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Abstract. In the first part, we consider 3 × 3 × 3 arrays with real or com-

plex entries, and provide a self-contained proof of Kruskal’s theorem that the

maximum rank is 5. In the second part, we provide a complete classification
of the canonical forms of 3 × 3 × 3 arrays over the field F2 with two elements;

in particular, we obtain explicit examples of such arrays with rank 6.

In 1989, Kruskal [6, page 10] stated without proof that every 3×3×3 array with
real entries has rank at most 5. A few years later, Rocci [7] circulated a simplified
proof of this result, based on Kruskal’s unpublished hand-written notes. This result
has been part of the ‘folklore’ of multilinear algebra for more than two decades, but
complete details of the proof appear never to have been published.

In §§2–4, we consider 3× 3× 3 arrays with real or complex entries, and provide
a self-contained proof that the maximum rank is 5. (Our proof in the complex case
also holds over any algebraically closed field of characteristic 6= 2.)

In §5 we consider the same problem over the field F2 with two elements. A
remarkable fact, first noted by von zur Gathen [9], is that in this case there exist 3×
3×3 arrays of rank 6. We use computer algebra to provide a complete classification
of the canonical forms of 3× 3× 3 arrays over F2; in particular, we obtain explicit
examples of such arrays with rank 6.

We use without reference many basic results on multidimensional arrays which
can be found in de Silva and Lim [3] and Kolda and Bader [5].

1. Preliminaries on 3-dimensional arrays

We consider a p× q × r array X with entries in an arbitrary field F of scalars:

X = [xijk ], xijk ∈ F, 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ r.

By a slice of X we mean any (2-dimensional) submatrix obtained by fixing one
index. Fixing i gives a horizontal slice, fixing j gives a vertical slice, and fixing
k gives a frontal slice. The matrix form of X is the p × qr matrix obtained by
concatenating the frontal slices X1, . . . , Xr from left to right:

X =
[
X1 · · · Xr

]
=

 x111 · · · x1q1 · · · x11r · · · x1qr
...

. . .
... · · ·

...
. . . · · ·

xp11 · · · xpq1 · · · xp1r · · · xpqr

 .
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Given three column vectors,

a =

a1...
ap

 ∈ Fp, b =

b1...
bq

 ∈ Fq, c =

c1...
cr

 ∈ Fr,

their outer product a ⊗ b ⊗ c is the p × q × r array whose ijk entry is aibjck. A
simple tensor (also called a decomposable tensor) is an outer product of nonzero
vectors. A fundamental problem is to represent the array X as a sum of simple
tensors:

X =

n∑
i=1

a(i) ⊗ b(i) ⊗ c(i).

The rank of the array X is the smallest non-negative integer n for which this
decomposition is possible. The rank is 0 if and only if every entry of the array is 0;
the rank is 1 if and only if the array is a simple tensor.

The rank does not change if we permute the slices in each direction. Given
permutations α ∈ Sp, β ∈ Sq, γ ∈ Sr, we form another p× q × r array by(

(α, β, γ) ·X
)
ijk

= xα(i)β(j)γ(k).

More generally, the rank does not change if we apply a change of basis in each
direction. Given invertible matrices

A = (ai1i2) ∈ GL(p,F), B = (bj1j2) ∈ GL(q,F), C = (ck1k2) ∈ GL(r,F),

we form another p× q × r array by(
(A,B,C) ·X

)
i1j1k1

=

p∑
i2=1

q∑
j2=1

r∑
k2=1

ai1i2bj1j2ck1k2xi2j2k2 .

The rank also does not change if we permute the directions; however, this permutes
the dimensions p, q, r and hence may give a different ordered triple (p, q, r). If
we write the dimensions as p1 × p2 × p3 with corresponding indices i1, i2, i3 then
applying a permutation δ ∈ S3 gives an array of size pδ(1)× pδ(2)× pδ(3) defined by

(δ ·X)iδ(1)iδ(2)iδ(3) = xi1i2i3 .

In the rest of this paper, we often use these rank-preserving transformations without
further comment.

In §§2–4, the base field F is either R or C. In §5 the base field is the field F2

with two elements.

2. ten Berge’s theorem on 2× 2× 2 arrays

The results in this section are taken from ten Berge [8], who considers only the
case F = R. With very minor changes indicated below (related to the roots of the
quadratic polynomial in the proof of Theorem 2.9), ten Berge’s proof also applies
to the case F = C. We recall these results in detail since they are essential to the
analysis of 3× 3× 3 arrays.

For 2× 2× 2 arrays, the rank decomposition takes the form

X =

n∑
i=1

a(i) ⊗ b(i) ⊗ c(i), where a(i),b(i), c(i) ∈ F2 for 1 ≤ i ≤ n.
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We express this decomposition in terms of three 2× n matrices A,B,C:

A =
[
a(1) · · · a(n)

]
, B =

[
b(1) · · · b(n)

]
, C =

[
c(1) · · · c(n)

]
.

Lemma 2.1. [8, p. 632] The rank of a nonzero 2×2×2 array X is the least integer
n ≥ 1 such that the frontal slices X1, X2 have the form X1 = ADBt, X2 = AEBt

where A, B are 2× n matrices and D, E are n× n diagonal matrices.

Proof. The first frontal slice X1 has the form

X1 =

n∑
i=1

[
a
(i)
1 b

(i)
1 c

(i)
1 a

(i)
1 b

(i)
2 c

(i)
1

a
(i)
2 b

(i)
1 c

(i)
1 a

(i)
2 b

(i)
2 c

(i)
1

]
=

n∑
i=1

[
A1i c

(i)
1 Bti1 A1i c

(i)
1 Bti2

A2i c
(i)
1 Bti1 A2i c

(i)
1 Bti2

]

=

[ ∑n
i=1A1i c

(i)
1 Bti1

∑n
i=1A1i c

(i)
1 Bti2∑n

i=1A2i c
(i)
1 Bti1

∑n
i=1A2i c

(i)
1 Bti2

]
= AC1B

t,

where C1 is the n × n diagonal matrix whose diagonal entries c
(1)
1 , c

(2)
1 , . . . , c

(n)
1

come from row 1 of C. Similarly, for the second frontal slice we have X2 = AC2B
t,

where C2 is the n×n diagonal matrix whose diagonal entries come from the second
row of C. Conversely, if the two frontal slices X1 and X2 can be written as AC1B

t

and AC2B
t where A and B are 2× n matrices and C1 and C2 are n× n diagonal

matrices, then X has the given decomposition. �

Definition 2.2. We call the 2×2×2 array X superdiagonal if it has one of these
forms for α, β ∈ F \ {0}:[

α 0 0 0
0 0 0 β

]
,

[
0 α 0 0
0 0 β 0

]
,

[
0 0 0 β
α 0 0 0

]
,

[
0 0 β 0
0 α 0 0

]
.

Lemma 2.3. [8, p. 632] A superdiagonal array has rank 2.

Proof. By applying permutations of the slices, we may assume that X has the first
form. It is then clear that the array has rank ≤ 2 since[

α 0 0 0
0 0 0 β

]
=

[
α
0

]
⊗
[

1
0

]
⊗
[

1
0

]
+

[
0
β

]
⊗
[

0
1

]
⊗
[

0
1

]
.

To find the general form of an array of rank 1 according to Lemma 2.1, we set

A =

[
a1
a2

]
, B =

[
b1
b2

]
, D =

[
d
]
, E =

[
e
]
.

We obtain

X1 = ADBt =

[
a1db1 a1db2
a2db1 a2db2

]
, X2 = AEBt =

[
a1eb1 a1eb2
a2eb1 a2eb2

]
,

or more simply X1 = d(ABt) and X2 = e(ABt). Thus X1 and X2 are scalar
multiples of the same matrix of rank 1. This does not hold for a superdiagonal
array, which therefore has rank ≥ 2. �

Lemma 2.4. [8, p. 632] Let X be a nonzero 2 × 2 × 2 array which is not super-
diagonal. Then X has rank 1 if and only if all six of its slices are singular.

Proof. (⇒) We show that if X has a non-singular slice, then its rank is ≥ 2. By
permuting the directions, we may assume that a frontal slice is non-singular. By
permuting the frontal slices, we may assume that X1 is non-singular. If the rank
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of X is 1 then as in the proof of Lemma 2.3 we have X1 = d(a⊗b) where a and b
are nonzero vectors in F2; but this matrix is clearly singular.

(⇐) We show that if all six slices are singular then X has rank 1.
Case 1: Some slice is zero; by permuting the directions and slices we may assume

that X1 = 0. Since X2 is nonzero and singular we have X2 = a⊗b for some nonzero
vectors a,b ∈ F2. But then X = a⊗ b⊗ e1 where e1 = [0, 1]t.

Case 2: No slice is zero. Since X1 is nonzero and singular, we have X1 = a⊗ b
where a = [a1, a2]t and b = [b1, b2]t are nonzero vectors. By transposing the
vertical slices of X if necessary, we may assume that the first column of X1 is
nonzero. Equivalently, b = [1, λ]t for some λ ∈ F; thus X1 = [a|λa].

Subcase 2(a): λ = 0. Since the first vertical slice is singular, X = [a,0|µa,d] for
some µ ∈ F and some d; we have d 6= 0 since the second vertical slice is nonzero.

If µ 6= 0 then since X2 is singular, there is ν ∈ F\{0} such that X = [a,0|µa, νa].
In this case, since the horizontal slices are nonzero, we have a1 6= 0, a2 6= 0. Since
the horizontal slices are singular, it follows that ν = 0; but then X = [a,0|µa,0],
so the second vertical slice is zero, giving a contradiction.

If µ = 0 then X = [a,0|0,d]. In this case, since the horizontal slices are nonzero
and singular, X must be a superdiagonal array, again giving a contradiction.

Subcase 2(b): λ 6= 0. We have X = [a, λa|µa,d]. But a 6= 0 and the second
vertical slice is singular, so d = νa for some ν ∈ F, giving X = [a, λa|µa, νa]. Since
either a1 6= 0 or a2 6= 0 (or both), singularity of the horizontal slices implies that
ν = λµ. Then X = [a, λa|µa, λµa] = [a1, a2]t ⊗ [1, λ]t ⊗ [1, µ]t has rank 1. �

Remark 2.5. We now have a partial algorithm for computing the rank of X. If
X is the zero array then X has rank 0. If X is a superdiagonal array then X has
rank 2. If X is nonzero and not superdiagonal, and all of its slices are singular,
then X has rank 1. It remains to consider an array X with a non-singular slice; by
permuting the directions and the slices, we may assume that X1 is non-singular.

Lemma 2.6. [8, p. 632-633] The rank of a 2× 2× 2 array X is at most 3.

Proof. It remains to prove that if the first frontal slice X1 is non-singular, then the
rank is at most 3. We construct an explicit decomposition with n ≤ 3. We write

X1 =

[
x11 x12
x21 x22

]
, Y2 = X2X

−1
1 =

[
y11 y12
y21 y22

]
.

Consider the following matrices:

A =

[
1 0 y12
0 1 y21

]
, B =

[
x11 x21 x11 + x21
x12 x22 x12 + x22

]
= Xt

1

[
1 0 1
0 1 1

]
,

D =

 1 0 0
0 1 0
0 0 0

 , E =

 y11 − y12 0 0
0 y22 − y21 0
0 0 1

 .
We then verify by direct calculation that

ADBt =

[
1 0 y12
0 1 y21

] 1 0 0
0 1 0
0 0 0

 1 0
0 1
1 1

X1 = X1,

AEBt =

[
1 0 y12
0 1 y21

] y11 − y12 0 0
0 y22 − y21 0
0 0 1

 1 0
0 1
1 1

X1 = Y2X1 = X2.
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We now apply Lemma 2.1 to complete the proof. �

Remark 2.7. Lemmas 2.4 and 2.6 imply that if X has a non-singular slice then
its rank is either 2 or 3. It remains to distinguish these two cases. As before, up to
permuting the directions and the slices, we may assume that X1 is non-singular.

Definition 2.8. For a 2 × 2 × 2 array X, Cayley’s hyperdeterminant is the
following homogeneous polynomial of degree 4 in the entries xijk:

∆(X) = x2111x
2
222 + x2112x

2
221 + x2121x

2
212 + x2122x

2
211

− 2
(
x111x112x221x222 + x111x121x212x222 + x111x122x211x222

+ x112x121x212x221 + x112x122x211x221 + x121x122x211x212
)

+ 4
(
x111x122x212x221 + x112x121x211x222

)
.

Theorem 2.9. [8, p. 633-634] Let X be a 2× 2× 2 array whose first frontal slice
X1 is non-singular. If X2 is a scalar multiple of X1, then X has rank 2. If X2 is
not a scalar multiple of X1, then

(a) if ∆(X) > 0 (for F = R) or ∆(X) 6= 0 (for F = C) then X has rank 2;
(b) if ∆(X) = 0 then X has rank 3.

Proof. First, assume that X2 = λX1 for some λ ∈ F. Since X1 is non-singular, it
has rank 2, and hence X1 = a(1) ⊗ b(1) + a(2) ⊗ b(2). Writing c = [ 1, λ ]t then we
see that X has rank 2: X = X1 ⊗ c = a(1) ⊗ b(1) ⊗ c + a(2) ⊗ b(2) ⊗ c.

Second, assume that X2 is not a scalar multiple of X1. We will find a necessary
condition for X to have rank 2. We apply Lemma 2.1 with n = 2 and write

A =
[

a(1) a(2)
]
, B =

[
b(1) b(2)

]
, D =

[
d1 0
0 d2

]
, E =

[
e1 0
0 e2

]
.

But X1 = ADBt, X2 = AEBt gives X1 = d1a1b
t
1+d2a2b

t
2, X2 = e1a1b

t
1+e2a2b

t
2.

Since X1 is non-singular, it has rank 2, and so d1 6= 0, d2 6= 0. Since X2 is not
a scalar multiple of X1, it follows that E is not a scalar multiple of D. Hence
d1e2 − d2e1 6= 0, and so X2 − d−11 e1X1, X2 − d−12 e2X1 are distinct. We calculate

X2 − d−11 e1X1 = e1a1b
t
1 + e2a2b

t
2 − d−11 e1

(
d1a1b

t
1 + d2a2b

t
2

)
= e1a1b

t
1 + e2a2b

t
2 − e1a1b

t
1 − d−11 d2e1a2b

t
2 = d−11 (d1e2 − d2e1)a2b

t
2,

X2 − d−12 e2X1 = e1a1b
t
1 + e2a2b

t
2 − d−12 e2

(
d1a1b

t
1 + d2a2b

t
2

)
= e1a1b

t
1 + e2a2b

t
2 − d1d−12 e2a1b

t
1 − e2a2b

t
2 = −d−12 (d1e2 − d2e1)a1b

t
1.

It follows that these two matrices are singular. Hence the quadratic polynomial
det(X2 − λX1) has two distinct roots in F, namely λ = d−11 e1 and λ = d−12 e2. But
this determinant is

(x111x221 − x121x211)λ2 − (x111x222 + x112x221 − x121x212 − x122x211)λ

+ (x112x222 − x122x212),

and the discriminant of this quadratic polynomial is ∆(X). Thus if X has rank 2
then either ∆(X) > 0 when F = R, or ∆(X) 6= 0 when F = C. (This is the only
place where we need to distinguish F = R and F = C.)

Conversely, suppose that ∆(X) 6= 0. Then det(X2−λX1) has two distinct roots,
say λ1, λ2 in F. We have two nonzero singular matrices X2 − λ1X1, X2 − λ2X1.
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These matrices both have rank 1, and so we can write

(λ1 − λ2)−1(X2 − λ2X1) = u1v
t
1, −(λ1 − λ2)−1(X2 − λ1X1) = u2v

t
2.

Then we have X1 = u1v
t
1 + u2v

t
2 and X2 = λ1u1v

t
1 + λ2u2v

t
2, which imply that

X = u1⊗v1⊗[1, λ1]t+u2⊗v2⊗[1, λ2]t. Thus if ∆(X) > 0 (for F = R) or ∆(X) 6= 0
(for F = C) then X has rank 2. �

Example 2.10. Consider these arrays, where X is the limit as a→ 0 of Y (a):

X =

[
1 0 0 1
0 1 0 0

]
, Y(a) =

[
1 0 0 1
0 1 a2 0

]
.

Clearly X1 is non-singular, and X2 is not a scalar multiple of X1. But ∆(X) = 0,
and so by Theorem 2.9 the rank of X is 3. For Y (a), the first frontal slice is
non-singular and the second frontal slice is not a scalar multiple of the first, but
∆(Y(a)) = 4a2 which is nonzero for a 6= 0. Hence if a 6= 0 then Y(a) has rank 2.
Thus X is the limit of arrays of rank 2, and so the border rank of X is 2.

It follows from Ja’ja’ [4, Lemma 3.1] that an array [ I |X2] has rank 2 if and
only if X2 is similar to a diagonal matrix. The same paper [4, Theorem 3.2] implies
that if X2 is the companion matrix of a quadratic polynomial f(t) then [ I |X2]
has rank 2 if and only if f(t) has two distinct roots; otherwise, it has rank 3. In
our example, X2 is the companion matrix of f(t) = t2, so [ I |X2] has rank 3. This
example is the case n = 2 of the pair of bilinear forms in the proof of [4, Theorem
3.5]. A result of von zur Gathen [9, Theorem 4] implies that the maximal bilinear
complexity of two 2× 2 matrices over any field is at least 3.

3. Some lemmas on 3× 3× 2 and 3× 3× 3 arrays

Let the 3× 3× 2 array over F = R or F = C have frontal slices A and B:

[A|B] =

 a11 a12 a13 b11 b12 b13
a21 a22 a23 b21 b22 b23
a31 a32 a33 b31 b32 b33


Ja’Ja’ [4, Corollary 3.4.1] has shown that the rank of a p × p × 2 array is at most
b3p/2c. We give an elementary proof of this result in the case p = 3.

Lemma 3.1. The rank of a 3× 3× 2 array is at most 4.

Proof. The maximum rank of a 3× 3 matrix is 3. If both A and B have rank ≤ 2,
then it is straightforward to express [A|B] as a sum of ≤ 4 simple tensors: we have

A = a(1) ⊗ b(1) + a(2) ⊗ b(2), B = a(3) ⊗ b(3) + a(4) ⊗ b(4),

and hence

[A|B] = a(1) ⊗ b(1) ⊗ e1 + a(2) ⊗ b(2) ⊗ e1 + a(3) ⊗ b(3) ⊗ e2 + a(4) ⊗ b(4) ⊗ e2.

We now assume that both A and B have rank ≥ 2, and that either A or B has
rank 3. Interchanging A and B if necessary, we assume that A has rank 3, so that
A is invertible. Left multiplication of A and B by A−1 (that is, applying a change
of basis in the first direction) gives the array [I|C] where the second frontal slice
C = A−1B still has rank ≥ 2.

We first consider the case F = R. There exists an invertible matrix E such that
R = E−1CE is the rational canonical form of C. Clearly E−1IE = I, so we act
on [I|C] by E−1 along the first direction and by E along the second direction, to
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obtain [I|R], where the second frontal slice R still has rank ≥ 2. It remains to
show that any such array has rank ≤ 4. The rational canonical form of C is a
block diagonal matrix with blocks C1, . . . , Ck; each Ci is the companion matrix of
a polynomial f(t)m where f(t) is a monic irreducible divisor of the characteristic
polynomial of C and m is a positive integer. Over R, the possible characteristic
polynomials of a 3 × 3 matrix and the corresponding rational canonical forms are
as follows:

(x2 − ax− b)(x− c), a2 + 4b < 0,

 0 b 0
1 a 0
0 0 c

 ,(1)

(x− a)(x− b)(x− c), a, b, c distinct,

 a 0 0
0 b 0
0 0 c

 ,(2)

(x− a)2(x− b), a 6= b,

 a 0 0
0 a 0
0 0 b

 ,(3a)

(x− a)2(x− b), a 6= b,

 0 −a2 0
1 2a 0
0 0 b

 ,(3b)

(x− a)3

 a 0 0
0 a 0
0 0 a

 ,(4a)

(x− a)3

 0 −a2 0
1 2a 0
0 0 a

 ,(4b)

(x− a)3

 0 0 a3

1 0 −3a2

0 1 3a

 ,(4c)

Clearly (3a) and (4a) are special cases of (2); and (3b) and (4b) are special cases
of (1). It remains to consider (1), (2) and (4c).

In case (1), we have

[I|R] =

 1 0 0 0 b 0
0 1 0 1 a 0
0 0 1 0 0 c


=

 1 0 0 0 b 0
0 1 0 1 a 0
0 0 0 0 0 0

+

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 c

 .
The second array has rank 1, and decomposing the first array is equivalent to
decomposing a 2× 2× 2 array, which has rank ≤ 3 by Theorem 2.9.

In case (2), R is a diagonal matrix, and hence the rank is ≤ 3:

[I|R] =

 1 0 0 a 0 0
0 1 0 0 b 0
0 0 1 0 0 c


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= e1 ⊗ e1 ⊗
[

1
a

]
+ e2 ⊗ e2 ⊗

[
1
b

]
+ e3 ⊗ e3 ⊗

[
1
c

]
.

In case (4c), we adapt the argument of Ja’ja’ [4, Theorem 3.2, pages 453-454].
We recall the matrix C, and define the matrix D:

C =

 0 0 a3

1 0 −3a2

0 1 3a

 , D =

 0 0 a3

0 0 −3a2−1
0 0 3a

 , C −D =

 0 0 0
1 0 1
0 1 0

 .
The matrix C −D is the companion matrix of the polynomial t3 − t, which has 3
distinct real roots 1, 0 and −1. Hence there exists an invertible matrix P such that

P−1(C −D)P =

 1 0 0
0 0 0
0 0 −1

 = E11 − E33, P =

 0 −1 0
1 0 −1
1 1 1

 .
From this we obtain

C = D + (C −D) = D + P (E11 − E33)P−1 = D + PE11P
−1 − PE33P

−1,

and this gives

[ I |C ] = [O |D ] + P [E11 |E11 ]P−1 + P [E22 |O ]P−1 + P [E33 | −E33 ]P−1.

Clearly each of these 4 terms is an array of rank ≤ 1, showing that the rank of
[I|C] is at most 4. We obtain the following explicit decomposition in case (4c) into
a sum of simple tensors:

[ I |C ] =

 1 0 0 0 0 a3

0 1 0 1 0 −3a2

0 0 1 0 1 3a


=

 0 0 0 0 0 a3

0 0 0 0 0 −3a2−1
0 0 0 0 0 3a

+
1

2

 0 0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1


+

 1 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

+
1

2

 0 0 0 0 0 0
−1 1 −1 1 −1 1

1 −1 1 −1 1 −1

 .
This completes the proof in the real case.

We next consider the case F = C. There exists an invertible matrix E such that
J = E−1CE is the Jordan canonical form of C. Clearly E−1IE = I, so we act
on [I|C] by E−1 along the first direction and by E along the second direction, to
obtain [I|J ], where the second frontal slice J still has rank ≥ 2. It remains to show
that any such array has rank ≤ 4. There are three cases for the Jordan canonical
form of a 3× 3 matrix J .

Case 1: Three 1× 1 Jordan blocks; J is a diagonal matrix:

[I|J ] =

 1 0 0 d1 0 0
0 1 0 0 d2 0
0 0 1 0 0 d3


We apply the same argument as in case (2) when F = R.
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Case 2: One 2× 2 block and one 1× 1 block:

[I|J ] =

 1 0 0 d1 1 0
0 1 0 0 d1 0
0 0 1 0 0 d2


We have [I|J ] = [I|D] + [O|E12] where D is a diagonal matrix. By the previous
case, [I|D] has rank ≤ 3, and clearly [O|E12] has rank 1.

Case 3: One 3× 3 block:

[I|J ] =

 1 0 0 d1 1 0
0 1 0 0 d1 1
0 0 1 0 0 d1


We add −d1 times the first frontal slice to the second frontal slice; that is, we
change basis along the third direction by the matrix[

1 0
−d1 1

]
We obtain this array:

[ I | E12+E23 ] =

 1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0


It remains to prove that this array has rank ≤ 4. We have the following explicit
representation of [ I | E12+E23 ] as a sum of four simple tensors: 0 1 0 0 1 0

0 1
2 0 0 1

2 0
0 0 0 0 0 0

+

 0 0 0 0 0 0
0 1

2 −1 0 − 1
2 1

0 0 0 0 0 0


+

 1 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+

 0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0


=

 1
1
2
0

⊗
 0

1
0

⊗ [ 1
1

]
+

 0
1
0

⊗
 0
− 1

2
1

⊗ [ −1
1

]

+

 1
0
0

⊗
 1
−1

0

⊗ [ 1
0

]
+

 0
1
1

⊗
 0

0
1

⊗ [ 1
0

]
.

This completes the proof in the complex case. �

Remark 3.2. The end of the proof of Lemma 3.1 in the complex case is the only
place in the proof of Kruskal’s theorem for F = C where we need to assume that the
characteristic of F is not 2. Therefore our proof is also valid over any algebraically
closed field of characteristic 0 or p > 2.

Let the 3× 3× 3 array T over F have frontal slices A, B and C:

T = [A|B|C] =

 a11 a12 a13 b11 b12 b13 c11 c12 c13
a21 a22 a23 b21 b22 b23 c21 c22 c23
a31 a32 a33 b31 b32 b33 c31 c32 c33


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Lemma 3.3. Kruskal’s One-Edge Lemma. If the array T has parallel slices
D and E for which there exists a nonzero vector x such that Dx = Ex = 0 or
Dtx = Etx = 0, then rank(T ) ≤ 5.

Proof. Permuting the directions if necessary, we may assume that D and E are
frontal slices. Permuting the frontal slices if necessary, we may assume that D and
E are the first and second frontal slices A and B. Suppose that Ax = Bx = 0 where
x 6= 0. Let X be a 3×3 non-singular matrix which has x as its first column. (Extend
the set {x} to a basis {x,y, z} of F3 and let X = [x|y|z].) Acting on T = [A|B|C]
by X along the second direction gives [AX|BX|CX], but Ax = Bx = 0, so

[AX|BX|CX] =

 0 a′12 a′13 0 b′12 b′13 c′11 c′12 c′13
0 a′22 a′23 0 b′22 b′23 c′21 c′22 c′23
0 a′32 a′33 0 b′32 b′33 c′31 c′32 c′33


=

 0 0 0 0 0 0 c′11 0 0
0 0 0 0 0 0 c′21 0 0
0 0 0 0 0 0 c′31 0 0

+

 0 a′12 a′13 0 b′12 b′13 0 c′12 c′13
0 a′22 a′23 0 b′22 b′23 0 c′22 c′23
0 a′32 a′33 0 b′32 b′33 0 c′32 c′33


The first term is a simple tensor, c′11

c′21
c′31

⊗
 1

0
0

⊗
 0

0
1

 ,
and so it remains to prove that the second term has rank ≤ 4. To write the second
term as a sum of simple tensors it suffices to decompose this 3× 2× 3 array: a′12 a′13 b′12 b′13 c′12 c′13

a′22 a′23 b′22 b′23 c′22 c′23
a′32 a′33 b′32 b′33 c′32 c′33


Transposing the second and third directions, we may consider this 3× 3× 2 array: a′12 b′12 c′12 a′13 b′13 c′13

a′22 b′22 c′22 a′23 b′23 c′23
a′32 b′32 c′32 a′33 b′33 c′33


The claim now follows from Lemma 3.1.

If Atx = Btx = 0, then we transpose the matrices A, B and C and use the
analogous reasoning; this can also be expressed in terms of a transposition of the
first two directions in the array T = [A|B|C]. �

Lemma 3.4. Kruskal’s Two-Edge Lemma. If the array T has frontal slices D
and E for which there exist nonzero vectors x and y such that Dx = ytD = 0 and
ytEx 6= 0, then rank(T ) ≤ 5.

Proof. As before, we may assume that D and E are the first and second frontal
slices A and B. Let x and y satisfy the conditions of the lemma. We choose vectors
u2, u3, v2, v3 such that U = [ x|u2|u3 ] and V = [ y|v2|v3 ] are nonsingular. Then

V tAU =

0 0 0
0 ∗ ∗
0 ∗ ∗

 , V tBU =

α ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 , and V tCU =

β ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ,
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where α = ytBx 6= 0, but β can be 0, and ∗ denotes unspecified elements (which
are not necessarily equal). If β = 0 then we add B to C to make β = α 6= 0.
Equivalently, we change basis along the third direction in T by the matrix1 0 0

0 1 0
0 1 1


Since α 6= 0, we can construct a matrix X of rank 1 which has the same first row
and first column as V tBU ; explicitly,

V tBU =

α α′ α′′

γ ∗ ∗
δ ∗ ∗

 , X =

 α α′ α′′
γ
αα

γ
αα
′ γ

αα
′′

δ
αα

δ
αα
′ δ

αα
′′


Similarly, we can construct a matrix Y of rank 1 which has the same first row and
first column as V tCU . Then the two arrays [0|X|0] and [0|0|Y ] also have rank 1 as
3× 3× 3 arrays; that is, they are simple tensors. We now see that

V t[A|B|C]U − [0|X|0]− [0|0|Y ] =

 0 0 0 0 0 0 0 0 0
0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗


It remains to decompose the 2 × 2 × 2 array corresponding to the symbols ∗, and
this requires at most three simple tensors by Lemma 2.6. �

4. Proof of Kruskal’s theorem on 3× 3× 3 arrays

As before, F = R or F = C.

Theorem 4.1. Every 3× 3× 3 array T = [A|B|C] over F has rank ≤ 5.

Proof. If any of the frontal slices is zero, then the problem reduces to considering
a 3× 3× 2 array, which has rank ≤ 4 by Lemma 3.1. We assume from now on that
A, B and C are all nonzero.

If exactly two or three of the frontal slices are singular, then by permuting the
frontal slices we may assume that A and B are singular.

The alternative is that exactly zero or one of the frontal slices are singular,
which means that at least two of the frontal slices are non-singular. In this case, by
permuting the frontal slices we may assume that C is non-singular. Consider the
3×3 matrix A−λC; its determinant is a cubic polynomial in λ, since the coefficient
of λ3 is det(C) 6= 0. If F = R then this polynomial has a root in R because its
degree is odd. If F = C then this polynomial has a root in C by algebraic closure.
Thus by subtracting a multiple of C from A, we may ensure that A is singular, and
so rank(A) ≤ 2. Saying the same thing a different way, we are changing basis along
the third direction in T by the matrix1 0 −λ

0 1 0
0 0 1

 .
The same considerations apply to B.

Assumption 1: We may now assume that the first and second frontal slices of T
are both singular, and hence both have rank ≤ 2. (See Remark 4.2 below.)
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Suppose that some frontal slice has rank ≤ 1; up to permuting these slices, we
may assume that rank(A) ≤ 1. If rank(A) = 0, then A is the 0 matrix, and [0|B|C]
is essentially a 3× 3× 2 array, which has rank ≤ 4 by Lemma 3.1. If rank(A) = 1,
then the array [A|0|0] has rank 1; subtracting this simple tensor from T leaves a
3× 3× 2 array [0|B|C] which has rank ≤ 4, and so T has rank ≤ 5.

Assumption 2: We may now assume that every frontal slice has rank ≥ 2.
Combining Assumptions 1 and 2, we may assume from now on that A and B

have rank 2 and C has rank 2 or 3. This gives two main cases for the rest of the
proof, depending on the rank of C.

Case 1: A, B and C all have rank 2. It follows that there exist nonzero vectors
x1,x2,x3 and y1,y2,y3 (basis vectors for the right and left nullspaces) such that

Ax1 = Bx2 = Cx3 = 0, yt1A = yt2B = yt3C = 0.

Then for the 3× 3 matrices X = [x1|x2|x3] and Y = [y1|y2|y3] we have

(1) Y tAX =

0 0 0
0 ∗ ∗
0 ∗ ∗

 , Y tBX =

∗ 0 ∗
0 0 0
∗ 0 ∗

 , Y tCX =

∗ ∗ 0
∗ ∗ 0
0 0 0

 .
If the conditions of Lemma 3.4 are satisfied for any two frontal slices, then the proof
is complete. Otherwise, it follows that

(2) ytiAxi = ytiBxi = ytiCxi = 0, for all i = 1, 2, 3.

Consider these three subcases:
Subcase 1.1: Two columns of X are linearly dependent (that is, one column is a

scalar multiple of another). Then Lemma 3.3 completes the proof.
Subcase 1.2: The matrix X has rank 2, but no two columns are linearly depen-

dent. Then x1 and x2 are linearly independent, and so x3 = βx1 + γx2 for some
β, γ ∈ F \ {0}. We choose vectors u,v2,v3 such that the matrices U = [x1|x2|u]
and V = [y1|v2|v3] are invertible. Then for some δ ∈ C we have

V tAU =

0 0 0
0 ∗ ∗
0 ∗ ∗

 , V tBU =

0 0 ∗
∗ 0 ∗
∗ 0 ∗

 , V tCU =

0 δ ∗
∗ ∗ ∗
∗ ∗ ∗

 .
(The (1, 1) entries of V tBU and V tCU are zero; otherwise Lemma 3.4 would apply.)
But Cx3 = 0 implies βCx1 + γCx2 = 0, and so the first two columns of V tCU are
linearly dependent, implying δ = 0. Hence the first three rows of V tAU , V tBU
and V tCU are linearly dependent. We subtract the simple tensor in which the
first horizontal slice is the same as that of V t[A|B|C]U and the second and third
horizontal slices are zero. There remains an array in which the first horizontal
slice is zero, and the second and third horizontal slices are the same as those of
V t[A|B|C]U . But the rank of this 2× 3× 3 array is at most 4 by Lemma 3.1.

Subcase 1.3: The matrix X has rank 3. If Y has rank ≤ 2, then we replace
each frontal slice A, B, C by its transpose (equivalently, we interchange the first
two directions of T ), and then we may apply one of the previous subcases. So we
assume that Y has rank 3. Combining (1) and (2) gives three matrices of rank 2:

Y tAX =

0 0 0
0 0 β
0 α 0

 , Y tBX =

0 0 δ
0 0 0
γ 0 0

 , Y tCX =

0 ζ 0
ε 0 0
0 0 0

 .
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If we interchange the first two columns of X (that is, interchange the first two
vertical slices of T ) then we obtain

Y tAX =

0 0 0
0 0 β
α 0 0

 , Y tBX =

0 0 δ
0 0 0
0 γ 0

 , Y tCX =

ζ 0 0
0 ε 0
0 0 0

 .
We subtract from Y t[A|B|C]X the following sum of three simple tensors: 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
α −β −β 0 0 0 0 0 0

+

 0 0 0 0 0 δ 0 0 0
0 0 0 0 0 −γ 0 0 0
0 0 0 0 0 −γ 0 0 0

+

 0 0 0 0 0 0 ζ 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


We obtain the following array:

(3)

 0 0 0 0 0 0 0 0 0
0 0 β 0 0 γ 0 ε 0
0 β β 0 γ γ 0 0 0


The three frontal slices are linear combinations of these two matrices of rank 1:0 0 0

0 1 1
0 1 1

 ,
0 0 0

0 1 0
0 0 0

 .
Therefore the array (3) is the sum of two simple tensors: 0 0 0 0 0 0 0 0 0

0 β β 0 γ γ 0 0 0
0 β β 0 γ γ 0 0 0

+

 0 0 0 0 0 0 0 0 0
0 −β 0 0 −γ 0 0 ε 0
0 0 0 0 0 0 0 0 0


From this we obtain a decomposition of the original 3 × 3 × 3 array T into a sum
of at most 5 simple tensors.

Case 2: A and B have rank 2 but C has rank 3 (so C is invertible). If there
exist α, β ∈ F such that αA+ βB +C has rank ≤ 1, then we are back in the cases
considered before Assumption 2.

Subcase 2.1: There exist α, β ∈ F such that αA + βB + C has rank 2. This
corresponds to changing basis in T along the third direction by the matrix1 0 0

0 1 0
α β 1


Then we are back in Case 1. Such scalars may not exist; a simple example is

A = B =

0 1 0
0 0 1
0 0 0

 , C =

1 0 0
0 1 0
0 0 1

 .
Subcase 2.2: The matrix αA+ βB + C has rank 3 for all α, β ∈ F. There exist

nonzero vectors x1,x2,x3 and y1,y2,y3 such that

Ax1 = Bx2 = 0, Cx3 = Ax2, yt1A = yt2B = 0, yt3C = yt2A.
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If we can apply Lemma 3.4, then we are done. So we may assume that Lemma 3.4
does not apply, and hence we must have

yt1Ax1 = yt1Bx1 = yt1Cx1 = 0, yt2Ax2 = yt2Bx2 = yt2Cx2 = 0.

We write X = [x1|x2|x3] and Y = [y1|y2|y3].
Subsubcase 2.2.1: At least one of the pairs {x1, x2 }, {y1, y2 } is linearly de-

pendent. Then the result follows from Lemma 3.3.
Subsubcase 2.2.2: Both pairs {x1, x2 }, {y1, y2 } are linearly independent. Then

both matrices X and Y have rank ≥ 2. The rest of the proof deals with this
subsubcase.

Assume X has rank 2. Then x3 = γx1 + δx2 for some γ, δ ∈ F. There exist
nonzero vectors u, v such that U = [x1|x2|u] and V = [y1|y2|v] both have rank 3.
Then using the previous equations we have

V tAU =

0 0 0
0 0 ∗
0 ∗ ∗

 , V tBU =

0 0 ζ
0 0 0
ε 0 ∗

 , V tCU =

0 θ ∗
η 0 ∗
∗ ∗ ∗

 .
Since B has rank 2, it follows that ε 6= 0 and ζ 6= 0. We have

V tAx2 = V tCx3 = V tC(γx1 + δx2) = γV tCx1 + δV tCx2,

and so the second column of V tAU is a linear combination of the first two columns
of V tCU . Since x3 6= 0 (assumed at the start of subcase 2.2), and x3 = γx1 + δx2

(assumed at the start of this paragraph), it follows that γ, δ are not both 0, and
so at least one of η, θ is zero. In either case, adding a multiple of B to C (that is,
changing basis along the third direction), and applying the same change of basis
matrices V t and U along the first and second directions, gives an array in which the
third frontal slice has rank 2. But this new third frontal slice has the form βB+C
for some β ∈ F, and this contradicts the assumption (at the start of subcase 2.2)
that αA+ βB + C has rank 3 for all α, β ∈ F.

Assume X has rank 3. If Y has rank 2, then we interchange the first and second
directions of the array, which amounts to applying the usual matrix transpose to
the frontal slices A,B,C. Equivalently, we interchange X and Y , which reduces to
the previous paragraph. So we may assume that Y also has rank 3.

Assuming that X and Y both have rank 3 (and hence are invertible), and using
the previous equations, together with

yt2Ax3 = yt3Cx3 = yt3Ax2,

we obtain

Y tAX =

0 0 0
0 0 γ
0 γ δ

 , Y tBX =

0 0 ζ
0 0 0
ε 0 η

 .
Using the previous equations, together with

yt1Cx1 = 0, yt1Cx3 = yt1Ax2 = 0,

yt2Cx2 = 0, yt2Cx3 = yt2Ax2 = 0,

yt3Cx1 = yt2Ax1 = 0, yt3Cx2 = yt2Ax2 = 0,
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we obtain

Y tCX =

0 λ 0
κ 0 0
0 0 γ

 .
If δ 6= 0 (respectively η 6= 0) then we add a multiple of A (respectively B) to C to
eliminate γ and obtain an array for which Y tCX has rank 2; but this contradicts
the assumption that αA+ βB + C has rank 3. So we may assume that δ = η = 0:

Y tAX =

0 0 0
0 0 γ
0 γ 0

 , Y tBX =

0 0 ζ
0 0 0
ε 0 0

 , Y tCX =

0 λ 0
κ 0 0
0 0 γ

 .
Interchanging the first and second vertical slices of T = [A|B|C], and applying the
same transformations, amounts to interchanging the first and second columns in
each of the above matrices. We now have this array: 0 0 0 0 0 ζ λ 0 0

0 0 γ 0 0 0 0 κ 0
γ 0 0 0 ε 0 0 0 γ

 .
But λ, κ, γ are all nonzero by our assumption that the third frontal slice has rank 3.
We scale the first, second and third horizontal slices by 1/λ, 1/κ, 1/γ respectively:

(4)

 0 0 0 0 0 ζ/λ 1 0 0
0 0 γ/κ 0 0 0 0 1 0
1 0 0 0 ε/γ 0 0 0 1

 .
We now need to consider the cases F = R and F = C separately.

If F = R then from the array (4) we subtract the following array of rank 2: 0 0 0 0 0 0 0 0 0
0 0 γ/κ 0 0 −ε/γ 0 0 0
1 0 0 −ζ/λ 0 0 0 0 0

 =

 0
1
0

⊗
 0

0
1

⊗
 γ/κ
−ε/γ

0

+

 0
0
1

⊗
 1

0
0

⊗
 1
−ζ/λ

0

 .
We obtain  0 0 0 0 0 ζ/λ 1 0 0

0 0 0 0 0 ε/γ 0 1 0
0 0 0 ζ/λ ε/γ 0 0 0 1

 .
The second frontal slice (which we still denote by B) is now symmetric, hence
diagonalizable over R, and so there exists an invertible matrix E such that E−1BE
is a diagonal matrix. Changing basis along the first and second directions by E−1

and E respectively, we obtain 0 0 0 µ 0 0 1 0 0
0 0 0 0 ν 0 0 1 0
0 0 0 0 0 ξ 0 0 1

 .
This array clearly has rank 3, and the proof over R is complete.
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If F = C then from the array (4) we subtract the following array of rank 2, where
the bars denote complex conjugates: 0 0 0 0 0 0 0 0 0

0 0 γ/κ 0 0 −ε/γ 0 0 0

1 0 0 −ζ/λ 0 0 0 0 0

 =

 0
1
0

⊗
 0

0
1

⊗
 γ/κ

−ε/γ
0

+

 0
0
1

⊗
 1

0
0

⊗
 1

−ζ/λ
0

 .
We obtain  0 0 0 0 0 ζ/λ 1 0 0

0 0 0 0 0 ε/γ 0 1 0

0 0 0 ζ/λ ε/γ 0 0 0 1

 .
The second frontal slice (which we still denote by B) is now Hermitian, hence
diagonalizable over C, and so its Jordan canonical form J = E−1BE is a diagonal
matrix. The rest of the proof is the same as in the case F = R. �

Remark 4.2. Rocci [7] states at the start of the proof of his main theorem that
“by subtracting multiples of C from A and B, we can ensure that A and B are
both singular.” However, this is not true, even in the complex case, as the following
example shows, for which det(A− λC) = −1 for all λ:

A =

1 0 1
0 1 0
1 0 0

 , C =

1 0 0
0 0 0
0 0 0

 .
5. Arrays over the field with two elements

In this section we use computer algebra to classify the canonical forms of 3×3×3
arrays X = [xijk] over the field F2 with two elements. We use the term tensor for
such an array to avoid confusion with the data structures called arrays in Maple.
The flattening of X is the row vector flat(X) = [x111, . . . , xijk, . . . , x333], where
the entries are in lex order by subscripts. Conversely, the unflattening of such a
row vector is the corresponding tensor. We encode X as the non-negative integer
whose representation in base 2 is flat(X). Conversely, the decoding of an integer
in the range 0, . . . , 227−1 is the corresponding tensor. The lex order on flattenings
coincides with the natural order on integers. The minimal element of a set of tensors
is defined in terms of this total order. We identify X with an element of F3

2⊗F3
2⊗F3

2.
The direct product of general linear groups GL3(F2)×GL3(F2)×GL3(F2) acts on
F3
2⊗F3

2⊗F3
2, and the canonical form of a tensor is the minimal element in its orbit

under this group action. The finite group GL3(F2) has order 168, and is generated
by two elements: the cyclic permutation e1 7→ e2, e2 7→ e3, e3 7→ e1, and the row
operation e1 7→ e1+e2, e2 7→ e2, e3 7→ e3. The group GL3(F2)×GL3(F2)×GL3(F2)
has order 4741632 and is generated by 6 elements.

For a tensor X over F2, we use the spinning algorithm to compute its orbit. In
the following pseudocode, O is the current value of the orbit, L contains the new
elements computed during the previous iteration, and N contains the new elements
computed during the current iteration:

(1) O ← ∅; L ← {X}
(2) while L 6= ∅ do:
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(a) O ← O ∪ L
(b) N ← ∅; for Y ∈ L do for M ∈ G do: N ← N ∪ {M · Y }
(c) L ← N \ O

(3) return O

We first create a large Maple array, called orbitarray, with 227−1 entries. The
indices of orbitarray correspond to nonzero tensors: for an index i we first decode
i by writing it as a binary numeral of 27 bits (adding leading 0s if necessary), and
then unflatten this binary numeral to obtain the corresponding tensor. To start,
every entry of orbitarray is set to 0. We then perform the following iteration:

(1) ω ← 0, i← 0
(2) while i < 227−1 do:

(a) i← i+ 1
(b) if orbitarray[i] = 0 then

(i) ω ← ω + 1
(ii) findorbit[i]

Procedure findorbit takes the index i, decodes and unflattens it to the corre-
sponding tensor X, uses the spinning algorithm to generate the orbit O(X), and
sets the corresponding entries of orbitarray to the orbit index ω. Upon termi-
nation, ω equals the total number of orbits for the group action, and orbitarray

represents the function which assigns to each tensor the index number of its orbit.
The natural order of the index numbers of the orbits agrees with the lex order on
the minimal elements in the orbits (the canonical forms of the tensors).

The next step is to compute the ranks of the orbits. We create another Maple
array, called linkarray, of the same size as orbitarray. We use the data from
orbitarray to set entry i of linkarray (representing the tensor X) equal to the
index j of the next tensor in lex order in the orbit containing X. We then create
another Maple array of the same size, called rankarray, and initialize every entry
to 0. We generate all simple tensors (tensor products of nonzero vectors) and set the
corresponding entries of rankarray to 1. Each index i for which rankarray[i] = 1
represents the encoding of a tensor of rank 1. Let E denote the minimal tensor of
rank 1: its flattening is [0, . . . , 0, 1]. We then perform the following iteration:

(1) oldrank← 0, finished← false
(2) While not finished do:

(a) oldrank← oldrank + 1, finished← true
(b) For each index i for which rankarray[i] = oldrank, do:

(i) Let X be the unflattening of the decoding of i.
(ii) Set Y ← X + E: this amounts to changing the rightmost bit of

the flattening of X from 0 to 1 or from 1 to 0.
(iii) Let j be the encoding of the flattening of Y . Thus j = i+ 1 if i

is even, and j = i− 1 if i is odd.
(iv) If rankarray[j] = 0, then Y has rank oldrank+ 1. In this case:

• Use linkarray to store oldrank + 1 in every entry of
rankarray corresponding to the tensors in the orbit of Y .

• finished← false

The iteration terminates when every entry of rankarray contains a positive integer,
which is the rank of the corresponding (nonzero) tensor.
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To reduce the number of orbits, we consider the larger group

G =
(
GL3(F2)×GL3(F2)×GL3(F2)

)
o S3,

where the symmetric group S3 permutes the three directions. We first compute
the small orbits obtained by the action of GL3(F2)×GL3(F2)×GL3(F2) and then
apply the permutations to determine which small orbits combine to make a single
large orbit. Given the canonical form X of a small orbit O with index number
i, we apply the elements of S3 to obtain tensors X1 = X, . . . ,X6. We then use
the Maple arrays, which we have already computed, to find the index numbers
i1 = i, . . . , i6 of the small orbits containing these tensors. We conclude that the
union Oi1 ∪ · · · ∪ Oi6 is a large orbit for the action of G. The canonical form for
this large orbit is the smallest (in lex order) of the canonical forms of Oi1 , . . . ,Oi6 .
There are 115 (nonzero) small orbits and 55 (nonzero) large orbits:

rank 0 1 2 3 4 5 6
# small 1 1 4 18 44 45 3
# large 1 1 2 8 18 23 3
# tensors 1 343 43218 2372286 47506872 83670048 624960
percent 0.0000 0.0003 0.0322 1.7675 35.3954 62.3390 0.4656

For the large orbit sizes and canonical forms, see Table 1. This computation took
just under 282 minutes with Maple 16 on a Lenovo ThinkCentre M91p Tower
7052A8U i7-2600 CPU (Quad Core 3.40/3.80GHz) using Windows 7 Professional
64-bit with 16 gigabytes of RAM.

For similar results for other tensor formats over F2, see [1, 2].
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# rank size canonical form

1 1 343 . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 2 6174 . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 .
3 2 37044 . . . . . . . . . . . . . . . . . 1 . . . . 1 . . . .

4 3 3528 . . . . . . . . . . . . . . . . . . . . 1 . 1 . 1 . .
5 3 4116 . . . . . . . . . . . . . . 1 . 1 . . . . . 1 . . 1 1
6 3 18522 . . . . . . . . . . . . . . . . . 1 . . . . . 1 . 1 .
7 3 148176 . . . . . . . . . . . . . . 1 . 1 . . . . . 1 . 1 . .
8 3 222264 . . . . . . . . . . . . . . . . . 1 . . . . 1 . 1 . .
9 3 592704 . . . . . . . . . . . . . . . . . 1 . 1 . 1 . . . . .

10 3 592704 . . . . . . . . . . . . . . 1 . 1 . 1 . . . . . . 1 .
11 3 790272 . . . . . . . . 1 . . . . 1 . . . . 1 . . . . . . . .

12 4 148176 . . . . . . . . . . . . . . 1 . 1 . . . 1 . . . 1 . .
13 4 197568 . . . . . 1 . 1 . . . 1 . . . 1 . . . 1 . 1 1 . . 1 .
14 4 222264 . . . . . . . . . . . . . . . . . 1 . . 1 . 1 . 1 . .
15 4 263424 . . . . . . . . 1 . 1 . 1 . . . . . 1 . . 1 1 . . . .
16 4 444528 . . . . . . . . . . . . . . 1 . 1 . . . 1 . 1 . 1 . .
17 4 592704 . . . . . . . . . . . . . . 1 . 1 . 1 . . . 1 . . 1 1
18 4 1185408 . . . . . . . . 1 . . . . . 1 . 1 . 1 . . . . . . . .
19 4 1778112 . . . . . . . . . . . . . . 1 . 1 . . . 1 1 . . . . .
20 4 1778112 . . . . . . . . 1 . . . . . . . 1 . . . 1 1 . . . . .
21 4 1778112 . . . . . . . . 1 . . . . 1 . . . . . 1 1 1 . . 1 . .
22 4 2370816 . . . . . . . . 1 . 1 . 1 . . . . . 1 . . 1 1 . . 1 .
23 4 2370816 . . . . . . . . 1 . 1 . 1 . . . . . 1 . . 1 1 1 . 1 .
24 4 3556224 . . . . . . . . 1 . . . . . 1 . 1 . 1 . . . . . . 1 .
25 4 4741632 . . . . . . . . 1 . . . . 1 . . . . 1 . . . . . . 1 .
26 4 4741632 . . . . . . . . 1 . . . . 1 . 1 . . 1 . . . . 1 . . .
27 4 7112448 . . . . . . . . 1 . . . . . 1 . 1 . 1 . . . 1 . . . .
28 4 7112448 . . . . . . . . 1 . . . . 1 . . . . 1 . . . . 1 . 1 .
29 4 7112448 . . . . . . . . 1 . . . . 1 . 1 . . . 1 1 1 . . . . .

30 5 28224 . . . . . 1 . 1 . . . 1 . . . 1 . . . 1 . 1 . . . . .
31 5 148176 . . . . . . . . 1 . . . . . . . 1 . . . 1 . 1 . 1 . .
32 5 148176 . . . . . . . . 1 . . . . . 1 . 1 . . . 1 . 1 . 1 . .
33 5 169344 . . . . . . . . . . . 1 . 1 . 1 . . . 1 . 1 . . . 1 1
34 5 592704 . . . . . 1 . 1 . . . 1 . . . 1 . . . 1 . 1 1 . . 1 1
35 5 1185408 . . . . . 1 . 1 . . . 1 . . . 1 . . . 1 . 1 . . . 1 .
36 5 1580544 . . . . . 1 . 1 . . . 1 . . . 1 . . 1 . . 1 1 . . . .
37 5 1580544 . . . . . 1 . 1 . . . 1 . . . 1 . . 1 . . 1 1 . . . 1
38 5 1778112 . . . . . . . . 1 . . . . . 1 . 1 . . . 1 1 . . . . .
39 5 1778112 . . . . . . . . 1 . . . . 1 . 1 . . . . 1 1 . . 1 1 .
40 5 2370816 . . . . . 1 . 1 . . . 1 . . . 1 . . . 1 . 1 1 . 1 . .
41 5 2370816 . . . . . 1 . 1 . . . 1 . 1 . 1 . . 1 . . 1 . . . . 1
42 5 2370816 . . . . . 1 . 1 . . . 1 . 1 . 1 . . 1 . . 1 . . 1 . 1
43 5 3556224 . . . . . . . . 1 . . . . . 1 . 1 . . 1 . 1 . . . . .
44 5 4741632 . . . . . . . . 1 . 1 . 1 . . . . . 1 . . 1 1 1 1 . .
45 5 4741632 . . . . . 1 . 1 . . . 1 . 1 . 1 . . . 1 . 1 . . 1 . .
46 5 4741632 . . . . . 1 . 1 . . . 1 . 1 . 1 . . 1 . . . . . . 1 .
47 5 4741632 . . . . . 1 . 1 . . . 1 . 1 . 1 . . 1 . . . . . . 1 1
48 5 4741632 . . . . . 1 . 1 . . . 1 . 1 . 1 . . 1 . . 1 . . . 1 .
49 5 4741632 . . . . . 1 . 1 . . . 1 . 1 . 1 . . 1 . . 1 . . 1 1 .
50 5 7112448 . . . . . . . . 1 . . 1 . 1 . 1 . . 1 . . . . 1 . 1 .
51 5 14224896 . . . . . . . . 1 . . . . 1 . 1 . . 1 . . . . 1 . 1 .
52 5 14224896 . . . . . . . . 1 . . 1 . 1 . 1 . . . 1 . 1 . . . . .

53 6 32256 . . 1 . 1 . 1 . . . 1 . 1 . . . 1 1 1 . . . 1 1 1 1 .
54 6 197568 . . . . . 1 . 1 . . . 1 . . . 1 . . . 1 . 1 . . . . 1
55 6 395136 . . . . . 1 . 1 . . . 1 . 1 . 1 . . . 1 . 1 . . . 1 1

Table 1. Large orbits of 3× 3× 3 tensors over F2
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