3/4)} t^2 + 1/4 \frac{2\pi^{1/4}}{2\pi^{1/4}}.$$

Substitute the integral expression (3.10.63) for $\zeta(s)$ into the definition of $\xi(s)$ above and use the identities $\theta(-t) = -\theta(t), \quad r(-t) = r(t),$ and $2i \sin(\pi s/2) = -e^{\pi/4} e^{\pi/2} (1 - ie^{-t\pi})$ to show that $Z(t) = Z_0(t) + R(t)$ where

$$Z_0(t) = \sum_{n=1}^{N} n^{-1/2} 2 \cos(\theta(t) - t \log n), \quad (3.10.65)$$
and
\[R(t) = \frac{e^{-i\theta(t)} e^{-t\pi/2}}{(2\pi)^{1/2}(2\pi)^{i\pi/3}(1 - ie^{-t\pi})} \int_{C_N} \frac{(-x)^{i-1/2} e^{-N\pi}}{e^x - 1} \, dx. \]
(3.10.66)

To evaluate the remainder term \(R \), Riemann used the asymptotic expansion
\[R(t) \approx \tilde{R}(t) = (-1)^{N-1} \left(\frac{t}{2\pi} \right)^{-1/4} \sum_j \left(\frac{t}{2\pi} \right)^{-j/2} C_j(p), \]
(3.10.67)
where the integer \(N \) is chosen to be the integer part of \((t/2\pi)^{1/2}\), and \(p \) is the fractional part. The first three terms of the expansion are
\[C_0(p) = \Psi(p) = \frac{\cos(2\pi(p^2 - p - 1/16))}{\cos(2\pi p)}, \quad C_1(p) = -\frac{1}{2^5 3\pi^2} \Psi^{(3)}(p), \]
\[C_2(p) = \frac{1}{2^{11} 3^4 \pi^4} \Psi^{(6)}(p) + \frac{1}{2^6 \pi^2} \Psi^{(2)}(p). \]

The notation \(\Psi^{(n)}(p) \) indicates the \(n \)th derivative. The expansion (3.10.67) is the Riemann-Siegel formula, so named for its originator and the mathematician Carl Siegel [188] who discovered the formula in Riemann’s working papers some 70 years after the publication of Riemann’s original paper. If the \(C_1 \) term is the first term omitted in the Riemann-Siegel formula, then Titchmarsh [199, pg. 331] showed that for \(t > 250\pi \) the error \(|R(t) - \tilde{R}(t)| \) is bounded by \((3/2)(t/2\pi)^{-3/4}\). The formula refined is still in use today. See also [86] for an exercise (1.59) that lead the reader through zeta calculations, including some explicit parts on Riemann-Siegel.

(iii) Using the Riemann-Siegel formula and Titchmarsh’s estimate for the error, give a numerical proof for the existence of zeros of \(\zeta(1/2 + it) \) in the interval \(t \in [999.784, 999.799] \). Note that only 12 terms in the main sum (3.10.65) are needed to calculate the estimate for \(Z(t) \). To achieve comparable accuracy using the alternative Euler-Maclaurin formula (see [108, Ch. 6] or Chapter 7 in this volume) would require hundreds of terms.
3. Some quadratic ζ functions. Problem: Explore evaluations of sums of the form

$$
\zeta(a, b, c) = \sum_{n,m \geq 0} \frac{n^{2a} m^{2b}}{(n^2 + m^2)^c}
$$

for a, b, c nonnegative integers. (Here as before the summation avoids poles of the summand.)

Solution:

(a) The following identity expresses $\zeta(a, 0, c)$ by using a Bessel function expansion of the normalized Mellin transform

$$
M_c(f) = \frac{1}{\Gamma(c)} \int_0^\infty f(t)t^{c-1} dt
$$

of the function

$$
t \to \sum_{n,m} n^{2a} q^{n^2 + m^2} = \sum_n n^{2a} q^{n^2} \theta_3(q)
$$

with $q = \exp(-t)$ after using the theta transform (2.3.15)

$$
\theta_3(\exp(\pi t)) = \sqrt{\frac{\pi}{t}} \theta_3 \left(\exp\left(\frac{\pi}{t}\right) \right).
$$

This leads to the identity

$$
\zeta(a, 0, c) = 2\delta_{0a} \zeta(2c) + 2\beta \left(c - \frac{1}{2}, \frac{1}{2} \right) \zeta(2c - 2a - 1) + 4\sum_{p \geq 1} \sigma_{[2a+1-2c]}(p) E_c(p).
$$

(3.10.68)

This is valid for real ac with $d = c - a > 1$ and presumably provides an analytic continuation of $\zeta(a, 0, c)$, for the sum over positive integers. Here σ is a divisor function

$$
\sigma_{[d]}(p) = \sum_{n|p} n^d,
$$

and

$$
E_c(p) = \frac{\sqrt{\pi}}{\Gamma(c)} 2(\pi p)^{c-1/2} K_{(c-1)/2}(2\pi p)
$$
is derived from the modified Bessel function of half integer order,
\(K_{(c-1)/2} \), of the second kind.
When \(c = N \) is integer, \(\mathcal{E}_N(p) \) is of the form
\[
\pi \exp(-2\pi p) P_N(\pi p)
\]
where \(P_N \) is a rational polynomial of degree \(N - 1 \) with positive
coefficients: \(P_1(x) = 1, P_2(x) = x + 1/2, P_3(x) = x^2/2 + 3/4x +
3/8, P_4(x) = 1/6x^3 + 1/2x^2 + 5/8x + 5/16 \). In general
\[
P_N(x) = \sum_{k=0}^{N-1} \frac{(N+k-1)N!k}{(N-k-1)!4^k}.
\]
This allows one to very efficiently compute \(\zeta(a, 0, c) \) via (3.10.68),
using roughly \(D/4 \) terms for \(D \) digits. Note also that for fixed \(c \) and
variable \(a \) only the powers in \(\sigma_{[2a+1−2c]} \) vary so most of the computation can be saved.

(b) Then the general integer case follows from
\[
\zeta(a, b, c) = \sum_{k=0}^{e} (-1)^{e-k} \binom{e}{k} \zeta(a + b - k, 0, c - k)
\]
where \(e = \min(a, b) \).

(c) Similar developments are possible for the more general form
\[
\zeta_N(a, b, c) = \sum_{n,m}^{'} \frac{n^{2a} m^{2b}}{(Nn^2 + m^2)c},
\]
with \(N > 0 \). We write \(\zeta = \zeta_1 \). For example,
\[
\zeta_N(a, 0, c) = 2 \delta_{0a} \zeta(2c) + N^{(1/2-c)} \left[2\beta \left(c - \frac{1}{2}, \frac{1}{2} \right) \right] \quad (3.10.69)
\]
\[
\zeta(2c - 2a - 1) + 4 \sum_{p \geq 1} \sigma_{[2a+1−2c]}(p) \mathcal{E}(\sqrt{Np})
\]
Note that we now lose a symmetry (and apparently have many fewer
closed forms) but have: \(\zeta_{1/N}(a, b, c) = N^c \zeta_N(b, a, c) \).
Also, for \(N = 1, 2, 3 \), and especially for those with disjoint discriminants, many special values may be computed via elliptic integrals in the corresponding singular values. This leads to closed forms such as

\[
\zeta(0, 0, c) = 4\zeta(c)L_{-4}(c),
\]

and

\[
\zeta_2(0, 0, c) = 2\zeta(c)L_{-8}(c)
\]

where \(L_\sigma(c) = \sum_{n \geq 1} \left(\frac{c}{n} \right) n^{-c} \) is the corresponding primitive L-series and \(\left(\frac{c}{n} \right) \) is the Legendre-Jacobi symbol. We obtain

\[
\zeta(2, 0, 4) = \frac{1}{4} \pi^2 G + \frac{1}{480} \Gamma(3/4)^8,
\]

and

\[
\zeta(2, 2, 6) = \frac{1}{64} \pi^2 G - \frac{1}{1920} \frac{\pi^6}{\Gamma(3/4)^8} + \frac{1}{92160} \frac{\pi^{10}}{\Gamma(3/4)^{16}}
\]

where \(G = L_{-4}(2) \) is Catalan’s constant.

There is a similar expression for \(\zeta(a, b, a+b+2) \) for all integers \(a, b \geq 0 \). Then also

\[
\zeta_2(1, 1, 4) = \frac{1}{8} \zeta(2)L_{-8}(2) - \frac{1}{18} \left(3 - 2\sqrt{2} \right) \left(\frac{1}{8} \beta \left(\frac{1}{8}, \frac{1}{8} \right) \right)^4,
\]

and there is a similar evaluation of \(\zeta_P(1, 1, 4) \) and \(\zeta_{2P}(1, 1, 4) \) when \(P \) is respectively of “type 1” \(\{(1), 5, 13, 21, 33, \ldots \} \) or “type 2” \(\{1, 3, 5, 11, 15, \ldots \} \), as described in section 9.2 of [44]. Hence,

\[
\zeta_6(0, 0, c) = \zeta(c)L_{-24}(c) + L_{-3}(c)L_8(c)
\]

and

\[
\zeta_6(1, 1, 4) = \frac{1}{12}\zeta_6(0, 0, 2) - \frac{1}{15} 2^{1/3} (35 + 16\sqrt{3} - 20\sqrt{2} - 14\sqrt{6}) \left(\frac{1}{24} \beta \left(\frac{1}{24}, \frac{1}{24} \right) \right)^4,
\]

while

\[
\zeta_{10}(1, 1, 4) = \frac{1}{80} \left(\zeta(2)L_{-40}(2) + L_5(2)L_{-8}(2) \right) -
\]
\[
\left(7725 + 3452 \sqrt{5} - 5460 \sqrt{2} - 2442 \sqrt{10} \right) \frac{(\frac{1}{20} \beta)^4(\frac{1}{40}, \frac{1}{10})\beta^4(\frac{9}{20}, \frac{9}{20})}{120 \beta^4(\frac{3}{8}, \frac{3}{8})}.
\]

For comparison, we note that we may also write
\[
\zeta_1(1, 1, 4) = \frac{1}{2} \zeta(2) L_{-4}(2) - \frac{1}{30} \left(\frac{1}{4} \beta \left(\frac{1}{4}, \frac{1}{4} \right) \right)^4,
\]
and may use elliptic transformation formulae to derive
\[
\zeta_4(1, 1, 4) = \frac{1}{32} \zeta(2) L_{-4}(2) - \frac{11}{64} \zeta_1(1, 1, 4).
\]
Hence,
\[
\sum' (-1)^n \frac{n^2 m^2}{(n^2 + m^2)^4} = 8 \zeta_4(1, 1, 4) - \zeta_1(1, 1, 4)
\]
\[
= \frac{1}{16} \zeta(2) L_{-4}(2) + \frac{1}{80} \left(\frac{1}{4} \beta \left(\frac{1}{4}, \frac{1}{4} \right) \right)^4,
\]
and
\[
\sum' (-1)^{n+m} \frac{n^2 m^2}{(n^2 + m^2)^4} = 4 \sum' (-1)^n \frac{n^2 m^2}{(n^2 + m^2)^4}.
\]
Note also that \(L_5(2) = 4 \sqrt{5} \pi^2/125\) and \(L_8(2) = \sqrt{2} \pi^2/16\).

4. **A multi-zeta evaluation.** Consider
\[
\sigma_{n,m} = \sum_{s \in S(n,m)} \zeta(s_1, s_2, \ldots, s_m)
\]
summed over all strings of length \(m\) consisting of nonnegative integers adding up to \(n\), with \(s_1 > 1\) to insure convergence. Determine \(\sigma_{n,m}\) as a multiple of \(\zeta(n)\).

Hint: Note that \(z(2, 1) = z(3)\), \(z(3, 1) + z(2, 2) = 2z(4)\), etc. After working out a few more examples, the pattern can easily be observed.
5. **Harmonic numbers.** Prove that

\[H_n = \sum_{k=1}^{n} \frac{1}{k} \]

is never integer for \(n > 1 \).

Hint: A slick proof uses Bertrand’s postulate: the proven fact that there is always a prime \(p \) in the interval \((n/2, n]\). Now write

\[H_n = \frac{n!/1 + n!/2 + \cdots + n!/n}{n!} \]

Then \(p \) divides the numerator and all but one term of the denominator \(n!/p \) (as \(p > n/2 \)). One can alternately establish the result using more elementary methods.

6. **Bertrand’s postulate.** Show that \(\binom{2n}{n} \) is even for \(n > 0 \) and use this to prove Bertrand’s postulate that there is always a prime between \(n \) and \(2n \).

7. **A multi-dimensional polylogarithm extension.** A useful specialization of the general multidimensional polylogarithm, which is at the same time an extension of the polylogarithm, is the case in which each \(b_j = b \). Under these circumstances, we write

\[\lambda_b(s_1, \ldots, s_k) = \prod_{j=1}^{k} \sum_{\nu_j=1}^{\infty} b^{-\nu_j} \sum_{i=j}^{k} (\nu_i)^{-s_j}. \quad (3.10.70) \]

When \(b = \pm 1 \) this is an Euler sum.

Let \(|p| \geq 1 \). The double generating function equality

\[1 - \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m+1} y^{n+1} \lambda_p(m + 2, \{1\}_n) = F \left(y, -x; 1 - x; \frac{1}{p} \right) \quad (3.10.71) \]

holds. Note that when \(p = 1 \) the symmetry of the hypergeometric function produces a case of MZV duality: \(\zeta(m + 2, \{1\}_n) = \zeta(n + 2, \{1\}_m) \), for all \(m \) and \(n \), because

\[F(y, -x; 1 - x; 1) = \frac{\Gamma(1 - x)\Gamma(1 - y)}{\Gamma(1 - x - y)} \quad (3.10.72) \]

\[= \exp \left\{ \sum_{k=2}^{\infty} (x^k + y^k - (x + y)^k) \frac{\zeta(k)}{k} \right\}. \]
3.10. COMMENTARY AND ADDITIONAL EXAMPLES

Expanding the rightmost function gives a closed form for $\zeta(m + 2, \{1\}_n)$.

Proof. (of (3.10.71)) By definition of λ_p

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m+1} y^{n+1} \lambda_p(m + 2, \{1\}_n) = y \sum_{m=0}^{\infty} x^{m+1} \sum_{k=1}^{\infty} \frac{1}{k^{m+2} p^k} \prod_{j=1}^{k-1} \left(1 + \frac{y}{j}\right)$$

$$= \sum_{m=0}^{\infty} x^{m+1} \sum_{k=1}^{\infty} \frac{(y)_k}{k^{m+1} k! p^k}$$

$$= \sum_{k=1}^{\infty} \frac{(y)_k}{k! p^k} \left(\frac{x}{k-x}\right)$$

$$= -\sum_{k=1}^{\infty} \frac{(y)_k (-x)_k}{k! p^k (1-x)_k}$$

$$= 1 - F\left(y, -x; 1 - x; \frac{1}{p}\right)$$

as claimed.

8. **A symbolic multi-dimensional zeta evaluation.** Use

$$1 - \exp \sum_{k=2}^{\infty} \zeta\left(k\right) \frac{\left(x^k + y^k - (x + y)^k\right)}{k}$$

in (3.10.73) to compute $\zeta(n, \{m\})$ symbolically for $n + m < 9$.

9. **Three proofs of an identity.**

$$\sum_{n>0} \frac{H_n^2}{n^2} = \frac{17}{4} \zeta(4).$$

Here, as before $H_n = \sum_{k=1}^{n} 1/k$.

(a) **Fourier analysis proof.** As in Chapter 1 of this volume, obtain the Fourier series of the function whose square integral is given by

$$\frac{1}{2\pi} \int_{0}^{\pi} (\pi - t)^2 \log^2(2 \sin \frac{t}{2}) \, dt = \sum_{n=1}^{\infty} \frac{\left(\sum_{k=1}^{n} \frac{1}{k}\right)^2}{(n + 1)^2}. \quad (3.10.73)$$
(b) **Algebraic proof.** Write

\[
\sum_{n>0} \frac{H_n^2}{n^2} = \sum_{n>0} \left(H_{n-1} + \frac{1}{n} \right)^2
\]

(3.10.74)

\[
= \sum_{n>0} \frac{H_{n-1}^2}{n^2} + 2 \zeta(3,1) + \zeta(4)
\]

\[
= 2 \zeta(2,1,1) + \zeta(4) + 2 \zeta(3,1) + \zeta(4)
\]

\[
= 2 \zeta(2,1,1) + \zeta(4) + 2 \zeta(3,1) + \zeta(4) = \left(4 + \frac{1}{4}\right) \zeta(4)
\]

since \(\zeta(2,1,1) = \zeta(4) \) (by MZV duality or the \(\zeta(m+2,\{1\}_n) \) special case) and \(4 \zeta(3,1) = \zeta(4) \) (by the first case of Zagier’s evaluation or by the double Euler sum evaluation).

(c) **Residue theory proof.** Apply residue theory to

\[
\phi_{p,q}(s) = \frac{\pi \cot(\pi s) \Psi^{(p-1)}(-s)}{2 s^q (p-1)!}
\]

obtain \(\zeta(p,q) \) for \(p + q < 8 \), by integrating over circles of radius \(R \to \infty \) centered at the origin [110].

10. **Reduction to zeta values.** Reduce

\[
\sum_{n>0} \frac{H_n^3}{n^3}
\]

and

\[
\sum_{n>0} \frac{H_n^2}{n^4}
\]

to Riemann zeta values.

11. **Ohno’s duality theorem.** Ohno [167] provides the following beautiful generalization of MZV duality (see Theorem 3.6.1). Define

\[
Z(k_1, k_2, \ldots, k_n; l) = \sum_{c_1+c_2+\ldots+c_n=l} \zeta(k_1+c_1, k_2+c_2, \ldots, k_n+c_n),
\]
and, for integer \(s \geq 1 \) let dual sequences be built by
\[
k = (\{1\}_{a_1 - 1}, b_1 + 1, \{1\}_{a_2 - 1}, b_2 + 1, \ldots, \{1\}_{a_s - 1}, b_s + 1)
\]
and
\[
k' = (\{1\}_{b_s - 1}, a_s + 1, \{1\}_{a_{b_s - 1} - 1}, a_2 s - 1 + 1, \ldots, \{1\}_{b_1 - 1}, a_1 + 1)
\]
for \(a_i, b_i \geq 0 \). Then for all integer \(l \geq 0 \)
\[
Z(k, l) = Z(k'; l).
\tag{3.10.75}
\]

(a) Recover MZV duality from (3.10.75) with \(l = 0 \).

(b) Apply (3.10.75) with \(k = n + 1 \) and \(k' = (\{1\}_{n-1}, 2) \) to obtain an evaluation of all legal \(\zeta \)-values of length \(n \) summing to \(l \).

(c) Deduce
\[
\frac{1}{\Gamma(s)} \int_0^\infty \frac{t^s - 1}{e^t - 1} \text{Li}_k \left(1 - e^{-t} \right) \, dt = \zeta(k + 1, \{1\}_{s-1}).
\]

12. **Ohno-Zagier generating function.** Ohno and Zagier provide the following impressive generating function. For multi-indices \(k = (k_1, k_2, \ldots, k_n) \) with \(k_i > 0 \), let \(I_0(k, n, s) \) denote those admissible multi-indices of weight \(k \), depth \(n \) and height \(s = \# \{ i : k_i > 1 \} \). Let
\[
G_0(k, n, s) = \sum_{k \in I_0(k, n, s)} \zeta(k).
\]
Note that \(I_0(k, n, s) \) is nonempty exactly if \(s > 0, n \geq s \), and \(k \geq n + s \).

Denote the generating function
\[
\Phi_0(x, y, z) = \sum_{k,n,s} G_0(k, n, s) x^{k-n-s} y^{n-s} z^{s-1}.
\]
Then
\[
(xy - z) \Phi_0(x, y, z) = \left(1 - \exp \left(\sum_{n>1} (x^n + y^n - \alpha^n - \beta^n) \frac{\zeta(n)}{n} \right) \right),
\tag{3.10.76}
\]
where \(\alpha, \beta \) are the roots of \(t^2 - t(x + y) = z \).
(a) Deduce that all the coefficients $G_0(k, n, s)$ of Φ_0 are polynomials in $\zeta(2), \zeta(3), \ldots$ with rational coefficients.

(b) Show (3.10.76) is equivalent to

$$1 - (xy - z) \Phi_0(x, y, z) = \prod_{m \geq 1} \left(1 - \frac{xy - z}{(m - x)(m - y)}\right).$$

13. **MZV stuffles.** Define a binary operation mapping pairs of ordered lists $u = (u_1, \ldots, u_m)$ and $v = (v_1, \ldots, v_n)$ (for non-negative integers m and n) into multisets of ordered lists by the recursion

$$\begin{align*}
() \ast u &= u \ast () = \{u\}, \\
a(u \ast bv) &= a(u \ast bv) \cup b(au \ast v) \cup (a + b)(u \ast v),
\end{align*}$$

where, for example, $au = (a, u_1, \ldots, u_m)$ and more generally, if M is a multiset of ordered lists, then aM denotes the multiset obtained by placing a at the front of each list in M.

(a) Show that

$$\zeta(u) \zeta(v) = \sum_{w \in u \ast v} \zeta(w).$$

(b) Let $f(|u|, |v|)$ denote the number of lists (counting multiplicity) in $u \ast v$. Show that the formal power series identity

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(m, n)x^my^n = \frac{1}{1 - x - y - xy}$$

holds.

(c) Hence, show [67] that

$$f(m, n) = \sum_{k=0}^{m} \binom{m}{k} \binom{n + k}{m} = \sum_{k=0}^{\min(m, n)} \binom{n}{k} \frac{m}{k} 2^k$$

$$= \left| \left\{ (b_1, \ldots, b_m) \in \mathbb{Z}^m : \sum_{j=1}^{m} |b_j| \leq n \right\} \right|$$

$$= \left| \left\{ (b_1, \ldots, b_n) \in \mathbb{Z}^n : \sum_{j=1}^{n} |b_j| \leq m \right\} \right|. $$
[Proving the two sets of lattice points are the same size is an exercise in Pólya-Szegő’s *Problems and Theorems in Analysis.*]

There is an analogous, but simpler result to (a) for integral “shuffles.”

14. **Extensions of Zagier’s identity.** We sketch some quite broad extensions of the method of Theorem 3.7.56.

Let \(f \) and \(g \) be differentiable univariate functions, and define differential operators
\[
D_f = f(x)\frac{d}{dx}, \quad D_g = g(x)\frac{d}{dx}.
\]

Fix a constant \(t \) and let \(U \) and \(V \) be sets of solutions to the respective differential equations
\[
(D_fD_g - t)u = 0, \quad (D_fD_g + t)v = 0.
\]

(a) Prove [69, 67] that \(UV = \{uv : u \in U, v \in V\} \) is a set of solutions to the differential equation
\[
(D_f^2D_g^2 + 4t^2)w = 0,
\]
and moreover [68], \(UV \) is a basis iff \(U \) and \(V \) are bases for the solution spaces of their respective equations.

Hint: With obvious notation, prove the modified Wronskian determinant identity [68]
\[
\begin{vmatrix}
 u_1v_1 & u_2v_1 & u_1v_2 & u_2v_2 \\
 D_gu_1v_1 & D_gu_2v_1 & D_gu_1v_2 & D_gu_2v_2 \\
 D_g^2u_1v_1 & D_g^2u_2v_1 & D_g^2u_1v_2 & D_g^2u_2v_2 \\
 D_fD_g^2u_1v_1 & D_fD_g^2u_2v_1 & D_fD_g^2u_1v_2 & D_fD_g^2u_2v_2 \\
\end{vmatrix}
= 8t
\begin{vmatrix}
 u_1 & u_2 \\
 D_gu_1 & D_gu_2 \\
\end{vmatrix}^2
\begin{vmatrix}
 v_1 & v_2 \\
 D_gv_1 & D_gv_2 \\
\end{vmatrix}^2.
\]

(b) Generalize this result.

(c) **Applications:** For real \(x \) with \(0 \leq x \leq 1 \), positive integers \(s_j \), and signs \(\sigma_j \in \{1, -1\} \), let
\[
\zeta_x(\sigma_1s_1, \ldots, \sigma_ks_k) = \sum_{n_1 > \cdots > n_k > 0} x^{n_1} \prod_{j=1}^k n_j^{-s_j} \sigma_j^{n_j},
\]
and set \(\zeta = \zeta_1 \). For \(0 \leq x \leq 1 \) and complex \(z \), let

\[
Y_1(x, z) = F(z, -z; 1; x), \\
Y_2(x, z) = (1 - x)F(1 + z, 1 - z; 2; 1 - x), \\
G(z) = \frac{1}{4} \{ \psi(1 + iz) + \psi(1 - iz) - \psi(1 + z) - \psi(1 - z) \},
\]

where \(F \) is the Gaussian hypergeometric function, and \(\psi \) is the logarithmic derivative of the Euler gamma function: \(\psi(z) = \Gamma'(z)/\Gamma(z) \). Then [36]

\[
\sum_{n=0}^{\infty} (-1)^n z^{4n} 4^n \zeta_x(\{3, 1\}^n) = Y_1(x, z) Y_1(x, iz),
\]

and [69]

\[
\sum_{n=0}^{\infty} (-1)^n z^{4n+2} 4^n \zeta_x(3, \{1, 3\}^n) = G(z) Y_1(x, z) Y_1(x, iz) - \frac{Y_1(x, iz) Y_2(x, z)}{4Y_1(1, z)} + \frac{Y_1(x, z) Y_2(x, iz)}{4Y_1(1, iz)}
\]

define entire functions of \(z \).

(d) Rederive that for positive integers \(n \),

\[
\zeta(\{3, 1\}^n) = 4^{-n} \zeta(\{4\}^n) = \frac{2\pi^{4n}}{(4n + 2)!}.
\]

Additionally show [69] that

\[
\zeta(3, \{1, 3\}^n) = 4^{-n} \sum_{k=0}^{n} \zeta(4k + 3) \zeta(\{4\}^{n-k}) = \left(\frac{1}{4} \right)^{n-k} \zeta(4n - 4k + 3),
\]

and

\[
\zeta(2, \{1, 3\}^n) = 4^{-n} \sum_{k=0}^{n} (-1)^k \zeta(\{4\}^{n-k}) \{ (4k + 1) \zeta(4k + 2) - 4 \sum_{j=1}^{k} \zeta(4j - 1) \zeta(4k - 4j + 3) \}.
\]
3.10. COMMENTARY AND ADDITIONAL EXAMPLES

(e) For complex \(z \), set
\[
A(z) = \sum_{n=0}^{\infty} z^n \zeta(\{-1\}^n) = \prod_{j=1}^{\infty} \left(1 + \frac{(-1)^j z}{j}\right) = \frac{\Gamma(1/2)}{\Gamma(1 + z/2)\Gamma(1/2 - z/2)}.
\]

Let \(t \) and \(z \) be related by \(z = (1 + i)t/2 \), and set \(s = (1 + x)/2 \), where \(0 \leq x \leq 1 \). Define \(U(s, z) = Y_1(s, z) - zY_2(s, z) \), where \(Y_1 \) and \(Y_2 \) are the Gaussian hypergeometric functions previously defined. Then \([69]\),
\[
\sum_{n=0}^{\infty} \left[t^{2n} \zeta(\{-1, 1\}^n) + t^{2n+1} \zeta(-1, \{1, -1\}^n) \right] = \frac{U(s, -z)U(s, iz)}{A(-z)A(i z)}
\]
defines an entire function of \(z \).

(f) Conclude that for all complex \(t \),
\[
\sum_{n=0}^{\infty} \left[t^{2n} \zeta(\{-1, 1\}^n) + t^{2n+1} \zeta(-1, \{1, -1\}^n) \right] = A \left(\frac{t}{1 - i} \right) A \left(\frac{t}{1 + i} \right)
\]
and if \(z = (1 + i)t/2 \), then
\[
1 + \sum_{n=0}^{\infty} \left[t^{2n+1} \zeta(-1, \{1, -1\}^n) + t^{2n+2} \zeta(-1, \{-1, 1\}^n) \right] = \frac{1}{2}(1 + i)zA(z)A(-iz) \left\{ \pi \csc(\pi z) - i\pi \csc h(\pi z) + 4G(z) \right\}.
\]

(g) Deduce explicit formulas \([69]\) for the alternating unit Euler sums appearing as coefficients in (3.10.77) and (3.10.78).

(h) Find additional applications of these ideas to multiple polylogarithms or other special functions.

15. A proof that \(\zeta(2, 1) = 8\zeta(2, 1) \). Consider the power series
\[
J(x) = \sum_{n_1 > n_2 > 0} \frac{x^{n_1}}{n_1^n n_2}.
\]
CHAPTER 3. ZETA FUNCTIONS AND MULTI-ZETA VALUES

(a) Show for $0 \leq x \leq 1$ that

$$J(x) = \int_0^x \frac{\log^2(1-t)}{2t} \, dt = \zeta(3) + \frac{1}{2} \log^2(1-x), \log(x)$$
$$+ \log(1-x)\text{Li}_2(x) - \text{Li}_3(x),$$

(b) and that

$$J(-x) = -J(x) + \frac{1}{4} J(x^2) + J\left(\frac{2x}{x+1}\right) - \frac{1}{8} J\left(\frac{4x}{(x+1)^2}\right).$$

(3.10.79)

(c) Deduce that $J(1) = 8J(-1)$.

(d) Evaluate $J(1/2)$.

This functional equation was found, once the ingredients were determined by inspection, by evaluating (3.10.79) (actually, a version of it with undetermined coefficients) at a random point and then using LLL. Another successful strategy is to evaluate each J function at enough specific values of x to enable one to solve linear equations for the unknown coefficients.

If $L(x)$ and $R(x)$ denote the left-hand and the right-hand sides of (3.10.79), respectively, then computer manipulations (for $0 < x < 1$) show that $dL/dx = dR/dx$: mechanically differentiating both sides and using simplify reduces the difference between the two to zero. Now this completes a proof of $\zeta(2,1) = 8\zeta(2,1) = \zeta(3)$, see (3.8.60). Even the next case of (3.8.60) has only been established indirectly.

16. **Torus knots and ζ-values.** For integers $p, q > 1$ the $p - q$-torus knot is the knot that transpires when string is wound around one way on the torus while being wound q times in the other direction. Figure 3.1 shows the $2 - 5$ and $5 - 2$ torus knots in three dimensions. Despite looking very different this pair are clearly mathematically the same knot (the torus is the product of two circles and we just exchange generators.) There is, along the lines of the discussion in Section 2.6 of the first volume, a connection between quantum field theory and multi-zeta values on one hand and between quantum field theory and knot theory on the other.
This has an especially interesting consequence for torus knots. Indeed the $2 - (2n + 1)$ and $(2n + 1) - 2$ knots are indirectly but tightly coupled with $\zeta(2n + 1)$ for each $n \geq 1$. This is intriguing since the standard knot invariants of Alexander or Jones attach a polynomial (algebraic) quantity to a given knot. It would be very interesting to see a direct and natural identification. By contrast the unknot is identified with π and the $2 - (2n)$ knots are identified trivially with links via π^{2n} (Euler yet again!).

17. **More knotty problems.** Figure 3.2 shows the 8_8 knot (from a standard catalogue in KnotPlot) and the famous Reidemeister moves which are used to rearrange knots.

The knots in Figure 3.3 were listed as separate knots in knot tables. These are 10_{161} and 10_{162}, in [183] which notes that in 1974 they were shown by Perko to be equivalent [171]. The knots are still listed as separate in some knot tables, including the recent book by Kawauchi [143].

A lengthy sequence of images showing the equivalence is at http://www.cecm.sfu.ca/~scharein/projects/perko/ with the nice experimental mathematics connection that these deformations were done entirely automatically by KnotPlot. Indeed, both may be deformed to the knot in Figure 3.4.
Figure 3.2: The knot 8_8 and Reidemeister moves

Figure 3.3: The knots 10_{161} and 10_{162}
Figure 3.4: The knot equivalent to both 10_{161} and 10_{162}
Chapter 4

Partitions and Powers

I’ll be glad if I have succeeded in impressing the idea that it is not only pleasant to read at times the works of the old mathematical authors, but this may occasionally be of use for the actual advancement of science.

Constantin Carathéodory, speaking to an MAA meeting in 1936

4.1 Partition Functions

The number of additive partitions of \(n \), \(p(n) \), is formally generated by

\[
P(q) = 1 + \sum_{n \geq 1} p(n)q^n = \prod_{n \geq 1} (1 - q^n)^{-1}.
\]

(4.1.1)

One ignores “0” and permutations. Thus \(p(5) = 7 \) since

\[
5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.
\]

(4.1.2)

Additive partitions are less tractable than multiplicative ones as there is no analogue of unique prime factorization nor the corresponding structure.

Formula (4.1.1) is easily seen by expanding \((1 - q^n)^{-1} \) and comparing coefficients. It is relatively easy to deduce that \(2^{\sqrt{n}} < p(n) < e^{\pi \sqrt{2n/3}} \) for \(n > 3 \) (see
Figure 4.1: A Ferrer diagram

[165]), and that the series is absolutely convergent for $|q| < 1$. We return to the analytic behavior of this series below.

Partitions provide a wonderful example of why Keith Devlin calls mathematics “the science of patterns” [102]. Many geometric representations exist. For example, the partition $5 = 4 + 1$ can be represented as a point at $(0, 0)$ and four points at $(0, 1), (1, 1), (2, 1), (3, 1)$. Read with axis reversed, this identifies $1 + 4$ with $2 + 1 + 1 + 1$ and so on. See Figure 4.1, which identifies $1 + 1 + 1 + 2 + 3 + 4$ and $6 + 3 + 2 + 1$. Such techniques provide alternate ways to prove results such as the number of partitions of n with all parts odd is the number of partitions of n into distinct parts, (see Exercise 1).

A modern computational temperament leads to:

Question: How hard is $p(n)$ to compute—in 1900 (for MacMahon the “father of combinatorial analysis”) or in 2000 (for Maple or Mathematica)?

Answer: The computation of $p(200) = 3972999029388$ took MacMahon months and intelligence. Now, however, we can use the most naive approach: computing 200 terms of the series for the inverse product in (4.1.1) instantly produces the result using Maple. Obtaining $p(500) = 2300165032574323995027$ is not much more difficult, using the one line of code
4.1. PARTITION FUNCTIONS

\[N:=500; \text{coeff} \left(\text{series} \left(1/\text{product}(1-q^n, n=1..N+1), q, N+1 \right), q, N \right) \]

2300165032574323995027

4.1.1 Euler’s Pentagonal Number Theorem

In early versions of Maple, computing \(P(q) \) was quite slow, while taking the series for the reciprocal of the series for \(Q(q) = \prod_{n \geq 1} (1-q^n) \) was quite manageable? Why? Clearly the series for \(Q(q) \) must have special properties. Indeed

\[Q(q) = 1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + q^{22} + q^{26} - q^{35} - q^{40} + q^{51} + q^{57} - q^{70} - q^{77} + q^{82} + O \left(q^{100} \right). \] (4.1.3)

If we do not immediately recognize these pentagonal numbers \(((3n \pm 1)n/2)\), Sloane’s on-line Encyclopedia of Integer Sequences at

http://www.research.att.com/~njas/sequences

again comes to the rescue, with abundant references to boot.

So, algorithmic analysis predicts Euler’s pentagonal number theorem:

\[\prod_{n \geq 1} (1-q^n) = \sum_{n=-\infty}^{\infty} (-1)^n q^{(3n+1)n/2}. \] (4.1.4)

One would be less prone to look at \(Q \) on the way to \(P \) today when the computation is very snappy.

With this success under our belt, we might well ask what about powers of \(Q \)? We obtain

\[Q^2(q) = 1 - 2q - q^2 + 2q^3 + q^4 + 2q^5 - 2q^6 - 2q^8 - 2q^9 + q^{10} + 2q^{13} + 3q^{14} - 2q^{15} + 2q^{16} - 2q^{19} - 2q^{20} - 2q^{23} + 2q^{24} + 2q^{26} + 2q^{27} - 2q^{28} + 2q^{29} + q^{30} + 2q^{31} + 2q^{33} - 2q^{34} - 2q^{35} + 2q^{36} - 2q^{38} - 4q^{40} + q^{44} - 2q^{45} + 2q^{48} + O \left(q^{50} \right) \]

which is not nearly as lacunary; but

\[Q^3(q) = 1 - 3q + 5q^3 - 7q^6 + 9q^{10} - 11q^{15} + 13q^{21} - 15q^{28} + 17q^{36} - 19q^{45} + O \left(q^{51} \right) \]
which has exposed another famous result—a special form of Jacobi’s triple product. The general form is
\[
\prod_{n \geq 1} (1 + x q^{2n-1})(1 + x^{-1} q^{2n-1})(1 - q^{2n}) = \sum_{n = -\infty}^{\infty} x^n q^{n^2}. \tag{4.1.5}
\]

Then the formula implicit in (4.1.1) is
\[
\prod_{n \geq 1} (1 - q^n)^3 = \sum_{m = 0}^{\infty} (-1)^m (2m + 1) q^{m(m+1)/2} \tag{4.1.6}
\]
which may be obtained on replacing \(q\) by \(q^{1/2}\) and \(x\) by \(-wq^{1/2}\) in (4.1.5), differentiating with respect to \(w\), and then letting \(w \to 1\) from below.

If we write \(P(q)Q(q) = 1\) in terms of the Cauchy convolution we have
\[
\sum_{k \leq n} q_k p(n - k) = \delta_n \tag{4.1.7}
\]
where \(q_k\) is the coefficient of \(q^k\) in (4.1.3), and \(\delta_n\) is the Kronecker function which is 1 when \(n = 0\) and 0 otherwise. It is a nice exercise to make this into Euler’s explicit recursion for \(p(n)\) which only needs to compute \(O(\sqrt{n})\) smaller values of \(p(k)\). One can similarly develop somewhat more efficient formulae relying on information such as (4.1.1).

4.1.2 Modular Properties of Partitions

Ramanujan used MacMahon’s table of \(p(n), 1 \leq n \leq 200\) to intuit remarkable and deep congruences such as
\[
p(5n + 4) \equiv 0 \mod 5
\]
\[
p(7n + 5) \equiv 0 \mod 7
\]
and
\[
p(11n + 6) \equiv 0 \mod 11,
\]
from data like
\[
P(q) = 1 + q + 2q^2 + 3q^3 + 5q^4 + 7q^5 + 11q^6 + 15q^7 + 22q^8 + 30q^9 + 42q^{10} + 56q^{11} + 77q^{12} + 101q^{13} + 135q^{14} + 176q^{15} + 231q^{16} + 297q^{17} + 385q^{18} + 490q^{19} + 627q^{20}b + 792q^{21}b + 1002q^{22} + 1255q^{23} + \cdots
\]

If one generates more terms of \(p(n) \) and displays them in an appropriately sized matrix this becomes much clearer:

\[
\begin{pmatrix}
1 & 1 & 2 & 3 & 5 \\
7 & 11 & 15 & 22 & 30 \\
42 & 56 & 77 & 101 & 135 \\
176 & 231 & 297 & 385 & 490 \\
627 & 792 & 1002 & 1255 & 1575
\end{pmatrix}
\]

(4.1.8)

shows clearly the congruence \(p(5n + 4) \equiv 0 \mod 5 \) in the last column.

Correspondingly

\[
\begin{pmatrix}
1 & 1 & 2 & 3 & 5 & 7 & 11 \\
15 & 22 & 30 & 42 & 56 & 77 & 101 \\
135 & 176 & 231 & 297 & 385 & 490 & 627 \\
792 & 1002 & 1255 & 1575 & 1958 & 2436 & 3010 \\
3718 & 4565 & 5604 & 6842 & 8349 & 10143 & 12310
\end{pmatrix}
\]

(4.1.9)

shows clearly the congruence \(p(7n + 5) \equiv 0 \mod 7 \) in the second last column.

Driven entirely by limited experimental data, Ramanujan conjectured an audacious set of correct modular identities, and not surprisingly over generalized! He conjectured that if \(d = 5^a7^b11^c \) and \(24n \equiv 1 \mod d \) then \(p(n) \equiv 0 \mod d \). This is equivalent to the same conjectures for \(d \) a power of 5, 7, 11. This holds for \(a, b, c < 3 \) and for all powers of 5, 11 but fails \(7^3 \) as \(p(243) = 133978259344888 \) since \(133978259344888 \equiv 245 \mod 343 \) quickly shows in the 21st century while \(243 \cdot 24 = 17 \cdot 7^3 + 1 \). Such modular identities (see [130, 44]) and their extensions remain an active source of research today. The simplest case is described in Exercise 2.
4.1.3 The “Exact” Formula for $p(n)$

One of the signal achievements of early twentieth century analysis was Hardy and Ramanujan’s precise asymptotic for $p(n)$, [76]. It is based in part on an analysis of the Dedekind η-function $\eta(q) = e^{\pi i z/12} \prod_{n \geq 1} (1 - e^{2\pi i n z})$. The function η is closely related to $Q(q)$, and $\theta_3(q)$ discussed in the next section, and satisfies a modular equation like (4.2.21). Their asymptotic is

$$p(n) = \frac{e^{K\lambda_n}}{4\sqrt{3\lambda_n^2}} \left(1 + O\left(\frac{1}{\sqrt{n}} \right) \right)$$

(4.1.10)

where $K = \pi \sqrt{\frac{2}{3}}$ and $\lambda_n = \sqrt{n - \frac{1}{24}}$.

This was subsequently refined by Rademacher to

$$p(n) = \frac{1}{\pi \sqrt{2}} \sum_{k=1}^{\infty} \alpha_k(n) \sqrt{k} \frac{d}{dx} \left[\frac{\sinh \left(\frac{\pi^2}{3k} (x - \frac{1}{24}) \right)}{\sqrt{(x - \frac{1}{24})}} \right]_{x=n}$$

(4.1.11)

where

$$\alpha_k(n) = \sum_{(h,k)=1}^{k} \omega_{h,k} e^{-2\pi i h/k},$$

and $\omega_{h,k} = \exp(\pi i \tau_{h,k})$ with

$$\tau_{h,k} = \sum_{m=1}^{k-1} \left(\frac{m}{k} - \left| \frac{m}{k} \right| - \frac{1}{2} \right) \left(\frac{hm}{k} - \left| \frac{hm}{k} \right| - \frac{1}{2} \right).$$

If order \sqrt{n} terms are appropriately used, the nearest integer is $p(n)$.

A mere five terms of this expansion provides $p(200) \approx 397299029387.86108$ and six terms yields $p(500) \approx 2300165032574323995027.196661$. As we have seen the underlying asymptotic is

$$p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi \sqrt{2n/3}}.$$

Later Erdős made an “elementary” derivation of the Hardy-Ramanujan formula (4.1.10). A recent discussion of this formula is given by Almkvist and Wilf in [8]. It is interesting to speculate how much corresponding beautiful mathematics is not done when computation becomes too easy—both Maple and Mathematica have good built in partition functions.
4.2. SINGULAR VALUES

4.2 Singular Values

The Jacobian theta functions are a very rich source mine for experimentation—both as a tool to learning classical theory and to discover new phenomena. Further details of what follows are given fully in [44]. For our purposes we consider only the three classical \(\theta \)-functions:

\[
\begin{align*}
\theta_3(q) &= \sum_{n=-\infty}^{\infty} q^{n^2}, \quad (4.2.12) \\
\theta_4(q) &= \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2}, \\
\theta_2(q) &= \sum_{n=-\infty}^{\infty} q^{(n+1/2)^2},
\end{align*}
\]

for \(|q| \leq 1 \). Note that \(\theta_3^2 \) is the generating function for the number of ways of writing a number as a sum of two squares, counting order and sign. Similarly, \(\theta_2^2 \) counts sums of two odd squares.

A beautiful result of Jacobi’s is

\[
\theta_3^2(q) = \theta_3^2(q) + \theta_4^2(q). \quad (4.2.13)
\]

If we write \(k = \theta_2^2/\theta_3^2 \) and \(k' = \theta_4^2/\theta_3^2 \), we note that \(k^2 + (k')^2 = 1 \). It transpires that

\[
\begin{align*}
(i) \quad & \theta_3^2(q^2) = \frac{\theta_3^2(q) + \theta_3^2(q)}{2} \\
(ii) \quad & \theta_2^4(q^2) = \theta_4(q) \theta_3(q).
\end{align*}
\]

(4.2.14)

Now (4.2.13) and (4.2.14) can be proved in many ways and can be “verified” symbolically in many more. For example, Jacobi’s triple product (4.1.5) with \(x = \pm 1 \) becomes product representations for \(\theta_3(q) \) and \(\theta_4(q) \) respectively. Multiplying these together yields (ii).

Even without access to the triple product, there is a simple algorithm (see [9, 10]) for converting a sum \(A(q) = 1+\sum_{n=1} a_n q^n \) to a product \(B(q) = \prod_{n=1} (1 - q^n)^{-b_n} \), and rational coefficients are preserved. To get an idea why, differentiating
logarithmically and expanding the denominator of the right side leads to

\[
\frac{q A'(q)}{A(q)} = \sum_{n \geq 1} \frac{n b_n q^n}{1 - q^n} = \sum_{n,k \geq 1} n b_n q^{n+k} = \sum_{n \geq 1} B_n^* q^n,
\]

where we set \(a_0 = 1\) and

\[
B_n^* = \sum_{d \mid n} d b_d.
\]

Thus, \(q A'(q) = A(q) \sum_{n > 0} B_n q^n\), which is equivalent to the convolution

\[
n a_n = \sum_{k=1}^{n} B_k^* a_{n-k} = \sum_{k=0}^{n-1} B_{n-k}^* a_k.
\]

This clearly determines \(\{a_k\}\) given \(\{b_n\}\) and the converse obtains from the Möbius inversion formula of (4.3.34).

Example: Counting rooted trees. The number \(T_n\) of rooted trees with \(n\) branches is given by a formula due to Arthur Cayley (1821–1895)

\[
T(x) = 1 + \sum_{k=1}^{\infty} T_{k+1} x^k = \prod_{n=1}^{\infty} (1 - x^n)^{-T_k}.
\]

As we remarked in Section 1.6 of the first volume, the product and the sum share their coefficients. The recursion (4.2.17) for \(T_n\) becomes

\[
T_{n+1} = \frac{1}{n} \sum_{k=1}^{n} T_k^* T_{n+1-k}, \quad T_n^* = \sum_{d \mid n} d T_d.
\]

which starts: \(T_1 = 1, T_2 = 1, T_3 = 2, T_4 = 4, T_5 = 9, T_6 = 20, T_7 = 48 \ldots \)

Applied to \(1 + 2q + 2q^4 + 2q^9 + 2q^{16}\) the algorithm produces

\[
\frac{(1 - q^2)^3 (1 - q^4) (1 - q^6)^3 (1 - q^8) (1 - q^{10})^3 (1 - q^{12}) (1 - q^{14})^3 (1 - q^{16})}{(1 - q)^2 (1 - q^3)^2 (1 - q^5)^2 (1 - q^7)^2 (1 - q^9)^2 (1 - q^{11})^2 (1 - q^{13})^2 (1 - q^{15})^2},
\]
from which a form of the product for $\theta_3(q)$ can be read off. By contrast $1 + 3q + 3q^4 + 3q^9 + 3q^{16}$ produces

\[
\frac{(1 - q^2)^6 (1 - q^4)^{15} (1 - q^6)^{97} (1 - q^8)^{573} (1 - q^{10})^{3867} (1 - q^{12})^{26446}}{(1 - q)^4 (1 - q^3)^6 (1 - q^5)^{129} (1 - q^7)^{231} (1 - q^9)^{1485} (1 - q^{11})^{10056} (1 - q^{14})^{187761} (1 - q^{16})^{1356198}}
\]

which is pretty good evidence that no natural product exists. We will establish (4.2.14) (i) in the next section.

Also, one notes that it follows, from (4.2.14), that θ_3^2 and θ_4^2 parametrize the AGM and that

\[
AG(\theta_3^2(q), \theta_4^2(q)) = AG(\theta_3^2(q^2), \theta_4^2(q^2)) = AG(\theta_3^2(q^4), \theta_4^2(q^4)) = \cdots = AG(\theta_3^2(q^{2n}), \theta_4^2(q^{2n})) = AG(\theta_3^2(0), \theta_4^2(0)) = AG(1, 1) = 1
\]

since the iteration’s limit is unchanged if one starts at the first or the second stage of the iteration, and since AG is continuous. Another marvellous fact that follows from Poisson summation is that

\[
k(e^{-\pi s}) = k'(e^{-\pi/s}),
\]

for $s > 0$. In particular, $k(e^{-\pi}) = \sqrt{1/2}$. Then (4.2.21) and (4.2.20), in conjunction with the already explored relationship between Elliptic integrals and the AGM (Section 5.6 of the first volume) shows that with the above definition of k,

\[
K(k(q)) = \frac{\pi}{2} \theta_3^4(q).
\]

Now the classical theory of modular equations asserts that there is an algebraic relationship between $k = k(q)$ and $l = k(q^N)$ for each positive integer N. For example, the quadratic equation, implicit in (4.2.14), is $l' = 2\sqrt{k'/l + k'}$, while the cubic modular equation may be written as

\[
\theta_3(q)\theta_3(q^3) = \theta_4(q)\theta_4(q^3) + \theta_2(q)\theta_2(q^3)
\]

or equivalently

\[
\sqrt{kl} + \sqrt{k'l'} = 1.
\]
Similarly, for $N = 7$ the equation is

$$\sqrt{\theta_3(q)\theta_3(q^7)} = \sqrt{\theta_4(q)\theta_4(q^7)} + \sqrt{\theta_2(q)\theta_2(q^7)}$$ (4.2.25)

or equivalently

$$\sqrt{kI} + \sqrt{k'I} = 1.$$ (4.2.26)

The existence of such modular equations means that there is an algebraic relationship between $K(k)$ and $K(l)$ and in particular that $k_N = k(e^{-\pi\sqrt{N}})$ is a (solvable) algebraic number, called the N–th singular value. It is also the case that two invariants used by Ramanujan reduce the degrees of these quantities.

He used

$$G_N = (2kk')^{-1/12}, \quad g_N = (2k/k')^{-1/12},$$ (4.2.27)

and it transpires that G_N is better for odd N and g_N for even N.

From the equations above, since $k' = l, l' = k$ in this case, we may read off the values $G_1 = g_2 = 1, G_3 = 2^{1/12},$ and $G_7 = 2^{1/4};$ with a little more work we may obtain $g_4 = 2^{1/8}, g_6^5 = \sqrt{2} + 1, g_8^6 = (\sqrt{2} + 1)/2,$ and $G_9^6 = (2 + \sqrt{3})$. From these evaluations in turn we may easily determine k_N for $N = 1, 2, 3, 4, 6, 7, 8, 9.$ Had we supplied the quintic modular equation we could determine $G_{12}^5 = \sqrt{5} + 2, g_{10}^5 = (\sqrt{5} + 1)/2, G_{15}^5 = 2^{1/4}(\sqrt{5} + 1)/2,$ and $G_{25} = (\sqrt{5} + 1)/2.$

Each of these has a reworking as an infinite series evaluation. Thus,

$$\theta_3(e^{-\pi}) = \sqrt{2} \theta_4(e^{-\pi}) = \sqrt{2} \theta_2(e^{-\pi}).$$ (4.2.28)

But this is not the main point of this section. We have sketched that (modular) functions such as

$$N \mapsto \frac{\theta_2(q)}{\theta_3(q)}, \quad q = e^{-\pi\sqrt{N}}$$ (4.2.29)

are guaranteed to have algebraic values; and by their nature they are very rapidly computable to high precision. Thus, they provide excellent test beds for (i) recovering minimal polynomials from numerical data, and (ii) for simplifying the radicals so obtained.

For example, working to 15 places, “MinimalPolynomial” feature of Maple, which uses lattice basis reduction, for g_{22}^2 returns $x^2 - 2x - 1,$ for G_{37}^4 it returns
4.2. SINGULAR VALUES

$x^2 - 12x - 1$ and for G_{58}^2 we obtain $1 + 10x + 23x^2 - 10x^3 + x^4$—leading to three of the cleanest singular values. Correspondingly, G_{11}^4 solves the cubic $x^3 - 4x^2 + 4x - 1 = 0$, $g_{14}^1 = 2^{1/6}(\sqrt{3} + 1)$, $G_{13}^4 = (\sqrt{13} + 1)/2$, and g_{14}^2 yields the polynomial $x^4 - 2x^3 + 4x^2 - x + 1$, which is $g_{14}^2 + g_{14}^3 = \sqrt{2} + 1$. Also $G_{17}^2 + G_{17}^2 = 40 + 10\sqrt{17}$. In each case, the root or radical obtained using a low precision “hunt” can be checked almost instantly to many hundreds or thousands of digits precision.

For instance, we may discover that $x = G_{17}^4/2$ solves the solvable irreducible quintic $x^5 - 10x^4 + 9x^3 - 4x^2 - 1 = 0$. In cases of degree less than ten, Maple can provide the Galois group, (in this case the dihedral group, D_5) and it also will provide a large radical:

$$5x = 10 + \left[\frac{273625}{4} + \frac{66025}{4}\sqrt{5} - \frac{53885}{772}\sqrt{45355 - 16826\sqrt{5}} \right]^{1/5}$$

$$- \frac{1847377065}{772}\sqrt{45355 - 16826\sqrt{5}}$$

$$+ \left(\frac{6285 + \frac{1265}{2}\sqrt{5} - \frac{2255}{386}\sqrt{45355 - 16826\sqrt{5}} - \frac{20331965}{193}\sqrt{45355 - 16826\sqrt{5}}}{\frac{273625}{4} + \frac{66025}{4}\sqrt{5} - \frac{53885}{772}\sqrt{45355 - 16826\sqrt{5}} - \frac{1847377065}{772}\sqrt{45355 - 16826\sqrt{5}} \right)^{3/5}$$

$$+ \left(\frac{1375}{2} + 35\sqrt{5} + \frac{11}{386}\sqrt{45355 - 16826\sqrt{5}} - \frac{1767012}{193}\sqrt{45355 - 16826\sqrt{5}} \right)^{2/5}$$

$$+ \sqrt{\frac{273625}{4} + \frac{66025}{4}\sqrt{5} - \frac{53885}{772}\sqrt{45355 - 16826\sqrt{5}} - \frac{1847377065}{772}\sqrt{45355 - 16826\sqrt{5}}}.$$
which repeated massaging reduces to
\[x = 2 + \sqrt{\frac{2189}{100}} + \frac{2641}{500}\sqrt{5 - \frac{1}{2500}}\sqrt{1436961550 + 641957866\sqrt{5}} + \sqrt{\frac{2189}{100}} - \frac{2641}{500}\sqrt{5 - \frac{1}{2500}}\sqrt{1436961550 - 641957866\sqrt{5}} + \sqrt{\frac{2189}{100}} - \frac{2641}{500}\sqrt{5 + \frac{1}{2500}}\sqrt{1436961550 - 641957866\sqrt{5}} + \sqrt{\frac{2189}{100}} + \frac{2641}{500}\sqrt{5 + \frac{1}{2500}}\sqrt{1436961550 + 641957866\sqrt{5}}. \]

Likewise, Ramanujan’s celebrated singular value, sent in his letter to Hardy, is
\[k_{210} = \left(\sqrt{2} - 1\right)^2(2 - \sqrt{3})(\sqrt{7} - \sqrt{6})^2(8 - \sqrt{63}) \times (\sqrt{10} - 3)^2(4 - \sqrt{15})^2(\sqrt{15} - \sqrt{14})(6 - \sqrt{35}). \]

Indeed, \(k_{330} \) and \(k_{462} \) have a similar form involving fundamental solutions to Pell’s equation (units of real quadratic fields).

Finally we note that for small \(N \) the elliptic integral \(K(k_N) \) is correspondingly susceptible to evaluation in terms of Gamma functions. Thus, to go along with our previous evaluation of \(K(k_1) \) we have
\[K(k_3) = \frac{3^{1/4}\Gamma\left(\frac{1}{3}\right)^3}{2^{7/3}\pi} \quad \text{and} \quad K(k_7) = \frac{\Gamma\left(\frac{1}{7}\right)\Gamma\left(\frac{2}{7}\right)\Gamma\left(\frac{4}{7}\right)}{4\pi\sqrt{7}}. \]

In each case, there is a neater expression in terms of the \(\beta \)-function waiting to be disentombed.

4.3 Crystal Sums and Madelung’s Constant

We have seen the power of converting series to products and making other changes of representation. We now introduce Lambert series which are representations of the form
\[\sum_{n=1}^{\infty} f(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n)x^n \]
where

\[F(n) = \sum_{d|n} f(d) \]

(4.3.33)

summed over all positive divisors of \(n \), due originally to Laguerre. The identity (4.3.32) is established by using the binomial theorem and gathering up terms, much as with the partition function above.

Thus, for \(f(n) \equiv 1 \) we have \(F(n) = \tau(n) = \sigma_0(n) \), the number of divisors of \(n \), while \(f(n) = n^k (k \neq 0) \) yields \(\sigma_k(n) \) the \(k \)-th power sum of the divisors.

Recall that the Möbius function is defined by \(\mu(1) = 1, \mu(n) = (-1)^m \) if \(n \) is the product of \(m \) distinct prime factors in \(n \), and zero otherwise. Then the Möbius inversion Theorem says that

\[\sum_{d|n} F(d) \mu(n/d) = f(n) \]

(4.3.34)

for any arithmetic function \(f \).

This is an analogue of Cauchy convolution.

4.3.1 Sums of Squares

Let us observe that

\[\theta_3^n(q) = 1 + \sum_{n \geq 1} r_m(n) q^n \]

(4.3.35)

where \(\theta_3 \) is defined by (4.2.12) and \(r_m(n) \) counts the number of ways of writing \(n = \sum_{k=1}^{m} n_k^m \), again distinguishing order and sign of the integers used.

It is easy to compute a significant number of terms by merely expanding truncations of the series on the right-hand side of (4.3.35). This is quite effective for small even numbers of squares.

Two squares. The first 60 terms of \(r_2(n)/4 \) are

\[
1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0
\]
which does not immediately show a clear pattern. However, applying (4.3.34) to the first 30 terms yields

\[1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0 \]

and the formula is immediately made evident. It is

\[r_2(n) = 4(d_1(n) - d_3(n)) \] \hspace{1cm} (4.3.36)

where \(d_k \) is the number of divisors of \(n \) congruent to \(k \) modulo four. Equivalently

\[4 \sum_{n \geq 0} (-1)^n \frac{q^{2n+1}}{1 - q^{2n+1}}. \] \hspace{1cm} (4.3.37)

Four squares. The series grows much faster \((r_2(n) = O(n^\delta)\) for any \(\delta > 0 \)) and the first twenty terms of \(r_4(n)/8 \) are

1, 3, 4, 3, 6, 12, 8, 3, 13, 18, 12, 12, 14, 24, 3, 18, 39, 20, 18

while Möbius inversion produces

1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 0, 13, 14, 15, 0, 17, 18, 19, 0

from which it is obvious that

\[r_4(n)_4 = 8 \sum_{d | n, k | d} d \] \hspace{1cm} (4.3.38)

and a nice corollary is that since \(1 | n \), \(r_4(n) \) is always positive (Lagrange’s famous theorem).

Six squares. Möbius inversion produces

12, 48, 148, 192, 300, 336, 948, 768, 716, 1200, 2388, 1344, 2028, 2256, 3700, 3072, 3468, 3120, 7188, 4800. \hspace{1cm} (4.3.39)

There is clearly structure but what? We leave this as a challenge and turn to eight squares.
4.3. CRYSTAL SUMS AND MADELUNG’S CONSTANT

Eight squares. Möbius inversion now produces

\[
11, 6, 27, 64, 125, 162, 343, 512, 729, 750, 1331, 1728, 2197, 2058, 3375, 4096. (4.3.40)
\]

There is again clearly structure but what? If we apply inversion to \((-1)^d r_8(d)\) (this is using \(\theta_4\) instead of \(\theta_3\)) we are rewarded with

\[
-1, 8, -27, 64, -125, 216, -343, 512, -729, 1000, -1331, 1728, -2197, 2744, -3375, 4096. (4.3.41)
\]

Thus,

\[
\theta_3^2(-q) = \theta_4^2(q) = 1 + 16 \sum_{n \geq 1} \frac{(-1)^n n^3 q^n}{1 - q^n}. (4.3.42)
\]

We end this subsection by deriving (4.2.14) (i) as promised. Indeed we note that this is equivalent to

\[
\sum_{n > 0} r_2(n) q^{2n} = \sum_{n > 0} \frac{1 + (-1)^n}{2} r_2(n) q^n.
\]

This follows immediately from \(r_2(2n) = r_2(n)\), given that (4.3.36) shows \(r_2(n)\) only depends on the odd part of \(n\).

Of course we have not proven any of these representations only uncovered them.

4.3.2 Multidimensional Sums

Consider the sums

\[
\mathcal{M}_2(s) = \sum_{\substack{m, n \in \mathbb{Z} \\ (m,n) \neq 0}} \frac{(-1)^{m+n}}{(m^2 + n^2)^{s/2}} (4.3.43)
\]

and

\[
\mathcal{M}_3(s) = \sum_{\substack{(m,n,p) \in \mathbb{Z} \\ (m,n,p) \neq 0}} \frac{(-1)^{m+n+p}}{(m^2 + n^2 + p^2)^{s/2}} (4.3.44)
\]
and higher dimensional versions $\mathcal{M}_{\mathcal{N}}(s)$ defined analogously. In future we write \sum' to denote that poles of the summatory are left out. We are primarily interested in the value $M_3(1)$ which is called Madelung’s constant for sodium chloride, as it is an attempt to count the potential at the origin if alternating charges are placed at all other points of an integer cubic lattice. The physical-chemical literature generally treats (4.3.43) and (4.3.44) as well defined objects. Mathematically this is far from so. Since these numbers are much computed something more must be said (see [32]).

Example: Convergence over increasing circles, squares and diamonds.

1. **Squares.** The sum $b_2^N(s) = \sum_{n=1}^{N} \sum_{m=1}^{N} (n^2 + m^2)^{-s/2}$ converges to an analytic function $b_2(s)$, for $\text{Re}(s) > 0$.

2. **Circles.** The sum $\sum_{n^2 + m^2 \leq N} (n^2 + m^2)^{-s/2} = \sum_{k \leq N} r_2(k)/k^{s/2}$ converges to an analytic function $r_2(s)$, for $\text{Re}(s) > \frac{1}{4}$, but fails to converge somewhere above $\frac{1}{4}$. This relies on the fact that the average order of $r_2(n)$ is quite well understood, [131]. Where the limit exists it must agree with that for squares by uniqueness of analytic continuation.

3. **Diamonds.** Consider adding up over increasing diamonds: $|n| + |m| = N$. Then the contribution of each shell is $\sum_{m=0}^{N} 1/\sqrt{N^2 - 2Nm + m^2}$ and the limit is the Riemann integral $\int_0^1 1/\sqrt{1 - 2t + 2t^2} \, dt = \sqrt{2} \log (1 + \sqrt{2})$. So the terms of the series do not even go to zero.

Thus, the order taken matters even for these “natural sums.” In fact if we always add these sums over increasing hypercubes, they converge to an analytic limit for $\text{Re}(s) > 0$. So we shall take this as the default meaning of the sum, see [44, 31, 32]. We also note that these sums converge very slowly so that direct summation methods are to be avoided. We return to the evaluation of $\mathcal{M}_3(1)$ in the next section.

The normalized Mellin transform (see also Item 3a) is a special form of the Laplace transform which makes the link between theta functions and zeta functions, as we saw in Chapter 2 of this volume. In this setting we recall that

\[\mu_s(f) = \frac{1}{\Gamma(s)} \int_0^\infty f(t)t^{s-1} \, dt. \]
Then it is easy to check that \(\mu_s(e^{-tn}) = n^{-s} \) and also that
\[
\mathcal{M}_2(2s) = \mu_s(\theta_4^2(e^{-t}) - 1),
\]
and using (4.3.37) the fact that \(\theta_4^2(q) - 1 = \theta_3^2(-q) - 1 = 4 \sum_{n>0}(-1)^n(q^{2n+1} - 1) = 4 \sum_{n,m\geq1}(-1)^{n+m-1}q^{m(2n-1)} \) implies that
\[
\mathcal{M}_2(2s) = \sum_{n,m\geq1} \frac{(-1)^{n+m-1}}{m(2n-1)^s}
\]
(4.3.47),
where as before \(\alpha(s) = \sum_{m\geq1}(-1)^{m+1}/m^s \), the alternating zeta function, and \(\beta(s) = \sum_{n\geq0}(-1)^n/(2n+1)^s \), the “Catalan” zeta function (\(\beta(2) = G \) is Catalan’s constant).

Similar arguments based on (4.3.38) lead to
\[
\mathcal{M}_4(2s) = -8 \alpha(s)\beta(s),
\]
and to a corresponding formula for \(\mathcal{M}_6(s) \). In each of these cases the values are easily computed from the analytic continuations of the underlying zeta functions as given in Chapter 1. In particular \(\mathcal{M}_2(1) = -1.61554262671282472386 \ldots \) and \(\mathcal{M}_4(1) = -1.83939908404504706623 \). Moreover, various closed forms exist such as \(\mathcal{M}_4(2) = -4 \log(2) \).

We complete this subsection by listing some other formulae. Define \(\mathcal{L}_N(2s) = \sum_{n=1}^{\infty} r_N(n)/n^s \). The corresponding \(\mathcal{L}_N(2s) \) are known for \(N = 2, 4, 6 \) and 8,
\[
\begin{align*}
\mathcal{L}_2(2s) &= 4\zeta(s)\beta(s), \\
\mathcal{L}_4(2s) &= 8(1 - 4^{1-s})\zeta(s)\zeta(s-1), \\
\mathcal{L}_6(2s) &= 16\zeta(s-2)L_4(s) - 4\zeta(s)\beta(s-2), \\
\mathcal{L}_8(2s) &= 16(1 - 2^{1-s} + 4^{2-s})\zeta(s)\zeta(s-3).
\end{align*}
\]
From \(\mathcal{L}_6(2s) \) one can reverse the steps we employed and discover the formula for \(r_6(n) \) left open in (4.3.39).

Many more formulae are discussed in [44, 38] and references therein. For example, as discovered by Zucker, Glasser and Robertson, we have similar closed
forms for L-series based on the quadratic form \(x^2 + 2Py^2 \). We let \(r_{2,2P}(n) \) be the number of representations of \(n = m^2 + 2Pk^2 \) and let \(\mathcal{L}_{2,2P}(2s) = \sum_{(n,m)
eq0}(m^2 + 2Pn^2)^{-s} = \sum_{n>0}r_{2,2P}(n)n^{-s} \). Then

\[
\mathcal{L}_{2,2P}(2s) = 2^{1-t} \sum_{\mu|P} \mathcal{L}_{\epsilon_\mu}(s) \mathcal{L}_{-8\epsilon_\mu/\mu}(s)
\]

for the type two integers

\[
P = 1, 3, 5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165, 231,
\]

which we will meet again in Section 5.2. Here \(\epsilon_\mu = \left(\frac{-1}{\mu}\right) \) and \(\mathcal{L}_\mu(s) = \sum_{n \geq 1} (\mu n)^{-s} \), where \((\mu n)\) is the Legendre-Jacobi symbol. Thus, \(\mathcal{L}_1(s) = \zeta(s) \) and \(\mathcal{L}_{-4}(s) = \beta(s) \).

4.3.3 Madelung’s Constant

Odd squares are notoriously less amenable to closed forms. Following Hardy, Bateman in [21] gives the following formula for \(r_3(n) \). Let

\[
\chi_2(n) = \begin{cases}
0 & \text{if } 4^a n \equiv 7 \pmod{8}; \\
2^{-a} & \text{if } 4^a n \equiv 3 \pmod{8}; \\
3 \cdot 2^{-1-a} & \text{if } 4^a n \equiv 1, 2, 5, 6 \pmod{8}
\end{cases}
\]

where \(a \) is the highest power of 4 dividing \(n \). Then

\[
r_3(n) = \frac{16\sqrt{n}}{\pi} L_{-4n}(1) \chi_2(n)
\]

\[
\times \prod_{p^2|n} \left(\frac{p^{-\tau} - 1}{p-1} + p^{-\tau} \left(1 - \frac{1}{p} \left(\frac{-p^{-2\tau} n}{p} \right) \right)^{-1} \right)
\]

(4.3.49)

where \(\tau = \tau_p \) is the highest power of \(p^2 \) dividing \(n \).

The corresponding formula for \(\mathcal{M}_3(s) \) or for \(\mathcal{L}_3(s) \) is thus not tractable. We turn to Bessel functions and let \(K_s \) be the modified Bessel function of the second kind. Then

\[
\mathcal{L}_3(2s) = \frac{6\pi}{s} \zeta(2s-2) + \frac{12\pi^{s+1}}{\Gamma(s+1)} \sum_{m=1}^\infty r_2(m)m^{s/2} \sum_{n=1}^\infty \frac{1}{n^{s-2}} K_s(2\pi n\sqrt{m}).
\]

(4.3.50)
The second term of (4.3.50) can be rewritten as
\[
\frac{12\pi^{s+1}}{\Gamma(s+1)} \sum_{k>0} k^s K_s(2\pi \sqrt{k}) \sum_{n|k} \frac{r_2(k/n^2)}{n^{2s-2}}.
\]
Moreover, these Bessel functions are elementary when \(s \) is a half-integer. Most nicely, for “jellium,” which is the Wigner sum analogue of Madelung’s constant which arises when one considers bathing a positively charged cubic crystal in a continuous background charge, we have
\[
\mathcal{L}_3(1) = -\pi + 3\pi \sum_{m>0} r_2(m) \cosech^2(\pi \sqrt{m}),
\]
and the exponential rate of convergence is apparent. Exactly analogous is the most accessible expansion for Madelung’s constant due to Benson and proved in [44]
\[
\mathcal{M}_3(1) = -12\pi \sum_{m,n\geq 0} \text{sech}^2\left(\frac{\pi}{2} ((2m+1)^2 + (2n+1)^2)^{1/2}\right),
\] (4.3.51)
in which again the convergence is exponential. Summing for \(m, n \leq 3 \) produces 1.747564594\ldots correct to 8 digits. If we write \(o_3(n) \) for the number of ways of writing \(n \) as a sum of two odd squares, this becomes
\[
\mathcal{M}_3(1) = -3\pi \sum_{m>0} o_3(m) \text{sech}^2\left(\frac{\pi}{2} \sqrt{m}\right).
\] (4.3.52)
There is a corresponding formula for \(\mathcal{M}_3(s) \).

There is also beautiful formula for \(\theta_3^{\lambda} \) due to Andrews (given with a typographical error in [44]):
\[
\theta_3^{\lambda}(q) = 8 \sum_{n=0}^{\infty} \sum_{j=0}^{2n} \left(\frac{1 + q^{4n+2}}{1 - q^{4n+2}} \right) q^{(2n+1)^2 - (j+1/2)^2}.
\] (4.3.53)
From (4.3.53) the reader will be able to derive almost immediately Gauss’s result that every number is the sum of three triangular numbers and is challenged to apply (4.3.53) to the study of \(\mathcal{M}_3(1) \).
Another related class of physically meaningful integrals are the logarithmic Watson integrals, L_d which arise in the study of polymers and are studied in [139]:

$$L_d = \frac{1}{\pi} \int_0^\pi \cdots \int_0^\pi \log(d - \sum_1^d \cos(s_k)) \, ds_1 \cdots ds_d. \quad (4.3.54)$$

For $d = 1, 2$ these reduce to $L_1 = (1/\pi) \int_0^\pi \log(1 - \cos(t)) \, dt = -\log 2$ and $L_2 = (1/\pi^2) \int_0^\pi \int_0^\pi \log(2 - \cos(t) - \cos(s)) \, dt \, ds = 4\beta(2)/\pi - \log (2)$. The evaluation of L_2 is equivalent to

$$\sum_{n=0}^\infty \frac{(2n)^2}{4^{2n+1}(2n+1)} = \frac{\beta(2)}{\pi}. \quad (4.3.55)$$

No closed form is known for $d > 2$. The prior evaluations and numerical exploration are facilitated by the lovely one-dimensional representation

$$L_d = \int_0^\infty \frac{e^{-t} - e^{-dt} I_0(t)^d}{t} \, dt$$

where I_0 is a Bessel function of the first kind. A number of additional results related to Madelung’s constant can be found in a series of papers by Richard Crandall [90, 93, 91, 92].

4.4 Some Fibonacci Sums

Theta functions turn up in quite unexpected places as we now show.

The Fibonacci sequence,

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 \cdots$$

takes its name from its first appearance in print, which seems to have been in the famous book Liber Abaci published by Leonardo Fibonacci (also known as Leonardo of Pisa) in 1202. He asked:

How many pairs of rabbits can be produced from a single pair in a year if every month each pair begets a new pair which from the second month on becomes productive?
Lest one thinks the problem is imprecise, Fibonacci describes the solution in the text and in the margin. There one finds written vertically

parium 1 primus 2 Secundus 3 tercius 5 Quartus 8 Quintus 13 Sestus
21 Septimus 34 Octauus 55 Nonus 89 Decimus 144 Undecimus 233
Duodecimus 377.

We leave it to the reader to decide that, this indeed leads to the Fibonacci sequence, but we do note that “the proof is left as an exercise” seems to have occurred first in De Triangulis Omnimodis by Regiomontanus, written in 1464 (but published in 1533). He is quoted as saying “This is seen to be the converse of the preceding. Moreover, it has a straightforward proof, as did the preceding. Whereupon I leave it to you for homework.”

Among its many other contributions such as popularizing Hindu-Arabic notation in the west, the Liber Abaci contains methods for extracting cube roots and for solving quadratics and the lovely identity

\[(a^2 + b^2)(c^2 + d^2) = (ac \pm bd)^2 + (ad \mp bc)^2,\]

which show the product of sums of two squares is such a sum.

The Fibonacci sequence occurs in many contexts both serious and quirky. For example 144 is the only Fibonacci square. A moment’s inspection shows that it is generated by

\[F_0 = 1, \quad F_1 = 1, \quad F_{n+1} = F_n + F_{n-1}. \quad (4.4.56)\]

It clearly grows quickly (like rabbits), indeed it is monotonic and so \(F_{n+2} > 2 F_n\). More precisely what is happening? If we look numerically at \(F_{n+1}/F_n\) for \(n = 10, 20, 30, 40\) we see 1.61818181818, 1.61803399852, 1.61803398875, 1.61803398875, and either the human eye or constant detection reveals this to be the Golden Mean:

\[G = \frac{\sqrt{5} + 1}{2},\]

to the precision used.

Indeed the standard theory of two term linear recurrence relations leads to

\[F_n = \frac{(\frac{\sqrt{5}+1}{2})^n - (\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}} \quad (4.4.57)\]

where \(-g = (1 - \sqrt{5})/2\) is the other root of \(x^2 = x + 1\).
It is easy to check that the sequence in (4.4.57) satisfies the recursion in (4.4.56), and has the correct initial conditions. Since $|g| < 1$ it is also easy to see that $F_{n+1}/F_n \to G$, as claimed, and to deduce many other identities such as $F_{n+1}F_{n-1} = F_n^2 + (-1)^n$ for $n \geq 2$.

There is a slightly less well known companion Lucas sequence named after the French number theorist Édouard Lucas (1842–1891):

$$L_0 = 2, \quad L_1 = 1, \quad L_{n+1} = L_n + L_{n-1},$$

which is correspondingly solved by

$$L_n = \left(\frac{\sqrt{5} + 1}{2}\right)^n + \left(\frac{1 - \sqrt{5}}{2}\right)^n.$$

As both Fibonacci and Lucas sequences are built of geometric sequences, it is clear that we can easily evaluate sums like $\sum_{n=1}^{N} F^k_n$ for positive integer k. What happens for negative integers is more interesting.

A preparatory lemma is useful:

Lemma 4.4.1 ([44]) For $0 < \beta < \alpha$ with $\alpha\beta = 1$,

1.

$$\sum_{n=1}^{\infty} \frac{1}{\alpha^n + \beta^n} = \sum_{n=1}^{\infty} \frac{\beta^n}{1 + \beta^{2n}} = \theta_3^2(\beta),$$

2.

$$\sum_{n=0}^{\infty} \frac{1}{\alpha^{2n+1} + \beta^{2n+1}} = \sum_{n=0}^{\infty} \frac{\beta^{2n+1}}{1 + \beta^{2n+1}} = \frac{1}{4} \theta_2^2(\beta^2).$$

Proof. The proof of 1. is a consequence of (4.3.37), discovered in our discussion of sums of squares. This relies on confirming that

$$\sum_{n=1}^{\infty} \frac{\beta^n}{1 + \beta^{2n}} = \sum_{n=0}^{\infty} \frac{(-1)^n \beta^{2n+1}}{1 - \beta^{2n+1}}.$$

(Try expanding both sides as double sums.)
Part 2. then follows by applying 1. to α^2 and β^2 and subtracting that result from 1. to obtain $(\theta^2_3(\beta) - \theta^2_3(\beta^2))/4$ which equals $\theta^2_2(\beta^2)/4$.

Two immediate consequences are

\[
\sum_{n=0}^{\infty} \frac{1}{F_{2n+1}} = \frac{\sqrt{5}}{4} \theta^2_2 \left(\frac{3 - \sqrt{5}}{2} \right) \tag{4.4.63}
\]

\[
\sum_{n=1}^{\infty} \frac{1}{L_{2n}} = \frac{1}{4} \theta^3_3 \left(\frac{3 - \sqrt{5}}{2} \right) + \frac{1}{4} \tag{4.4.64}
\]

Two somewhat more elaborate derivations, (see [44] section 3.7), lead to

\[
\sum_{n=1}^{\infty} \frac{1}{F^2_n} = \frac{5}{24} \left(\theta^4_2 \left(\frac{3 - \sqrt{5}}{2} \right) - \theta^4_4 \left(\frac{3 - \sqrt{5}}{2} \right) + 1 \right) \tag{4.4.65}
\]

\[
\sum_{n=1}^{\infty} \frac{1}{L^2_n} = \frac{1}{8} \left(\theta^4_3 \left(\frac{3 - \sqrt{5}}{2} \right) - 1 \right) \tag{4.4.66}
\]

Since it is known that the classical theta functions are transcendental for algebraic values $q, 0 < |q| < 1$, we discover the far from obvious result that the left-hand side of each of (4.4.63), (4.4.64), (4.4.66) is a transcendental number, as probably is (4.4.65).

Moreover, since both the initial sums and especially the theta functions are easy to compute numerically, we can hunt for other such identities using integer relation methods. Thence, we find:

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{F^2_n} = \frac{5}{48} \left(2 - \theta^4_2 \left(\frac{3 - \sqrt{5}}{2} \right) - 2 \theta^4_4 \left(\frac{3 - \sqrt{5}}{2} \right) \right) \tag{4.4.67}
\]

and a host of more recondite identities.

By contrast, a remarkable elementary identity is

\[
\sum_{n=0}^{\infty} \frac{1}{F_{2n+1} + F_{2k-1}} = \frac{(2k - 1) \sqrt{5}}{2 F_{2k-1}} \tag{4.4.68}
\]

for $k = 1, 2, 3, \ldots$. So while $\sum_{n=0}^{\infty} F^{-1}_{2n+1}$ is transcendental, $\sum_{n=0}^{\infty} (F_{2n+1} + 1)^{-1} = \sqrt{5}/2$. If we compute the corresponding continued fractions of the two sums we obtain the quite different results $[1, 1, 4, 1, 2, 3, 6, 2, 1, 3, 1, 189, 1, 3, 12]$ and $[1, 8, 2, 8, 2, 8, 2, 8, 2, 8, 2, 8]$ in partial confirmation.
4.5 A Characteristic Polynomial Triumph

We illustrate the possibilities of computing with symbolic characteristic polynomials, with an example arising in partial factorizations relating to double Euler sums (see Section 3.5). The rationale for looking at these matrices was discussed in the previous chapter. Consider \(n \times n \) matrices \(A, B, C, M \):

\[
A_{kj} = (-1)^{k+1} \binom{2n-j}{2n-k}, \quad B_{kj} = (-1)^{k+1} \binom{2n-j}{k-1},
\]

\[
C_{kj} = (-1)^{k+1} \binom{j-1}{k-1}
\]

\((k, j = 1, \ldots, n)\) and a composite matrix

\[
M = A + B - C.
\]

We aim to prove \(M \) is invertible, indeed that

\[
M^{-1} = \frac{M + I}{2}.
\]

The key is discovering

\[
A^2 = C^2 = I, \quad BC = A, \quad B^2 = CA.
\] (4.5.69)

It follows that \(B^3 = BCA = AA = I \), and that the group generated by \(A, B \) and \(C \) is the symmetric group \(S_3 \). Once (4.5.69) is discovered, combinatorial proofs are quite routine—either for a human or a computer—as we now show. It will help to look at Lemma 3.5.2.

Proof of \(A^2 = I \):

\[
(A^2)_{kj} = (-1)^{k+1} \sum_{i=1}^{n} (-1)^{i+1} \binom{2n-i}{2n-k} \binom{2n-j}{2n-i}
= (-1)^{k+1} \sum_{i=n+1}^{2n} (-1)^i \binom{i-1}{2n-k} \binom{2n-j}{i-1} = (-1)^{k+1}(-1)^j \delta_{kj}.
\]
4.5. A CHARACTERISTIC POLYNOMIAL TRIUMPH

Proof of \(C^2 = I \):

\[
(C^2)_{kj} = (-1)^{k+1} \sum_{i=1}^{n} (-1)^{i+1} \binom{i-1}{k-1} \binom{j-1}{i-1} = (-1)^{k+1} (-1)^{i+1} \delta_{kj}.
\]

Proof of \(BC = A \):

\[
(BC)_{kj} = (-1)^{k+1} \sum_{i=1}^{n} (-1)^{i+1} \binom{2n-i}{k-1} \binom{j-1}{i-1} = (-1)^{k+1} \binom{2n-j}{2n-k}.
\]

It follows also that \(AC = BC^2 = B \), and similarly \(AB = AAC = C \).

Proof of \(B^2 = CA \):

\[
(B^2)_{kj} - (CA)_{kj} = (-1)^{k+1} \sum_{i=1}^{n} (-1)^{i+1} \binom{2n-i}{k-1} \binom{2n-j}{i-1}
- (-1)^{k+1} \sum_{i=1}^{n} (-1)^{i+1} \binom{i-1}{k-1} \binom{2n-j}{2n-i}
= (-1)^{k+1} \sum_{i=1}^{n} (-1)^{i+1} \binom{2n-i}{k-1} \binom{2n-j}{i-1}
+ (-1)^{k+1} \sum_{i=n+1}^{2n} (-1)^{i+1} \binom{2n-i}{k-1} \binom{2n-j}{i-1}
= (-1)^{k+1} \binom{j-1}{2n-k} = 0.
\]

Then \(B^3 = BCA = A^2 = I \) follows from the other identities. Finally, \(CB = AB^2 = ACA = BA \), and the group is indeed \(S_3 \).

Additionally, one now easily shows

\[
M^2 + M = 2I
\]

as formal algebra, using (4.5.69) and its consequences, since \(M = A + B - C \).

The truth is that after unsuccessfully peering at various instances of \(M \) the authors of ([50]) decided to look at instances of “\(\text{minpoly}(M, x) \)” and then emboldened tried “\(\text{minpoly}(B, x) \)” in Maple, when the minimal polynomial for all \(n < 8 \) of \(M \) was the same quadratic \(t^2 + t - 2 \). By contrast random \(n \times n \) matrices
have full degree minimal polynomials, as is guaranteed by the Cayley-Hamilton theorem.

By chance a much weaker related fact appeared as American Mathematical Monthly Problem 01735 in 1999.

If L_n is the n-by-n matrix with i, j-entry equal to $\binom{i-1}{j-1}$ then $L_n^2 \equiv I_n \mod 2$, where I_n is the n-by-n identity matrix. Show that if R_n is the n-by-n matrix with i, j-entry equal to $\binom{i-1}{n-j}$ then $R_n^3 \equiv I_n \mod 2$.

Solution. Let A, B, C be the $n \times n$ matrices with i, j-entries given by

$$A_{ij} = (-1)^j \left(\frac{n-i}{n-j} \right), \quad B_{ij} = (-1)^j \left(\frac{i-1}{n-j} \right), \quad C_{ij} = (-1)^j \left(\frac{i-1}{j-1} \right).$$

Since $L_n \equiv C \mod 2$ and $R_n \equiv B \mod 2$, it suffices to prove that $C^2 = I_n$ and $B^3 = -I_n$, which is entirely analogous to the proof of (4.5.69) given above, and also $A^2 = I_n$. By contrast the minimum polynomial of L_n is $t \mapsto (t-1)^n$ and that for R_n is less elegant.

In a related analysis, for $n > 3$, however, the corresponding $(n - 1) \times (n - 1)$ matrix $\tilde{M} = \tilde{A} + \tilde{B} - \tilde{C}$, with

$$\tilde{A}_{kj} = (-1)^{k+1} \left(\frac{2n-j-1}{2n-k-1} \right), \quad \tilde{B}_{kj} = (-1)^{k+1} \left(\frac{2n-j-1}{k-1} \right),$$

$$\tilde{C}_{kj} = (-1)^{k+1} \left(\frac{j-1}{k-1} \right), \text{ for } j, k = 1, \ldots, n-1,$

arose, and has minimal polynomial $\tilde{M}^3 + 2\tilde{M}^2 - 3\tilde{M} = 0$.

This may be proved much in the same way as in the previous case. It follows from analysis of the trace of \tilde{M} and of \tilde{M}^2 that the number of null eigenvalues is $\lfloor (n-1)/3 \rfloor$ and, since the minimal polynomial has no repeated roots, that the dimension of the null space is $\lfloor (n-1)/3 \rfloor$.

The characteristic or the minimal polynomial, like partial fractions, is an object brought fully to life by computation. In much the same way Jordan Forms and other normal forms can be productively used to study singular values—in the matricial sense!
4.6 Commentary and Additional Examples

1. Prove—analytically and combinatorially—that the number of partitions of n with all parts odd equals the number of partitions of n into distinct parts.

2. Why $5| p(5n + 4)$.

Proof Sketch. With Q as in the text above, we obtain

$$qQ^4(q) = qQ(q)q^3(q)$$

$$= \sum_{m \geq 0} \sum_{n = -\infty}^{\infty} (-1)^{n+m}(2m+1)q^{1+(3n+1)n/2+m(m+1)/2},$$

from the triple product and pentagonal number theorems.

Now consider when k is a multiple of 5, and discover this can only happen if $2m + 1$ is divisible by 5 as is the coefficient of q^{5m+5} in $qQ^4(q)$. Then by the binomial theorem

$$(1 - q)^{-5} \equiv (1 - q^5)^{-1} \mod 5$$

and so the coefficient of the same term in $qQ(q^5)/Q(q)$ is divisible by 5. Finally

$$q + \sum_{n>1} p(n-1)q^n = qQ^{-1}(q) = \frac{qQ(q^5)}{Q(q)} \prod_{m=1}^{\infty} \sum_{n=0}^{\infty} q^{5mn},$$

as claimed.

3. A combinatorial determinant problem. Find the determinant of

$$\begin{vmatrix}
\binom{n}{p} & \binom{n}{p+1} & \binom{n}{p+2} \\
\binom{n+1}{p} & \binom{n+1}{p+1} & \binom{n+1}{p+2} \\
\binom{n+2}{p} & \binom{n+2}{p+1} & \binom{n+2}{p+2}
\end{vmatrix}$$

$$\begin{vmatrix}
\binom{n}{p} & \binom{n}{p+1} & \binom{n}{p+2} & \binom{n}{p+3} \\
\binom{n+1}{p} & \binom{n+1}{p+1} & \binom{n+1}{p+2} & \binom{n+1}{p+3} \\
\binom{n+2}{p} & \binom{n+2}{p+1} & \binom{n+2}{p+2} & \binom{n+2}{p+3} \\
\binom{n+3}{p} & \binom{n+3}{p+1} & \binom{n+3}{p+2} & \binom{n+3}{p+3}
\end{vmatrix}$$
and its q-dimensional extension as a function of n, p, q. (Taken from [125].)

Solution: The pattern is clear from the first few cases on simplifying in Maple or Mathematica.

4. **A sum-of-powers determinant.** Problem: Find the determinant of

$$
\begin{vmatrix}
\sum_{k=0}^{1} k^4 & \sum_{k=0}^{1} k^4 & \sum_{k=0}^{1} k^4 & \sum_{k=0}^{1} k^4 \\
\sum_{k=0}^{1} k^4 & \sum_{k=0}^{2} k^4 & \sum_{k=0}^{2} k^4 & \sum_{k=0}^{2} k^4 \\
\sum_{k=0}^{1} k^4 & \sum_{k=0}^{2} k^4 & \sum_{k=0}^{3} k^4 & \sum_{k=0}^{3} k^4 \\
\sum_{k=0}^{1} k^4 & \sum_{k=0}^{2} k^4 & \sum_{k=0}^{3} k^4 & \sum_{k=0}^{4} k^4
\end{vmatrix}
$$

and its q-dimensional extension. (Taken from [125].)

Solution: The first few instances of this sequence are

$$1, 4, 216, 331776, 24883200000, 139314069504000000,$$

which can be quickly identified as $(q!)^q$ using the Sloane-Plouffe online sequence recognition tool—see

http://www.research.att.com/~njas/sequences

This fact can be proved by taking cofactors on the last row, and observing that only the final two entries have nonzero cofactors with value $(q-1)!^{q-1}$.

5. **Putnam problem 1995–B3.** For each positive integer with n^2 digits write the digits as a square matrix in order row by row. Thus 2354 becomes

$$\begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}.$$

Find, as a function of n, the sum of all $9 \cdot 10^{n^2-1}$ such determinants, which arise on assuming that leading digits are non-zero.

Hint: With the help of a symbolic math program, observe that almost all sample matrices of this form have zero determinant. Then use multilinearity of the determinant to reduce the problem to computing the determinant of just one $n \times n$ matrix.

Answer: For $n = 1$ the answer is 45. For $n = 2$ the matrix may be taken to be

$$\begin{bmatrix} 450 & 405 \\ 450 & 450 \end{bmatrix},$$

with determinant 20250. For $n > 2$ the value is zero.
6. Crandall’s integral representation for Madelung’s constant. The following identity is both beautiful and effective—though less effective for computational purposes than Benson’s formula. For example, sixty digits of $\mathcal{M}_3(1)$ can be obtained in seconds in Maple or Mathematica using Benson’s identity, while using the numerical quadrature tools of Section 7.4 to compute the integral to the same 60 digit precision takes roughly one hour run time.

Crandall’s formula is derived in [90] from the Andrews formula for θ_4^3. It is

\[
\mathcal{M}_3(1) = -\frac{2}{\pi} \int_0^1 r \, dr \int_{-\pi}^{\pi} \frac{1 + 2/(1 + r^{2(1-\sin \theta)})}{(1 + r^{1+\cos \theta})(1 + r^{1-\cos \theta})} \, d\theta
\]

\[
= -1.7475645946332\ldots
\]

(4.6.71)

7. Repeated exponential integrals. Show that

(a) \[
\sqrt{\frac{2}{\pi}} \int_0^\infty \frac{e^{-x} \sin (ax)}{\sqrt{x}} \, dx = \frac{\sqrt{\sqrt{1 + a^2} - 1}}{\sqrt{1 + a^2}},
\]

(b) \[
\sqrt{\frac{2}{\pi}} \int_0^\infty \int_0^\infty \frac{e^{-x-y} \sin (ax + by)}{\sqrt{x + y}} \, dx \, dy = \frac{\sqrt{1+\sqrt{1+b^2}} - \sqrt{1+\sqrt{1+a^2}}}{a - b},
\]

and evaluate

(c) \[
\sqrt{\frac{2}{\pi}} \int_0^\infty \int_0^\infty \int_0^\infty \frac{e^{-x-y-z} \sin (ax + by + cz)}{\sqrt{x + y + z}} \, dx \, dy \, dz
\]

for real coefficients a, b and c.

(d) Generalize the results above, by dimension and to cosines.

(e) Evaluate

\[
\int_0^\infty \cdots \int_0^\infty \frac{e^{-(\sum_{k=1}^n x_k)}}{\sqrt{\sum_{k=1}^n x_k}} \, dx_1 \cdots dx_n,
\]
for \(n = 1, 2, \ldots \). This shows the prior integrals are absolutely convergent.

8. **Andrew’s convolution.** Prove or disprove that (4.2.17) preserves integrality of coefficients in both directions.

Hint: To determine whether \(\{b_n\} \) is integer if and only if \(\{a_k\} \) is, in one direction expand \(\prod_{k>0} (1 - q^k)^{-b_k} \) by the binomial theorem and note that the coefficients are integers when the values of \(b_k \) are. In the other direction, observe that \(b_1 = a_1 \) and inductively consider

\[
\prod_{k=1}^{n} (1 - q^k)^{b_k} \left(1 + \sum_{m=0}^{\infty} a_m q^m \right) = \prod_{n+1}^{\infty} (1 - q^k)^{-b_k}.
\]

This is the basis for an efficient algorithm but, in a modern computational package, (4.2.17) is very easy to program and likely to be more efficient, especially as one will rarely want more that a few hundred terms of the product.

9. **Berkeley problem 6.13.15.** Determine the final digit of \(23^{23^{23}} \).

Answer: The last digit is a “7.”

Hint: Maple or Mathematica can verify that \(23^{23} \equiv 7 \mod 4 \) and \(23^{23^{23}} \equiv 7 \mod 4 \). To prove this observed trend, work modulo four and observe that as \(\phi(10) = 4 \), \(3^r \equiv 3^s \mod 10 \) when \(r \equiv s \mod 4 \). Then use \(3^{23^{23}} \equiv -1 \mod 4 \).

10. **A series with binomial coefficients.** Prove that for all \(n \geq 0 \)

\[
\sum_{k=0}^{n} \frac{1}{\binom{n}{k}} = (n + 1) \sum_{k=0}^{n} \frac{1}{(n - k + 1) 2^k}
\]

Hint: Consider computing—in two different ways—the electrical resistance between two points distance \(n + 1 \) apart in the \(n \)-dimensional unit cube if every edge has unit resistance.
11. **A binomial coefficient inequality.** (From [134, pg. 137]). Show inductively for $n > 1$ that
\[
\frac{4^n}{n+1} < \binom{2n}{n} < 4^n,
\]
and for $n > 6$ that
\[
\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n.
\]

12. **An n-th root inequality.** (From [134, pg. 162]). Show that for all nonnegative numbers
\[
\sqrt[n]{(1+a_1)(1+a_2)\cdots(1+a_n)} \geq 1 + \sqrt[n]{a_1a_2\cdots a_n}.
\]

13. **Polygon problem.** Count (i) the number of ways a polygon with $n+2$ sides can be cut into n triangles, (ii) the number of ways in which parentheses can be placed in a sequence of numbers to be multiplied, two at a time; and (iii) the number of paths of length $2n$ through an n-by-n grid that do not rise above the main diagonal (Dijkstra paths).

Hint: In each case the sequence starts

\[1, 2, 5, 14, 42, 132, 429, 1430, 4862.\]

The “gfun” package returns the ordinary generating function

\[4 (1 + \sqrt{1 - 4x})^{-2}\]

and the recursion $(4n+6)u(n) = (n+3)u(n+1)$, which gives rise to the Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$ named after Eugène Charles Catalan (1814–1894).

14. **A cubic theta function identity.** If we define
\[
a(q) = \sum_{m,n \in \mathbb{Z}} q^{m^2+mn+n^2}, \quad b(q) = \sum_{m,n \in \mathbb{Z}} \omega^{n-m} q^{m^2+mn+n^2},
\]
\[
c(q) = \sum_{m,n \in \mathbb{Z}} q^{(n+1/3)^2+(n+1/3)(m+1/3)+(m+1/3)^2},
\]

where $\omega = \exp(2\pi i/3)$, then we have a remarkable cubic identity parallel to Jacobi’s quartic identity:
\[
a^3 = b^3 + c^3\quad (4.6.72)
\]
and a lovely parameterization of the \(_2F_1 \) hypergeometric function [49]:

\[
F\left(\frac{1}{3}, \frac{2}{3}; 1; \frac{c^3}{a^3}\right) = a, \tag{4.6.73}
\]

which we met in other guise in (6.1.18).

(a) Choosing \(q = \exp(-2\pi \sqrt{N/3}) \) for rational \(N \), it can be shown that
\(s_N = c/a \) is an algebraic number expressible by radicals; see [49]. If \(N \) is a positive integer, then \(s_N \) is the \(N \)-th cubic singular value. As above what can we discover computationally about \(s_N \)? For example, can we determine radical formulae for the higher order cubic singular values?

The following helps the computations. It is known that in terms of the classical theta functions

\[
\begin{align*}
a(q) &= \theta_3(q)\theta_3(q^3) + \theta_2(q)\theta_2(q^3) \\
b(q) &= (3a(q^3) - a(q))/2 \\
c(q) &= (a(q^{1/3}) - a(q))/2.
\end{align*}
\]

The lacunarity of these series allows for very rapid computation.

(b) Compute the product formula for \(a \)—it is not very pretty.

\[
a(q) = \frac{(1 - q^2)^{21} (1 - q^4)^{345} (1 - q^6)^{8906} (1 - q^8)^{250257} (1 - q^{10})^{7538421}}{(1 - q)^6 (1 - q^3)^{76} (1 - q^5)^{1734} (1 - q^7)^{46662} (1 - q^9)^{1365388}} \\
\ldots.
\]

(c) While \(a \) does not have a nice product, one should persevere

\[
\begin{align*}
b(q) &= (1 - q)^3 (1 - q^2)^3 (1 - q^3)^2 (1 - q^4)^3 (1 - q^5)^3 (1 - q^6)^2 \\
& \times (1 - q^7)^3 (1 - q^8)^3 (1 - q^9)^2 (1 - q^{10})^3 (1 - q^{11})^3 (1 - q^{12})^2 \\
& \times (1 - q^{13})^3 (1 - q^{14})^3 (1 - q^{15})^2 \ldots.
\end{align*}
\]

This turns out to be the key in providing the computer-guided but very intuitive proof given in [49].

15. Show that \(3\sqrt{3}/4 \) is the maximum area for triangles inscribed in a unit sphere, and is attained only by equilateral triangles inscribed in a great circle of the sphere.
16. **Nests of radicals.** Identify the limits of the following infinite nested radicals and establish a rigorous sense in which the evaluations are justified.

(a) \[\sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{1 + 5} \cdots}}} \]

(b) \[\sqrt{6 + 2 \sqrt{7 + 6 \sqrt{2 + \sqrt{9 + 5} \cdots}}} \]

(c) \[\sqrt[3]{4 + \sqrt[3]{10 + 9 \sqrt[3]{16 + 25 \sqrt[3]{22 + \cdots}}} } \]

(d) \[\sqrt[3]{a + \sqrt[3]{a + \sqrt[3]{a + \cdots}}} \]

\[\text{for } a = \sqrt{\frac{5}{3}}. \]

(e) \[\sqrt[p]{a + \sqrt[p]{a + \sqrt[p]{a + \cdots}}} \]

\[\text{for } p > 1, a > 0. \]

(f) \[\sqrt{2 - \sqrt{2 - \sqrt{2 + \sqrt{2 - \sqrt{2 + \sqrt{2 - 2} - \cdots}}}}} \]

Hint: Find a functional equation for a *large* class of functions so that iteration in that class solves the functional equation uniquely. Many such equations were evaluated informally by Ramanujan. More details are given in [35].

Answers: (a) 3; (b) 4; (c) 2; (d) \(\frac{2}{\sqrt[3]{3}} \left(\sqrt[3]{\frac{1}{2} \sqrt{5} + \frac{1}{2} + \sqrt[3]{\frac{1}{2} \sqrt{5} - \frac{1}{2}}} \right) \); (e) the positive root of \(x^p = x + a \); (f) the positive root of \(x^3 + x^2 - 2x = 1. \)
17. Some unconditional sums. Problem: Evaluate

(a) \(\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{(4l-1)^{2k}} \quad \left(= \frac{1}{4} \log(2) \right) \)

(b) \(\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{(4l-1)^{2k+1}} \quad \left(= \frac{1}{8} \pi - \frac{1}{2} \log(2) \right) \)

(c) \(\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{(4l-2)^{2k}} \quad \left(= \frac{1}{8} \pi \right) \)

18. Some conditional sums. Problem: Evaluate

(a) \(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-1)^{m+n}}{(m+n)^s} \quad \left(= \alpha(s) - \alpha(s-1) \right) \)

(where \(\alpha(s) = (1 - 2^{1-s})\zeta(s) \)) and thence justify the conditional evaluation \(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (-1)^{m+n} / (m+n) = \log(2) - \frac{1}{2} \).

(b) \(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(-1)^{m+n}}{m+n} \frac{mn}{(m+n)^2} \quad \left(= \frac{1}{6} \log(2) - \frac{1}{24} \right) \)

(c) \(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{m^2-n^2}{(m^2+n^2)^2} \quad \left(= \frac{\pi}{4} \right) \)

(Note that exchanging the order changes the sign of the answer.)

19. A matrix problem. Let

\[
M = \begin{bmatrix}
p & q & 1-p-q \\
1-p-q & p & q \\
q & 1-p-q & p \\
\end{bmatrix}
\]
20. **Theta and self-similarity.** For \(k = 2 \) or \(4 \) plot the set

\[
K_k(\alpha) = \left\{ |q| < 1 : \left| \frac{\theta_k}{\theta_3} (q) \right| > \alpha, q \in \mathbb{C} \right\}
\]

for various values of \(\alpha > 0 \). For appropriate \(k \), this is shown in Figure 20 for \(\alpha = 1, 3/4 \). Recall that \(\frac{\theta_4}{\theta_3} (e^{-\pi s}) = \frac{\theta_4}{\theta_3} (e^{-\pi/s}) \) for \(\Re(s) > 0 \).

Use the complex AGM iteration [44] in \(\theta \)-form to explore the structures and relations suggested in Figure 20. More details on these and like images
are given in [95].

David Mumford and his colleagues’ book *Indra’s Pearls* [163] offers a wealth of important and visually enticing material. In the gloss to their book they write:

It is the story of our computer aided explorations of a family of unusually symmetrical shapes, which arise when two spiral motions of a very special kind are allowed to interact. These shapes display intricate ‘fractal’ complexity on every scale from very large to very small. Their visualisation forms part of a century-old dream conceived by the great German geometer Félix Klein.

21. **Putnam problem 1994–B4.** Let \(d_n \) be the greatest common divisor of the entries of \(A^n - I \) where \(A = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix} \).

Show that \(d_n \to \infty \) with \(n \).

Hint: Observe numerically, then prove by induction, that \(A^n \) has determinant 1 and is of the form \(\begin{bmatrix} a_n & b_n \\ 2b_n & a_n \end{bmatrix} \). Hence \(a_n - 1 | 2b_n^2 \). Then write \(A^n \) explicitly via the Cayley-Hamilton theorem, which tells us that \(A^{n+1} = 6A^n - A^{n-1} \).

22. **Putnam problem 1999–B5.** Evaluate the determinant of \(I + A \) where \(A_n \) is the \(n \times n \) matrix with entries \(\cos((j+k)\pi/n) \).

Answer: \(A_n \) has determinant \(1 - n^2/4 \).

Hint: The determinant equals \(\prod_{k=1}^{n} (1 + \lambda_k) \) where \(\lambda_k \) ranges over the eigenvalues of \(A_n \). One may discover numerically that \(A_n \) has eigenvalue zero with multiplicity \(n - 2 \) and remaining eigenvalues \(\pm n^2/4 \). Let \(v^{(m)} \) denote the vector with \(v^{(m)}_k = \exp(ikm 2\pi/n) \). One may also be lead to discover that the eigenvectors are \(v^{(0)}, v^{(2)}, v^{(3)}, \ldots, v^{(n-2)}, v^{(1)} \pm v^{(n-1)} \). This is then easy to formally confirm.
23. **Fibonacci and Lucas numbers in terms of hyperbolic functions.**

Show that

\[F_n = \frac{2}{\sqrt{5}} i^{-n} \sinh(n\theta) \quad \text{and} \quad L_n = 2 i^{-n} \cosh(n\theta) \]

where

\[\theta = \log \left(\frac{\sqrt{5} + 1}{2} \right) + i \frac{\pi}{2}. \]

Many Fibonacci formulas are then easy to obtain from the addition formulas for sinh and cosh—for example consider \(5 F_n^2 - L_n^2 \). (See [103] which should be consulted whenever one “discovers” a result in classical number theory.)

24. **Berkeley problem 7.5.25.** Let \(M_n^2 \) be the \(n \times n \) tri-diagonal matrix with \(a_{ij} = 1 \) if \(|i - j| = 1 \) and all other entries zero. (a) Find the determinant of \(M_n^2 \) and (b) show that the eigenvalues are symmetric around the origin.

Answer: (a) \(\det(M_n^2) = \cos(n \pi/2) \). (b) Compute the characteristic polynomial inductively and observe that it contains only odd (resp. even) powers for \(n \) odd (resp. even).

25. **Gersgorin circles.** Let \(A = \{a_{ij}\} \) be a real \(n \times n \) matrix.

(a) Show that if

\[|a_{ii}| > \sum_{\substack{t=1 \atop t \neq i}}^{n} |a_{it}|, \]

then \(A \) is nonsingular.

(b) Deduce that each eigenvalue of \(A \) lies in one of the discs

\[|z - a_{ii}| \leq \sum_{\substack{t=1 \atop t \neq i}}^{n} |a_{it}|. \]

Hint: (a) Consider the largest coordinate in absolute value of an element, \(x \), in the null space of \(A \).
26. **Putnam problem 1996–B4.** For a square matrix A define $\sin(A)$ via the power series

$$\sin(A) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} A^{2n+1}$$

(4.6.74)

Prove or disprove that \[
\begin{bmatrix}
1 & 1996 \\
0 & 1
\end{bmatrix}
\] is in the range of (4.6.74).

Answer: It is not. Which matrices are?

Hint: Program the above in a symbolic math program, and observe what the range looks like for various input 2×2 matrices. The result can be obtained by considering the normal form of any A with $\sin(A) = \begin{bmatrix} 1 & 1996 \\ 0 & 1 \end{bmatrix}$, which shows A cannot be diagonalizable. Thus, A must have equal eigenvalues and so is conjugate to a matrix of the form $B = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$.

Now determine that $\sin(B) = \begin{bmatrix} \sin(x) & y \cos(x) \\ 0 & \sin(x) \end{bmatrix}$. Since $\det(\sin(A)) = \det(\sin(B))$, deduce that $|\sin(x)| = 1$ and so $\cos(x) = 0$.

27. **Formula for $\zeta(2, 1)$.** Obtain the formula for $\zeta(2, 1)$ using the Cauchy-Lindelöf theorem applied to $\pi \cot(\pi z) \Psi(-z)$ and $\frac{1}{z^2}$.

28. **A log-trig integral.** Show the following due to Victor Adamchik

$$-\frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \ln(3 - [\cos(x) + \cos(y) + \cos(x+y)]) \, dx \, dy = \frac{\pi}{\sqrt{3}} + \ln(2) - \frac{\Psi'(\frac{1}{6})}{2\sqrt{3}\pi}$$

29. **Repeated exponentiation.** Recursions like $x_1 = t > 0$ and $x_n = t^{x_{n-1}}$ for $n > 0$ have been subject to considerable scrutiny.

(a) Study the existence and behavior of

$$\overline{x}_\infty = \lim_{n \to \infty} x_{2n}, \quad \underline{x}_\infty = \lim_{n \to \infty} x_{2n+1},$$
for $0 \leq x \leq 1$. Note that, in Figure 4.3, the even approximations on $[0, 1]$ decrease while the odd ones increase. Thus, the limits are taken uniformly by Dini’s theorem, which asserts that the monotone limit of continuous functions on a compact set is uniform if and only if the limit is continuous. (Compare Exercises 3 and 10 of Chapter 1.)

Hint: show that (i) the solution to $t^x = x$ is $t \mapsto -W(-\log t)/\log t$ and that (ii) $\tilde{x}_\infty(t)$ and $\overline{x}_\infty(t)$ are the two solutions to $t^{x'} = x$, which bifurcate at $\hat{b} = \exp(-\exp(1)) \approx 0.06598803584$.

In terms of the real branches of the Lambert W function, they are portions of $\exp((W_k(t \log t))/t)$ for $k = 0, -1$ on $[0, \exp(-1)]$ and on $[\exp(-1), 1]$ respectively. The shared component is $-W(-\log t)/\log t$ on $[\hat{b}, 1]$ (see Figure 4.4). What happens for $t > 1$? (The righthand asymptote in Figure 4.4 is at approximately 1.4446678610976613366.) This is discussed in [81].
Figure 4.4: Solutions to $x^{x^{x^{\ddots}}}$

(b) Estimate $\int_0^1 \pi_\infty(t) \, dt$ and $\int_0^1 \pi_\infty(t) \, dt$.

(c) How many distinct meanings may be assigned to the n-fold exponentiation $x^{x^{x^{\ddots}}} = x^{x^{x^{\ddots}}}$?

(d) Show that

$$\int_0^1 (x^x)^x \, dx = 1 + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{(k+1)^{n+1}} \binom{n}{k}$$

and that

$$\int_0^1 x^{(x^x)} \, dx = \frac{1}{2} + \sum_{n=1}^{\infty} (-1)^n \sum_{k=1}^{n} \frac{(n-k)^k}{(k+1)^{n+1}} \binom{n}{k} \quad (4.6.75)$$

where the sums are absolutely convergent. Try to further refine both these sums. A useful source for classical combinatorial identities is [181]

(e) Investigate $\int_0^1 x^{x^{x}} \, dx$ for more general n.
Proof of (4.6.75). Note that $0 < x < x_e < 1$ when $0 < x < 1$, and hence, by dominated convergence, that

$$
\lim_{\varepsilon \to 0^+} \int_0^1 x^\varepsilon x^x \, dx = \int_0^1 x^x \, dx.
$$

In what follows suppose that $\varepsilon > 0$. We will prove that

$$
\int_0^1 x^\varepsilon x^x \, dx = \sum_{n=0}^\infty \sum_{k=0}^\infty (-1)^{k+n} \frac{n^k}{(k+1+\varepsilon)^{n+k+1}} \binom{n+k}{k}, \tag{4.6.76}
$$

where the double sum is absolutely convergent.

We have

$$
\int_0^1 x^\varepsilon x^x \, dx = \int_0^1 x^\varepsilon e^{x\log x} \, dx = \sum_{n=0}^\infty \frac{1}{n!} \int_0^1 x^\varepsilon (x^\log x)^n \, dx
$$

$$
= \sum_{n=0}^\infty \frac{1}{n!} \sum_{k=0}^\infty \int_0^1 x^\varepsilon \log^n x \frac{(x\log x)^k}{k!} \, dx
$$

$$
= \sum_{n=0}^\infty \sum_{k=0}^\infty \frac{n^k}{n!k!} \int_0^1 x^{k+\varepsilon} \log^{n+k} x \, dx.
$$

Observe next that

$$
\sum_{n=0}^\infty \sum_{k=0}^\infty \frac{n^k}{n!k!} \int_0^1 x^{k+\varepsilon} \log^{n+k} x \, dx
$$

$$
= \sum_{n=0}^\infty \sum_{k=0}^\infty \frac{n^k}{n!k!} \int_0^1 x^{k+\varepsilon} \log^{n+k} \left(\frac{1}{x} \right) \, dx
$$

$$
= \sum_{n=0}^\infty \sum_{k=0}^\infty \frac{n^k}{n!k!} \int_1^\infty t^{-k-\varepsilon-2} \log^{n+k} t \, dt
$$

$$
= \int_1^\infty \frac{t^{1/\varepsilon}}{t^{2+\varepsilon}} \, dt < \infty, \tag{4.6.77}
$$

since $t^{1/\varepsilon} \sim t$ as $t \to \infty$. It follows from (4.6.77) that the changes in order of sums and integrals in (4.6.77) are valid; and hence, on making the
change of variable \((k + 1 + \varepsilon) \log x = -u\) in the final integral in (4.6.77),
that
\[
\int_0^1 x^\varepsilon x^x \, dx = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-1)^{n+k} n^k}{n!k!(k + 1 + \varepsilon)^{n+k+1}} \int_0^\infty u^{n+k} e^{-u} \, du,
\]
which establishes (4.6.76).
We have shown that
\[
\int_0^1 x^x \, dx = \lim_{\varepsilon \to 0^+} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-1)^{k+n} n^k}{(k + 1 + \varepsilon)^{n+k+1}} \binom{n+k}{k}.
\]
We can not automatically replace the limit by
\[
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-1)^{k+n} n^k}{(k + 1)^{n+k+1}} \binom{n+k}{k},
\]
for this double sum is not absolutely convergent (as is shown by (4.6.77) with \(\varepsilon = 0\)) but on treating the terms with \(n = 0\) and \(n > 0\) separately (as above) one does obtain (4.6.75).

30. **Fibonacci Squares.** Decide whether or not 144 is the only square Fibonacci number. Relatedly 1729=12^3 + 1 = 10^3 + 9^3 is the smallest integer with two distinct representations as a sum of two cubes. What is the next instance?

31. **Fibonacci.** A more precise description of Fibonacci’s question mentioned in Section 3.4 is taken from *Scritti di Leonardo Pisano*, pubblicati da Baldassare Boncompagni, Roma, 1857 (Vol. 1), Liber Abaci, chapter XII. This corresponds to folio pages 123 verso and 124 recto of the manuscript *Conversi Soppressi C.1. nr 2616, Codice Magliabechiano* (Biblioteca di Firenze):

Quot paria coniculorum in uno anno ex uno pario germinentur.
Quidam posuit unum par cuniculorum in quodam loco, qui erat undique pariete circundatus, ut sciret, quot ex eo paria germinarentur in uno anno: cum natura eorum sit per singulum mensem
aliud par germinare; et in secundo mense ab eorum natuitate germinant. Quia suprascriptum par in primo mense germinat, duplicabis ipsum, erunt paria duo in uno mense. Ex quibus unum, scilicet primum, in secundo mense geminat; et sic sunt in secundo mense paria 3; ex quibus, in uno mense duo pregnantur; et ...

L.E. Sigler translates this as [189]:

How Many Pairs of Rabbits Are Created by One Pair in One Year.

A certain man had one pair of rabbits together in a certain enclosed place, and one wishes to know how many are created from the pair in one year when it is the nature of them in a single month to bear another pair, and in the second month those born to bear also. Because the above written pair in the first month bore, you will double it; there will be two pairs in one month. One of these, namely the first, bears in the second month, and thus there are in the second month 3 pairs; of these in one month two are pregnant, and ...

Note that it is assumed rabbits are immortal! Alternatively, assume pairs breed after one month and die after two reproductions.
Chapter 5

Primes and Polynomials

I hope that ... I have communicated a certain impression of the immense beauty of the prime numbers and the endless surprises which they have in store for us.

Don Zagier, 1977 [208]

5.1 Giuga’s Prime Number Conjecture

Many computational number theory problems involve careful combinatorial search techniques. To be successful the search space must be reasonably sized. Often a mathematical insight is essential in trimming the search space, and thus much more helpful than the ability to do fast computations.

One example to illuminate this is Giuga’s prime number conjecture. It was formulated in 1950 by G. Giuga [117].

Conjecture. A number $n \in \mathbb{N}, n > 1$, is a prime if and only if

$$s_n = \sum_{k=1}^{n-1} k^{n-1} \equiv n - 1 \pmod{n}.$$

Whenever n is a prime then s_n must be congruent to $n - 1$. This is a consequence of Fermat’s little theorem: If p is a prime, then $k^{p-1} \equiv p - 1 \pmod{p}$ for all $k = 1, \ldots, p - 1$. Thus the question is if there are composite numbers n with $s_n \equiv n - 1 \pmod{n}$. It is known that such a number n (a
CHAPTER 5. PRIMES AND POLYNOMIALS

counterexample) must have at least 14000 decimal digits if it exists at all. This is a huge number! It is clear that this bound has not been computed by checking every composite number \(n \) up to \(n = 10^{14000} \). Instead, Giuga’s problem has been converted to a combinatorial search problem, which we shall now describe in detail.

5.1.1 Computation of Exclusion Bounds

The following reformulation of the problem, given already by Giuga, is essential.

Theorem 5.1.1 Let \(n \in \mathbb{N} \), \(n \geq 1 \), be given. Then \(s_n \equiv n - 1 \mod n \) if and only if for every prime divisor \(p \) of \(n \) the relations \((p-1) \mid (n/p - 1) \) and \(p \mid (n/p - 1) \) hold.

Proof. As a preliminary consideration, write \(n = p \cdot q \) and note that \(s_n \equiv q \cdot \sum_{k=1}^{n} k^{n-1} \equiv -q \mod p \) if \((p-1) \mid (n-1) \) by Fermat’s little theorem, and \(s_n \equiv 0 \mod p \) if \((p-1) \not\mid (n-1) \) since the multiplicative group \(\mod p \) is cyclic.

Now assume that \(s_n \equiv -1 \mod n \). Then the preliminary consideration implies that \((p-1) \mid (n-1) \) and \(s_n \equiv -1 \equiv -q \mod p \) since \(s_n \equiv 0 \mod p \) is impossible. Thus also \((p-1) \mid (q-1) \) and \(p \mid (q-1) \).

On the other hand, assume that \((p-1) \mid (q-1) \) and \(p \mid (q-1) \). Then also \((p-1) \mid (n-1) \), and thus \(s_n \equiv -q \mod p \) by the preliminary consideration. The second assumption \(q \equiv 1 \mod (p-1) \) implies that \(s_n \equiv -1 \mod (p-1) \), thus \(p \mid (s_n + 1) \). This holds for every prime divisor \(p \) of \(n \), and since \(n \) must be squarefree (as \(p \mid (q-1) \) implies \(p^2 \not\mid n \)), we have that \(n \mid (s_n + 1) \), thus \(s_n \equiv -1 \mod n \). \(\square \)

Composite squarefree numbers \(n \) which satisfy \((p-1) \mid (n-1) \) (or equivalently \((p-1) \mid (n/p - 1) \)) for each prime divisor \(p \) of \(n \) are called **Carmichael numbers**. Interestingly, they are pseudo-primes in the sense that Fermat’s little theorem is satisfied by them in the following form: The Carmichael numbers are precisely the composite numbers \(n \) for which \(n \mid (k^n - k) \) for every \(k \in \mathbb{N} \). This is Korselt’s criterion (1899). The smallest Carmichael numbers are 561, 1105, 1729. It has only recently been proved by Alfors, Granville and Pomerance \cite{5} that there are infinitely many Carmichael numbers. Note that if \(p \) is a prime divisor of a Carmichael number \(n \), then for no \(k \in \mathbb{N} \) can \(kp + 1 \) be a prime divisor of \(n \);
5.1. GIUGA’S PRIME NUMBER CONJECTURE

otherwise we would have \(kp \mid (n - 1) \), a contradiction to \(p \mid n \). In particular, every Carmichael number is odd.

Correspondingly, we call an integer \(n \) with \(p \mid (n/p - 1) \) for every prime divisor \(p \) of \(n \) a Giuga number. As seen in the proof of Theorem 5.1.1, every Giuga number is squarefree. The smallest examples are 30, 858, 1722; at the moment only 13 Giuga numbers are known. The largest Giuga number found so far has 97 digits and 10 prime factors (one has 35 digits). It is not known if there are infinitely many Giuga numbers. Nor is it known if there is an odd Giuga number or if any \(n \) can be Giuga and Carmichael at the same time.

The following characterization of Giuga numbers is very helpful for finding such numbers. It is moreover needed in the computation of exclusion bounds for counterexamples.

Theorem 5.1.2 An \(n \in \mathbb{N} \) with \(n > 1 \) is a Giuga number if and only if it is squarefree and satisfies

\[
\sum_{p \mid n} \frac{1}{p} - \prod_{p \mid n} \frac{1}{p} \in \mathbb{N} \tag{5.1.1}
\]

where the sum and the product go over all prime divisors \(p \) of \(n \).

Proof. Write \(n = p_1 \cdots p_m \) and \(q_i = n/p_i \). Then \(n \) is a Giuga number iff \(p_i \mid (q_i - 1) \) for all \(i \) iff \(p_i \mid (q_1 + \cdots + q_m - 1) \) for all \(i \) iff \(n \mid (q_1 + \cdots + q_m - 1) \).

iff \((q_1 + \cdots + q_m - 1)/n = \sum \frac{1}{p} - \prod \frac{1}{p} \in \mathbb{N} \). \(\square \)

By Theorem 5.1.2, the sum over the reciprocals of the prime divisors of a Giuga number must be greater than 1. Thus an odd Giuga number must have at least 9 distinct prime factors. Since the product of the 9 smallest odd primes has 10 decimal digits, this already proves, without much computation, and certainly without checking billions of numbers, that a counterexample to Giuga’s conjecture must be greater than \(10^9 \). This proof even does not take into account that any counterexample must also be a Carmichael number. Since this condition further restricts the possible prime factors in any counterexample, its systematic use will increase the lower bound significantly. This idea is precisely what lead to the computation of the lower bound of \(10^{14000} \), and therefore we shall now explain it in more detail. From now on, denote by \(q_k \) the \(k \)-th odd prime; thus \(q_1 = 3, \ q_2 = 5, \ q_3 = 7, \ldots \). Denote further \(Q = \{3, 5, 7, 11, \ldots \} \) and \(Q_k = \{q_1, q_2, \ldots, q_{k-1}\} \).
The precise criterion that is used for these computations follows, as we have seen above, from the Carmichael- and Giuga-ness of any counterexample: If a number \(n = p_1 \cdots p_m \) with \(m > 1 \) prime factors \(p_i \) is a counterexample to Giuga’s conjecture (i.e., satisfies \(s_n \equiv n - 1 \mod n \)), then \(p_i \neq p_j \) and \(p_i \not\equiv 1 \mod p_j \) for \(i \neq j \), and \(\sum_{i=1}^{m} \frac{1}{p_i} > 1 \).

Definition. A set of primes is **normal** if it contains no primes \(p, q \) such that \(p \) divides \(q - 1 \).

Thus if 3 is in a normal set of primes, then 7, 13, 19, . . . can not be, and if 5 belongs then 11, 31, 41, . . . are excluded. The prime factors of any counterexample form a normal set.

Denote by \(\mathcal{N}_k \) the system of all normal subsets of \(Q_k \). For example, \(\mathcal{N}_1 = \{\{\}\} \) and \(\mathcal{N}_2 = \{\{\}, \{3\}\} \). For fixed \(k \) and \(N \in \mathcal{N}_k \), denote by \(T_k(N) \) the subset of \(Q \) determined by the following algorithm: (1) start with \(T = N \) and \(j = k \); (2) while \(\sum_{p \in T} \frac{1}{p} \leq 1 \) do: if \(N \cup \{q_j\} \) is normal then \(T = T \cup \{q_j\} \); fi; \(j = j + 1 \); od; (3) return \(T_k(N) = T \). By Exercise 4 below, this algorithm always terminates and produces a set \(T_k(N) \).

It is clear that the sets \(T_k(N) \) have the following properties:

(i) \(N \subseteq T_k(N) \),
(ii) if \(p \in T_k(N) \setminus N \), then \(p \geq g_k \) and \(N \cup \{p\} \) is normal,
(iii) \(\sum_{p \in T_k(N)} \frac{1}{p} > 1 \), but \(\sum_{p \in T_k(N)} \frac{1}{p} \leq 1 \) for every prime \(q \in T_k(N) \setminus N \).

We will be mainly interested in the number of elements of the sets \(T_k(N) \) as well as their product; thus set \(j_k(N) = |T_k(N)| \), \(P_k(N) = \prod_{p \in T_k(N)} p \) and \(j_k = \min\{r_k(N) : N \in \mathcal{N}_k\} \), \(P_k = \min\{P_k(N) : N \in \mathcal{N}_k\} \).

For example,

\[
\begin{align*}
T_1(\{\}) &= \{3, 5, 7, 11, 13, 17, 19, 23, 29\}, & j_1(\{\}) &= 9 & \text{and } P_1(\{\}) &> 10^9, \\
T_2(\{\}) &= \{5, 7, 11, 13, 17, \ldots, 107, 109\}, & j_2(\{\}) &= 27 & \text{and } P_2(\{\}) &> 10^{42}, \\
T_2(\{3\}) &= \{3, 5, 11, 17, \ldots, 317, 347\}, & j_2(\{3\}) &= 36 & \text{and } P_2(\{3\}) &> 10^{71}.
\end{align*}
\]

Thus, \(j_1 = 9 \), \(P_1 > 10^9 \) and \(j_2 = 27 \), \(P_2 > 10^{42} \). We have already noted that, since the sum over the reciprocals of the prime factors of a counterexample \(n \) must exceed 1, \(n \) must contain at least 9 prime factors and have at least 10 decimal digits. This is recaptured by the computation of \(j_1 \) and \(P_1 \) above. However, the computation of \(j_2 \) and \(P_2 \) now gives a better exclusion bound: Any counterexample \(n \) either does or doesn’t contain the prime factor 3. If it doesn’t,
then for every j, the j-th largest element of $T_2(\{\})$ is a lower bound for the j-th largest prime factor of n. Therefore n must have at least 27 different prime factors and must be larger than 10^{42}. If n does contain the prime factor 3, then the elements of $T_2(\{3\})$ are lower bounds for the prime factors of n. Therefore in this case n has at least 36 distinct prime factors and must be larger than 10^{71}.

In general, we can conclude that every counterexample n has at least j_k distinct prime factors and exceeds P_k, for every $k \in \mathbb{N}$. Both j_k and P_k are increasing in k as we will see shortly. To find exclusion bounds for counterexamples, one therefore has to compute $j_k (\text{then } n \geq \prod_{j=1}^{j_k} q_j)$ or $P_k (\text{then } n \geq P_k)$ for values of k as high as possible. On the surface, this is a daunting task, since the number of normal sets, $|N_k|$, probably grows exponentially in k. Matters can be accelerated slightly by noting that, since j_k and P_k are minimal values, we do not have to continue the computation of a certain $j_k(N)$ or $P_k(N)$ if their intermediate values already exceed a previously computed $j_k(\tilde{N})$ or $P_k(\tilde{N})$.

In this way, with 1950's technology Giuga [117] computed $j_8 = 323$ and estimated $j_9 > 361$; this gives an exclusion bound of $\prod_{j=1}^{361} q_j > 10^{1039}$. Later, in 1985, E. Bedocchi [22] computed $j_9 = 554$; this gives a bound of $\prod_{j=1}^{554} q_j > 10^{1716}$. In 1994, J. Borwein with three coauthors [29] computed by the same method $j_{19} = 825$ and thus a lower bound of 10^{2722}. But at this point the method seems exhausted; because of the exponential growth not much more information can be expected from more computation.

However, appearances are deceiving. The story does not end here. With one additional insight, the exclusion bounds can be forced up significantly. This insight is to see that the systems N_k have a tree structure. Consider a normal set $N \in N_k$. Then this set has one or two successors in N_{k+1}. The first successor is N itself; it is normal and thus contained in N_{k+1}. The second successor may be the set $N' = N \cup \{q_k\}$; this set is contained in N_{k+1} iff it is normal. The insight now is that the j and P values always increase from N to its successors.

Theorem 5.1.3 For each k, $j_{k+1}(N) \geq j_k(N)$, $j_{k+1}(N') \geq j_k(N)$ and $P_{k+1}(N) \geq P_k(N)$, $P_{k+1}(N') \geq P_k(N)$.

Proof. If $\sum_{p \in N} > 1$, then the assertion is trivial. There is something to prove only when $N \subseteq T_k(N)$. We have to distinguish two cases.

(1) If $N \cap \{q_k\}$ is normal, then N has the two successors N and N' in N_{k+1}. Regarding N, the prime q_k is included in $T_k(N)$, but not in $T_{k+1}(N)$. Other than that, we have $T_k(N) \setminus \{q_k\} \subseteq T_{k+1}(N)$, since the normality condition for
including primes is the same for both sets. Because of property (iii) above, the prime \(q_k \), missing in \(T_{k+1}(N) \), must be compensated by at least one prime higher than any element of \(T_k(N) \). Therefore \(j_{k+1}(N) = |T_{k+1}(N)| \geq |T_k(N)| = j_k(N) \), and similarly \(P_{k+1}(N) \geq P_k(N) \).

Regarding \(N' \), \(T_k(N) \) can contain primes which are congruent to 1 modulo \(q_k \), but \(T_{k+1}(N') \) cannot. \(T_k(N) \) minus these primes is a subset of \(T_{k+1}(N') \). Therefore each of these primes has to be compensated by at least one higher prime. Again, we get \(j_{k+1}(N') \geq j_k(N) \) and \(P_{k+1}(N') \geq P_k(N) \).

(2) If \(N \cap \{ q_k \} \) is not normal, then the only successor of \(N \) in \(T_{k+1}(N) \) is \(N \) itself. Since \(q_k \) neither appears in \(T_k(N) \) nor in \(T_{k+1}(N) \), these sets are equal and we have \(j_{k+1}(N) = j_k(N) \) and \(P_{k+1}(N) = P_k(N) \).

The consequence from this theorem is that the computation of the numbers \(j_k \) and \(P_k \) can be done recursively: Assume that an upper bound \(u \) for, say, \(j_k \) is already known. Then it is not necessary to compute the \(j \)-value of any successor of a normal set with a \(j \)-value exceeding \(u \). In other words, the tree of the \(N_k \)'s can be partially trimmed at an early level. This indeed significantly reduces the number of cases to be checked. Our run-times seem to suggest that this reduces an exponential algorithm to a polynomial algorithm. We cannot prove this reduction, but of course we can happily run the computations.

How do we get upper bounds for \(j_k \) and \(P_k \), needed for the algorithm? Since these values are minima, it is enough to compute \(j_k(N) \) and \(P_k(N) \) for one normal set \(N \in N_k \); these will then be upper bounds. Of course, the smaller these bounds are, the faster the algorithm will be, because phony branches of the tree will be trimmed at an earlier stage. Which normal sets give small \(j_k \) and \(P_k \) values? From his computations, Giuga noticed that sets \(L_k \), defined below, always in fact seem to have the minimal value. Although we cannot prove that these sets always give the minimum, we can at least use their values as good upper bounds. In our computations we never have found a set with smaller values.

These sets are given by

\[
L_5 = \{5, 7\} \quad \text{and} \quad L_{k+1} = \begin{cases} L_k \cup \{q_k\} & \text{if this set is normal}, \\ L_k & \text{otherwise.} \end{cases}
\]

With this improved, recursive algorithm, we could increase the exclusion bounds significantly. In 1994, using Maple on a workstation, we could compute
the values j_k up to $k = 100$. For values of k around 100, this took a few
CPU hours for each k. We got $j_{100} = 3050$, leading to an exclusion bound of
10^{12054}. We then continued the computations in C++ (the re-coding took two
months) and could extend the range up to $k = 135$ with the result $j_{135} = 3459
and an exclusion bound of 10^{13886}. This algorithm then crashed (irrevocably for
linguistic reasons) in the Tokyo Computer Centre before doing any new work.
We see here forcibly the dilemma of when to use high-level languages or to opt
for computational speed.

We did not compute the P_k-values in 1994, since the slightly higher exclusion
bounds they could give us were more than offset by the additional cost to com-
pute many products. This disadvantage only disappears for high k levels, and
recently Holger Rauhut has computed P_{106} on a Sun workstation, leading to an
exclusion bound of 10^{14164} (achieved by L_{106}, of course). This computation took
about five days.

Note that the set L_{27692} is normal, has 8135 elements and satisfies

$$\sum_{q \in L_{27692}} 1/q > 1.$$

Therefore, $j_k \leq 8135$ for all $k \geq 27692$, and the method would be used up at
this level. It can never lead to higher and higher exclusion bounds. But with
current technology we are still far away from exhausting the algorithm.

5.1.2 Giuga Sequences

As we have seen, if there is a counterexample to Giuga’s conjecture, then it is
to be found among the Giuga numbers: Composite integers n with $p \mid (n/p − 1)$
for every prime divisor p of n; or, equivalently, squarefree composite integers $n
with $\sum_{p|n} 1/p \prod_{p|n} 1/p \in \mathbb{N}$.

The problem of finding Giuga numbers can be relaxed to a combinatorial
problem by dropping the requirement that all factors must be prime. More pre-
cisely, we define a Giuga sequence to be a finite sequence of integers, $[n_1, \ldots, n_m]$, satisfying $n_j \mid (\prod_{i \neq j} n_i − 1)$. As in the prime case, it follows from this definition
that the n_j in a Giuga sequence must be relatively prime, and an equivalent
definition is: A sequence of integers $[n_1, \ldots, n_m]$ is a Giuga sequence if and only
if the n_j are relatively prime and satisfy $\sum 1/n_j − \prod 1/n_j \in \mathbb{N}$. An example of
a non-prime Giuga sequence is
\[\frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{83} + \frac{1}{5 \times 17} - \frac{1}{296310} = 1. \]

For all known examples, the “sum minus product” value is 1; to reach any higher value, as we saw, the sequence would have to have at least 59 factors. To find all Giuga sequences of a given length, one could check in principle all sequences of this length whose elements are not too large (the sum over their reciprocals must be greater than 1 to be ruled out). However, the number of these grows exponentially; even for length 7 there are too many to check them all.

Luckily, we have the following reasonably effective theorem which tells us how to find all Giuga sequences of length \(m \) with a given initial segment of length \(m-2 \).

Theorem 5.1.4 (a) Take an initial sequence of length \(m-2 \), \([n_1, \ldots, n_{m-2}]\). Let
\[P = n_1 \cdots n_{m-2}, \quad S = 1/n_1 + \cdots + 1/n_{m-2}. \]
Fix an integer \(v > S \) (this will be the sum minus product value). Take any integers \(a, b \) with \(a \cdot b = P(P + S - v) \) and \(b > a \). Let
\[n_{m-1} = (P + a)/P(v - S), \quad n_m = (P + b)/P(v - S). \]
Then
\[S + 1/n_{m-1} + 1/n_m - 1/Pn_{m-1}n_m = v. \]
The sequence \([n_1, \ldots, n_{m-1}, n_m]\) is a Giuga sequence if and only if \(n_{m-1} \) is an integer.

(b) Conversely, if \([n_1, \ldots, n_{m-1}, n_m]\) is a Giuga sequence with sum minus product value \(v \), and if we define
\[a = n_{m-1}P(v - S) - P, \quad b = n_mP(v - S) - P \]
(with \(P \) and \(S \) the product and the sum of the first \(m-2 \) terms) then \(a \) and \(b \) are integers and \(a \cdot b = P(P + S - v) \).

To conclude the section on Giuga’s conjecture, we note Agoh’s conjecture (1995), which is equivalent:
\[nB_{n-1} \equiv -1 \pmod{n} \]
if and only if \(n \) is prime;
here \(B_n \) is a Bernoulli number.
5.1.3 Lehmer’s Problem

Lehmer’s conjecture (1932) is that

\[\phi(n) \mid n - 1 \text{ if and only if } n \text{ is prime.} \]

Lehmer called this

A problem as hard as existence of odd perfect numbers.

For Lehmer’s conjecture, the set of prime factors of any counterexample \(n \) is a normal family. Lehmer’s conjecture has now been verified for up to 14 prime factors of \(n \). The related condition

\[\phi(n) \mid n + 1, \]

is known to have eight solutions with up to six prime factors: \(2, F_0, \ldots, F_4 \) (the Fermat primes) and a rogue pair: 4919055 and 699296272132095. Fermat primes are primes of the form \(F_n = 2^{2^n} + 1 \). As an early example of experimental error the sequence starts 3, 5, 17, 257, 65537, all of which are prime. On this inductive basis Fermat conjectured all Fermat numbers were prime despite the fact that \(F_5 = 4294967297 \) is divisible by 641, as Euler discovered.

Recently this result was extended by one to seven prime factors—by dint of a heap of factorizations! But the next cases of Lehmer’s two problems (15 and 8 respectively) are way too large for current methods and machines. The curse of exponentiality strikes again!

5.2 Disjoint Genera

The role of experimentation pattern recognition is reiterated in the description of how the following theorem [55] was found in response to a question posed by Richard Crandall, in connection with his analysis of the Madelung constant [93].

Theorem 5.2.1 There are at most 19 positive integers not of the form of \(xy + yz + xz \) with \(x, y, z \geq 1 \). The only non-square-free cases are 4 and 18. The first 16 square-free cases are

\[1, 2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462, \ldots \]

(5.2.2)
which correspond to “discriminants with one quadratic form per genus.”

If the 19th exists, it is greater than 10^{11} which the Generalized Riemann Hypothesis (GRH) excludes.

These exceptions were found with a crude Matlab program which also showed there were no others less than 50,000. One may then note that the largest three numbers correspond to three very special singular values ($k_{210}, k_{330}, k_{462}$ of Section 4.2). Further inspection showed that the square free solutions in (5.2.2) corresponded precisely to quadratic forms $Q_{2P}(n, m) = n^2 + 2Pm^2$ with precisely one quadratic form per genus, see Section 4.3. Thence was the theorem discovered.

After the research was nearly finished the authors remembered to consult Sloane’s online Encyclopedia and were told that the theorem was true! This was based only on email communications, though indeed there are now several published proofs. Moreover, if you now consult the Encyclopedia, it will tell you the numbers are those with one form per genus, and give details! Had the authors consulted the database earlier, they would have considered Crandall’s question answered. This would have saved time but left the database and literature poorer.

5.3 Gröbner Bases and Metric Invariants

In this section we introduce Gröbner bases and the Pedersen-Roy-Szpirglas real solution counting method. We apply these modern tools together with ideas from classical distance geometry (the Cayley-Menger determinant) to show how Petr Lisoněk settled two open problems in Euclidean geometry posed in the American Mathematical Monthly in 1999 [158].

By analyzing systems of algebraic equations satisfied by metric invariants of a tetrahedron, we shall conclude (i) that, in general, the four face areas, circumradius and volume together do not uniquely determine a tetrahedron, and that (ii) there exist non-regular tetrahedra that are uniquely determined just by the four face areas and circumradius.

The development outlines the main steps of [152], which can be obtained (along with a Maple worksheet containing all computations) at

http://www.cecm.sfu.ca/~lisonek/tetrahedron.html
Executing all computations in Maple on a 2.6MHz Linux PC machine takes about 40 seconds of CPU time.

We should add here that the Magma tool is also very useful for performing this type of algebraic computation. Information on Magma is available at http://magma.maths.usyd.edu.au/magma

5.3.1 Formulation of the Polynomial System

Let \(R^n \) denote \(n \)-dimensional Euclidean space with the Euclidean distance between points \(v \) and \(w \) be denoted by \(d(v, w) \). Consider a general tetrahedron \(T \) in \(R^3 \) and let \(v_i \) (\(i = 1, 2, 3, 4 \)) be the vertices of \(T \). Clearly, \(T \) is determined uniquely (up to a rigid motion) if the lengths \(d(v_i, v_j) \) of its six edges are given.

We shall analyze whether \(T \) can be determined uniquely by sets of metric invariants other than that of all edge lengths.

Denote the squared edge lengths by

\[
s_{i,j} = d(v_i, v_j)^2,
\]

the volume by \(V \) and the circumradius (i.e., radius of the circumscribed sphere) by \(R \). We let the area of the face \(v_iv_jv_k \) be denoted \(A_l \), where \(\{i, j, k\} \cup \{l\} = \{1, 2, 3, 4\} \).

Let \(P_i \) (\(1 \leq i \leq n \)) be \(n \) points in \(R^{n-1} \) and denote \(d_{i,j} = d(P_i, P_j) \). The Cayley-Menger determinant ([27], §40) associated with the points \(P_i \) (\(1 \leq i \leq n \)) is the determinant of the \((n + 1) \times (n + 1)\) matrix

\[
D(P_1, \ldots, P_n) = \begin{vmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & d_{1,2}^2 & \cdots & d_{1,n}^2 \\
1 & d_{2,1}^2 & 0 & \cdots & d_{2,n}^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & d_{n,1}^2 & d_{n,2}^2 & \cdots & 0
\end{vmatrix}.
\]

The \((n - 1)\)-dimensional volume \(\text{Vol}(P_1, \ldots, P_n) \) of the convex hull of \(P_1, \ldots, P_n \) satisfies the equality ([27], p. 98)

\[
\text{Vol}(P_1, \ldots, P_n)^2 = \frac{(-1)^n}{2^{n-1}((n-1)!)^2} D(P_1, \ldots, P_n).
\]
Hence, the facial areas and the volume of the tetrahedron can be expressed as low degree polynomials in the squared edge lengths $s_{i,j}$. In the case of a triangle, T, (5.3.5) is a disguised version of the Heron’s formula:

$$A(T) = \sqrt{s(s-a)(s-b)(s-c)}$$

(5.3.6)

where $s = (a + b + c)/2$ is the semi-perimeter of the circle and a, b, c are the lengths of the sides (Exercise 13).

Let C denote the center of the circumscribed sphere of our tetrahedron. The five points v_1, v_2, v_3, v_4, C lie in a three-dimensional space (a hyperplane of \mathbb{R}^4) and therefore $\text{Vol}(v_1, v_2, v_3, v_4, C) = 0$. Hence, the algebraic equation for the circumradius R is

$$D(v_1, v_2, v_3, v_4, C) = 0$$

(5.3.7)

where $d(v_i, C) = R$ for $1 \leq i \leq 4$. Consider seven positive real numbers $a_{1,2}, a_{1,3}, \ldots, a_{3,4}, W$. Clearly, the statement

The volume of the tetrahedron with edge lengths $\sqrt{a_{1,2}}, \sqrt{a_{1,3}}, \ldots, \sqrt{a_{3,4}}$

is W.

implies the statement

The point $(a_{1,2}, a_{1,3}, \ldots, a_{3,4}, W)$ is a zero of the polynomial $f_1(s_{1,2}, s_{1,3}, \ldots, s_{3,4}, V)$.

Here the explicit form of f_1 can be easily extracted from (5.3.3–5.3.5). (Exercise 14.)

The analogous statements for the other metric invariants of the tetrahedron (e.g., circumradius, four face areas) imply corresponding statements about zeros of five other computable polynomials f_2, \ldots, f_6 with rational coefficients.

Since we transform a geometric problem into an algebraic one, we should make sure that we are working with concrete algebraic objects that have a meaning (interpretation) back in the original geometric domain. The essential question here is, for which positive sextuples $(s_{1,2}, s_{1,3}, \ldots, s_{3,4})$ in \mathbb{R}^6 does there exist a tetrahedron whose squared edge lengths are the values $s_{i,j}$? It is shown in [27], §40 that this is the case exactly when all squared volumes (5.3.5) evaluate to non-negative, which therefore is not only a necessary but also a sufficient condition for the existence of the tetrahedron.
The important consequence is that whenever there exists a positive solution \((a_{1.2}, a_{1.3}, \ldots, a_{3.4})\) in \(\mathbb{R}^6\) to a system \(\{f_i^* = 0, \ldots, f_6^* = 0\}\), where \(f_i^*\) is \(f_i\) with \(V, R, A_1, \ldots, A_4\) replaced by positive real constants, then this solution does have a geometric interpretation and corresponds to a tetrahedron in \(\mathbb{R}^3\), whose edge lengths are \(\sqrt{a_{ij}}\).

Since scaling does not affect the answer to our problem in any way, we typically allow ourselves to normalize the value of one of the variables, say \(R\).

5.3.2 Gröbner Bases

Let \(Q[x_1, \ldots, x_n]\) denote the ring of \(n\)-variable polynomials with rational coefficients in indeterminates \(x_1, \ldots, x_n\). Let \(f_1, \ldots, f_s \in Q[x_1, \ldots, x_n]\). The ideal generated by \(f_1, \ldots, f_s\) is defined by

\[
\langle f_1, \ldots, f_s \rangle = \left\{ \sum_{i=1}^s h_i f_i : h_i \in Q[x_1, \ldots, x_n] \right\}.
\]

The (affine) variety determined by \(f_1, \ldots, f_s\) is \(V(f_1, \ldots, f_s) \subset C^n\) defined as

\[
V(f_1, \ldots, f_s) = \{ x \in C^n : f_1(x) = \ldots = f_s(x) = 0 \}.
\]

If \(I = \langle f_1, \ldots, f_s \rangle\), then we say that \(\{f_1, \ldots, f_s\}\) is a basis of \(I\). Clearly, if \(\{f_1, \ldots, f_s\}\) and \(\{g_1, \ldots, g_t\}\) are two bases of the same ideal, then \(V(f_1, \ldots, f_s) = V(g_1, \ldots, g_t)\). That said, one of the bases may be much more suitable than the other for assessing properties of the variety (such as (non-)emptiness, cardinality, finiteness, dimension, characterizing all points in the variety, etc.).

Roughly Gröbner bases are those special bases of polynomial ideals which are especially suited for studying properties of affine varieties such as those listed above, and for answering questions about the ideal itself—such as determining whether or not a given polynomial belongs to the ideal. There are many different Gröbner bases for each polynomial ideal all of which can be computed using Bruno Buchberger’s algorithm. Which Gröbner basis is most suitable in a given situation depends on the question to be resolved for the given variety or ideal. The book [85] is a very accessible introduction to polynomial ideals, their varieties and the algorithms operating on them.
5.4 A Sextuple of Metric Invariants

As noted the question as to whether a tetrahedron is uniquely determined by its volume, circumradius and face areas was posed as an open problem in [158]. In this section we constructively answer this question negatively, by producing two (or more) tetrahedra that share the same volume, circumradius and face areas.

Consider a tetrahedron T given by squared edge lengths. Equations for the volume, circumradius and face areas of T may be obtained on substituting the values of $s_{i,j}$ into the polynomials f_1, \ldots, f_6 introduced earlier. Conversely, by substituting the numerical values of V, R, A_1, \ldots, A_4 into the f_i’s we set up a polynomial system in the squared edge lengths as unknowns—let us call this system $F^* = \{f_1^*, \ldots, f_6^*\}$.

Thus, we hope for distinct positive solutions to F^*. To determine these solutions we first find G, a grevlex Gröbner basis for F^*. In all numerical examples that Lisoněk and Israel [152] tried, they found that $\langle F^* \rangle$ was a zero-dimensional ideal. They then used the method of Pedersen, Roy and Szpirglas to count all real solutions of F^*. (See Chapter 2 of [84], in particular we adopt the terminology and notation introduced therein.)

Let $p_{i,j}$ be the generators for the univariate elimination ideals, that is, $\langle p_{i,j} \rangle = C[s_{i,j}] \cap \langle F^* \rangle$. Using the theory in Chapter 2, Section 2 of [84] first one finds the $p_{i,j}$’s from the grevlex Gröbner basis G by working in the algebra $A = C[s_{1,2}, s_{1,3}, \ldots, s_{3,4}] / \langle G \rangle$. Second, one uses interval arithmetic (together with knowledge of the total number of real solutions) to isolate these real solutions of F^* and thirdly one selects the positive solutions.

It turns out to be easy to obtain examples in which several different tetrahedra sharing the same volume, circumradius and face areas, as is illustrated in the following numerical example. Some intermediate expressions are omitted because of their large size.

Example 5.4.1 Consider the tetrahedron defined by

$$(s_{1,2}, s_{1,3}, s_{1,4}, s_{2,3}, s_{2,4}, s_{3,4}) = (1, 1, 2, 2, 1, 2).$$

We find that $V = \sqrt{1/48}$, $R = \sqrt{7/12}$, $A_1 = A_2 = \sqrt{7/16}$ and $A_3 = A_4 = 1/2$.

1. By substituting these six values in the polynomials f_1, \ldots, f_6 we obtain the set $F^* = \{f_1^*, \ldots, f_6^*\}$. Next compute G, the Gröbner basis for F^* with
5.4. A SEXTUPLE OF METRIC INVARIANTS

respect to the grevlex ordering induced by $s_{1,2} > s_{1,3} > \ldots > s_{3,4}$, and the basis for the algebra $A = \mathbb{C}[s_{1,2}, s_{1,3}, \ldots, s_{3,4}] / \langle F^* \rangle$.

2. It turns out that the dimension of A is 8, and that a monomial basis of A is $B = (1, s_{1,2}, s_{2,3}, s_{2,4}, s_{2,4}^2, s_{1,2}s_{2,4}, s_{3,4}, s_{2,4}s_{3,4})$. Let h be the constant function 1 and construct the symmetric bilinear form S_1 as described in [84, page 65].

3. Compute the characteristic polynomial of M_1, the matrix of S_1 with respect to B. It turns out that there are six sign variations in the coefficient list of this characteristic polynomial, whence by Descartes rule of signs the signature of S_1 is four, and there are four distinct real solutions to the system F^* by [84, Theorem 5.2].

4. Using the Maple procedure Groebner[univpoly] (which implements the Faugère-Gianni-Lazard-Mora basis conversion method) we use G to find the generators $p_{i,j}$ for the univariate elimination ideals $\langle p_{i,j} \rangle = \mathbb{C}[s_{i,j}] \cap \langle F^* \rangle$. They turn out to be the following polynomials:

$$p_{1,2}(x) = (x - 1)a(x)$$
$$p_{1,3}(x) = p_{1,4}(x) = p_{2,3}(x) = p_{2,4}(x) = (x - 1)(x - 2)b(x)$$
$$p_{3,4}(x) = (x - 2)c(x)$$

where

$$a(x) = 9x^3 - 123x^2 + 491x - 249$$
$$b(x) = 81x^6 - 1485x^5 + 10215x^4 - 25803x^3 + 22865x^2 - 3303x + 162$$
$$c(x) = 9x^3 - 150x^2 + 1028x - 960.$$

5. Using Sturm’s theorem (The Maple procedure realroot) determine the isolating intervals for all real roots of a, b and c. It turns out that a and c have one real root each, namely $\alpha_1 \in [75/128, 19/32]$ and $\gamma_1 \in [35/32, 141/128]$, respectively, while b has two real roots $\beta_1 \in [219/128, 55/32]$ and $\beta_2 \in [267/128, 67/32]$.
6. These isolating intervals are narrow enough to prove (using interval arithmetic) that only four boxes in \(\mathbb{R}^6 \) (Cartesian products of the separating intervals) can possibly contain a solution of \(F^* \).

7. Since we know that there are exactly four real solutions, we have isolated all solutions of \(F^* \). Their values \((s_{1,2}, s_{1,3}, s_{1,4}, s_{2,3}, s_{2,4}, s_{3,4})\) are \((1, 2, 1, 1, 2, 2), (1, 1, 2, 1, 2), (\alpha_1, \beta_1, \beta_2, \beta_2, \gamma_1)\) and \((\alpha_1, \beta_2, \beta_1, \beta_1, \gamma_1)\).

8. As each \(s_{i,j} \) value is positive for all four solutions, it follows (cf. the discussion at the end of Section 5.3.1) that we have constructed four different tetrahedra that share the same volume, circumradius and face areas. On inspecting the four solutions we see that the four tetrahedra pair up as two pairs, with the elements of each pair related by interchanging the labels of the vertices \(v_1 \) and \(v_2 \). Thus, we have obtained two essentially different tetrahedra.

\[\square\]

5.5 A Quintuple of Related Invariants

It was noted in [158] part (b) that the quintuple of values \((A_1, A_2, A_3, A_4, R)\) uniquely determines any regular tetrahedron. In this case, of course \(A_1 = A_2 = A_3 = A_4 = \sqrt{4/3}R^2 \). As to whether there exist non-regular tetrahedra uniquely determined by \((A_1, A_2, A_3, A_4, R)\) was posed as an open problem in [158].

This question is answered affirmatively on showing:

Example 5.5.1 Every non-degenerate tetrahedron, having a face that is an equilateral triangle inscribed in a great circle of the circumscribed sphere, is determined uniquely by its four face areas and circumradius.

1. Assume without loss of generality that \(R = 1 \). It is easy to see that \(3\sqrt{3}/4 \) is the maximum area among all triangles inscribed in a unit sphere, and it is attained only by equilateral triangles inscribed in a great circle of the sphere (Exercise 15).
5.5. A QUINTUPLE OF RELATED INVARIANTS

2. Therefore the shape of one of the faces of the tetrahedron is determined by requiring its area to be equal to $3\sqrt{3}/4$. Assume this face is $v_1v_2v_3$. Then $R = 1$, $s_{1,2} = s_{1,3} = s_{2,3} = 3$ and $A_4 = 3\sqrt{3}/4$.

3. Let F' be the set of polynomials f_2, \ldots, f_6 from Section 5.3.1 with the values from the previous sentence substituted. It takes only a few seconds to compute the Gröbner basis for the ideal generated by F' for the lexicographic ordering induced by $s_{3,4} > s_{2,4} > A_1 > A_3 > A_2 > s_{1,4}$. This basis contains (among others) the polynomials f^2 and g^2, where

$$ f = 81s_{1,4}^4 - 432s_{1,4}^3 + 288(A_2^2 + A_3^2)s_{1,4}^2 + 256A_2^4 + 256A_3^4 - 512A_2^2A_3^2 $$

$$ g = 9s_{1,4}^2 - 54s_{1,4} - 16A_1^2 + 32A_2^2 + 32A_3^2 + 27. $$

4. Further

$$ f = Q \cdot g + S \quad (5.5.8) $$

where

$$ Q = 9s_{1,4}^2 + 6s_{1,4} + 16A_1^2 + 9 $$

$$ S = (960A_1^2 - 192A_2^2 - 192A_3^2 + 324)s_{1,4} + 256(A_1^4 + A_2^4 + A_3^4) - 512(A_1^2A_2^2 + A_1^2A_3^2 + A_2^2A_3^2) - 288(A_1^2 + A_2^2 + A_3^2) - 243. $$

If both f and g vanish, then S must vanish by (5.5.8). The equation $S = 0$ determines $s_{1,4}$ uniquely if L, the coefficient at $s_{1,4}$ in S, is non-zero.

5. The discriminant of g as a quadratic polynomial in $s_{1,4}$ is

$$ Z = 576A_1^2 - 1152A_2^2 - 1152A_3^2 + 1944, $$

and observe that $6 \cdot L = 5184A_1^2 + Z$.

6. If there exists a tetrahedron with face areas A_1, A_2, A_3, $3\sqrt{3}/4$ and circumradius 1, then g must have a real (positive) root, hence $Z \geq 0$ and consequently $L > 0$ by non-degeneracy, in particular $L \neq 0$. Therefore $s_{1,4}$ is determined uniquely by $S = 0$.

7. By applying analogous arguments to $s_{2,4}$ and $s_{3,4}$ we prove that all $s_{j,4}$ are determined uniquely ($1 \leq j \leq 3$). Since also $s_{1,2} = s_{1,3} = s_{2,3} = 3$ are determined uniquely by $A_4 = 3\sqrt{3}/4$, we have established that the tetrahedron is determined uniquely.

\[\square \]

5.5.1 Some Open Questions on Invariants

An intriguing question is whether, for every set of positive real constants V, R, A_1, \ldots, A_4, there are only finitely many tetrahedra, all having these values as their respective metric invariants.

If the answer is affirmative, what is then the maximal number of such tetrahedra? For example, the values $(s_{1,2}, s_{1,3}, s_{1,4}, s_{2,3}, s_{2,4}, s_{3,4}) = (16, 25, 9, 9, 33, 54)$ yield a family of six such tetrahedra, but it is not known whether this is maximal.

The bounds obtained by applying general theorems from algebraic geometry seem much larger than the empirical results obtained in [152] by running the algorithm outlined above on a number of different examples.

In cases when the number of solutions to the system F^* is finite one can apply Bézout’s theorem and so obtain $3 \cdot 4 \cdot 2^4 = 192$ as an upper bound on the number of solutions. A theorem of Milnor [160] gives 9375 as an upper bound on the number of real solutions of F^* that are isolated points. Here, the central issue is whether the variety is always zero-dimensional (is a finite set of isolated points) or whether it can have (components of) positive dimension. In the zero-dimensional case, Bézout’s theorem applies, while Milnor’s result unconditionally bounds the number of isolated real points.

5.6 Sloane’s Harmonic Designs

In this final section we describe and illustrate an ambitious and successful experimental approach to finding spherical designs used by N. J. A. Sloane, R. H. Hardin and P. Cara [128, 129, 190, 191].
A set of \(N \) points \(\{P_1, \ldots, P_N\} \) on the unit sphere \(\Omega_n = S^{n-1} = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x \cdot x = 1\} \) forms a spherical \(t \)-design if the identity

\[
\int_{\Omega_n} f(x) d\mu(x) = \frac{1}{N} \sum_{i=1}^{N} f(P_i) \quad (5.6.9)
\]

holds for all polynomials \(f \) of degree \(\leq t \), where \(\mu \) is uniform measure on the sphere normalized to have total measure one ([100, 118, 119, 120] and [79, §3.2]). A spherical \(t \)-design is also a \(t' \)-design for all \(t' \leq t \). The largest \(t \) for which the points form a \(t \)-design is called the strength of the design.

It is known that if \(N \) is large enough then a spherical \(t \)-design in \(\Omega_n \) always exists [186]. The problem is to find the smallest value of \(N \) for a given strength and dimension, or equivalently to find the largest strength \(t \) that can be achieved with \(N \) points in \(\Omega_n \).

Not surprisingly, the main application is to numerical integration, but spherical designs also have applications to the design of experiments in statistics. Their study has involved many interesting questions in algebra and group theory.

For searching for a spherical \(t \)-design, and for verifying that a set of points does form a spherical \(t \)-design, the following equivalent condition is more useful than the definition:

\(P_1, \ldots, P_N \) forms a spherical \(t \)-design if and only if the polynomial identities

\[
\frac{1}{N} \sum_{i=1}^{N} (P_i \cdot x)^{2s} = \left(\prod_{j=0}^{s-1} \frac{2j + 1}{2j + n} \right) (x \cdot x)^s , \quad (5.6.10)
\]

and

\[
\frac{1}{N} \sum_{i=1}^{N} (P_i \cdot x)^{2\bar{s}+1} = 0 , \quad (5.6.11)
\]

hold, where \(s \) and \(\bar{s} \) are defined by \(\{2s, 2\bar{s} + 1\} = \{t - 1, t\} \) ([119]; [177, p. 114], [178]).

The approach taken by Sloane et al. follows the following three stages.

1. **Experimentation.** Given the dimension \(n \), a specified number of points \(N \), and a desired value of the strength \(t \), search for a set of points satisfying (5.6.10) and (5.6.11). If no solution seems to exist, decrease \(t \) and try
again. This is repeated a large number of times (with different starting configurations) until a collection of putative designs has been assembled.

At this stage, these are only numerical approximations to the desired designs; that is, numerical coordinates for points which appear to satisfy (5.6.10) and (5.6.11) with an error which is less than 10^{-10}.

The search algorithm used was a modification of the “pattern search” of Hooke and Jeeves [136], a distant cousin of the conjugate gradient method.

2. **Beautification.** They now attempt to show that there is a spherical t-design in the neighborhood of the numerical points, that is, to find algebraic expressions for the coordinates of points such that (5.6.10) and (5.6.11) are satisfied exactly.

This step involves a considerable amount of guesswork, guided by computations of the geometrical structure of the computer-produced points, such as their apparent automorphism group.

The crucial step in the beautification process is to use knowledge of the automorphism group to reduce the number of unknowns in the design. If the points appear to fall into k orbits under the group, the number of unknowns is reduced from $N(n-1)$ (the number of degrees of freedom in the original design) to $k(n-1)$. With luck, they are now able to solve equations (5.6.10) and (5.6.11) exactly.

3. **Generalization.** Try to find infinite families of designs which generalize those found at step 2.

One example will serve to illustrate the process, a four-dimensional spherical 6-design (in Ω_4) with 42 points. After beautification, this turned out to consist of six heptagons, each in a different plane, with a group of order 42 acting transitively on the 42 points. In other words, the computer-produced design was suggesting that they should choose six planes in \mathbb{R}^4, i.e., six points in the Grassmann manifold $G(4,2)$, and draw a heptagon in each plane. Sloane et al. found this an appealing idea, in view of the recent work on finding packings and designs in Grassmann manifolds (see [15, 73, 78, 187])! It immediately suggested several general constructions, one of which is the following.
Let \(\Pi_1, \ldots, \Pi_6 \) be the planes in four dimensions spanned by the rows of the following six matrices:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
s & 0 & -h & h \\
0 & s & -h & -h \\
0 & s & h & -h \\
0 & 0 & s & 0
\end{bmatrix},
\begin{bmatrix}
-s & 0 & -h & -h \\
0 & -s & -h & h \\
0 & 0 & -h & 0 \\
0 & 0 & -s & 0
\end{bmatrix},
\]

where \(s = 1/\sqrt{2}, h = 1/2 \).

Theorem 5.6.1 Let \(p \) be an integer \(\geq 3 \) and draw regular \(p \)-gons in each plane. The resulting \(N = 6p \) points

\[
\left\{ \cos(j\theta)u_i + \sin(j\theta)v_i : 0 \leq j < p, \ 1 \leq i \leq M \right\}, \quad (5.6.12)
\]

where \(u_i \) and \(v_i \) span \(\Pi_i \), form a \(6p \)-point spherical \(t \)-design with \(t = \min\{p-1, 7\} \).

This is an interesting result, since there are very few general constructions known for infinite families of spherical designs.

The theorem yields the following \(t \)-designs.

<table>
<thead>
<tr>
<th>(p)</th>
<th>3 4 5 6 7 8 9 10 11 12 ⋯</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>18 24 30 36 42 48 54 60 66 72 ⋯</td>
</tr>
<tr>
<td>(t)</td>
<td>2 3 4 5 6 7 7 7 7 7 ⋯</td>
</tr>
</tbody>
</table>

The papers [129, 190, 191] contain many other examples.

5.7 Commentary and Additional Examples

1. **A prime generating number.** Let

\[
\alpha = \sum_{m=1}^{\infty} \frac{p_m}{10^{2m}} = 0.020300050000000070000000000000000110 \ldots,
\]
where \(p_m \) denotes the \(m \)-th prime. Show that

\[
p_n = \lfloor 10^{2^n} \alpha \rfloor - 10^{2^n-1} \lfloor 10^{2^n-1} \alpha \rfloor,
\]

which would be useful if one could find a method of computing \(\alpha \) to the needed precision to obtain \(p_n \) without knowing \(p_n \). This seems unlikely.

2. **Carmichael and Lucas-Carmichael numbers.** The Carmichael numbers are usually defined as those pseudo-primes such that \(a^{n-1} \equiv 1 \mod n \) for each \(a \) relatively prime to \(n \). Korelt (1899) showed this coincides with the definition in the text: namely \(n \) is square-free and \((p-1)|(n-1) \) whenever \(p|n \). The smallest examples are 561, 1105, 1729 and a much larger one is \(17 \cdot 37 \cdot 41 \cdot 131 \cdot 251 \cdot 571 \cdot 4159 = 2013745337604001 \).

We suggest you consult Sloane’s table (or the on-line version) to learn about the sequence starting

399, 935, 2015, 4991, 5719, 7055.

3. **Odd perfect numbers.** It is known that there are no odd perfect number with seven or fewer prime factors. Show that any odd perfect number with eight prime factors must be divisible by 3, 5 or 7. More generally Servais in 1888 proved that the smallest prime factor can not exceed the number of prime factors.

4. **Primes in arithmetic progression.** Let \(\pi_{d,r}(x) \) denote the number of primes of the form \(nd + r \leq x \), with \(d \) and \(r \) relatively prime. Then Dirichlet proved the number of primes in each such progression is infinite. Indeed,

\[
\pi_{d,r}(x) \sim \frac{1}{\phi(d)} \frac{x}{\log x}.
\]

This is due to de la Vallée Poussin [179, pg.149].

(a) Use this to show that every normal sequence of primes can be extended so that the sum of its reciprocals exceeds one.

(b) It is conjectured that one can find arbitrarily long arithmetic progressions all of whose members are prime [179, pg. 153].
The longest known arithmetic sequence of primes is currently 22, starting with the prime 11410337850553 and continuing with common difference 4609098694200 [174]. The longest known sequence of consecutive primes in arithmetic progression is ten. It starts with the 93-digit prime

\[
1009969724697142476377866555879698403295093246891900418036034177589043417033488882159067229719,
\]

and has difference 210.

5. **A fourth degree polynomial problem.** (From [134, pg. 87]). Let \(\alpha_1, \alpha_2, \alpha_3, \alpha_4\) be the roots of the polynomial

\[
P(x) = x^4 + px^3 + qx^2 + rx + 1.
\]

Show that

\[
(1 + \alpha_1^4)(1 + \alpha_2^4)(1 + \alpha_3^4)(1 + \alpha_4^4) = (p^2 + r^2)^2 + q^4 - 4pq^2r.
\]

Hint: consider \(\prod_{k=1}^{4} P(e^{2k-1)i\pi/4}).\)

6. **Putnam problem 1991–B4.** Show that for \(p\) an odd prime

\[
\sum_{j=0}^{p} \binom{p}{j} \binom{p+j}{j} \equiv 2^p + 1 \mod p^2.
\]

7. **1-additive sequences.** Given \((u, v)\), the 1-additive sequence generated by \((u, v)\) is defined as \(a_1 = u\), \(a_2 = v\), and for \(n \geq 3\), \(a_n\) is the least integer exceeding \(a_{n-1}\) and possessing a unique representation of the form \(a_i + a_j\) for \(i < j\). Many 1-additive sequences behave quite erratically. The sequence generated by \((2, 3)\) for example defies any simple characterization. Finch conjectured, and later Schmerl and Spiegel proved, that the sequence generated by \((2, v)\) for odd \(v \geq 5\) has precisely two even terms, so that the sequence of successive differences is eventually periodic. Finch has further conjectured, based on extensive computations, that for odd \(v \geq 5\)
Conjecture. If \(v \neq 2^m - 1 \) for any \(m \geq 3 \), the sequence generated by \((4, v)\) has precisely three even terms: 4, \(2v + 4 \) and \(4v + 4 \). When \(v = 2^m - 1 \) for some \(m \geq 3 \), then the sequence generated by \((4, v)\) has precisely four even terms: 4, \(2v + 4 \), \(4v + 4 \) and \(4v^2 + 2v - 4 \).

Cassaigne and Finch have proven this conjecture for the case \(v \equiv 1 \mod 4 \), but the question is open for \(v \equiv 3 \mod 4 \). See [75] for further details.

8. Amicable numbers. Two numbers are amicable if, like 220 and 284, each is the sum of the others proper divisors, Thabit ibn Kurrah (ca. A.D. 850) noted that if \(n > 1 \) and each of \(p = 3 \cdot 2n - 1 - 1 \), \(q = 3 \cdot 2n - 1 \), and \(r = 9 \cdot 22n - 1 - 1 \) are prime, then \(2npq \) and \(2nr \) are amicable numbers. It was many years until this formula led to a second and third pair of amicable numbers! Fermat provided the pair 17,296 and 18,416 \((n=4)\) in a letter to Mersenne in 1636. Computer searches have found all such numbers with 10 or fewer digits. It is unknown if there are infinitely many amicable pairs or any relatively prime pair. (Such a pair must be more than twenty-five digits long, and the product must be divisible by at least 22 distinct primes.)

9. More on amicable numbers. The smallest example of an amicable four-cycle is
\[
\begin{align*}
 n_1 &= 2^2 \cdot 5 \cdot 17 \cdot 3719, & n_3 &= 2^2 \cdot 521 \cdot 829, \\
 n_2 &= 2^2 \cdot 5 \cdot 193 \cdot 401, & n_4 &= 2^5 \cdot 40787,
\end{align*}
\]
discovered by H. Cohen in 1970 during an exhaustive search up to sixty thousand. Very recently Blankenagel, Borho and vom Stein have obtained fifty new amicable four-cycles by a seed-and-complete method akin to the way in which Giuga sequences were generated.

10. Aliquot sequences. Consider the iteration \(n \mapsto s(n) = \sigma(n) - n \), where \(\sigma \) is the divisor function. It is unknown whether this iteration must eventually become periodic, as is clearly the case for an amicable pair. There are five numbers less than 1000 whose status is unsettled ("the Lehmer five": 276, 552, 564, 660, and 966). Such Aliquot sequences can grow very rapidly before subsiding. One may consider iterating many other arithmetic functions with irregular growth. Reference: [127].
11. **Prime power problem.** Let $\Lambda(n) = \log(p)$ for $p = n^m$ a prime power and be zero otherwise. Show that

$$
\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} = \frac{\zeta'(s)}{\zeta(s)}
$$

and so that

$$
\log(n) = \sum_{d|n} \Lambda(d).
$$

12. **Putnam problem 1988–B1. (disjoint genera)** Show that every composite number can be expressed in the form $xy + yz + zx + 1$ for positive integers x, y, z. Compare what is true in the case of primes.

13. Verify that (5.3.6) is a specialization of (5.3.5).

14. Confirm that the geometric statement of subsection 5.3.1 implies the algebraic one.

15. Show that a positive sextuple $(s_{1,2}, s_{1,3}, \ldots, s_{3,4})$ in \mathbb{R}^6 comes from a tetrahedron whose squared edge lengths are the values $s_{i,j}$ exactly when all the squared volumes in (5.3.5) are nonnegative.

16. **Putnam problem 1992–B5.** For each n, evaluate the determinant, D_n of the $(n-1) \times (n-1)$ matrix of which the 5×5 case is

$$
\begin{bmatrix}
3 & 1 & 1 & 1 & 1 \\
1 & 4 & 1 & 1 & 1 \\
1 & 1 & 5 & 1 & 1 \\
1 & 1 & 1 & 6 & 1 \\
1 & 1 & 1 & 1 & 7
\end{bmatrix}.
$$

Generalize this result to the case of arbitrary entries $1 + a_k$ along the diagonal.

Hint: Note that $D_n = n D_{n-1} + (n-1)!$.

17. **Wilson’s theorem.** Wilson’s theorem is the assertion that if \(p \) is prime, \((p - 1)! \equiv -1 \pmod p\). (The Lagrange converse is also true; namely, the congruence is necessary for primality.) This can be proved using a group argument, as follows. Note first that only 1, \(-1\) are self-inverses modulo \(p \), so that the product of all other residues consists of element-inverse pairs \(aa^{-1} \). Thus \(\prod_{a=2}^{p-2} a \equiv 1 \pmod p \) and Wilson’s theorem follows when you include 1, \(-1\) in the product. Such observations actually lead to certain computational advantages in the evaluation of very large factorials, as in [94].

18. **Prouhet-Tarry-Escott problem.** Given positive integers \(n \) and \(k \), this Diophantine problem asks for non trivial solutions to

\[
\begin{align*}
\alpha_1 + \alpha_2 + \cdots + \alpha_n &= \beta_1 + \beta_2 + \cdots + \beta_n \\
\alpha_1^2 + \alpha_2^2 + \cdots + \alpha_n^2 &= \beta_1^2 + \beta_2^2 + \cdots + \beta_n^2 \\
&\quad \ldots \\
\alpha_1^k + \alpha_2^k + \cdots + \alpha_n^k &= \beta_1^k + \beta_2^k + \cdots + \beta_n^k.
\end{align*}
\]

A solution is abbreviated as \([\alpha] =_k [\beta]\). For example

\[
\begin{align*}
[-2, -1, 3] &= 2 [2, 1, -3], & [-5, -1, 2, 6] &= 3 [-4, -2, 4, 5] \\
[-8, -7, 1, 5, 9] &= 4 [8, 7, -1, -5, -9],
\end{align*}
\]

and such ideal solutions with \(k = n - 1 \) are known for \(n < 12 \). This can be equivalently rewritten as a question about \(\pm \) polynomials dividing \((z - 1)^n\) of minimal length (sum of the absolute values of the coefficients) [65]. A good deal is known about the problem computationally, and the main open questions include:

(a) Find a second inequivalent solution for \(n = 12 \) where only

\[
[\pm 151, \pm 140, \pm 127, \pm 186, \pm 61, \pm 22] =_{11} [\pm 148, \pm 146, \pm 1271, \pm 94, \pm 47, \pm 35]
\]

is known. (Any other symmetric solution has some entry exceeding 1000 in absolute value.)

(b) Find ideal solutions with \(n > 12 \).
(c) Find ideal solutions for each n or find a n with no ideal solution (more likely).

19. ζ and arithmetic functions. Show that

$$
\zeta(s) \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \sum_{n=1}^{\infty} \frac{b_n}{n^s}
$$

if and only if

$$
\sum_{n=1}^{\infty} a_n \frac{\alpha^n}{1 - \alpha^n} = \sum_{n=1}^{\infty} b_n x^n,
$$

$$
\zeta(s) \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \sum_{n=1}^{\infty} \frac{b_n}{n^s}
$$

if and only if

$$
\sum_{n=1}^{\infty} a_n \frac{\alpha^n}{1 + \alpha^n} = \sum_{n=1}^{\infty} b_n x^n.
$$

Let ϕ be Euler’s totient function and denote $\sigma_k(n) = \sum_{d|n} d^k$. Write $\sigma = \sigma_1$ and $\tau = \sigma_0$ the number of divisors. Let λ be the number of prime factors of n counting multiplicity. Let $q(n) = |\mu(n)|$ where μ is the M"obius function, so that $q(n)$ is 1 when n is quadratfrei (squarefree) and 0 otherwise.

Deduce, using the above and facts such as Euler’s product for ζ that for s large enough to assure convergence of the Dirichlet series, the following hold.

(a)

$$
\sum_{n=1}^{\infty} \frac{\phi(n)}{n^s} = \frac{\zeta(s - 1)}{\zeta(s)}
$$

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{\tau(n)}{n^s} = \zeta^2(s)
$$

and more generally
(c) \[
\sum_{n=1}^{\infty} \frac{\sigma_k(n)}{n^s} = \zeta(s - k) \zeta(s)
\]

(d) \[
\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} = \frac{\zeta(2s)}{\zeta(s)}
\]

(e) \[
\sum_{n=1}^{\infty} \frac{\tau^2(n)}{n^s} = \frac{\zeta^4(s)}{\zeta(2s)}
\]

(f) \[
\sum_{n=1}^{\infty} \frac{q(n)}{n^s} = \frac{\zeta(s)}{\zeta(2s)},
\]
and more generally discover what \(d_k\) and \(q_k\) must count if

(g) \[
\sum_{n=1}^{\infty} \frac{q_k(n)}{n^s} = \frac{\zeta(s)}{\zeta(ks)}
\]

and

(h) \[
\sum_{n=1}^{\infty} \frac{d_k(n)}{n^s} = \zeta^k(s).
\]

If \(\sigma^*_k(n) = \sum_{d|n} (-1)^k d^k\), consider similar formulae in terms of \(\alpha\). Note that in each case it is very easy to check the claimed identities numerically for reasonable large \(s\).

20. **Hurwitz’s results on three and five squares.** If \(n\) is a square then

\[
r_3(n) = 6 \prod_p \left[\frac{p^{\lambda/n + 1}}{p - 1} - (-1)^{(p-1)/2} \frac{p^{\lambda/n} - 1}{p - 1} \right],
\]

and

\[
r_5(n) = 10 \frac{2^{8\lambda/2+3} - 1}{2^{8} - 1} \prod_p \left[\frac{p^{3\lambda/2 + 1} - 1}{p^3 - 1} - p \frac{p^{3\lambda/2} - 1}{p^3 - 1} \right],
\]
where \(p \) ranges over the odd prime factors of \(n \) and \(\lambda_p \) is its multiplicity. This and much more is discussed in [80].

21. **Berkeley problem 6.11.33.** Let \(n \) be a positive integer and let \(P \) be a given polynomial of degree \(n \). Explicitly compute a non-trivial polynomial \(Q \) of the form

\[
Q(x) = \sum_{i=0}^{n} a_i x^{2^i}
\]

containing \(P \) as a factor.

Hint: Using a computer algebra system, perform the Euclidean algorithm to write

\[
x^{2^i} = Q_i(x)P(x) + R_i(x)
\]

for each \(0 \leq i \leq n \), where degree\((R_i) \leq n - 1 \). Since \(\{R_0, R_1, \ldots, R_n\} \) are dependent there are \(a_i \), not all zero, with \(\sum_{i=0}^{n} a_i R_i = 0 \).

22. **A polynomial problem.** (From [134, pg. 86]). Find all real numbers \(|r| < 2\) such that \(x^{14} + rx^7 + 1 \) divides \(x^{154} - rx^{77} + 1 \).

23. **Putnam problem 1989–A3.** Show all roots of

\[
11 z^{10} + 10iz^9 + 10iz - 11 = 0
\]

lie on the unit circle.

Hint: This can be solved explicitly using *Maple, Mathematica*, or a custom-written root-finding program that employs Newton iterations (see Chapter 7).

24. **Berkeley problem 6.11.23.** Prove that \(P(x) = 1 + x + \cdots + x^{p-2} + x^{p-1} \) is irreducible over \(\mathbb{Q} \) when \(p \) is prime. Is this true more generally?

Hint: Using a computer algebra system, compute \(P(y+1) \) and use Eisenstein’s criterion: it suffices to find a prime \(q \) which divides all but the leading coefficient while \(q^2 \) does not divide the constant coefficient.

25. **The Hilbert matrix.** The \(n \)-dimensional Hilbert matrix \(H(n) \) is the banded Hankel (constant on off diagonals) matrix whose entry is \(H_{i,j} = \)
1/(i + j − 1). Thus

\[H(3) = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}. \]

(a) Let \(d_n = \text{det}^{-1}(H(n)) \). Then the sequence starts

1, 12, 2160, 6048000, 266716800000, 186313420339200000.

Determine the closed form for this sequence, say using Sloane’s encyclopedia, and prove it. Similarly consider \(K(n) \) with \(K_{i,j} = 1/(i + j) \).

(b) Discover the structure of \(H^{-1}(n) \). For example

\[H^{-1}(3) = \begin{bmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{bmatrix}. \]

(c) Hilbert matrices are very poorly conditioned and so make good tests of numerical routines. Let \(H_D(N) \) denote the floating point evaluation of \(H(N) \) using \(D \) digits. Compare \(\text{det}(H(15)) \) and \(\text{det}(H_D(15)) \) for \(D = 10^k, k = 1, \ldots, 5 \).

(d) The corresponding infinite Hilbert matrix

\[H = \left(\frac{1}{i + j - 1} \right)_{i,j=1}^\infty \]

induces a bounded linear operator on the square summable sequences, whose operator norm is no greater than \(\pi \).

(e) Indeed \(\|H\| = \pi \).

A lovely paper on many aspects of the Hilbert matrix is [77].

Answers: (a) The value is \(d_n = \prod_{k=1}^{n-1} (2k + 1) \binom{2k}{k}^2 \).
(b) The general term of the $n \times n$ inverse is

$$(-1)^{i+j}(i+j-1)^2\left(\begin{array}{c}i+j-2\i-1\n+i-1\end{array}\right)\left(\begin{array}{c}n+j-1\n-j\end{array}\right).$$

To prove this it may help to use the determinant formula

$$\det\left(\begin{array}{cccc}1 & x_1 & \cdots & x_n \\
x_1 & 1 & \cdots & x_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
x_n & x_{n-1} & \cdots & 1\end{array}\right) = \prod_{i>j}(x_i - x_j)(y_i - y_j) \prod_{i,j}(x_i + y_j),$$

and Cramer’s rule.

(c) This dramatically highlights the difference between computing symbolically and numerically.

(d) Let $\Lambda = (\lambda_{i-j})$ be the doubly-infinite matrix where $\lambda_0 = 0$ and $\lambda_k = 1/k$ otherwise for $k \in \mathbb{Z}$. Note that one may write

$$\Lambda = \left[\begin{array}{cc} -H & L \\
L^* & H \end{array}\right],$$

so that Λ is a dilation of H. It follows that $\|H\| \leq \|\Lambda\| = \sqrt{\|\Lambda^2\|}$, since Λ is symmetric. Now direct calculation shows $\Lambda^2 = (a_{i+j})$ is a non-negative doubly-infinite Toeplitz matrix with $a_0 = 2\zeta(2)$ and $a_k = 2/k^2$ otherwise. As each row sums to $\sum_{i \in \mathbb{Z}} a_i = 6\zeta(2) = \pi^2$, we are done when once we observe that $\Lambda^2 = \sum_{k \in \mathbb{Z}} a_k J_k$ where the operator $J(k)_{i,j} = \delta_{i-j}(k)$ is zero except when $|i-j| = k$, and 1 in that case. Thus,

$$\|\Lambda^2\| \leq \sum_k |a_k| \|J(k)\| = \sum_k |a_k| = \pi^2$$

—Jensen and Euler strike again!

(e) Let $T(n)$ be the Hankel matrix $(\tau_{i-j+1})_{i,j=1}^n$ with $\tau_k = 1/k$ for $k > 0$ and is zero otherwise. Observe that $A(n) \geq T(n) \geq 0$ coordinate-wise and so $\|H\| \geq \|H(n)\| \geq \|T(n)\|$. It thus suffices to show $\inf_n \|T(n)\| \geq \pi$.

To see this, use $\|T(n)\| \geq \langle T(n)v_n, v_n \rangle/\|v_n\|^2$ for $v_n = (1, 1/\sqrt{2}, \cdots, 1/\sqrt{n})$.

5.7. COMMENTARY AND ADDITIONAL EXAMPLES 273
Then with \(\alpha_k = \sum_{j=1}^{k-1} (j(k - j))^{-1/2} \) and \(H_n = \sum_{k=1}^{n} 1/k \),

\[
\|H\| \geq \liminf_n \frac{1}{H_n} \sum_{k=1}^{n} \alpha_k/k = \liminf_k \alpha_k
\]

\[
= \liminf_k \frac{1}{k} \sum_{j=1}^{k-1} \left(\frac{j}{k} \right)^{-1/2} \left(1 - \frac{j}{k} \right)^{-1/2},
\]

which is a Riemann sum for \(\int_0^1 x^{-1/2}(1 - x)^{-1/2} \, dx = \beta(1/2, 1/2) = \pi \).

26. The holes in the argument. Figure 5.1 plots all roots of polynomials, \(B_N \), with coefficients in \(\{0, 1, -1\} \) up to degree \(N = 18 \). The graphically displayed information would be very hard to digest numerically. The zeros in Figure 5.1 are colored by their local density normalized to the range of densities; from red for low density to yellow for high density.

The fractal structure and the holes around the roots are of different shapes and precise locations. This and more is described in [66]. For example, when \(\alpha \) is a Pisot number

\[
C_1 \frac{1}{\alpha^N} \leq \min_{\alpha \neq j \in B_N} |\alpha - \beta| \leq C_2 \frac{1}{\alpha^N},
\]

for constants \(C_1, C_2 > 0 \). Similarly, for \(\alpha \) a \(d \)-th root of unity

\[
C_3 \frac{1}{N^{(1+\phi(d)/2)(k+1)}} \leq \min_{\alpha \neq \beta \in B_N} |\alpha - \beta| \leq C_4 \frac{1}{N^{(1+\phi(d)/2)(k+1)}},
\]

for constants \(C_1, C_2 > 0 \). Some of the other images at http://www.cecm.sfu.ca/personal/loki/Projects/Roots/Book/ contain unexplained phenomena.

27. Rudin-Shapiro polynomials. These are defined recursively by \(P_0(z) = Q_0(z) = 1 \) and

\[
P_{n+1}(z) = P_n(z) + z^{2^n} Q_n(z),
\]

\[
Q_{n+1}(z) = P_n(z) - z^{2^n} Q_n(z).
\]

(a) \(P_n \) and \(Q_n \) are even of degree \(2^n - 1 \) and have only \(\pm 1 \) coefficients.
Figure 5.1: Zeros of zero-one polynomials

(b) For $|z| = 1$

$$|P_{n+1}(z)|^2 + |P_{n+2}(z)|^2 = 2\left(|P_n(z)|^2 + |P_{n+1}(z)|^2\right)$$

and so $|P_n(z)|, |Q_n(z)| \leq 2^{(n+1)/2} \leq \sqrt{2}(2^n - 1)$.

In consequence these are examples of ± 1 polynomials p_n that grow no faster than $\sqrt{2}$ degree(p_n) on the unit disk. A famous problem of Littlewood [65] is to find polynomials p_n of degree n with

$$c_1\sqrt{n} \leq |p_n(z)| \leq c_2\sqrt{n},$$

for all n.

28. Hyperbolic polynomials and self-concordant barriers for hyperbolic means. Following the development in [151], we shall construct two classes of self-concordant barrier functions on natural convex sets.

Let $p : \mathbb{R}^n \mapsto \mathbb{R}$ be a polynomial on n variables, homogeneous of degree m, that is, $p(tx) = t^mp(x)$ for every $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$. We say that $p(x)$ is hyperbolic in the direction $d \in \mathbb{R}^n$ if the polynomial $t \mapsto p(x + td)$ has m
real roots for every x. Denote the negative of these roots, which depend on x and d, by $t_i(x, d)$, $i = 1, \ldots, m$.

The following are three important examples of hyperbolic polynomials.

(a) $p_1 : x \in \mathbb{R}^n \mapsto \prod_{i=1}^n x_i$ with respect to the direction $d = (1, \ldots, 1)$.

(b) $p_2 : x \in \mathbb{R}^n \mapsto x_1^2 - \sum_{i=2}^n x_i^2$ with respect to the direction $d = (1, 0, \ldots, 0)$.

(c) Let \mathcal{S}^n be the space of $n \times n$ symmetric matrices and recall that it is isomorphic to $\mathbb{R}^{n(n+1)/2}$. The polynomial in the entries of the symmetric matrix given by $p_3 : X \in \mathcal{S}^n \mapsto \det(X)$ is hyperbolic with respect to the direction $d = I$ (the $n \times n$ identity matrix).

Define the sets

\[C(p, d) = \{ x \in \mathbb{R}^n : p(x + td) \neq 0, \forall t \geq 0 \}, \]

\[C_a(p, d) = \{ x \in C : p(x) > a \}, \quad \text{for } a \geq 0. \]

It is known (see [112]) that $C(p, d)$ is an open, convex cone; that p is hyperbolic in the direction of any vector in $C(p, d)$; also for any $c \in C(p, d)$, $C(p, c) = C(p, d)$; and that $p(x)^{1/m}$ is a concave function on $C(p, d)$ and zero on the boundary. (See Figure 5.2.)

On the other hand, let Q be a convex set in \mathbb{R}, and F a real valued function defined on Q. We denote the boundary of Q by ∂Q, and by $D^k F(x)[h, \ldots, h] = \frac{d^k}{dt^k} F(x + th)\bigg|_{t=0}$ the k-th directional derivative of F in the direction h evaluated at zero. We say that F is a θ-self-concordant barrier on Q if the following three conditions are satisfied:

(i) $\left| DF(x)[h] \right| \leq C_{D^2 F}(x) [h, h]^{1/2}$

(ii) $\left| D^3 F(x)[h, h, h] \right| \leq 2 \left(D^2 F(x)[h, h] \right)^{3/2}$, and

(iii) $F(x^r) \to \infty$ for any sequence $x^r \to x \in \partial Q$.

(a) Following the steps given below, prove that:

i. The function $F(x) = -\log(p(x))$ is an m-self-concordant barrier on the set $C(p, d)$, (see [126]).

ii. For any $a \geq 0$, the function $F(x) = -m \log(p(x) - a)$ is an m^2-self-concordant barrier on the set $C_a(p, d)$, (see [151]).
Self concordance plays a central role in interior point methods of modern optimization.

(b) Suggested steps on the path.

i. The barrier condition (iii) should be clear from the mentioned properties of hyperbolic polynomials on the set $C(p,d)$.

ii. Show that the following representation holds

$$p(x + r d) = p(d) \prod_{i=1}^{m} (r + t_i(x, d)).$$

The part that requires thought is to determine the constant $p(d)$ on the right-hand side. (Keep in mind that $\{t_i(x, d)\}_{i=1}^{m}$ are the negative of the roots of the hyperbolic polynomial.)

iii. Use the above factorization and the homogeneity of p to show that for any $x \in C(p, d)$ and any $h \in \mathbb{R}^n$ we have

$$p(x + r h) = p(x) \prod_{i=1}^{m} (1 + r t_i(h, x)).$$

iv. Use this representation to obtain the derivatives of $r \mapsto p(x + r h)$ for any $x \in C(p, d)$ and $h \in \mathbb{R}^n$:

$$\frac{d}{dr} p(x + r h) = p(x + r h) \sum_{i=1}^{m} \frac{t_i(h, x)}{1 + r t_i(h, x)}.$$

v. Calculate the directional derivatives of $F(x) = -\log(p(x))$ and prove the self-concordant inequalities hold with $\theta = m$.

vi. For the second part, consider first the case $a = 0$. Next, use a linear substitution to argue without loss of generality that $a = 1$.

vii. Set $t_i = t_i(h, x)$ and define $\alpha = p(x) - 1$,

$$C_1 = \sum_{i=1}^{m} t_i, C_2 = \sum_{i=1}^{m} t_i^2, C_3 = \sum_{i=1}^{m} t_i^3.$$
Show that for $F(x) = -m \log(p(x) - 1)$ we have

$$DF(x)[h] = -m \frac{\alpha + 1}{\alpha} C_1,$$
$$D^2F(x)[h, h] = m \frac{\alpha + 1}{\alpha^2} C_1^2 + m \frac{\alpha + 1}{\alpha} C_2,$$
$$D^3F(x)[h, h, h] = -m \frac{(\alpha + 1)(\alpha + 2)}{\alpha^3} C_1^3 - 3m \frac{\alpha + 1}{\alpha^2} C_1 C_2$$
$$- 2m \frac{\alpha + 1}{\alpha} C_3.$$

viii. Use the Cauchy-Schwarz inequality to show that the first inequality in the definition of self-concordancy holds, with $\theta = m^2$.

ix. To show the second inequality in the definition, square both sides and group terms with respect to powers of α. Notice that the inequality is homogeneous of degree one with respect to the vector (t_1, \ldots, t_m), thus without loss $C_1 = \pm 1$. Notice also that $\alpha > 0$ since $x \in C_a(p, d)$, and $a = 1$. Now, show that all coefficients in front of the different powers of α are positive.

(c) Verify the three examples of hyperbolic polynomials given at the beginning of this item.

(d) Try to prove the inequalities in a computer algebra system.

29. The Lax conjecture is true. An elegant 1958 conjecture of Lax concerning hyperbolic polynomials has recently been settled by Lewis, Parrilo and Ramana [150]:

Theorem 5.7.1 A polynomial p in three real variables is hyperbolic of degree d with respect to $e = (1, 0, 0)$, with $p(e) = 1$, if and only if there are symmetric $d \times d$ matrices B, C such that

$$p(x, y, z) = \det(xI + yB + zC).$$

Deduce what characterizes the corresponding hyperbolic polynomials in two variables.
Figure 5.2: A hyperbolicity cone

Figure 5.2 shows a third-order hyperbolic cone. It was drawn by Pablo Parrilo in a fine PC drawing package called DPGraph (for “dynamic photorealistic graphing”). The cone is actually the part on the top of the figure, all the rest is the “hidden”. There is a horizontal plane at $z = 1$, and on that plane a nice set with the “rigid convexity” property that contains the point $(0, 0)$ near the center. The vertical line is in the direction $e = (0, 0, 1)$ of hyperbolicity.

30. **Inverse problems.** Inverse problems provide a host of challenges for the computationally and experimentally minded. Examples, both explicit and implicit, have occurred throughout our volumes (e.g., maximum entropy problems, the self-concordant barriers above, the nuclear magnetic resonance example, and while exploring JPEG compression or the Watson integrals).

31. **Nonnegative polynomials.** The nonnegative polynomials of degree d, $P^d_+(I)$, on an interval I, form an interesting convex cone in the vector space of all polynomials $P^d(I)$. Recall that an extreme ray of a convex cone K is an element with the property that $e = p + q, p, q \in K$ implies q and p are nonnegative multiples of e.
(a) Characterize the extreme rays of $P_d^+(\{0, \infty\})$, using the fundamental theorem of algebra. Deduce that every polynomial p which is nonnegative on \mathbb{R}^+ can be expressed as
\[
p(t) = t \sum_i p_i^2(t) + \sum_j p_j^2(t),
\]
where p_i, p_j are finitely many real polynomials with nonnegative roots.

(b) Deduce that every polynomial p which is nonnegative on \mathbb{R} can be expressed as
\[
p(t) = \sum_i p_i^2(t),
\]
where p_i are polynomials with real roots. Prove also that when p has even degree, it is the square of at most two polynomials.

(c) Characterize the extreme rays of $P_d^+(I)$, for a finite interval.

(d) Hilbert’s theorem. A nonnegative polynomial in three variables, homogeneous of degree four, is expressible as a sum of squares of quadratic forms (in the three variables). The hypotheses are needed as the nonnegative polynomials below show.

i. $x^4y^2 + x^2y^4 + z^6 - 3x^2y^2z^2$ (Motzkin);
ii. $w^4 + x^2y^2 + y^2z^2 + 2z^2x^2 - 4xyzw$ (Choi and Lam).

Hint: A boundary polynomial must have a zero in the interval. An extreme polynomial must be of full degree with all roots in the interval. In each case, every polynomial in the cone is in the closed conical hull of the extreme directions. See [20] for details.

32. Roots of a polynomial. (From [134, pg. 87]). Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots of the polynomial
\[P(x) = x^4 + px^3 + qx^2 + rx + 1.
\]
Show that
\[
(1 + \alpha_1^4)(1 + \alpha_2^4)(1 + \alpha_3^4)(1 + \alpha_4^4) = (p^2 + r^2)^2 + q^4 - 4pq^2r.
\]
Hint: consider $\prod_{k=1}^4 P(e^{(2k-1)i\pi/4}).$
33. **The Ehrhardt polynomial of a polytope.** An integer polytope is the convex hull of finitely many points with integer coefficients. The following result neatly links convexity, lattices and polynomials.

Theorem 5.7.2 Ehrhardt polynomial. Let P be an integer polytope in \mathbb{R}^d. There exists a univariate polynomial of degree at most d, p_P, such that

$$p_P(k) = \left| (kP) \cap \mathbb{Z}^d \right|,$$

for all nonnegative integers k.

Let P be a given integer polytope.

(a) Show that $\dim P = \deg p_P$.

(b) For integer polygons, use Pick’s theorem to establish the existence of the Ehrhardt polynomial and moreover it has nonnegative coefficients.

(c) Show that

$$p_P(-k) = (-1)^{\dim P} \left| \text{relint} (kP) \cap \mathbb{Z}^d \right|,$$

for all positive integers k. Here “relint” denotes the relative interior of P in its affine span (that is, the inside).

(d) Show that the constant term of p_P is 1 and the coefficient of t^d is the volume of P (which could be zero). The coefficient of t^{d-1} is half of a “surface area.”

(e) Fix a positive integer m. Consider the Ehrhardt polynomial, p_m, of the tetrahedron with vertices $(0,0,0), (1,0,0), (0,1,0)$ and $(1,1,m)$. Show that

$$p_m(k) = \frac{m}{6}k^3 + k^2 + \frac{12 - m}{6}k + 1.$$

This is described in Barvinok’s fine recent book [20].

34. **The Schur functions.** We consider the symmetric functions, Λ, that is, the polynomials in indeterminates x_r, for $r \in \mathbb{N}$. (See [154].)

(a) Let $\lambda = (l_1, l_2, \ldots, l_n)$ be a partition of length n. Write $l(\lambda)$ for the length of λ. The corresponding Schur function is defined by

$$s_\lambda = \det \left(x_i^{l_j} \right) / \det \left(x_i^{n-j} \right)_{1 \leq i,j \leq n}.$$
(b) Show that the elementary symmetric functions, \(e_0 = 1 \) and \(e_r = \sum_{i_1 < i_2 < \ldots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r}, \) for \(r \geq 1, \) have an ordinary generating function

\[
E(t) = \sum_{r \geq 0} e_r t^r = \prod_{i=1}^{n} (1 + tx_i).
\]

Correspondingly, the complete symmetric functions, \(h_r, \) have the generating function

\[
H(t) = \sum_{r \geq 0} h_r t^r = \prod_{i \geq 1} \left(1 - tx_i \right)^{-1}.
\]

(c) For \(r \geq 1, \) the formal \(r-th \) power sum is defined by \(p_r = \sum x_i^r. \) Show that the ordinary generating function

\[
P(t) = \sum_{r \geq 1} p_r t^{r-1} = \sum_{i \geq 1} \frac{x_i}{1 - x_i t}
\]

satisfies \(P(t) = E'(t)/E(t) \) and \(P(-t) = H'(t)/H(t). \)

(d) Show that the determinant expression for \(s_\lambda \) in terms of the \(h_r \) is

\[
s_\lambda = \det (h_{i+i-j})_{1 \leq i,j \leq n},
\]

for any \(n \geq l(\lambda). \) Find a similar formula in terms of the \(e_r. \)

(e) Conclude that every symmetric function is uniquely expressible as a polynomial in the elementary symmetric, the complete symmetric functions or in the Schur functions. That is, each class is a \(\mathbb{Z}-basis \) for the ring \(\Lambda. \)

(f) Since the \(h_r \) and the \(e_r \) are each algebraically independent, it is possible to substitute as one wishes. For example

\[
H(t) = \prod_{i \geq 0} \frac{1 - bq^i t}{1 - aq^i t}
\]

leads to \(h_r = \prod_{i=1}^{r} \left(a - bq^{i-1} \right) / (1 - q^i), \) \(e_r = \prod_{i=1}^{r} (aq^{i-1} - 1) / (1 - q^i) \) and \(p_r = (a^r - b^r) / (1 - q^r). \)
5.7. COMMENTARY AND ADDITIONAL EXAMPLES

Figure 5.3: A Young tableau along with all lattice paths of shape (3,2)

(g) The natural partial ordering orders partitions by \(\lambda \geq \mu \) if \(\sum \lambda_i \lambda_i \geq \sum \mu_i \) for all \(i \). Show that for two partitions of \(n \), \(\lambda \geq \mu \) if and only if there is a \(n \times n \) doubly stochastic matrix \(S \) with \(\mu = S \lambda \). Represent this result graphically.

35. Schur functions and Young tableaux. Another often more useful representation is the Young diagram in which the points of Ferrer’s diagram are replaced by squares. The conjugate partition, \(\lambda' \), arises on exchanging rows and columns of the diagram. Shading squares allows one to usefully represent adding one partition to another, and much else. We now sketch a combinatorial approach to Schur functions following [194].

A tableaux of shape \(\lambda \) is an array \(T = (T_{ij}) \) of positive integers such that \(1 \leq i \leq \ell(\lambda), 1 \leq j \leq \lambda_i \) that is nondecreasing in each row and strictly increasing in each column. We define the type \(\alpha(T) = (\alpha_1, \alpha_2, \ldots) \) to be the number of occurrences of \(i \) in \(T \). Thus, Figure 5.3 shows a (semistandard) Young tableau \(\hat{T} \) of shape \((6, 5, 3, 3) \) and of type \((3, 1, 4, 4, 1, 0, 2)\). A standard tableau has each row and column strictly increasing.

A natural combinatorial definition of the Schur functions is to define

\[
s_\lambda(x) = \sum_T x^T
\]

summed over all monomials \(x^T = x^{\alpha_1(T)} x^{\alpha_2(T)} \cdots \) of shape \(\lambda \). For the tableau illustrated, \(x^\hat{T} = x_1^3 x_2 x_3 x_4^2 x_5^5 x_6 x_7 x_9^2 \).

(a) Write out \(s_{(2,1)} \) explicitly.
(b) Let f^λ denote the number of standard tableaux of shape λ. Show that $f^{(3,2)} = 5$ and then show that f^λ counts the number of lattice paths from 0 to λ in $\mathbb{R}^{(\lambda)}$ so that each step is a unit vector staying in the cone $x_1 \geq x_2 \geq \cdots \geq x_l \geq 0$. These paths for $\lambda = (3,2)$ are drawn in Figure 5.3.

(c) Prove that this definition of Schur function coincides with the definition of Exercise 34.

John Stembridge’s Maple package, SF
http://www.math.lsa.umich.edu/~jrs/
computes with Schur functions and much else.

36. Small gaps between consecutive primes. As this book was being completed, a breakthrough was announced in a long-standing question of the spacings of prime numbers [121]. The prime number theorem can be paraphrased as saying that the average size of $p_{n+1} - p_n$ is $\log p_n$, where p_n denotes the n-th prime, so that

$$\Delta = \lim \inf_{n \to \infty} \frac{p_{n+1} - p_n}{\log p_n} \leq 1.$$

In 1926 Hardy and Littlewood showed that assuming the generalized Riemann hypothesis, $\Delta \leq 2/3$. Other researchers in the intervening lowered this figure, until 1986 when Maier established the result $\Delta \leq 0.2486$.

In a dramatic new development, Daniel Goldston and Cem Yildirim announced in April 2003 that not only is $\Delta = 0$, but also $p_{n+1} - p_n < (\log p_n)^{8/9}$ holds for infinitely many n. What’s more for any fixed integer r the inequality

$$p_{n+r} - p_n < (\log p_n)^{(8r)/(8r+1)}$$

holds for infinitely many n. They anticipated that even stronger results of this type can be established (such as decreasing $8/9$ to $4/5$). This report was widely hailed in the mathematical community and the press, after being circulated in preprint and described at conferences.
Unfortunately, Andrew Granville and K. Soundararajan subsequently found a problem in one of the arguments—some “small” error terms are actually of the same order of magnitude as the main term. As of this date the difficulty remains unresolved.

37. More from Littlewood’s miscellany. [153] We conclude the chapter with a series of quotes and observations from Littlewood.

(a) (Page 56)
“(A. S. Bescovitch) A mathematician’s reputation rests on the number of bad proofs he has given. (Pioneer work is clumsy.)”

(b) (Page 60)
“A precisian professor had the habit of saying ‘… quartic polynomial $ax^4 + bx^3 + cx^2 + dx + e$, where e need not be the base of the natural logarithms.’ (It might be.)”

(c) (Page 61)
“I read in the proof-sheets of Hardy on Ramanujan: ‘As someone said, each of the positive integers was one of his personal friends.’ My reaction was, ‘I wonder who said that; I wish I had.” In the next proof-sheets I read what now stands, ‘It was Littlewood who said …’ (What had happened was that Hardy had received the remark in silence and with poker face, and I wrote it off as a dud. I later taxed Hardy with this habit; on which he replied: ‘Well, what is one to do, is one always to be saying “damned good’?” To which the answer is ‘yes’.)”

(d) (Pages 118–120) Random Jottings on G. H. Hardy (after a 35 year collaboration) “His spelling was not immaculate.” … “He preferred the Oxford atmosphere and said they took him seriously, unlike Cambridge.” … “He took a sensual pleasure in “calligraphy” and it would have been a deprivation if he didn’t make the final copy of a joint paper. (My standard role in a joint paper was to make the logical skeleton, in shorthand—no distinction between r and r^2, 2π and 1, etc., etc. But when I said ‘Lemma 17’ it stayed Lemma 17.” … “He
was indifferent to noise; very rare in creative workers at least when no longer young.”

(e) (Page 149) “Creative workers need drink at night, ‘Roses and dung’. (Or: mathematicians read ‘rubbish’.) An experimentalist, having spent the day looking for a leak, has had a perfect mental rest by dinner time, and overflows with minor mental activity.”

(f) (Page 164) “‘Always verify references.’ This is so absurd in mathematics that I used to say provocatively: ‘never . . .’.”
Chapter 6
The Power of Constructive Proofs II

Mathematical proofs, like diamonds, are hard as well as clear, and will be touched with nothing but strict reasoning.

John Locke, 1690 [106, pg. 115]

6.1 A More General AGM Iteration

Here we present some additional examples of computer-aided proofs of some identities related to a more general form of the arithmetic-geometric mean iteration. This material has been adapted from [63]. Let a and b be real numbers, $a > b > 0$, and let N be an integer greater than 1. By the iteration AG_N we mean the following two-term recursion:

\begin{align*}
a_0 &= a \quad (6.1.1) \\
b_0 &= b \quad (6.1.2)
\end{align*}

and, for any $k \geq 0$,

\begin{align*}
a_{k+1} &= \frac{a_k + (N - 1)b_k}{N} \quad (6.1.3) \\
b_{k+1} &= \frac{\sqrt[N]{(a_k + (N - 1)b_k)^N - (a_k - b_k)^N}}{N} \quad (6.1.4)
\end{align*}
In the case \(N = 2 \) we get the standard Arithmetic-Geometric Mean (AGM) iteration discussed in the previous section. The case \(N = 3 \) was studied in detail in [46], [49] and [45].

We have

\[
a^N_{k+1} - b^N_{k+1} = \left(\frac{a_k - b_k}{N} \right)^N \quad \text{for any } k \geq 0. \tag{6.1.5}
\]

This shows both the global convergence and local \(N \)th-order convergence of the iteration. So there is a common limit of \((a_k) \) and \((b_k) \),

\[
M_N(a_0, b_0) = \lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k. \tag{6.1.6}
\]

Let \(* \) be the involution on \([0,1]\) defined by \(x^* = \sqrt[1/N]{1-x^N} \). Whenever we use the function symbol \(* \), the respective value of \(N \) is clear from the context.

Because of the homogeneity

\[
M_N(\lambda a, \lambda b) = \lambda M_N(a, b) \quad \text{for } \lambda > 0 \tag{6.1.7}
\]

it is enough to investigate

\[
A_N(x^N) = \frac{1}{M_N(1, x^*)} \tag{6.1.8}
\]

for \(0 < x < 1 \).

From (6.1.5) we can argue that \(a^N_k(z) \) and \(b^N_k(z) \) are analytic in the unit disk and converge uniformly to \(M_N(1, z) \) therein. Thus \(A_N(x^N) \) is analytic in a neighborhood of zero. Notice that \(A_N(0) = 1 \).

6.1.1 The Functional Equation for \(A_N \)

For any \(N > 1 \) and any \(0 < x < 1 \) we have, applying one step of the \(AG_N \) iteration,

\[
M_N(1 + (N-1)x, 1-x) = M_N(1, x^*). \tag{6.1.9}
\]

Further, by (6.1.7) we have

\[
M_N(1 + (N-1)x, 1-x) = (1 + (N-1)x) \cdot M_N\left(1, \frac{1-x}{1+(N-1)x}\right). \tag{6.1.10}
\]
Combining the right-hand sides of (6.1.10) and (6.1.9) we arrive at the following functional equation for A_N:

$$(1 + (N - 1)x) \cdot A_N(x^N) = A_N \left(1 - \left(\frac{1 - x}{1 + (N - 1)x}\right)^N\right). \tag{6.1.11}$$

Notice that (6.1.11) uniquely determines the Taylor series for A_N at 0 and hence has a unique analytic solution

$$A_N(x^N) = \frac{1}{M_N(1, x^*)}. \tag{6.1.12}$$

6.1.2 The Quadratic Case Recovered

For $N = 2$, the equation (6.1.11) specializes to

$$(1 + x) \cdot A_2(x^2) = A_2 \left(\frac{4x}{(1 + x)^2}\right) \tag{6.1.13}$$

whose solution was found by Gauss (see [44]) in the form

$$A_2(x^2) = \sum_{i=0}^{\infty} \binom{2i}{i} \binom{x}{4}^{2i} = \, _2F_1 \left(1/2, 1/2 \mid x^2\right). \tag{6.1.14}$$

Gauss discovered this closed form after having been inspired by a great number of experimental numerical calculations (see [44, pg. 5, 7]).

Another way of expressing the AG_2 limit is by means of the following definite integral:

$$I_2(a_0, b_0) = \int_0^\infty \frac{dt}{\sqrt{(t^2 + a_0^2)(t^2 + b_0^2)}}. \tag{6.1.15}$$

Then it is straightforward to prove (see [44]) that

$$M_2(a_0, b_0) = \frac{I_2(1, 1)}{I_2(a_0, b_0)} = \frac{\pi}{I_2(a_0, b_0)}. \tag{6.1.16}$$

The core step of this proof, namely showing the AG_2-invariance

$$I_2(a, b) = \frac{a + b}{2} \sqrt{ab} \tag{6.1.17}$$
follows fairly easily by the substitution $u = \frac{1}{2}(t - ab/t)$. We leave this as a Maple exercise.

Yet another way of proving the AG_2 limit formula is by identifying $M_2(1, x)$ as a solution of a second-order linear differential equation, see [44].

6.1.3 The Cubic Case Solved

The closed form for $M_3(1, x^*)$ was identified and proved in several ways in [46, 49, 45].

Nowadays, the discovery of the closed form for $A_3(x^3)$ as a formal power series again is a routine task using any computer mathematics software. We obtain

$$
\frac{1}{M_3(1, x^*)} = A_3(x^3) = F_1\left(\frac{1}{3}, \frac{2}{3} \mid x^3\right). \tag{6.1.18}
$$

The cubic counterpart of (6.1.15) is

$$
I_3(a_0, b_0) = \int_0^{\infty} \frac{t \, dt}{\sqrt{t^3 + a_0^3(b_0^2 + b_0^3)}}. \tag{6.1.19}
$$

We have (see [40, 42])

$$
M_3(a_0, b_0) = \frac{I_3(1, 1)}{I_3(a_0, b_0)} = \frac{2\pi}{\sqrt{27}} \cdot \frac{1}{I_3(a_0, b_0)}. \tag{6.1.20}
$$

Again, the crucial part of the proof of (6.1.20) is to show that the integral is invariant with respect to the AG_3 iteration, that is,

$$
I_3(a, b) = I_3\left(\frac{a + 2b}{3}, \sqrt{\frac{a^2 + ab + b^2}{3}}\right). \tag{6.1.21}
$$

for all $a > b > 0$. The proof of (6.1.21) was proposed by one of the present authors [40] as Part (a) of the American Mathematical Monthly Problem #10281. The solutions published by the Monthly are concluded with the editorial comment which points out that “... There is still no self-contained proof that avoids exploiting the identification with a hypergeometric function.” ([42, pg. 183])
Recently, John A. Macdonald found a proof of (6.1.21) that consists of a
chain of variable substitutions together with the split of the integration range
at the point 1. Here we present a variation of this proof, in which all integral
substitutions have been simplified to the extent that they can be checked by a
computer. The proof was announced in the “Revivals” section of the Monthly
[41].

A large portion of the proof of (6.1.21) is encapsulated in the following lemma.

Lemma 6.1.1 For any $\gamma \in (0, 1]$,

$$I_3(1, \sqrt[3]{1 - \gamma^3}) = \int_1^\infty \frac{dx}{\sqrt{(x-1)((x+3)x^2 - 4\gamma^3)}}. \quad (6.1.22)$$

Proof. We first note that

$$I_3(1, \sqrt[3]{1 - \gamma^3}) = \int_0^\infty \frac{u \, du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} $$

(6.1.23)

using the substitution $u^3 = t^3(1 + t^3)/((1 - \gamma^3) + t^3)$. Further, the equality

$$\int_0^\infty \frac{u \, du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} = \int_1^\infty \frac{(u + 1) \, du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} $$

follows from

$$\int_0^\infty \frac{u \, du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} = \int_0^\infty \frac{du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} $$

and

$$\int_0^1 \frac{(u + 1) \, du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} = \int_1^\infty \frac{(u + 1) \, du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} $$

which both are easily verified by substituting $u = 1/t$.

Now

$$\int_1^\infty \frac{dx}{\sqrt{(x-1)((x+3)x^2 - 4\gamma^3)}} = \int_1^\infty \frac{(u + 1) \, du}{\sqrt{(u^3 - 1)^2 + 4(1 - \gamma^3)u^3}} $$
using the substitution \(x = u + 1/u - 1 \).

This completes the proof of the lemma. \(\square \)

For any \(y, z > 0 \) we have

\[
I_3(y, z) = \frac{1}{y} \cdot I_3 \left(1, \frac{z}{y} \right).
\]

(6.1.24)

Let \(c = b/a \). It can be verified easily that, in view of (6.1.24), we can rewrite (6.1.21) as

\[
\frac{2c + 1}{3} \cdot I_3(1, c) = I_3(1, c^\wedge)
\]

(6.1.25)

where \(x \mapsto x^\wedge \) is defined by

\[
x^\wedge = \sqrt[3]{\frac{9x(1 + x + x^2)}{(1 + 2x)^3}}
\]

(6.1.26)

for any \(x \in [0, 1] \).

We will denote function composition in the obvious way, e.g., by \(c^* \wedge \) we mean \((c^*)^\wedge \). One can check easily that, for any \(c \in [0, 1] \),

\[
(2c + 1)(2c^\wedge* + 1) = 3
\]

(6.1.27)

or, in other words,

\[
c^\wedge* = \frac{1 - c}{1 + 2c}.
\]

(6.1.28)

Recall that \(* \) is an involution on \([0, 1]\). From (6.1.28) it follows that also \(^\wedge* \) is an involution on \([0, 1]\). Thus,

\[
^\wedge*^\wedge = *
\]

(6.1.29)

as functions on \([0, 1]\).

By an inspection of the function \(^\wedge* \), we can see that the statement

\[
\forall c \in (0, 1] \quad \frac{2c + 1}{3} \cdot I_3(1, c) = I_3(1, c^\wedge)
\]

(6.1.30)
is equivalent to
\[\forall C \in [0, 1) \quad \frac{2C^{\wedge*} + 1}{3} \cdot I_3(1, C^{\wedge*}) = I_3(1, C^{\wedge*}). \quad (6.1.31) \]

Taking into account (6.1.29), (6.1.27) and swapping the sides, we see that the last statement is equivalent to
\[\forall C \in [0, 1) \quad (2C + 1) \cdot I_3(1, C^{\wedge*}) = I_3(1, C^{\wedge*}). \quad (6.1.32) \]

Using (6.1.22), the equality (6.1.32) translates to
\[(2C + 1) \cdot \int_{1}^{\infty} \frac{dx}{\sqrt{(x-1)((x+3)x^2 - 4C^3)}} = \int_{1}^{\infty} \frac{dz}{\sqrt{(z-1)\left((z+3)z^2 - 36\frac{C(1+C+C^2)}{(2C+1)^3}\right)}} \quad (6.1.33) \]

which can be proven by the substitution
\[z = \frac{(x-C)^3(x-1)}{(x^3-C^3)(2C+1)} + 1. \]

This completes the proof of (6.1.25) and thus also the proof of (6.1.21).

6.2 Variational Methods and Proofs

Whenever one can formulate a mathematical problem in variational form (i.e., the solution is the minimum of some function with or without constraints) one has access to a variety of constructive tools.

A key and representative tool is the next result. It states that if a closed function (a function that is defined on a closed set, lower semicontinuous, somewhere finite and nowhere negative infinity) attains a value close to its infimum at some point then a nearby point minimizes a slightly perturbed function.

Theorem 6.2.1 (Ekeland variational principle) Suppose the function \(f : \mathbb{R}^n \to (-\infty, +\infty] \) is closed and the point \(x \in \mathbb{R}^n \) satisfies \(f(x) \leq \inf f + \epsilon \) for some real \(\epsilon > 0 \). Then for any real \(\lambda > 0 \) there is a point \(v \in \mathbb{R}^n \) satisfying the conditions
(a) $\|x - v\| \leq \lambda$,

(b) $f(v) \leq f(x)$, and

(c) v is the unique minimizer of the function $f(\cdot) + (\epsilon/\lambda) \| \cdot - v \|$.

Proof. We can assume f is proper, and by assumption it is bounded below. Since the function $f(\cdot) + \frac{\epsilon}{\lambda} \| \cdot - x \|$ therefore has compact level sets, its set of minimizers $M \subset \mathbb{R}^n$ is nonempty and compact. Choose a minimizer v for f on M. Then for points $z \neq v$ in M we know

$$f(v) \leq f(z) < f(z) + \frac{\epsilon}{\lambda} \| z - v \|,$$

while for z not in M we have

$$f(v) + \frac{\epsilon}{\lambda} \| v - x \| < f(z) + \frac{\epsilon}{\lambda} \| z - x \|.$$

Part (c) follows by the triangle inequality. Since v lies in M we have

$$f(z) + \frac{\epsilon}{\lambda} \| z - x \| \geq f(v) + \frac{\epsilon}{\lambda} \| v - x \| \quad \text{for all } z \in \mathbb{R}^n.$$

Setting $z = x$ shows the inequalities

$$f(v) + \epsilon \geq \inf f + \epsilon \geq f(x) \geq f(v) + \frac{\epsilon}{\lambda} \| v - x \|.$$

Properties (a) and (b) follow. \qed

An immediate, but before the advent of Ekeland’s principle far from easy, counterpart is the following.

Proposition 6.2.2 Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable and bounded below. Let $\epsilon > 0$ be given. Then f has an ϵ-critical point: a point v with

$$\| \nabla f(v) \| \leq \epsilon.$$

(6.2.35)
6.2. VARIATIONAL METHODS AND PROOFS

Proof. Since f is bounded below $f_\varepsilon = f + \varepsilon \| \cdot \|$ has bounded lower level sets and so achieves its infimum at some point v. Then we may check that
\[
\| \nabla f(v) \| \leq \| \nabla f_\varepsilon(v) \| + \varepsilon = \varepsilon.
\] (6.2.36)

In many cases this idea allows one ultimately to establish that the infimum does exist. Nonetheless, it is instructive to apply this result to a function, such as exp, that does not achieve its infimum.

Given a set $C \subset \mathbb{R}^n$ and a continuous self map $f : C \to C$, we ask whether f has a fixed point: $f(x) = x$. Ekeland’s principle also has important, constructive applications to fixed point theory. We call f a contraction if there is a real constant $\gamma_f < 1$ such that
\[
\|f(x) - f(y)\| \leq \gamma_f \|x - y\| \quad \text{for all } x, y \in C.
\] (6.2.37)

We are now able to painlessly establish a version of one of the most important theorems in applied analysis.

Theorem 6.2.3 (Banach contraction) Any contraction on a closed subset of \mathbb{R}^n has a unique fixed point.

Proof. Suppose the set $C \subset \mathbb{R}^n$ is closed and the function $f : C \to C$ satisfies the contraction condition (6.2.37). We apply the Ekeland variational principle (6.2.1) to the function
\[
z \in \mathbb{R}^n \mapsto \begin{cases} \|z - f(z)\| & \text{if } z \in C \\ +\infty & \text{otherwise} \end{cases}
\]
at an arbitrary point x in C, with the choice of constants
\[
\varepsilon = \|x - f(x)\| \quad \text{and} \quad \lambda = \frac{\varepsilon}{1 - \gamma_f}.
\]
This shows there is a point v in C satisfying
\[
\|v - f(v)\| < \|z - f(z)\| + (1 - \gamma_f)\|z - v\|
\]
for all points $z \neq v$ in C. Hence v is a fixed point, since otherwise choosing $z = f(v)$ gives a contradiction. The uniqueness is easy.

With a little more work, we may estimate how far the fixed point is from our initial guess. Now, what if the map f is not a contraction? A very useful weakening of the notion is the idea of a nonexpansive map, which is to say a self map f satisfying

$$
\|f(x) - f(y)\| \leq \|x - y\| \text{ for all } x, y.
$$

A nonexpansive map on a nonempty compact set or a nonempty closed convex set may not have a fixed point, as simple examples like translations on \mathbb{R} or rotations of the unit circle show. On the other hand, a straightforward argument using the Banach contraction theorem shows this cannot happen if the set is nonempty, compact, and convex. Indeed, it suffices to pick some $x_0 \in C$ and to consider the perturbed contraction mapping

$$
f_\tau(x) = (1 - \tau)f(x) + \tau x_0.
$$

(6.2.38)

This map must have a fixed point x_τ with

$$
\|f(x_\tau) - x_\tau\| \leq \tau \text{ diam}(C).
$$

(6.2.39)

Now again taking limits completes the argument. In practice this is often not a good way to find the fixed point, but it is a very good way to start.

Another example where the variational method shines is:

Example: The Rayleigh Quotient. Let A be a $n \times n$ symmetric matrix. Consider the function

$$
f_A(x) = \frac{\langle Ax, x \rangle}{\|x\|^2},
$$

(6.2.40)

defined on the open set $x \neq 0$ in \mathbb{R}^n. Consider the minimum (or maximum) value of this function, which must exist since f_A is positively homogeneous and is continuous on the unit sphere.

Now the upshot is that, using the quotient rule, any such maximal (minimal) point, v, is an eigen-vector: $Av = \lambda v$ for some real λ which is a maximal (minimal) eigenvalue. Alternatively, the reader familiar with Lagrange multipliers, can reach the same conclusion from studying $\min\{f_A(x) : \|x\| = 1\}$. From this the whole spectral theory of symmetric matrices can be obtained.
6.3 Maximum Entropy Optimization

Maximum entropy methods are widely used in fields including crystallography, image reconstruction and the like. We consider the convex function \(p : \mathbb{R} \mapsto (-\infty, +\infty] \) given by

\[
p(u) = \begin{cases}
 u \log u - u & \text{if } u > 0 \\
 0 & \text{if } u = 0 \\
 +\infty & \text{if } u < 0
\end{cases}
\]

and the associated convex function (the negative of the *Boltzmann-Shannon entropy*) \(f : \mathbb{R}^n \mapsto (-\infty, +\infty] \) by

\[
f(x) = \sum_{i=1}^{n} p(x_i).
\]

Then \(f \) is strictly convex on \(\mathbb{R}_+^n \) with compact lower level sets. Moreover it is differentiable on the interior of the orthant while the directional derivative \(f'(x; \hat{x} - x) = -\infty \) for any point \(x \) on the boundary of \(\mathbb{R}_+^n \). This “barrier” property makes the entropy highly effective in many variational settings [61].

We consider a linear map \(G : \mathbb{R}^n \mapsto \mathbb{R}^m \) such that \(G\hat{x} = b \) for some \(\hat{x} \). Then for any vector \(c \) in \(\mathbb{R}^n \) the minimization problem

\[
\inf \{ f(x) + \langle c, x \rangle \mid Gx = b, \ x \in \mathbb{R}^n \}
\]

has a unique optimal solution, \(\bar{x} \), and all its coordinates are strictly positive. Moreover some vector \(\lambda \) in \(\mathbb{R}^m \) satisfies

\[
\nabla f(\bar{x}) = G^*\lambda - c \quad \text{that is} \quad \bar{x}_i = \exp(G^*\lambda - c)_i, \quad (6.3.41)
\]

for all \(i \). This can be achieved by solving \(G(\exp(G^*\lambda - c)) = b \) for \(\bar{\lambda} \), using any nonlinear solver one wishes and setting \(\bar{x} = \exp(G^*\bar{\lambda}) - c \). Here \(G^* \) is the transpose matrix.

As a striking example of the variational method we consider the problem of determining when a square matrix \(A \) can be pre- and post-multiplied by diagonal matrices \(D_1 \) and \(D_2 \) so that \(D_1AD_2 \) is *doubly stochastic* (each row and column sums to one and all entries are non-negative). Such problems (called “DAD problems”) arise in actuarial science and afford a fine example of variational methods at work.
Consider the maximum entropy problem (P):
\[
\inf_{x \in R^Z} \sum_{(i,j) \in Z} (p(x_{ij}) - x_{ij} \log a_{ij})
\]
subject to
\[
\sum_{i,(i,j) \in Z} x_{ij} = 1 \text{ for } j = 1, 2, \ldots, k
\]
\[
\sum_{j,(i,j) \in Z} x_{ij} = 1 \text{ for } i = 1, 2, \ldots, k
\]
\[x \in R^Z.
\]

The next result answers the question of when diagonalization is possible.

Theorem 6.3.1 (DAD). Suppose \(A \) has doubly stochastic pattern. Then there is a point \(\hat{x} \) in the interior of \(R^Z_+ \) which is feasible for the problem above. Hence the problem has a unique optimal solution \(\bar{x} \), and, for some vectors \(\lambda \) and \(\mu \) in \(R^k \), \(\bar{x} \) satisfies
\[
\bar{x}_{ij} = a_{ij} \exp(\lambda_i + \mu_j) \text{ for } (i, j) \in Z.
\]
Moreover, \(A \) has doubly stochastic pattern if and only if there are diagonal matrices \(D_1 \) and \(D_2 \) with strictly positive diagonal entries and \(D_1 A D_2 \) doubly stochastic.

Note that the best case is when all entries of \(A \) are strictly positive. It is good fun to formally use the classical method of Lagrange multipliers (\(\lambda \) and \(\mu \) above) to obtain this result, the prior discussion legitimates the process. A very satisfactory by-product is that we have an algorithm for diagonalization, either by directly minimizing (P) or by using the dual system implicit in (6.3.41). (See Exercise 23.)

6.4 A Magnetic Resonance Entropy

The Hoch and Stern information measure, or neg-entropy, arises in nuclear magnetic resonance (NMR) analysis. It is defined in complex \(n \)-space by
\[
H(z) = \sum_{j=1}^{n} h(z_j/b),
\]
where h is convex and given (for scaling b) by:

\[
h(z) = |z| \log \left(|z| + \sqrt{1 + |z|^2}\right) - \sqrt{1 + |z|^2}
\]

for quantum theoretic reasons.

It is easy to check by hand or computer (as was indeed the case) that

\[h^*(z) = \cosh(|z|).
\]

By comparison the **Boltzmann-Shannon entropy** is

\[(z \log z - z)^* = \exp(z).
\]

Efficient dual algorithms now may be constructed that are not at all apparent from the original formulation.

Knowing “closed forms” helps:

\[(\exp \exp)^*(y) = y \log(y) - y \{W(y) + W(y)^{-1}\}
\]

where Maple or Mathematica knows the complex Lambert W function which is the solution of

\[W(x)e^{W(x)} = x.
\]

Thus, the conjugate’s series is as well known to the computer algebra system as that for \exp:

\[-1 + (\log(y) - 1)y - \frac{1}{2}y^2 + \frac{1}{3}y^3 - \frac{3}{8}y^4 + \frac{8}{15}y^5 + O(y^6).
\]

The W function arises usefully in many places. It was only recently that the function was named and then began to have a literature, largely because it had a name and existed in Maple and Mathematica. Unnamed objects are unlikely to be studied in an organized fashion.

6.5 Computational Complex Analysis

We would be remiss not to indicate how complex analysis comes to life in the presence of symbolic and numeric computation. We start by stating three fundamental theorems, each of which is most useful heuristically and formally.
Theorem 6.5.1 (Argument principle) Suppose \(f \) is meromorphic inside a bounded region containing a simple closed curve \(C \) which contains no poles or zeros of \(f \). Then
\[
\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz = N(C) - M(C)
\]
where \(N(C) \) is the number of zeros and \(M(C) \) is the number of poles inside \(C \), and the integral is taken counter-clockwise.

This is directly accessible to computation. We illustrate this at length in Exercise 2 at the end of this chapter. A shorter example is:

Example: Find the number of zeros of \(P(z) = z^3 + 3z^2 + 6z + 4 \) with \(\text{Re}(z) > 0 \).

We note that \(P \) has no zeros on the positive real axis and has one or three on the negative real axis (by D'escartes rule of signs). If we integrate over \(C(r) = \{ z : |z| \leq r \} \), to six places we get \(N(C(1.5)) = 1.00000 \) and \(N(C(2.5)) = 3.00001 \), so we have located two complex zeros in the annulus between these two circles. Correspondingly, \(N(91/24+C(109/24)) = 0 \) (to eight digits) and thus with three circles we have answered the question, as in Figure 6.1.

In fact the zeros are at \(-1\) and \(-1 \pm 3i\).

A fairly direct consequence of the maximum principle that the maximum of the modulus of a nonconstant analytic function occurs only on the boundary of whatever region we are considering is:

Theorem 6.5.2 (Rouché’s theorem) Let \(f(z) \) and \(g(z) \) be analytic inside and on a simple closed curve \(C \). Suppose that \(|g(z)| < |f(z)| \) on \(C \). Then \(f(z) \) and \(f(z) - g(z) \) have the same number of zeros inside \(C \).

Computation can assure us that \(f \) and \(g \) do indeed satisfy both the hypotheses and the conclusions of the theorem. We leave some examples as exercises.

The third more specialized result is a very useful consequence of the Cauchy residue theorem due to Lindelöf (1905).

Theorem 6.5.3 (Cauchy-Lindelöf) Let \(k(z) \) and \(r(z) \) be meromorphic in the complex plane. Suppose that \(r(z) \) is a rational function which is \(O(z^{-2}) \) at infinity while \(k(z) \) is \(o(z) \) over an infinite set of circles \(|z| = R_n \to \infty \). Then
\[
- \sum_{p \in \mathcal{P}} \text{Res}(r \, k(s), s = p) = \sum_{q \in \mathcal{Q}} \text{Res}(r \, k(s), s = q)
\] (6.5.43)
where \mathcal{P} denotes the poles of r and \mathcal{Q} denotes the poles of k that are not poles of r.

Recall that the residue, $\text{Res}(f(s), s = a)$, is defined as the coefficient of $(x - a)^{-1}$ in the Laurent series expansion of f. Again, they are most accessible to assisted computation.

Example: Let $k(z) = \pi/\sin(\pi z)$ and $r(z) = 1/(z^2 + 1)$ which clearly satisfy the hypotheses of the Cauchy-Lindelöf theorem.

Then \mathcal{Q} consists of the zeros of $\sin(\pi z)$, thus $\mathcal{Q} = \mathbb{Z}$, and \mathcal{P} is $\{\pm i\}$. *Maple* computes the left side of (6.5.43) to be $\pi/\sinh(\pi)$. Correspondingly we can easily check in *Mathematica* that the terms of the right side from -6 to 6 are

$$
1/37, -1/26, 1/17, -1/10, 1/5, -1/2, 1, -1/2, 1/5, -1/10, 1/17, -1/26, 1/37
$$

so the general term is clearly $\frac{(-1)^n}{n^2+1}$ and we have evaluated

$$
1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} = \frac{\pi}{\sinh(\pi)}.
$$

Similarly with $r(z) = 1/z^2$ we reobtain

$$
-\frac{1}{6} \pi^2 = 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}.
$$

More examples are scattered through the book.

It is a nice exercise now to obtain the sin product from the Cauchy-Lindelöf theorem applied to $\cot(z) - 1/z$ and $\frac{1}{(z-w)z}$ to deduce first that

$$
w\cot(w) - 1 = 2w^2 \sum_{n=1}^{\infty} \frac{1}{n^2\pi^2 - w^2},
$$

and to find corresponding formulae for other trig functions.

6.6 The Lambert Function

As noted in Section 6.4, the Lambert W function satisfies

$$
W(x)e^{W(x)} = x.
$$

(6.6.44)
Figure 6.1: Trapping the zeros
Figure 6.2: Real branches of Lambert’s function that satisfy \(W \exp W = x \)

We give a short primer on \(W \) in Section 6.6.3, and a survey of history, properties and applications of \(W \) is to be found in [81, 83].

There is a branch point of \(W \) at \(x = -1/e \), where \(W(x) = -1 \). See Figure 6.2, which can be produced in Maple by the command

\[
> \text{plot([t*exp(t), t, t=-5..1], -1..3, -4..1);}
\]

The two real-valued branches of \(W \) are denoted \(W_0(x) \) and \(W_{-1}(x) \); we also refer to \(W_0(x) \) as the principal branch. To understand the function near the branch point at \(x = -1/e \), after various experiments, we decide to compute the series of \(W_0\left(-e^{-1-z^2/2}\right) \). We get, very quickly, that \(W_0\left(-\exp(-1-z^2/2)\right) = \)

\[
-1 + z - \frac{1}{3}z^2 + \frac{1}{36}z^3 + \frac{1}{270}z^4 + \frac{1}{4320}z^5 - \frac{1}{17010}z^6 - \frac{139}{5443200}z^7 - \frac{1}{204120}z^8 - \frac{571}{2351462400}z^9 + O(z^{10}) \quad (6.6.45)
\]
6.6.1 The Lambert Function and Stirling’s Formula

We look up the sequence of denominators 1, 3, 36, 270, ..., in [192]. Sometimes denominators have nontrivial common factors with numerators. Cancelation of these common factors makes any “guessing” procedure more difficult. Thus, reference [156] would not easily be found by a normal citation search. We find out in [156] that equation (6.6.45) gives coefficients needed in Stirling’s formula for \(n! \), which begins

\[
\begin{align*}
n! & \sim \sqrt{2\pi n} n^n e^{-n}
\left(1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} - \frac{571}{2468320n^4} + O\left(\frac{1}{n^5} \right) \right).
\end{align*}
\]

The connection we discover (without doing any work ourselves) is that if

\[
W_0 \left(-e^{-1-z^2/2} \right) = \sum_{k \geq 0} (-1)^k \frac{a_k}{k!} z^k,
\]

then

\[
n! \sim \sqrt{2\pi n} n^n e^{-n} \sum_{k \geq 0} \frac{1 \cdot 3 \cdot 5 \cdots (2k+1)}{n^k} a_{2k+1},
\]

Moreover there is a lovely (and useful!) recurrence relation for the \(a_k \)’s, namely \(a_0 = 1, a_1 = 1 \), and

\[
a_n = \frac{1}{(n+1)a_1} \left(a_{n-1} - \sum_{k=2}^{n-1} k a_k a_{n-1-k} \right).
\]

6.6.2 The Lambert Function and Riemann Surfaces

As we have seen, tools such as Matlab and Mathematica permit easy accurate visualization of many objects, including Riemann surfaces [82, 202]. We now describe a simple technique for visualization of Riemann surfaces, namely to make 3-d plots of \(\text{Re} f(z) \) or \(\text{Im} f(z) \).

It is necessary to prove something—namely, that we do get a good picture of the Riemann surface and not just a 3-d plot of an imaginary or real part. The key point is that given \(w = u + iv = f(z) = f(x + iy) \), then we get an accurate Riemann surface by plotting, say, \((x, y, v)\) if and only if the missing piece of information (here, \(u \)) is completely determined once \(x, y, \) and \(v \) are given.
This is simple, if not obvious: once we have a smooth three-dimensional surface, each point of which can be associated with a unique value (i.e., ordered pair) of the map \(z \mapsto w = f(z) \), then we have a representation of the Riemann surface of \(f \). The exact association is not automatic. For example, if \(w = \log(z) \) and we plot \((x, y, u)\), then we do not get a picture of the Riemann surface for logarithm, because the branch of \(v = \Im(w) = \arg(z) \) is not determined from \(u = \log(x^2 + y^2)/2 \), \(x \), and \(y \). If we plot \((x, y, v)\), we do recover the classical picture of the Riemann surface for \(\log(z) \), because given \(x \), \(y \), and \(v \) we can easily find \(u \). Figure 6.3 gives a static representation of the Riemann surface for the Lambert \(W \) function. Many others are graphed in [82] and [202].

\begin{center}
\textbf{A 1–1 Correspondence Proof.} Given \(x \), \(y \), and \(v \), we have to solve for \(u \). Of course, one takes the existence of \((u, v)\) for a given \((x, y)\), [81]. We have
\[
(u + iv)e^{u+iv} = x + iy,
\]
which gives
\[
ue^u + ive^u = (x + iy)e^{-iv} = (x + iy)(\cos v - i \sin v);
\]
\end{center}
therefore,

\[u e^u + i v e^u = (x \cos v + y \sin v) + i(y \cos v - x \sin v). \]

If \(v \neq 0 \), and moreover \(y \cos v - x \sin v \neq 0 \), then dividing the real part by the imaginary part gives \(u \) in terms of \(x \), \(y \), and \(v \):

\[u = \frac{v(x \cos v + y \sin v)}{y \cos v - x \sin v}. \]

This solution is unique. Investigation of the exceptional conditions \(v = 0 \) or \(y \cos v - x \sin v = 0 \) leads to \(u \exp u = x \), which has two solutions if and only if \(-1/e \leq x < 0\), in the case \(v = 0 \), and to the singular condition \(u = -\infty \) and \(x = y = 0 \).

This is precisely what we observe in the graph: two sheets intersect only if \(-1/e \leq x < 0\) (note in color, the colors are different and hence, the corresponding sheets on the Riemann surface do not “really” intersect), and all sheets have a singularity at the origin, except the central one, which contains \(v = 0 \). This is as good a representation of the Riemann surface for the Lambert \(W \) function as can be produced in three dimensions.

However, Figure 6.3 is nowhere near as intelligible as a live plot. On a PC, the use of OpenGL by \textit{Maple} allows the plot to be rotated by direct mouse control. This helps give a good sense of what the surface is really like, in three dimensions.

6.6.3 The Lambert Function in Brief

The Lambert \(W \) function in brief. If you have used \textit{Maple} or \textit{Mathematica} to solve transcendental equations, you may already have encountered the Lambert \(W \) function, defined by (6.6.44). The history and some of the properties of this remarkable function are described in [81]. The function provides a beautiful new look at much of undergraduate mathematics, and much of intrinsic interest. Here are some of the elementary properties of \(W \).

1. On \(0 \leq x < \infty \) there is one real-valued branch \(W(x) \geq 0 \) (see Figure 6.2). On \(-1/e < x < 0\) there are two real-valued branches. We call the branch that has \(W(0) = 0 \) the principal branch. On this branch, it is easy to see that \(W(e) = W(1 \cdot e^1) = 1 \).
2. The derivative of W can be found by implicit differentiation to be

$$\frac{d}{dx} W(x) = \frac{1}{(1 + W(x))e^{W(x)}} = \frac{W(x)}{(1 + W(x))x}$$

where the second formula follows on using $\exp W(x) = x/W(x)$, and holds if $x \neq 0$. We may use the first formula to find the value of the derivative at $x = 0$, and we see the singularity is just a removable one.

3. The function $y = W(\exp z)$ satisfies

$$y + \log y = z.$$

This function appears, for example, in convex optimization. Consider the convex conjugate, $f^*(s) = \sup_r rs - f(r)$, of the function $f(r) = r \log(r/(1 - r)) - r$. Show that $f^*(s) = W(\exp s)$.

4. $W(x)$ has a Taylor series about $x = 0$ with rational coefficients. Similarly, $W(\exp z)$ has a Taylor series with rational coefficients about $z = 1$. The first few terms are

$$W(e^z) = 1 + \frac{1}{2} (z - 1) + \frac{1}{16} (z - 1)^2 - \frac{1}{192} (z - 1)^3 - \frac{1}{3072} (z - 1)^4 + \frac{13}{61440} (z - 1)^5 - \frac{47}{1474560} (z - 1)^6 - \frac{73}{41287680} (z - 1)^7 + \frac{1321205760}{15551} (z - 1)^8 - \frac{1681}{47563407360} (z - 1)^9 - \frac{1902536294400}{1902536294400} (z - 1)^{10} + O((z - 1)^{11}).$$

5. There is an exact formula for the coefficients of the nth derivative of $W(\exp z)$, in terms of second-order Eulerian numbers $\langle \langle n \rangle \rangle$ [124]. This formula comes from the following expression for the nth derivative of $W(\exp z)$, which is stated in [81]. Once the answer is known, the proof is an easy induction, which we leave for the reader.
6. The derivatives of $W(e^z)$ are

$$
\frac{d^n}{dz^n} W(e^z) = \frac{q_n(W(e^z))}{(1 + W(e^z))^{2n-1}}, \quad (6.6.46)
$$

where $q_n(w)$ is a polynomial of degree n satisfying the recurrence relation

$$
q_{n+1}(w) = -(2n-1)wq_n(w) + (w + w^2)q'_n(w), \quad n > 1 \quad (6.6.47)
$$

and having the explicit expression

$$
q_n(w) = \sum_{k=0}^{n-1} \binom{n}{k} (-1)^k w^{k+1}. \quad (6.6.48)
$$

If $n = 1$ we have $q_1(w) = w$, and it is convenient to put $q_0(w) = w/(1+w)$; this isn’t a polynomial, but it makes things work out right. This means the series for $W(e^z)$ about $z = 1$ is just

$$
W(e^z) = \sum_{n \geq 0} \frac{q_n(1)}{n!2^{n-1}} (z-1)^n. \quad (6.6.49)
$$

6.7 Commentary and Additional Examples

1. **The Selberg integral.** The Selberg integral (see [11]) is an N-dimensional extension of Euler’s beta integral

$$
S_N(\lambda_1, \lambda_2, \lambda) = \left(\prod_{i=1}^{N} \int_0^1 dt_i \frac{\lambda_1}{1-t_i} \frac{\lambda_2}{1-t_i} \right) \prod_{1 \leq j < k \leq N} |t_k - t_j|^{2\lambda}
$$

(the beta integral is the case $N = 1$). Selberg evaluated this integral as a product of gamma functions:

$$
S_N(\lambda_1, \lambda_2, \lambda) = \prod_{j=0}^{N-1} \frac{\Gamma(\lambda_1 + 1 + j\lambda)\Gamma(\lambda_2 + 1 + j\lambda)\Gamma(1 + (N + j - 1)\lambda)}{\Gamma(\lambda_1 + \lambda_2 + 2 + (N + j - 1)\lambda)\Gamma(1 + \lambda)}.
$$
For example,
\[
\int_0^1 \int_0^1 x^a (1 - x)^b y^a (1 - y)^b (|x - y|^2)^c \, dx \, dy \tag{6.7.50}
\]

\[
= \frac{\Gamma(a + 1) \Gamma(b + 1) \Gamma(a + 1 + c) \Gamma(b + 1 + c) \Gamma(1 + 2c)}{\Gamma(a + b + 2 + c) \Gamma(a + b + 2 + 2c) \Gamma(c + 1)}.
\]

The Selberg integral gives rise to many variations and to interesting tests of multi-dimensional integration routines.

A beautiful and illustrative application is to evaluate Gaussian ensembles arising in statistical mechanics such as
\[
\int_0^\infty \cdots \int_0^\infty \exp \left(-\frac{1}{2} \sum_{i=1}^n x_i^2 \right) \prod_{1 \leq i < j \leq n} |x_i - x_j|^{2\gamma} \, dx = \prod_{j=1}^n \frac{\Gamma(\gamma j + 1)}{\Gamma(\gamma + 1)}.
\]

2. Establishing inequalities numerically via the argument principle.
This refers to Theorem 6.5.1. We consider the logarithmic and 2/3-power means,
\[
\mathcal{L}(x, y) = \frac{x - y}{\log(x) - \log(y)}, \quad \mathcal{M}(x, y) = \sqrt[3]{\frac{x^2 + y^2}{2}}.
\]

A delicate estimate of an elliptic integral was reduced to establishing the elementary inequalities:
\[
\mathcal{L}^{-1}(\mathcal{M}(x, 1), \sqrt{x}) < \mathcal{L}^{-1}(x, 1) < \mathcal{L}^{-1}(\mathcal{M}(x, 1), 1) \text{ for } 0 < x < 1.
\]

(a) To prove the right-hand inequality, we may draw on some graphic/symbolic assistance to establish:
\[
\mathcal{F}(x) = \mathcal{L}^{-1}(\mathcal{M}(x, 1), 1) - \mathcal{L}^{-1}(x, 1) > 0 \text{ for } 0 < x < 1.
\]

Using any plotting routine, we will see that \(\mathcal{M}\) is a mean (i.e., \(\min(a, b) \leq \mathcal{M}(a, b) \leq \max(a, b)\)) as \(x < \mathcal{M}(x, 1) < 1\) illustrates. Also we observe that \(\mathcal{L}^{-1}\) is decreasing. These two graphical hints lead us directly to a proof of the right-hand inequality.
(b) The left-hand inequality is equivalent to the following:

\[\mathcal{E}(x) = \mathcal{L}^{-1}(x, 1) - \mathcal{L}^{-1}(\mathcal{M}(x, 1), \sqrt{x}) > 0 \text{ for } 0 < x < 1. \]

This can be accomplished with a mix of numeric/symbolic methods:

i. establishing that \(\lim_{x \to 0^+} \mathcal{E}(x) = \infty \);

ii. using a Newton-like iteration to show that \(\mathcal{E}(x) > 0 \) on \([0.0, 0.9]\);

iii. using a Taylor series expansion to show \(\mathcal{E}(x) \) has 4 zeroes at 1; and then

iv. using the Argument Principle to establish there are no more zeros inside \(C = \{ z : |z - 1| = \frac{1}{4} \} \):

\[\frac{1}{2\pi i} \int_C \frac{\mathcal{E}'}{\mathcal{E}} = \#(\mathcal{E}^{-1}(0); C) \]

(the number of zeros inside \(C \)).

These steps can each be made effective, and so constitute a proof, the only one so far known. It is the last step (iv) that requires care (to use a numerical quadrature rule in which one can ensure the integral is actually to one significant place as claimed. Just because we can compute it correctly to twenty places does not ensure that.)

3. Some limits of integrals. Evaluate:

(a)

\[\lim_{x \to \infty} \frac{x^4}{e^{3x}} \int_0^x \int_0^{x-u} e^{u^3+v^3} dv \, du \quad \left(= \frac{2}{9} \right). \]

(b)

\[\lim_{n \to \infty} \frac{1}{n^4} \prod_{i=1}^{2n} \left(n^2 + i^2 \right)^{1/n} \quad \left(= 25 \exp(2 \arctan(2) - 4) \right). \]

4. Carleman’s inequality. Determine

\[\sup_S \frac{\sum_{n=1}^{\infty} (x_1 x_2 \cdots x_n)^{1/n}}{\sum_{n=1}^{\infty} x_n^{1/n}} \quad (= e), \]

where \(S \) denotes all non-negative non-zero sequences.
Hint: consider sequences of the form \(n^n/(n + 1)^{(n-1)} \). The recent survey [105] contains a fine selection of proofs and of extensions of Carleman’s inequality.

5. **The origin of the elliptic integrals.** The elliptic integrals take their name from the fact that \(E \) provides the arclength of an ellipse.

 (a) Show that the arclength, \(\mathcal{L} \), of an ellipse with major semi-axis \(a \) and minor semi-axis \(b \) is
 \[
 \mathcal{L} = 4a E\left(\frac{b}{a}\right) = \int_{-\pi}^{\pi} \sqrt{a^2 \cos^2 (\theta) + b^2 \sin^2 (\theta)} \, d\theta.
 \]

 (b) The period, \(p \), of a pendulum with amplitude \(\alpha \) and length \(L \) is
 \[
 p = 4 \sqrt{\frac{L}{g}} \, K\left(\sin \left(\frac{\alpha}{2}\right)\right),
 \]
 where \(g \) is the gravitational constant. Deduce that for small amplitude \(p \approx 2\pi \sqrt{L/g} \), as is the case of simple harmonic oscillation.

 (c) Use the AGM iteration
 \[
 \frac{\pi/2}{M(a, b)} = \int_{0}^{\pi/2} \frac{dt}{\sqrt{a^2 \cos^2(t) + b^2 \sin^2(t)}} \quad (6.7.51)
 \]
 to write a fast algorithm to compute \(p \) to arbitrary precision. Combine this with Legendre’s identity
 \[
 E(k) K(k') + K(k) E'(k) - K(k) K'(k) = \frac{\pi}{2},
 \]
 to compute the arclength of an ellipse.

Recall that a function is elementary if it can be realized in a finite number of steps from compositions of algebraic, exponential and trigonometric functions and their inverses. Liouville in 1835 was able to show that \(E \) and \(K \) are non-elementary transcendental functions. By contrast, the formula for the area of an ellipse was known to Archimedes.
6. Euler’s integral for hypergeometric functions. Establish Euler’s integral for the hypergeometric function

\[F(a, b, c; x) = \frac{\Gamma(c) \Gamma(b)}{\Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-tx)^{-a} \, dt \]

(6.7.52)

for Re(c) > Re(b) > 0. Appropriately interpreted the right side of (6.7.52) is valid outside of [1, \infty) and so provides an analytic continuation of F.

Hint: Expand \((1-xt)^a\) by the binomial theorem and observe that term-by-term one has a \(\beta\) integral which as we saw can be written in terms of gamma functions.

7. A hypergeometric function identity. Show that

\[\frac{1}{x} F(1-y, 1, 1+x; -1) + \frac{1}{y} F(1-x, 1, 1+y; -1) = 2^{x+y-1} \beta(x, y). \]

Hint: Use (6.7.52).

8. Multiple hypergeometric functions. There are many extensions to hypergeometric functions in several complex variables. We list one as an example

\[F(\alpha, \beta, \beta'; \gamma; x, y) = \sum_{m,n \geq 0} \frac{(\alpha)_{m+n} (\beta)_m (\beta')_n}{(\gamma)_{m+n} m! n!} x^m y^n. \]

This function (and three similar ones) satisfies a pair of second order partial differential equations. For various choices of parameters it reduces to the classical hypergeometric function:

\[F(\alpha, \beta, \beta', \gamma; x, x) = F(\alpha, \beta + \beta', \gamma; x). \]

It also has a double integral of Euler type

\[F(\alpha, \beta, \beta'; \gamma; x, y) = \frac{\Gamma(\gamma)}{\Gamma(\beta) \Gamma(\beta') \Gamma(\gamma - \beta - \beta')} \times \int_\Omega u^{\beta-1} v^{\beta'-1} (1-u-v)^{\gamma-\beta-\beta'-1} (1-u+x-vy)^{-\alpha} \, dudv, \]

(6.7.53)

where \(\Omega\) is the positive quadrant of the unit circle, \(\{(x, y) : x \geq 0, y \geq 0, x^2 + y^2 \leq 1\}\), and Re \(\beta > 0\), Re \(\beta' > 0\), Re \(\gamma - \beta - \beta' > 0\). Attempt to numerically validate (6.7.53) and to prove the identity.
9. **Another hypergeometric function evaluation.** Following Gauss, evaluate

\[F(a, b, c; 1) = \frac{\Gamma(c) \Gamma(c - a - b)}{\Gamma(c - a) \Gamma(c - b)} \]

(6.7.54)

and determine the region of validity.

10. **Berkeley problem 2.2.13.** Find the singular matrix S nearest in Euclidean norm to

\[\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \]

Hint: Directly solve the implied optimization problem using a computer algebra program.

Answer: \(S = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \).

11. **Kirchhoff’s law.** Consider a finite, undirected, connected graph with vertex set \(V \) and edge set \(E \). Suppose that \(\alpha \) and \(\beta \) in \(V \) are distinct vertices and that each edge \(ij \) in \(E \) has an associated “resistance” \(r_{ij} > 0 \) in \(\mathbb{R} \). We consider the effect of applying a unit “potential difference” between the vertices \(\alpha \) and \(\beta \). Let \(V_0 = V \setminus \{\alpha, \beta\} \), and for “potentials” \(x \) in \(\mathbb{R}^{V_0} \) we define the “power” \(p : \mathbb{R}^{V_0} \rightarrow \mathbb{R} \) by

\[p(x) = \sum_{ij \in E} \frac{(x_i - x_j)^2}{2r_{ij}}, \]

where we set \(x_\alpha = 0 \) and \(x_\beta = 1 \).

(a) Prove the power function \(p \) has compact level sets.

(b) Deduce the existence of a solution to the following equations (describing “conservation of current”):

\[\sum_{j : ij \in E} \frac{x_i - x_j}{r_{ij}} = 0 \text{ for } i \text{ in } V_0 \]

\[x_\alpha = 0 \]

\[x_\beta = 1. \]
(c) Prove the power function p is strictly convex.
(d) Deduce that the conservation of current equations in part (b) have a unique solution.

12. **Berkeley problem 7.1.14.** Show that the functions $t \mapsto \exp(\alpha_k t)$ are linearly independent over \mathbb{R} when the corresponding real numbers $\alpha_1, \alpha_2, \cdots$, α_n are distinct.

Hint: Use Maple or Mathematica to observe the relative growth of the exponential values, given some sample values of α_i.

13. **A central binomial series.** Show that

$$\arcsin^2(x) = \frac{1}{2} \sum_{m=1}^{\infty} \frac{(2x)^{2m}}{m \binom{2m}{m}}$$

by showing that both sides satisfy the same differential equation.

14. **Branches of arcsin.**

Consider

$$u(r) = \arcsin \left(4 \sqrt{\sin (r)} \frac{1 - \sin (r)}{1 + \sin^2 (r)} \right) .$$

Determine the behavior of u and $u^{(2)}$ on $[0, \pi/2]$, and do the same for $v(r) = u(2r)$ on $[0, \pi/4]$.

Hint: Start by plotting u and $u^{(2)}$ and the identity.

15. **Integrating Γ^{-1}.

(a) Evaluate

$$\int_0^\infty \frac{1}{x \left[\pi^2 + \log^2(x) \right]} \, dx.$$

(b) Show

$$\int_0^\infty \frac{1}{\Gamma(x+1)} \, dx = e - \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-e^{\pi \tan(\theta)}} \, d\theta,$$

and

$$\int_0^\infty \frac{1}{\Gamma(x)} \, dx = e + \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{\pi \tan(\theta)} e^{-e^{\pi \tan(\theta)}} \, d\theta.$$
(c) For integer \(n \geq 0 \), show
\[
\int_{-n}^{-n+1} \frac{1}{\Gamma(x)} \, dx = (-1)^n \int_0^\infty e^{-x} \frac{(x + 1)x^{n-1}}{\pi^2 + \log^2 (x)} \, dx
\]
\[
= \frac{(-1)^n}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (e^{\pi \tan(\theta)} + 1) \frac{e^{n\pi \tan(\theta)}}{e^{n\pi \tan(\theta)}} \, d\theta
\]
and
\[
\int_{-n}^0 \frac{1}{\Gamma(x)} \, dx = \int_0^\infty e^{-x} \frac{(-x)^n - 1}{\pi^2 + \log^2 (x)} \, dx.
\]
Hence estimate the size of \(\int_{-n}^0 \Gamma(x)^{-1} \, dx \) asymptotically. In each case the rightmost expression is much easier to compute.

One way to do this is to use Laplace’s method which is suited to asymptotics of integrals of the form \(I(x) = \int_a^b e^{-xp(t)}q(t) \, dt \), for appropriate positive \(p(t) \) and \(q(t) \) for which the bulk of the value of \((x) \) is determined by the minimum value \(p(c) \), and one estimates that \(I(x) \approx \int_a^b e^{-x(p(c)+(t-c)p'(c))}q(c) \, dt \)
which can be integrated explicitly [168]. Note that it is easy to see that the value is “just less” than \(n! \).

References: [126, 151, 112].

16. **Hankel loop integral for** \(\Gamma \). Show that for any complex \(z \),
\[
\Gamma(z) = \int_{-\infty}^{(0+)} e^{t^{-z}} \, dt,
\]
where the notation denotes the integral over a counterclockwise contour that starts at \(t = -\infty \), circles around \(t = 0 \) once and returns to \(t = -\infty \). (Here \(t^{-z} \) is taken to be the principal value where the contour crosses the positive real axis and to be continuous elsewhere.) Use (6.7.55) to show that
\[
\int_0^\infty \frac{1}{\Gamma(x)} \, dx = e - \int_0^\infty \frac{e^{-t}}{\pi^2 + \log^2 (t)} \, dt.
\]
Compare part (b) of the previous exercise.

17. **A “gfun” proof for** \(AG_2 \). It is possible to entirely implement the evaluation of (6.1.14) and (6.1.18). We sketch Bruno Salvy’s derivation within
Murray, Salvy and Zimmermann’s package “gfun”
http://algo.inria.fr/libraries/software.html

(a) From (6.1.11), obtain the first dozen or so terms of the power series for $A_2(x^2)$.

(b) The “gfun” program will guess a differential equation for $A_2(x^2)$.

(c) It will then also provide a recursion for said differential equation.

(d) This recursion is solvable in Maple to produce

$$u_n = \frac{\Gamma^2 \left(n + \frac{1}{2} \right)^2}{\Gamma^2 (n + 1) \pi}$$

and summing $\sum_{n \geq 0} u_n x^n$ produces the desired hypergeometric evaluation.

(e) Provide the details of a similar albeit a little more elaborate computer proof of hypergeometric evaluation for AG_3 of Section 6.1.3.

(f) Attempt to do likewise for $N = 4$ and $N = 7$.

18. **Some complex plots from [125].** Plot the following functions $\phi_k : (0, 1) \mapsto \mathbb{C}$ for $k = 1, 2, \ldots, 6$ in random order on an interval of the origin and determine from the plots which function came from which plot.

$$
\begin{align*}
\phi_1(t) &= \ t \sin \left(t^{-2} \right) e^{i \cos(t^4)/\sqrt{t}} \\
\phi_2(t) &= \ t \sin \left(t^{-1} \right) e^{i \cos(t)} \\
\phi_3(t) &= \ t \sin \left(t^{-2} \right) e^{i \cos(t^2)} \\
\phi_4(t) &= \ t \sin \left(t^{-1} \right) e^{i \cos^2(t)} \\
\phi_5(t) &= \ t \sin \left(t^{-1} \right) e^{i \sqrt{\cos(t^4)}} \\
\phi_6(t) &= \ \sqrt{t} \sin^2 \left(t^{-1/2} \right) e^{i \sin \left(\frac{1}{\sqrt{t}} \right)}.
\end{align*}
$$

One of the functions is plotted in Figure 6.4.

Answer: ϕ_3.
19. **Some ODE plots from [125]**. Plot the families of solutions, in random order, to the following differential equations \mathcal{E}_k for $k = 1, 2, \ldots, 5$ and determine from the plots which differential equation generated which plot. One of the solutions is plotted in Figure 6.5.

\[
\begin{align*}
\mathcal{E}_1 & : \quad y' = x \sin(xy) \\
\mathcal{E}_2 & : \quad y' = \sin(x)\sin(y) \\
\mathcal{E}_3 & : \quad y' = x \sin(y) \\
\mathcal{E}_4 & : \quad y' = y \sin(x) \\
\mathcal{E}_5 & : \quad y' = \frac{\sin(3x)}{1 + x^2}.
\end{align*}
\]

Answer: \mathcal{E}_3.

20. **The Maclaurin series for W**.

(a) Show that the Lambert W function satisfies

\[
W(z) = \sum_{k=1}^{\infty} \frac{(-k)^{k-1}}{k!} z^k
\]
Figure 6.5: Which equation E_k generated this?
and determine the radius of convergence.

(b) Show that
\[\sum_{k=1}^{\infty} \frac{k^k}{k!} x^k = \frac{1}{2}, \]
is solved by \(x^* = 0.238843770191263 \ldots \).

(c) Determine the analytic form of this number.

This evaluation was discovered by Harold Boas [28], using the Inverse Symbolic Calculator, while studying multidimensional versions of Harald Bohr’s 1914 result that if \(\sum_{k=0}^{\infty} c_k z^k \) \(< 1 \) for \(|z| < 1 \) then \(\sum_{k=0}^{\infty} |c_k z^k| < 1 \) for \(|z| < 1/3 \) (the best possible radius).

21. **Berkeley problem 4.3.7.** Does there exist a continuous solution on \([0, 1]\) to \(T(f) = f \) where
\[T(g)(x) = \sin(x) + \int_0^1 g(y) e^{x+y+1} dy? \]

Answer: yes.

Hint: \(T \) is a Banach contraction with constant at most \(\exp(-1) - \exp(-2) \). Try plotting \(T^n(0) \) for \(n \leq 3 \).

22. **Torczon’s Multidirectional Search.** As computing paradigms change so do algorithms of choice—for good reasons such as increased speed, storage and parallelism and for less good reasons of vogue. Multidirectional search techniques were popular in the early days of modern computing because of their low overhead but their relative lack of accuracy and speed drove them out of fashion. The need to handle extremely large problems, in which “noisy” gradients are either unavailable or very costly, coupled with the shift to parallel computation has reawakened interest [101].

(a) Standard methods in numerical optimization, such as the general classes of line search and trust region methods [166], use gradient calculations to determine descent directions, or directions in which the objective function decreases. A general class of methods that has (re)gained popularity recently is direct search or pattern search methods, which use only function evaluations to find stationary points.
The basic direct search method is the simplex method of Nelder and Mead [164], first published in 1965; this method starts with a simplex (a set of \(n + 1 \) non-degenerate points in \(R^n \)), and at each iteration replaces the simplex point with the largest objective function value with a new point with a smaller objective function value by reflecting across the centroid of the other simplex points, or contracting the entire simplex if such a point is not found.

Renewed interest in direct search methods began with the development in 1989 of the Multidirectional Search (MDS) algorithm of Virginia Torczon [200, 201], in which the update and contraction rules of Nelder/Mead are combined with additional rules to maintain the angles between the simplex points. The key achievement of the MDS algorithm over Nelder/Mead is a new set of convergence results; counter-examples exist where the Nelder/Mead algorithm converges to a non-stationary point [159]. Torczon generalized the MDS algorithm to a class of pattern search algorithms, where the set of grid-points are expanded from a simplex to any set containing a positive basis, provided the new iterate, chosen to be the “center” of the grid, and the amount that the grid is expanded/contracted, both satisfy very general properties that are very easily verified.

Direct search algorithms benefit from being easy to implement and applicable to a wide range of problems for which gradient-based methods are inappropriate. In addition, direct search methods are also easy to demonstrate in practice, and provide an example of where visualization tools greatly aid the research and learning process.

(b) Exercise. Figure 6.6 shows contour plots of three sets of three iterates (circles) of the Nelder/Mead, Multidirectional Search, and Pattern Search methods, each applied to the Rosenbrock function:

\[
f_K(x, y) = K(y - x^2)^2 + (1 - x)^2
\]

where \(K = 100 \) is most frequently used (\(K = 5 \) is used in the illustrations). Using the general descriptions of each of these algorithms, match the algorithm to the set of iterations. When executed in parallel it is instructive to color code the computations performed by different processors.
Rosenbrock’s function causes pain for many minimization methods because of the shape of its contours.

23. **Computing with DAD problems.** Find diagonal matrices D_1 and D_2 with strictly positive diagonal entries such that D_1AD_2 is doubly stochastic, where

\[
A = \begin{pmatrix}
2 & 10 & 6 \\
1 & 0 & 4 \\
7 & 15 & 1
\end{pmatrix}.
\]

Hint: Observe that such matrices D_1 and D_2 must exist since A has doubly stochastic pattern; for example, consider

\[
\begin{pmatrix}
1/3 & 1/3 & 1/3 \\
1/2 & 0 & 1/2 \\
1/6 & 2/3 & 1/6
\end{pmatrix}.
\]

(a) Construct the desired matrices by solving the minimization problem from Theorem 6.3.1.

(b) Alternatively, solve this minimization problem using one of the direct search methods outlined in Exercise 22. For example, the following `Maple` code applies Torczon’s Pattern Search algorithm to this specific matrix, by considering convex combinations of the 3×3 permutation matrices with the same zero entry pattern as A.

```maple
p:=proc(u)
RETURN(piecewise(u>0,u*log(u)-u,u=0,0,u<0,infinity));end:

a:=proc(X,i,j)
RETURN(piecewise(A[i,j]>0,p(X[i,j])-X[i,j]*log(A[i,j]),0)); end:

obj:=proc(X,n) local i,j;
RETURN(evalf(sum(sum(a(X,i,j),i=1..n),j=1..n))); end:

define_matrix:=proc(a) local X,an,i;
X[1]:=matrix(3,3,[1,0,0,0,0,1,0,1,0]);
X[2]:=matrix(3,3,[0,1,0,1,0,0,0,0,1]);
X[3]:=matrix(3,3,[0,1,0,0,0,1,1,0,0]);
```

Figure 6.6: Comparison of three direct search methods
The solution is:

\[
X = \begin{pmatrix}
\frac{1}{5} & 1/2 & 3/10 \\
1/3 & 0 & 2/3 \\
7/15 & 1/2 & 1/30
\end{pmatrix}, \quad D_1 = \begin{pmatrix}
1/10 & 0 & 0 \\
0 & 1/3 & 0 \\
0 & 0 & 1/15
\end{pmatrix},
\]

\[
D_2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1/2 & 0 \\
0 & 0 & 1/2
\end{pmatrix}
\]

24. Brouwer, eponymy and the fundamental theorem. The Dutch
mathematician and philosopher Luitzen Egbertus Jan Brouwer (1881–1966) is equally well known as one of the builders of modern topology and as the father of intuitionism ("Mathematics is nothing more, nothing less, than the exact part of our thinking." . . . “The construction itself is an art, its application to the world an evil parasite.”). Intuitionism rejects the Principle of the excluded middle ("A or not A"), unless one can effectively determine which case happens, and looks for fully analyzed proofs broken into “intuitively” compelling steps. It shares certain concerns with Bishop’s version of constructivism.

Several observations are worth making:

(i) Brouwer’s fixed point theorem (1912), that every continuous self-map of a closed convex bounded set in \mathbb{R}^n has a fixed point, was certainly prefigured by others such as Hadamard and Poincaré thereby illustrating Stigler’s principle of eponymy.

The $\sin(1/x)$ circle. One connects the segments in Figure 6.7 to the $\sin(1/x)$ curve. This produces a connected, but not simply, highly non-
convex set, γ, such that every continuous self-map g on γ has a fixed point. Try to prove this by considering what happens if $g(0) \neq 0$.

(ii) The philosopher Brouwer soon disavowed much of the mathematical tool-set used in his and other early proofs of his eponymous theorem.

(iii) In modern effective incarnations due to Scarf (1973) and others, the theorem is used computationally in optimization and mathematical economics. Many wonderful results such as the von Neumann minimax theorem, the Nash equilibrium theorem and Arrow-Debreu’s proof of the existence of market equilibria used Brouwer’s theorem, or its extensions, in their first proofs.

(iv) There have been several false proofs—some by distinguished mathematicians—of the Fundamental theorem of algebra based on Brouwer’s theorem. In one case the result was applied to a discontinuous self-map! A correct proof, based on the existence of continuous n-th roots for continuous maps from the disc to the sphere, appears in [111] but citations of false ones continue.

(v) In this light, in her Simon Fraser Masters thesis, Tara Stuckless recently wrote:

In a 1949 paper [12], B.H. Arnold wrote “...it has been known for some time that the fundamental theorem of algebra could be derived from Brouwer’s fixed point theorem.”. He continued to give a simple one page proof that a polynomial with degree $n \geq 1$ has at least one complex root. Unfortunately, he did this by applying Brouwer’s theorem to a discontinuous function. This error was spotted and a correction was published less than two years later [13]. In 1951, M.K. Fort followed up with a brief proof, using the existence of continuous nth roots of a continuous non zero function on a disk in the complex plane to show that Brouwer can be used to prove the fundamental theorem [111].

In this author’s opinion, except for an ill-fated choice of titles, this would have probably been the end of the incorrect proof by Arnold. Arnold’s paper was boldly called “A Topological Proof of the Fundamental Theorem of Algebra”, whereas Fort’s
paper was modestly titled “Some Properties of Continuous Functions”. Since 1949, citations of Arnold’s paper have popped up from time to time as proof of the existence of a topological proof of the fundamental theorem of algebra, including in a four hundred page volume on fixed point theory published in 1981, a talk given in 2000 at a meeting of the Association for Symbolic Logic, as well as in newsgroup discussions that are at least as recent as 1998. On the other hand, this author had a difficult time tracking down Fort’s paper, even knowing before hand that it did exist. No amount of searching electronic databases with relevant key words would produce it, though Arnold’s paper was invariably returned. Perhaps it would have been useful for Fort to rename his work “A Correct Topological Proof of the Fundamental Theorem of Algebra”. It seems certain that Arnold would have preferred this to having his blunder quoted so long after he made his apologies.
Chapter 7

Numerical Techniques II

Another thing I must point out is that you cannot prove a vague theory wrong. ... Also, if the process of computing the consequences is indefinite, then with a little skill any experimental result can be made to look like the expected consequences.

Richard Feynman, 1964 [197]

7.1 The Wilf-Zeilberger Algorithm

One fascinating non-numerical algorithm should be mentioned before we continue with our discussion of numerical algorithms. This is the Wilf-Zeilberger (WZ) algorithm, which employs “creative telescoping” to show that a sum (with either finitely or infinitely many terms) is zero. Below is example of WZ proof of $(1 + 1)^n = 2^n$. This proof is from Doron Zeilberger’s original Maple program, which in turn is inspired by the proof in [209].

Let $F(n, k) = \binom{n}{k} 2^{-n}$. We wish to show that $L(n) = \sum_k F(n, k) = 1$ for every n. To this end we construct, using the WZ algorithm, the function

$$G(n, k) = \frac{-1}{2^{(n+1)}} \binom{n}{k-1} \left(= \frac{-k}{2(n-k+1)} F(n, k) \right), \quad (7.1.1)$$

and observe that

$$F(n+1, k) - F(n, k) = G(n, k+1) - G(n, k). \quad (7.1.2)$$
By applying the obvious telescoping property of these functions, we can write

\[
\sum_k F(n + 1, k) - \sum_k F(n, k) = \sum_k (G(n, k + 1) - G(n, k)) = 0,
\]

which establishes that \(L(n + 1) - L(n) = 0 \). The fact that \(L(0) = 1 \) follows from the fact that \(F(0, 0) = 1 \) and 0 otherwise.

Obviously this proof does not provide much insight, since the difficult part of the result is buried in the construction of 7.1.1. In other words, this is an instance where computers provide “proofs,” but these “proofs” tend to be uninteresting. Nonetheless the extremely general nature of this scheme is of interest. It possibly presages a future in which a wide class of such “proofs” can automatically be obtained in a computer algebra system. Details and additional applications of this algorithm are given in [209].

7.2 Prime Number Computations

In Chapter 2 of the first volume we mentioned the connection between prime numbers and the Riemann zeta function. Prime numbers crop up in numerous other arenas of mathematical research, and often even in commercial applications, with the rise of RSA encryption methods on the Internet. Inasmuch as this research topic is certain to be of great interest for the foreseeable future, we mention here some of the techniques for counting, generating and testing prime numbers.

The prime counting function \(\pi(x) \) mentioned in Chapter 2 of the first volume is of central interest in this research. It is clear from even a cursory glance at the table in Table 2.2 (of the first volume) that the researchers who have produced these counts are not literally testing every integer up to \(10^{22} \) for primality—that would require much more computation than the combined power of all computers worldwide, even using the best known methods to test individual primes. Indeed, some very sophisticated techniques have been employed, which unfortunately are too technical to be presented in detail here. We instead refer interested readers to the discussion of this topic in the new book *Prime Numbers: A Computational Perspective* by Richard Crandall and Carl Pomerance [86, 140-150]. Readers who wish to informally explore the behavior of \(\pi(x) \) may use the following algorithm,
which is a variant of a scheme originally presented by Eratosthenes of Cyrene about 200 BCE [86, pg. 114]:

Algorithm 1 Blocked Sieve of Eratosthenes.

We are given an interval \((L, R)\), where \(L\) and \(R\) are even integers, where \(L > P = \lceil \sqrt{R} \rceil\) and a blocksize \(B\) is assumed to divide \(R - L\). We assume that a table of primes \(p_k\) up to \(P\) of size \(Q = \pi(P)\) is available.

Initialize: For \(k := 2\) to \(Q\) set \(q_k := -(L + 1 + p_k)/2 \mod p_k\).

Process blocks: For \(T := L\) to \(R - 1\) step \(2 \cdot B\) do: for \(j := 0\) to \(B - 1\) set \(b_j := 1\); for \(k := 2\) to \(Q\) do: for \(j := q_k\) to \(B - 1\) step \(p_k\) do: set \(b_j := 0\); enddo; set \(q_k := (q_k - B) \mod p_k\); enddo; for \(j := 0\) to \(B - 1\) do: if \(b_j = 1\) then output \(T + 2j + 1\); enddo; enddo.

The Sieve of Eratosthenes is only efficient if one wants to find all primes up to a given point, or all primes in a (fairly large) interval. For testing a single integer, or a few integers, faster means are available. We summarize some of these individual primality tests here.

The simplest scheme, from a programming point of view, of testing whether an integer \(n\) is prime is simply to generate a table of primes \((p_1, p_2, \cdots, p_n)\) up to \(p_n > \sqrt{n}\), using the Sieve of Eratosthenes, and then to iteratively divide \(n\) by each \(p_i\). This actually works quite well for modest-sized integers, but becomes infeasible for \(n\) beyond about \(10^{16}\).

If one does not require certainty, but only high probability that a number is prime, some very efficient primality tests have been discovered in the past few decades. In fact, these schemes are now routinely used to generate primes for RSA encryption in Internet commerce. When you type in your Visa or MasterCard number in a secure website to purchase a book or computer accessory, somewhere in the process it is quite likely that two large prime numbers have been generated, which were certified as prime using one of these schemes.

The most widely used probabilistic primality test is the following, which was originally suggested by Artjuhov in 1966, although it was not appreciated until it was rediscovered and popularized by Selfridge in the 1970s [86].

Algorithm 2 Strong probable prime test.
Given an integer \(n = 1 + 2^s t \), for integers \(s \) and \(t \) (and \(t \) odd), select an integer \(a \) by means of a pseudo-random number generator in the range \(1 < a < n - 1 \).

1. Compute \(b := a^t \mod n \) using the binary algorithm for exponentiation (see Algorithm 1 in Chapter 3 of the first volume). If \(b = 1 \) or \(b = n - 1 \) then exit (\(n \) is a strong probable prime base \(a \)).

2. For \(j = 1 \) to \(s - 1 \) do: Compute \(b := b^2 \mod n \); if \((b = n - 1) \) then exit (\(n \) is a strong probable prime base \(a \)).

3. Exit—\(n \) is composite.

This test can be repeated several times with different pseudo-randomly chosen \(a \). In 1980 Monier and Rabin independently showed that an integer \(n \) that passes the test as a strong probable prime is prime with probability at least \(3/4 \), so that \(m \) tests increase this probability to \(1 - 1/4^m \) [161, 176]. In fact, for large test integers \(n \), the probability is even closer to unity. Damgard, Landrock and Pomerance showed in 1993 that if \(n \) has \(k \) bits, then this probability is greater than \(1 - k^2 4^{2 - \sqrt{k}} \), and for certain \(k \) is even higher [97]. For instance, if \(k \) has 500 bits, then this probability is greater than \(1 - 1/4^{28m} \). Thus a 500-bit integer that passes this test even once is prime with the prohibitively safe odds—the chance of a false declaration of primality is less than one part in Avogadro’s number \((6 \times 10^{23})\). If it passes the test for four pseudo-randomly chosen integers \(a \), then the chance of false declaration of primality is less than one part in a googol \((10^{100})\). Such probabilities are many orders of magnitude less than the chance that an undetected hardware or software error has occurred in the computation.

A number of more advanced probabilistic primality testing algorithms are now known. The current state-of-the-art is that such tests can determine the primality of integers with hundreds to thousands of digits. Additional details of these schemes are available in [86].

For these reasons, probabilistic primality tests are considered entirely satisfactory for practical use, even for applications, such as large interbank financial transactions, that have extremely high security requirements. Nonetheless mathematicians have long sought tests that remove this last iota of uncertainty, yielding a mathematically rigorous certificate of primality. Indeed, the question of whether there exists a “polynomial time” primality test has long stood as an important unsolved question in pure mathematics.

Thus it was with considerable elation that such an algorithm was recently discovered, by Manindra Agrawal, Neeraj Kayal and Nitin Saxena (initials AKS)
of the Indian Institute of Technology in Kanpur, India [2]. Their discovery sparked worldwide interest, including a prominent report in the New York Times [182]. Since the initial report in August 2002, several improvements have been made. We present here a variant of the original algorithm due to Lenstra [149], as implemented by Richard Crandall and Jason Papadopoulos, who note that the implementations of D. Bernstein already provide significant acceleration [95].

Algorithm 3 Variant AKS provable primality test.

Suppose we are given an integer p that we wish to establish as either prime or composite. This test assumes the existence of a table of primes covering integers up to roughly $(\log_2 p)^2$.

1. Establish that p is not a proper power, meaning that $p \neq a^b$ for $b > 1$. This can be done by computing $p^{1/c}$ for primes c up to $\lceil \log_2(p) \rceil$, using appropriately high-precision floating-point arithmetic. If p is a prime power, then of course it is composite.

2. Set $v = \lceil \log_2 p \rceil$. For integers r beginning with $v + 1$, test whether r is prime, and the multiplicative order of p modulo r is at least v. If not, increment r by one until these conditions are met.

3. For $a = 1$ to $r - 1$ test that the relation

$$
(x - a)^p \equiv (x^p - a) \mod p, (x^r - 1)
$$

holds in the polynomial ring $(\mathbb{Z}/n\mathbb{Z})[x]$. If this condition holds for each a in the given range, then p is prime. \QED

Arithmetic in the polynomial ring $(\mathbb{Z}/n\mathbb{Z})[x]$ can be accelerated by noting that polynomial multiplication is simply another instance of acyclic convolution, which can be computed using fast Fourier transforms (FFTs), as in FFT-based multiprecision multiplication (which is discussed in the next section). Proof that this algorithm produces a certificate of primality are in Lenstra’s manuscript [149], and a working implementation of this scheme (which uses Crandall’s PrimeKit software) is available from Richard Crandall’s website: http://www.perfsci.com

A brief review of AKS implementation issues is available at [95].
CHAPTER 7. NUMERICAL TECHNIQUES II

7.3 Roots of Polynomials

In Section 6.2.5 of the first volume, we showed how a relatively simple scheme involving Newton iterations can be used to compute high-precision square roots and even to perform high-precision division. This Newton iteration scheme is in fact quite general and can be used to solve many kinds of equations, both algebraic and transcendental. One particularly useful application, frequently encountered by experimental mathematicians, is to find roots of polynomials. This is done by using a careful implementation of the well-known version of Newton’s iteration

\[x_{k+1} = x_k - \frac{p(x)}{p'(x)} \] (7.3.5)

where \(p'(x) \) denotes the derivative of \(p(x) \). As before, this scheme is most efficient if it employs a level of numeric precision that starts with ordinary double precision (16-digit) or double-double precision (32-digit) arithmetic until convergence is achieved at this level, then approximately doubles with each iteration until the final level of precision is attained. One additional iteration at the final or penultimate precision level may be needed to insure full accuracy.

Note that Newton’s iteration can be performed, as written in (7.3.5), with either real or complex arithmetic, so that complex roots of polynomials (with real or complex coefficients) can be found almost as easily as real roots. Evaluation of the polynomials \(p(x) \) and \(p'(x) \) is most efficiently performed using Horner’s rule: for example, the polynomial \(p(x) = p_0 + p_1x + p_2x^2 + p_3x^3 + p_4x^4 + p_5x^5 \) is evaluated as \(p(x) = p_0 + x(p_1 + x(p_2 + x(p_3 + x(p_4 + xp_5)))) \).

There are two issues that arise here that do not arise with the Newton iteration schemes for division and square root. The first is the selection of the starting value—if it is not close to the desired root then successive iterations may jump far away. If you have no idea where the roots are (or how accurate the starting value must be), then a typical strategy is to try numerous starting values, covering a wide range of likely values, and then make an inventory of the approximate roots that are found. If you are searching for complex roots, note that it is often necessary to use a two-dimensional array of starting values. These “exploratory” iterations can be done quite rapidly, since typically only a modest numeric precision is required—in almost all cases just ordinary double precision (16 digits) or double-double precision (32 digits) arithmetic will do.
Once the roots have been located in this fashion, then the full-fledged Newton scheme can be used to produce their precise high-precision values.

The second issue is how to handle repeated roots. The difficulty here is that in such cases convergence to the root is very slow, and instabilities may throw the search far from the root. In such cases, note that we can write \(p(x) = q^2(x)r(x) \), where \(r \) has no repeated roots (if all roots are repeated, then \(r(x) = 1 \)). Now note that \(p'(x) = 2q(x)r(x) + q^2(x)r'(x) = q(x)[2r(x) + q(x)r'(x)] \). This means that if \(p(x) \) has repeated roots, then these roots are also roots of \(p'(x) \), and, conversely, if \(p(x) \) and \(p'(x) \) have a common factor, then the roots of this common factor are repeated roots of \(p(x) \). This greatest common divisor polynomial \(q(x) \) can be found by performing the Euclidean algorithm (in the ring of polynomials) on \(p(x) \) and \(p'(x) \). The Newton iteration scheme can then be applied to find the roots of both \(q(x) \) and \(r(x) \). It is possible, of course, that \(q(x) \) also has repeated roots, but recursive application of this scheme quickly yields all individual roots.

In the previous paragraph we mentioned the possible need to perform the Euclidean algorithm on two polynomials, which involves polynomial multiplication and division. For modest-degree polynomials, a simple implementation of the schemes learned in high school algebra suffices—just represent the polynomials as strings of high-precision numbers. For high-degree polynomials, polynomial multiplication can be accelerated by utilizing fast Fourier transforms and a convolution scheme that is almost identical (except for release of carries) to the scheme, mentioned in Section 6.2 of the first volume, to perform high-precision multiplication. High-degree polynomial division can be accelerated by a Newton iteration scheme, similar to that mentioned above for high-precision division. See [86] for additional details on high-speed polynomial arithmetic.

We noted above that if the starting value is not quite close to the desired root, then successive Newton iterations may jump far from the root, and eventually converge to a different root than the one desired. In general, suppose we are given a degree-\(n \) polynomial \(p(x) \) with \(m \) distinct complex roots \(r_k \) (some may be repeated roots). Define the function \(Q_p(z) \) as the limit achieved by successive Newton iterations that start at the complex number \(z \); if no limit is achieved then set \(Q_p(z) = \infty \). Then the \(m \) sets \(\{z : Q_p(z) = r_k\} \) for \(k = 1, 2, \ldots, m \) constitute a partition of the complex plane, except for a filamentary set of measure zero that separates the \(m \) sets. In fact, each of these \(m \) sets is itself an infinite collection of disconnected components.

The collection of these Newton-Julia sets and their boundaries form pictures
of striking beauty, and are actually quite useful in gaining insight on both the root structure of the original polynomial and the behavior of Newton iteration solutions. Some of the most interesting graphics of this type are color-coded plots of the function \(N_p(z) \), which is the number of iterations required for convergence (to some accuracy \(\epsilon \)) of Newton’s iteration for \(p(x) \), beginning at \(z \) (if the Newton iteration does not converge at \(z \), then set \(N_p(z) = \infty \)). A black-and-white variation of such a plot for the cubic polynomial \(p(x) = x^3 - 1 \), which displays a dot if \(N_p(z) \geq 20 \), for \(\epsilon = 10^{-30} \), is shown in Figure 7.1.

7.4 Numerical Quadrature

Experimental mathematicians very frequently find it necessary to calculate definite integrals to high precision. Recall the examples given in Chapters 1 and 5 of the first volume, wherein we were able to experimentally identify certain definite integrals as analytic expressions, based only on their high-precision numerical value.

To briefly reprise one example, we were inspired by a recent problem in the American Mathematical Monthly [3]. We found by using one of the quadrature routines to be described below, together with a PSLQ integer relation detection program, that if \(C(a) \) is defined by

\[
C(a) = \int_0^1 \frac{\arctan(\sqrt{x^2 + a^2})}{\sqrt{x^2 + a^2}(x^2 + 1)} \, dx
\]

then

\[
C(0) = \pi \log 2/8 + G/2 \\
C(1) = \pi/4 - \pi \sqrt{2}/2 + 3\sqrt{2} \arctan(\sqrt{2})/2 \\
C(\sqrt{2}) = 5\pi^2/96
\]

where \(G = \sum_{k \geq 0} (-1)^k / (2k+1)^2 \) is Catalan’s constant. The third of these results is the result from the Monthly. These particular results then led to the following general result, among others:

\[
\int_0^\infty \frac{\arctan(\sqrt{x^2 + a^2})}{\sqrt{x^2 + a^2}(x^2 + 1)} \, dx = \frac{\pi}{2\sqrt{a^2} - 1} \left[2 \arctan(\sqrt{a^2 - 1}) - \arctan(\sqrt{a^4 - 1}) \right]
\]

(7.4.8)
Figure 7.1: Newton-Julia set for $p(x) = x^3 - 1$
The commercial packages Maple and Mathematica both include rather good high-precision numerical quadrature facilities. However, these packages do have some limitations, and in many cases much faster performance can be achieved with custom-written programs. And in general it is beneficial to have some understanding of quadrature techniques, even if you rely on software packages to perform the actual computation.

We describe here three state-of-the-art, highly efficient techniques for numerical quadrature. You can try programming these schemes yourself, or you can refer to the C++ and Fortran-90 programs available at the URL http://www.expmath.info

7.4.1 Gaussian Quadrature

Our first quadrature scheme is known as Gaussian quadrature, named after the famous mathematician who first discovered this method in the 19th century. Gaussian quadrature is particularly effective for functions that are bounded, continuous and smooth on a finite interval. Unfortunately, many references only give tables of abscissas and weights, which are useless when we need multi-hundred digit accuracy. We describe here a fairly efficient scheme for computing these parameters to any desired accuracy.

Gaussian quadrature approximates the definite integral of the real function $f(x)$ on $(-1, 1)$ as

$$\int_{-1}^{1} f(x) \, dx \approx \sum_{j=1}^{n} w_j f(x_j)$$

(7.4.9)

where the abscissas x_j are the zeroes of the degree-n Legendre polynomial $P_n(x)$ on $[-1, 1]$, and the weights w_j are given by

$$w_j = \frac{-2}{(n+1)P'_n(x_j)P_{n+1}(x_j)}$$

(7.4.10)

for $1 \leq j \leq n$ (see [14, pg. 285]). The abscissas can be computed using a Newton iteration scheme, where the starting value for x_j is given by $\cos[\pi(j-1/4)/(n+1/2)]$ [173, pg. 125]. The Legendre polynomial function values can be computed using an n-long iteration of the recurrence $P_0(x) = 0$, $P_1(x) = 1$ and

$$(k + 1)P_{k+1}(x) = (2k + 1)xP_k(x) - kP_{k-1}(x)$$
for $k \geq 2$. The derivative is computed as $P'_n(x) = n(xP_n(x) - P_{n-1}(x))/(x^2 - 1)$.

In a typical implementation of Gaussian quadrature, multiple “levels” or phases are employed, with abscissas and weights pre-calculated for each level, starting with say $n = 3$ and then with n doubling with each level up to some maximum phase m. For many well-behaved functions, Gaussian quadrature typically exhibits quadratic convergence, in the sense that after a few initial levels, each subsequent level approximately doubles the number of correct digits. However, each level performed also approximately doubles the computation time, compared with the previous level.

We summarize this procedure as follows [173, pg. 125].

Algorithm 4 Gaussian quadrature.

Initialize (compute abscissas and weights):
For $k := 1$ to m do:
Set $n := 3 \cdot 2^k$;
For $j := 1$ to $n/2$ do:
Set $r := \cos[\pi(j - 1/4)/(n + 1/2)]$;
Iterate until $r = t_5$ to within the “epsilon” of the working precision level:
Set $t_1 := 1$ and $t_2 := 0$;
For $j_1 := 1$ to n do:
Set $t_3 := t_2$ and $t_2 = t_1$ and calculate $t_1 := [(2j_1 - 1)rt_2 - (j_1 - 1)t_3]/j_1$;
enddo
Calculate $t_4 = n(rt_1 - t_2)/(r^2 - 1)$ and then set $t_5 := r$ and $r := r - t_1/t_4$;
end iterate
Set $x_{j,k} = r$ and $w_{j,k} = 2/[(1 - r^2)t_4^2]$;
enddo; enddo

Perform quadrature for a function $f(x)$ on $(-1,1)$:
For $k := 1$ to m (or until successive instances yield results identical to within the working precision) do:
Set $n := 3 \cdot 2^k$ and set $s := 0$;
For $j := 1$ to $n/2$ do:
Set $s := s + w_{j,k}[f(-x_{j,k}) + f(x_{j,k})]$;
enddo
Set $S_k := s$;
enddo
The Newton iteration scheme given in lines 4–11 above can be accelerated by utilizing a dynamic level of precision, as in other Newton-based algorithms. On present-day systems, ordinary 64-bit arithmetic is satisfactory for calculating the initial r and performing the first few iterations. Then additional iterations can be performed with a precision level that approximately doubles with each iteration until the final desired precision level is achieved.

Error bounds are known for Gaussian quadrature, but since they rely on bounds for the n-th derivatives of $f(t)$, they are not very useful in this context, since we seek schemes that work for arbitrary functions where such information is generally not available. See Section 7.4.4 below for some alternative means to estimate errors and determine when results are sufficiently accurate.

7.4.2 Error Function Quadrature

The second scheme we will discuss here is known as “error function” or “erf” quadrature. While error function quadrature is not as efficient as Gaussian quadrature for continuous, bounded, well-behaved functions on finite intervals, it often produces highly accurate results even for functions with (integrable) singularities or vertical derivatives at one or both endpoints of the interval. In contrast, Gaussian quadrature typically performs very poorly in such cases.

The error function quadrature scheme and the tanh-sinh scheme to be described in the next section are based on the Euler-Maclaurin summation formula, which can be stated as follows [14, pg. 280]. Let $m \geq 0$ and $n \geq 1$ be integers, and define $h = (b - a)/n$ and $x_j = a + jh$ for $0 \leq j \leq n$. Further assume that the function $f(x)$ is at least $(2m + 2)$-times continuously differentiable on $[a, b]$. Then

\[
\int_a^b f(x) \, dx = \frac{h}{2} \left(f(a) + f(b) \right) + \sum_{j=0}^{n} f(x_j) - \frac{h^2}{2 \cdot (2i)!} \left(f^{(2i-1)}(b) - f^{(2i-1)}(a) \right) - E
\]

where B_{2i} denote the Bernoulli numbers, and

\[
E = \frac{h^{2m+2}(b - a)B_{2m+2}f^{2m+2}(\xi)}{(2m + 2)!}
\]
for some $\xi \in (a, b)$.

In the circumstance where the function $f(x)$ and all of its derivatives are zero at the endpoints a and b, the second and third terms of the Euler-Maclaurin formula are zero. Thus the error in a simple step-function approximation to the integral, with interval h, is simply E. But since E is then less than a constant times $h^{2m+2}/(2m+2)!$, for any m, we conclude that the error goes to zero more rapidly than any power of h. In the case of a function defined on $(-\infty, \infty)$, the Euler-Maclaurin summation formula still applies to the resulting infinite sum approximation, provided as before that the function and all of its derivatives tend to zero for large positive and negative arguments.

This principle is utilized in the error function and tanh-sinh quadrature scheme by transforming the integral of $f(x)$ on a finite interval, which we will take to be $(-1, 1)$ for convenience, to an integral on $(-\infty, \infty)$ using the change of variable $x = g(t)$. Here $g(x)$ is some monotonic function with the property that $g(x) \to 1$ as $x \to \infty$ and $g(x) \to -1$ as $x \to -\infty$, and also with the property that $g'(x)$ and all higher derivatives rapidly approach zero for large arguments.

In this case we can write, for $h > 0$,

$$
\int_{-1}^{1} f(x) \, dx = \int_{-\infty}^{\infty} f(g(t))g'(t) \, dt = h \sum_{-\infty}^{\infty} w_j f(x_j) \tag{7.4.13}
$$

where $x_j = g(hj)$ and $w_j = g'(hj)$. If the convergence of $g'(t)$ and its derivatives to zero is sufficiently rapid for large $|t|$, then even in cases where $f(x)$ has a vertical derivative or an integrable singularity at one or both endpoints, the resulting integrand $f(g(t))g'(t)$ will be a smooth bell-shaped function for which the Euler-Maclaurin summation formula applies as described above. In such cases we have that the error in the above approximation decreases faster than any power of h. The summation above is typically carried out to limits $(-N, N)$, beyond which the terms of the summand are less than the “epsilon” of the multiprecision arithmetic being used.

The error function integration scheme uses the function $g(t) = \text{erf}(t)$ and $g'(t) = (2/\sqrt{\pi})e^{-t^2}$. Note that $g'(t)$ is merely the bell-shaped probability density function, which is well-known to converge rapidly to zero, together with all of its derivatives, for large arguments. The error function $\text{erf}(x)$ can be computed to high precision as $1 - \text{erfc}(x)$, using the following formula given by Crandall [89,
\(\text{erfc}(t) = \frac{e^{-t^2 \alpha}}{\pi} \left(\frac{1}{t^2} + 2 \sum_{k \geq 1} \frac{e^{-k^2 \alpha^2}}{t^2} \right) + \frac{2}{1 - e^{2\pi t/\alpha}} + E \) \hspace{1cm} (7.4.14)

where |\(E \)| < \(e^{-\pi^2/\alpha^2} \). The parameter \(\alpha > 0 \) here is chosen large enough to ensure that the error \(E \) is sufficiently small. We summarize this scheme with the following algorithm statement. Here \(n_p \) is the precision level in digits, and \(\epsilon \) is the “epsilon” level, which is typically \(10^{-n_p} \).

Algorithm 5 Error function complement \([\text{erfc}(x)]\) evaluation.

Initialize:
Set \(\alpha := \pi / \sqrt{n_p \log(10)} \), and set \(n_t := n_p \log(10)/\pi \).
Set \(t_2 := e^{-\alpha^2}, t_3 := t_2^2 \), and \(t_4 := 1 \).
For \(k := 1 \) to \(n_t \) do: set \(t_4 := t_2 \cdot t_4, E_k := t_4, t_2 := t_2 \cdot t_3; \) enddo.

Evaluation of function, with argument \(x \):
Set \(t_1 := 0, t_2 := x^2, t_3 := e^{-t_2} \) and \(t_4 := \epsilon/(1000 \cdot t_3) \).
For \(k := 1 \) to \(n_t \) do: set \(t_5 := E_k/(k^2 \alpha^2 + t_2) \) and \(t_1 := t_1 + t_5 \).
If \(|t_5| < t_3 \) then exit do; enddo.
Set \(\text{erfc}(x) := t_3 \alpha x / \pi \cdot (1/t_2 + 2t_1) + 2/(1 - e^{2\pi x/\alpha}) \). \(\square \)

We now state the algorithm for error function quadrature. As with the Gaussian scheme, \(m \) levels of abscissas and weights are pre-computed in the error function scheme. Then we perform the computation, increasing the level by one (each of which approximately doubles the computation compared to the previous level), until an acceptable level of estimated accuracy is obtained (see Section 7.4.4.) In the following, \(\epsilon \) is the “epsilon” level of the multiprecision arithmetic being used.

Algorithm 6 Error function quadrature.

Initialize:
Set \(h := 2^{2-m} \).
For \(k := 0 \) to \(20 \cdot 2^m \) do:
Set \(t := kh, x_k := 1 - \text{erfc}(t) \) and \(w_k := 2/\sqrt{\pi} \cdot e^{-t^2} \).
If $|x_k - 1| < \epsilon$ then exit do; enddo.
Set $n_t = k$ (the value of k at exit).

Perform quadrature for a function $f(x)$ on $(-1, 1)$:
Set $S := 0$ and $h := 4$.
For $k := 1$ to m (or until successive values of S are identical to within ϵ) do:
$h := h/2$.
For $i := 0$ to n_t step 2^{m-k} do:
If $(\text{mod}(i, 2^{m-k+1}) \neq 0$ or $k = 1)$ then
If $i = 0$ then $S := S + w_0 f(0)$ else $S := S + w_i (f(-x_i) + f(x_i))$ endif.
endif; endo; endo.
Result $= h S$.

7.4.3 Tanh-Sinh Quadrature

The third scheme we will discuss here is known informally as “tanh-sinh” quadrature. It is not well-known, but based on the authors’ experience, it deserves to be taken seriously because of its speed, robustness and ease of implementation. Like the error function quadrature scheme, it is often successful in producing high-precision quadrature values even for functions with (integrable) singularities or vertical derivatives at endpoints. It was first introduced by Takahasi and Mori [196, 162].

The tanh-sinh scheme is very similar to the error function scheme, in that it is based on the Euler Maclaurin summation formula. The difference here is that it employs the transformation $x = \tanh(\pi/2 \cdot \sinh t)$, where $\sinh t = (e^t - e^{-t})/2$, $\cosh t = (e^t + e^{-t})/2$ and $\tanh t = \sinh t / \cosh t$. As before, this transformation converts an integral on $(-1, 1)$ to an integral on the entire real line, which then can be approximated by means of a simple step-function summation. In this case, by differentiating the transformation, we obtain the abscissas x_k and the weights w_k as

$$
x_j = \tanh[\pi/2 \cdot \sinh(jh)]
$$

$$
w_j = \frac{\pi/2 \cdot \cosh(jh)}{\cosh^2[\pi/2 \cdot \sinh(jh)]}.
$$

Note that these functions involved here are compound exponential, so for
example the weights \(w_j \) converge very rapidly to zero. As a result, the tanh-sinh quadrature scheme is sometimes even more effective than the error function scheme in dealing with singularities at endpoints.

Algorithm 7 *tanh-sinh quadrature.*

Initialize: Set \(h := 2^{-m} \).
For \(k := 0 \) to \(20 \cdot 2^m \) do:
Set \(t := kh, \ x_k := \tanh(\pi/2 \cdot \sinh t) \) and \(w_k := \pi/2 \cdot \cosh t / \cosh^2(\pi/2 \cdot \sinh t) \);
If \(|x_k - 1| < \epsilon\) then exit do; enddo.
Set \(n_t = k \) (the value of \(k \) at exit).

Perform quadrature for a function \(f(x) \) on \((-1, 1)\):
Set \(S := 0 \) and \(h := 1 \).
For \(k := 1 \) to \(m \) (or until successive values of \(S \) are identical to within \(\epsilon \)) do:
\(h := h/2 \).
For \(i := 0 \) to \(n_t \) step \(2^{m-k} \) do:
If \((\mod(i, 2^{m-k+1}) \neq 0 \text{ or } k = 1) \) then
If \(i = 0 \) then \(S := S + w_0 f(0) \) else \(S := S + w_i (f(-x_i) + f(x_i)) \) endif.
endif; enddo; endo.
Result = \(hS \).

\[\square \]

7.4.4 Practical Considerations for Quadrature

Each of the schemes described above have assumed a function of one variable defined and continuous on the interval \((-1, 1)\). Integrals on other finite intervals \((a, b)\) can be found by applying a linear change of variable:

\[
\int_a^b f(t) \, dt = \frac{b-a}{2} \int_{-1}^{1} f \left(\frac{b+a}{2} + \frac{b-a}{2} x \right) \, dx. \tag{7.4.16}
\]

Note also that integrable functions on an infinite interval can, in a similar manner, be reduced to an integral on a finite interval, for example:

\[
\int_0^\infty f(t) \, dt = \int_0^1 [f(x) + f(1/x)/x^2] \, dx. \tag{7.4.17}
\]
Integrals of functions with singularities (such as “corners” or step discontinuities) within the integration interval (i.e., not at the endpoints) should be broken into separate integrals.

The above algorithm statements each suggest increasing the level of the quadrature (the value of k) until two successive levels give the same value of S, to within some tolerance ϵ. While this is certainly a reliable termination test, it is often possible to stop the calculation earlier, with significant savings in run time, by means of making reasonable projections of the current error level. In this regard, the authors have found the following scheme to be fairly reliable: Let S_1, S_2, and S_3 be the value of S at the current level, the previous level, and two levels back. Then set $D_1 := \log_{10} |S_1 - S_2|$, $D_2 := \log_{10} |S_1 - S_3|$, and $D_3 := \log_{10} \epsilon - 1$. Then we can estimate the error E at level $k > 2$ as 10^{D_4}, where $D_4 = \min(0, \max(D_2/2D_1, 2D_1, D_3))$. These estimation calculations can be performed using ordinary double precision arithmetic.

All three quadrature schemes have been implemented in C++ and Fortran-90 programs available at http://www.expmath.info

7.4.5 2-D and 3-D Quadrature

The error function and tanh-sinh quadrature schemes can be straightforwardly generalized to perform 2-D and 3-D quadrature. Run times are typically many times higher than with 1-D integrals. However, if one is content with say 32-digit or 64-digit results (by using double-double or quad-double arithmetic, respectively), then many two-variable functions can be integrated in reasonable run time (say a few minutes). One advantage that these schemes have is that they are very well suited to parallel processing. Thus even several-hundred digit values can be obtained for 2-D and 3-D integrals if one can utilize a highly parallel supercomputer. One can even envision harnessing many computers on a geographically distributed grid for such a task, although the authors are not aware of any such attempts as of this date.

One sample computation of this sort, performed by one of the present authors, produced the following evaluation:

$$\int_{-1}^{1} \int_{-1}^{1} \frac{dx \, dy}{\sqrt{1 + x^2 + y^2}} = 4 \log(2 + \sqrt{3}) - \frac{2\pi}{3}. \quad (7.4.18)$$
7.5 Infinite Series Summation

We have already seen numerous examples in previous chapters of mathematical constants defined by infinite series. In experimental mathematics work, it is usually necessary to evaluate such constants to say several hundred digit accuracy. The commercial software packages Maple and Mathematica include quite good facilities for the numerical evaluation of series. However, as with numerical quadrature, these packages do have limitations, and in some cases better results can be obtained using custom-written computer code. In addition, even if one relies exclusively on these commercial packages, it is useful to have some idea of the sorts of operations that are being performed by such software.

Happily, in many cases of interest to the experimental mathematician, infinite series converge sufficiently rapidly that they can be numerically evaluated to high precision by simply evaluating the series directly as written, stopping the summation when the individual terms are smaller than the “epsilon” of the high-precision arithmetic system being used. All of the BBP-type formulas, for instance, are of this category. But other types of infinite series formulas present considerable difficulties for high precision evaluation. Two simple examples are Gregory’s series for $\pi/4$ and a similar series for Catalan’s constant:

$$\pi = 1 - 1/3 + 1/5 - 1/7 + \cdots$$
$$G = 1 - 1/3^2 + 1/5^2 - 1/7^2 + \cdots \quad (7.5.19)$$

We describe here one technique that does appear useful in many such circumstances. In fact, we have already been introduced to it in an earlier section of this chapter: it is the Euler-Maclaurin summation formula. The Euler-Maclaurin formula can be written in somewhat different form than before, as follows [14, pg. 282]. Let $m \geq 0$ be an integer, and assume that the function $f(x)$ is at least $(2m+2)$-times continuously differentiable on $[a, \infty)$, and that $f(x)$ and all of its derivatives approach zero for large x. Then

$$\sum_{j=a}^{\infty} f(j) = \int_{a}^{\infty} f(x) \, dx + \frac{1}{2} f(a) - \sum_{i=1}^{m} \frac{B_{2i}}{(2i)!} f^{(2i-1)}(a) + E \quad (7.5.20)$$

where B_{2i} denote the Bernoulli numbers, and

$$E = \frac{B_{2m+2} f^{2m+2}(\xi)}{(2m+2)!} \quad (7.5.21)$$
for some $\xi \in (a, \infty)$.

This formula is not effective as written. The strategy is instead to evaluate a series manually for several hundred or several thousand terms, then to use the Euler-Maclaurin formula to evaluate the tail. Before giving an example, we need to describe how to calculate the Bernoulli numbers B_{2k}, which are required here. The simplest way to compute them is to recall that [1, pg. 807]

$$\zeta(2k) = \frac{(2\pi)^{2k} |B_{2k}|}{2(2k)!}$$

which can be rewritten as

$$\frac{B_{2k}}{(2k)!} = \frac{2(-1)^{k+1} \zeta(2k)}{(2\pi)^{2k}}. \quad (7.5.23)$$

The Riemann zeta function at real arguments s can in turn be computed using the formula [64]

$$\zeta(s) = \frac{-1}{2^n(1-2^{1-s})} \sum_{j=0}^{2n-1} \frac{e_j}{(j+1)^s} + E_n(s) \quad (7.5.24)$$

where

$$e_j = (-1)^j \left(\sum_{k=0}^{j-n} \frac{n!}{k!(n-k)!} - 2^n \right) \quad (7.5.25)$$

(the summation is zero when its index range is null) and $|E_n(s) < 1/(8^n|1-2^{1-s}|)$. This scheme is encapsulated in the following algorithm.

Algorithm 8 Zeta function evaluation.

Initialize: Set $n = P/3$, where P is the precision level in bits, and set $t_1 := -2^n$, $t_2 := 0$, $S := 0$, and $I := 1$.

For $j := 0$ to $2n-1$ do: If $j < n$ then $t_2 := 0$ elseif $j = n$ then $t_2 := 1$ else $t_2 := t_2 \cdot (2n - j + 1)/(j - n)$ endif.

Set $t_1 := t_1 + t_2$, $S := S + I \cdot t_1/(j+1)^s$ and $I := -I$; enddo.

Return $\zeta(s) := -S/[2^n \cdot (1 - 2^{1-s})]$. □
A more advanced method to compute the zeta function in the particular case of interest here, where we need the zeta function evaluated at all even integer arguments up to some level m, is described in [16].

We will illustrate the above by calculating Catalan’s constant using the Euler-Maclaurin formula. We can write

$$G = (1 - 1/3^2) + (1/5^2 - 1/7^2) + (1/9^2 - 1/11^2) + \cdots$$

$$= 8 \sum_{k=0}^{\infty} \frac{2k + 1}{(4k + 1)^2(4k + 3)^2}$$

$$= 8 \sum_{k=0}^{n} \frac{2k + 1}{(4k + 1)^2(4k + 3)^2} + 8 \sum_{k=n+1}^{\infty} \frac{2k + 1}{(4k + 1)^2(4k + 3)^2}$$

$$= 8 \sum_{k=0}^{n} \frac{2k + 1}{(4k + 1)^2(4k + 3)^2} + 8 \int_{n+1}^{\infty} f(x) \, dx + 4f(n + 1)$$

$$- 8 \sum_{i=1}^{m} \frac{B_{2i}}{(2i)!} f^{(2i-1)}(n + 1) + 8E \quad (7.5.26)$$

where $f(x) = (2x + 1)/[(4x + 1)^2(4x + 3)^2]$ and $|E| < 3/(2\pi)^2m+2$. Using $m = 20$ and $n = 1000$ in this formula, we obtain a value of G correct to 114 decimal digits. We presented the above scheme for Catalan’s constant because it is illustrative of the Euler-Maclaurin method. However serious computation of Catalan’s constant can be done more efficiently using the Boole summation formula (see (16)), the recently discovered BBP-type formula (given in Table 3.5 of the first volume), Ramanujan’s formula (given in item 7 of the chapter six in the first volume), or Bradley’s formula (also given in item 7 of chapter six in the first volume).

One less-than-ideal feature of this approach is that high-order derivatives are required. In many cases of interest, successive derivatives satisfy a fairly simple recursion and can thus be easily computed with an ordinary hand-written computer program. In other cases, these derivative are sufficiently complicated that such calculations are more conveniently performed in a symbolic computing environment such as Mathematica or Maple. In a few applications of this approach, a combination of symbolic computation and custom-written numerical computation is required [18].
7.5.1 Computation of Multiple Zeta Constants

As we saw in Chapter 3, one class of mathematical constants that has been of particular interest to experimental mathematicians in the past few years are multiple zeta constants. Research in this arena has been facilitated by the discovery of methods that permit these constants to high precision. While Euler-Maclaurin-based schemes can be used (and in fact were used) in these studies, they are limited to order two sums. We present here an algorithm that permits even high-order sums to be evaluated to high precision. We will limit our discussion here to multiple zeta constants of the form

$$\zeta(s_1, s_2, \cdots, s_n) = \sum_{n_1 > n_2 > \cdots > n_k} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_k^{s_k}}$$ (7.5.27)

for positive integers \(s_k\) and \(n_k\), although the general technique we describe here has somewhat broader applicability.

This scheme is as follows [36]. For \(1 \leq j \leq m\), define the numeric strings

\[
a_j = \{s_j + 2, \{1\}^{r_j}, s_{j+1}, \{1\}^{r_{j+1}}, \cdots, s_m + 2, \{1\}^{r_m}\} \quad (7.5.28)
\]

\[
b_j = \{r_j + 2, \{1\}^{s_j}, r_{j-1}, \{1\}^{s_{j-1}}, \cdots, r_1 + 2, \{1\}^{s_1}\} \quad (7.5.29)
\]

where by the notation \(\{1\}^n\) we mean \(n\) repetitions of 1. For convenience, we will define \(a_{m+1}\) and \(b_0\) to be the empty string. Define

\[
\delta(s_1, s_2, \cdots, s_k) = \prod_{j=1}^{k} \left[\sum_{\nu_j=1}^{\infty} 2^{-\nu_j} \left(\sum_{i=j}^{k} \nu_i \right)^{-s_j} \right]. \quad (7.5.30)
\]

Then we have

\[
\zeta(a_m) = \sum_{j=1}^{m} \sum_{t=0}^{r_j+1} \delta(s_j + 2 - t, \{1\}^{r_j}, a_{j+1}) \delta(\{1\}^t, b_{j-1})
\]

\[
+ \sum_{u=1}^{r_j} \delta(\{1\}^u, a_{j+1}) \delta(r_j + 2 - v, 1^{s_j}, b_{j-1}) \right] + \delta(b_m). \quad (7.5.31)
\]

See the discussion in Chapter 3, as well as [36] and [87] for further details. An online tool that implements this procedure is available at

http://www.cecm.sfu.ca/projects/ezface+
This procedure has also been implemented as part of the Experimental Mathematician’s Toolkit, available at http://www.expmath.info

7.6 Commentary and Additional Examples

1. **Primes in pi.** $\pi_1 = 3, \pi_2 = 31, \pi_6 = 314159$, and π_{38} are the only prime initial strings in the first 500 digits of π. The next probable prime string is π_{16208}. This suspected prime would be a superb candidate for the new AKS-class of rigorous, deterministic algorithms discussed in Section 7.2. For other information on primes in π, see http://mathpages.com/home/kmath184/kmath184.htm

2. **Adaptation of Putnam problem 1993–A5.** Consider the integral

$$J(a, b) = \int_a^b \frac{(x^2 - x)^2}{(x^3 - 3x + 1)^2} \, dx.$$

Show that

$$J(-100, -10) + J\left(\frac{1}{101}, \frac{1}{11}\right) + J\left(\frac{101}{100}, \frac{11}{10}\right)$$

is rational.

Hint: Numerically observe that the given expression is rational. Then consider the changes of variables $x \to 1 - 1/x$ and $x \to 1/(1 - x)$, respectively, to move the second and third integrals to the interval $[-100, -10]$. Answer: $11131110/107634259$.

3. **Berkeley problem 5.10.26.** Evaluate

$$I = \int_0^{2\pi} \frac{\cos^2(3t)}{5 - 4 \cos(2t)} \, dt.$$

Answer: $3\pi/8$.

Hint: $I = \frac{1}{2} \text{Re} \left(i \int_{|z|=1} (z^3 + 1)/(2z^2 - 5z + 2) \, dz \right) = -\pi \text{Res}((z^3 + 1)/(2z^2 - 5z + 2), z = \frac{1}{2})$.

4. **Berkeley problem 5.10.27.** Evaluate

\[I = \int_{|z|=1} \frac{\cos^3(z)}{z^3} \, dz \]

taken counter-clockwise.

Answer: \(3\pi i\).

Hint: \(2\pi i \text{Res} (\cos^3(z)/z^3, z = 0)\).

5. **Berkeley problem 5.11.4.** Evaluate

\[\int_0^\infty \frac{\sin^2(t)}{t^2} \, dt. \]

Answer: \(\pi/2\).

Hint: Integrate by parts or use residues.

6. **Berkeley problem 5.11.5.** Evaluate

\[\int_{-\infty}^{\infty} \frac{\sin^3(t)}{t^3} \, dt \quad \left(= \frac{3\pi}{4}\right). \]

Hint: \(4 \sin^3(z) = \text{Re} 3 \exp(iz) - \exp(3iz)\). Use Cauchy's theorem on a contour \(C\) which consists of semicircles of radius \(\varepsilon \rightarrow 0\) and \(R \rightarrow \infty\) along with the intervals \([-R, -\varepsilon]\) and \([\varepsilon, R]\).

7. **Berkeley problem 5.11.8.** Show

\[\int_0^{\infty} \frac{\sin(x)}{x(x^2 + a^2)} \, dx = \frac{\pi (1 - e^{-a})}{2a^2}. \]

8. **Berkeley problem 5.11.14.** Evaluate

\[\int_0^{\infty} \frac{1 + x^2}{1 + x^4} \, dx \quad \left(= \frac{\pi}{\sqrt{2}}\right). \]

Hint: Again use residues or consider \(\int_0^\infty (1 + x^2)/(1 + x^4) \, dx\).
9. Berkeley problem 5.11.22. Show

\[\int_0^{\infty} \frac{x}{\sinh (x)} \, dx = \frac{\pi^2}{4}. \]

Then determine

\[\int_0^t \frac{x}{\sinh (x)} \, dx. \]

10. Berkeley problem 5.11.25. Show

\[\int_0^{\infty} \frac{\log^2 (x)}{1 + x^2} \, dx = \frac{\pi^3}{8}. \]

11. Evaluate the following integrals, by numerically computing them and then trying to recognize the answers, either by using the Inverse Symbolic Calculator at

http://www.cecm.sfu.ca/projects/ISC/

or else by using a PSLQ facility, such as that built into the Experimental Mathematician’s Toolkit, available at:

http://www.expmath.info

These examples are taken from Gradsteyn and Ryzhik’s reference [123]. All of the answers are simple one- or few-term expressions involving familiar mathematical constants such as \(\pi, e, \sqrt{2}, \sqrt{3}, \log 2, \zeta(3), G \) (Catalan’s constant) and \(\gamma \) (Euler’s constant). We recognize that many of these can be evaluated analytically using symbolic computing software (depending on the available versions). The intent here is to provide exercises for numerical quadrature and constant recognition facilities.

(a) \[\int_0^1 \frac{x^2 \, dx}{\sqrt{1 - x^4}} \quad (7.6.32) \]

(b) \[\int_0^{\infty} xe^{-x} \sqrt{1 - e^{-2x}} \, dx \quad (7.6.33) \]

(c) \[\int_0^{\infty} \frac{x^2 \, dx}{\sqrt{e^x - 1}} \quad (7.6.34) \]

(d) \[\int_0^{\pi/4} x \tan x \, dx \quad (7.6.35) \]
7.6. COMMENTARY AND ADDITIONAL EXAMPLES

(e) \[\int_{0}^{\pi/2} \frac{x^2}{1 - \cos x} \, dx \] (7.6.36)

(f) \[\int_{0}^{\pi/4} (\pi/4 - x \tan x) \tan x \, dx \] (7.6.37)

(g) \[\int_{0}^{\pi/2} \frac{x^2}{\sin^2 x} \, dx \] (7.6.38)

(h) \[\int_{0}^{\pi/2} \log^2 (\cos x) \, dx \] (7.6.39)

(i) \[\int_{0}^{1} \frac{\log x \, dx}{x^2 + x + 1} \] (7.6.40)

(j) \[\int_{0}^{1} \frac{\log(1 + x^2) \, dx}{x^2} \] (7.6.41)

(k) \[\int_{0}^{\infty} \frac{\log(1 + x^3) \, dx}{1 - x + x^2} \] (7.6.42)

(l) \[\int_{0}^{\infty} \frac{\log x \, dx}{\cosh^2 x} \] (7.6.43)

(m) \[\int_{0}^{1} \frac{\arctan x \, dx}{x\sqrt{1 - x^2}} \] (7.6.44)

(n) \[\int_{0}^{\pi/2} \frac{\sqrt{\tan t} \, dt}{\cosh^2 x} \] (7.6.45)

Answers: (a) \(\pi/8 \), (b) \(\pi(1+2 \log 2)/8 \), (c) \(4\pi(\log^2 2 + \pi^2/12) \), (d) \((\pi \log 2)/8 + G/2 \), (e) \(-\pi^2/4 + \pi \log 2 + 4G \), (f) \((\log 2)/2 + \pi^2/32 - \pi/4 + (\pi \log 2)/8 \), (g) \(\pi \log 2 \), (h) \(\pi/2(\log^2 2 + \pi^2/12) \), (i) \(8\pi^3/(81\sqrt{3}) \), (j) \(\pi/2 - \log 2 \), (k) \(2(\pi \log 3)/\sqrt{3} \), (l) \(\log \pi - 2 \log 2 - \gamma \), (m) \[\pi \log(1 + \sqrt{2})]/2 \), (n) \(\pi \sqrt{2}/2 \).

12. Evaluate the following infinite series, by numerically computing them and then trying to recognize the answers, either by using the Inverse Symbolic Calculator at

http://www.cecm.sfu.ca/projects/ISC/

or else by using a PSLQ facility, such as that built into the Experimental Mathematician’s Toolkit, available at:

http://www.expmath.info
These examples have been provided to the authors by Gregory and David Chudnovsky of the Institute for Mathematics and Supercomputing at Brooklyn Polytechnic College. All of the answers are simple one- or few-term expressions involving familiar mathematical constants such as \(\pi\), \(e\), \(\sqrt{2}\), \(\sqrt{3}\), \(\log 2\), \(\zeta(3)\), \(G\) (Catalan’s constant) and \(\gamma\) (Euler’s constant).

(a) \[
\sum_{n=0}^{\infty} \frac{50n - 6}{2^n \binom{3n}{n}}
\] \hspace{1cm} (7.6.46)

(b) \[
\sum_{n=0}^{\infty} \frac{2^{n+1}}{2^n \binom{2n}{n}}
\] \hspace{1cm} (7.6.47)

(c) \[
\sum_{n=0}^{\infty} \frac{12n2^{2n}}{(4n)^4}
\] \hspace{1cm} (7.6.48)

(d) \[
\sum_{n=0}^{\infty} \frac{(4n)!(1 + 8n)}{4^{4n}n!^4}
\] \hspace{1cm} (7.6.49)

(e) \[
\sum_{n=0}^{\infty} \frac{(4n)!(19 + 280n)}{4^{4n}n!^499^{2n+1}}
\] \hspace{1cm} (7.6.50)

(f) \[
\sum_{n=0}^{\infty} \frac{(2n)!(3n)!4^n(4 + 33n)}{n!^5108^n125^n}
\] \hspace{1cm} (7.6.51)

(g) \[
\sum_{n=0}^{\infty} \frac{(-27)^n(90n + 177)}{16^n \binom{3n}{n}}
\] \hspace{1cm} (7.6.52)

(h) \[
\sum_{n=0}^{\infty} \frac{275n - 158}{2^n \binom{3n}{n}}
\] \hspace{1cm} (7.6.53)

(i) \[
\sum_{n=0}^{\infty} \frac{8^n(520 + 6240n - 430n^2)}{(4n)^4}
\] \hspace{1cm} (7.6.54)

(j) \[
\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{n^24^n}
\] \hspace{1cm} (7.6.55)

(k) \[
\sum_{n=0}^{\infty} \frac{(-1)^n}{n^32^n \binom{2n}{n}}
\] \hspace{1cm} (7.6.56)
7.6. COMMENTARY AND ADDITIONAL EXAMPLES

\[(l) \quad \sum_{n=0}^{\infty} \frac{8^n(338 - 245n)}{3^n \binom{3n}{n}} \]
(7.6.57)

\[(m) \quad \sum_{n=1}^{\infty} \frac{(-9)^n \binom{2n}{n}}{6n^2 4^n} - \sum_{n=1}^{\infty} \frac{3^n \binom{2n}{n}}{n^2 16^n} \]
(7.6.58)

Answers: (a) \(\pi \), (b) \(\pi + 4 \), (c) \(3\pi + 8 \), (d) \(\frac{2}{(\pi \sqrt{3})} \), (e) \(\frac{2}{(\pi \sqrt{11})} \), (f) \(15\sqrt{3}/(2\pi) \), (g) \(120 - 64 \log 2 \), (i) \(45\pi - 1164 \), (j) \(\pi^2/6 - 2\log^2 2 \), (k) \(\log^2 2/6 - \zeta(3)/4 \), (l) \(162 - 6\pi \sqrt{3} - 18 \log 3 \), (m) \(\pi^2/18 + \log^2 2 - \log^3 3/6 \).

13. **Pisot and Salem numbers.** A real algebraic integer \(\alpha > 1 \) is a **Pisot number** (resp. **Salem number**) if all other roots of its monic polynomial lie inside (res. inside or on) the unit disc. An algebraic number \(\alpha \) is a Pisot number if and only if, for \(n \in \mathbb{N} \), the fractional parts \(\{n\alpha\} \to 0 \) as \(n \to \infty \).

The smallest Pisot number is the largest root of \(z^3 - z - 1 \) and is approximately \(1.3247179 \ldots \). The smallest Salem number is conjectured to be the largest root of Lehmer’s polynomial

\[p(z) = z^{10} + z^9 - z^7 - z^6 - z^5 - z^4 - z^3 + z + 1, \]

which has two real roots \(0.850137130927042 \ldots \) and \(1.176280818259917 \ldots \). The conjecture is called **Lehmer’s problem (1933)** [65].

(a) Show that for a Pisot number the fractional parts \(\{n\alpha\} \to 0 \) as \(n \to \infty \). Hint: use Newton’s formula for

\[\sigma_n = \sum_{p(\beta)=0} \beta^n \]

where \(p \) is the polynomial associated with \(\alpha \).

(b) Computationally establish Lehmer’s conjecture up to as high a degree as possible (this has been done to about degree 40).

14. **Halley’s method.** Suppose \(f \) is a suitably smooth real function and \(N \geq 1 \) is integer. Consider the iteration starting at an initial value \(y_0 = y \) and iterating

\[y_{n+1} = y_n + \left(\frac{1}{f'(y)} \right)^{(N)} \left(\frac{y}{f'(y)} \right) \bigg|_{y=y_n}. \]
For $N = 0$ this is Newton’s method to find a zero of f. For $N = 1$ this is a locally cubically convergent method due to the astronomer and mathematician Halley.

Show in general that the method converges of order $N + 2$ for the initial guess close enough to a (non-degenerate) zero of f.

15. **Bender’s continued fraction for the Bernoulli numbers.** The Bernoulli numbers as exact rational numbers can be generated from a continued fraction, due to Bender, which makes a nice equally divergent counterpart to Exercise 56 of Chapter 7 of the first volume.

Formally

\[
S(a) = 1 + \frac{b_0 a^2}{1 + \frac{b_1 a^2}{1 + \frac{b_2 a^2}{1 + \frac{b_3 a^2}{1 + \ldots}}}} = \sum_{n=0}^{\infty} B_{2n} a^{2n},
\]

with $b_0 = 1/6$ and

\[
b_n = \frac{n(n + 1)^2(n + 2)}{4(2n + 1)(2n + 3)},
\]

for $n > 0$.

(a) While the series does not converge in any obvious sense, it gives a very satisfactory symbolic expansion. Decide whether $S(a)$ coincides with the subsequent three equivalent expressions:

\[
S(a) \begin{equation} = a \int_0^\infty t \coth \left(\frac{ta}{2} \right) e^{-t} dt\end{equation}
\]

\[
= a \int_0^1 \log (s) \left(\frac{s}{s^a - 1} \right) ds = 1 + \left(\frac{a}{2} \right) + a \sum_{n=1}^\infty \frac{1}{(an + 1)^2}.
\]

(b) Evaluate $S(4)$, $S(1/4)$, $S(3)$, and $S(1/3)$.

(c) Show that $2n \int_0^\infty x^{2n-1} e^{-\pi x} \coth (\pi x) \, dx = |B_{2n}|$ for $n = 1, 2, \ldots$.

(What are the even moments?)
Deduce, for all real \(a \), that
\[
1 + \frac{a}{2} + a \sum_{n=1}^{\infty} \frac{1}{(an + 1)^2} = \int_{0}^{\infty} \coth \left(\frac{\pi x}{a} \right) \frac{2x}{(1 + x^2)^2} \, dx,
\]
and that
\[
4a \int_{0}^{\infty} \frac{ya \left(1 - (-1)^N (ya)^2 \right) \left(1 + N(1 + (ya)^2) \right)}{(e^{2\pi y} - 1)(1 + (ya)^2)^2} \, dy = \sum_{n=1}^{N} B_{2n}a^{2n},
\]
for \(N > 0 \).

(d) In consequence
\[
\left| \int_{0}^{\infty} \coth \left(\frac{\pi x}{a} \right) \frac{2x}{(1 + x^2)^2} \, dx - \sum_{n=0}^{N-1} B_{2n}a^{2n} \right| < |B_{2N}| a^{2N},
\]
and we obtain a genuine asymptotic expansion.

(e) Show, for \(a > 1 \), that
\[
S(a) = \frac{a (3 + 2a + a^2)}{2(1 + a)^2} - \sum_{n=1}^{\infty} \frac{n}{(-a)^n} (\zeta (n + 1) - 1)
\]
\[
= \frac{1}{2a} \pi^2 \csc^2 \left(\frac{\pi}{a} \right) - 2 \frac{a^2}{(1 - a^2)^2} - 2 \sum_{n=1}^{\infty} \frac{n}{a^{2n}} \left(\zeta (2n + 1) - 1 \right).
\]
For what \(a \) are these valid equalities?

(f) Show that
\[
T(a) = \int_{0}^{\infty} \tanh (ax) e^{-x} \, dx = \int_{0}^{1} \frac{1 - y^2a}{1 + y^2a} \, dy
\]
generates the continued fraction
\[
\frac{a}{1 + \frac{2a^2}{1 + \frac{6a^2}{1 + \frac{12a^2}{1 + \frac{20a^2}{1 + \cdots}}}}} = -\sum_{n \geq 1} T_{2n+1}a^{2n-1}.
\]
Here the \(T_n \) are, as before, tangent numbers.
(g) Provide a justification for the last identity along the lines given above for the Bernoulli numbers.

(h) Show

\[
\frac{T(a) + 1}{2} = F\left(\frac{1}{2a}, 1; \frac{1}{2a} + 1; -1\right)
\]

is of the form for Gauss’s continued fraction.

16. **The Boole summation formula.** Boole summation is a counterpart of Euler-Maclaurin summation especially fitted to alternating series. Based upon Euler numbers rather than Bernoulli numbers it is described in detail in [37] and in the revised version of Abromowitz and Stegun http://dlmf.nist.gov/. We recall the Euler polynomials are defined by

\[
\frac{2e^{tx}}{e^t + 1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}
\]

for \(|t| < \pi\) and let the periodic Euler function be defined by \(E_n(x) = E_n(x)\) for \(0 < x \leq 1\) and \(E_n(x + 1) = -E_n(x)\) for all \(x\). Then the Euler numbers are recovered as \(E_n = 2^n E_n\left(\frac{1}{2}\right)\).

The version of Boole summation we need tells us that if \(f\) has \(m\) derivatives on \(t \geq x\) and \(f^{(k)}(t) \to 0\) as \(t \to \infty\) for \(0 \leq k \leq m\) then

\[
\sum_{n=0}^{\infty} (-1)^n f(x + h + n) = \sum_{k=0}^{m} \frac{E_k(h)}{2k!} f^{(k)}(x) + R_m \quad (7.6.59)
\]

where

\[
R_m = \frac{1}{2(m-1)!} \int_0^\infty E_{m-1}(h - t) f^{(m)}(x + t) \, dt.
\]

(a) Use (7.6.59) to prove the formulas for the “errors” in Gregory series for \(\pi\) and the classical series for \(\log 2\) given in Section 2.2 of the first volume.

(b) Apply the same technique to Catalan’s constant and to \(\zeta(3)\).

17. **Value Recycling, \(\zeta\) and \(\Gamma\).** This material is culled from [53]. The notion of recycling is that previously calculated \(\zeta\)-values—or initialization tables
of those calculations—are re-used to aid in the extraction of other \(\zeta \)-values, or that many \(\zeta \)-values are somehow simultaneously determined, and so on. So by value recycling we intend that the computation of a collection of \(\zeta \)-values is more efficient than establishment of independent values. We record

\[
\pi t \cot(\pi t) = -2 \sum_{m=0}^{\infty} \zeta(2m) t^{2m}
\]

(7.6.60)

and the incomplete gamma function, given (at least for \(\text{Re}(z) > 0 \)) by:

\[
\Gamma(a, z) = \int_{z}^{\infty} t^{a-1} e^{-t} dt = \frac{2z^a e^{-z}}{\Gamma(1-a)} \int_{0}^{\infty} \frac{t^{1-2a} e^{-t^2}}{t^2 + z} dt,
\]

where the integral representation is valid for \(\text{Re}(a) < 1 \). Evaluation of \(\Gamma(a, z) \) is not as problematic as it may seem; many computer systems have suitable machinery. We note the special cases \(\Gamma(s, 0) = \Gamma(s) \) and \(\Gamma(1, z) = e^{-z} \), and the recursion

\[
a \Gamma(a, z) = \Gamma(a + 1, z) - z^a e^{-z}.
\]

(7.6.61)

Also

\[
\zeta(s) \Gamma\left(\frac{1}{2}s\right) = \frac{\pi^{s/2}}{s(s-1)} + \sum_{n=1}^{\infty} n^{-s} \Gamma\left(\frac{1}{2}s, \pi n^2\right) + \pi^{s-1/2} \sum_{n=1}^{\infty} n^{s-1} \Gamma\left(\frac{1}{2}(1-s), \pi n^2\right),
\]

(7.6.62)

\[
\zeta(s) \Gamma(s) = -\frac{\lambda^s}{2s} + \frac{\lambda^{s-1}}{s-1} + \sum_{n=0}^{\infty} n^{-s} \Gamma(s, \lambda n) - 2\lambda^{s-1} \sum_{n=1}^{\infty} \left(\frac{\lambda}{2\pi i t}\right)^{2n} \frac{\zeta(2n)}{2n + s - 1},
\]

(7.6.63)

(a) One can use either of (7.6.62) or (7.6.63) to efficiently evaluate \(\zeta \) at each of \(N \) arguments \(\{s, s+2, s+4, \ldots, s+2(N-1)\} \) for any complex \(s \). This approach is fruitful for obtaining a set of \(\zeta \)-values at odd positive integers, for example. The idea is to exploit the recursion relation (7.6.61) for the incomplete gamma function and, when \(N \) is sufficiently large, effectively remove incomplete gamma evaluations via \(\Gamma(\{s/2\}, x), \Gamma(\{(1-s)/2\}, x) \) where \(\{z\} \) here denotes the fractional
part of \(z \), over a collection of \(x \)-values, and then use the above recursion either backwards or forwards to rapidly evaluate series terms for the whole set of desired \(\zeta \)-values.

Given the initial \(\Gamma\left\{ \{s/2\}, x \right\} \) evaluations, further effort is sharply reduced. When \(\{s + 2k\} \) are odd integers, precomputation involve only \(\Gamma(0, x) \) and \(\Gamma(1/2, x) \) values—known classically as exponential-integral and error-function values. Reference [89] contains explicit pseudocode for a recycling evaluation of \(\zeta(3), \zeta(5), \ldots, \zeta(L) \) via (7.6.62), and one initializes error function and exponential-integral values by:

\[
\left\{ \Gamma\left(1/2, \pi n^2\right) : n \in [1, \lfloor D \rfloor] \right\},
\]

\[
\left\{ \Gamma\left(0, \pi n^2\right) : n \in [1, \lfloor D \rfloor] \right\},
\]

when \(D \) decimal digits precision is ultimately desired for each \(\zeta \) value.

The notion of “recycling” takes its purest form in this method, for the incomplete-gamma evaluations above are reused for every \(\zeta \)(odd).

(b) A second approach, relevant for \textit{even} integer arguments, involves a method of series inversion used by J. P. Buhler for numerical analysis on Fermat’s “Last Theorem” and on the Vandiver conjecture [70, 71]. This uses a generating function for Bernoulli numbers, and invokes Newton’s method for series inversion of the key elementary functions. To get values at even positive integers, one may use an expansion related to (7.6.60). One has:

\[
\frac{\sinh(2\pi \sqrt{t})}{4\pi \sqrt{t}} - \frac{2\pi^2 t}{\cosh(2\pi \sqrt{t}) - 1} = -\sum_{n=0}^{\infty} (-1)^n \zeta(2n) t^n,
\]

which we have written this way for Algorithm 9. We have split the left-hand side into two series, each in \(t \): one of the form \((\sinh \sqrt{z})/\sqrt{z} \) the other like \((\cosh \sqrt{z} - 1)/z \). The idea, is to invert the latter series via a fast polynomial inversion algorithm (Newton method). Using \(t \) as a place-holder one reads off the \(\zeta \)-values as coefficients in a final polynomial. In Algorithm 9, we assume that \(\zeta(2), \zeta(4), \ldots, \zeta(2N - 2) \) are desired. The polynomial arithmetic is most efficient when truncation of large polynomials occurs as needed. We denote by \(q(t) \mod t^k \) truncation of polynomial \(q \) through \(t^{k-1} \). Also, polynomial multiplication operation is signified by “*”.
Algorithm 9 Recycling scheme for $\zeta(0), \zeta(2), \zeta(4), ..., \zeta(2(N-1))$.

1) [Denominator setup] Create the polynomial $f(t) = (\cosh(2\pi\sqrt{t}) - 1)/(2\pi^2t)$, through degree N (i.e., through power t^N inclusive);

2) [Newton polynomial inversion, to obtain $g := f^{-1}$] Set $p = g = 1$; while ($p < \deg(f)$) do begin
 \begin{align*}
 p &= \max(2p, \deg(f)); \quad h = f \mod t^p; \quad g = (g + g \ast (1 - h \ast g)) \mod t^p; \quad \text{end;}
 \end{align*}

3) [Numerator setup] Create the polynomial $k(t) = \sinh(2\pi\sqrt{t})/(4\pi\sqrt{t})$, through degree N;

 $g = g \ast k \mod t^{2N-1}$; for $n \in [0, 2N - 2]$, read off $\zeta(2n)$ as $-(-1)^a$ times the coefficient of t^n in polynomial $g(t)$.

In step 1) the polynomial can have floating point or symbolic coefficients with their respective powers of π and so on. If used symbolically, the ζ values of the indicated finite set are exact, through $\zeta(2N - 2)$ inclusive. The method has been used, numerically so that fast Fourier transform methods may also be applied, to calculate the relevant ζ-values for high-precision values of the Khinchine constant [16].

If memory storage is an issue, there is a powerful technique called multisectioning, whereby one calculates all the $\zeta(2k)$ for k lying in some congruence class (mod 4, 8 or 16 say), using limited memory for that calculation, then moving on to the next congruence class, and so on. Observe that, by looking only at even-indexed Bernoulli numbers in the previous algorithm, we have effectively multisectioned by 2 already. To multisection by 4, observe:

$$\frac{x \cosh x \sin x \pm x \cos x \sinh x}{\sinh x \sin x} = 2 \sum_{n \in S^\pm} \frac{B_n}{n!} (2x)^n,$$

where the sectioned sets are $S^+ = \{0, 4, 8, 12, \ldots\}$ and $S^- = \{2, 6, 10, 14, \ldots\}$. The key is that the denominator $(\sinh x \sin x)$ is, perhaps surprisingly, x^2 times a series in x^4, namely we have the attractive series

$$\sinh x \sin x = \sum_{n \in S^-} (-1)^{(n-2)/4} 2^{n/2} \frac{x^n}{n!}, \quad (7.6.65)$$
so that the key Newton inversion of a polynomial approximant to the

denominator only has one-fourth the terms of the standard Bernoulli
denominator \((e^x - 1)\). Thus, reduced memory is used to establish a

congruence class of Bernoulli indices, then that memory is reused for

the next congruence class, and so on. Thus, these methods function

well in parallel or serial environments.

Multisectioning was used by Buhler and colleagues—as high as level-

16 sections—to verify Fermat’s “Last Theorem” to exponent 8 million.

They desired Bernoulli numbers modulo primes, and so employed

integer arithmetic. A detailed analysis of multisectioning is to be

found in Kevin Hare’s 1999 MSc. thesis [132].

(c) A third approach is to contemplate continued fraction representa-

tions that yield \(\zeta\)-values. For example, the well known fraction for

\(\sqrt{z}\coth\sqrt{z}\) gives:

\[
\frac{\pi^2 z}{3 + \frac{\pi^2 z}{5 + \frac{\pi^2 z}{7 + \cdots}}} = 2 \sum_{n=1}^{\infty} (-1)^{n-1} \zeta(2n)z^n.
\]

This is advantageous if one already has an efficient continued fraction

engine. As a final alternative for fast evaluation at even positive

integer arguments, there is an interesting approach due to Plouffe and

Fee, in which the Von-Staudt-Clausen formula for the fractional part

of \(B_n\) is invoked, then asymptotic techniques are used to determine

the integer part. In this way the number \(B_{200000}\) has been calculated

in exact, rational form.

18. Pseudospectra. A fine example of the changing nature of numerical

mathematics is afforded by the use of pseudospectra. One considers the

\(\varepsilon\)-pseudospectrum of a complex \(n \times n\) matrix \(A\) for \(\varepsilon > 0\)

\[
\Lambda_\varepsilon(A) = \{z \in C : z \in \Lambda(B), \text{ for some } \|B - A\| \leq \varepsilon\},
\]

which consists of the eigenvalues of all nearby matrices (in operator norm),

and coincides with the spectrum of \(A\), \(\Lambda(a)\), for \(\varepsilon = 0\). This is much more
stable than the spectrum and can be graphed very informatively for various values of ϵ as illustrated in Figure 7.2 for the matrix $A(0.5)$. Here,

$$A(t) = \begin{bmatrix} t & -1/4 & 0 \\ 0 & t & 0 \\ 0 & 0 & t - 1/2 \end{bmatrix}, \quad A^{-1}(t) = \begin{bmatrix} t^{-1} & 1/4 t^{-2} & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 2 (2 t - 1)^{-1} \end{bmatrix}. $$

Thus, $A(t)$ has eigenvalues $t, t, t - 1/2$, and the inverse exists for $t \neq 0, 1/2$. Try to correlate the graphic information with the behavior of $A^{-1}(t)$.

See

http://web.comlab.ox.ac.uk/projects/pseudospectra/

for a host of tools and examples, from which the picture (Figure 7.3) of a 200 dimension Toeplitz matrix with “symbol” $t^{-5} - t$ is taken.

Similarly, the ϵ–spectral radius of a matrix, $\alpha_\epsilon(A) = \{\Re z : z \in \Lambda_\epsilon(A)\}$, is more robust than the spectral radius ($\epsilon = 0$) and is important in engineering control problems. The stability of the pseudospectrum is in large explained by its variational formulation.

19. **Square-full numbers and one bits.** A *square-full number*, also known as squareful or powerful number, is a natural number all of whose prime factors occur to multiplicity greater than one. In [17] it is shown that
the number of 1’s in the first \(N \) bits of the theta function value \(\sigma = \left(\sum_{n \geq 0} 2^{-n^2} \right)^2 = (\theta_3(1/2)/2 + 1/2)^2 \) behaves like

\[
C_0 \frac{N}{\sqrt{\log N}}, \quad \text{where} \quad C_0 = \frac{16L^3}{\pi^2} \sum_g \frac{b(\tau(g))}{\psi(g)},
\]

(7.6.66)

and \(g \) runs over the square-full integers divisible solely by primes that are congruent to 1 mod 4. Here \(b \) denotes the number of bits, \(\tau \) the number of divisors, \(\psi(g) = g \prod_{p|g} (1 + 1/p) \), and \(L \) is the Landau constant

\[
L = \left(\frac{1}{2} \prod_{p \equiv 3 \mod 4} \left(1 - \frac{1}{p^2} \right)^{-1} \right)^{1/2} = 0.764223653 \ldots
\]

(a) Compute the predicted density (7.6.66) of ones in the binary expansion of \(\sigma \), for \(N = 10^n \), \(n = 1, \ldots, 8 \).

(b) Compare the empirical density for the same values of \(N \).

20. **Converting series into products.** Use the ideas in Exercise 8 of Chapter 3 to produce two algorithms for converting series into products of the form in that exercise; and compare the efficiency of the two methods.
21. **Self-reference and Grelling’s paradox of heterologiality.** One of the classic linguistic (or predicate) paradoxes—which like Russell’s naive set theory paradox of all non-self containing sets—prefigures Gödel’s theorem and Chaitin’s work is as follows. Say that a word or property is *homological* if it describes itself and *heterological* otherwise. Thus, “short” is short and, arguably, “ugly” is ugly and so both are homological. By contrast “long” is not long and so is heterological. A problem occurs when we try to decide if “heterological” is a heterological property.

This is usually dealt with by restricting the range of predicates or the class of sets. It would be amusing if we could show that Khintchine’s constant did not respect Khintchine’s constant.

22. **Progress and silence.** “It’s generally the way with progress that it looks much greater than it really is” is the epigraph that Ludwig Wittgenstein (1889–1951) (“whereof one cannot speak, thereof one must be silent”) had wished for an unrealized joint publication of *Tractatus Logico-Philosophicus* (1922) and *Philosophical Investigations* (1953). This suggests the two volumes are not irreconcilable as often described. Wittgenstein was one of the influential members of the Vienna Circle from which Gödel took many ideas.

The message is that mathematics is quasi-empirical, that mathematics is not the same as physics, not an empirical science, but I think it’s more akin to an empirical science than mathematicians would like to admit.

Mathematicians normally think that they possess absolute truth. They read God’s thoughts. They have absolute certainty and all the rest of us have doubts. Even the best physics is uncertain, it is tentative. Newtonian science was replaced by relativity theory, and then—wrong!—quantum mechanics showed that relativity theory is incorrect. But mathematicians like to think that mathematics is forever, that it is eternal. Well, there is an element of that. Certainly a mathematical proof gives more
certainty than an argument in physics or than experimental evidence, but mathematics is not certain. This is the real message of Gödel’s famous incompleteness theorem and of Turing’s work on uncomputability.

You see, with Gödel and Turing the notion that mathematics has limitations seems very shocking and surprising. But my theory just measures mathematical information. Once you measure mathematical information you see that any mathematical theory can only have a finite amount of information. But the world of mathematics has an infinite amount of information. Therefore it is natural that any given mathematical theory is limited, the same way that as physics progresses you need new laws of physics. Mathematicians like to think that they know all the laws. My work suggests that mathematicians also have to add new axioms, simply because there is an infinite amount of mathematical information. This is very controversial. I think mathematicians, in general, hate my ideas. Physicists love my ideas because I am saying that mathematics has some of the uncertainties and some of the characteristics of physics. Another aspect of my work is that I found randomness in the foundations of mathematics. Mathematicians either don’t understand that assertion or else it is a nightmare for them...
Bibliography

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.

Index

Abel summation, 94, 120
additive partitions, see partitions
additive sequences, 265
affine variety, see variety
Affleck, Ian, 41
AGM iteration
 complex, 233
Agoh’s conjecture, 250
Agrawal, Manindra, 330
Ahmed, Zafar, 19
Airy, George
 Airy function, 67
 Airy integral, 67
Aliquot sequences, 266
amicable numbers, 266
Andrew’s convolution, 206, 228
Apéry, Roger, 147
Archimedes, 2, 311
Argument principle, 299
arithmetic-geometric mean (AGM),
 207, 288–290
 AG2, 315
generalized, 287–293
Aronson’s sequence, 64
Artjhuov, Mikhail, 329
Banach contraction theorem, 295–296
barrier functions, 275–278
BBP-type formulas, 54, 344, 346
Beatty’s theorem, 66
Bell numbers, 46, 64
 Bell polynomials, 64
Bender, Carl, 354
Benson’s formula, 227
Bernoulli convolution, 99–103
 Bernoulli measure, 99
Bernoulli numbers, 33, 143, 145, 146,
 250, 338, 344, 354, 356
continued fractions, 354
Bernstein, Sergi
 Bernstein operators, 111
Bernstein polynomials, 138
Berry, Michael, 1Q, 47
Bertrand’s postulate, 186
Bescovitch, A.S., 285
Bessel functions, 39, 127, 182, 218
 modified, 216
beta function, 133
 derivatives, 156–157
 digamma representation, 157
 Riemann zeta function, 184
Beukers, Frits, 3
Bézier curves, 138
Bézout’s theorem, 260
Binet’s mean value theorem, 133
binomial series, 314
 evaluating, 23–32
Bohr, Harald, 319
Boltzmann-Shannon entropy, 297, 299
Bolzano, Bernhard, 118
Boole summation formula, 33, 346, 356
Borel, Emile, 72
bounded variation, 81
Bradley’s formula, 346
Broadhurst, David, 54, 154, 158, 175
Broucker, William, 34
Brouwer, Luitzen Egbertus Jan,
324–326
Brouwer’s fixed point theorem,
324
Buchberger’s algorithm, 255
Canfield, E. Rodney, 46
Cantor function, 101
Cantor, Georg, 77
Cantor function, 101
Carathéodory, Constantin, 199
Carleman’s inequality, 310
Carmichael numbers, 244, 246, 264
Cassaigne, Julien, 266
Castlejau’s algorithm, 138
Catalan, Eugéné
Catalan’s constant, 334
Catalan, Eugéné
Catalan numbers, 59, 229
Catalan zeta function, 151, 215
Catalan’s constant, 22, 31, 115,
184, 215, 344, 356
Clausen, Thomas, 146
Chaitin, Greg, 363, 364Q
Champernowne number, 52
Chandrasekharan, K., 121
Chebyshev polynomial, 50
Chudnovsky, David and Gregory, 352
Clausen, Thomas, 146
Clausen functions, 31
Clausen’s product, 56, 136
multiple Clausen values, 177
Cohen, Henri, 266
computer algebra packages
“bugs”, 106
integral evaluation, 19–22
product evaluation, 5–7
conjugate function, see Fenchel-Young
conjugate
continued fractions, 12–17, 32–40
hypergeometric functions, 34
numerical accuracy, 12
contraction map, 295
Crandall, Richard, 251, 328, 339
Madelung’s constant, 218, 227
DAD problems, 297, 321–323
Daubechies, Ingrid, 100
David Parker’s DPGraph, 279
de la Vallée Poussin, 264
Dedekind η-function, 204
Deligne words, 176
Devlin, Keith, 200Q
diagonalization algorithm, 298
difference equations, 100
digamma function, 70
Dijk paths, 229
dilogarithms, 54
Dirichlet, 264
Dirichlet, Lejeune, 77
Dirichlet class number, 153
Dirichlet kernel, 112, 116
Dirichlet operator, 112
Dirichlet series, 152
primitive L-series, 151
doubly stochastic matrix, 297, 321
doubly stochastic pattern, 298
Drinfeld-Deligne conjecture, 155
Dyson, Freeman, 141

Ehrhardt polynomial, 281
eigenvector, 296
Ekeland variational principle, 293
Banach contraction, 295, 296
elliptic integrals, 126, 128, 207, 311
mean iteration, 309
Eratosthenes
sieve of Eratosthenes, 329
Erdős, Paul, 101, 149, 204
error function, 113
Euclidean algorithm, 333
Euler numbers, 151
Euler sums
MZV, 153
Euler, Leonhard
continued fractions, 33–34, 39
Euler function, 356
Euler numbers, 33
Euler polynomials, 356
Euler product, 144
Euler sums, 155
double Euler sums, 161, 165, 222
unit Euler sum, 166
Euler’s beta integral, 308
Euler’s integral, 312
Euler’s pentagonal number theorem, 201
Euler’s totient function, 60, 269
Euler-Maclaurin summation
formula, 33, 181, 338–339, 341, 345
infinite series, 344–346
MZVs, 347–348
zeta function, 145

Eureka (journal), 3

Faber, Georg, 123
Faber-Schauder basis, see Schauder basis
face-centered cubic (FCC), 129
fast Fourier transform (FFT), 92, 331, 333
convolutions, 92
Fatou’s condition, 95
Fejér, Lipót
Fejér operator, 113
Fejér’s sum, 92
Fejér’s theorem, 90, 91
Fenchel, Werner
Fenchel duality, 131
Fenchel-Young conjugate
Lambert W function, 307
Fermat, Pierre de, 266
Fermat primes, 251
Fermat’s little theorem, 243
Ferrér diagram, 200
Feynman, Richard, 327
Fibonacci numbers, 235
Fibonacci, Leonardo, 218
Fibonacci sequence, 218–221, 240
Finch, Steven, 265
fixed point, 295
Banach contraction theorem, 295
Fourier series, 78, 78–84
approximate identity, 92
Bernoulli convolution, 99–103
convergence, 80
$L^1(T)$, 82
pointwise, 80, 82
uniform, 80
convolution theorems, 90–92
Hamburger moment problem, 97
Jordan test, 81, 96
kernels
Blackman kernel, 122
\((C, \alpha)\)-kernel, 122
de la Vallée-Poussin kernel, 121
definition, 92
Dirichlet kernel, 94, 112, 116
Fejér kernel, 81, 85, 94, 113, 121
Fejér-Korovkin kernel, 122, 138
Gauss kernel, 85
Jackson kernel, 122, 138
Poisson kernel, 138
Parseval’s equation, 83
pathologies, 115
periodization, 87
Poisson summation formula, 87
Fourier transform, 84, 84–86
Jordan’s theorem, 86
\(L^1(\mathbb{R})\), 84
\(L^2(\mathbb{R})\), 85, 86
Riemann-Lebesgue lemma, 85
uniqueness theorem, 85
Fourier, Joseph, 75Q, 75–77
Fubini’s theorem, 114
Fundamental theorem of algebra, 325–326
Gamma function, 74, 126, 138, 214, 314–315
\(AG_2\), 315
elliptic integrals, 210
identities, 179
incomplete, 357
infinite products, 5–7
recycling, 356
Riemann zeta function, 143
Selberg integral, 308
sinc integral, 132
Zagier conjecture, 174
Garsia, A., 102

Gauss, Carl Friedrich, 217
arithmetic-geometric mean, 289
continued fractions, 34–39
Gaussian quadrature, 336
Gersgorin circles, 235
Gibbs phenomenon, 96–97
Fejér’s series, 97
Giuga, G., 243
Giuga number, 245
Giuga numbers, 246
Giuga sequence, 249, 249, 250
Giuga sequences, 266
Giuga’s prime number conjecture, 243
Gödel, Kurt, 363
Goldston, Daniel, 284
Google, 46
Gosper, Bill, 69, 149
Granville, Andrew, 285
Grassman manifolds, 262
Gregory’s series, 36, 344
Gregory, James
Gregory’s series, 32
Grelling’s paradox of heterologicality, 363
Gröbner basis, 252, 255–260
grevlex basis, 256
Haar basis, 123
Hadamard, Jacques, 324
Hadamard inequality, 62
Halley, Edmond, 354
Hamburger moment problem, 97
Hankel, Hermann
Hankel loop integral, 315
Hankel matrix, 271
Hardy, G. H., 118, 204, 210, 216, 284, 285
Hata, 4
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heron’s formula, 254</td>
</tr>
<tr>
<td>heterological property, 363</td>
</tr>
<tr>
<td>Hilbert, David, iQ</td>
</tr>
<tr>
<td>Hilbert matrix, 271</td>
</tr>
<tr>
<td>Hilbert’s theorem, 280</td>
</tr>
<tr>
<td>Hjab, Omar, 42</td>
</tr>
<tr>
<td>Hoch and Stern information measure, 298</td>
</tr>
<tr>
<td>H"older convolution, 169–170</td>
</tr>
<tr>
<td>homological property, 363</td>
</tr>
<tr>
<td>Hooke and Jeeves algorithm, see pattern search algorithm</td>
</tr>
<tr>
<td>Horner’s rule, 332</td>
</tr>
<tr>
<td>Hurwitz, Adolf, 270</td>
</tr>
<tr>
<td>hyperbolic polynomials, 275</td>
</tr>
<tr>
<td>hypergeometric function, 40, 56, 126, 230, 312</td>
</tr>
<tr>
<td>arithmetic-geometric mean, 289, 290</td>
</tr>
<tr>
<td>contiguity relation, 35</td>
</tr>
<tr>
<td>continued fractions, 34–39</td>
</tr>
<tr>
<td>Euler’s integral, 312</td>
</tr>
<tr>
<td>Gamma function, 313</td>
</tr>
<tr>
<td>multiple, 312</td>
</tr>
<tr>
<td>Zagier conjecture, 172, 174</td>
</tr>
<tr>
<td>ideal, 255</td>
</tr>
<tr>
<td>integer polytope, 281</td>
</tr>
<tr>
<td>intuitionism, 324</td>
</tr>
<tr>
<td>inverse problems, 279</td>
</tr>
<tr>
<td>isoperimetric inequality, 125</td>
</tr>
<tr>
<td>Jacobi, Carl</td>
</tr>
<tr>
<td>Jacobi theta-functions, 211</td>
</tr>
<tr>
<td>Jacobi’s quartic identity, 229</td>
</tr>
<tr>
<td>Jacobi’s triple product, 202, 205</td>
</tr>
<tr>
<td>Jacobian theta functions, 205, 205–210</td>
</tr>
<tr>
<td>Jensen’s inequality, 44</td>
</tr>
<tr>
<td>Johnson, Samuel, 47</td>
</tr>
<tr>
<td>Jordan, Camille</td>
</tr>
<tr>
<td>Jordan test, 81, 96</td>
</tr>
<tr>
<td>Jordan theorem</td>
</tr>
<tr>
<td>sinc integrals, 107</td>
</tr>
<tr>
<td>Jordan’s theorem, 86</td>
</tr>
<tr>
<td>Kayal, Neeraj, 330</td>
</tr>
<tr>
<td>Khintchine constant, 359, 363</td>
</tr>
<tr>
<td>Kirchhoff’s law, 313</td>
</tr>
<tr>
<td>Klein, Felix, 234</td>
</tr>
<tr>
<td>Klein, James D., 73</td>
</tr>
<tr>
<td>knot theory, 194</td>
</tr>
<tr>
<td>Knuth, Donald E., 17, 119</td>
</tr>
<tr>
<td>Koecher, Max, 148</td>
</tr>
<tr>
<td>Kolmogoroff’s 0-1-law, 99</td>
</tr>
<tr>
<td>Korelt, 264</td>
</tr>
<tr>
<td>Korovkin, 111</td>
</tr>
<tr>
<td>complex theorem, 137</td>
</tr>
<tr>
<td>three function theorems, 111–113</td>
</tr>
<tr>
<td>three-function theorems, 137</td>
</tr>
<tr>
<td>Korselt’s criterion, 244</td>
</tr>
<tr>
<td>Kreimer, Dirk, 158</td>
</tr>
<tr>
<td>Kummer-type polylogarithms, see polylogarithms</td>
</tr>
<tr>
<td>l’Hôpital’s rule, 114</td>
</tr>
<tr>
<td>Lagarias, Jeffrey C., 100</td>
</tr>
<tr>
<td>Lagrange, Joseph-Louis, 212</td>
</tr>
<tr>
<td>Laguerre, Edmond, 211</td>
</tr>
<tr>
<td>Lambert W function, 18, 237, 299, 301–308</td>
</tr>
<tr>
<td>convex conjugates, 307</td>
</tr>
<tr>
<td>Maclaurin series, 317</td>
</tr>
<tr>
<td>Riemann surfaces, 304–306</td>
</tr>
<tr>
<td>Stirling’s formula, 304</td>
</tr>
<tr>
<td>Lambert series, 210</td>
</tr>
<tr>
<td>Landau constant, 362</td>
</tr>
<tr>
<td>Laplace, Pierre-Simon</td>
</tr>
</tbody>
</table>
Laplace transform, 214
Laplace’s method, 315
Laurent series, 301
Lax conjecture, 278
Lebesgue, Henri, 77, 115
Lebesgue constants, 93–95
Lebesgue’s condition, 95
Legendre, Adrien-Marie
Legendre polynomial, 336
Legendre’s relation, 311
Legendre-Jacobi symbol, 152, 184, 216
Lehmer, Derrick, 251Q, 266
Lehmer’s conjecture, 251
Lehmer’s polynomial, 353
Lehmer’s problem, 353
level set, compact, 294
Liouville, Joseph, 311
Lisoněk, Petr, 175, 252
Littlewood, John Edensor, 275, 284–286
LLL, 194
Locke, John, 287Q
log-concavity, 59
log-convex sequence, 45
Lucas numbers, 235
Lucas, Edouard, 220
Lucas sequence, 220
Lucas-Carmichael numbers, see Carmichael numbers
Macdonald, John A., 291
Machin formula, 38
MacMahon, Percy, 200
Madelung’s constant, 214, 216–218, 227, 251
Magma, 253
Mahler, Kurt, 3
Mahler continued fraction, 66
Mahler’s generating function, 65
Maier, Helmut, 284
Mares, Bernard, 110
math software, see computer algebra packages
MathSciNet, 46
maximum entropy methods, 297–299
maximum principle, 300
mean iteration
$\frac{1}{n}$-power mean, 309
logarithmic mean, 309
Mellin transform, 125, 133, 142, 179, 182, 214
Menshow, D.E., 118
Mersenne, Marin, 266
Michelson, A., 96
Milnor, John, 260
Möbius, August
Möbius function, 211
Möbius inversion theorem, 206, 211–213
sums of squares, 211–213
modular equations, 207
moment, of a function, 97
Moore’s Law, i
Motzkin, Theodore, 280
Motzkin numbers, 59, 64
multidirectional search methods, 319
multiple Clausen values, see Clausen multiple zeta constants, 347
multiple zeta values, see MZV
multisectioning, 359
Mumford et al
symmetry and chaos, 234
Mumford, David, 234Q
MZV, 153, 155, 347–348
duality, 165–170
evaluating, 185
Index

reducibility, 155–161
Nash equilibrium theorem, 325
neg-entropy, see Hoch and Stern
information measure
Newton’s method, 334
Newton, Isaac
Newton iteration, 332, 332, 333, 338
Newton’s lemma, 59
Newton’s method, 332, 354
Newton-Julia sets, 333
nonexpansive map, 296
nonnegative polynomials, 279
normal set of primes, 246
nuclear magnetic resonance (NMR), 298
Ohno, Yasuo
Ohno’s duality theorem, 188
Ohno-Zagier generating function, 189
orthogonal wavelet, 123
Parseval equation, 83, 86, 115
partial fraction decomposition, 41
partitions, 199, 225
pattern search algorithm, 262, 319, 321
Pell’s equation, 210
pentagonal numbers, 201
perfect numbers, 264
Perko, Kenneth, 195
Perron, Oskar, 39
Perron’s continued fractions, 40
π
continued fraction, 2
estimates, 2
formulas, 23, 28, 48
pictorial representations, 3
Pick’s theorem, 281
Pisot number, 101, 274, 353
Plancherel transform, see Fourier
transform
Plouffe, Simon, 150
Pochhammer function, 18
Poincaré, J. Henri, 324
Poisson kernel, 94, 121
Poisson summation formula, 87–90,
207
experimental version, 89, 92
polyhedron space, 135
polylogarithms, 23, 147, 167, 171, 184
Eulerian polylogarithms, 155
Kummer-type polylogarithms, 177
multi-dimensional, 30, 165
extension, 186
Pomerance, Carl, 328
prime numbers, 328–331
primality tests, 329–331
AKS provable primality test,
330–331
sieve of Eratosthenes, 329
strong probable prime test, 329
prime counting function \(\pi(x)\), 328
principal branch, 303
principle of the excluded middle, 324
Prouhet-Tarry-Escott problem, 268
pseudospectrum, 360, 361
PSLQ, 139, 150, 175, 334
binomial sums, 31
Riemann zeta function, 160
zeta function, 147
quadrature, 334–343
error function quadrature, 338–341
Gaussian quadrature, 336–338
higher dimensions, 343
tanh-sinh quadrature, 341–342
quasi-elliptic integrals, 55
Rademacher, Hans, 204
Ramanujan, Srinivasa, 46, 204, 208, 210, 231, 285
 additive partitions, 202–203
 continued fractions, 69–71, 73
 formulas, 346
 zeta function, 149–150
Rauhut, Holger, 249
Rayleigh quotient, 296
Regiomontanus, Johann, 219Q
Reidemeister moves, 195
replicative function, 119
residue, 301
Riemann zeta function, 18, 30, 31, 47, 82, 141, 195, 236, 269–270, 328, 345, 346
 alternating, 142
 beta function, 157
 Catalan zeta function, 151, 215
 evaluating, 178, 179, 182, 185
 even positive integers, 145, 146
 odd positive integers, 147, 149
 identities, 187
MZV
 duality, 165–170
 recycling, 356
 reflection formula, 143
Riemann, Georg Bernhard, 77, 118, 179
 Riemann hypothesis, 144
 generalized, 252
 Riemann integral, 214
 Riemann sum, 96
 Riemann surfaces, 304–306
 Riemann-Lebesgue lemma, 82, 85, 102, 124
 Riemann-Siegel Formula, 179–181
Riesz-Fischer theorem, 83
Rolle’ theorem, 59
Rosenbrock function, 320
Rouché’s theorem, 300
RSA encryption, 328, 329
Rudin-Shapiro polynomials, 274
Salem, Raphaël, 102
 Salem number, 353
Salvy, Bruno, 315
Saxena, Nitin, 330
Schauder, Juliusz, 123
 Schauder basis, 123
Schilling equation, 132
Schmerl, James, 265
Schur function, 281, 284
 Schur functions, 283
Selberg integral, 308
self map, 295
Siegel, Carl, 181
Sigler, L. E., 241
sinc integral, 103, 106, 110, 132–136
 iterated, 108, 136
 multi-variable, 134–136
 sinc space, 134
singular value, 208
Sloane, Neil, 260–263
Solomyak, Boris, 102
Soundararajan, K., 285
spectral radius, 361
spherical t-design, 261
Spiegel, Eugene, 265
square-full number, 361
Stieltjes, Thomas Jan, 39
Stigler’s law of eponymy, 66, 324
 Stigler, George and Stephen, 66
Stirling, James
 Stirling numbers, 59
 second kind, 27
 Stirling’s formula, 18
Lambert W function, 304
Stone-Weierstrass theorem, 112, 138
strictly convex
 power function, 314
Sturm’s theorem, 257
symmetric functions, 282

Thabit ibn Kurrah, 266
Theodorescu, Radu, 45
theta function, 214
 Fibonacci sums, 220–221
theta transform, 89, 138, 143, 182
Titchmarsh, Edward, 181
Torczon, Virginia, 320, 321
torus knots, 194
Turing, Alan, 364

variety, 255
von Neumann minimax theorem, 325
von Staudt, Karl, 146
von-Staudt-Clausen formula, 360

Watson, G.N., 144Q
 Watson integrals, 126–131
 generalized, 129–130
 logarithmic, 218
 three-dimensional, 126–128
wavelet basis, 123
Weierstrass, Karl, 118
Wilf-Zeilberger algorithm, 327–328
 Gosper’s telescoping algorithm, 149
Wilker’s inequality, 67
Wilson’s theorem, 268
Wintner, A., 101
Wittgenstein, Ludwig, 363

Yildirim, Cel, 284
Young diagram, 283, 284

Zagier, Don, 154, 158, 243Q
 Zagier conjecture, 155, 174
 extensions, 191–193
 generalizations, 175
 proof, 171–174
zeta function, see Riemann zeta function