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The above-mentioned paper contains, among others, the following formula
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where N is positive integer divisible by 4, while the numerators 1,−1, 5,−61, . . .
are the Euler numbers E0, E2, E4, E6, . . .. It may be interesting to know that there
is also a formula which ”can do” without the Euler numbers, namely
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Here FN denotes the beautiful continued fraction
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Note that the left-hand sides of (2) and (2a) are identical. Only the right-hand
sides differ from each other, because (2) uses the Euler numbers, which are not
needed in (2a).

The equation (2a) can be derived from other formulas which, until now, are pub-
lished and proved only in German, namely in the journal article: W. Pigulla, ”Kon-
vergenzbeschleunigung mit Hilfe von Kettenbrüchen”, Elemente der Mathematik
59 (2004), 58-64.

It we test (2a) with N = 4, we obtain
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= 0.2374 · · · .
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